Merge tag 'kbuild-fixes-v4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-rpi.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
45 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
46 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
48
49 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
50
51 static int __init init_dax_wait_table(void)
52 {
53         int i;
54
55         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
56                 init_waitqueue_head(wait_table + i);
57         return 0;
58 }
59 fs_initcall(init_dax_wait_table);
60
61 /*
62  * We use lowest available bit in exceptional entry for locking, one bit for
63  * the entry size (PMD) and two more to tell us if the entry is a zero page or
64  * an empty entry that is just used for locking.  In total four special bits.
65  *
66  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
68  * block allocation.
69  */
70 #define RADIX_DAX_SHIFT         (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK    (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD           (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE     (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY         (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
75
76 static unsigned long dax_radix_pfn(void *entry)
77 {
78         return (unsigned long)entry >> RADIX_DAX_SHIFT;
79 }
80
81 static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
82 {
83         return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
84                         (pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
85 }
86
87 static unsigned int dax_radix_order(void *entry)
88 {
89         if ((unsigned long)entry & RADIX_DAX_PMD)
90                 return PMD_SHIFT - PAGE_SHIFT;
91         return 0;
92 }
93
94 static int dax_is_pmd_entry(void *entry)
95 {
96         return (unsigned long)entry & RADIX_DAX_PMD;
97 }
98
99 static int dax_is_pte_entry(void *entry)
100 {
101         return !((unsigned long)entry & RADIX_DAX_PMD);
102 }
103
104 static int dax_is_zero_entry(void *entry)
105 {
106         return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
107 }
108
109 static int dax_is_empty_entry(void *entry)
110 {
111         return (unsigned long)entry & RADIX_DAX_EMPTY;
112 }
113
114 /*
115  * DAX radix tree locking
116  */
117 struct exceptional_entry_key {
118         struct address_space *mapping;
119         pgoff_t entry_start;
120 };
121
122 struct wait_exceptional_entry_queue {
123         wait_queue_entry_t wait;
124         struct exceptional_entry_key key;
125 };
126
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128                 pgoff_t index, void *entry, struct exceptional_entry_key *key)
129 {
130         unsigned long hash;
131
132         /*
133          * If 'entry' is a PMD, align the 'index' that we use for the wait
134          * queue to the start of that PMD.  This ensures that all offsets in
135          * the range covered by the PMD map to the same bit lock.
136          */
137         if (dax_is_pmd_entry(entry))
138                 index &= ~PG_PMD_COLOUR;
139
140         key->mapping = mapping;
141         key->entry_start = index;
142
143         hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144         return wait_table + hash;
145 }
146
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148                                        int sync, void *keyp)
149 {
150         struct exceptional_entry_key *key = keyp;
151         struct wait_exceptional_entry_queue *ewait =
152                 container_of(wait, struct wait_exceptional_entry_queue, wait);
153
154         if (key->mapping != ewait->key.mapping ||
155             key->entry_start != ewait->key.entry_start)
156                 return 0;
157         return autoremove_wake_function(wait, mode, sync, NULL);
158 }
159
160 /*
161  * @entry may no longer be the entry at the index in the mapping.
162  * The important information it's conveying is whether the entry at
163  * this index used to be a PMD entry.
164  */
165 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
166                 pgoff_t index, void *entry, bool wake_all)
167 {
168         struct exceptional_entry_key key;
169         wait_queue_head_t *wq;
170
171         wq = dax_entry_waitqueue(mapping, index, entry, &key);
172
173         /*
174          * Checking for locked entry and prepare_to_wait_exclusive() happens
175          * under the i_pages lock, ditto for entry handling in our callers.
176          * So at this point all tasks that could have seen our entry locked
177          * must be in the waitqueue and the following check will see them.
178          */
179         if (waitqueue_active(wq))
180                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
181 }
182
183 /*
184  * Check whether the given slot is locked.  Must be called with the i_pages
185  * lock held.
186  */
187 static inline int slot_locked(struct address_space *mapping, void **slot)
188 {
189         unsigned long entry = (unsigned long)
190                 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
191         return entry & RADIX_DAX_ENTRY_LOCK;
192 }
193
194 /*
195  * Mark the given slot as locked.  Must be called with the i_pages lock held.
196  */
197 static inline void *lock_slot(struct address_space *mapping, void **slot)
198 {
199         unsigned long entry = (unsigned long)
200                 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
201
202         entry |= RADIX_DAX_ENTRY_LOCK;
203         radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
204         return (void *)entry;
205 }
206
207 /*
208  * Mark the given slot as unlocked.  Must be called with the i_pages lock held.
209  */
210 static inline void *unlock_slot(struct address_space *mapping, void **slot)
211 {
212         unsigned long entry = (unsigned long)
213                 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
214
215         entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
216         radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
217         return (void *)entry;
218 }
219
220 /*
221  * Lookup entry in radix tree, wait for it to become unlocked if it is
222  * exceptional entry and return it. The caller must call
223  * put_unlocked_mapping_entry() when he decided not to lock the entry or
224  * put_locked_mapping_entry() when he locked the entry and now wants to
225  * unlock it.
226  *
227  * Must be called with the i_pages lock held.
228  */
229 static void *__get_unlocked_mapping_entry(struct address_space *mapping,
230                 pgoff_t index, void ***slotp, bool (*wait_fn)(void))
231 {
232         void *entry, **slot;
233         struct wait_exceptional_entry_queue ewait;
234         wait_queue_head_t *wq;
235
236         init_wait(&ewait.wait);
237         ewait.wait.func = wake_exceptional_entry_func;
238
239         for (;;) {
240                 bool revalidate;
241
242                 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
243                                           &slot);
244                 if (!entry ||
245                     WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
246                     !slot_locked(mapping, slot)) {
247                         if (slotp)
248                                 *slotp = slot;
249                         return entry;
250                 }
251
252                 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
253                 prepare_to_wait_exclusive(wq, &ewait.wait,
254                                           TASK_UNINTERRUPTIBLE);
255                 xa_unlock_irq(&mapping->i_pages);
256                 revalidate = wait_fn();
257                 finish_wait(wq, &ewait.wait);
258                 xa_lock_irq(&mapping->i_pages);
259                 if (revalidate)
260                         return ERR_PTR(-EAGAIN);
261         }
262 }
263
264 static bool entry_wait(void)
265 {
266         schedule();
267         /*
268          * Never return an ERR_PTR() from
269          * __get_unlocked_mapping_entry(), just keep looping.
