1 // SPDX-License-Identifier: GPL-2.0-only
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
11 * Notes on the allocation strategy:
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
40 * dcache->d_inode->i_lock protects:
41 * - i_dentry, d_u.d_alias, d_inode of aliases
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
46 * dentry->d_sb->s_dentry_lru_lock protects:
47 * - the dcache lru lists and counters
54 * - d_parent and d_subdirs
55 * - childrens' d_child and d_parent
56 * - d_u.d_alias, d_inode
59 * dentry->d_inode->i_lock
61 * dentry->d_sb->s_dentry_lru_lock
62 * dcache_hash_bucket lock
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
68 * dentry->d_parent->d_lock
71 * If no ancestor relationship:
72 * arbitrary, since it's serialized on rename_lock
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
79 EXPORT_SYMBOL(rename_lock);
81 static struct kmem_cache *dentry_cache __read_mostly;
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 const struct qstr dotdot_name = QSTR_INIT("..", 2);
88 EXPORT_SYMBOL(dotdot_name);
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
99 static unsigned int d_hash_shift __read_mostly;
101 static struct hlist_bl_head *dentry_hashtable __read_mostly;
103 static inline struct hlist_bl_head *d_hash(unsigned int hash)
105 return dentry_hashtable + (hash >> d_hash_shift);
108 #define IN_LOOKUP_SHIFT 10
109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
114 hash += (unsigned long) parent / L1_CACHE_BYTES;
115 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
118 struct dentry_stat_t {
121 long age_limit; /* age in seconds */
122 long want_pages; /* pages requested by system */
123 long nr_negative; /* # of unused negative dentries */
124 long dummy; /* Reserved for future use */
127 static DEFINE_PER_CPU(long, nr_dentry);
128 static DEFINE_PER_CPU(long, nr_dentry_unused);
129 static DEFINE_PER_CPU(long, nr_dentry_negative);
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 /* Statistics gathering. */
133 static struct dentry_stat_t dentry_stat = {
138 * Here we resort to our own counters instead of using generic per-cpu counters
139 * for consistency with what the vfs inode code does. We are expected to harvest
140 * better code and performance by having our own specialized counters.
142 * Please note that the loop is done over all possible CPUs, not over all online
143 * CPUs. The reason for this is that we don't want to play games with CPUs going
144 * on and off. If one of them goes off, we will just keep their counters.
146 * glommer: See cffbc8a for details, and if you ever intend to change this,
147 * please update all vfs counters to match.
149 static long get_nr_dentry(void)
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry, i);
155 return sum < 0 ? 0 : sum;
158 static long get_nr_dentry_unused(void)
162 for_each_possible_cpu(i)
163 sum += per_cpu(nr_dentry_unused, i);
164 return sum < 0 ? 0 : sum;
167 static long get_nr_dentry_negative(void)
172 for_each_possible_cpu(i)
173 sum += per_cpu(nr_dentry_negative, i);
174 return sum < 0 ? 0 : sum;
177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178 size_t *lenp, loff_t *ppos)
180 dentry_stat.nr_dentry = get_nr_dentry();
181 dentry_stat.nr_unused = get_nr_dentry_unused();
182 dentry_stat.nr_negative = get_nr_dentry_negative();
183 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
186 static struct ctl_table fs_dcache_sysctls[] = {
188 .procname = "dentry-state",
189 .data = &dentry_stat,
190 .maxlen = 6*sizeof(long),
192 .proc_handler = proc_nr_dentry,
197 static int __init init_fs_dcache_sysctls(void)
199 register_sysctl_init("fs", fs_dcache_sysctls);
202 fs_initcall(init_fs_dcache_sysctls);
206 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
207 * The strings are both count bytes long, and count is non-zero.
209 #ifdef CONFIG_DCACHE_WORD_ACCESS
211 #include <asm/word-at-a-time.h>
213 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
214 * aligned allocation for this particular component. We don't
215 * strictly need the load_unaligned_zeropad() safety, but it
216 * doesn't hurt either.
218 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
219 * need the careful unaligned handling.
221 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
223 unsigned long a,b,mask;
226 a = read_word_at_a_time(cs);
227 b = load_unaligned_zeropad(ct);
228 if (tcount < sizeof(unsigned long))
230 if (unlikely(a != b))
232 cs += sizeof(unsigned long);
233 ct += sizeof(unsigned long);
234 tcount -= sizeof(unsigned long);
238 mask = bytemask_from_count(tcount);
239 return unlikely(!!((a ^ b) & mask));
244 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
258 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
261 * Be careful about RCU walk racing with rename:
262 * use 'READ_ONCE' to fetch the name pointer.
264 * NOTE! Even if a rename will mean that the length
265 * was not loaded atomically, we don't care. The
266 * RCU walk will check the sequence count eventually,
267 * and catch it. And we won't overrun the buffer,
268 * because we're reading the name pointer atomically,
269 * and a dentry name is guaranteed to be properly
270 * terminated with a NUL byte.
272 * End result: even if 'len' is wrong, we'll exit
273 * early because the data cannot match (there can
274 * be no NUL in the ct/tcount data)
276 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
278 return dentry_string_cmp(cs, ct, tcount);
281 struct external_name {
284 struct rcu_head head;
286 unsigned char name[];
289 static inline struct external_name *external_name(struct dentry *dentry)
291 return container_of(dentry->d_name.name, struct external_name, name[0]);
294 static void __d_free(struct rcu_head *head)
296 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
298 kmem_cache_free(dentry_cache, dentry);
301 static void __d_free_external(struct rcu_head *head)
303 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
304 kfree(external_name(dentry));
305 kmem_cache_free(dentry_cache, dentry);
308 static inline int dname_external(const struct dentry *dentry)
310 return dentry->d_name.name != dentry->d_iname;
313 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
315 spin_lock(&dentry->d_lock);
316 name->name = dentry->d_name;
317 if (unlikely(dname_external(dentry))) {
318 atomic_inc(&external_name(dentry)->u.count);
320 memcpy(name->inline_name, dentry->d_iname,
321 dentry->d_name.len + 1);
322 name->name.name = name->inline_name;
324 spin_unlock(&dentry->d_lock);
326 EXPORT_SYMBOL(take_dentry_name_snapshot);
328 void release_dentry_name_snapshot(struct name_snapshot *name)
330 if (unlikely(name->name.name != name->inline_name)) {
331 struct external_name *p;
332 p = container_of(name->name.name, struct external_name, name[0]);
333 if (unlikely(atomic_dec_and_test(&p->u.count)))
334 kfree_rcu(p, u.head);
337 EXPORT_SYMBOL(release_dentry_name_snapshot);
339 static inline void __d_set_inode_and_type(struct dentry *dentry,
345 dentry->d_inode = inode;
346 flags = READ_ONCE(dentry->d_flags);
347 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
349 smp_store_release(&dentry->d_flags, flags);
352 static inline void __d_clear_type_and_inode(struct dentry *dentry)
354 unsigned flags = READ_ONCE(dentry->d_flags);
356 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
357 WRITE_ONCE(dentry->d_flags, flags);
358 dentry->d_inode = NULL;
359 if (dentry->d_flags & DCACHE_LRU_LIST)
360 this_cpu_inc(nr_dentry_negative);
363 static void dentry_free(struct dentry *dentry)
365 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
366 if (unlikely(dname_external(dentry))) {
367 struct external_name *p = external_name(dentry);
368 if (likely(atomic_dec_and_test(&p->u.count))) {
369 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
373 /* if dentry was never visible to RCU, immediate free is OK */
374 if (dentry->d_flags & DCACHE_NORCU)
375 __d_free(&dentry->d_u.d_rcu);
377 call_rcu(&dentry->d_u.d_rcu, __d_free);
381 * Release the dentry's inode, using the filesystem
382 * d_iput() operation if defined.
384 static void dentry_unlink_inode(struct dentry * dentry)
385 __releases(dentry->d_lock)
386 __releases(dentry->d_inode->i_lock)
388 struct inode *inode = dentry->d_inode;
390 raw_write_seqcount_begin(&dentry->d_seq);
391 __d_clear_type_and_inode(dentry);
392 hlist_del_init(&dentry->d_u.d_alias);
393 raw_write_seqcount_end(&dentry->d_seq);
394 spin_unlock(&dentry->d_lock);
395 spin_unlock(&inode->i_lock);
397 fsnotify_inoderemove(inode);
398 if (dentry->d_op && dentry->d_op->d_iput)
399 dentry->d_op->d_iput(dentry, inode);
405 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
406 * is in use - which includes both the "real" per-superblock
407 * LRU list _and_ the DCACHE_SHRINK_LIST use.
409 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
410 * on the shrink list (ie not on the superblock LRU list).
412 * The per-cpu "nr_dentry_unused" counters are updated with
413 * the DCACHE_LRU_LIST bit.
415 * The per-cpu "nr_dentry_negative" counters are only updated
416 * when deleted from or added to the per-superblock LRU list, not
417 * from/to the shrink list. That is to avoid an unneeded dec/inc
418 * pair when moving from LRU to shrink list in select_collect().
420 * These helper functions make sure we always follow the
421 * rules. d_lock must be held by the caller.
