1 // SPDX-License-Identifier: GPL-2.0-only
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/fs_dax.h>
34 static inline unsigned int pe_order(enum page_entry_size pe_size)
36 if (pe_size == PE_SIZE_PTE)
37 return PAGE_SHIFT - PAGE_SHIFT;
38 if (pe_size == PE_SIZE_PMD)
39 return PMD_SHIFT - PAGE_SHIFT;
40 if (pe_size == PE_SIZE_PUD)
41 return PUD_SHIFT - PAGE_SHIFT;
45 /* We choose 4096 entries - same as per-zone page wait tables */
46 #define DAX_WAIT_TABLE_BITS 12
47 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
49 /* The 'colour' (ie low bits) within a PMD of a page offset. */
50 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
51 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
53 /* The order of a PMD entry */
54 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
56 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
58 static int __init init_dax_wait_table(void)
62 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
63 init_waitqueue_head(wait_table + i);
66 fs_initcall(init_dax_wait_table);
69 * DAX pagecache entries use XArray value entries so they can't be mistaken
70 * for pages. We use one bit for locking, one bit for the entry size (PMD)
71 * and two more to tell us if the entry is a zero page or an empty entry that
72 * is just used for locking. In total four special bits.
74 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
75 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
79 #define DAX_LOCKED (1UL << 0)
80 #define DAX_PMD (1UL << 1)
81 #define DAX_ZERO_PAGE (1UL << 2)
82 #define DAX_EMPTY (1UL << 3)
84 static unsigned long dax_to_pfn(void *entry)
86 return xa_to_value(entry) >> DAX_SHIFT;
89 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
91 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
94 static bool dax_is_locked(void *entry)
96 return xa_to_value(entry) & DAX_LOCKED;
99 static unsigned int dax_entry_order(void *entry)
101 if (xa_to_value(entry) & DAX_PMD)
106 static unsigned long dax_is_pmd_entry(void *entry)
108 return xa_to_value(entry) & DAX_PMD;
111 static bool dax_is_pte_entry(void *entry)
113 return !(xa_to_value(entry) & DAX_PMD);
116 static int dax_is_zero_entry(void *entry)
118 return xa_to_value(entry) & DAX_ZERO_PAGE;
121 static int dax_is_empty_entry(void *entry)
123 return xa_to_value(entry) & DAX_EMPTY;
127 * DAX page cache entry locking
129 struct exceptional_entry_key {
134 struct wait_exceptional_entry_queue {
135 wait_queue_entry_t wait;
136 struct exceptional_entry_key key;
139 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
140 void *entry, struct exceptional_entry_key *key)
143 unsigned long index = xas->xa_index;
146 * If 'entry' is a PMD, align the 'index' that we use for the wait
147 * queue to the start of that PMD. This ensures that all offsets in
148 * the range covered by the PMD map to the same bit lock.
150 if (dax_is_pmd_entry(entry))
151 index &= ~PG_PMD_COLOUR;
153 key->entry_start = index;
155 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
156 return wait_table + hash;
159 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
160 unsigned int mode, int sync, void *keyp)
162 struct exceptional_entry_key *key = keyp;
163 struct wait_exceptional_entry_queue *ewait =
164 container_of(wait, struct wait_exceptional_entry_queue, wait);
166 if (key->xa != ewait->key.xa ||
167 key->entry_start != ewait->key.entry_start)
169 return autoremove_wake_function(wait, mode, sync, NULL);
173 * @entry may no longer be the entry at the index in the mapping.
174 * The important information it's conveying is whether the entry at
175 * this index used to be a PMD entry.
177 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
179 struct exceptional_entry_key key;
180 wait_queue_head_t *wq;
182 wq = dax_entry_waitqueue(xas, entry, &key);
185 * Checking for locked entry and prepare_to_wait_exclusive() happens
186 * under the i_pages lock, ditto for entry handling in our callers.
187 * So at this point all tasks that could have seen our entry locked
188 * must be in the waitqueue and the following check will see them.
190 if (waitqueue_active(wq))
191 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
195 * Look up entry in page cache, wait for it to become unlocked if it
196 * is a DAX entry and return it. The caller must subsequently call
197 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
200 * Must be called with the i_pages lock held.