270          */
271         return false;
272 }
273
274 static void *get_unlocked_mapping_entry(struct address_space *mapping,
275                 pgoff_t index, void ***slotp)
276 {
277         return __get_unlocked_mapping_entry(mapping, index, slotp, entry_wait);
278 }
279
280 static void unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
281 {
282         void *entry, **slot;
283
284         xa_lock_irq(&mapping->i_pages);
285         entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
286         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
287                          !slot_locked(mapping, slot))) {
288                 xa_unlock_irq(&mapping->i_pages);
289                 return;
290         }
291         unlock_slot(mapping, slot);
292         xa_unlock_irq(&mapping->i_pages);
293         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
294 }
295
296 static void put_locked_mapping_entry(struct address_space *mapping,
297                 pgoff_t index)
298 {
299         unlock_mapping_entry(mapping, index);
300 }
301
302 /*
303  * Called when we are done with radix tree entry we looked up via
304  * get_unlocked_mapping_entry() and which we didn't lock in the end.
305  */
306 static void put_unlocked_mapping_entry(struct address_space *mapping,
307                                        pgoff_t index, void *entry)
308 {
309         if (!entry)
310                 return;
311
312         /* We have to wake up next waiter for the radix tree entry lock */
313         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
314 }
315
316 static unsigned long dax_entry_size(void *entry)
317 {
318         if (dax_is_zero_entry(entry))
319                 return 0;
320         else if (dax_is_empty_entry(entry))
321                 return 0;
322         else if (dax_is_pmd_entry(entry))
323                 return PMD_SIZE;
324         else
325                 return PAGE_SIZE;
326 }
327
328 static unsigned long dax_radix_end_pfn(void *entry)
329 {
330         return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
331 }
332
333 /*
334  * Iterate through all mapped pfns represented by an entry, i.e. skip
335  * 'empty' and 'zero' entries.
336  */
337 #define for_each_mapped_pfn(entry, pfn) \
338         for (pfn = dax_radix_pfn(entry); \
339                         pfn < dax_radix_end_pfn(entry); pfn++)
340
341 /*
342  * TODO: for reflink+dax we need a way to associate a single page with
343  * multiple address_space instances at different linear_page_index()
344  * offsets.
345  */
346 static void dax_associate_entry(void *entry, struct address_space *mapping,
347                 struct vm_area_struct *vma, unsigned long address)
348 {
349         unsigned long size = dax_entry_size(entry), pfn, index;
350         int i = 0;
351
352         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
353                 return;
354
355         index = linear_page_index(vma, address & ~(size - 1));
356         for_each_mapped_pfn(entry, pfn) {
357                 struct page *page = pfn_to_page(pfn);
358
359                 WARN_ON_ONCE(page->mapping);
360                 page->mapping = mapping;
361                 page->index = index + i++;
362         }
363 }
364
365 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
366                 bool trunc)
367 {
368         unsigned long pfn;
369
370         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
371                 return;
372
373         for_each_mapped_pfn(entry, pfn) {
374                 struct page *page = pfn_to_page(pfn);
375
376                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
377                 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
378                 page->mapping = NULL;
379                 page->index = 0;
380         }
381 }
382
383 static struct page *dax_busy_page(void *entry)
384 {
385         unsigned long pfn;
386
387         for_each_mapped_pfn(entry, pfn) {
388                 struct page *page = pfn_to_page(pfn);
389
390                 if (page_ref_count(page) > 1)
391                         return page;
392         }
393         return NULL;
394 }
395
396 static bool entry_wait_revalidate(void)
397 {
398         rcu_read_unlock();
399         schedule();
400         rcu_read_lock();
401
402         /*
403          * Tell __get_unlocked_mapping_entry() to take a break, we need
404          * to revalidate page->mapping after dropping locks
405          */
406         return true;
407 }
408
409 bool dax_lock_mapping_entry(struct page *page)
410 {
411         pgoff_t index;
412         struct inode *inode;
413         bool did_lock = false;
414         void *entry = NULL, **slot;
415         struct address_space *mapping;
416
417         rcu_read_lock();
418         for (;;) {
419                 mapping = READ_ONCE(page->mapping);
420
421                 if (!dax_mapping(mapping))
422                         break;
423
424                 /*
425                  * In the device-dax case there's no need to lock, a
426                  * struct dev_pagemap pin is sufficient to keep the
427                  * inode alive, and we assume we have dev_pagemap pin
428                  * otherwise we would not have a valid pfn_to_page()
429                  * translation.
430                  */
431                 inode = mapping->host;
432                 if (S_ISCHR(inode->i_mode)) {
433                         did_lock = true;
434                         break;
435                 }
436
437                 xa_lock_irq(&mapping->i_pages);
438                 if (mapping != page->mapping) {
439                         xa_unlock_irq(&mapping->i_pages);
440                         continue;
441                 }
442                 index = page->index;
443
444                 entry = __get_unlocked_mapping_entry(mapping, index, &slot,
445                                 entry_wait_revalidate);
446                 if (!entry) {
447                         xa_unlock_irq(&mapping->i_pages);
448                         break;
449                 } else if (IS_ERR(entry)) {
450                         xa_unlock_irq(&mapping->i_pages);
451                         WARN_ON_ONCE(PTR_ERR(entry) != -EAGAIN);
452                         continue;
453                 }
454                 lock_slot(mapping, slot);
455                 did_lock = true;
456                 xa_unlock_irq(&mapping->i_pages);
457                 break;
458         }
459         rcu_read_unlock();
460
461         return did_lock;
462 }
463
464 void dax_unlock_mapping_entry(struct page *page)
465 {
466         struct address_space *mapping = page->mapping;
467         struct inode *inode = mapping->host;
468
469         if (S_ISCHR(inode->i_mode))
470                 return;
471
472         unlock_mapping_entry(mapping, page->index);
473 }
474
475 /*
476  * Find radix tree entry at given index. If it points to an exceptional entry,
477  * return it with the radix tree entry locked. If the radix tree doesn't
478  * contain given index, create an empty exceptional entry for the index and
479  * return with it locked.
480  *
481  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
482  * either return that locked entry or will return an error.  This error will
483  * happen if there are any 4k entries within the 2MiB range that we are
484  * requesting.
485  *
486  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
487  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
488  * insertion will fail if it finds any 4k entries already in the tree, and a
489  * 4k insertion will cause an existing 2MiB entry to be unmapped and
490  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
491  * well as 2MiB empty entries.
492  *
493  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
494  * real storage backing them.  We will leave these real 2MiB DAX entries in
495  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
496  *
497  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
498  * persistent memory the benefit is doubtful. We can add that later if we can
499  * show it helps.
