Merge tag 'io_uring-5.9-2020-08-15' of git://git.kernel.dk/linux-block
[platform/kernel/linux-starfive.git] / fs / dcache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78
79 EXPORT_SYMBOL(rename_lock);
80
81 static struct kmem_cache *dentry_cache __read_mostly;
82
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87
88 /*
89  * This is the single most critical data structure when it comes
90  * to the dcache: the hashtable for lookups. Somebody should try
91  * to make this good - I've just made it work.
92  *
93  * This hash-function tries to avoid losing too many bits of hash
94  * information, yet avoid using a prime hash-size or similar.
95  */
96
97 static unsigned int d_hash_shift __read_mostly;
98
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100
101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103         return dentry_hashtable + (hash >> d_hash_shift);
104 }
105
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108
109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110                                         unsigned int hash)
111 {
112         hash += (unsigned long) parent / L1_CACHE_BYTES;
113         return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115
116
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119         .age_limit = 45,
120 };
121
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127
128 /*
129  * Here we resort to our own counters instead of using generic per-cpu counters
130  * for consistency with what the vfs inode code does. We are expected to harvest
131  * better code and performance by having our own specialized counters.
132  *
133  * Please note that the loop is done over all possible CPUs, not over all online
134  * CPUs. The reason for this is that we don't want to play games with CPUs going
135  * on and off. If one of them goes off, we will just keep their counters.
136  *
137  * glommer: See cffbc8a for details, and if you ever intend to change this,
138  * please update all vfs counters to match.
139  */
140 static long get_nr_dentry(void)
141 {
142         int i;
143         long sum = 0;
144         for_each_possible_cpu(i)
145                 sum += per_cpu(nr_dentry, i);
146         return sum < 0 ? 0 : sum;
147 }
148
149 static long get_nr_dentry_unused(void)
150 {
151         int i;
152         long sum = 0;
153         for_each_possible_cpu(i)
154                 sum += per_cpu(nr_dentry_unused, i);
155         return sum < 0 ? 0 : sum;
156 }
157
158 static long get_nr_dentry_negative(void)
159 {
160         int i;
161         long sum = 0;
162
163         for_each_possible_cpu(i)
164                 sum += per_cpu(nr_dentry_negative, i);
165         return sum < 0 ? 0 : sum;
166 }
167
168 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
169                    size_t *lenp, loff_t *ppos)
170 {
171         dentry_stat.nr_dentry = get_nr_dentry();
172         dentry_stat.nr_unused = get_nr_dentry_unused();
173         dentry_stat.nr_negative = get_nr_dentry_negative();
174         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177
178 /*
179  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180  * The strings are both count bytes long, and count is non-zero.
181  */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183
184 #include <asm/word-at-a-time.h>
185 /*
186  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187  * aligned allocation for this particular component. We don't
188  * strictly need the load_unaligned_zeropad() safety, but it
189  * doesn't hurt either.
190  *
191  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192  * need the careful unaligned handling.
193  */
194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196         unsigned long a,b,mask;
197
198         for (;;) {
199                 a = read_word_at_a_time(cs);
200                 b = load_unaligned_zeropad(ct);
201                 if (tcount < sizeof(unsigned long))
202                         break;
203                 if (unlikely(a != b))
204                         return 1;
205                 cs += sizeof(unsigned long);
206                 ct += sizeof(unsigned long);
207                 tcount -= sizeof(unsigned long);
208                 if (!tcount)
209                         return 0;
210         }
211         mask = bytemask_from_count(tcount);
212         return unlikely(!!((a ^ b) & mask));
213 }
214
215 #else
216
217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219         do {
220                 if (*cs != *ct)
221                         return 1;
222                 cs++;
223                 ct++;
224                 tcount--;
225         } while (tcount);
226         return 0;
227 }
228
229 #endif
230
231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233         /*
234          * Be careful about RCU walk racing with rename:
235          * use 'READ_ONCE' to fetch the name pointer.
236          *
237          * NOTE! Even if a rename will mean that the length
238          * was not loaded atomically, we don't care. The
239          * RCU walk will check the sequence count eventually,
240          * and catch it. And we won't overrun the buffer,
241          * because we're reading the name pointer atomically,
242          * and a dentry name is guaranteed to be properly
243          * terminated with a NUL byte.
244          *
245          * End result: even if 'len' is wrong, we'll exit
246          * early because the data cannot match (there can
247          * be no NUL in the ct/tcount data)
248          */
249         const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250
251         return dentry_string_cmp(cs, ct, tcount);
252 }
253
254 struct external_name {
255         union {
256                 atomic_t count;
257                 struct rcu_head head;
258         } u;
259         unsigned char name[];
260 };
261
262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264         return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266
267 static void __d_free(struct rcu_head *head)
268 {
269         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270
271         kmem_cache_free(dentry_cache, dentry); 
272 }
273
274 static void __d_free_external(struct rcu_head *head)
275 {
276         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277         kfree(external_name(dentry));
278         kmem_cache_free(dentry_cache, dentry);
279 }
280
281 static inline int dname_external(const struct dentry *dentry)
282 {
283         return dentry->d_name.name != dentry->d_iname;
284 }
285
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288         spin_lock(&dentry->d_lock);
289         name->name = dentry->d_name;
290         if (unlikely(dname_external(dentry))) {
291                 atomic_inc(&external_name(dentry)->u.count);
292         } else {
293                 memcpy(name->inline_name, dentry->d_iname,
294                        dentry->d_name.len + 1);
295                 name->name.name = name->inline_name;
296         }
297         spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303         if (unlikely(name->name.name != name->inline_name)) {
304                 struct external_name *p;
305                 p = container_of(name->name.name, struct external_name, name[0]);
306                 if (unlikely(atomic_dec_and_test(&p->u.count)))
307                         kfree_rcu(p, u.head);
308         }
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313                                           struct inode *inode,
314                                           unsigned type_flags)
315 {
316         unsigned flags;
317
318         dentry->d_inode = inode;
319         flags = READ_ONCE(dentry->d_flags);
320         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321         flags |= type_flags;
322         smp_store_release(&dentry->d_flags, flags);
323 }
324
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327         unsigned flags = READ_ONCE(dentry->d_flags);
328
329         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330         WRITE_ONCE(dentry->d_flags, flags);
331         dentry->d_inode = NULL;
332         if (dentry->d_flags & DCACHE_LRU_LIST)
333                 this_cpu_inc(nr_dentry_negative);
334 }
335
336 static void dentry_free(struct dentry *dentry)
337 {
338         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339         if (unlikely(dname_external(dentry))) {
340                 struct external_name *p = external_name(dentry);
341                 if (likely(atomic_dec_and_test(&p->u.count))) {
342                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343                         return;
344                 }
345         }
346         /* if dentry was never visible to RCU, immediate free is OK */
347         if (dentry->d_flags & DCACHE_NORCU)
348                 __d_free(&dentry->d_u.d_rcu);
349         else
350                 call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
357 static void dentry_unlink_inode(struct dentry * dentry)
358         __releases(dentry->d_lock)
359         __releases(dentry->d_inode->i_lock)
360 {
361         struct inode *inode = dentry->d_inode;
362
363         raw_write_seqcount_begin(&dentry->d_seq);
364         __d_clear_type_and_inode(dentry);
365         hlist_del_init(&dentry->d_u.d_alias);
366         raw_write_seqcount_end(&dentry->d_seq);
367         spin_unlock(&dentry->d_lock);
368         spin_unlock(&inode->i_lock);
369         if (!inode->i_nlink)
370                 fsnotify_inoderemove(inode);
371         if (dentry->d_op && dentry->d_op->d_iput)
372                 dentry->d_op->d_iput(dentry, inode);
373         else
374                 iput(inode);
375 }
376
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * The per-cpu "nr_dentry_negative" counters are only updated
389  * when deleted from or added to the per-superblock LRU list, not
390  * from/to the shrink list. That is to avoid an unneeded dec/inc
391  * pair when moving from LRU to shrink list in select_collect().
392  *
393  * These helper functions make sure we always follow the
394  * rules. d_lock must be held by the caller.
395  */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397 static void d_lru_add(struct dentry *dentry)
398 {
399         D_FLAG_VERIFY(dentry, 0);
400         dentry->d_flags |= DCACHE_LRU_LIST;
401         this_cpu_inc(nr_dentry_unused);
402         if (d_is_negative(dentry))
403                 this_cpu_inc(nr_dentry_negative);
404         WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406
407 static void d_lru_del(struct dentry *dentry)
408 {
409         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410         dentry->d_flags &= ~DCACHE_LRU_LIST;
411         this_cpu_dec(nr_dentry_unused);
412         if (d_is_negative(dentry))
413                 this_cpu_dec(nr_dentry_negative);
414         WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416
417 static void d_shrink_del(struct dentry *dentry)
418 {
419         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420         list_del_init(&dentry->d_lru);
421         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422         this_cpu_dec(nr_dentry_unused);
423 }
424
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427         D_FLAG_VERIFY(dentry, 0);
428         list_add(&dentry->d_lru, list);
429         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430         this_cpu_inc(nr_dentry_unused);
431 }
432
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442         dentry->d_flags &= ~DCACHE_LRU_LIST;
443         this_cpu_dec(nr_dentry_unused);
444         if (d_is_negative(dentry))
445                 this_cpu_dec(nr_dentry_negative);
446         list_lru_isolate(lru, &dentry->d_lru);
447 }
448
449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450                               struct list_head *list)
451 {
452         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453         dentry->d_flags |= DCACHE_SHRINK_LIST;
454         if (d_is_negative(dentry))
455                 this_cpu_dec(nr_dentry_negative);
456         list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458
459 /**
460  * d_drop - drop a dentry
461  * @dentry: dentry to drop
462  *
463  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
464  * be found through a VFS lookup any more. Note that this is different from
465  * deleting the dentry - d_delete will try to mark the dentry negative if
466  * possible, giving a successful _negative_ lookup, while d_drop will
467  * just make the cache lookup fail.
468  *
469  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
470  * reason (NFS timeouts or autofs deletes).
471  *
472  * __d_drop requires dentry->d_lock
473  * ___d_drop doesn't mark dentry as "unhashed"
474  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
475  */
476 static void ___d_drop(struct dentry *dentry)
477 {
478         struct hlist_bl_head *b;
479         /*
480          * Hashed dentries are normally on the dentry hashtable,
481          * with the exception of those newly allocated by
482          * d_obtain_root, which are always IS_ROOT:
483          */
484         if (unlikely(IS_ROOT(dentry)))
485                 b = &dentry->d_sb->s_roots;
486         else
487                 b = d_hash(dentry->d_name.hash);
488
489         hlist_bl_lock(b);
490         __hlist_bl_del(&dentry->d_hash);
491         hlist_bl_unlock(b);
492 }
493
494 void __d_drop(struct dentry *dentry)
495 {
496         if (!d_unhashed(dentry)) {
497                 ___d_drop(dentry);
498                 dentry->d_hash.pprev = NULL;
499                 write_seqcount_invalidate(&dentry->d_seq);
500         }
501 }
502 EXPORT_SYMBOL(__d_drop);
503
504 void d_drop(struct dentry *dentry)
505 {
506         spin_lock(&dentry->d_lock);
507         __d_drop(dentry);
508         spin_unlock(&dentry->d_lock);
509 }
510 EXPORT_SYMBOL(d_drop);
511
512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513 {
514         struct dentry *next;
515         /*
516          * Inform d_walk() and shrink_dentry_list() that we are no longer
517          * attached to the dentry tree
518          */
519         dentry->d_flags |= DCACHE_DENTRY_KILLED;
520         if (unlikely(list_empty(&dentry->d_child)))
521                 return;
522         __list_del_entry(&dentry->d_child);
523         /*
524          * Cursors can move around the list of children.  While we'd been
525          * a normal list member, it didn't matter - ->d_child.next would've
526          * been updated.  However, from now on it won't be and for the
527          * things like d_walk() it might end up with a nasty surprise.
528          * Normally d_walk() doesn't care about cursors moving around -
529          * ->d_lock on parent prevents that and since a cursor has no children
530          * of its own, we get through it without ever unlocking the parent.
531          * There is one exception, though - if we ascend from a child that
532          * gets killed as soon as we unlock it, the next sibling is found
533          * using the value left in its ->d_child.next.  And if _that_
534          * pointed to a cursor, and cursor got moved (e.g. by lseek())
535          * before d_walk() regains parent->d_lock, we'll end up skipping
536          * everything the cursor had been moved past.
537          *
538          * Solution: make sure that the pointer left behind in ->d_child.next
539          * points to something that won't be moving around.  I.e. skip the
540          * cursors.