202 static void *get_unlocked_entry(struct xa_state *xas)
205 struct wait_exceptional_entry_queue ewait;
206 wait_queue_head_t *wq;
208 init_wait(&ewait.wait);
209 ewait.wait.func = wake_exceptional_entry_func;
212 entry = xas_find_conflict(xas);
213 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
214 !dax_is_locked(entry))
217 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
218 prepare_to_wait_exclusive(wq, &ewait.wait,
219 TASK_UNINTERRUPTIBLE);
223 finish_wait(wq, &ewait.wait);
229 * The only thing keeping the address space around is the i_pages lock
230 * (it's cycled in clear_inode() after removing the entries from i_pages)
231 * After we call xas_unlock_irq(), we cannot touch xas->xa.
233 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
235 struct wait_exceptional_entry_queue ewait;
236 wait_queue_head_t *wq;
238 init_wait(&ewait.wait);
239 ewait.wait.func = wake_exceptional_entry_func;
241 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
243 * Unlike get_unlocked_entry() there is no guarantee that this
244 * path ever successfully retrieves an unlocked entry before an
245 * inode dies. Perform a non-exclusive wait in case this path
246 * never successfully performs its own wake up.
248 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
251 finish_wait(wq, &ewait.wait);
254 static void put_unlocked_entry(struct xa_state *xas, void *entry)
256 /* If we were the only waiter woken, wake the next one */
258 dax_wake_entry(xas, entry, false);
262 * We used the xa_state to get the entry, but then we locked the entry and
263 * dropped the xa_lock, so we know the xa_state is stale and must be reset
266 static void dax_unlock_entry(struct xa_state *xas, void *entry)
270 BUG_ON(dax_is_locked(entry));
273 old = xas_store(xas, entry);
275 BUG_ON(!dax_is_locked(old));
276 dax_wake_entry(xas, entry, false);
280 * Return: The entry stored at this location before it was locked.
282 static void *dax_lock_entry(struct xa_state *xas, void *entry)
284 unsigned long v = xa_to_value(entry);
285 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
288 static unsigned long dax_entry_size(void *entry)
290 if (dax_is_zero_entry(entry))
292 else if (dax_is_empty_entry(entry))
294 else if (dax_is_pmd_entry(entry))
300 static unsigned long dax_end_pfn(void *entry)
302 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
306 * Iterate through all mapped pfns represented by an entry, i.e. skip
307 * 'empty' and 'zero' entries.
309 #define for_each_mapped_pfn(entry, pfn) \
310 for (pfn = dax_to_pfn(entry); \
311 pfn < dax_end_pfn(entry); pfn++)
314 * TODO: for reflink+dax we need a way to associate a single page with
315 * multiple address_space instances at different linear_page_index()
318 static void dax_associate_entry(void *entry, struct address_space *mapping,
319 struct vm_area_struct *vma, unsigned long address)
321 unsigned long size = dax_entry_size(entry), pfn, index;
324 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
327 index = linear_page_index(vma, address & ~(size - 1));
328 for_each_mapped_pfn(entry, pfn) {
329 struct page *page = pfn_to_page(pfn);
331 WARN_ON_ONCE(page->mapping);
332 page->mapping = mapping;
333 page->index = index + i++;
337 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
342 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
345 for_each_mapped_pfn(entry, pfn) {
346 struct page *page = pfn_to_page(pfn);
348 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
349 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
350 page->mapping = NULL;
355 static struct page *dax_busy_page(void *entry)
359 for_each_mapped_pfn(entry, pfn) {
360 struct page *page = pfn_to_page(pfn);
362 if (page_ref_count(page) > 1)
369 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
370 * @page: The page whose entry we want to lock
372 * Context: Process context.
373 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
376 dax_entry_t dax_lock_page(struct page *page)
378 XA_STATE(xas, NULL, 0);
381 /* Ensure page->mapping isn't freed while we look at it */
384 struct address_space *mapping = READ_ONCE(page->mapping);
387 if (!mapping || !dax_mapping(mapping))
391 * In the device-dax case there's no need to lock, a
392 * struct dev_pagemap pin is sufficient to keep the
393 * inode alive, and we assume we have dev_pagemap pin
394 * otherwise we would not have a valid pfn_to_page()
397 entry = (void *)~0UL;
398 if (S_ISCHR(mapping->host->i_mode))
401 xas.xa = &mapping->i_pages;
403 if (mapping != page->mapping) {
404 xas_unlock_irq(&xas);
407 xas_set(&xas, page->index);
408 entry = xas_load(&xas);
409 if (dax_is_locked(entry)) {
411 wait_entry_unlocked(&xas, entry);
415 dax_lock_entry(&xas, entry);
416 xas_unlock_irq(&xas);
420 return (dax_entry_t)entry;
423 void dax_unlock_page(struct page *page, dax_entry_t cookie)
425 struct address_space *mapping = page->mapping;
426 XA_STATE(xas, &mapping->i_pages, page->index);
428 if (S_ISCHR(mapping->host->i_mode))
431 dax_unlock_entry(&xas, (void *)cookie);
435 * Find page cache entry at given index. If it is a DAX entry, return it
436 * with the entry locked. If the page cache doesn't contain an entry at
437 * that index, add a locked empty entry.