500  */
501 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
502                 unsigned long size_flag)
503 {
504         bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
505         void *entry, **slot;
506
507 restart:
508         xa_lock_irq(&mapping->i_pages);
509         entry = get_unlocked_mapping_entry(mapping, index, &slot);
510
511         if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
512                 entry = ERR_PTR(-EIO);
513                 goto out_unlock;
514         }
515
516         if (entry) {
517                 if (size_flag & RADIX_DAX_PMD) {
518                         if (dax_is_pte_entry(entry)) {
519                                 put_unlocked_mapping_entry(mapping, index,
520                                                 entry);
521                                 entry = ERR_PTR(-EEXIST);
522                                 goto out_unlock;
523                         }
524                 } else { /* trying to grab a PTE entry */
525                         if (dax_is_pmd_entry(entry) &&
526                             (dax_is_zero_entry(entry) ||
527                              dax_is_empty_entry(entry))) {
528                                 pmd_downgrade = true;
529                         }
530                 }
531         }
532
533         /* No entry for given index? Make sure radix tree is big enough. */
534         if (!entry || pmd_downgrade) {
535                 int err;
536
537                 if (pmd_downgrade) {
538                         /*
539                          * Make sure 'entry' remains valid while we drop
540                          * the i_pages lock.
541                          */
542                         entry = lock_slot(mapping, slot);
543                 }
544
545                 xa_unlock_irq(&mapping->i_pages);
546                 /*
547                  * Besides huge zero pages the only other thing that gets
548                  * downgraded are empty entries which don't need to be
549                  * unmapped.
550                  */
551                 if (pmd_downgrade && dax_is_zero_entry(entry))
552                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
553                                                         PG_PMD_NR, false);
554
555                 err = radix_tree_preload(
556                                 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
557                 if (err) {
558                         if (pmd_downgrade)
559                                 put_locked_mapping_entry(mapping, index);
560                         return ERR_PTR(err);
561                 }
562                 xa_lock_irq(&mapping->i_pages);
563
564                 if (!entry) {
565                         /*
566                          * We needed to drop the i_pages lock while calling
567                          * radix_tree_preload() and we didn't have an entry to
568                          * lock.  See if another thread inserted an entry at
569                          * our index during this time.
570                          */
571                         entry = __radix_tree_lookup(&mapping->i_pages, index,
572                                         NULL, &slot);
573                         if (entry) {
574                                 radix_tree_preload_end();
575                                 xa_unlock_irq(&mapping->i_pages);
576                                 goto restart;
577                         }
578                 }
579
580                 if (pmd_downgrade) {
581                         dax_disassociate_entry(entry, mapping, false);
582                         radix_tree_delete(&mapping->i_pages, index);
583                         mapping->nrexceptional--;
584                         dax_wake_mapping_entry_waiter(mapping, index, entry,
585                                         true);
586                 }
587
588                 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
589
590                 err = __radix_tree_insert(&mapping->i_pages, index,
591                                 dax_radix_order(entry), entry);
592                 radix_tree_preload_end();
593                 if (err) {
594                         xa_unlock_irq(&mapping->i_pages);
595                         /*
596                          * Our insertion of a DAX entry failed, most likely
597                          * because we were inserting a PMD entry and it
598                          * collided with a PTE sized entry at a different
599                          * index in the PMD range.  We haven't inserted
600                          * anything into the radix tree and have no waiters to
601                          * wake.
602                          */
603                         return ERR_PTR(err);
604                 }
605                 /* Good, we have inserted empty locked entry into the tree. */
606                 mapping->nrexceptional++;
607                 xa_unlock_irq(&mapping->i_pages);
608                 return entry;
609         }
610         entry = lock_slot(mapping, slot);
611  out_unlock:
612         xa_unlock_irq(&mapping->i_pages);
613         return entry;
614 }
615
616 /**
617  * dax_layout_busy_page - find first pinned page in @mapping
618  * @mapping: address space to scan for a page with ref count > 1
619  *
620  * DAX requires ZONE_DEVICE mapped pages. These pages are never
621  * 'onlined' to the page allocator so they are considered idle when
622  * page->count == 1. A filesystem uses this interface to determine if
623  * any page in the mapping is busy, i.e. for DMA, or other
624  * get_user_pages() usages.
625  *
626  * It is expected that the filesystem is holding locks to block the
627  * establishment of new mappings in this address_space. I.e. it expects
628  * to be able to run unmap_mapping_range() and subsequently not race
629  * mapping_mapped() becoming true.
630  */
631 struct page *dax_layout_busy_page(struct address_space *mapping)
632 {
633         pgoff_t indices[PAGEVEC_SIZE];
634         struct page *page = NULL;
635         struct pagevec pvec;
636         pgoff_t index, end;
637         unsigned i;
638
639         /*
640          * In the 'limited' case get_user_pages() for dax is disabled.
641          */
642         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
643                 return NULL;
644
645         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
646                 return NULL;
647
648         pagevec_init(&pvec);
649         index = 0;
650         end = -1;
651
652         /*
653          * If we race get_user_pages_fast() here either we'll see the
654          * elevated page count in the pagevec_lookup and wait, or
655          * get_user_pages_fast() will see that the page it took a reference
656          * against is no longer mapped in the page tables and bail to the
657          * get_user_pages() slow path.  The slow path is protected by
658          * pte_lock() and pmd_lock(). New references are not taken without
659          * holding those locks, and unmap_mapping_range() will not zero the
660          * pte or pmd without holding the respective lock, so we are
661          * guaranteed to either see new references or prevent new
662          * references from being established.
663          */
664         unmap_mapping_range(mapping, 0, 0, 1);
665
666         while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
667                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
668                                 indices)) {
669                 for (i = 0; i < pagevec_count(&pvec); i++) {
670                         struct page *pvec_ent = pvec.pages[i];
671                         void *entry;
672
673                         index = indices[i];
674                         if (index >= end)
675                                 break;
676
677                         if (WARN_ON_ONCE(
678                              !radix_tree_exceptional_entry(pvec_ent)))
679                                 continue;
680
681                         xa_lock_irq(&mapping->i_pages);
682                         entry = get_unlocked_mapping_entry(mapping, index, NULL);
683                         if (entry)
684                                 page = dax_busy_page(entry);
685                         put_unlocked_mapping_entry(mapping, index, entry);
686                         xa_unlock_irq(&mapping->i_pages);
687                         if (page)
688                                 break;
689                 }
690
691                 /*
692                  * We don't expect normal struct page entries to exist in our
693                  * tree, but we keep these pagevec calls so that this code is
694                  * consistent with the common pattern for handling pagevecs
695                  * throughout the kernel.
696                  */
697                 pagevec_remove_exceptionals(&pvec);
698                 pagevec_release(&pvec);
699                 index++;
700
701                 if (page)
702                         break;
703         }
704         return page;
705 }
706 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
707
708 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
709                                           pgoff_t index, bool trunc)
710 {
711         int ret = 0;
712         void *entry;
713         struct radix_tree_root *pages = &mapping->i_pages;
714
715         xa_lock_irq(pages);
716         entry = get_unlocked_mapping_entry(mapping, index, NULL);
717         if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
718                 goto out;
719         if (!trunc &&
720             (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
721              radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
722                 goto out;
723         dax_disassociate_entry(entry, mapping, trunc);
724         radix_tree_delete(pages, index);
725         mapping->nrexceptional--;
726         ret = 1;
727 out:
728         put_unlocked_mapping_entry(mapping, index, entry);
729         xa_unlock_irq(pages);
730         return ret;
731 }
732 /*
733  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
734  * entry to get unlocked before deleting it.
