Merge branch 'linux-5.2' of git://github.com/skeggsb/linux into drm-fixes
[platform/kernel/linux-starfive.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include <asm/pgalloc.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/fs_dax.h>
41
42 static inline unsigned int pe_order(enum page_entry_size pe_size)
43 {
44         if (pe_size == PE_SIZE_PTE)
45                 return PAGE_SHIFT - PAGE_SHIFT;
46         if (pe_size == PE_SIZE_PMD)
47                 return PMD_SHIFT - PAGE_SHIFT;
48         if (pe_size == PE_SIZE_PUD)
49                 return PUD_SHIFT - PAGE_SHIFT;
50         return ~0;
51 }
52
53 /* We choose 4096 entries - same as per-zone page wait tables */
54 #define DAX_WAIT_TABLE_BITS 12
55 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
56
57 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
58 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
59 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
60
61 /* The order of a PMD entry */
62 #define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
63
64 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
65
66 static int __init init_dax_wait_table(void)
67 {
68         int i;
69
70         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
71                 init_waitqueue_head(wait_table + i);
72         return 0;
73 }
74 fs_initcall(init_dax_wait_table);
75
76 /*
77  * DAX pagecache entries use XArray value entries so they can't be mistaken
78  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
79  * and two more to tell us if the entry is a zero page or an empty entry that
80  * is just used for locking.  In total four special bits.
81  *
82  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
83  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
84  * block allocation.
85  */
86 #define DAX_SHIFT       (4)
87 #define DAX_LOCKED      (1UL << 0)
88 #define DAX_PMD         (1UL << 1)
89 #define DAX_ZERO_PAGE   (1UL << 2)
90 #define DAX_EMPTY       (1UL << 3)
91
92 static unsigned long dax_to_pfn(void *entry)
93 {
94         return xa_to_value(entry) >> DAX_SHIFT;
95 }
96
97 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
98 {
99         return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
100 }
101
102 static bool dax_is_locked(void *entry)
103 {
104         return xa_to_value(entry) & DAX_LOCKED;
105 }
106
107 static unsigned int dax_entry_order(void *entry)
108 {
109         if (xa_to_value(entry) & DAX_PMD)
110                 return PMD_ORDER;
111         return 0;
112 }
113
114 static unsigned long dax_is_pmd_entry(void *entry)
115 {
116         return xa_to_value(entry) & DAX_PMD;
117 }
118
119 static bool dax_is_pte_entry(void *entry)
120 {
121         return !(xa_to_value(entry) & DAX_PMD);
122 }
123
124 static int dax_is_zero_entry(void *entry)
125 {
126         return xa_to_value(entry) & DAX_ZERO_PAGE;
127 }
128
129 static int dax_is_empty_entry(void *entry)
130 {
131         return xa_to_value(entry) & DAX_EMPTY;
132 }
133
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138         struct xarray *xa;
139         pgoff_t entry_start;
140 };
141
142 struct wait_exceptional_entry_queue {
143         wait_queue_entry_t wait;
144         struct exceptional_entry_key key;
145 };
146
147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148                 void *entry, struct exceptional_entry_key *key)
149 {
150         unsigned long hash;
151         unsigned long index = xas->xa_index;
152
153         /*
154          * If 'entry' is a PMD, align the 'index' that we use for the wait
155          * queue to the start of that PMD.  This ensures that all offsets in
156          * the range covered by the PMD map to the same bit lock.
157          */
158         if (dax_is_pmd_entry(entry))
159                 index &= ~PG_PMD_COLOUR;
160         key->xa = xas->xa;
161         key->entry_start = index;
162
163         hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
164         return wait_table + hash;
165 }
166
167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168                 unsigned int mode, int sync, void *keyp)
169 {
170         struct exceptional_entry_key *key = keyp;
171         struct wait_exceptional_entry_queue *ewait =
172                 container_of(wait, struct wait_exceptional_entry_queue, wait);
173
174         if (key->xa != ewait->key.xa ||
175             key->entry_start != ewait->key.entry_start)
176                 return 0;
177         return autoremove_wake_function(wait, mode, sync, NULL);
178 }
179
180 /*
181  * @entry may no longer be the entry at the index in the mapping.
182  * The important information it's conveying is whether the entry at
183  * this index used to be a PMD entry.
184  */
185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
186 {
187         struct exceptional_entry_key key;
188         wait_queue_head_t *wq;
189
190         wq = dax_entry_waitqueue(xas, entry, &key);
191
192         /*
193          * Checking for locked entry and prepare_to_wait_exclusive() happens
194          * under the i_pages lock, ditto for entry handling in our callers.
195          * So at this point all tasks that could have seen our entry locked
196          * must be in the waitqueue and the following check will see them.
197          */
198         if (waitqueue_active(wq))
199                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
200 }
201
202 /*
203  * Look up entry in page cache, wait for it to become unlocked if it
204  * is a DAX entry and return it.  The caller must subsequently call
205  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
206  * if it did.
207  *
208  * Must be called with the i_pages lock held.