541          */
542         while (dentry->d_child.next != &parent->d_subdirs) {
543                 next = list_entry(dentry->d_child.next, struct dentry, d_child);
544                 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545                         break;
546                 dentry->d_child.next = next->d_child.next;
547         }
548 }
549
550 static void __dentry_kill(struct dentry *dentry)
551 {
552         struct dentry *parent = NULL;
553         bool can_free = true;
554         if (!IS_ROOT(dentry))
555                 parent = dentry->d_parent;
556
557         /*
558          * The dentry is now unrecoverably dead to the world.
559          */
560         lockref_mark_dead(&dentry->d_lockref);
561
562         /*
563          * inform the fs via d_prune that this dentry is about to be
564          * unhashed and destroyed.
565          */
566         if (dentry->d_flags & DCACHE_OP_PRUNE)
567                 dentry->d_op->d_prune(dentry);
568
569         if (dentry->d_flags & DCACHE_LRU_LIST) {
570                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571                         d_lru_del(dentry);
572         }
573         /* if it was on the hash then remove it */
574         __d_drop(dentry);
575         dentry_unlist(dentry, parent);
576         if (parent)
577                 spin_unlock(&parent->d_lock);
578         if (dentry->d_inode)
579                 dentry_unlink_inode(dentry);
580         else
581                 spin_unlock(&dentry->d_lock);
582         this_cpu_dec(nr_dentry);
583         if (dentry->d_op && dentry->d_op->d_release)
584                 dentry->d_op->d_release(dentry);
585
586         spin_lock(&dentry->d_lock);
587         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588                 dentry->d_flags |= DCACHE_MAY_FREE;
589                 can_free = false;
590         }
591         spin_unlock(&dentry->d_lock);
592         if (likely(can_free))
593                 dentry_free(dentry);
594         cond_resched();
595 }
596
597 static struct dentry *__lock_parent(struct dentry *dentry)
598 {
599         struct dentry *parent;
600         rcu_read_lock();
601         spin_unlock(&dentry->d_lock);
602 again:
603         parent = READ_ONCE(dentry->d_parent);
604         spin_lock(&parent->d_lock);
605         /*
606          * We can't blindly lock dentry until we are sure
607          * that we won't violate the locking order.
608          * Any changes of dentry->d_parent must have
609          * been done with parent->d_lock held, so
610          * spin_lock() above is enough of a barrier
611          * for checking if it's still our child.
612          */
613         if (unlikely(parent != dentry->d_parent)) {
614                 spin_unlock(&parent->d_lock);
615                 goto again;
616         }
617         rcu_read_unlock();
618         if (parent != dentry)
619                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
620         else
621                 parent = NULL;
622         return parent;
623 }
624
625 static inline struct dentry *lock_parent(struct dentry *dentry)
626 {
627         struct dentry *parent = dentry->d_parent;
628         if (IS_ROOT(dentry))
629                 return NULL;
630         if (likely(spin_trylock(&parent->d_lock)))
631                 return parent;
632         return __lock_parent(dentry);
633 }
634
635 static inline bool retain_dentry(struct dentry *dentry)
636 {
637         WARN_ON(d_in_lookup(dentry));
638
639         /* Unreachable? Get rid of it */
640         if (unlikely(d_unhashed(dentry)))
641                 return false;
642
643         if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
644                 return false;
645
646         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
647                 if (dentry->d_op->d_delete(dentry))
648                         return false;
649         }
650
651         if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
652                 return false;
653
654         /* retain; LRU fodder */
655         dentry->d_lockref.count--;
656         if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
657                 d_lru_add(dentry);
658         else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
659                 dentry->d_flags |= DCACHE_REFERENCED;
660         return true;
661 }
662
663 void d_mark_dontcache(struct inode *inode)
664 {
665         struct dentry *de;
666
667         spin_lock(&inode->i_lock);
668         hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
669                 spin_lock(&de->d_lock);
670                 de->d_flags |= DCACHE_DONTCACHE;
671                 spin_unlock(&de->d_lock);
672         }
673         inode->i_state |= I_DONTCACHE;
674         spin_unlock(&inode->i_lock);
675 }
676 EXPORT_SYMBOL(d_mark_dontcache);
677
678 /*
679  * Finish off a dentry we've decided to kill.
680  * dentry->d_lock must be held, returns with it unlocked.
681  * Returns dentry requiring refcount drop, or NULL if we're done.
682  */
683 static struct dentry *dentry_kill(struct dentry *dentry)
684         __releases(dentry->d_lock)
685 {
686         struct inode *inode = dentry->d_inode;
687         struct dentry *parent = NULL;
688
689         if (inode && unlikely(!spin_trylock(&inode->i_lock)))
690                 goto slow_positive;
691
692         if (!IS_ROOT(dentry)) {
693                 parent = dentry->d_parent;
694                 if (unlikely(!spin_trylock(&parent->d_lock))) {
695                         parent = __lock_parent(dentry);
696                         if (likely(inode || !dentry->d_inode))
697                                 goto got_locks;
698                         /* negative that became positive */
699                         if (parent)
700                                 spin_unlock(&parent->d_lock);
701                         inode = dentry->d_inode;
702                         goto slow_positive;
703                 }
704         }
705         __dentry_kill(dentry);
706         return parent;
707
708 slow_positive:
709         spin_unlock(&dentry->d_lock);
710         spin_lock(&inode->i_lock);
711         spin_lock(&dentry->d_lock);
712         parent = lock_parent(dentry);
713 got_locks:
714         if (unlikely(dentry->d_lockref.count != 1)) {
715                 dentry->d_lockref.count--;
716         } else if (likely(!retain_dentry(dentry))) {
717                 __dentry_kill(dentry);
718                 return parent;
719         }
720         /* we are keeping it, after all */
721         if (inode)
722                 spin_unlock(&inode->i_lock);
723         if (parent)
724                 spin_unlock(&parent->d_lock);
725         spin_unlock(&dentry->d_lock);
726         return NULL;
727 }
728
729 /*
730  * Try to do a lockless dput(), and return whether that was successful.
731  *
732  * If unsuccessful, we return false, having already taken the dentry lock.
733  *
734  * The caller needs to hold the RCU read lock, so that the dentry is
735  * guaranteed to stay around even if the refcount goes down to zero!
736  */
737 static inline bool fast_dput(struct dentry *dentry)
738 {
739         int ret;
740         unsigned int d_flags;
741
742         /*
743          * If we have a d_op->d_delete() operation, we sould not
744          * let the dentry count go to zero, so use "put_or_lock".
745          */
746         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
747                 return lockref_put_or_lock(&dentry->d_lockref);
748
749         /*
750          * .. otherwise, we can try to just decrement the
751          * lockref optimistically.
752          */
753         ret = lockref_put_return(&dentry->d_lockref);
754
755         /*
756          * If the lockref_put_return() failed due to the lock being held
757          * by somebody else, the fast path has failed. We will need to
758          * get the lock, and then check the count again.
759          */
760         if (unlikely(ret < 0)) {
761                 spin_lock(&dentry->d_lock);
762                 if (dentry->d_lockref.count > 1) {
763                         dentry->d_lockref.count--;
764                         spin_unlock(&dentry->d_lock);
765                         return true;
766                 }
767                 return false;
768         }
769
770         /*
771          * If we weren't the last ref, we're done.
772          */
773         if (ret)
774                 return true;
775
776         /*
777          * Careful, careful. The reference count went down
778          * to zero, but we don't hold the dentry lock, so
779          * somebody else could get it again, and do another
780          * dput(), and we need to not race with that.
781          *
782          * However, there is a very special and common case
783          * where we don't care, because there is nothing to
784          * do: the dentry is still hashed, it does not have
785          * a 'delete' op, and it's referenced and already on
786          * the LRU list.
787          *
788          * NOTE! Since we aren't locked, these values are
789          * not "stable". However, it is sufficient that at
790          * some point after we dropped the reference the
791          * dentry was hashed and the flags had the proper
792          * value. Other dentry users may have re-gotten
793          * a reference to the dentry and change that, but
794          * our work is done - we can leave the dentry
795          * around with a zero refcount.
796          */
797         smp_rmb();
798         d_flags = READ_ONCE(dentry->d_flags);
799         d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
800
801         /* Nothing to do? Dropping the reference was all we needed? */
802         if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
803                 return true;
804
805         /*
806          * Not the fast normal case? Get the lock. We've already decremented
807          * the refcount, but we'll need to re-check the situation after
808          * getting the lock.
809          */
810         spin_lock(&dentry->d_lock);
811
812         /*
813          * Did somebody else grab a reference to it in the meantime, and
814          * we're no longer the last user after all? Alternatively, somebody
815          * else could have killed it and marked it dead. Either way, we
816          * don't need to do anything else.
817          */
818         if (dentry->d_lockref.count) {
819                 spin_unlock(&dentry->d_lock);
820                 return true;
821         }
822
823         /*
824          * Re-get the reference we optimistically dropped. We hold the
825          * lock, and we just tested that it was zero, so we can just
826          * set it to 1.
827          */
828         dentry->d_lockref.count = 1;
829         return false;
830 }
831
832
833 /* 
834  * This is dput
835  *
836  * This is complicated by the fact that we do not want to put
837  * dentries that are no longer on any hash chain on the unused
838  * list: we'd much rather just get rid of them immediately.
839  *
840  * However, that implies that we have to traverse the dentry
841  * tree upwards to the parents which might _also_ now be
842  * scheduled for deletion (it may have been only waiting for
843  * its last child to go away).
844  *
845  * This tail recursion is done by hand as we don't want to depend
846  * on the compiler to always get this right (gcc generally doesn't).
847  * Real recursion would eat up our stack space.
848  */
849
850 /*
851  * dput - release a dentry
852  * @dentry: dentry to release 
853  *
854  * Release a dentry. This will drop the usage count and if appropriate
855  * call the dentry unlink method as well as removing it from the queues and
856  * releasing its resources. If the parent dentries were scheduled for release
857  * they too may now get deleted.
858  */
859 void dput(struct dentry *dentry)
860 {
861         while (dentry) {
862                 might_sleep();
863
864                 rcu_read_lock();
865                 if (likely(fast_dput(dentry))) {
866                         rcu_read_unlock();
867                         return;
868                 }
869
870                 /* Slow case: now with the dentry lock held */
871                 rcu_read_unlock();
872
873                 if (likely(retain_dentry(dentry))) {
874                         spin_unlock(&dentry->d_lock);
875                         return;
876                 }
877
878                 dentry = dentry_kill(dentry);
879         }
880 }
881 EXPORT_SYMBOL(dput);
882
883 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
884 __must_hold(&dentry->d_lock)
885 {
886         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
887                 /* let the owner of the list it's on deal with it */
888                 --dentry->d_lockref.count;
889         } else {
890                 if (dentry->d_flags & DCACHE_LRU_LIST)
891                         d_lru_del(dentry);
892                 if (!--dentry->d_lockref.count)
893                         d_shrink_add(dentry, list);
894         }
895 }
896
897 void dput_to_list(struct dentry *dentry, struct list_head *list)
898 {
899         rcu_read_lock();
900         if (likely(fast_dput(dentry))) {
901                 rcu_read_unlock();
902                 return;
903         }
904         rcu_read_unlock();
905         if (!retain_dentry(dentry))
906                 __dput_to_list(dentry, list);
907         spin_unlock(&dentry->d_lock);
908 }
909
910 /* This must be called with d_lock held */
911 static inline void __dget_dlock(struct dentry *dentry)
912 {
913         dentry->d_lockref.count++;
914 }
915
916 static inline void __dget(struct dentry *dentry)
917 {
918         lockref_get(&dentry->d_lockref);
919 }
920
921 struct dentry *dget_parent(struct dentry *dentry)
922 {
923         int gotref;
924         struct dentry *ret;
925         unsigned seq;
926
927         /*
928          * Do optimistic parent lookup without any
929          * locking.
930          */
931         rcu_read_lock();
932         seq = raw_seqcount_begin(&dentry->d_seq);
933         ret = READ_ONCE(dentry->d_parent);
934         gotref = lockref_get_not_zero(&ret->d_lockref);
935         rcu_read_unlock();
936         if (likely(gotref)) {
937                 if (!read_seqcount_retry(&dentry->d_seq, seq))
938                         return ret;
939                 dput(ret);
940         }
941
942 repeat:
943         /*
944          * Don't need rcu_dereference because we re-check it was correct under
945          * the lock.