735  */
736 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
737 {
738         int ret = __dax_invalidate_mapping_entry(mapping, index, true);
739
740         /*
741          * This gets called from truncate / punch_hole path. As such, the caller
742          * must hold locks protecting against concurrent modifications of the
743          * radix tree (usually fs-private i_mmap_sem for writing). Since the
744          * caller has seen exceptional entry for this index, we better find it
745          * at that index as well...
746          */
747         WARN_ON_ONCE(!ret);
748         return ret;
749 }
750
751 /*
752  * Invalidate exceptional DAX entry if it is clean.
753  */
754 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
755                                       pgoff_t index)
756 {
757         return __dax_invalidate_mapping_entry(mapping, index, false);
758 }
759
760 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
761                 sector_t sector, size_t size, struct page *to,
762                 unsigned long vaddr)
763 {
764         void *vto, *kaddr;
765         pgoff_t pgoff;
766         long rc;
767         int id;
768
769         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
770         if (rc)
771                 return rc;
772
773         id = dax_read_lock();
774         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
775         if (rc < 0) {
776                 dax_read_unlock(id);
777                 return rc;
778         }
779         vto = kmap_atomic(to);
780         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
781         kunmap_atomic(vto);
782         dax_read_unlock(id);
783         return 0;
784 }
785
786 /*
787  * By this point grab_mapping_entry() has ensured that we have a locked entry
788  * of the appropriate size so we don't have to worry about downgrading PMDs to
789  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
790  * already in the tree, we will skip the insertion and just dirty the PMD as
791  * appropriate.
792  */
793 static void *dax_insert_mapping_entry(struct address_space *mapping,
794                                       struct vm_fault *vmf,
795                                       void *entry, pfn_t pfn_t,
796                                       unsigned long flags, bool dirty)
797 {
798         struct radix_tree_root *pages = &mapping->i_pages;
799         unsigned long pfn = pfn_t_to_pfn(pfn_t);
800         pgoff_t index = vmf->pgoff;
801         void *new_entry;
802
803         if (dirty)
804                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
805
806         if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
807                 /* we are replacing a zero page with block mapping */
808                 if (dax_is_pmd_entry(entry))
809                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
810                                                         PG_PMD_NR, false);
811                 else /* pte entry */
812                         unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
813         }
814
815         xa_lock_irq(pages);
816         new_entry = dax_radix_locked_entry(pfn, flags);
817         if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
818                 dax_disassociate_entry(entry, mapping, false);
819                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
820         }
821
822         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
823                 /*
824                  * Only swap our new entry into the radix tree if the current
825                  * entry is a zero page or an empty entry.  If a normal PTE or
826                  * PMD entry is already in the tree, we leave it alone.  This
827                  * means that if we are trying to insert a PTE and the
828                  * existing entry is a PMD, we will just leave the PMD in the
829                  * tree and dirty it if necessary.
830                  */
831                 struct radix_tree_node *node;
832                 void **slot;
833                 void *ret;
834
835                 ret = __radix_tree_lookup(pages, index, &node, &slot);
836                 WARN_ON_ONCE(ret != entry);
837                 __radix_tree_replace(pages, node, slot,
838                                      new_entry, NULL);
839                 entry = new_entry;
840         }
841
842         if (dirty)
843                 radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
844
845         xa_unlock_irq(pages);
846         return entry;
847 }
848
849 static inline unsigned long
850 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
851 {
852         unsigned long address;
853
854         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
855         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
856         return address;
857 }
858
859 /* Walk all mappings of a given index of a file and writeprotect them */
860 static void dax_mapping_entry_mkclean(struct address_space *mapping,
861                                       pgoff_t index, unsigned long pfn)
862 {
863         struct vm_area_struct *vma;
864         pte_t pte, *ptep = NULL;
865         pmd_t *pmdp = NULL;
866         spinlock_t *ptl;
867
868         i_mmap_lock_read(mapping);
869         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
870                 unsigned long address, start, end;
871
872                 cond_resched();
873
874                 if (!(vma->vm_flags & VM_SHARED))
875                         continue;
876
877                 address = pgoff_address(index, vma);
878
879                 /*
880                  * Note because we provide start/end to follow_pte_pmd it will
881                  * call mmu_notifier_invalidate_range_start() on our behalf
882                  * before taking any lock.
883                  */
884                 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
885                         continue;
886
887                 /*
888                  * No need to call mmu_notifier_invalidate_range() as we are
889                  * downgrading page table protection not changing it to point
890                  * to a new page.
891                  *
892                  * See Documentation/vm/mmu_notifier.rst
893                  */
894                 if (pmdp) {
895 #ifdef CONFIG_FS_DAX_PMD
896                         pmd_t pmd;
897
898                         if (pfn != pmd_pfn(*pmdp))
899                                 goto unlock_pmd;
900                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
901                                 goto unlock_pmd;
902
903                         flush_cache_page(vma, address, pfn);
904                         pmd = pmdp_huge_clear_flush(vma, address, pmdp);
905                         pmd = pmd_wrprotect(pmd);
906                         pmd = pmd_mkclean(pmd);
907                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
908 unlock_pmd:
909 #endif
910                         spin_unlock(ptl);
911                 } else {
912                         if (pfn != pte_pfn(*ptep))
913                                 goto unlock_pte;
914                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
915                                 goto unlock_pte;
916
917                         flush_cache_page(vma, address, pfn);
918                         pte = ptep_clear_flush(vma, address, ptep);
919                         pte = pte_wrprotect(pte);
920                         pte = pte_mkclean(pte);
921                         set_pte_at(vma->vm_mm, address, ptep, pte);
922 unlock_pte:
923                         pte_unmap_unlock(ptep, ptl);
924                 }
925
926                 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
927         }
928         i_mmap_unlock_read(mapping);
929 }
930
931 static int dax_writeback_one(struct dax_device *dax_dev,
932                 struct address_space *mapping, pgoff_t index, void *entry)
933 {
934         struct radix_tree_root *pages = &mapping->i_pages;
935         void *entry2, **slot;
936         unsigned long pfn;
937         long ret = 0;
938         size_t size;
939
940         /*
941          * A page got tagged dirty in DAX mapping? Something is seriously
942          * wrong.