439 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
440 * either return that locked entry or will return VM_FAULT_FALLBACK.
441 * This will happen if there are any PTE entries within the PMD range
442 * that we are requesting.
444 * We always favor PTE entries over PMD entries. There isn't a flow where we
445 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
446 * insertion will fail if it finds any PTE entries already in the tree, and a
447 * PTE insertion will cause an existing PMD entry to be unmapped and
448 * downgraded to PTE entries. This happens for both PMD zero pages as
449 * well as PMD empty entries.
451 * The exception to this downgrade path is for PMD entries that have
452 * real storage backing them. We will leave these real PMD entries in
453 * the tree, and PTE writes will simply dirty the entire PMD entry.
455 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
456 * persistent memory the benefit is doubtful. We can add that later if we can
459 * On error, this function does not return an ERR_PTR. Instead it returns
460 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
461 * overlap with xarray value entries.
463 static void *grab_mapping_entry(struct xa_state *xas,
464 struct address_space *mapping, unsigned long size_flag)
466 unsigned long index = xas->xa_index;
467 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
472 entry = get_unlocked_entry(xas);
475 if (!xa_is_value(entry)) {
476 xas_set_err(xas, EIO);
480 if (size_flag & DAX_PMD) {
481 if (dax_is_pte_entry(entry)) {
482 put_unlocked_entry(xas, entry);
485 } else { /* trying to grab a PTE entry */
486 if (dax_is_pmd_entry(entry) &&
487 (dax_is_zero_entry(entry) ||
488 dax_is_empty_entry(entry))) {
489 pmd_downgrade = true;
496 * Make sure 'entry' remains valid while we drop
499 dax_lock_entry(xas, entry);
502 * Besides huge zero pages the only other thing that gets
503 * downgraded are empty entries which don't need to be
506 if (dax_is_zero_entry(entry)) {
508 unmap_mapping_pages(mapping,
509 xas->xa_index & ~PG_PMD_COLOUR,
515 dax_disassociate_entry(entry, mapping, false);
516 xas_store(xas, NULL); /* undo the PMD join */
517 dax_wake_entry(xas, entry, true);
518 mapping->nrexceptional--;
524 dax_lock_entry(xas, entry);
526 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
527 dax_lock_entry(xas, entry);
530 mapping->nrexceptional++;
535 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
537 if (xas->xa_node == XA_ERROR(-ENOMEM))
538 return xa_mk_internal(VM_FAULT_OOM);
540 return xa_mk_internal(VM_FAULT_SIGBUS);
544 return xa_mk_internal(VM_FAULT_FALLBACK);
548 * dax_layout_busy_page - find first pinned page in @mapping
549 * @mapping: address space to scan for a page with ref count > 1
551 * DAX requires ZONE_DEVICE mapped pages. These pages are never
552 * 'onlined' to the page allocator so they are considered idle when
553 * page->count == 1. A filesystem uses this interface to determine if
554 * any page in the mapping is busy, i.e. for DMA, or other
555 * get_user_pages() usages.
557 * It is expected that the filesystem is holding locks to block the
558 * establishment of new mappings in this address_space. I.e. it expects
559 * to be able to run unmap_mapping_range() and subsequently not race
560 * mapping_mapped() becoming true.
562 struct page *dax_layout_busy_page(struct address_space *mapping)
564 XA_STATE(xas, &mapping->i_pages, 0);
566 unsigned int scanned = 0;
567 struct page *page = NULL;
570 * In the 'limited' case get_user_pages() for dax is disabled.
572 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
575 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
579 * If we race get_user_pages_fast() here either we'll see the
580 * elevated page count in the iteration and wait, or
581 * get_user_pages_fast() will see that the page it took a reference
582 * against is no longer mapped in the page tables and bail to the
583 * get_user_pages() slow path. The slow path is protected by
584 * pte_lock() and pmd_lock(). New references are not taken without
585 * holding those locks, and unmap_mapping_range() will not zero the
586 * pte or pmd without holding the respective lock, so we are
587 * guaranteed to either see new references or prevent new
588 * references from being established.