946          */
947         rcu_read_lock();
948         ret = dentry->d_parent;
949         spin_lock(&ret->d_lock);
950         if (unlikely(ret != dentry->d_parent)) {
951                 spin_unlock(&ret->d_lock);
952                 rcu_read_unlock();
953                 goto repeat;
954         }
955         rcu_read_unlock();
956         BUG_ON(!ret->d_lockref.count);
957         ret->d_lockref.count++;
958         spin_unlock(&ret->d_lock);
959         return ret;
960 }
961 EXPORT_SYMBOL(dget_parent);
962
963 static struct dentry * __d_find_any_alias(struct inode *inode)
964 {
965         struct dentry *alias;
966
967         if (hlist_empty(&inode->i_dentry))
968                 return NULL;
969         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
970         __dget(alias);
971         return alias;
972 }
973
974 /**
975  * d_find_any_alias - find any alias for a given inode
976  * @inode: inode to find an alias for
977  *
978  * If any aliases exist for the given inode, take and return a
979  * reference for one of them.  If no aliases exist, return %NULL.
980  */
981 struct dentry *d_find_any_alias(struct inode *inode)
982 {
983         struct dentry *de;
984
985         spin_lock(&inode->i_lock);
986         de = __d_find_any_alias(inode);
987         spin_unlock(&inode->i_lock);
988         return de;
989 }
990 EXPORT_SYMBOL(d_find_any_alias);
991
992 /**
993  * d_find_alias - grab a hashed alias of inode
994  * @inode: inode in question
995  *
996  * If inode has a hashed alias, or is a directory and has any alias,
997  * acquire the reference to alias and return it. Otherwise return NULL.
998  * Notice that if inode is a directory there can be only one alias and
999  * it can be unhashed only if it has no children, or if it is the root
1000  * of a filesystem, or if the directory was renamed and d_revalidate
1001  * was the first vfs operation to notice.
1002  *
1003  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1004  * any other hashed alias over that one.
1005  */
1006 static struct dentry *__d_find_alias(struct inode *inode)
1007 {
1008         struct dentry *alias;
1009
1010         if (S_ISDIR(inode->i_mode))
1011                 return __d_find_any_alias(inode);
1012
1013         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1014                 spin_lock(&alias->d_lock);
1015                 if (!d_unhashed(alias)) {
1016                         __dget_dlock(alias);
1017                         spin_unlock(&alias->d_lock);
1018                         return alias;
1019                 }
1020                 spin_unlock(&alias->d_lock);
1021         }
1022         return NULL;
1023 }
1024
1025 struct dentry *d_find_alias(struct inode *inode)
1026 {
1027         struct dentry *de = NULL;
1028
1029         if (!hlist_empty(&inode->i_dentry)) {
1030                 spin_lock(&inode->i_lock);
1031                 de = __d_find_alias(inode);
1032                 spin_unlock(&inode->i_lock);
1033         }
1034         return de;
1035 }
1036 EXPORT_SYMBOL(d_find_alias);
1037
1038 /*
1039  *      Try to kill dentries associated with this inode.
1040  * WARNING: you must own a reference to inode.
1041  */
1042 void d_prune_aliases(struct inode *inode)
1043 {
1044         struct dentry *dentry;
1045 restart:
1046         spin_lock(&inode->i_lock);
1047         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1048                 spin_lock(&dentry->d_lock);
1049                 if (!dentry->d_lockref.count) {
1050                         struct dentry *parent = lock_parent(dentry);
1051                         if (likely(!dentry->d_lockref.count)) {
1052                                 __dentry_kill(dentry);
1053                                 dput(parent);
1054                                 goto restart;
1055                         }
1056                         if (parent)
1057                                 spin_unlock(&parent->d_lock);
1058                 }
1059                 spin_unlock(&dentry->d_lock);
1060         }
1061         spin_unlock(&inode->i_lock);
1062 }
1063 EXPORT_SYMBOL(d_prune_aliases);
1064
1065 /*
1066  * Lock a dentry from shrink list.
1067  * Called under rcu_read_lock() and dentry->d_lock; the former
1068  * guarantees that nothing we access will be freed under us.
1069  * Note that dentry is *not* protected from concurrent dentry_kill(),
1070  * d_delete(), etc.
1071  *
1072  * Return false if dentry has been disrupted or grabbed, leaving
1073  * the caller to kick it off-list.  Otherwise, return true and have
1074  * that dentry's inode and parent both locked.
1075  */
1076 static bool shrink_lock_dentry(struct dentry *dentry)
1077 {
1078         struct inode *inode;
1079         struct dentry *parent;
1080
1081         if (dentry->d_lockref.count)
1082                 return false;
1083
1084         inode = dentry->d_inode;
1085         if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1086                 spin_unlock(&dentry->d_lock);
1087                 spin_lock(&inode->i_lock);
1088                 spin_lock(&dentry->d_lock);
1089                 if (unlikely(dentry->d_lockref.count))
1090                         goto out;
1091                 /* changed inode means that somebody had grabbed it */
1092                 if (unlikely(inode != dentry->d_inode))
1093                         goto out;
1094         }
1095
1096         parent = dentry->d_parent;
1097         if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1098                 return true;
1099
1100         spin_unlock(&dentry->d_lock);
1101         spin_lock(&parent->d_lock);
1102         if (unlikely(parent != dentry->d_parent)) {
1103                 spin_unlock(&parent->d_lock);
1104                 spin_lock(&dentry->d_lock);
1105                 goto out;
1106         }
1107         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1108         if (likely(!dentry->d_lockref.count))
1109                 return true;
1110         spin_unlock(&parent->d_lock);
1111 out:
1112         if (inode)
1113                 spin_unlock(&inode->i_lock);
1114         return false;
1115 }
1116
1117 void shrink_dentry_list(struct list_head *list)
1118 {
1119         while (!list_empty(list)) {
1120                 struct dentry *dentry, *parent;
1121
1122                 dentry = list_entry(list->prev, struct dentry, d_lru);
1123                 spin_lock(&dentry->d_lock);
1124                 rcu_read_lock();
1125                 if (!shrink_lock_dentry(dentry)) {
1126                         bool can_free = false;
1127                         rcu_read_unlock();
1128                         d_shrink_del(dentry);
1129                         if (dentry->d_lockref.count < 0)
1130                                 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1131                         spin_unlock(&dentry->d_lock);
1132                         if (can_free)
1133                                 dentry_free(dentry);
1134                         continue;
1135                 }
1136                 rcu_read_unlock();
1137                 d_shrink_del(dentry);
1138                 parent = dentry->d_parent;
1139                 if (parent != dentry)
1140                         __dput_to_list(parent, list);
1141                 __dentry_kill(dentry);
1142         }
1143 }
1144
1145 static enum lru_status dentry_lru_isolate(struct list_head *item,
1146                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1147 {
1148         struct list_head *freeable = arg;
1149         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1150
1151
1152         /*
1153          * we are inverting the lru lock/dentry->d_lock here,
1154          * so use a trylock. If we fail to get the lock, just skip
1155          * it
1156          */
1157         if (!spin_trylock(&dentry->d_lock))
1158                 return LRU_SKIP;
1159
1160         /*
1161          * Referenced dentries are still in use. If they have active
1162          * counts, just remove them from the LRU. Otherwise give them
1163          * another pass through the LRU.
1164          */
1165         if (dentry->d_lockref.count) {
1166                 d_lru_isolate(lru, dentry);
1167                 spin_unlock(&dentry->d_lock);
1168                 return LRU_REMOVED;
1169         }
1170
1171         if (dentry->d_flags & DCACHE_REFERENCED) {
1172                 dentry->d_flags &= ~DCACHE_REFERENCED;
1173                 spin_unlock(&dentry->d_lock);
1174
1175                 /*
1176                  * The list move itself will be made by the common LRU code. At
1177                  * this point, we've dropped the dentry->d_lock but keep the
1178                  * lru lock. This is safe to do, since every list movement is
1179                  * protected by the lru lock even if both locks are held.
1180                  *
1181                  * This is guaranteed by the fact that all LRU management
1182                  * functions are intermediated by the LRU API calls like
1183                  * list_lru_add and list_lru_del. List movement in this file
1184                  * only ever occur through this functions or through callbacks
1185                  * like this one, that are called from the LRU API.
1186                  *
1187                  * The only exceptions to this are functions like
1188                  * shrink_dentry_list, and code that first checks for the
1189                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1190                  * operating only with stack provided lists after they are
1191                  * properly isolated from the main list.  It is thus, always a
1192                  * local access.
1193                  */
1194                 return LRU_ROTATE;
1195         }
1196
1197         d_lru_shrink_move(lru, dentry, freeable);
1198         spin_unlock(&dentry->d_lock);
1199
1200         return LRU_REMOVED;
1201 }
1202
1203 /**
1204  * prune_dcache_sb - shrink the dcache
1205  * @sb: superblock
1206  * @sc: shrink control, passed to list_lru_shrink_walk()
1207  *
1208  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1209  * is done when we need more memory and called from the superblock shrinker
1210  * function.
1211  *
1212  * This function may fail to free any resources if all the dentries are in
1213  * use.
1214  */
1215 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1216 {
1217         LIST_HEAD(dispose);
1218         long freed;
1219
1220         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1221                                      dentry_lru_isolate, &dispose);
1222         shrink_dentry_list(&dispose);
1223         return freed;
1224 }
1225
1226 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1227                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1228 {
1229         struct list_head *freeable = arg;
1230         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1231
1232         /*
1233          * we are inverting the lru lock/dentry->d_lock here,
1234          * so use a trylock. If we fail to get the lock, just skip
1235          * it
1236          */
1237         if (!spin_trylock(&dentry->d_lock))
1238                 return LRU_SKIP;
1239
1240         d_lru_shrink_move(lru, dentry, freeable);
1241         spin_unlock(&dentry->d_lock);
1242
1243         return LRU_REMOVED;
1244 }
1245
1246
1247 /**
1248  * shrink_dcache_sb - shrink dcache for a superblock
1249  * @sb: superblock
1250  *
1251  * Shrink the dcache for the specified super block. This is used to free
1252  * the dcache before unmounting a file system.
1253  */
1254 void shrink_dcache_sb(struct super_block *sb)
1255 {
1256         do {
1257                 LIST_HEAD(dispose);
1258
1259                 list_lru_walk(&sb->s_dentry_lru,
1260                         dentry_lru_isolate_shrink, &dispose, 1024);
1261                 shrink_dentry_list(&dispose);
1262         } while (list_lru_count(&sb->s_dentry_lru) > 0);
1263 }
1264 EXPORT_SYMBOL(shrink_dcache_sb);
1265
1266 /**
1267  * enum d_walk_ret - action to talke during tree walk
1268  * @D_WALK_CONTINUE:    contrinue walk
1269  * @D_WALK_QUIT:        quit walk
1270  * @D_WALK_NORETRY:     quit when retry is needed
1271  * @D_WALK_SKIP:        skip this dentry and its children
1272  */
1273 enum d_walk_ret {
1274         D_WALK_CONTINUE,
1275         D_WALK_QUIT,
1276         D_WALK_NORETRY,
1277         D_WALK_SKIP,
1278 };
1279
1280 /**
1281  * d_walk - walk the dentry tree
1282  * @parent:     start of walk
1283  * @data:       data passed to @enter() and @finish()
1284  * @enter:      callback when first entering the dentry
1285  *
1286  * The @enter() callbacks are called with d_lock held.
1287  */
1288 static void d_walk(struct dentry *parent, void *data,
1289                    enum d_walk_ret (*enter)(void *, struct dentry *))
1290 {
1291         struct dentry *this_parent;
1292         struct list_head *next;
1293         unsigned seq = 0;
1294         enum d_walk_ret ret;
1295         bool retry = true;
1296
1297 again:
1298         read_seqbegin_or_lock(&rename_lock, &seq);
1299         this_parent = parent;
1300         spin_lock(&this_parent->d_lock);
1301
1302         ret = enter(data, this_parent);
1303         switch (ret) {
1304         case D_WALK_CONTINUE:
1305                 break;
1306         case D_WALK_QUIT:
1307         case D_WALK_SKIP:
1308                 goto out_unlock;
1309         case D_WALK_NORETRY:
1310                 retry = false;
1311                 break;
1312         }
1313 repeat:
1314         next = this_parent->d_subdirs.next;
1315 resume:
1316         while (next != &this_parent->d_subdirs) {
1317                 struct list_head *tmp = next;
1318                 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1319                 next = tmp->next;
1320
1321                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1322                         continue;
1323
1324                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1325
1326                 ret = enter(data, dentry);
1327                 switch (ret) {
1328                 case D_WALK_CONTINUE:
1329                         break;
1330                 case D_WALK_QUIT:
1331                         spin_unlock(&dentry->d_lock);
1332                         goto out_unlock;
1333                 case D_WALK_NORETRY:
1334                         retry = false;
1335                         break;
1336                 case D_WALK_SKIP:
1337                         spin_unlock(&dentry->d_lock);
1338                         continue;
1339                 }
1340
1341                 if (!list_empty(&dentry->d_subdirs)) {
1342                         spin_unlock(&this_parent->d_lock);
1343                         spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1344                         this_parent = dentry;
1345                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1346                         goto repeat;
1347                 }
1348                 spin_unlock(&dentry->d_lock);
1349         }
1350         /*
1351          * All done at this level ... ascend and resume the search.