423 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
424 static void d_lru_add(struct dentry *dentry)
426 D_FLAG_VERIFY(dentry, 0);
427 dentry->d_flags |= DCACHE_LRU_LIST;
428 this_cpu_inc(nr_dentry_unused);
429 if (d_is_negative(dentry))
430 this_cpu_inc(nr_dentry_negative);
431 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
434 static void d_lru_del(struct dentry *dentry)
436 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
437 dentry->d_flags &= ~DCACHE_LRU_LIST;
438 this_cpu_dec(nr_dentry_unused);
439 if (d_is_negative(dentry))
440 this_cpu_dec(nr_dentry_negative);
441 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
444 static void d_shrink_del(struct dentry *dentry)
446 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
447 list_del_init(&dentry->d_lru);
448 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
449 this_cpu_dec(nr_dentry_unused);
452 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
454 D_FLAG_VERIFY(dentry, 0);
455 list_add(&dentry->d_lru, list);
456 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
457 this_cpu_inc(nr_dentry_unused);
461 * These can only be called under the global LRU lock, ie during the
462 * callback for freeing the LRU list. "isolate" removes it from the
463 * LRU lists entirely, while shrink_move moves it to the indicated
466 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
468 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
469 dentry->d_flags &= ~DCACHE_LRU_LIST;
470 this_cpu_dec(nr_dentry_unused);
471 if (d_is_negative(dentry))
472 this_cpu_dec(nr_dentry_negative);
473 list_lru_isolate(lru, &dentry->d_lru);
476 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
477 struct list_head *list)
479 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
480 dentry->d_flags |= DCACHE_SHRINK_LIST;
481 if (d_is_negative(dentry))
482 this_cpu_dec(nr_dentry_negative);
483 list_lru_isolate_move(lru, &dentry->d_lru, list);
486 static void ___d_drop(struct dentry *dentry)
488 struct hlist_bl_head *b;
490 * Hashed dentries are normally on the dentry hashtable,
491 * with the exception of those newly allocated by
492 * d_obtain_root, which are always IS_ROOT:
494 if (unlikely(IS_ROOT(dentry)))
495 b = &dentry->d_sb->s_roots;
497 b = d_hash(dentry->d_name.hash);
500 __hlist_bl_del(&dentry->d_hash);
504 void __d_drop(struct dentry *dentry)
506 if (!d_unhashed(dentry)) {
508 dentry->d_hash.pprev = NULL;
509 write_seqcount_invalidate(&dentry->d_seq);
512 EXPORT_SYMBOL(__d_drop);
515 * d_drop - drop a dentry
516 * @dentry: dentry to drop
518 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
519 * be found through a VFS lookup any more. Note that this is different from
520 * deleting the dentry - d_delete will try to mark the dentry negative if
521 * possible, giving a successful _negative_ lookup, while d_drop will
522 * just make the cache lookup fail.
524 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
525 * reason (NFS timeouts or autofs deletes).
527 * __d_drop requires dentry->d_lock
529 * ___d_drop doesn't mark dentry as "unhashed"
530 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
532 void d_drop(struct dentry *dentry)
534 spin_lock(&dentry->d_lock);
536 spin_unlock(&dentry->d_lock);
538 EXPORT_SYMBOL(d_drop);
540 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
544 * Inform d_walk() and shrink_dentry_list() that we are no longer
545 * attached to the dentry tree
547 dentry->d_flags |= DCACHE_DENTRY_KILLED;
548 if (unlikely(list_empty(&dentry->d_child)))
550 __list_del_entry(&dentry->d_child);
552 * Cursors can move around the list of children. While we'd been
553 * a normal list member, it didn't matter - ->d_child.next would've
554 * been updated. However, from now on it won't be and for the
555 * things like d_walk() it might end up with a nasty surprise.
556 * Normally d_walk() doesn't care about cursors moving around -
557 * ->d_lock on parent prevents that and since a cursor has no children
558 * of its own, we get through it without ever unlocking the parent.
559 * There is one exception, though - if we ascend from a child that
560 * gets killed as soon as we unlock it, the next sibling is found
561 * using the value left in its ->d_child.next. And if _that_
562 * pointed to a cursor, and cursor got moved (e.g. by lseek())
563 * before d_walk() regains parent->d_lock, we'll end up skipping
564 * everything the cursor had been moved past.
566 * Solution: make sure that the pointer left behind in ->d_child.next
567 * points to something that won't be moving around. I.e. skip the
570 while (dentry->d_child.next != &parent->d_subdirs) {
571 next = list_entry(dentry->d_child.next, struct dentry, d_child);
572 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
574 dentry->d_child.next = next->d_child.next;
578 static void __dentry_kill(struct dentry *dentry)
580 struct dentry *parent = NULL;
581 bool can_free = true;
582 if (!IS_ROOT(dentry))
583 parent = dentry->d_parent;
586 * The dentry is now unrecoverably dead to the world.
588 lockref_mark_dead(&dentry->d_lockref);
591 * inform the fs via d_prune that this dentry is about to be
592 * unhashed and destroyed.
594 if (dentry->d_flags & DCACHE_OP_PRUNE)
595 dentry->d_op->d_prune(dentry);
597 if (dentry->d_flags & DCACHE_LRU_LIST) {
598 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
601 /* if it was on the hash then remove it */
603 dentry_unlist(dentry, parent);
605 spin_unlock(&parent->d_lock);
607 dentry_unlink_inode(dentry);
609 spin_unlock(&dentry->d_lock);
610 this_cpu_dec(nr_dentry);
611 if (dentry->d_op && dentry->d_op->d_release)
612 dentry->d_op->d_release(dentry);
614 spin_lock(&dentry->d_lock);
615 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
616 dentry->d_flags |= DCACHE_MAY_FREE;
619 spin_unlock(&dentry->d_lock);
620 if (likely(can_free))
625 static struct dentry *__lock_parent(struct dentry *dentry)
627 struct dentry *parent;
629 spin_unlock(&dentry->d_lock);
631 parent = READ_ONCE(dentry->d_parent);
632 spin_lock(&parent->d_lock);
634 * We can't blindly lock dentry until we are sure
635 * that we won't violate the locking order.
636 * Any changes of dentry->d_parent must have
637 * been done with parent->d_lock held, so
638 * spin_lock() above is enough of a barrier
639 * for checking if it's still our child.
641 if (unlikely(parent != dentry->d_parent)) {
642 spin_unlock(&parent->d_lock);
646 if (parent != dentry)
647 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
653 static inline struct dentry *lock_parent(struct dentry *dentry)
655 struct dentry *parent = dentry->d_parent;
658 if (likely(spin_trylock(&parent->d_lock)))
660 return __lock_parent(dentry);
663 static inline bool retain_dentry(struct dentry *dentry)
665 WARN_ON(d_in_lookup(dentry));
667 /* Unreachable? Get rid of it */
668 if (unlikely(d_unhashed(dentry)))
671 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
674 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
675 if (dentry->d_op->d_delete(dentry))
679 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
682 /* retain; LRU fodder */
683 dentry->d_lockref.count--;
684 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
686 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
687 dentry->d_flags |= DCACHE_REFERENCED;
691 void d_mark_dontcache(struct inode *inode)
695 spin_lock(&inode->i_lock);
696 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
697 spin_lock(&de->d_lock);
698 de->d_flags |= DCACHE_DONTCACHE;
699 spin_unlock(&de->d_lock);
701 inode->i_state |= I_DONTCACHE;
702 spin_unlock(&inode->i_lock);
704 EXPORT_SYMBOL(d_mark_dontcache);
707 * Finish off a dentry we've decided to kill.
708 * dentry->d_lock must be held, returns with it unlocked.
709 * Returns dentry requiring refcount drop, or NULL if we're done.
711 static struct dentry *dentry_kill(struct dentry *dentry)
712 __releases(dentry->d_lock)
714 struct inode *inode = dentry->d_inode;
715 struct dentry *parent = NULL;
717 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
720 if (!IS_ROOT(dentry)) {
721 parent = dentry->d_parent;
722 if (unlikely(!spin_trylock(&parent->d_lock))) {
723 parent = __lock_parent(dentry);
724 if (likely(inode || !dentry->d_inode))
726 /* negative that became positive */
728 spin_unlock(&parent->d_lock);
729 inode = dentry->d_inode;
733 __dentry_kill(dentry);
737 spin_unlock(&dentry->d_lock);
738 spin_lock(&inode->i_lock);
739 spin_lock(&dentry->d_lock);
740 parent = lock_parent(dentry);
742 if (unlikely(dentry->d_lockref.count != 1)) {
743 dentry->d_lockref.count--;
744 } else if (likely(!retain_dentry(dentry))) {
745 __dentry_kill(dentry);
748 /* we are keeping it, after all */
750 spin_unlock(&inode->i_lock);
752 spin_unlock(&parent->d_lock);
753 spin_unlock(&dentry->d_lock);
758 * Try to do a lockless dput(), and return whether that was successful.
760 * If unsuccessful, we return false, having already taken the dentry lock.
762 * The caller needs to hold the RCU read lock, so that the dentry is
763 * guaranteed to stay around even if the refcount goes down to zero!
765 static inline bool fast_dput(struct dentry *dentry)
768 unsigned int d_flags;
771 * If we have a d_op->d_delete() operation, we sould not
772 * let the dentry count go to zero, so use "put_or_lock".
774 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
775 return lockref_put_or_lock(&dentry->d_lockref);
778 * .. otherwise, we can try to just decrement the
779 * lockref optimistically.
781 ret = lockref_put_return(&dentry->d_lockref);
784 * If the lockref_put_return() failed due to the lock being held
785 * by somebody else, the fast path has failed. We will need to
786 * get the lock, and then check the count again.
788 if (unlikely(ret < 0)) {
789 spin_lock(&dentry->d_lock);
790 if (dentry->d_lockref.count > 1) {
791 dentry->d_lockref.count--;
792 spin_unlock(&dentry->d_lock);
799 * If we weren't the last ref, we're done.
805 * Careful, careful. The reference count went down
806 * to zero, but we don't hold the dentry lock, so
807 * somebody else could get it again, and do another
808 * dput(), and we need to not race with that.
810 * However, there is a very special and common case
811 * where we don't care, because there is nothing to
812 * do: the dentry is still hashed, it does not have
813 * a 'delete' op, and it's referenced and already on
816 * NOTE! Since we aren't locked, these values are
817 * not "stable". However, it is sufficient that at
818 * some point after we dropped the reference the
819 * dentry was hashed and the flags had the proper
820 * value. Other dentry users may have re-gotten
821 * a reference to the dentry and change that, but
822 * our work is done - we can leave the dentry
823 * around with a zero refcount.
825 * Nevertheless, there are two cases that we should kill
827 * 1. free disconnected dentries as soon as their refcount
829 * 2. free dentries if they should not be cached.
832 d_flags = READ_ONCE(dentry->d_flags);
833 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
834 DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
836 /* Nothing to do? Dropping the reference was all we needed? */
837 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
841 * Not the fast normal case? Get the lock. We've already decremented
842 * the refcount, but we'll need to re-check the situation after
845 spin_lock(&dentry->d_lock);
848 * Did somebody else grab a reference to it in the meantime, and
849 * we're no longer the last user after all? Alternatively, somebody
850 * else could have killed it and marked it dead. Either way, we
851 * don't need to do anything else.