590 unmap_mapping_range(mapping, 0, 0, 1);
593 xas_for_each(&xas, entry, ULONG_MAX) {
594 if (WARN_ON_ONCE(!xa_is_value(entry)))
596 if (unlikely(dax_is_locked(entry)))
597 entry = get_unlocked_entry(&xas);
599 page = dax_busy_page(entry);
600 put_unlocked_entry(&xas, entry);
603 if (++scanned % XA_CHECK_SCHED)
607 xas_unlock_irq(&xas);
611 xas_unlock_irq(&xas);
614 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
616 static int __dax_invalidate_entry(struct address_space *mapping,
617 pgoff_t index, bool trunc)
619 XA_STATE(xas, &mapping->i_pages, index);
624 entry = get_unlocked_entry(&xas);
625 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
628 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
629 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
631 dax_disassociate_entry(entry, mapping, trunc);
632 xas_store(&xas, NULL);
633 mapping->nrexceptional--;
636 put_unlocked_entry(&xas, entry);
637 xas_unlock_irq(&xas);
642 * Delete DAX entry at @index from @mapping. Wait for it
643 * to be unlocked before deleting it.
645 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
647 int ret = __dax_invalidate_entry(mapping, index, true);
650 * This gets called from truncate / punch_hole path. As such, the caller
651 * must hold locks protecting against concurrent modifications of the
652 * page cache (usually fs-private i_mmap_sem for writing). Since the
653 * caller has seen a DAX entry for this index, we better find it
654 * at that index as well...
661 * Invalidate DAX entry if it is clean.
663 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
666 return __dax_invalidate_entry(mapping, index, false);
669 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
670 sector_t sector, size_t size, struct page *to,
678 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
682 id = dax_read_lock();
683 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
688 vto = kmap_atomic(to);
689 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
696 * By this point grab_mapping_entry() has ensured that we have a locked entry
697 * of the appropriate size so we don't have to worry about downgrading PMDs to
698 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
699 * already in the tree, we will skip the insertion and just dirty the PMD as
702 static void *dax_insert_entry(struct xa_state *xas,
703 struct address_space *mapping, struct vm_fault *vmf,
704 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
706 void *new_entry = dax_make_entry(pfn, flags);
709 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
711 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
712 unsigned long index = xas->xa_index;
713 /* we are replacing a zero page with block mapping */
714 if (dax_is_pmd_entry(entry))
715 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
718 unmap_mapping_pages(mapping, index, 1, false);
723 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
724 dax_disassociate_entry(entry, mapping, false);
725 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
728 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
730 * Only swap our new entry into the page cache if the current
731 * entry is a zero page or an empty entry. If a normal PTE or
732 * PMD entry is already in the cache, we leave it alone. This
733 * means that if we are trying to insert a PTE and the
734 * existing entry is a PMD, we will just leave the PMD in the
735 * tree and dirty it if necessary.
737 void *old = dax_lock_entry(xas, new_entry);
738 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
742 xas_load(xas); /* Walk the xa_state */
746 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
753 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
755 unsigned long address;
757 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
758 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
762 /* Walk all mappings of a given index of a file and writeprotect them */
763 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
766 struct vm_area_struct *vma;
767 pte_t pte, *ptep = NULL;
771 i_mmap_lock_read(mapping);
772 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
773 struct mmu_notifier_range range;
774 unsigned long address;
778 if (!(vma->vm_flags & VM_SHARED))
781 address = pgoff_address(index, vma);
784 * Note because we provide range to follow_pte_pmd it will
785 * call mmu_notifier_invalidate_range_start() on our behalf
786 * before taking any lock.
788 if (follow_pte_pmd(vma->vm_mm, address, &range,
793 * No need to call mmu_notifier_invalidate_range() as we are
794 * downgrading page table protection not changing it to point
797 * See Documentation/vm/mmu_notifier.rst
800 #ifdef CONFIG_FS_DAX_PMD
803 if (pfn != pmd_pfn(*pmdp))
805 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
808 flush_cache_page(vma, address, pfn);
809 pmd = pmdp_invalidate(vma, address, pmdp);
810 pmd = pmd_wrprotect(pmd);
811 pmd = pmd_mkclean(pmd);
812 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
817 if (pfn != pte_pfn(*ptep))
819 if (!pte_dirty(*ptep) && !pte_write(*ptep))
822 flush_cache_page(vma, address, pfn);
823 pte = ptep_clear_flush(vma, address, ptep);
824 pte = pte_wrprotect(pte);
825 pte = pte_mkclean(pte);
826 set_pte_at(vma->vm_mm, address, ptep, pte);
828 pte_unmap_unlock(ptep, ptl);
831 mmu_notifier_invalidate_range_end(&range);
833 i_mmap_unlock_read(mapping);
836 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
837 struct address_space *mapping, void *entry)
839 unsigned long pfn, index, count;
843 * A page got tagged dirty in DAX mapping? Something is seriously
846 if (WARN_ON(!xa_is_value(entry)))
849 if (unlikely(dax_is_locked(entry))) {
850 void *old_entry = entry;
852 entry = get_unlocked_entry(xas);
854 /* Entry got punched out / reallocated? */
855 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
858 * Entry got reallocated elsewhere? No need to writeback.