1352          */
1353         rcu_read_lock();
1354 ascend:
1355         if (this_parent != parent) {
1356                 struct dentry *child = this_parent;
1357                 this_parent = child->d_parent;
1358
1359                 spin_unlock(&child->d_lock);
1360                 spin_lock(&this_parent->d_lock);
1361
1362                 /* might go back up the wrong parent if we have had a rename. */
1363                 if (need_seqretry(&rename_lock, seq))
1364                         goto rename_retry;
1365                 /* go into the first sibling still alive */
1366                 do {
1367                         next = child->d_child.next;
1368                         if (next == &this_parent->d_subdirs)
1369                                 goto ascend;
1370                         child = list_entry(next, struct dentry, d_child);
1371                 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1372                 rcu_read_unlock();
1373                 goto resume;
1374         }
1375         if (need_seqretry(&rename_lock, seq))
1376                 goto rename_retry;
1377         rcu_read_unlock();
1378
1379 out_unlock:
1380         spin_unlock(&this_parent->d_lock);
1381         done_seqretry(&rename_lock, seq);
1382         return;
1383
1384 rename_retry:
1385         spin_unlock(&this_parent->d_lock);
1386         rcu_read_unlock();
1387         BUG_ON(seq & 1);
1388         if (!retry)
1389                 return;
1390         seq = 1;
1391         goto again;
1392 }
1393
1394 struct check_mount {
1395         struct vfsmount *mnt;
1396         unsigned int mounted;
1397 };
1398
1399 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1400 {
1401         struct check_mount *info = data;
1402         struct path path = { .mnt = info->mnt, .dentry = dentry };
1403
1404         if (likely(!d_mountpoint(dentry)))
1405                 return D_WALK_CONTINUE;
1406         if (__path_is_mountpoint(&path)) {
1407                 info->mounted = 1;
1408                 return D_WALK_QUIT;
1409         }
1410         return D_WALK_CONTINUE;
1411 }
1412
1413 /**
1414  * path_has_submounts - check for mounts over a dentry in the
1415  *                      current namespace.
1416  * @parent: path to check.
1417  *
1418  * Return true if the parent or its subdirectories contain
1419  * a mount point in the current namespace.
1420  */
1421 int path_has_submounts(const struct path *parent)
1422 {
1423         struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1424
1425         read_seqlock_excl(&mount_lock);
1426         d_walk(parent->dentry, &data, path_check_mount);
1427         read_sequnlock_excl(&mount_lock);
1428
1429         return data.mounted;
1430 }
1431 EXPORT_SYMBOL(path_has_submounts);
1432
1433 /*
1434  * Called by mount code to set a mountpoint and check if the mountpoint is
1435  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1436  * subtree can become unreachable).
1437  *
1438  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1439  * this reason take rename_lock and d_lock on dentry and ancestors.
1440  */
1441 int d_set_mounted(struct dentry *dentry)
1442 {
1443         struct dentry *p;
1444         int ret = -ENOENT;
1445         write_seqlock(&rename_lock);
1446         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1447                 /* Need exclusion wrt. d_invalidate() */
1448                 spin_lock(&p->d_lock);
1449                 if (unlikely(d_unhashed(p))) {
1450                         spin_unlock(&p->d_lock);
1451                         goto out;
1452                 }
1453                 spin_unlock(&p->d_lock);
1454         }
1455         spin_lock(&dentry->d_lock);
1456         if (!d_unlinked(dentry)) {
1457                 ret = -EBUSY;
1458                 if (!d_mountpoint(dentry)) {
1459                         dentry->d_flags |= DCACHE_MOUNTED;
1460                         ret = 0;
1461                 }
1462         }
1463         spin_unlock(&dentry->d_lock);
1464 out:
1465         write_sequnlock(&rename_lock);
1466         return ret;
1467 }
1468
1469 /*
1470  * Search the dentry child list of the specified parent,
1471  * and move any unused dentries to the end of the unused
1472  * list for prune_dcache(). We descend to the next level
1473  * whenever the d_subdirs list is non-empty and continue
1474  * searching.
1475  *
1476  * It returns zero iff there are no unused children,
1477  * otherwise  it returns the number of children moved to
1478  * the end of the unused list. This may not be the total
1479  * number of unused children, because select_parent can
1480  * drop the lock and return early due to latency
1481  * constraints.
1482  */
1483
1484 struct select_data {
1485         struct dentry *start;
1486         union {
1487                 long found;
1488                 struct dentry *victim;
1489         };
1490         struct list_head dispose;
1491 };
1492
1493 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1494 {
1495         struct select_data *data = _data;
1496         enum d_walk_ret ret = D_WALK_CONTINUE;
1497
1498         if (data->start == dentry)
1499                 goto out;
1500
1501         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1502                 data->found++;
1503         } else {
1504                 if (dentry->d_flags & DCACHE_LRU_LIST)
1505                         d_lru_del(dentry);
1506                 if (!dentry->d_lockref.count) {
1507                         d_shrink_add(dentry, &data->dispose);
1508                         data->found++;
1509                 }
1510         }
1511         /*
1512          * We can return to the caller if we have found some (this
1513          * ensures forward progress). We'll be coming back to find
1514          * the rest.
1515          */
1516         if (!list_empty(&data->dispose))
1517                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1518 out:
1519         return ret;
1520 }
1521
1522 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1523 {
1524         struct select_data *data = _data;
1525         enum d_walk_ret ret = D_WALK_CONTINUE;
1526
1527         if (data->start == dentry)
1528                 goto out;
1529
1530         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1531                 if (!dentry->d_lockref.count) {
1532                         rcu_read_lock();
1533                         data->victim = dentry;
1534                         return D_WALK_QUIT;
1535                 }
1536         } else {
1537                 if (dentry->d_flags & DCACHE_LRU_LIST)
1538                         d_lru_del(dentry);
1539                 if (!dentry->d_lockref.count)
1540                         d_shrink_add(dentry, &data->dispose);
1541         }
1542         /*
1543          * We can return to the caller if we have found some (this
1544          * ensures forward progress). We'll be coming back to find
1545          * the rest.
1546          */
1547         if (!list_empty(&data->dispose))
1548                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1549 out:
1550         return ret;
1551 }
1552
1553 /**
1554  * shrink_dcache_parent - prune dcache
1555  * @parent: parent of entries to prune
1556  *
1557  * Prune the dcache to remove unused children of the parent dentry.
1558  */
1559 void shrink_dcache_parent(struct dentry *parent)
1560 {
1561         for (;;) {
1562                 struct select_data data = {.start = parent};
1563
1564                 INIT_LIST_HEAD(&data.dispose);
1565                 d_walk(parent, &data, select_collect);
1566
1567                 if (!list_empty(&data.dispose)) {
1568                         shrink_dentry_list(&data.dispose);
1569                         continue;
1570                 }
1571
1572                 cond_resched();
1573                 if (!data.found)
1574                         break;
1575                 data.victim = NULL;
1576                 d_walk(parent, &data, select_collect2);
1577                 if (data.victim) {
1578                         struct dentry *parent;
1579                         spin_lock(&data.victim->d_lock);
1580                         if (!shrink_lock_dentry(data.victim)) {
1581                                 spin_unlock(&data.victim->d_lock);
1582                                 rcu_read_unlock();
1583                         } else {
1584                                 rcu_read_unlock();
1585                                 parent = data.victim->d_parent;
1586                                 if (parent != data.victim)
1587                                         __dput_to_list(parent, &data.dispose);
1588                                 __dentry_kill(data.victim);
1589                         }
1590                 }
1591                 if (!list_empty(&data.dispose))
1592                         shrink_dentry_list(&data.dispose);
1593         }
1594 }
1595 EXPORT_SYMBOL(shrink_dcache_parent);
1596
1597 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1598 {
1599         /* it has busy descendents; complain about those instead */
1600         if (!list_empty(&dentry->d_subdirs))
1601                 return D_WALK_CONTINUE;
1602
1603         /* root with refcount 1 is fine */
1604         if (dentry == _data && dentry->d_lockref.count == 1)
1605                 return D_WALK_CONTINUE;
1606
1607         printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1608                         " still in use (%d) [unmount of %s %s]\n",
1609                        dentry,
1610                        dentry->d_inode ?
1611                        dentry->d_inode->i_ino : 0UL,
1612                        dentry,
1613                        dentry->d_lockref.count,
1614                        dentry->d_sb->s_type->name,
1615                        dentry->d_sb->s_id);
1616         WARN_ON(1);
1617         return D_WALK_CONTINUE;
1618 }
1619
1620 static void do_one_tree(struct dentry *dentry)
1621 {
1622         shrink_dcache_parent(dentry);
1623         d_walk(dentry, dentry, umount_check);
1624         d_drop(dentry);
1625         dput(dentry);
1626 }
1627
1628 /*
1629  * destroy the dentries attached to a superblock on unmounting
1630  */
1631 void shrink_dcache_for_umount(struct super_block *sb)
1632 {
1633         struct dentry *dentry;
1634
1635         WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1636
1637         dentry = sb->s_root;
1638         sb->s_root = NULL;
1639         do_one_tree(dentry);
1640
1641         while (!hlist_bl_empty(&sb->s_roots)) {
1642                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1643                 do_one_tree(dentry);
1644         }
1645 }
1646
1647 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1648 {
1649         struct dentry **victim = _data;
1650         if (d_mountpoint(dentry)) {
1651                 __dget_dlock(dentry);
1652                 *victim = dentry;
1653                 return D_WALK_QUIT;
1654         }
1655         return D_WALK_CONTINUE;
1656 }
1657
1658 /**
1659  * d_invalidate - detach submounts, prune dcache, and drop
1660  * @dentry: dentry to invalidate (aka detach, prune and drop)
1661  */
1662 void d_invalidate(struct dentry *dentry)
1663 {
1664         bool had_submounts = false;
1665         spin_lock(&dentry->d_lock);
1666         if (d_unhashed(dentry)) {
1667                 spin_unlock(&dentry->d_lock);
1668                 return;
1669         }
1670         __d_drop(dentry);
1671         spin_unlock(&dentry->d_lock);
1672
1673         /* Negative dentries can be dropped without further checks */
1674         if (!dentry->d_inode)
1675                 return;
1676
1677         shrink_dcache_parent(dentry);
1678         for (;;) {
1679                 struct dentry *victim = NULL;
1680                 d_walk(dentry, &victim, find_submount);
1681                 if (!victim) {
1682                         if (had_submounts)
1683                                 shrink_dcache_parent(dentry);
1684                         return;
1685                 }
1686                 had_submounts = true;
1687                 detach_mounts(victim);
1688                 dput(victim);
1689         }
1690 }
1691 EXPORT_SYMBOL(d_invalidate);
1692
1693 /**
1694  * __d_alloc    -       allocate a dcache entry
1695  * @sb: filesystem it will belong to
1696  * @name: qstr of the name
1697  *
1698  * Allocates a dentry. It returns %NULL if there is insufficient memory
1699  * available. On a success the dentry is returned. The name passed in is
1700  * copied and the copy passed in may be reused after this call.
1701  */
1702  
1703 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1704 {
1705         struct dentry *dentry;
1706         char *dname;
1707         int err;
1708
1709         dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1710         if (!dentry)
1711                 return NULL;
1712
1713         /*
1714          * We guarantee that the inline name is always NUL-terminated.