853 if (dentry->d_lockref.count) {
854 spin_unlock(&dentry->d_lock);
859 * Re-get the reference we optimistically dropped. We hold the
860 * lock, and we just tested that it was zero, so we can just
863 dentry->d_lockref.count = 1;
871 * This is complicated by the fact that we do not want to put
872 * dentries that are no longer on any hash chain on the unused
873 * list: we'd much rather just get rid of them immediately.
875 * However, that implies that we have to traverse the dentry
876 * tree upwards to the parents which might _also_ now be
877 * scheduled for deletion (it may have been only waiting for
878 * its last child to go away).
880 * This tail recursion is done by hand as we don't want to depend
881 * on the compiler to always get this right (gcc generally doesn't).
882 * Real recursion would eat up our stack space.
886 * dput - release a dentry
887 * @dentry: dentry to release
889 * Release a dentry. This will drop the usage count and if appropriate
890 * call the dentry unlink method as well as removing it from the queues and
891 * releasing its resources. If the parent dentries were scheduled for release
892 * they too may now get deleted.
894 void dput(struct dentry *dentry)
900 if (likely(fast_dput(dentry))) {
905 /* Slow case: now with the dentry lock held */
908 if (likely(retain_dentry(dentry))) {
909 spin_unlock(&dentry->d_lock);
913 dentry = dentry_kill(dentry);
918 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
919 __must_hold(&dentry->d_lock)
921 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
922 /* let the owner of the list it's on deal with it */
923 --dentry->d_lockref.count;
925 if (dentry->d_flags & DCACHE_LRU_LIST)
927 if (!--dentry->d_lockref.count)
928 d_shrink_add(dentry, list);
932 void dput_to_list(struct dentry *dentry, struct list_head *list)
935 if (likely(fast_dput(dentry))) {
940 if (!retain_dentry(dentry))
941 __dput_to_list(dentry, list);
942 spin_unlock(&dentry->d_lock);
945 /* This must be called with d_lock held */
946 static inline void __dget_dlock(struct dentry *dentry)
948 dentry->d_lockref.count++;
951 static inline void __dget(struct dentry *dentry)
953 lockref_get(&dentry->d_lockref);
956 struct dentry *dget_parent(struct dentry *dentry)
963 * Do optimistic parent lookup without any
967 seq = raw_seqcount_begin(&dentry->d_seq);
968 ret = READ_ONCE(dentry->d_parent);
969 gotref = lockref_get_not_zero(&ret->d_lockref);
971 if (likely(gotref)) {
972 if (!read_seqcount_retry(&dentry->d_seq, seq))
979 * Don't need rcu_dereference because we re-check it was correct under
983 ret = dentry->d_parent;
984 spin_lock(&ret->d_lock);
985 if (unlikely(ret != dentry->d_parent)) {
986 spin_unlock(&ret->d_lock);
991 BUG_ON(!ret->d_lockref.count);
992 ret->d_lockref.count++;
993 spin_unlock(&ret->d_lock);
996 EXPORT_SYMBOL(dget_parent);
998 static struct dentry * __d_find_any_alias(struct inode *inode)
1000 struct dentry *alias;
1002 if (hlist_empty(&inode->i_dentry))
1004 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1010 * d_find_any_alias - find any alias for a given inode
1011 * @inode: inode to find an alias for
1013 * If any aliases exist for the given inode, take and return a
1014 * reference for one of them. If no aliases exist, return %NULL.
1016 struct dentry *d_find_any_alias(struct inode *inode)
1020 spin_lock(&inode->i_lock);
1021 de = __d_find_any_alias(inode);
1022 spin_unlock(&inode->i_lock);
1025 EXPORT_SYMBOL(d_find_any_alias);
1027 static struct dentry *__d_find_alias(struct inode *inode)
1029 struct dentry *alias;
1031 if (S_ISDIR(inode->i_mode))
1032 return __d_find_any_alias(inode);
1034 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1035 spin_lock(&alias->d_lock);
1036 if (!d_unhashed(alias)) {
1037 __dget_dlock(alias);
1038 spin_unlock(&alias->d_lock);
1041 spin_unlock(&alias->d_lock);
1047 * d_find_alias - grab a hashed alias of inode
1048 * @inode: inode in question
1050 * If inode has a hashed alias, or is a directory and has any alias,
1051 * acquire the reference to alias and return it. Otherwise return NULL.
1052 * Notice that if inode is a directory there can be only one alias and
1053 * it can be unhashed only if it has no children, or if it is the root
1054 * of a filesystem, or if the directory was renamed and d_revalidate
1055 * was the first vfs operation to notice.
1057 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1058 * any other hashed alias over that one.
1060 struct dentry *d_find_alias(struct inode *inode)
1062 struct dentry *de = NULL;
1064 if (!hlist_empty(&inode->i_dentry)) {
1065 spin_lock(&inode->i_lock);
1066 de = __d_find_alias(inode);
1067 spin_unlock(&inode->i_lock);
1071 EXPORT_SYMBOL(d_find_alias);
1074 * Caller MUST be holding rcu_read_lock() and be guaranteed
1075 * that inode won't get freed until rcu_read_unlock().
1077 struct dentry *d_find_alias_rcu(struct inode *inode)
1079 struct hlist_head *l = &inode->i_dentry;
1080 struct dentry *de = NULL;
1082 spin_lock(&inode->i_lock);
1083 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1084 // used without having I_FREEING set, which means no aliases left
1085 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1086 if (S_ISDIR(inode->i_mode)) {
1087 de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1089 hlist_for_each_entry(de, l, d_u.d_alias)
1090 if (!d_unhashed(de))
1094 spin_unlock(&inode->i_lock);
1099 * Try to kill dentries associated with this inode.
1100 * WARNING: you must own a reference to inode.
1102 void d_prune_aliases(struct inode *inode)
1104 struct dentry *dentry;
1106 spin_lock(&inode->i_lock);
1107 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1108 spin_lock(&dentry->d_lock);
1109 if (!dentry->d_lockref.count) {
1110 struct dentry *parent = lock_parent(dentry);
1111 if (likely(!dentry->d_lockref.count)) {
1112 __dentry_kill(dentry);
1117 spin_unlock(&parent->d_lock);
1119 spin_unlock(&dentry->d_lock);
1121 spin_unlock(&inode->i_lock);
1123 EXPORT_SYMBOL(d_prune_aliases);
1126 * Lock a dentry from shrink list.
1127 * Called under rcu_read_lock() and dentry->d_lock; the former
1128 * guarantees that nothing we access will be freed under us.
1129 * Note that dentry is *not* protected from concurrent dentry_kill(),
1132 * Return false if dentry has been disrupted or grabbed, leaving
1133 * the caller to kick it off-list. Otherwise, return true and have
1134 * that dentry's inode and parent both locked.
1136 static bool shrink_lock_dentry(struct dentry *dentry)
1138 struct inode *inode;
1139 struct dentry *parent;
1141 if (dentry->d_lockref.count)
1144 inode = dentry->d_inode;
1145 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1146 spin_unlock(&dentry->d_lock);
1147 spin_lock(&inode->i_lock);
1148 spin_lock(&dentry->d_lock);
1149 if (unlikely(dentry->d_lockref.count))
1151 /* changed inode means that somebody had grabbed it */
1152 if (unlikely(inode != dentry->d_inode))
1156 parent = dentry->d_parent;
1157 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1160 spin_unlock(&dentry->d_lock);
1161 spin_lock(&parent->d_lock);
1162 if (unlikely(parent != dentry->d_parent)) {
1163 spin_unlock(&parent->d_lock);
1164 spin_lock(&dentry->d_lock);
1167 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1168 if (likely(!dentry->d_lockref.count))
1170 spin_unlock(&parent->d_lock);
1173 spin_unlock(&inode->i_lock);
1177 void shrink_dentry_list(struct list_head *list)
1179 while (!list_empty(list)) {
1180 struct dentry *dentry, *parent;
1182 dentry = list_entry(list->prev, struct dentry, d_lru);
1183 spin_lock(&dentry->d_lock);
1185 if (!shrink_lock_dentry(dentry)) {
1186 bool can_free = false;
1188 d_shrink_del(dentry);
1189 if (dentry->d_lockref.count < 0)
1190 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1191 spin_unlock(&dentry->d_lock);
1193 dentry_free(dentry);
1197 d_shrink_del(dentry);
1198 parent = dentry->d_parent;
1199 if (parent != dentry)
1200 __dput_to_list(parent, list);
1201 __dentry_kill(dentry);
1205 static enum lru_status dentry_lru_isolate(struct list_head *item,
1206 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1208 struct list_head *freeable = arg;
1209 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1213 * we are inverting the lru lock/dentry->d_lock here,
1214 * so use a trylock. If we fail to get the lock, just skip
1217 if (!spin_trylock(&dentry->d_lock))
1221 * Referenced dentries are still in use. If they have active
1222 * counts, just remove them from the LRU. Otherwise give them
1223 * another pass through the LRU.
1225 if (dentry->d_lockref.count) {
1226 d_lru_isolate(lru, dentry);
1227 spin_unlock(&dentry->d_lock);
1231 if (dentry->d_flags & DCACHE_REFERENCED) {
1232 dentry->d_flags &= ~DCACHE_REFERENCED;
1233 spin_unlock(&dentry->d_lock);
1236 * The list move itself will be made by the common LRU code. At
1237 * this point, we've dropped the dentry->d_lock but keep the
1238 * lru lock. This is safe to do, since every list movement is
1239 * protected by the lru lock even if both locks are held.
1241 * This is guaranteed by the fact that all LRU management
1242 * functions are intermediated by the LRU API calls like
1243 * list_lru_add and list_lru_del. List movement in this file
1244 * only ever occur through this functions or through callbacks
1245 * like this one, that are called from the LRU API.