859 * We have to compare pfns as we must not bail out due to
860 * difference in lockbit or entry type.
862 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
864 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
865 dax_is_zero_entry(entry))) {
870 /* Another fsync thread may have already done this entry */
871 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
875 /* Lock the entry to serialize with page faults */
876 dax_lock_entry(xas, entry);
879 * We can clear the tag now but we have to be careful so that concurrent
880 * dax_writeback_one() calls for the same index cannot finish before we
881 * actually flush the caches. This is achieved as the calls will look
882 * at the entry only under the i_pages lock and once they do that
883 * they will see the entry locked and wait for it to unlock.
885 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
889 * If dax_writeback_mapping_range() was given a wbc->range_start
890 * in the middle of a PMD, the 'index' we use needs to be
891 * aligned to the start of the PMD.
892 * This allows us to flush for PMD_SIZE and not have to worry about
893 * partial PMD writebacks.
895 pfn = dax_to_pfn(entry);
896 count = 1UL << dax_entry_order(entry);
897 index = xas->xa_index & ~(count - 1);
899 dax_entry_mkclean(mapping, index, pfn);
900 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
902 * After we have flushed the cache, we can clear the dirty tag. There
903 * cannot be new dirty data in the pfn after the flush has completed as
904 * the pfn mappings are writeprotected and fault waits for mapping
909 xas_store(xas, entry);
910 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
911 dax_wake_entry(xas, entry, false);
913 trace_dax_writeback_one(mapping->host, index, count);
917 put_unlocked_entry(xas, entry);
922 * Flush the mapping to the persistent domain within the byte range of [start,
923 * end]. This is required by data integrity operations to ensure file data is
924 * on persistent storage prior to completion of the operation.
926 int dax_writeback_mapping_range(struct address_space *mapping,
927 struct block_device *bdev, struct writeback_control *wbc)
929 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
930 struct inode *inode = mapping->host;
931 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
932 struct dax_device *dax_dev;
935 unsigned int scanned = 0;
937 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
940 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
943 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
947 trace_dax_writeback_range(inode, xas.xa_index, end_index);
949 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
952 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
953 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
955 mapping_set_error(mapping, ret);
958 if (++scanned % XA_CHECK_SCHED)
962 xas_unlock_irq(&xas);
966 xas_unlock_irq(&xas);
968 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
971 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
973 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
975 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
978 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
981 const sector_t sector = dax_iomap_sector(iomap, pos);
986 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
989 id = dax_read_lock();
990 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
997 if (PFN_PHYS(length) < size)
999 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1001 /* For larger pages we need devmap */
1002 if (length > 1 && !pfn_t_devmap(*pfnp))
1006 dax_read_unlock(id);
1011 * The user has performed a load from a hole in the file. Allocating a new
1012 * page in the file would cause excessive storage usage for workloads with
1013 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1014 * If this page is ever written to we will re-fault and change the mapping to
1015 * point to real DAX storage instead.
1017 static vm_fault_t dax_load_hole(struct xa_state *xas,
1018 struct address_space *mapping, void **entry,
1019 struct vm_fault *vmf)
1021 struct inode *inode = mapping->host;
1022 unsigned long vaddr = vmf->address;
1023 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1026 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1027 DAX_ZERO_PAGE, false);
1029 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1030 trace_dax_load_hole(inode, vmf, ret);
1034 static bool dax_range_is_aligned(struct block_device *bdev,
1035 unsigned int offset, unsigned int length)
1037 unsigned short sector_size = bdev_logical_block_size(bdev);
1039 if (!IS_ALIGNED(offset, sector_size))
1041 if (!IS_ALIGNED(length, sector_size))
1047 int __dax_zero_page_range(struct block_device *bdev,
1048 struct dax_device *dax_dev, sector_t sector,
1049 unsigned int offset, unsigned int size)
1051 if (dax_range_is_aligned(bdev, offset, size)) {
1052 sector_t start_sector = sector + (offset >> 9);
1054 return blkdev_issue_zeroout(bdev, start_sector,
1055 size >> 9, GFP_NOFS, 0);
1061 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1065 id = dax_read_lock();
1066 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1068 dax_read_unlock(id);
1071 memset(kaddr + offset, 0, size);
1072 dax_flush(dax_dev, kaddr + offset, size);
1073 dax_read_unlock(id);
1077 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1080 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1081 struct iomap *iomap)
1083 struct block_device *bdev = iomap->bdev;
1084 struct dax_device *dax_dev = iomap->dax_dev;
1085 struct iov_iter *iter = data;
1086 loff_t end = pos + length, done = 0;
1091 if (iov_iter_rw(iter) == READ) {
1092 end = min(end, i_size_read(inode));
1096 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1097 return iov_iter_zero(min(length, end - pos), iter);
1100 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1104 * Write can allocate block for an area which has a hole page mapped
1105 * into page tables. We have to tear down these mappings so that data
1106 * written by write(2) is visible in mmap.