1715          * This way the memcpy() done by the name switching in rename
1716          * will still always have a NUL at the end, even if we might
1717          * be overwriting an internal NUL character
1718          */
1719         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1720         if (unlikely(!name)) {
1721                 name = &slash_name;
1722                 dname = dentry->d_iname;
1723         } else if (name->len > DNAME_INLINE_LEN-1) {
1724                 size_t size = offsetof(struct external_name, name[1]);
1725                 struct external_name *p = kmalloc(size + name->len,
1726                                                   GFP_KERNEL_ACCOUNT |
1727                                                   __GFP_RECLAIMABLE);
1728                 if (!p) {
1729                         kmem_cache_free(dentry_cache, dentry); 
1730                         return NULL;
1731                 }
1732                 atomic_set(&p->u.count, 1);
1733                 dname = p->name;
1734         } else  {
1735                 dname = dentry->d_iname;
1736         }       
1737
1738         dentry->d_name.len = name->len;
1739         dentry->d_name.hash = name->hash;
1740         memcpy(dname, name->name, name->len);
1741         dname[name->len] = 0;
1742
1743         /* Make sure we always see the terminating NUL character */
1744         smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1745
1746         dentry->d_lockref.count = 1;
1747         dentry->d_flags = 0;
1748         spin_lock_init(&dentry->d_lock);
1749         seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1750         dentry->d_inode = NULL;
1751         dentry->d_parent = dentry;
1752         dentry->d_sb = sb;
1753         dentry->d_op = NULL;
1754         dentry->d_fsdata = NULL;
1755         INIT_HLIST_BL_NODE(&dentry->d_hash);
1756         INIT_LIST_HEAD(&dentry->d_lru);
1757         INIT_LIST_HEAD(&dentry->d_subdirs);
1758         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1759         INIT_LIST_HEAD(&dentry->d_child);
1760         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1761
1762         if (dentry->d_op && dentry->d_op->d_init) {
1763                 err = dentry->d_op->d_init(dentry);
1764                 if (err) {
1765                         if (dname_external(dentry))
1766                                 kfree(external_name(dentry));
1767                         kmem_cache_free(dentry_cache, dentry);
1768                         return NULL;
1769                 }
1770         }
1771
1772         this_cpu_inc(nr_dentry);
1773
1774         return dentry;
1775 }
1776
1777 /**
1778  * d_alloc      -       allocate a dcache entry
1779  * @parent: parent of entry to allocate
1780  * @name: qstr of the name
1781  *
1782  * Allocates a dentry. It returns %NULL if there is insufficient memory
1783  * available. On a success the dentry is returned. The name passed in is
1784  * copied and the copy passed in may be reused after this call.
1785  */
1786 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1787 {
1788         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1789         if (!dentry)
1790                 return NULL;
1791         spin_lock(&parent->d_lock);
1792         /*
1793          * don't need child lock because it is not subject
1794          * to concurrency here
1795          */
1796         __dget_dlock(parent);
1797         dentry->d_parent = parent;
1798         list_add(&dentry->d_child, &parent->d_subdirs);
1799         spin_unlock(&parent->d_lock);
1800
1801         return dentry;
1802 }
1803 EXPORT_SYMBOL(d_alloc);
1804
1805 struct dentry *d_alloc_anon(struct super_block *sb)
1806 {
1807         return __d_alloc(sb, NULL);
1808 }
1809 EXPORT_SYMBOL(d_alloc_anon);
1810
1811 struct dentry *d_alloc_cursor(struct dentry * parent)
1812 {
1813         struct dentry *dentry = d_alloc_anon(parent->d_sb);
1814         if (dentry) {
1815                 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1816                 dentry->d_parent = dget(parent);
1817         }
1818         return dentry;
1819 }
1820
1821 /**
1822  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1823  * @sb: the superblock
1824  * @name: qstr of the name
1825  *
1826  * For a filesystem that just pins its dentries in memory and never
1827  * performs lookups at all, return an unhashed IS_ROOT dentry.
1828  * This is used for pipes, sockets et.al. - the stuff that should
1829  * never be anyone's children or parents.  Unlike all other
1830  * dentries, these will not have RCU delay between dropping the
1831  * last reference and freeing them.
1832  *
1833  * The only user is alloc_file_pseudo() and that's what should
1834  * be considered a public interface.  Don't use directly.
1835  */
1836 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1837 {
1838         struct dentry *dentry = __d_alloc(sb, name);
1839         if (likely(dentry))
1840                 dentry->d_flags |= DCACHE_NORCU;
1841         return dentry;
1842 }
1843
1844 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1845 {
1846         struct qstr q;
1847
1848         q.name = name;
1849         q.hash_len = hashlen_string(parent, name);
1850         return d_alloc(parent, &q);
1851 }
1852 EXPORT_SYMBOL(d_alloc_name);
1853
1854 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1855 {
1856         WARN_ON_ONCE(dentry->d_op);
1857         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1858                                 DCACHE_OP_COMPARE       |
1859                                 DCACHE_OP_REVALIDATE    |
1860                                 DCACHE_OP_WEAK_REVALIDATE       |
1861                                 DCACHE_OP_DELETE        |
1862                                 DCACHE_OP_REAL));
1863         dentry->d_op = op;
1864         if (!op)
1865                 return;
1866         if (op->d_hash)
1867                 dentry->d_flags |= DCACHE_OP_HASH;
1868         if (op->d_compare)
1869                 dentry->d_flags |= DCACHE_OP_COMPARE;
1870         if (op->d_revalidate)
1871                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1872         if (op->d_weak_revalidate)
1873                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1874         if (op->d_delete)
1875                 dentry->d_flags |= DCACHE_OP_DELETE;
1876         if (op->d_prune)
1877                 dentry->d_flags |= DCACHE_OP_PRUNE;
1878         if (op->d_real)
1879                 dentry->d_flags |= DCACHE_OP_REAL;
1880
1881 }
1882 EXPORT_SYMBOL(d_set_d_op);
1883
1884
1885 /*
1886  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1887  * @dentry - The dentry to mark
1888  *
1889  * Mark a dentry as falling through to the lower layer (as set with
1890  * d_pin_lower()).  This flag may be recorded on the medium.
1891  */
1892 void d_set_fallthru(struct dentry *dentry)
1893 {
1894         spin_lock(&dentry->d_lock);
1895         dentry->d_flags |= DCACHE_FALLTHRU;
1896         spin_unlock(&dentry->d_lock);
1897 }
1898 EXPORT_SYMBOL(d_set_fallthru);
1899
1900 static unsigned d_flags_for_inode(struct inode *inode)
1901 {
1902         unsigned add_flags = DCACHE_REGULAR_TYPE;
1903
1904         if (!inode)
1905                 return DCACHE_MISS_TYPE;
1906
1907         if (S_ISDIR(inode->i_mode)) {
1908                 add_flags = DCACHE_DIRECTORY_TYPE;
1909                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1910                         if (unlikely(!inode->i_op->lookup))
1911                                 add_flags = DCACHE_AUTODIR_TYPE;
1912                         else
1913                                 inode->i_opflags |= IOP_LOOKUP;
1914                 }
1915                 goto type_determined;
1916         }
1917
1918         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1919                 if (unlikely(inode->i_op->get_link)) {
1920                         add_flags = DCACHE_SYMLINK_TYPE;
1921                         goto type_determined;
1922                 }
1923                 inode->i_opflags |= IOP_NOFOLLOW;
1924         }
1925
1926         if (unlikely(!S_ISREG(inode->i_mode)))
1927                 add_flags = DCACHE_SPECIAL_TYPE;
1928
1929 type_determined:
1930         if (unlikely(IS_AUTOMOUNT(inode)))
1931                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1932         return add_flags;
1933 }
1934
1935 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1936 {
1937         unsigned add_flags = d_flags_for_inode(inode);
1938         WARN_ON(d_in_lookup(dentry));
1939
1940         spin_lock(&dentry->d_lock);
1941         /*
1942          * Decrement negative dentry count if it was in the LRU list.
1943          */
1944         if (dentry->d_flags & DCACHE_LRU_LIST)
1945                 this_cpu_dec(nr_dentry_negative);
1946         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1947         raw_write_seqcount_begin(&dentry->d_seq);
1948         __d_set_inode_and_type(dentry, inode, add_flags);
1949         raw_write_seqcount_end(&dentry->d_seq);
1950         fsnotify_update_flags(dentry);
1951         spin_unlock(&dentry->d_lock);
1952 }
1953
1954 /**
1955  * d_instantiate - fill in inode information for a dentry
1956  * @entry: dentry to complete
1957  * @inode: inode to attach to this dentry
1958  *
1959  * Fill in inode information in the entry.
1960  *
1961  * This turns negative dentries into productive full members
1962  * of society.
1963  *
1964  * NOTE! This assumes that the inode count has been incremented
1965  * (or otherwise set) by the caller to indicate that it is now
1966  * in use by the dcache.
1967  */
1968  
1969 void d_instantiate(struct dentry *entry, struct inode * inode)
1970 {
1971         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1972         if (inode) {
1973                 security_d_instantiate(entry, inode);
1974                 spin_lock(&inode->i_lock);
1975                 __d_instantiate(entry, inode);
1976                 spin_unlock(&inode->i_lock);
1977         }
1978 }
1979 EXPORT_SYMBOL(d_instantiate);
1980
1981 /*
1982  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1983  * with lockdep-related part of unlock_new_inode() done before
1984  * anything else.  Use that instead of open-coding d_instantiate()/
1985  * unlock_new_inode() combinations.
1986  */
1987 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1988 {
1989         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1990         BUG_ON(!inode);
1991         lockdep_annotate_inode_mutex_key(inode);
1992         security_d_instantiate(entry, inode);
1993         spin_lock(&inode->i_lock);
1994         __d_instantiate(entry, inode);
1995         WARN_ON(!(inode->i_state & I_NEW));
1996         inode->i_state &= ~I_NEW & ~I_CREATING;
1997         smp_mb();
1998         wake_up_bit(&inode->i_state, __I_NEW);
1999         spin_unlock(&inode->i_lock);
2000 }
2001 EXPORT_SYMBOL(d_instantiate_new);
2002
2003 struct dentry *d_make_root(struct inode *root_inode)
2004 {
2005         struct dentry *res = NULL;
2006
2007         if (root_inode) {
2008                 res = d_alloc_anon(root_inode->i_sb);
2009                 if (res)
2010                         d_instantiate(res, root_inode);
2011                 else
2012                         iput(root_inode);
2013         }
2014         return res;
2015 }
2016 EXPORT_SYMBOL(d_make_root);
2017
2018 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2019                                            struct inode *inode,
2020                                            bool disconnected)
2021 {
2022         struct dentry *res;
2023         unsigned add_flags;
2024
2025         security_d_instantiate(dentry, inode);
2026         spin_lock(&inode->i_lock);
2027         res = __d_find_any_alias(inode);
2028         if (res) {
2029                 spin_unlock(&inode->i_lock);
2030                 dput(dentry);
2031                 goto out_iput;
2032         }
2033
2034         /* attach a disconnected dentry */
2035         add_flags = d_flags_for_inode(inode);
2036
2037         if (disconnected)
2038                 add_flags |= DCACHE_DISCONNECTED;
2039
2040         spin_lock(&dentry->d_lock);
2041         __d_set_inode_and_type(dentry, inode, add_flags);
2042         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2043         if (!disconnected) {
2044                 hlist_bl_lock(&dentry->d_sb->s_roots);
2045                 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2046                 hlist_bl_unlock(&dentry->d_sb->s_roots);
2047         }
2048         spin_unlock(&dentry->d_lock);
2049         spin_unlock(&inode->i_lock);
2050
2051         return dentry;
2052
2053  out_iput:
2054         iput(inode);
2055         return res;
2056 }
2057
2058 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2059 {
2060         return __d_instantiate_anon(dentry, inode, true);
2061 }
2062 EXPORT_SYMBOL(d_instantiate_anon);
2063
2064 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2065 {
2066         struct dentry *tmp;
2067         struct dentry *res;
2068
2069         if (!inode)
2070                 return ERR_PTR(-ESTALE);
2071         if (IS_ERR(inode))
2072                 return ERR_CAST(inode);
2073
2074         res = d_find_any_alias(inode);
2075         if (res)
2076                 goto out_iput;
2077
2078         tmp = d_alloc_anon(inode->i_sb);
2079         if (!tmp) {
2080                 res = ERR_PTR(-ENOMEM);
2081                 goto out_iput;
2082         }
2083
2084         return __d_instantiate_anon(tmp, inode, disconnected);
2085
2086 out_iput:
2087         iput(inode);
2088         return res;
2089 }
2090
2091 /**
2092  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2093  * @inode: inode to allocate the dentry for
2094  *
2095  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2096  * similar open by handle operations.  The returned dentry may be anonymous,
2097  * or may have a full name (if the inode was already in the cache).
2098  *
2099  * When called on a directory inode, we must ensure that the inode only ever
2100  * has one dentry.  If a dentry is found, that is returned instead of
2101  * allocating a new one.