1247 * The only exceptions to this are functions like
1248 * shrink_dentry_list, and code that first checks for the
1249 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1250 * operating only with stack provided lists after they are
1251 * properly isolated from the main list. It is thus, always a
1257 d_lru_shrink_move(lru, dentry, freeable);
1258 spin_unlock(&dentry->d_lock);
1264 * prune_dcache_sb - shrink the dcache
1266 * @sc: shrink control, passed to list_lru_shrink_walk()
1268 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1269 * is done when we need more memory and called from the superblock shrinker
1272 * This function may fail to free any resources if all the dentries are in
1275 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1280 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1281 dentry_lru_isolate, &dispose);
1282 shrink_dentry_list(&dispose);
1286 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1287 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1289 struct list_head *freeable = arg;
1290 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1293 * we are inverting the lru lock/dentry->d_lock here,
1294 * so use a trylock. If we fail to get the lock, just skip
1297 if (!spin_trylock(&dentry->d_lock))
1300 d_lru_shrink_move(lru, dentry, freeable);
1301 spin_unlock(&dentry->d_lock);
1308 * shrink_dcache_sb - shrink dcache for a superblock
1311 * Shrink the dcache for the specified super block. This is used to free
1312 * the dcache before unmounting a file system.
1314 void shrink_dcache_sb(struct super_block *sb)
1319 list_lru_walk(&sb->s_dentry_lru,
1320 dentry_lru_isolate_shrink, &dispose, 1024);
1321 shrink_dentry_list(&dispose);
1322 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1324 EXPORT_SYMBOL(shrink_dcache_sb);
1327 * enum d_walk_ret - action to talke during tree walk
1328 * @D_WALK_CONTINUE: contrinue walk
1329 * @D_WALK_QUIT: quit walk
1330 * @D_WALK_NORETRY: quit when retry is needed
1331 * @D_WALK_SKIP: skip this dentry and its children
1341 * d_walk - walk the dentry tree
1342 * @parent: start of walk
1343 * @data: data passed to @enter() and @finish()
1344 * @enter: callback when first entering the dentry
1346 * The @enter() callbacks are called with d_lock held.
1348 static void d_walk(struct dentry *parent, void *data,
1349 enum d_walk_ret (*enter)(void *, struct dentry *))
1351 struct dentry *this_parent;
1352 struct list_head *next;
1354 enum d_walk_ret ret;
1358 read_seqbegin_or_lock(&rename_lock, &seq);
1359 this_parent = parent;
1360 spin_lock(&this_parent->d_lock);
1362 ret = enter(data, this_parent);
1364 case D_WALK_CONTINUE:
1369 case D_WALK_NORETRY:
1374 next = this_parent->d_subdirs.next;
1376 while (next != &this_parent->d_subdirs) {
1377 struct list_head *tmp = next;
1378 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1381 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1384 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1386 ret = enter(data, dentry);
1388 case D_WALK_CONTINUE:
1391 spin_unlock(&dentry->d_lock);
1393 case D_WALK_NORETRY:
1397 spin_unlock(&dentry->d_lock);
1401 if (!list_empty(&dentry->d_subdirs)) {
1402 spin_unlock(&this_parent->d_lock);
1403 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1404 this_parent = dentry;
1405 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1408 spin_unlock(&dentry->d_lock);
1411 * All done at this level ... ascend and resume the search.
1415 if (this_parent != parent) {
1416 struct dentry *child = this_parent;
1417 this_parent = child->d_parent;
1419 spin_unlock(&child->d_lock);
1420 spin_lock(&this_parent->d_lock);
1422 /* might go back up the wrong parent if we have had a rename. */
1423 if (need_seqretry(&rename_lock, seq))
1425 /* go into the first sibling still alive */
1427 next = child->d_child.next;
1428 if (next == &this_parent->d_subdirs)
1430 child = list_entry(next, struct dentry, d_child);
1431 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1435 if (need_seqretry(&rename_lock, seq))
1440 spin_unlock(&this_parent->d_lock);
1441 done_seqretry(&rename_lock, seq);
1445 spin_unlock(&this_parent->d_lock);
1454 struct check_mount {
1455 struct vfsmount *mnt;
1456 unsigned int mounted;
1459 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1461 struct check_mount *info = data;
1462 struct path path = { .mnt = info->mnt, .dentry = dentry };
1464 if (likely(!d_mountpoint(dentry)))
1465 return D_WALK_CONTINUE;
1466 if (__path_is_mountpoint(&path)) {
1470 return D_WALK_CONTINUE;
1474 * path_has_submounts - check for mounts over a dentry in the
1475 * current namespace.
1476 * @parent: path to check.
1478 * Return true if the parent or its subdirectories contain
1479 * a mount point in the current namespace.
1481 int path_has_submounts(const struct path *parent)
1483 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1485 read_seqlock_excl(&mount_lock);
1486 d_walk(parent->dentry, &data, path_check_mount);
1487 read_sequnlock_excl(&mount_lock);
1489 return data.mounted;
1491 EXPORT_SYMBOL(path_has_submounts);
1494 * Called by mount code to set a mountpoint and check if the mountpoint is
1495 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1496 * subtree can become unreachable).
1498 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1499 * this reason take rename_lock and d_lock on dentry and ancestors.
1501 int d_set_mounted(struct dentry *dentry)
1505 write_seqlock(&rename_lock);
1506 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1507 /* Need exclusion wrt. d_invalidate() */
1508 spin_lock(&p->d_lock);
1509 if (unlikely(d_unhashed(p))) {
1510 spin_unlock(&p->d_lock);
1513 spin_unlock(&p->d_lock);
1515 spin_lock(&dentry->d_lock);
1516 if (!d_unlinked(dentry)) {
1518 if (!d_mountpoint(dentry)) {
1519 dentry->d_flags |= DCACHE_MOUNTED;
1523 spin_unlock(&dentry->d_lock);
1525 write_sequnlock(&rename_lock);
1530 * Search the dentry child list of the specified parent,
1531 * and move any unused dentries to the end of the unused
1532 * list for prune_dcache(). We descend to the next level
1533 * whenever the d_subdirs list is non-empty and continue
1536 * It returns zero iff there are no unused children,
1537 * otherwise it returns the number of children moved to
1538 * the end of the unused list. This may not be the total
1539 * number of unused children, because select_parent can
1540 * drop the lock and return early due to latency
1544 struct select_data {
1545 struct dentry *start;
1548 struct dentry *victim;
1550 struct list_head dispose;
1553 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1555 struct select_data *data = _data;
1556 enum d_walk_ret ret = D_WALK_CONTINUE;
1558 if (data->start == dentry)
1561 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1564 if (dentry->d_flags & DCACHE_LRU_LIST)
1566 if (!dentry->d_lockref.count) {
1567 d_shrink_add(dentry, &data->dispose);
1572 * We can return to the caller if we have found some (this
1573 * ensures forward progress). We'll be coming back to find
1576 if (!list_empty(&data->dispose))
1577 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1582 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1584 struct select_data *data = _data;
1585 enum d_walk_ret ret = D_WALK_CONTINUE;
1587 if (data->start == dentry)
1590 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1591 if (!dentry->d_lockref.count) {
1593 data->victim = dentry;
1597 if (dentry->d_flags & DCACHE_LRU_LIST)
1599 if (!dentry->d_lockref.count)
1600 d_shrink_add(dentry, &data->dispose);
1603 * We can return to the caller if we have found some (this
1604 * ensures forward progress). We'll be coming back to find
1607 if (!list_empty(&data->dispose))
1608 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1614 * shrink_dcache_parent - prune dcache
1615 * @parent: parent of entries to prune
1617 * Prune the dcache to remove unused children of the parent dentry.
1619 void shrink_dcache_parent(struct dentry *parent)
1622 struct select_data data = {.start = parent};
1624 INIT_LIST_HEAD(&data.dispose);
1625 d_walk(parent, &data, select_collect);
1627 if (!list_empty(&data.dispose)) {
1628 shrink_dentry_list(&data.dispose);
1636 d_walk(parent, &data, select_collect2);
1638 struct dentry *parent;
1639 spin_lock(&data.victim->d_lock);
1640 if (!shrink_lock_dentry(data.victim)) {
1641 spin_unlock(&data.victim->d_lock);
1645 parent = data.victim->d_parent;
1646 if (parent != data.victim)
1647 __dput_to_list(parent, &data.dispose);
1648 __dentry_kill(data.victim);
1651 if (!list_empty(&data.dispose))
1652 shrink_dentry_list(&data.dispose);
1655 EXPORT_SYMBOL(shrink_dcache_parent);
1657 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1659 /* it has busy descendents; complain about those instead */
1660 if (!list_empty(&dentry->d_subdirs))
1661 return D_WALK_CONTINUE;
1663 /* root with refcount 1 is fine */
1664 if (dentry == _data && dentry->d_lockref.count == 1)
1665 return D_WALK_CONTINUE;
1667 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1668 " still in use (%d) [unmount of %s %s]\n",
1671 dentry->d_inode->i_ino : 0UL,
1673 dentry->d_lockref.count,
1674 dentry->d_sb->s_type->name,
1675 dentry->d_sb->s_id);
1677 return D_WALK_CONTINUE;
1680 static void do_one_tree(struct dentry *dentry)
1682 shrink_dcache_parent(dentry);
1683 d_walk(dentry, dentry, umount_check);
1689 * destroy the dentries attached to a superblock on unmounting
1691 void shrink_dcache_for_umount(struct super_block *sb)
1693 struct dentry *dentry;
1695 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1697 dentry = sb->s_root;
1699 do_one_tree(dentry);
1701 while (!hlist_bl_empty(&sb->s_roots)) {
1702 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1703 do_one_tree(dentry);
1707 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1709 struct dentry **victim = _data;
1710 if (d_mountpoint(dentry)) {
1711 __dget_dlock(dentry);
1715 return D_WALK_CONTINUE;
1719 * d_invalidate - detach submounts, prune dcache, and drop
1720 * @dentry: dentry to invalidate (aka detach, prune and drop)
1722 void d_invalidate(struct dentry *dentry)
1724 bool had_submounts = false;
1725 spin_lock(&dentry->d_lock);
1726 if (d_unhashed(dentry)) {
1727 spin_unlock(&dentry->d_lock);
1731 spin_unlock(&dentry->d_lock);
1733 /* Negative dentries can be dropped without further checks */
1734 if (!dentry->d_inode)
1737 shrink_dcache_parent(dentry);
1739 struct dentry *victim = NULL;
1740 d_walk(dentry, &victim, find_submount);
1743 shrink_dcache_parent(dentry);
1746 had_submounts = true;
1747 detach_mounts(victim);
1751 EXPORT_SYMBOL(d_invalidate);
1754 * __d_alloc - allocate a dcache entry
1755 * @sb: filesystem it will belong to
1756 * @name: qstr of the name
1758 * Allocates a dentry. It returns %NULL if there is insufficient memory
1759 * available. On a success the dentry is returned. The name passed in is
1760 * copied and the copy passed in may be reused after this call.