1108 if (iomap->flags & IOMAP_F_NEW) {
1109 invalidate_inode_pages2_range(inode->i_mapping,
1111 (end - 1) >> PAGE_SHIFT);
1114 id = dax_read_lock();
1116 unsigned offset = pos & (PAGE_SIZE - 1);
1117 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1118 const sector_t sector = dax_iomap_sector(iomap, pos);
1123 if (fatal_signal_pending(current)) {
1128 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1132 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1139 map_len = PFN_PHYS(map_len);
1142 if (map_len > end - pos)
1143 map_len = end - pos;
1146 * The userspace address for the memory copy has already been
1147 * validated via access_ok() in either vfs_read() or
1148 * vfs_write(), depending on which operation we are doing.
1150 if (iov_iter_rw(iter) == WRITE)
1151 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1154 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1166 dax_read_unlock(id);
1168 return done ? done : ret;
1172 * dax_iomap_rw - Perform I/O to a DAX file
1173 * @iocb: The control block for this I/O
1174 * @iter: The addresses to do I/O from or to
1175 * @ops: iomap ops passed from the file system
1177 * This function performs read and write operations to directly mapped
1178 * persistent memory. The callers needs to take care of read/write exclusion
1179 * and evicting any page cache pages in the region under I/O.
1182 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1183 const struct iomap_ops *ops)
1185 struct address_space *mapping = iocb->ki_filp->f_mapping;
1186 struct inode *inode = mapping->host;
1187 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1190 if (iov_iter_rw(iter) == WRITE) {
1191 lockdep_assert_held_exclusive(&inode->i_rwsem);
1192 flags |= IOMAP_WRITE;
1194 lockdep_assert_held(&inode->i_rwsem);
1197 while (iov_iter_count(iter)) {
1198 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1199 iter, dax_iomap_actor);
1206 iocb->ki_pos += done;
1207 return done ? done : ret;
1209 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1211 static vm_fault_t dax_fault_return(int error)
1214 return VM_FAULT_NOPAGE;
1215 return vmf_error(error);
1219 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1220 * flushed on write-faults (non-cow), but not read-faults.
1222 static bool dax_fault_is_synchronous(unsigned long flags,
1223 struct vm_area_struct *vma, struct iomap *iomap)
1225 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1226 && (iomap->flags & IOMAP_F_DIRTY);
1229 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1230 int *iomap_errp, const struct iomap_ops *ops)
1232 struct vm_area_struct *vma = vmf->vma;
1233 struct address_space *mapping = vma->vm_file->f_mapping;
1234 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1235 struct inode *inode = mapping->host;
1236 unsigned long vaddr = vmf->address;
1237 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1238 struct iomap iomap = { 0 };
1239 unsigned flags = IOMAP_FAULT;
1240 int error, major = 0;
1241 bool write = vmf->flags & FAULT_FLAG_WRITE;
1247 trace_dax_pte_fault(inode, vmf, ret);
1249 * Check whether offset isn't beyond end of file now. Caller is supposed
1250 * to hold locks serializing us with truncate / punch hole so this is
1253 if (pos >= i_size_read(inode)) {
1254 ret = VM_FAULT_SIGBUS;
1258 if (write && !vmf->cow_page)
1259 flags |= IOMAP_WRITE;
1261 entry = grab_mapping_entry(&xas, mapping, 0);
1262 if (xa_is_internal(entry)) {
1263 ret = xa_to_internal(entry);
1268 * It is possible, particularly with mixed reads & writes to private
1269 * mappings, that we have raced with a PMD fault that overlaps with
1270 * the PTE we need to set up. If so just return and the fault will be
1273 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1274 ret = VM_FAULT_NOPAGE;
1279 * Note that we don't bother to use iomap_apply here: DAX required
1280 * the file system block size to be equal the page size, which means
1281 * that we never have to deal with more than a single extent here.