2102  *
2103  * On successful return, the reference to the inode has been transferred
2104  * to the dentry.  In case of an error the reference on the inode is released.
2105  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2106  * be passed in and the error will be propagated to the return value,
2107  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2108  */
2109 struct dentry *d_obtain_alias(struct inode *inode)
2110 {
2111         return __d_obtain_alias(inode, true);
2112 }
2113 EXPORT_SYMBOL(d_obtain_alias);
2114
2115 /**
2116  * d_obtain_root - find or allocate a dentry for a given inode
2117  * @inode: inode to allocate the dentry for
2118  *
2119  * Obtain an IS_ROOT dentry for the root of a filesystem.
2120  *
2121  * We must ensure that directory inodes only ever have one dentry.  If a
2122  * dentry is found, that is returned instead of allocating a new one.
2123  *
2124  * On successful return, the reference to the inode has been transferred
2125  * to the dentry.  In case of an error the reference on the inode is
2126  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2127  * error will be propagate to the return value, with a %NULL @inode
2128  * replaced by ERR_PTR(-ESTALE).
2129  */
2130 struct dentry *d_obtain_root(struct inode *inode)
2131 {
2132         return __d_obtain_alias(inode, false);
2133 }
2134 EXPORT_SYMBOL(d_obtain_root);
2135
2136 /**
2137  * d_add_ci - lookup or allocate new dentry with case-exact name
2138  * @inode:  the inode case-insensitive lookup has found
2139  * @dentry: the negative dentry that was passed to the parent's lookup func
2140  * @name:   the case-exact name to be associated with the returned dentry
2141  *
2142  * This is to avoid filling the dcache with case-insensitive names to the
2143  * same inode, only the actual correct case is stored in the dcache for
2144  * case-insensitive filesystems.
2145  *
2146  * For a case-insensitive lookup match and if the the case-exact dentry
2147  * already exists in in the dcache, use it and return it.
2148  *
2149  * If no entry exists with the exact case name, allocate new dentry with
2150  * the exact case, and return the spliced entry.
2151  */
2152 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2153                         struct qstr *name)
2154 {
2155         struct dentry *found, *res;
2156
2157         /*
2158          * First check if a dentry matching the name already exists,
2159          * if not go ahead and create it now.
2160          */
2161         found = d_hash_and_lookup(dentry->d_parent, name);
2162         if (found) {
2163                 iput(inode);
2164                 return found;
2165         }
2166         if (d_in_lookup(dentry)) {
2167                 found = d_alloc_parallel(dentry->d_parent, name,
2168                                         dentry->d_wait);
2169                 if (IS_ERR(found) || !d_in_lookup(found)) {
2170                         iput(inode);
2171                         return found;
2172                 }
2173         } else {
2174                 found = d_alloc(dentry->d_parent, name);
2175                 if (!found) {
2176                         iput(inode);
2177                         return ERR_PTR(-ENOMEM);
2178                 } 
2179         }
2180         res = d_splice_alias(inode, found);
2181         if (res) {
2182                 dput(found);
2183                 return res;
2184         }
2185         return found;
2186 }
2187 EXPORT_SYMBOL(d_add_ci);
2188
2189
2190 static inline bool d_same_name(const struct dentry *dentry,
2191                                 const struct dentry *parent,
2192                                 const struct qstr *name)
2193 {
2194         if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2195                 if (dentry->d_name.len != name->len)
2196                         return false;
2197                 return dentry_cmp(dentry, name->name, name->len) == 0;
2198         }
2199         return parent->d_op->d_compare(dentry,
2200                                        dentry->d_name.len, dentry->d_name.name,
2201                                        name) == 0;
2202 }
2203
2204 /**
2205  * __d_lookup_rcu - search for a dentry (racy, store-free)
2206  * @parent: parent dentry
2207  * @name: qstr of name we wish to find
2208  * @seqp: returns d_seq value at the point where the dentry was found
2209  * Returns: dentry, or NULL
2210  *
2211  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2212  * resolution (store-free path walking) design described in
2213  * Documentation/filesystems/path-lookup.txt.
2214  *
2215  * This is not to be used outside core vfs.
2216  *
2217  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2218  * held, and rcu_read_lock held. The returned dentry must not be stored into
2219  * without taking d_lock and checking d_seq sequence count against @seq
2220  * returned here.
2221  *
2222  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2223  * function.
2224  *
2225  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2226  * the returned dentry, so long as its parent's seqlock is checked after the
2227  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2228  * is formed, giving integrity down the path walk.
2229  *
2230  * NOTE! The caller *has* to check the resulting dentry against the sequence
2231  * number we've returned before using any of the resulting dentry state!
2232  */
2233 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2234                                 const struct qstr *name,
2235                                 unsigned *seqp)
2236 {
2237         u64 hashlen = name->hash_len;
2238         const unsigned char *str = name->name;
2239         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2240         struct hlist_bl_node *node;
2241         struct dentry *dentry;
2242
2243         /*
2244          * Note: There is significant duplication with __d_lookup_rcu which is
2245          * required to prevent single threaded performance regressions
2246          * especially on architectures where smp_rmb (in seqcounts) are costly.
2247          * Keep the two functions in sync.
2248          */
2249
2250         /*
2251          * The hash list is protected using RCU.
2252          *
2253          * Carefully use d_seq when comparing a candidate dentry, to avoid
2254          * races with d_move().
2255          *
2256          * It is possible that concurrent renames can mess up our list
2257          * walk here and result in missing our dentry, resulting in the
2258          * false-negative result. d_lookup() protects against concurrent
2259          * renames using rename_lock seqlock.
2260          *
2261          * See Documentation/filesystems/path-lookup.txt for more details.
2262          */
2263         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2264                 unsigned seq;
2265
2266 seqretry:
2267                 /*
2268                  * The dentry sequence count protects us from concurrent
2269                  * renames, and thus protects parent and name fields.
2270                  *
2271                  * The caller must perform a seqcount check in order
2272                  * to do anything useful with the returned dentry.
2273                  *
2274                  * NOTE! We do a "raw" seqcount_begin here. That means that
2275                  * we don't wait for the sequence count to stabilize if it
2276                  * is in the middle of a sequence change. If we do the slow
2277                  * dentry compare, we will do seqretries until it is stable,
2278                  * and if we end up with a successful lookup, we actually
2279                  * want to exit RCU lookup anyway.
2280                  *
2281                  * Note that raw_seqcount_begin still *does* smp_rmb(), so
2282                  * we are still guaranteed NUL-termination of ->d_name.name.
2283                  */
2284                 seq = raw_seqcount_begin(&dentry->d_seq);
2285                 if (dentry->d_parent != parent)
2286                         continue;
2287                 if (d_unhashed(dentry))
2288                         continue;
2289
2290                 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2291                         int tlen;
2292                         const char *tname;
2293                         if (dentry->d_name.hash != hashlen_hash(hashlen))
2294                                 continue;
2295                         tlen = dentry->d_name.len;
2296                         tname = dentry->d_name.name;
2297                         /* we want a consistent (name,len) pair */
2298                         if (read_seqcount_retry(&dentry->d_seq, seq)) {
2299                                 cpu_relax();
2300                                 goto seqretry;
2301                         }
2302                         if (parent->d_op->d_compare(dentry,
2303                                                     tlen, tname, name) != 0)
2304                                 continue;
2305                 } else {
2306                         if (dentry->d_name.hash_len != hashlen)
2307                                 continue;
2308                         if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2309                                 continue;
2310                 }
2311                 *seqp = seq;
2312                 return dentry;
2313         }
2314         return NULL;
2315 }
2316
2317 /**
2318  * d_lookup - search for a dentry
2319  * @parent: parent dentry
2320  * @name: qstr of name we wish to find
2321  * Returns: dentry, or NULL
2322  *
2323  * d_lookup searches the children of the parent dentry for the name in
2324  * question. If the dentry is found its reference count is incremented and the
2325  * dentry is returned. The caller must use dput to free the entry when it has
2326  * finished using it. %NULL is returned if the dentry does not exist.
2327  */
2328 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2329 {
2330         struct dentry *dentry;
2331         unsigned seq;
2332
2333         do {
2334                 seq = read_seqbegin(&rename_lock);
2335                 dentry = __d_lookup(parent, name);
2336                 if (dentry)
2337                         break;
2338         } while (read_seqretry(&rename_lock, seq));
2339         return dentry;
2340 }
2341 EXPORT_SYMBOL(d_lookup);
2342
2343 /**
2344  * __d_lookup - search for a dentry (racy)
2345  * @parent: parent dentry
2346  * @name: qstr of name we wish to find
2347  * Returns: dentry, or NULL
2348  *
2349  * __d_lookup is like d_lookup, however it may (rarely) return a
2350  * false-negative result due to unrelated rename activity.
2351  *
2352  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2353  * however it must be used carefully, eg. with a following d_lookup in
2354  * the case of failure.
2355  *
2356  * __d_lookup callers must be commented.
2357  */
2358 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2359 {
2360         unsigned int hash = name->hash;
2361         struct hlist_bl_head *b = d_hash(hash);
2362         struct hlist_bl_node *node;
2363         struct dentry *found = NULL;
2364         struct dentry *dentry;
2365
2366         /*
2367          * Note: There is significant duplication with __d_lookup_rcu which is
2368          * required to prevent single threaded performance regressions
2369          * especially on architectures where smp_rmb (in seqcounts) are costly.
2370          * Keep the two functions in sync.
2371          */
2372
2373         /*
2374          * The hash list is protected using RCU.
2375          *
2376          * Take d_lock when comparing a candidate dentry, to avoid races
2377          * with d_move().
2378          *
2379          * It is possible that concurrent renames can mess up our list
2380          * walk here and result in missing our dentry, resulting in the
2381          * false-negative result. d_lookup() protects against concurrent
2382          * renames using rename_lock seqlock.
2383          *
2384          * See Documentation/filesystems/path-lookup.txt for more details.
2385          */
2386         rcu_read_lock();
2387         
2388         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2389
2390                 if (dentry->d_name.hash != hash)
2391                         continue;
2392
2393                 spin_lock(&dentry->d_lock);
2394                 if (dentry->d_parent != parent)
2395                         goto next;
2396                 if (d_unhashed(dentry))
2397                         goto next;
2398
2399                 if (!d_same_name(dentry, parent, name))
2400                         goto next;
2401
2402                 dentry->d_lockref.count++;
2403                 found = dentry;
2404                 spin_unlock(&dentry->d_lock);
2405                 break;
2406 next:
2407                 spin_unlock(&dentry->d_lock);
2408         }
2409         rcu_read_unlock();
2410
2411         return found;
2412 }
2413
2414 /**
2415  * d_hash_and_lookup - hash the qstr then search for a dentry
2416  * @dir: Directory to search in
2417  * @name: qstr of name we wish to find
2418  *
2419  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2420  */
2421 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2422 {
2423         /*
2424          * Check for a fs-specific hash function. Note that we must
2425          * calculate the standard hash first, as the d_op->d_hash()
2426          * routine may choose to leave the hash value unchanged.
2427          */
2428         name->hash = full_name_hash(dir, name->name, name->len);
2429         if (dir->d_flags & DCACHE_OP_HASH) {
2430                 int err = dir->d_op->d_hash(dir, name);
2431                 if (unlikely(err < 0))
2432                         return ERR_PTR(err);
2433         }
2434         return d_lookup(dir, name);
2435 }
2436 EXPORT_SYMBOL(d_hash_and_lookup);
2437
2438 /*
2439  * When a file is deleted, we have two options:
2440  * - turn this dentry into a negative dentry
2441  * - unhash this dentry and free it.
2442  *
2443  * Usually, we want to just turn this into
2444  * a negative dentry, but if anybody else is
2445  * currently using the dentry or the inode
2446  * we can't do that and we fall back on removing
2447  * it from the hash queues and waiting for
2448  * it to be deleted later when it has no users
2449  */
2450  
2451 /**
2452  * d_delete - delete a dentry
2453  * @dentry: The dentry to delete
2454  *
2455  * Turn the dentry into a negative dentry if possible, otherwise
2456  * remove it from the hash queues so it can be deleted later
2457  */
2458  
2459 void d_delete(struct dentry * dentry)
2460 {
2461         struct inode *inode = dentry->d_inode;
2462
2463         spin_lock(&inode->i_lock);
2464         spin_lock(&dentry->d_lock);
2465         /*
2466          * Are we the only user?