943          */
944         if (WARN_ON(!radix_tree_exceptional_entry(entry)))
945                 return -EIO;
946
947         xa_lock_irq(pages);
948         entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
949         /* Entry got punched out / reallocated? */
950         if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
951                 goto put_unlocked;
952         /*
953          * Entry got reallocated elsewhere? No need to writeback. We have to
954          * compare pfns as we must not bail out due to difference in lockbit
955          * or entry type.
956          */
957         if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
958                 goto put_unlocked;
959         if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
960                                 dax_is_zero_entry(entry))) {
961                 ret = -EIO;
962                 goto put_unlocked;
963         }
964
965         /* Another fsync thread may have already written back this entry */
966         if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
967                 goto put_unlocked;
968         /* Lock the entry to serialize with page faults */
969         entry = lock_slot(mapping, slot);
970         /*
971          * We can clear the tag now but we have to be careful so that concurrent
972          * dax_writeback_one() calls for the same index cannot finish before we
973          * actually flush the caches. This is achieved as the calls will look
974          * at the entry only under the i_pages lock and once they do that
975          * they will see the entry locked and wait for it to unlock.
976          */
977         radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
978         xa_unlock_irq(pages);
979
980         /*
981          * Even if dax_writeback_mapping_range() was given a wbc->range_start
982          * in the middle of a PMD, the 'index' we are given will be aligned to
983          * the start index of the PMD, as will the pfn we pull from 'entry'.
984          * This allows us to flush for PMD_SIZE and not have to worry about
985          * partial PMD writebacks.
986          */
987         pfn = dax_radix_pfn(entry);
988         size = PAGE_SIZE << dax_radix_order(entry);
989
990         dax_mapping_entry_mkclean(mapping, index, pfn);
991         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
992         /*
993          * After we have flushed the cache, we can clear the dirty tag. There
994          * cannot be new dirty data in the pfn after the flush has completed as
995          * the pfn mappings are writeprotected and fault waits for mapping
996          * entry lock.
997          */
998         xa_lock_irq(pages);
999         radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
1000         xa_unlock_irq(pages);
1001         trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
1002         put_locked_mapping_entry(mapping, index);
1003         return ret;
1004
1005  put_unlocked:
1006         put_unlocked_mapping_entry(mapping, index, entry2);
1007         xa_unlock_irq(pages);
1008         return ret;
1009 }
1010
1011 /*
1012  * Flush the mapping to the persistent domain within the byte range of [start,
1013  * end]. This is required by data integrity operations to ensure file data is
1014  * on persistent storage prior to completion of the operation.
1015  */
1016 int dax_writeback_mapping_range(struct address_space *mapping,
1017                 struct block_device *bdev, struct writeback_control *wbc)
1018 {
1019         struct inode *inode = mapping->host;
1020         pgoff_t start_index, end_index;
1021         pgoff_t indices[PAGEVEC_SIZE];
1022         struct dax_device *dax_dev;
1023         struct pagevec pvec;
1024         bool done = false;
1025         int i, ret = 0;
1026
1027         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1028                 return -EIO;
1029
1030         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
1031                 return 0;
1032
1033         dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
1034         if (!dax_dev)
1035                 return -EIO;
1036
1037         start_index = wbc->range_start >> PAGE_SHIFT;
1038         end_index = wbc->range_end >> PAGE_SHIFT;
1039
1040         trace_dax_writeback_range(inode, start_index, end_index);
1041
1042         tag_pages_for_writeback(mapping, start_index, end_index);
1043
1044         pagevec_init(&pvec);
1045         while (!done) {
1046                 pvec.nr = find_get_entries_tag(mapping, start_index,
1047                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
1048                                 pvec.pages, indices);
1049
1050                 if (pvec.nr == 0)
1051                         break;
1052
1053                 for (i = 0; i < pvec.nr; i++) {
1054                         if (indices[i] > end_index) {
1055                                 done = true;
1056                                 break;
1057                         }
1058
1059                         ret = dax_writeback_one(dax_dev, mapping, indices[i],
1060                                         pvec.pages[i]);
1061                         if (ret < 0) {
1062                                 mapping_set_error(mapping, ret);
1063                                 goto out;
1064                         }
1065                 }
1066                 start_index = indices[pvec.nr - 1] + 1;
1067         }
1068 out:
1069         put_dax(dax_dev);
1070         trace_dax_writeback_range_done(inode, start_index, end_index);
1071         return (ret < 0 ? ret : 0);
1072 }
1073 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1074
1075 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1076 {
1077         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
1078 }
1079
1080 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1081                          pfn_t *pfnp)
1082 {
1083         const sector_t sector = dax_iomap_sector(iomap, pos);
1084         pgoff_t pgoff;
1085         int id, rc;
1086         long length;
1087
1088         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1089         if (rc)
1090                 return rc;
1091         id = dax_read_lock();
1092         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1093                                    NULL, pfnp);
1094         if (length < 0) {
1095                 rc = length;
1096                 goto out;
1097         }
1098         rc = -EINVAL;
1099         if (PFN_PHYS(length) < size)
1100                 goto out;
1101         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1102                 goto out;
1103         /* For larger pages we need devmap */
1104         if (length > 1 && !pfn_t_devmap(*pfnp))
1105                 goto out;
1106         rc = 0;
1107 out:
1108         dax_read_unlock(id);
1109         return rc;
1110 }
1111
1112 /*
1113  * The user has performed a load from a hole in the file.  Allocating a new
1114  * page in the file would cause excessive storage usage for workloads with
1115  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1116  * If this page is ever written to we will re-fault and change the mapping to
1117  * point to real DAX storage instead.
1118  */
1119 static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
1120                          struct vm_fault *vmf)
1121 {
1122         struct inode *inode = mapping->host;
1123         unsigned long vaddr = vmf->address;
1124         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1125         vm_fault_t ret;
1126
1127         dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE,
1128                         false);
1129         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1130         trace_dax_load_hole(inode, vmf, ret);
1131         return ret;
1132 }
1133
1134 static bool dax_range_is_aligned(struct block_device *bdev,
1135                                  unsigned int offset, unsigned int length)
1136 {
1137         unsigned short sector_size = bdev_logical_block_size(bdev);
1138
1139         if (!IS_ALIGNED(offset, sector_size))
1140                 return false;
1141         if (!IS_ALIGNED(length, sector_size))
1142                 return false;
1143
1144         return true;
1145 }
1146
1147 int __dax_zero_page_range(struct block_device *bdev,
1148                 struct dax_device *dax_dev, sector_t sector,
1149                 unsigned int offset, unsigned int size)
1150 {
1151         if (dax_range_is_aligned(bdev, offset, size)) {
1152                 sector_t start_sector = sector + (offset >> 9);
1153
1154                 return blkdev_issue_zeroout(bdev, start_sector,
1155                                 size >> 9, GFP_NOFS, 0);
1156         } else {
1157                 pgoff_t pgoff;
1158                 long rc, id;
1159                 void *kaddr;
1160
1161                 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1162                 if (rc)
1163                         return rc;
1164
1165                 id = dax_read_lock();
1166                 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1167                 if (rc < 0) {
1168                         dax_read_unlock(id);
1169                         return rc;
1170                 }
1171                 memset(kaddr + offset, 0, size);
1172                 dax_flush(dax_dev, kaddr + offset, size);
1173                 dax_read_unlock(id);
1174         }
1175         return 0;
1176 }
1177 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1178
1179 static loff_t
1180 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1181                 struct iomap *iomap)
1182 {
1183         struct block_device *bdev = iomap->bdev;
1184         struct dax_device *dax_dev = iomap->dax_dev;
1185         struct iov_iter *iter = data;
1186         loff_t end = pos + length, done = 0;
1187         ssize_t ret = 0;
1188         size_t xfer;
1189         int id;
1190
1191         if (iov_iter_rw(iter) == READ) {
1192                 end = min(end, i_size_read(inode));
1193                 if (pos >= end)
1194                         return 0;
1195
1196                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1197                         return iov_iter_zero(min(length, end - pos), iter);
1198         }
1199
1200         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1201                 return -EIO;
1202
1203         /*
1204          * Write can allocate block for an area which has a hole page mapped
1205          * into page tables. We have to tear down these mappings so that data
1206          * written by write(2) is visible in mmap.