1283 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1285 *iomap_errp = error;
1287 ret = dax_fault_return(error);
1290 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1291 error = -EIO; /* fs corruption? */
1292 goto error_finish_iomap;
1295 if (vmf->cow_page) {
1296 sector_t sector = dax_iomap_sector(&iomap, pos);
1298 switch (iomap.type) {
1300 case IOMAP_UNWRITTEN:
1301 clear_user_highpage(vmf->cow_page, vaddr);
1304 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1305 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1314 goto error_finish_iomap;
1316 __SetPageUptodate(vmf->cow_page);
1317 ret = finish_fault(vmf);
1319 ret = VM_FAULT_DONE_COW;
1323 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1325 switch (iomap.type) {
1327 if (iomap.flags & IOMAP_F_NEW) {
1328 count_vm_event(PGMAJFAULT);
1329 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1330 major = VM_FAULT_MAJOR;
1332 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1334 goto error_finish_iomap;
1336 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1340 * If we are doing synchronous page fault and inode needs fsync,
1341 * we can insert PTE into page tables only after that happens.
1342 * Skip insertion for now and return the pfn so that caller can
1343 * insert it after fsync is done.
1346 if (WARN_ON_ONCE(!pfnp)) {
1348 goto error_finish_iomap;
1351 ret = VM_FAULT_NEEDDSYNC | major;
1354 trace_dax_insert_mapping(inode, vmf, entry);
1356 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1358 ret = vmf_insert_mixed(vma, vaddr, pfn);
1361 case IOMAP_UNWRITTEN:
1364 ret = dax_load_hole(&xas, mapping, &entry, vmf);
1375 ret = dax_fault_return(error);
1377 if (ops->iomap_end) {
1378 int copied = PAGE_SIZE;
1380 if (ret & VM_FAULT_ERROR)
1383 * The fault is done by now and there's no way back (other
1384 * thread may be already happily using PTE we have installed).
1385 * Just ignore error from ->iomap_end since we cannot do much
1388 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1391 dax_unlock_entry(&xas, entry);
1393 trace_dax_pte_fault_done(inode, vmf, ret);
1397 #ifdef CONFIG_FS_DAX_PMD
1398 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1399 struct iomap *iomap, void **entry)
1401 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1402 unsigned long pmd_addr = vmf->address & PMD_MASK;
1403 struct vm_area_struct *vma = vmf->vma;
1404 struct inode *inode = mapping->host;
1405 pgtable_t pgtable = NULL;
1406 struct page *zero_page;
1411 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1413 if (unlikely(!zero_page))
1416 pfn = page_to_pfn_t(zero_page);
1417 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1418 DAX_PMD | DAX_ZERO_PAGE, false);
1420 if (arch_needs_pgtable_deposit()) {
1421 pgtable = pte_alloc_one(vma->vm_mm);
1423 return VM_FAULT_OOM;
1426 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1427 if (!pmd_none(*(vmf->pmd))) {
1433 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1434 mm_inc_nr_ptes(vma->vm_mm);
1436 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1437 pmd_entry = pmd_mkhuge(pmd_entry);
1438 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1440 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1441 return VM_FAULT_NOPAGE;
1445 pte_free(vma->vm_mm, pgtable);
1446 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1447 return VM_FAULT_FALLBACK;
1450 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1451 const struct iomap_ops *ops)
1453 struct vm_area_struct *vma = vmf->vma;
1454 struct address_space *mapping = vma->vm_file->f_mapping;
1455 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1456 unsigned long pmd_addr = vmf->address & PMD_MASK;
1457 bool write = vmf->flags & FAULT_FLAG_WRITE;
1459 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1460 struct inode *inode = mapping->host;
1461 vm_fault_t result = VM_FAULT_FALLBACK;
1462 struct iomap iomap = { 0 };
1470 * Check whether offset isn't beyond end of file now. Caller is
1471 * supposed to hold locks serializing us with truncate / punch hole so
1472 * this is a reliable test.
1474 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1476 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1479 * Make sure that the faulting address's PMD offset (color) matches
1480 * the PMD offset from the start of the file. This is necessary so
1481 * that a PMD range in the page table overlaps exactly with a PMD
1482 * range in the page cache.