2467          */
2468         if (dentry->d_lockref.count == 1) {
2469                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2470                 dentry_unlink_inode(dentry);
2471         } else {
2472                 __d_drop(dentry);
2473                 spin_unlock(&dentry->d_lock);
2474                 spin_unlock(&inode->i_lock);
2475         }
2476 }
2477 EXPORT_SYMBOL(d_delete);
2478
2479 static void __d_rehash(struct dentry *entry)
2480 {
2481         struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2482
2483         hlist_bl_lock(b);
2484         hlist_bl_add_head_rcu(&entry->d_hash, b);
2485         hlist_bl_unlock(b);
2486 }
2487
2488 /**
2489  * d_rehash     - add an entry back to the hash
2490  * @entry: dentry to add to the hash
2491  *
2492  * Adds a dentry to the hash according to its name.
2493  */
2494  
2495 void d_rehash(struct dentry * entry)
2496 {
2497         spin_lock(&entry->d_lock);
2498         __d_rehash(entry);
2499         spin_unlock(&entry->d_lock);
2500 }
2501 EXPORT_SYMBOL(d_rehash);
2502
2503 static inline unsigned start_dir_add(struct inode *dir)
2504 {
2505
2506         for (;;) {
2507                 unsigned n = dir->i_dir_seq;
2508                 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2509                         return n;
2510                 cpu_relax();
2511         }
2512 }
2513
2514 static inline void end_dir_add(struct inode *dir, unsigned n)
2515 {
2516         smp_store_release(&dir->i_dir_seq, n + 2);
2517 }
2518
2519 static void d_wait_lookup(struct dentry *dentry)
2520 {
2521         if (d_in_lookup(dentry)) {
2522                 DECLARE_WAITQUEUE(wait, current);
2523                 add_wait_queue(dentry->d_wait, &wait);
2524                 do {
2525                         set_current_state(TASK_UNINTERRUPTIBLE);
2526                         spin_unlock(&dentry->d_lock);
2527                         schedule();
2528                         spin_lock(&dentry->d_lock);
2529                 } while (d_in_lookup(dentry));
2530         }
2531 }
2532
2533 struct dentry *d_alloc_parallel(struct dentry *parent,
2534                                 const struct qstr *name,
2535                                 wait_queue_head_t *wq)
2536 {
2537         unsigned int hash = name->hash;
2538         struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2539         struct hlist_bl_node *node;
2540         struct dentry *new = d_alloc(parent, name);
2541         struct dentry *dentry;
2542         unsigned seq, r_seq, d_seq;
2543
2544         if (unlikely(!new))
2545                 return ERR_PTR(-ENOMEM);
2546
2547 retry:
2548         rcu_read_lock();
2549         seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2550         r_seq = read_seqbegin(&rename_lock);
2551         dentry = __d_lookup_rcu(parent, name, &d_seq);
2552         if (unlikely(dentry)) {
2553                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2554                         rcu_read_unlock();
2555                         goto retry;
2556                 }
2557                 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2558                         rcu_read_unlock();
2559                         dput(dentry);
2560                         goto retry;
2561                 }
2562                 rcu_read_unlock();
2563                 dput(new);
2564                 return dentry;
2565         }
2566         if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2567                 rcu_read_unlock();
2568                 goto retry;
2569         }
2570
2571         if (unlikely(seq & 1)) {
2572                 rcu_read_unlock();
2573                 goto retry;
2574         }
2575
2576         hlist_bl_lock(b);
2577         if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2578                 hlist_bl_unlock(b);
2579                 rcu_read_unlock();
2580                 goto retry;
2581         }
2582         /*
2583          * No changes for the parent since the beginning of d_lookup().
2584          * Since all removals from the chain happen with hlist_bl_lock(),
2585          * any potential in-lookup matches are going to stay here until
2586          * we unlock the chain.  All fields are stable in everything
2587          * we encounter.
2588          */
2589         hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2590                 if (dentry->d_name.hash != hash)
2591                         continue;
2592                 if (dentry->d_parent != parent)
2593                         continue;
2594                 if (!d_same_name(dentry, parent, name))
2595                         continue;
2596                 hlist_bl_unlock(b);
2597                 /* now we can try to grab a reference */
2598                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2599                         rcu_read_unlock();
2600                         goto retry;
2601                 }
2602
2603                 rcu_read_unlock();
2604                 /*
2605                  * somebody is likely to be still doing lookup for it;
2606                  * wait for them to finish
2607                  */
2608                 spin_lock(&dentry->d_lock);
2609                 d_wait_lookup(dentry);
2610                 /*
2611                  * it's not in-lookup anymore; in principle we should repeat
2612                  * everything from dcache lookup, but it's likely to be what
2613                  * d_lookup() would've found anyway.  If it is, just return it;
2614                  * otherwise we really have to repeat the whole thing.
2615                  */
2616                 if (unlikely(dentry->d_name.hash != hash))
2617                         goto mismatch;
2618                 if (unlikely(dentry->d_parent != parent))
2619                         goto mismatch;
2620                 if (unlikely(d_unhashed(dentry)))
2621                         goto mismatch;
2622                 if (unlikely(!d_same_name(dentry, parent, name)))
2623                         goto mismatch;
2624                 /* OK, it *is* a hashed match; return it */
2625                 spin_unlock(&dentry->d_lock);
2626                 dput(new);
2627                 return dentry;
2628         }
2629         rcu_read_unlock();
2630         /* we can't take ->d_lock here; it's OK, though. */
2631         new->d_flags |= DCACHE_PAR_LOOKUP;
2632         new->d_wait = wq;
2633         hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2634         hlist_bl_unlock(b);
2635         return new;
2636 mismatch:
2637         spin_unlock(&dentry->d_lock);
2638         dput(dentry);
2639         goto retry;
2640 }
2641 EXPORT_SYMBOL(d_alloc_parallel);
2642
2643 void __d_lookup_done(struct dentry *dentry)
2644 {
2645         struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2646                                                  dentry->d_name.hash);
2647         hlist_bl_lock(b);
2648         dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2649         __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2650         wake_up_all(dentry->d_wait);
2651         dentry->d_wait = NULL;
2652         hlist_bl_unlock(b);
2653         INIT_HLIST_NODE(&dentry->d_u.d_alias);
2654         INIT_LIST_HEAD(&dentry->d_lru);
2655 }
2656 EXPORT_SYMBOL(__d_lookup_done);
2657
2658 /* inode->i_lock held if inode is non-NULL */
2659
2660 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2661 {
2662         struct inode *dir = NULL;
2663         unsigned n;
2664         spin_lock(&dentry->d_lock);
2665         if (unlikely(d_in_lookup(dentry))) {
2666                 dir = dentry->d_parent->d_inode;
2667                 n = start_dir_add(dir);
2668                 __d_lookup_done(dentry);
2669         }
2670         if (inode) {
2671                 unsigned add_flags = d_flags_for_inode(inode);
2672                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2673                 raw_write_seqcount_begin(&dentry->d_seq);
2674                 __d_set_inode_and_type(dentry, inode, add_flags);
2675                 raw_write_seqcount_end(&dentry->d_seq);
2676                 fsnotify_update_flags(dentry);
2677         }
2678         __d_rehash(dentry);
2679         if (dir)
2680                 end_dir_add(dir, n);
2681         spin_unlock(&dentry->d_lock);
2682         if (inode)
2683                 spin_unlock(&inode->i_lock);
2684 }
2685
2686 /**
2687  * d_add - add dentry to hash queues
2688  * @entry: dentry to add
2689  * @inode: The inode to attach to this dentry
2690  *
2691  * This adds the entry to the hash queues and initializes @inode.
2692  * The entry was actually filled in earlier during d_alloc().
2693  */
2694
2695 void d_add(struct dentry *entry, struct inode *inode)
2696 {
2697         if (inode) {
2698                 security_d_instantiate(entry, inode);
2699                 spin_lock(&inode->i_lock);
2700         }
2701         __d_add(entry, inode);
2702 }
2703 EXPORT_SYMBOL(d_add);
2704
2705 /**
2706  * d_exact_alias - find and hash an exact unhashed alias
2707  * @entry: dentry to add
2708  * @inode: The inode to go with this dentry
2709  *
2710  * If an unhashed dentry with the same name/parent and desired
2711  * inode already exists, hash and return it.  Otherwise, return
2712  * NULL.
2713  *
2714  * Parent directory should be locked.
2715  */
2716 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2717 {
2718         struct dentry *alias;
2719         unsigned int hash = entry->d_name.hash;
2720
2721         spin_lock(&inode->i_lock);
2722         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2723                 /*
2724                  * Don't need alias->d_lock here, because aliases with
2725                  * d_parent == entry->d_parent are not subject to name or
2726                  * parent changes, because the parent inode i_mutex is held.
2727                  */
2728                 if (alias->d_name.hash != hash)
2729                         continue;
2730                 if (alias->d_parent != entry->d_parent)
2731                         continue;
2732                 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2733                         continue;
2734                 spin_lock(&alias->d_lock);
2735                 if (!d_unhashed(alias)) {
2736                         spin_unlock(&alias->d_lock);
2737                         alias = NULL;
2738                 } else {
2739                         __dget_dlock(alias);
2740                         __d_rehash(alias);
2741                         spin_unlock(&alias->d_lock);
2742                 }
2743                 spin_unlock(&inode->i_lock);
2744                 return alias;
2745         }
2746         spin_unlock(&inode->i_lock);
2747         return NULL;
2748 }
2749 EXPORT_SYMBOL(d_exact_alias);
2750
2751 static void swap_names(struct dentry *dentry, struct dentry *target)
2752 {
2753         if (unlikely(dname_external(target))) {
2754                 if (unlikely(dname_external(dentry))) {
2755                         /*
2756                          * Both external: swap the pointers
2757                          */
2758                         swap(target->d_name.name, dentry->d_name.name);
2759                 } else {
2760                         /*
2761                          * dentry:internal, target:external.  Steal target's
2762                          * storage and make target internal.
2763                          */
2764                         memcpy(target->d_iname, dentry->d_name.name,
2765                                         dentry->d_name.len + 1);
2766                         dentry->d_name.name = target->d_name.name;
2767                         target->d_name.name = target->d_iname;
2768                 }
2769         } else {
2770                 if (unlikely(dname_external(dentry))) {
2771                         /*
2772                          * dentry:external, target:internal.  Give dentry's
2773                          * storage to target and make dentry internal
2774                          */
2775                         memcpy(dentry->d_iname, target->d_name.name,
2776                                         target->d_name.len + 1);
2777                         target->d_name.name = dentry->d_name.name;
2778                         dentry->d_name.name = dentry->d_iname;
2779                 } else {
2780                         /*
2781                          * Both are internal.