1763 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1765 struct dentry *dentry;
1769 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1775 * We guarantee that the inline name is always NUL-terminated.
1776 * This way the memcpy() done by the name switching in rename
1777 * will still always have a NUL at the end, even if we might
1778 * be overwriting an internal NUL character
1780 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1781 if (unlikely(!name)) {
1783 dname = dentry->d_iname;
1784 } else if (name->len > DNAME_INLINE_LEN-1) {
1785 size_t size = offsetof(struct external_name, name[1]);
1786 struct external_name *p = kmalloc(size + name->len,
1787 GFP_KERNEL_ACCOUNT |
1790 kmem_cache_free(dentry_cache, dentry);
1793 atomic_set(&p->u.count, 1);
1796 dname = dentry->d_iname;
1799 dentry->d_name.len = name->len;
1800 dentry->d_name.hash = name->hash;
1801 memcpy(dname, name->name, name->len);
1802 dname[name->len] = 0;
1804 /* Make sure we always see the terminating NUL character */
1805 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1807 dentry->d_lockref.count = 1;
1808 dentry->d_flags = 0;
1809 spin_lock_init(&dentry->d_lock);
1810 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1811 dentry->d_inode = NULL;
1812 dentry->d_parent = dentry;
1814 dentry->d_op = NULL;
1815 dentry->d_fsdata = NULL;
1816 INIT_HLIST_BL_NODE(&dentry->d_hash);
1817 INIT_LIST_HEAD(&dentry->d_lru);
1818 INIT_LIST_HEAD(&dentry->d_subdirs);
1819 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1820 INIT_LIST_HEAD(&dentry->d_child);
1821 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1823 if (dentry->d_op && dentry->d_op->d_init) {
1824 err = dentry->d_op->d_init(dentry);
1826 if (dname_external(dentry))
1827 kfree(external_name(dentry));
1828 kmem_cache_free(dentry_cache, dentry);
1833 this_cpu_inc(nr_dentry);
1839 * d_alloc - allocate a dcache entry
1840 * @parent: parent of entry to allocate
1841 * @name: qstr of the name
1843 * Allocates a dentry. It returns %NULL if there is insufficient memory
1844 * available. On a success the dentry is returned. The name passed in is
1845 * copied and the copy passed in may be reused after this call.
1847 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1849 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1852 spin_lock(&parent->d_lock);
1854 * don't need child lock because it is not subject
1855 * to concurrency here
1857 __dget_dlock(parent);
1858 dentry->d_parent = parent;
1859 list_add(&dentry->d_child, &parent->d_subdirs);
1860 spin_unlock(&parent->d_lock);
1864 EXPORT_SYMBOL(d_alloc);
1866 struct dentry *d_alloc_anon(struct super_block *sb)
1868 return __d_alloc(sb, NULL);
1870 EXPORT_SYMBOL(d_alloc_anon);
1872 struct dentry *d_alloc_cursor(struct dentry * parent)
1874 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1876 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1877 dentry->d_parent = dget(parent);
1883 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1884 * @sb: the superblock
1885 * @name: qstr of the name
1887 * For a filesystem that just pins its dentries in memory and never
1888 * performs lookups at all, return an unhashed IS_ROOT dentry.
1889 * This is used for pipes, sockets et.al. - the stuff that should
1890 * never be anyone's children or parents. Unlike all other
1891 * dentries, these will not have RCU delay between dropping the
1892 * last reference and freeing them.
1894 * The only user is alloc_file_pseudo() and that's what should
1895 * be considered a public interface. Don't use directly.
1897 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1899 struct dentry *dentry = __d_alloc(sb, name);
1901 dentry->d_flags |= DCACHE_NORCU;
1905 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1910 q.hash_len = hashlen_string(parent, name);
1911 return d_alloc(parent, &q);
1913 EXPORT_SYMBOL(d_alloc_name);
1915 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1917 WARN_ON_ONCE(dentry->d_op);
1918 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1920 DCACHE_OP_REVALIDATE |
1921 DCACHE_OP_WEAK_REVALIDATE |
1928 dentry->d_flags |= DCACHE_OP_HASH;
1930 dentry->d_flags |= DCACHE_OP_COMPARE;
1931 if (op->d_revalidate)
1932 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1933 if (op->d_weak_revalidate)
1934 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1936 dentry->d_flags |= DCACHE_OP_DELETE;
1938 dentry->d_flags |= DCACHE_OP_PRUNE;
1940 dentry->d_flags |= DCACHE_OP_REAL;
1943 EXPORT_SYMBOL(d_set_d_op);
1947 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1948 * @dentry - The dentry to mark
1950 * Mark a dentry as falling through to the lower layer (as set with
1951 * d_pin_lower()). This flag may be recorded on the medium.
1953 void d_set_fallthru(struct dentry *dentry)
1955 spin_lock(&dentry->d_lock);
1956 dentry->d_flags |= DCACHE_FALLTHRU;
1957 spin_unlock(&dentry->d_lock);
1959 EXPORT_SYMBOL(d_set_fallthru);
1961 static unsigned d_flags_for_inode(struct inode *inode)
1963 unsigned add_flags = DCACHE_REGULAR_TYPE;
1966 return DCACHE_MISS_TYPE;
1968 if (S_ISDIR(inode->i_mode)) {
1969 add_flags = DCACHE_DIRECTORY_TYPE;
1970 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1971 if (unlikely(!inode->i_op->lookup))
1972 add_flags = DCACHE_AUTODIR_TYPE;
1974 inode->i_opflags |= IOP_LOOKUP;
1976 goto type_determined;
1979 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1980 if (unlikely(inode->i_op->get_link)) {
1981 add_flags = DCACHE_SYMLINK_TYPE;
1982 goto type_determined;
1984 inode->i_opflags |= IOP_NOFOLLOW;
1987 if (unlikely(!S_ISREG(inode->i_mode)))
1988 add_flags = DCACHE_SPECIAL_TYPE;
1991 if (unlikely(IS_AUTOMOUNT(inode)))
1992 add_flags |= DCACHE_NEED_AUTOMOUNT;
1996 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1998 unsigned add_flags = d_flags_for_inode(inode);
1999 WARN_ON(d_in_lookup(dentry));
2001 spin_lock(&dentry->d_lock);
2003 * Decrement negative dentry count if it was in the LRU list.
2005 if (dentry->d_flags & DCACHE_LRU_LIST)
2006 this_cpu_dec(nr_dentry_negative);
2007 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2008 raw_write_seqcount_begin(&dentry->d_seq);
2009 __d_set_inode_and_type(dentry, inode, add_flags);
2010 raw_write_seqcount_end(&dentry->d_seq);
2011 fsnotify_update_flags(dentry);
2012 spin_unlock(&dentry->d_lock);
2016 * d_instantiate - fill in inode information for a dentry
2017 * @entry: dentry to complete
2018 * @inode: inode to attach to this dentry
2020 * Fill in inode information in the entry.
2022 * This turns negative dentries into productive full members
2025 * NOTE! This assumes that the inode count has been incremented
2026 * (or otherwise set) by the caller to indicate that it is now
2027 * in use by the dcache.
2030 void d_instantiate(struct dentry *entry, struct inode * inode)
2032 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2034 security_d_instantiate(entry, inode);
2035 spin_lock(&inode->i_lock);
2036 __d_instantiate(entry, inode);
2037 spin_unlock(&inode->i_lock);
2040 EXPORT_SYMBOL(d_instantiate);
2043 * This should be equivalent to d_instantiate() + unlock_new_inode(),
2044 * with lockdep-related part of unlock_new_inode() done before
2045 * anything else. Use that instead of open-coding d_instantiate()/
2046 * unlock_new_inode() combinations.
2048 void d_instantiate_new(struct dentry *entry, struct inode *inode)
2050 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2052 lockdep_annotate_inode_mutex_key(inode);
2053 security_d_instantiate(entry, inode);
2054 spin_lock(&inode->i_lock);
2055 __d_instantiate(entry, inode);
2056 WARN_ON(!(inode->i_state & I_NEW));
2057 inode->i_state &= ~I_NEW & ~I_CREATING;
2059 wake_up_bit(&inode->i_state, __I_NEW);
2060 spin_unlock(&inode->i_lock);
2062 EXPORT_SYMBOL(d_instantiate_new);
2064 struct dentry *d_make_root(struct inode *root_inode)
2066 struct dentry *res = NULL;
2069 res = d_alloc_anon(root_inode->i_sb);
2071 d_instantiate(res, root_inode);
2077 EXPORT_SYMBOL(d_make_root);
2079 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2080 struct inode *inode,
2086 security_d_instantiate(dentry, inode);
2087 spin_lock(&inode->i_lock);
2088 res = __d_find_any_alias(inode);
2090 spin_unlock(&inode->i_lock);
2095 /* attach a disconnected dentry */
2096 add_flags = d_flags_for_inode(inode);
2099 add_flags |= DCACHE_DISCONNECTED;
2101 spin_lock(&dentry->d_lock);
2102 __d_set_inode_and_type(dentry, inode, add_flags);
2103 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2104 if (!disconnected) {
2105 hlist_bl_lock(&dentry->d_sb->s_roots);
2106 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2107 hlist_bl_unlock(&dentry->d_sb->s_roots);
2109 spin_unlock(&dentry->d_lock);
2110 spin_unlock(&inode->i_lock);
2119 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2121 return __d_instantiate_anon(dentry, inode, true);
2123 EXPORT_SYMBOL(d_instantiate_anon);
2125 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2131 return ERR_PTR(-ESTALE);
2133 return ERR_CAST(inode);
2135 res = d_find_any_alias(inode);
2139 tmp = d_alloc_anon(inode->i_sb);
2141 res = ERR_PTR(-ENOMEM);
2145 return __d_instantiate_anon(tmp, inode, disconnected);
2153 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2154 * @inode: inode to allocate the dentry for
2156 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2157 * similar open by handle operations. The returned dentry may be anonymous,
2158 * or may have a full name (if the inode was already in the cache).