1207          */
1208         if (iomap->flags & IOMAP_F_NEW) {
1209                 invalidate_inode_pages2_range(inode->i_mapping,
1210                                               pos >> PAGE_SHIFT,
1211                                               (end - 1) >> PAGE_SHIFT);
1212         }
1213
1214         id = dax_read_lock();
1215         while (pos < end) {
1216                 unsigned offset = pos & (PAGE_SIZE - 1);
1217                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1218                 const sector_t sector = dax_iomap_sector(iomap, pos);
1219                 ssize_t map_len;
1220                 pgoff_t pgoff;
1221                 void *kaddr;
1222
1223                 if (fatal_signal_pending(current)) {
1224                         ret = -EINTR;
1225                         break;
1226                 }
1227
1228                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1229                 if (ret)
1230                         break;
1231
1232                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1233                                 &kaddr, NULL);
1234                 if (map_len < 0) {
1235                         ret = map_len;
1236                         break;
1237                 }
1238
1239                 map_len = PFN_PHYS(map_len);
1240                 kaddr += offset;
1241                 map_len -= offset;
1242                 if (map_len > end - pos)
1243                         map_len = end - pos;
1244
1245                 /*
1246                  * The userspace address for the memory copy has already been
1247                  * validated via access_ok() in either vfs_read() or
1248                  * vfs_write(), depending on which operation we are doing.
1249                  */
1250                 if (iov_iter_rw(iter) == WRITE)
1251                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1252                                         map_len, iter);
1253                 else
1254                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1255                                         map_len, iter);
1256
1257                 pos += xfer;
1258                 length -= xfer;
1259                 done += xfer;
1260
1261                 if (xfer == 0)
1262                         ret = -EFAULT;
1263                 if (xfer < map_len)
1264                         break;
1265         }
1266         dax_read_unlock(id);
1267
1268         return done ? done : ret;
1269 }
1270
1271 /**
1272  * dax_iomap_rw - Perform I/O to a DAX file
1273  * @iocb:       The control block for this I/O
1274  * @iter:       The addresses to do I/O from or to
1275  * @ops:        iomap ops passed from the file system
1276  *
1277  * This function performs read and write operations to directly mapped
1278  * persistent memory.  The callers needs to take care of read/write exclusion
1279  * and evicting any page cache pages in the region under I/O.
1280  */
1281 ssize_t
1282 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1283                 const struct iomap_ops *ops)
1284 {
1285         struct address_space *mapping = iocb->ki_filp->f_mapping;
1286         struct inode *inode = mapping->host;
1287         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1288         unsigned flags = 0;
1289
1290         if (iov_iter_rw(iter) == WRITE) {
1291                 lockdep_assert_held_exclusive(&inode->i_rwsem);
1292                 flags |= IOMAP_WRITE;
1293         } else {
1294                 lockdep_assert_held(&inode->i_rwsem);
1295         }
1296
1297         while (iov_iter_count(iter)) {
1298                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1299                                 iter, dax_iomap_actor);
1300                 if (ret <= 0)
1301                         break;
1302                 pos += ret;
1303                 done += ret;
1304         }
1305
1306         iocb->ki_pos += done;
1307         return done ? done : ret;
1308 }
1309 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1310
1311 static vm_fault_t dax_fault_return(int error)
1312 {
1313         if (error == 0)
1314                 return VM_FAULT_NOPAGE;
1315         if (error == -ENOMEM)
1316                 return VM_FAULT_OOM;
1317         return VM_FAULT_SIGBUS;
1318 }
1319
1320 /*
1321  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1322  * flushed on write-faults (non-cow), but not read-faults.
1323  */
1324 static bool dax_fault_is_synchronous(unsigned long flags,
1325                 struct vm_area_struct *vma, struct iomap *iomap)
1326 {
1327         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1328                 && (iomap->flags & IOMAP_F_DIRTY);
1329 }
1330
1331 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1332                                int *iomap_errp, const struct iomap_ops *ops)
1333 {
1334         struct vm_area_struct *vma = vmf->vma;
1335         struct address_space *mapping = vma->vm_file->f_mapping;
1336         struct inode *inode = mapping->host;
1337         unsigned long vaddr = vmf->address;
1338         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1339         struct iomap iomap = { 0 };
1340         unsigned flags = IOMAP_FAULT;
1341         int error, major = 0;
1342         bool write = vmf->flags & FAULT_FLAG_WRITE;
1343         bool sync;
1344         vm_fault_t ret = 0;
1345         void *entry;
1346         pfn_t pfn;
1347
1348         trace_dax_pte_fault(inode, vmf, ret);
1349         /*
1350          * Check whether offset isn't beyond end of file now. Caller is supposed
1351          * to hold locks serializing us with truncate / punch hole so this is
1352          * a reliable test.
1353          */
1354         if (pos >= i_size_read(inode)) {
1355                 ret = VM_FAULT_SIGBUS;
1356                 goto out;
1357         }
1358
1359         if (write && !vmf->cow_page)
1360                 flags |= IOMAP_WRITE;
1361
1362         entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1363         if (IS_ERR(entry)) {
1364                 ret = dax_fault_return(PTR_ERR(entry));
1365                 goto out;
1366         }
1367
1368         /*
1369          * It is possible, particularly with mixed reads & writes to private
1370          * mappings, that we have raced with a PMD fault that overlaps with
1371          * the PTE we need to set up.  If so just return and the fault will be
1372          * retried.