209  */
210 static void *get_unlocked_entry(struct xa_state *xas)
211 {
212         void *entry;
213         struct wait_exceptional_entry_queue ewait;
214         wait_queue_head_t *wq;
215
216         init_wait(&ewait.wait);
217         ewait.wait.func = wake_exceptional_entry_func;
218
219         for (;;) {
220                 entry = xas_find_conflict(xas);
221                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
222                                 !dax_is_locked(entry))
223                         return entry;
224
225                 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
226                 prepare_to_wait_exclusive(wq, &ewait.wait,
227                                           TASK_UNINTERRUPTIBLE);
228                 xas_unlock_irq(xas);
229                 xas_reset(xas);
230                 schedule();
231                 finish_wait(wq, &ewait.wait);
232                 xas_lock_irq(xas);
233         }
234 }
235
236 /*
237  * The only thing keeping the address space around is the i_pages lock
238  * (it's cycled in clear_inode() after removing the entries from i_pages)
239  * After we call xas_unlock_irq(), we cannot touch xas->xa.
240  */
241 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
242 {
243         struct wait_exceptional_entry_queue ewait;
244         wait_queue_head_t *wq;
245
246         init_wait(&ewait.wait);
247         ewait.wait.func = wake_exceptional_entry_func;
248
249         wq = dax_entry_waitqueue(xas, entry, &ewait.key);
250         /*
251          * Unlike get_unlocked_entry() there is no guarantee that this
252          * path ever successfully retrieves an unlocked entry before an
253          * inode dies. Perform a non-exclusive wait in case this path
254          * never successfully performs its own wake up.
255          */
256         prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
257         xas_unlock_irq(xas);
258         schedule();
259         finish_wait(wq, &ewait.wait);
260 }
261
262 static void put_unlocked_entry(struct xa_state *xas, void *entry)
263 {
264         /* If we were the only waiter woken, wake the next one */
265         if (entry)
266                 dax_wake_entry(xas, entry, false);
267 }
268
269 /*
270  * We used the xa_state to get the entry, but then we locked the entry and
271  * dropped the xa_lock, so we know the xa_state is stale and must be reset
272  * before use.
273  */
274 static void dax_unlock_entry(struct xa_state *xas, void *entry)
275 {
276         void *old;
277
278         BUG_ON(dax_is_locked(entry));
279         xas_reset(xas);
280         xas_lock_irq(xas);
281         old = xas_store(xas, entry);
282         xas_unlock_irq(xas);
283         BUG_ON(!dax_is_locked(old));
284         dax_wake_entry(xas, entry, false);
285 }
286
287 /*
288  * Return: The entry stored at this location before it was locked.
289  */
290 static void *dax_lock_entry(struct xa_state *xas, void *entry)
291 {
292         unsigned long v = xa_to_value(entry);
293         return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
294 }
295
296 static unsigned long dax_entry_size(void *entry)
297 {
298         if (dax_is_zero_entry(entry))
299                 return 0;
300         else if (dax_is_empty_entry(entry))
301                 return 0;
302         else if (dax_is_pmd_entry(entry))
303                 return PMD_SIZE;
304         else
305                 return PAGE_SIZE;
306 }
307
308 static unsigned long dax_end_pfn(void *entry)
309 {
310         return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
311 }
312
313 /*
314  * Iterate through all mapped pfns represented by an entry, i.e. skip
315  * 'empty' and 'zero' entries.
316  */
317 #define for_each_mapped_pfn(entry, pfn) \
318         for (pfn = dax_to_pfn(entry); \
319                         pfn < dax_end_pfn(entry); pfn++)
320
321 /*
322  * TODO: for reflink+dax we need a way to associate a single page with
323  * multiple address_space instances at different linear_page_index()
324  * offsets.
325  */
326 static void dax_associate_entry(void *entry, struct address_space *mapping,
327                 struct vm_area_struct *vma, unsigned long address)
328 {
329         unsigned long size = dax_entry_size(entry), pfn, index;
330         int i = 0;
331
332         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
333                 return;
334
335         index = linear_page_index(vma, address & ~(size - 1));
336         for_each_mapped_pfn(entry, pfn) {
337                 struct page *page = pfn_to_page(pfn);
338
339                 WARN_ON_ONCE(page->mapping);
340                 page->mapping = mapping;
341                 page->index = index + i++;
342         }
343 }
344
345 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
346                 bool trunc)
347 {
348         unsigned long pfn;
349
350         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
351                 return;
352
353         for_each_mapped_pfn(entry, pfn) {
354                 struct page *page = pfn_to_page(pfn);
355
356                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
357                 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
358                 page->mapping = NULL;
359                 page->index = 0;
360         }
361 }
362
363 static struct page *dax_busy_page(void *entry)
364 {
365         unsigned long pfn;
366
367         for_each_mapped_pfn(entry, pfn) {
368                 struct page *page = pfn_to_page(pfn);
369
370                 if (page_ref_count(page) > 1)
371                         return page;
372         }
373         return NULL;
374 }
375
376 /*
377  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
378  * @page: The page whose entry we want to lock
379  *
380  * Context: Process context.