2160 * When called on a directory inode, we must ensure that the inode only ever
2161 * has one dentry. If a dentry is found, that is returned instead of
2162 * allocating a new one.
2164 * On successful return, the reference to the inode has been transferred
2165 * to the dentry. In case of an error the reference on the inode is released.
2166 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2167 * be passed in and the error will be propagated to the return value,
2168 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2170 struct dentry *d_obtain_alias(struct inode *inode)
2172 return __d_obtain_alias(inode, true);
2174 EXPORT_SYMBOL(d_obtain_alias);
2177 * d_obtain_root - find or allocate a dentry for a given inode
2178 * @inode: inode to allocate the dentry for
2180 * Obtain an IS_ROOT dentry for the root of a filesystem.
2182 * We must ensure that directory inodes only ever have one dentry. If a
2183 * dentry is found, that is returned instead of allocating a new one.
2185 * On successful return, the reference to the inode has been transferred
2186 * to the dentry. In case of an error the reference on the inode is
2187 * released. A %NULL or IS_ERR inode may be passed in and will be the
2188 * error will be propagate to the return value, with a %NULL @inode
2189 * replaced by ERR_PTR(-ESTALE).
2191 struct dentry *d_obtain_root(struct inode *inode)
2193 return __d_obtain_alias(inode, false);
2195 EXPORT_SYMBOL(d_obtain_root);
2198 * d_add_ci - lookup or allocate new dentry with case-exact name
2199 * @inode: the inode case-insensitive lookup has found
2200 * @dentry: the negative dentry that was passed to the parent's lookup func
2201 * @name: the case-exact name to be associated with the returned dentry
2203 * This is to avoid filling the dcache with case-insensitive names to the
2204 * same inode, only the actual correct case is stored in the dcache for
2205 * case-insensitive filesystems.
2207 * For a case-insensitive lookup match and if the case-exact dentry
2208 * already exists in the dcache, use it and return it.
2210 * If no entry exists with the exact case name, allocate new dentry with
2211 * the exact case, and return the spliced entry.
2213 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2216 struct dentry *found, *res;
2219 * First check if a dentry matching the name already exists,
2220 * if not go ahead and create it now.
2222 found = d_hash_and_lookup(dentry->d_parent, name);
2227 if (d_in_lookup(dentry)) {
2228 found = d_alloc_parallel(dentry->d_parent, name,
2230 if (IS_ERR(found) || !d_in_lookup(found)) {
2235 found = d_alloc(dentry->d_parent, name);
2238 return ERR_PTR(-ENOMEM);
2241 res = d_splice_alias(inode, found);
2243 d_lookup_done(found);
2249 EXPORT_SYMBOL(d_add_ci);
2252 * d_same_name - compare dentry name with case-exact name
2253 * @parent: parent dentry
2254 * @dentry: the negative dentry that was passed to the parent's lookup func
2255 * @name: the case-exact name to be associated with the returned dentry
2257 * Return: true if names are same, or false
2259 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2260 const struct qstr *name)
2262 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2263 if (dentry->d_name.len != name->len)
2265 return dentry_cmp(dentry, name->name, name->len) == 0;
2267 return parent->d_op->d_compare(dentry,
2268 dentry->d_name.len, dentry->d_name.name,
2271 EXPORT_SYMBOL_GPL(d_same_name);
2274 * This is __d_lookup_rcu() when the parent dentry has
2275 * DCACHE_OP_COMPARE, which makes things much nastier.
2277 static noinline struct dentry *__d_lookup_rcu_op_compare(
2278 const struct dentry *parent,
2279 const struct qstr *name,
2282 u64 hashlen = name->hash_len;
2283 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2284 struct hlist_bl_node *node;
2285 struct dentry *dentry;
2287 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2293 seq = raw_seqcount_begin(&dentry->d_seq);
2294 if (dentry->d_parent != parent)
2296 if (d_unhashed(dentry))
2298 if (dentry->d_name.hash != hashlen_hash(hashlen))
2300 tlen = dentry->d_name.len;
2301 tname = dentry->d_name.name;
2302 /* we want a consistent (name,len) pair */
2303 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2307 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2316 * __d_lookup_rcu - search for a dentry (racy, store-free)
2317 * @parent: parent dentry
2318 * @name: qstr of name we wish to find
2319 * @seqp: returns d_seq value at the point where the dentry was found
2320 * Returns: dentry, or NULL
2322 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2323 * resolution (store-free path walking) design described in
2324 * Documentation/filesystems/path-lookup.txt.
2326 * This is not to be used outside core vfs.
2328 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2329 * held, and rcu_read_lock held. The returned dentry must not be stored into
2330 * without taking d_lock and checking d_seq sequence count against @seq
2333 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2336 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2337 * the returned dentry, so long as its parent's seqlock is checked after the
2338 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2339 * is formed, giving integrity down the path walk.
2341 * NOTE! The caller *has* to check the resulting dentry against the sequence
2342 * number we've returned before using any of the resulting dentry state!
2344 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2345 const struct qstr *name,
2348 u64 hashlen = name->hash_len;
2349 const unsigned char *str = name->name;
2350 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2351 struct hlist_bl_node *node;
2352 struct dentry *dentry;
2355 * Note: There is significant duplication with __d_lookup_rcu which is
2356 * required to prevent single threaded performance regressions
2357 * especially on architectures where smp_rmb (in seqcounts) are costly.
2358 * Keep the two functions in sync.
2361 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2362 return __d_lookup_rcu_op_compare(parent, name, seqp);
2365 * The hash list is protected using RCU.
2367 * Carefully use d_seq when comparing a candidate dentry, to avoid
2368 * races with d_move().
2370 * It is possible that concurrent renames can mess up our list
2371 * walk here and result in missing our dentry, resulting in the
2372 * false-negative result. d_lookup() protects against concurrent
2373 * renames using rename_lock seqlock.
2375 * See Documentation/filesystems/path-lookup.txt for more details.
2377 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2381 * The dentry sequence count protects us from concurrent
2382 * renames, and thus protects parent and name fields.
2384 * The caller must perform a seqcount check in order
2385 * to do anything useful with the returned dentry.
2387 * NOTE! We do a "raw" seqcount_begin here. That means that
2388 * we don't wait for the sequence count to stabilize if it
2389 * is in the middle of a sequence change. If we do the slow
2390 * dentry compare, we will do seqretries until it is stable,
2391 * and if we end up with a successful lookup, we actually
2392 * want to exit RCU lookup anyway.
2394 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2395 * we are still guaranteed NUL-termination of ->d_name.name.
2397 seq = raw_seqcount_begin(&dentry->d_seq);
2398 if (dentry->d_parent != parent)
2400 if (d_unhashed(dentry))
2402 if (dentry->d_name.hash_len != hashlen)
2404 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2413 * d_lookup - search for a dentry
2414 * @parent: parent dentry
2415 * @name: qstr of name we wish to find
2416 * Returns: dentry, or NULL
2418 * d_lookup searches the children of the parent dentry for the name in
2419 * question. If the dentry is found its reference count is incremented and the
2420 * dentry is returned. The caller must use dput to free the entry when it has
2421 * finished using it. %NULL is returned if the dentry does not exist.
2423 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2425 struct dentry *dentry;
2429 seq = read_seqbegin(&rename_lock);
2430 dentry = __d_lookup(parent, name);
2433 } while (read_seqretry(&rename_lock, seq));
2436 EXPORT_SYMBOL(d_lookup);
2439 * __d_lookup - search for a dentry (racy)
2440 * @parent: parent dentry
2441 * @name: qstr of name we wish to find
2442 * Returns: dentry, or NULL
2444 * __d_lookup is like d_lookup, however it may (rarely) return a
2445 * false-negative result due to unrelated rename activity.
2447 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2448 * however it must be used carefully, eg. with a following d_lookup in
2449 * the case of failure.
2451 * __d_lookup callers must be commented.
2453 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2455 unsigned int hash = name->hash;
2456 struct hlist_bl_head *b = d_hash(hash);
2457 struct hlist_bl_node *node;
2458 struct dentry *found = NULL;
2459 struct dentry *dentry;
2462 * Note: There is significant duplication with __d_lookup_rcu which is
2463 * required to prevent single threaded performance regressions
2464 * especially on architectures where smp_rmb (in seqcounts) are costly.
2465 * Keep the two functions in sync.
2469 * The hash list is protected using RCU.
2471 * Take d_lock when comparing a candidate dentry, to avoid races
2474 * It is possible that concurrent renames can mess up our list
2475 * walk here and result in missing our dentry, resulting in the
2476 * false-negative result. d_lookup() protects against concurrent
2477 * renames using rename_lock seqlock.
2479 * See Documentation/filesystems/path-lookup.txt for more details.
2483 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2485 if (dentry->d_name.hash != hash)
2488 spin_lock(&dentry->d_lock);
2489 if (dentry->d_parent != parent)
2491 if (d_unhashed(dentry))
2494 if (!d_same_name(dentry, parent, name))
2497 dentry->d_lockref.count++;
2499 spin_unlock(&dentry->d_lock);
2502 spin_unlock(&dentry->d_lock);
2510 * d_hash_and_lookup - hash the qstr then search for a dentry
2511 * @dir: Directory to search in
2512 * @name: qstr of name we wish to find
2514 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2516 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2519 * Check for a fs-specific hash function. Note that we must
2520 * calculate the standard hash first, as the d_op->d_hash()
2521 * routine may choose to leave the hash value unchanged.