1373          */
1374         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1375                 ret = VM_FAULT_NOPAGE;
1376                 goto unlock_entry;
1377         }
1378
1379         /*
1380          * Note that we don't bother to use iomap_apply here: DAX required
1381          * the file system block size to be equal the page size, which means
1382          * that we never have to deal with more than a single extent here.
1383          */
1384         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1385         if (iomap_errp)
1386                 *iomap_errp = error;
1387         if (error) {
1388                 ret = dax_fault_return(error);
1389                 goto unlock_entry;
1390         }
1391         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1392                 error = -EIO;   /* fs corruption? */
1393                 goto error_finish_iomap;
1394         }
1395
1396         if (vmf->cow_page) {
1397                 sector_t sector = dax_iomap_sector(&iomap, pos);
1398
1399                 switch (iomap.type) {
1400                 case IOMAP_HOLE:
1401                 case IOMAP_UNWRITTEN:
1402                         clear_user_highpage(vmf->cow_page, vaddr);
1403                         break;
1404                 case IOMAP_MAPPED:
1405                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1406                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1407                         break;
1408                 default:
1409                         WARN_ON_ONCE(1);
1410                         error = -EIO;
1411                         break;
1412                 }
1413
1414                 if (error)
1415                         goto error_finish_iomap;
1416
1417                 __SetPageUptodate(vmf->cow_page);
1418                 ret = finish_fault(vmf);
1419                 if (!ret)
1420                         ret = VM_FAULT_DONE_COW;
1421                 goto finish_iomap;
1422         }
1423
1424         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1425
1426         switch (iomap.type) {
1427         case IOMAP_MAPPED:
1428                 if (iomap.flags & IOMAP_F_NEW) {
1429                         count_vm_event(PGMAJFAULT);
1430                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1431                         major = VM_FAULT_MAJOR;
1432                 }
1433                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1434                 if (error < 0)
1435                         goto error_finish_iomap;
1436
1437                 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1438                                                  0, write && !sync);
1439
1440                 /*
1441                  * If we are doing synchronous page fault and inode needs fsync,
1442                  * we can insert PTE into page tables only after that happens.
1443                  * Skip insertion for now and return the pfn so that caller can
1444                  * insert it after fsync is done.
1445                  */
1446                 if (sync) {
1447                         if (WARN_ON_ONCE(!pfnp)) {
1448                                 error = -EIO;
1449                                 goto error_finish_iomap;
1450                         }
1451                         *pfnp = pfn;
1452                         ret = VM_FAULT_NEEDDSYNC | major;
1453                         goto finish_iomap;
1454                 }
1455                 trace_dax_insert_mapping(inode, vmf, entry);
1456                 if (write)
1457                         ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1458                 else
1459                         ret = vmf_insert_mixed(vma, vaddr, pfn);
1460
1461                 goto finish_iomap;
1462         case IOMAP_UNWRITTEN:
1463         case IOMAP_HOLE:
1464                 if (!write) {
1465                         ret = dax_load_hole(mapping, entry, vmf);
1466                         goto finish_iomap;
1467                 }
1468                 /*FALLTHRU*/
1469         default:
1470                 WARN_ON_ONCE(1);
1471                 error = -EIO;
1472                 break;
1473         }
1474
1475  error_finish_iomap:
1476         ret = dax_fault_return(error);
1477  finish_iomap:
1478         if (ops->iomap_end) {
1479                 int copied = PAGE_SIZE;
1480
1481                 if (ret & VM_FAULT_ERROR)
1482                         copied = 0;
1483                 /*
1484                  * The fault is done by now and there's no way back (other
1485                  * thread may be already happily using PTE we have installed).
1486                  * Just ignore error from ->iomap_end since we cannot do much
1487                  * with it.
1488                  */
1489                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1490         }
1491  unlock_entry:
1492         put_locked_mapping_entry(mapping, vmf->pgoff);
1493  out:
1494         trace_dax_pte_fault_done(inode, vmf, ret);
1495         return ret | major;
1496 }
1497
1498 #ifdef CONFIG_FS_DAX_PMD
1499 static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1500                 void *entry)
1501 {
1502         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1503         unsigned long pmd_addr = vmf->address & PMD_MASK;
1504         struct inode *inode = mapping->host;
1505         struct page *zero_page;
1506         void *ret = NULL;
1507         spinlock_t *ptl;
1508         pmd_t pmd_entry;
1509         pfn_t pfn;
1510
1511         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1512
1513         if (unlikely(!zero_page))
1514                 goto fallback;
1515
1516         pfn = page_to_pfn_t(zero_page);
1517         ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1518                         RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1519
1520         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1521         if (!pmd_none(*(vmf->pmd))) {
1522                 spin_unlock(ptl);
1523                 goto fallback;
1524         }
1525
1526         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1527         pmd_entry = pmd_mkhuge(pmd_entry);
1528         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1529         spin_unlock(ptl);
1530         trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1531         return VM_FAULT_NOPAGE;
1532
1533 fallback:
1534         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1535         return VM_FAULT_FALLBACK;
1536 }
1537
1538 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1539                                const struct iomap_ops *ops)
1540 {
1541         struct vm_area_struct *vma = vmf->vma;
1542         struct address_space *mapping = vma->vm_file->f_mapping;
1543         unsigned long pmd_addr = vmf->address & PMD_MASK;
1544         bool write = vmf->flags & FAULT_FLAG_WRITE;
1545         bool sync;
1546         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1547         struct inode *inode = mapping->host;
1548         vm_fault_t result = VM_FAULT_FALLBACK;
1549         struct iomap iomap = { 0 };
1550         pgoff_t max_pgoff, pgoff;
1551         void *entry;
1552         loff_t pos;
1553         int error;
1554         pfn_t pfn;
1555
1556         /*
1557          * Check whether offset isn't beyond end of file now. Caller is
1558          * supposed to hold locks serializing us with truncate / punch hole so
1559          * this is a reliable test.
1560          */
1561         pgoff = linear_page_index(vma, pmd_addr);
1562         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1563
1564         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1565
1566         /*
1567          * Make sure that the faulting address's PMD offset (color) matches
1568          * the PMD offset from the start of the file.  This is necessary so
1569          * that a PMD range in the page table overlaps exactly with a PMD
1570          * range in the radix tree.
1571          */
1572         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1573             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1574                 goto fallback;
1575
1576         /* Fall back to PTEs if we're going to COW */
1577         if (write && !(vma->vm_flags & VM_SHARED))
1578                 goto fallback;
1579
1580         /* If the PMD would extend outside the VMA */
1581         if (pmd_addr < vma->vm_start)
1582                 goto fallback;
1583         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1584                 goto fallback;
1585
1586         if (pgoff >= max_pgoff) {
1587                 result = VM_FAULT_SIGBUS;
1588                 goto out;
1589         }
1590
1591         /* If the PMD would extend beyond the file size */
1592         if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1593                 goto fallback;
1594
1595         /*
1596          * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1597          * 2MiB zero page entry or a DAX PMD.  If it can't (because a 4k page
1598          * is already in the tree, for instance), it will return -EEXIST and
1599          * we just fall back to 4k entries.