2782                          */
2783                         unsigned int i;
2784                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2785                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2786                                 swap(((long *) &dentry->d_iname)[i],
2787                                      ((long *) &target->d_iname)[i]);
2788                         }
2789                 }
2790         }
2791         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2792 }
2793
2794 static void copy_name(struct dentry *dentry, struct dentry *target)
2795 {
2796         struct external_name *old_name = NULL;
2797         if (unlikely(dname_external(dentry)))
2798                 old_name = external_name(dentry);
2799         if (unlikely(dname_external(target))) {
2800                 atomic_inc(&external_name(target)->u.count);
2801                 dentry->d_name = target->d_name;
2802         } else {
2803                 memcpy(dentry->d_iname, target->d_name.name,
2804                                 target->d_name.len + 1);
2805                 dentry->d_name.name = dentry->d_iname;
2806                 dentry->d_name.hash_len = target->d_name.hash_len;
2807         }
2808         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2809                 kfree_rcu(old_name, u.head);
2810 }
2811
2812 /*
2813  * __d_move - move a dentry
2814  * @dentry: entry to move
2815  * @target: new dentry
2816  * @exchange: exchange the two dentries
2817  *
2818  * Update the dcache to reflect the move of a file name. Negative
2819  * dcache entries should not be moved in this way. Caller must hold
2820  * rename_lock, the i_mutex of the source and target directories,
2821  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2822  */
2823 static void __d_move(struct dentry *dentry, struct dentry *target,
2824                      bool exchange)
2825 {
2826         struct dentry *old_parent, *p;
2827         struct inode *dir = NULL;
2828         unsigned n;
2829
2830         WARN_ON(!dentry->d_inode);
2831         if (WARN_ON(dentry == target))
2832                 return;
2833
2834         BUG_ON(d_ancestor(target, dentry));
2835         old_parent = dentry->d_parent;
2836         p = d_ancestor(old_parent, target);
2837         if (IS_ROOT(dentry)) {
2838                 BUG_ON(p);
2839                 spin_lock(&target->d_parent->d_lock);
2840         } else if (!p) {
2841                 /* target is not a descendent of dentry->d_parent */
2842                 spin_lock(&target->d_parent->d_lock);
2843                 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2844         } else {
2845                 BUG_ON(p == dentry);
2846                 spin_lock(&old_parent->d_lock);
2847                 if (p != target)
2848                         spin_lock_nested(&target->d_parent->d_lock,
2849                                         DENTRY_D_LOCK_NESTED);
2850         }
2851         spin_lock_nested(&dentry->d_lock, 2);
2852         spin_lock_nested(&target->d_lock, 3);
2853
2854         if (unlikely(d_in_lookup(target))) {
2855                 dir = target->d_parent->d_inode;
2856                 n = start_dir_add(dir);
2857                 __d_lookup_done(target);
2858         }
2859
2860         write_seqcount_begin(&dentry->d_seq);
2861         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2862
2863         /* unhash both */
2864         if (!d_unhashed(dentry))
2865                 ___d_drop(dentry);
2866         if (!d_unhashed(target))
2867                 ___d_drop(target);
2868
2869         /* ... and switch them in the tree */
2870         dentry->d_parent = target->d_parent;
2871         if (!exchange) {
2872                 copy_name(dentry, target);
2873                 target->d_hash.pprev = NULL;
2874                 dentry->d_parent->d_lockref.count++;
2875                 if (dentry != old_parent) /* wasn't IS_ROOT */
2876                         WARN_ON(!--old_parent->d_lockref.count);
2877         } else {
2878                 target->d_parent = old_parent;
2879                 swap_names(dentry, target);
2880                 list_move(&target->d_child, &target->d_parent->d_subdirs);
2881                 __d_rehash(target);
2882                 fsnotify_update_flags(target);
2883         }
2884         list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2885         __d_rehash(dentry);
2886         fsnotify_update_flags(dentry);
2887         fscrypt_handle_d_move(dentry);
2888
2889         write_seqcount_end(&target->d_seq);
2890         write_seqcount_end(&dentry->d_seq);
2891
2892         if (dir)
2893                 end_dir_add(dir, n);
2894
2895         if (dentry->d_parent != old_parent)
2896                 spin_unlock(&dentry->d_parent->d_lock);
2897         if (dentry != old_parent)
2898                 spin_unlock(&old_parent->d_lock);
2899         spin_unlock(&target->d_lock);
2900         spin_unlock(&dentry->d_lock);
2901 }
2902
2903 /*
2904  * d_move - move a dentry
2905  * @dentry: entry to move
2906  * @target: new dentry
2907  *
2908  * Update the dcache to reflect the move of a file name. Negative
2909  * dcache entries should not be moved in this way. See the locking
2910  * requirements for __d_move.
2911  */
2912 void d_move(struct dentry *dentry, struct dentry *target)
2913 {
2914         write_seqlock(&rename_lock);
2915         __d_move(dentry, target, false);
2916         write_sequnlock(&rename_lock);
2917 }
2918 EXPORT_SYMBOL(d_move);
2919
2920 /*
2921  * d_exchange - exchange two dentries
2922  * @dentry1: first dentry
2923  * @dentry2: second dentry
2924  */
2925 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2926 {
2927         write_seqlock(&rename_lock);
2928
2929         WARN_ON(!dentry1->d_inode);
2930         WARN_ON(!dentry2->d_inode);
2931         WARN_ON(IS_ROOT(dentry1));
2932         WARN_ON(IS_ROOT(dentry2));
2933
2934         __d_move(dentry1, dentry2, true);
2935
2936         write_sequnlock(&rename_lock);
2937 }
2938
2939 /**
2940  * d_ancestor - search for an ancestor
2941  * @p1: ancestor dentry
2942  * @p2: child dentry
2943  *
2944  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2945  * an ancestor of p2, else NULL.
2946  */
2947 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2948 {
2949         struct dentry *p;
2950
2951         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2952                 if (p->d_parent == p1)
2953                         return p;
2954         }
2955         return NULL;
2956 }
2957
2958 /*
2959  * This helper attempts to cope with remotely renamed directories
2960  *
2961  * It assumes that the caller is already holding
2962  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2963  *
2964  * Note: If ever the locking in lock_rename() changes, then please
2965  * remember to update this too...
2966  */
2967 static int __d_unalias(struct inode *inode,
2968                 struct dentry *dentry, struct dentry *alias)
2969 {
2970         struct mutex *m1 = NULL;
2971         struct rw_semaphore *m2 = NULL;
2972         int ret = -ESTALE;
2973
2974         /* If alias and dentry share a parent, then no extra locks required */
2975         if (alias->d_parent == dentry->d_parent)
2976                 goto out_unalias;
2977
2978         /* See lock_rename() */
2979         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2980                 goto out_err;
2981         m1 = &dentry->d_sb->s_vfs_rename_mutex;
2982         if (!inode_trylock_shared(alias->d_parent->d_inode))
2983                 goto out_err;
2984         m2 = &alias->d_parent->d_inode->i_rwsem;
2985 out_unalias:
2986         __d_move(alias, dentry, false);
2987         ret = 0;
2988 out_err:
2989         if (m2)
2990                 up_read(m2);
2991         if (m1)
2992                 mutex_unlock(m1);
2993         return ret;
2994 }
2995
2996 /**
2997  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2998  * @inode:  the inode which may have a disconnected dentry
2999  * @dentry: a negative dentry which we want to point to the inode.
3000  *
3001  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3002  * place of the given dentry and return it, else simply d_add the inode
3003  * to the dentry and return NULL.
3004  *
3005  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3006  * we should error out: directories can't have multiple aliases.
3007  *
3008  * This is needed in the lookup routine of any filesystem that is exportable
3009  * (via knfsd) so that we can build dcache paths to directories effectively.
3010  *
3011  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3012  * is returned.  This matches the expected return value of ->lookup.
3013  *
3014  * Cluster filesystems may call this function with a negative, hashed dentry.
3015  * In that case, we know that the inode will be a regular file, and also this
3016  * will only occur during atomic_open. So we need to check for the dentry
3017  * being already hashed only in the final case.
3018  */
3019 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3020 {
3021         if (IS_ERR(inode))
3022                 return ERR_CAST(inode);
3023
3024         BUG_ON(!d_unhashed(dentry));
3025
3026         if (!inode)
3027                 goto out;
3028
3029         security_d_instantiate(dentry, inode);
3030         spin_lock(&inode->i_lock);
3031         if (S_ISDIR(inode->i_mode)) {
3032                 struct dentry *new = __d_find_any_alias(inode);
3033                 if (unlikely(new)) {
3034                         /* The reference to new ensures it remains an alias */
3035                         spin_unlock(&inode->i_lock);
3036                         write_seqlock(&rename_lock);
3037                         if (unlikely(d_ancestor(new, dentry))) {
3038                                 write_sequnlock(&rename_lock);
3039                                 dput(new);
3040                                 new = ERR_PTR(-ELOOP);
3041                                 pr_warn_ratelimited(
3042                                         "VFS: Lookup of '%s' in %s %s"
3043                                         " would have caused loop\n",
3044                                         dentry->d_name.name,
3045                                         inode->i_sb->s_type->name,
3046                                         inode->i_sb->s_id);
3047                         } else if (!IS_ROOT(new)) {
3048                                 struct dentry *old_parent = dget(new->d_parent);
3049                                 int err = __d_unalias(inode, dentry, new);
3050                                 write_sequnlock(&rename_lock);
3051                                 if (err) {
3052                                         dput(new);
3053                                         new = ERR_PTR(err);
3054                                 }
3055                                 dput(old_parent);
3056                         } else {
3057                                 __d_move(new, dentry, false);
3058                                 write_sequnlock(&rename_lock);
3059                         }
3060                         iput(inode);
3061                         return new;
3062                 }
3063         }
3064 out:
3065         __d_add(dentry, inode);
3066         return NULL;
3067 }
3068 EXPORT_SYMBOL(d_splice_alias);
3069
3070 /*
3071  * Test whether new_dentry is a subdirectory of old_dentry.
3072  *
3073  * Trivially implemented using the dcache structure
3074  */
3075
3076 /**
3077  * is_subdir - is new dentry a subdirectory of old_dentry
3078  * @new_dentry: new dentry
3079  * @old_dentry: old dentry
3080  *
3081  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3082  * Returns false otherwise.
3083  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3084  */
3085   
3086 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3087 {
3088         bool result;
3089         unsigned seq;
3090
3091         if (new_dentry == old_dentry)
3092                 return true;
3093
3094         do {
3095                 /* for restarting inner loop in case of seq retry */
3096                 seq = read_seqbegin(&rename_lock);
3097                 /*
3098                  * Need rcu_readlock to protect against the d_parent trashing
3099                  * due to d_move
3100                  */
3101                 rcu_read_lock();
3102                 if (d_ancestor(old_dentry, new_dentry))
3103                         result = true;
3104                 else
3105                         result = false;
3106                 rcu_read_unlock();
3107         } while (read_seqretry(&rename_lock, seq));
3108
3109         return result;
3110 }
3111 EXPORT_SYMBOL(is_subdir);
3112
3113 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3114 {
3115         struct dentry *root = data;
3116         if (dentry != root) {
3117                 if (d_unhashed(dentry) || !dentry->d_inode)
3118                         return D_WALK_SKIP;
3119
3120                 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3121                         dentry->d_flags |= DCACHE_GENOCIDE;
3122                         dentry->d_lockref.count--;
3123                 }
3124         }
3125         return D_WALK_CONTINUE;
3126 }
3127
3128 void d_genocide(struct dentry *parent)
3129 {
3130         d_walk(parent, parent, d_genocide_kill);
3131 }
3132
3133 EXPORT_SYMBOL(d_genocide);
3134
3135 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3136 {
3137         inode_dec_link_count(inode);
3138         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3139                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3140                 !d_unlinked(dentry));
3141         spin_lock(&dentry->d_parent->d_lock);
3142         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3143         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3144                                 (unsigned long long)inode->i_ino);
3145         spin_unlock(&dentry->d_lock);
3146         spin_unlock(&dentry->d_parent->d_lock);
3147         d_instantiate(dentry, inode);
3148 }
3149 EXPORT_SYMBOL(d_tmpfile);
3150
3151 static __initdata unsigned long dhash_entries;
3152 static int __init set_dhash_entries(char *str)
3153 {
3154         if (!str)
3155                 return 0;
3156         dhash_entries = simple_strtoul(str, &str, 0);
3157         return 1;
3158 }
3159 __setup("dhash_entries=", set_dhash_entries);
3160
3161 static void __init dcache_init_early(void)
3162 {
3163         /* If hashes are distributed across NUMA nodes, defer
3164          * hash allocation until vmalloc space is available.
3165          */
3166         if (hashdist)
3167                 return;
3168
3169         dentry_hashtable =
3170                 alloc_large_system_hash("Dentry cache",
3171                                         sizeof(struct hlist_bl_head),
3172                                         dhash_entries,
3173                                         13,
3174                                         HASH_EARLY | HASH_ZERO,
3175                                         &d_hash_shift,
3176                                         NULL,
3177                                         0,
3178                                         0);
3179         d_hash_shift = 32 - d_hash_shift;
3180 }
3181
3182 static void __init dcache_init(void)
3183 {
3184         /*
3185          * A constructor could be added for stable state like the lists,
3186          * but it is probably not worth it because of the cache nature
3187          * of the dcache.
3188          */
3189         dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3190                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3191                 d_iname);
3192
3193         /* Hash may have been set up in dcache_init_early */
3194         if (!hashdist)
3195                 return;
3196
3197         dentry_hashtable =
3198                 alloc_large_system_hash("Dentry cache",
3199                                         sizeof(struct hlist_bl_head),
3200                                         dhash_entries,
3201                                         13,
3202                                         HASH_ZERO,
3203                                         &d_hash_shift,
3204                                         NULL,
3205                                         0,
3206                                         0);
3207         d_hash_shift = 32 - d_hash_shift;
3208 }
3209
3210 /* SLAB cache for __getname() consumers */
3211 struct kmem_cache *names_cachep __read_mostly;
3212 EXPORT_SYMBOL(names_cachep);
3213
3214 void __init vfs_caches_init_early(void)
3215 {
3216         int i;
3217
3218         for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3219                 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3220
3221         dcache_init_early();
3222         inode_init_early();
3223 }
3224
3225 void __init vfs_caches_init(void)
3226 {
3227         names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3228                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3229
3230         dcache_init();
3231         inode_init();
3232         files_init();
3233         files_maxfiles_init();
3234         mnt_init();
3235         bdev_cache_init();
3236         chrdev_init();
3237 }