2523 name->hash = full_name_hash(dir, name->name, name->len);
2524 if (dir->d_flags & DCACHE_OP_HASH) {
2525 int err = dir->d_op->d_hash(dir, name);
2526 if (unlikely(err < 0))
2527 return ERR_PTR(err);
2529 return d_lookup(dir, name);
2531 EXPORT_SYMBOL(d_hash_and_lookup);
2534 * When a file is deleted, we have two options:
2535 * - turn this dentry into a negative dentry
2536 * - unhash this dentry and free it.
2538 * Usually, we want to just turn this into
2539 * a negative dentry, but if anybody else is
2540 * currently using the dentry or the inode
2541 * we can't do that and we fall back on removing
2542 * it from the hash queues and waiting for
2543 * it to be deleted later when it has no users
2547 * d_delete - delete a dentry
2548 * @dentry: The dentry to delete
2550 * Turn the dentry into a negative dentry if possible, otherwise
2551 * remove it from the hash queues so it can be deleted later
2554 void d_delete(struct dentry * dentry)
2556 struct inode *inode = dentry->d_inode;
2558 spin_lock(&inode->i_lock);
2559 spin_lock(&dentry->d_lock);
2561 * Are we the only user?
2563 if (dentry->d_lockref.count == 1) {
2564 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2565 dentry_unlink_inode(dentry);
2568 spin_unlock(&dentry->d_lock);
2569 spin_unlock(&inode->i_lock);
2572 EXPORT_SYMBOL(d_delete);
2574 static void __d_rehash(struct dentry *entry)
2576 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2579 hlist_bl_add_head_rcu(&entry->d_hash, b);
2584 * d_rehash - add an entry back to the hash
2585 * @entry: dentry to add to the hash
2587 * Adds a dentry to the hash according to its name.
2590 void d_rehash(struct dentry * entry)
2592 spin_lock(&entry->d_lock);
2594 spin_unlock(&entry->d_lock);
2596 EXPORT_SYMBOL(d_rehash);
2598 static inline unsigned start_dir_add(struct inode *dir)
2601 * The caller holds a spinlock (dentry::d_lock). On !PREEMPT_RT
2602 * kernels spin_lock() implicitly disables preemption, but not on
2603 * PREEMPT_RT. So for RT it has to be done explicitly to protect
2604 * the sequence count write side critical section against a reader
2605 * or another writer preempting, which would result in a live lock.
2607 if (IS_ENABLED(CONFIG_PREEMPT_RT))
2610 unsigned n = dir->i_dir_seq;
2611 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2617 static inline void end_dir_add(struct inode *dir, unsigned int n,
2618 wait_queue_head_t *d_wait)
2620 smp_store_release(&dir->i_dir_seq, n + 2);
2621 if (IS_ENABLED(CONFIG_PREEMPT_RT))
2623 wake_up_all(d_wait);
2626 static void d_wait_lookup(struct dentry *dentry)
2628 if (d_in_lookup(dentry)) {
2629 DECLARE_WAITQUEUE(wait, current);
2630 add_wait_queue(dentry->d_wait, &wait);
2632 set_current_state(TASK_UNINTERRUPTIBLE);
2633 spin_unlock(&dentry->d_lock);
2635 spin_lock(&dentry->d_lock);
2636 } while (d_in_lookup(dentry));
2640 struct dentry *d_alloc_parallel(struct dentry *parent,
2641 const struct qstr *name,
2642 wait_queue_head_t *wq)
2644 unsigned int hash = name->hash;
2645 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2646 struct hlist_bl_node *node;
2647 struct dentry *new = d_alloc(parent, name);
2648 struct dentry *dentry;
2649 unsigned seq, r_seq, d_seq;
2652 return ERR_PTR(-ENOMEM);
2656 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2657 r_seq = read_seqbegin(&rename_lock);
2658 dentry = __d_lookup_rcu(parent, name, &d_seq);
2659 if (unlikely(dentry)) {
2660 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2664 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2673 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2678 if (unlikely(seq & 1)) {
2684 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2690 * No changes for the parent since the beginning of d_lookup().
2691 * Since all removals from the chain happen with hlist_bl_lock(),
2692 * any potential in-lookup matches are going to stay here until
2693 * we unlock the chain. All fields are stable in everything
2696 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2697 if (dentry->d_name.hash != hash)
2699 if (dentry->d_parent != parent)
2701 if (!d_same_name(dentry, parent, name))
2704 /* now we can try to grab a reference */
2705 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2712 * somebody is likely to be still doing lookup for it;
2713 * wait for them to finish
2715 spin_lock(&dentry->d_lock);
2716 d_wait_lookup(dentry);
2718 * it's not in-lookup anymore; in principle we should repeat
2719 * everything from dcache lookup, but it's likely to be what
2720 * d_lookup() would've found anyway. If it is, just return it;
2721 * otherwise we really have to repeat the whole thing.
2723 if (unlikely(dentry->d_name.hash != hash))
2725 if (unlikely(dentry->d_parent != parent))
2727 if (unlikely(d_unhashed(dentry)))
2729 if (unlikely(!d_same_name(dentry, parent, name)))
2731 /* OK, it *is* a hashed match; return it */
2732 spin_unlock(&dentry->d_lock);
2737 /* we can't take ->d_lock here; it's OK, though. */
2738 new->d_flags |= DCACHE_PAR_LOOKUP;
2740 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2744 spin_unlock(&dentry->d_lock);
2748 EXPORT_SYMBOL(d_alloc_parallel);
2751 * - Unhash the dentry
2752 * - Retrieve and clear the waitqueue head in dentry
2753 * - Return the waitqueue head
2755 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2757 wait_queue_head_t *d_wait;
2758 struct hlist_bl_head *b;
2760 lockdep_assert_held(&dentry->d_lock);
2762 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2764 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2765 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2766 d_wait = dentry->d_wait;
2767 dentry->d_wait = NULL;
2769 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2770 INIT_LIST_HEAD(&dentry->d_lru);
2774 void __d_lookup_unhash_wake(struct dentry *dentry)
2776 spin_lock(&dentry->d_lock);
2777 wake_up_all(__d_lookup_unhash(dentry));
2778 spin_unlock(&dentry->d_lock);
2780 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2782 /* inode->i_lock held if inode is non-NULL */
2784 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2786 wait_queue_head_t *d_wait;
2787 struct inode *dir = NULL;
2789 spin_lock(&dentry->d_lock);
2790 if (unlikely(d_in_lookup(dentry))) {
2791 dir = dentry->d_parent->d_inode;
2792 n = start_dir_add(dir);
2793 d_wait = __d_lookup_unhash(dentry);
2796 unsigned add_flags = d_flags_for_inode(inode);
2797 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2798 raw_write_seqcount_begin(&dentry->d_seq);
2799 __d_set_inode_and_type(dentry, inode, add_flags);
2800 raw_write_seqcount_end(&dentry->d_seq);
2801 fsnotify_update_flags(dentry);
2805 end_dir_add(dir, n, d_wait);
2806 spin_unlock(&dentry->d_lock);
2808 spin_unlock(&inode->i_lock);
2812 * d_add - add dentry to hash queues
2813 * @entry: dentry to add
2814 * @inode: The inode to attach to this dentry
2816 * This adds the entry to the hash queues and initializes @inode.
2817 * The entry was actually filled in earlier during d_alloc().
2820 void d_add(struct dentry *entry, struct inode *inode)
2823 security_d_instantiate(entry, inode);
2824 spin_lock(&inode->i_lock);
2826 __d_add(entry, inode);
2828 EXPORT_SYMBOL(d_add);
2831 * d_exact_alias - find and hash an exact unhashed alias
2832 * @entry: dentry to add
2833 * @inode: The inode to go with this dentry
2835 * If an unhashed dentry with the same name/parent and desired
2836 * inode already exists, hash and return it. Otherwise, return
2839 * Parent directory should be locked.
2841 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2843 struct dentry *alias;
2844 unsigned int hash = entry->d_name.hash;
2846 spin_lock(&inode->i_lock);
2847 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2849 * Don't need alias->d_lock here, because aliases with
2850 * d_parent == entry->d_parent are not subject to name or
2851 * parent changes, because the parent inode i_mutex is held.
2853 if (alias->d_name.hash != hash)
2855 if (alias->d_parent != entry->d_parent)
2857 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2859 spin_lock(&alias->d_lock);
2860 if (!d_unhashed(alias)) {
2861 spin_unlock(&alias->d_lock);
2864 __dget_dlock(alias);
2866 spin_unlock(&alias->d_lock);
2868 spin_unlock(&inode->i_lock);
2871 spin_unlock(&inode->i_lock);
2874 EXPORT_SYMBOL(d_exact_alias);
2876 static void swap_names(struct dentry *dentry, struct dentry *target)
2878 if (unlikely(dname_external(target))) {
2879 if (unlikely(dname_external(dentry))) {
2881 * Both external: swap the pointers
2883 swap(target->d_name.name, dentry->d_name.name);
2886 * dentry:internal, target:external. Steal target's
2887 * storage and make target internal.
2889 memcpy(target->d_iname, dentry->d_name.name,
2890 dentry->d_name.len + 1);
2891 dentry->d_name.name = target->d_name.name;
2892 target->d_name.name = target->d_iname;
2895 if (unlikely(dname_external(dentry))) {
2897 * dentry:external, target:internal. Give dentry's
2898 * storage to target and make dentry internal
2900 memcpy(dentry->d_iname, target->d_name.name,
2901 target->d_name.len + 1);
2902 target->d_name.name = dentry->d_name.name;
2903 dentry->d_name.name = dentry->d_iname;
2906 * Both are internal.