1600          */
1601         entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1602         if (IS_ERR(entry))
1603                 goto fallback;
1604
1605         /*
1606          * It is possible, particularly with mixed reads & writes to private
1607          * mappings, that we have raced with a PTE fault that overlaps with
1608          * the PMD we need to set up.  If so just return and the fault will be
1609          * retried.
1610          */
1611         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1612                         !pmd_devmap(*vmf->pmd)) {
1613                 result = 0;
1614                 goto unlock_entry;
1615         }
1616
1617         /*
1618          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1619          * setting up a mapping, so really we're using iomap_begin() as a way
1620          * to look up our filesystem block.
1621          */
1622         pos = (loff_t)pgoff << PAGE_SHIFT;
1623         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1624         if (error)
1625                 goto unlock_entry;
1626
1627         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1628                 goto finish_iomap;
1629
1630         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1631
1632         switch (iomap.type) {
1633         case IOMAP_MAPPED:
1634                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1635                 if (error < 0)
1636                         goto finish_iomap;
1637
1638                 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1639                                                 RADIX_DAX_PMD, write && !sync);
1640
1641                 /*
1642                  * If we are doing synchronous page fault and inode needs fsync,
1643                  * we can insert PMD into page tables only after that happens.
1644                  * Skip insertion for now and return the pfn so that caller can
1645                  * insert it after fsync is done.
1646                  */
1647                 if (sync) {
1648                         if (WARN_ON_ONCE(!pfnp))
1649                                 goto finish_iomap;
1650                         *pfnp = pfn;
1651                         result = VM_FAULT_NEEDDSYNC;
1652                         goto finish_iomap;
1653                 }
1654
1655                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1656                 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1657                                             write);
1658                 break;
1659         case IOMAP_UNWRITTEN:
1660         case IOMAP_HOLE:
1661                 if (WARN_ON_ONCE(write))
1662                         break;
1663                 result = dax_pmd_load_hole(vmf, &iomap, entry);
1664                 break;
1665         default:
1666                 WARN_ON_ONCE(1);
1667                 break;
1668         }
1669
1670  finish_iomap:
1671         if (ops->iomap_end) {
1672                 int copied = PMD_SIZE;
1673
1674                 if (result == VM_FAULT_FALLBACK)
1675                         copied = 0;
1676                 /*
1677                  * The fault is done by now and there's no way back (other
1678                  * thread may be already happily using PMD we have installed).
1679                  * Just ignore error from ->iomap_end since we cannot do much
1680                  * with it.
1681                  */
1682                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1683                                 &iomap);
1684         }
1685  unlock_entry:
1686         put_locked_mapping_entry(mapping, pgoff);
1687  fallback:
1688         if (result == VM_FAULT_FALLBACK) {
1689                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1690                 count_vm_event(THP_FAULT_FALLBACK);
1691         }
1692 out:
1693         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1694         return result;
1695 }
1696 #else
1697 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1698                                const struct iomap_ops *ops)
1699 {
1700         return VM_FAULT_FALLBACK;
1701 }
1702 #endif /* CONFIG_FS_DAX_PMD */
1703
1704 /**
1705  * dax_iomap_fault - handle a page fault on a DAX file
1706  * @vmf: The description of the fault
1707  * @pe_size: Size of the page to fault in
1708  * @pfnp: PFN to insert for synchronous faults if fsync is required
1709  * @iomap_errp: Storage for detailed error code in case of error
1710  * @ops: Iomap ops passed from the file system
1711  *
1712  * When a page fault occurs, filesystems may call this helper in
1713  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1714  * has done all the necessary locking for page fault to proceed
1715  * successfully.
1716  */
1717 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1718                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1719 {
1720         switch (pe_size) {
1721         case PE_SIZE_PTE:
1722                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1723         case PE_SIZE_PMD:
1724                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1725         default:
1726                 return VM_FAULT_FALLBACK;
1727         }
1728 }
1729 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1730
1731 /**
1732  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1733  * @vmf: The description of the fault
1734  * @pe_size: Size of entry to be inserted
1735  * @pfn: PFN to insert
1736  *
1737  * This function inserts writeable PTE or PMD entry into page tables for mmaped
1738  * DAX file.  It takes care of marking corresponding radix tree entry as dirty
1739  * as well.
1740  */
1741 static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1742                                   enum page_entry_size pe_size,
1743                                   pfn_t pfn)
1744 {
1745         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1746         void *entry, **slot;
1747         pgoff_t index = vmf->pgoff;
1748         vm_fault_t ret;
1749
1750         xa_lock_irq(&mapping->i_pages);
1751         entry = get_unlocked_mapping_entry(mapping, index, &slot);
1752         /* Did we race with someone splitting entry or so? */
1753         if (!entry ||
1754             (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1755             (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1756                 put_unlocked_mapping_entry(mapping, index, entry);
1757                 xa_unlock_irq(&mapping->i_pages);
1758                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1759                                                       VM_FAULT_NOPAGE);
1760                 return VM_FAULT_NOPAGE;
1761         }
1762         radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
1763         entry = lock_slot(mapping, slot);
1764         xa_unlock_irq(&mapping->i_pages);
1765         switch (pe_size) {
1766         case PE_SIZE_PTE:
1767                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1768                 break;
1769 #ifdef CONFIG_FS_DAX_PMD
1770         case PE_SIZE_PMD:
1771                 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1772                         pfn, true);
1773                 break;
1774 #endif
1775         default:
1776                 ret = VM_FAULT_FALLBACK;
1777         }
1778         put_locked_mapping_entry(mapping, index);
1779         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1780         return ret;
1781 }
1782
1783 /**
1784  * dax_finish_sync_fault - finish synchronous page fault
1785  * @vmf: The description of the fault
1786  * @pe_size: Size of entry to be inserted
1787  * @pfn: PFN to insert
1788  *
1789  * This function ensures that the file range touched by the page fault is
1790  * stored persistently on the media and handles inserting of appropriate page
1791  * table entry.
1792  */
1793 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1794                 enum page_entry_size pe_size, pfn_t pfn)
1795 {
1796         int err;
1797         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1798         size_t len = 0;
1799
1800         if (pe_size == PE_SIZE_PTE)
1801                 len = PAGE_SIZE;
1802         else if (pe_size == PE_SIZE_PMD)
1803                 len = PMD_SIZE;
1804         else
1805                 WARN_ON_ONCE(1);
1806         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1807         if (err)
1808                 return VM_FAULT_SIGBUS;
1809         return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1810 }
1811 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);