1484 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1485 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1488 /* Fall back to PTEs if we're going to COW */
1489 if (write && !(vma->vm_flags & VM_SHARED))
1492 /* If the PMD would extend outside the VMA */
1493 if (pmd_addr < vma->vm_start)
1495 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1498 if (xas.xa_index >= max_pgoff) {
1499 result = VM_FAULT_SIGBUS;
1503 /* If the PMD would extend beyond the file size */
1504 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1508 * grab_mapping_entry() will make sure we get an empty PMD entry,
1509 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1510 * entry is already in the array, for instance), it will return
1511 * VM_FAULT_FALLBACK.
1513 entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1514 if (xa_is_internal(entry)) {
1515 result = xa_to_internal(entry);
1520 * It is possible, particularly with mixed reads & writes to private
1521 * mappings, that we have raced with a PTE fault that overlaps with
1522 * the PMD we need to set up. If so just return and the fault will be
1525 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1526 !pmd_devmap(*vmf->pmd)) {
1532 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1533 * setting up a mapping, so really we're using iomap_begin() as a way
1534 * to look up our filesystem block.
1536 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1537 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1541 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1544 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1546 switch (iomap.type) {
1548 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1552 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1553 DAX_PMD, write && !sync);
1556 * If we are doing synchronous page fault and inode needs fsync,
1557 * we can insert PMD into page tables only after that happens.
1558 * Skip insertion for now and return the pfn so that caller can
1559 * insert it after fsync is done.
1562 if (WARN_ON_ONCE(!pfnp))
1565 result = VM_FAULT_NEEDDSYNC;
1569 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1570 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1572 case IOMAP_UNWRITTEN:
1574 if (WARN_ON_ONCE(write))
1576 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1584 if (ops->iomap_end) {
1585 int copied = PMD_SIZE;
1587 if (result == VM_FAULT_FALLBACK)
1590 * The fault is done by now and there's no way back (other
1591 * thread may be already happily using PMD we have installed).
1592 * Just ignore error from ->iomap_end since we cannot do much
1595 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1599 dax_unlock_entry(&xas, entry);
1601 if (result == VM_FAULT_FALLBACK) {
1602 split_huge_pmd(vma, vmf->pmd, vmf->address);
1603 count_vm_event(THP_FAULT_FALLBACK);
1606 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1610 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1611 const struct iomap_ops *ops)
1613 return VM_FAULT_FALLBACK;
1615 #endif /* CONFIG_FS_DAX_PMD */
1618 * dax_iomap_fault - handle a page fault on a DAX file
1619 * @vmf: The description of the fault
1620 * @pe_size: Size of the page to fault in
1621 * @pfnp: PFN to insert for synchronous faults if fsync is required
1622 * @iomap_errp: Storage for detailed error code in case of error
1623 * @ops: Iomap ops passed from the file system
1625 * When a page fault occurs, filesystems may call this helper in
1626 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1627 * has done all the necessary locking for page fault to proceed
1630 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1631 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1635 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1637 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1639 return VM_FAULT_FALLBACK;
1642 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1645 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1646 * @vmf: The description of the fault
1647 * @pfn: PFN to insert
1648 * @order: Order of entry to insert.
1650 * This function inserts a writeable PTE or PMD entry into the page tables
1651 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1654 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1656 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1657 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1662 entry = get_unlocked_entry(&xas);
1663 /* Did we race with someone splitting entry or so? */
1665 (order == 0 && !dax_is_pte_entry(entry)) ||
1666 (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
1667 put_unlocked_entry(&xas, entry);
1668 xas_unlock_irq(&xas);
1669 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1671 return VM_FAULT_NOPAGE;
1673 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1674 dax_lock_entry(&xas, entry);
1675 xas_unlock_irq(&xas);
1677 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1678 #ifdef CONFIG_FS_DAX_PMD
1679 else if (order == PMD_ORDER)
1680 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1683 ret = VM_FAULT_FALLBACK;
1684 dax_unlock_entry(&xas, entry);
1685 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1690 * dax_finish_sync_fault - finish synchronous page fault
1691 * @vmf: The description of the fault
1692 * @pe_size: Size of entry to be inserted
1693 * @pfn: PFN to insert
1695 * This function ensures that the file range touched by the page fault is
1696 * stored persistently on the media and handles inserting of appropriate page
1699 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1700 enum page_entry_size pe_size, pfn_t pfn)
1703 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1704 unsigned int order = pe_order(pe_size);
1705 size_t len = PAGE_SIZE << order;
1707 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1709 return VM_FAULT_SIGBUS;
1710 return dax_insert_pfn_mkwrite(vmf, pfn, order);
1712 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);