2909 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2910 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2911 swap(((long *) &dentry->d_iname)[i],
2912 ((long *) &target->d_iname)[i]);
2916 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2919 static void copy_name(struct dentry *dentry, struct dentry *target)
2921 struct external_name *old_name = NULL;
2922 if (unlikely(dname_external(dentry)))
2923 old_name = external_name(dentry);
2924 if (unlikely(dname_external(target))) {
2925 atomic_inc(&external_name(target)->u.count);
2926 dentry->d_name = target->d_name;
2928 memcpy(dentry->d_iname, target->d_name.name,
2929 target->d_name.len + 1);
2930 dentry->d_name.name = dentry->d_iname;
2931 dentry->d_name.hash_len = target->d_name.hash_len;
2933 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2934 kfree_rcu(old_name, u.head);
2938 * __d_move - move a dentry
2939 * @dentry: entry to move
2940 * @target: new dentry
2941 * @exchange: exchange the two dentries
2943 * Update the dcache to reflect the move of a file name. Negative
2944 * dcache entries should not be moved in this way. Caller must hold
2945 * rename_lock, the i_mutex of the source and target directories,
2946 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2948 static void __d_move(struct dentry *dentry, struct dentry *target,
2951 struct dentry *old_parent, *p;
2952 wait_queue_head_t *d_wait;
2953 struct inode *dir = NULL;
2956 WARN_ON(!dentry->d_inode);
2957 if (WARN_ON(dentry == target))
2960 BUG_ON(d_ancestor(target, dentry));
2961 old_parent = dentry->d_parent;
2962 p = d_ancestor(old_parent, target);
2963 if (IS_ROOT(dentry)) {
2965 spin_lock(&target->d_parent->d_lock);
2967 /* target is not a descendent of dentry->d_parent */
2968 spin_lock(&target->d_parent->d_lock);
2969 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2971 BUG_ON(p == dentry);
2972 spin_lock(&old_parent->d_lock);
2974 spin_lock_nested(&target->d_parent->d_lock,
2975 DENTRY_D_LOCK_NESTED);
2977 spin_lock_nested(&dentry->d_lock, 2);
2978 spin_lock_nested(&target->d_lock, 3);
2980 if (unlikely(d_in_lookup(target))) {
2981 dir = target->d_parent->d_inode;
2982 n = start_dir_add(dir);
2983 d_wait = __d_lookup_unhash(target);
2986 write_seqcount_begin(&dentry->d_seq);
2987 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2990 if (!d_unhashed(dentry))
2992 if (!d_unhashed(target))
2995 /* ... and switch them in the tree */
2996 dentry->d_parent = target->d_parent;
2998 copy_name(dentry, target);
2999 target->d_hash.pprev = NULL;
3000 dentry->d_parent->d_lockref.count++;
3001 if (dentry != old_parent) /* wasn't IS_ROOT */
3002 WARN_ON(!--old_parent->d_lockref.count);
3004 target->d_parent = old_parent;
3005 swap_names(dentry, target);
3006 list_move(&target->d_child, &target->d_parent->d_subdirs);
3008 fsnotify_update_flags(target);
3010 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
3012 fsnotify_update_flags(dentry);
3013 fscrypt_handle_d_move(dentry);
3015 write_seqcount_end(&target->d_seq);
3016 write_seqcount_end(&dentry->d_seq);
3019 end_dir_add(dir, n, d_wait);
3021 if (dentry->d_parent != old_parent)
3022 spin_unlock(&dentry->d_parent->d_lock);
3023 if (dentry != old_parent)
3024 spin_unlock(&old_parent->d_lock);
3025 spin_unlock(&target->d_lock);
3026 spin_unlock(&dentry->d_lock);
3030 * d_move - move a dentry
3031 * @dentry: entry to move
3032 * @target: new dentry
3034 * Update the dcache to reflect the move of a file name. Negative
3035 * dcache entries should not be moved in this way. See the locking
3036 * requirements for __d_move.
3038 void d_move(struct dentry *dentry, struct dentry *target)
3040 write_seqlock(&rename_lock);
3041 __d_move(dentry, target, false);
3042 write_sequnlock(&rename_lock);
3044 EXPORT_SYMBOL(d_move);
3047 * d_exchange - exchange two dentries
3048 * @dentry1: first dentry
3049 * @dentry2: second dentry
3051 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
3053 write_seqlock(&rename_lock);
3055 WARN_ON(!dentry1->d_inode);
3056 WARN_ON(!dentry2->d_inode);
3057 WARN_ON(IS_ROOT(dentry1));
3058 WARN_ON(IS_ROOT(dentry2));
3060 __d_move(dentry1, dentry2, true);
3062 write_sequnlock(&rename_lock);
3066 * d_ancestor - search for an ancestor
3067 * @p1: ancestor dentry
3070 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3071 * an ancestor of p2, else NULL.
3073 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
3077 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
3078 if (p->d_parent == p1)
3085 * This helper attempts to cope with remotely renamed directories
3087 * It assumes that the caller is already holding
3088 * dentry->d_parent->d_inode->i_mutex, and rename_lock
3090 * Note: If ever the locking in lock_rename() changes, then please
3091 * remember to update this too...
3093 static int __d_unalias(struct inode *inode,
3094 struct dentry *dentry, struct dentry *alias)
3096 struct mutex *m1 = NULL;
3097 struct rw_semaphore *m2 = NULL;
3100 /* If alias and dentry share a parent, then no extra locks required */
3101 if (alias->d_parent == dentry->d_parent)
3104 /* See lock_rename() */
3105 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3107 m1 = &dentry->d_sb->s_vfs_rename_mutex;
3108 if (!inode_trylock_shared(alias->d_parent->d_inode))
3110 m2 = &alias->d_parent->d_inode->i_rwsem;
3112 __d_move(alias, dentry, false);
3123 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3124 * @inode: the inode which may have a disconnected dentry
3125 * @dentry: a negative dentry which we want to point to the inode.
3127 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3128 * place of the given dentry and return it, else simply d_add the inode
3129 * to the dentry and return NULL.
3131 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3132 * we should error out: directories can't have multiple aliases.
3134 * This is needed in the lookup routine of any filesystem that is exportable
3135 * (via knfsd) so that we can build dcache paths to directories effectively.
3137 * If a dentry was found and moved, then it is returned. Otherwise NULL
3138 * is returned. This matches the expected return value of ->lookup.
3140 * Cluster filesystems may call this function with a negative, hashed dentry.
3141 * In that case, we know that the inode will be a regular file, and also this
3142 * will only occur during atomic_open. So we need to check for the dentry
3143 * being already hashed only in the final case.
3145 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3148 return ERR_CAST(inode);
3150 BUG_ON(!d_unhashed(dentry));
3155 security_d_instantiate(dentry, inode);
3156 spin_lock(&inode->i_lock);
3157 if (S_ISDIR(inode->i_mode)) {
3158 struct dentry *new = __d_find_any_alias(inode);
3159 if (unlikely(new)) {
3160 /* The reference to new ensures it remains an alias */
3161 spin_unlock(&inode->i_lock);
3162 write_seqlock(&rename_lock);
3163 if (unlikely(d_ancestor(new, dentry))) {
3164 write_sequnlock(&rename_lock);
3166 new = ERR_PTR(-ELOOP);
3167 pr_warn_ratelimited(
3168 "VFS: Lookup of '%s' in %s %s"
3169 " would have caused loop\n",
3170 dentry->d_name.name,
3171 inode->i_sb->s_type->name,
3173 } else if (!IS_ROOT(new)) {
3174 struct dentry *old_parent = dget(new->d_parent);
3175 int err = __d_unalias(inode, dentry, new);
3176 write_sequnlock(&rename_lock);
3183 __d_move(new, dentry, false);
3184 write_sequnlock(&rename_lock);
3191 __d_add(dentry, inode);
3194 EXPORT_SYMBOL(d_splice_alias);
3197 * Test whether new_dentry is a subdirectory of old_dentry.
3199 * Trivially implemented using the dcache structure
3203 * is_subdir - is new dentry a subdirectory of old_dentry
3204 * @new_dentry: new dentry
3205 * @old_dentry: old dentry
3207 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3208 * Returns false otherwise.
3209 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3212 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3217 if (new_dentry == old_dentry)
3221 /* for restarting inner loop in case of seq retry */
3222 seq = read_seqbegin(&rename_lock);
3224 * Need rcu_readlock to protect against the d_parent trashing
3228 if (d_ancestor(old_dentry, new_dentry))
3233 } while (read_seqretry(&rename_lock, seq));
3237 EXPORT_SYMBOL(is_subdir);
3239 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3241 struct dentry *root = data;
3242 if (dentry != root) {
3243 if (d_unhashed(dentry) || !dentry->d_inode)
3246 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3247 dentry->d_flags |= DCACHE_GENOCIDE;
3248 dentry->d_lockref.count--;
3251 return D_WALK_CONTINUE;
3254 void d_genocide(struct dentry *parent)
3256 d_walk(parent, parent, d_genocide_kill);
3259 EXPORT_SYMBOL(d_genocide);
3261 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3263 inode_dec_link_count(inode);
3264 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3265 !hlist_unhashed(&dentry->d_u.d_alias) ||
3266 !d_unlinked(dentry));
3267 spin_lock(&dentry->d_parent->d_lock);
3268 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3269 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3270 (unsigned long long)inode->i_ino);
3271 spin_unlock(&dentry->d_lock);
3272 spin_unlock(&dentry->d_parent->d_lock);
3273 d_instantiate(dentry, inode);
3275 EXPORT_SYMBOL(d_tmpfile);
3277 static __initdata unsigned long dhash_entries;
3278 static int __init set_dhash_entries(char *str)
3282 dhash_entries = simple_strtoul(str, &str, 0);
3285 __setup("dhash_entries=", set_dhash_entries);
3287 static void __init dcache_init_early(void)
3289 /* If hashes are distributed across NUMA nodes, defer
3290 * hash allocation until vmalloc space is available.
3296 alloc_large_system_hash("Dentry cache",
3297 sizeof(struct hlist_bl_head),
3300 HASH_EARLY | HASH_ZERO,
3305 d_hash_shift = 32 - d_hash_shift;
3308 static void __init dcache_init(void)
3311 * A constructor could be added for stable state like the lists,
3312 * but it is probably not worth it because of the cache nature
3315 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3316 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3319 /* Hash may have been set up in dcache_init_early */
3324 alloc_large_system_hash("Dentry cache",
3325 sizeof(struct hlist_bl_head),
3333 d_hash_shift = 32 - d_hash_shift;
3336 /* SLAB cache for __getname() consumers */
3337 struct kmem_cache *names_cachep __read_mostly;
3338 EXPORT_SYMBOL(names_cachep);
3340 void __init vfs_caches_init_early(void)
3344 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3345 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3347 dcache_init_early();
3351 void __init vfs_caches_init(void)
3353 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3354 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3359 files_maxfiles_init();