381  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
382  * not be locked.
383  */
384 dax_entry_t dax_lock_page(struct page *page)
385 {
386         XA_STATE(xas, NULL, 0);
387         void *entry;
388
389         /* Ensure page->mapping isn't freed while we look at it */
390         rcu_read_lock();
391         for (;;) {
392                 struct address_space *mapping = READ_ONCE(page->mapping);
393
394                 entry = NULL;
395                 if (!mapping || !dax_mapping(mapping))
396                         break;
397
398                 /*
399                  * In the device-dax case there's no need to lock, a
400                  * struct dev_pagemap pin is sufficient to keep the
401                  * inode alive, and we assume we have dev_pagemap pin
402                  * otherwise we would not have a valid pfn_to_page()
403                  * translation.
404                  */
405                 entry = (void *)~0UL;
406                 if (S_ISCHR(mapping->host->i_mode))
407                         break;
408
409                 xas.xa = &mapping->i_pages;
410                 xas_lock_irq(&xas);
411                 if (mapping != page->mapping) {
412                         xas_unlock_irq(&xas);
413                         continue;
414                 }
415                 xas_set(&xas, page->index);
416                 entry = xas_load(&xas);
417                 if (dax_is_locked(entry)) {
418                         rcu_read_unlock();
419                         wait_entry_unlocked(&xas, entry);
420                         rcu_read_lock();
421                         continue;
422                 }
423                 dax_lock_entry(&xas, entry);
424                 xas_unlock_irq(&xas);
425                 break;
426         }
427         rcu_read_unlock();
428         return (dax_entry_t)entry;
429 }
430
431 void dax_unlock_page(struct page *page, dax_entry_t cookie)
432 {
433         struct address_space *mapping = page->mapping;
434         XA_STATE(xas, &mapping->i_pages, page->index);
435
436         if (S_ISCHR(mapping->host->i_mode))
437                 return;
438
439         dax_unlock_entry(&xas, (void *)cookie);
440 }
441
442 /*
443  * Find page cache entry at given index. If it is a DAX entry, return it
444  * with the entry locked. If the page cache doesn't contain an entry at
445  * that index, add a locked empty entry.
446  *
447  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
448  * either return that locked entry or will return VM_FAULT_FALLBACK.
449  * This will happen if there are any PTE entries within the PMD range
450  * that we are requesting.
451  *
452  * We always favor PTE entries over PMD entries. There isn't a flow where we
453  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
454  * insertion will fail if it finds any PTE entries already in the tree, and a
455  * PTE insertion will cause an existing PMD entry to be unmapped and
456  * downgraded to PTE entries.  This happens for both PMD zero pages as
457  * well as PMD empty entries.
458  *
459  * The exception to this downgrade path is for PMD entries that have
460  * real storage backing them.  We will leave these real PMD entries in
461  * the tree, and PTE writes will simply dirty the entire PMD entry.
462  *
463  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
464  * persistent memory the benefit is doubtful. We can add that later if we can
465  * show it helps.
466  *
467  * On error, this function does not return an ERR_PTR.  Instead it returns
468  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
469  * overlap with xarray value entries.
470  */
471 static void *grab_mapping_entry(struct xa_state *xas,
472                 struct address_space *mapping, unsigned long size_flag)
473 {
474         unsigned long index = xas->xa_index;
475         bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
476         void *entry;
477
478 retry:
479         xas_lock_irq(xas);
480         entry = get_unlocked_entry(xas);
481
482         if (entry) {
483                 if (!xa_is_value(entry)) {
484                         xas_set_err(xas, EIO);
485                         goto out_unlock;
486                 }
487
488                 if (size_flag & DAX_PMD) {
489                         if (dax_is_pte_entry(entry)) {
490                                 put_unlocked_entry(xas, entry);
491                                 goto fallback;
492                         }
493                 } else { /* trying to grab a PTE entry */
494                         if (dax_is_pmd_entry(entry) &&
495                             (dax_is_zero_entry(entry) ||
496                              dax_is_empty_entry(entry))) {
497                                 pmd_downgrade = true;
498                         }
499                 }
500         }
501
502         if (pmd_downgrade) {
503                 /*
504                  * Make sure 'entry' remains valid while we drop
505                  * the i_pages lock.
506                  */
507                 dax_lock_entry(xas, entry);
508
509                 /*
510                  * Besides huge zero pages the only other thing that gets
511                  * downgraded are empty entries which don't need to be
512                  * unmapped.
513                  */
514                 if (dax_is_zero_entry(entry)) {
515                         xas_unlock_irq(xas);
516                         unmap_mapping_pages(mapping,
517                                         xas->xa_index & ~PG_PMD_COLOUR,
518                                         PG_PMD_NR, false);
519                         xas_reset(xas);
520                         xas_lock_irq(xas);
521                 }
522
523                 dax_disassociate_entry(entry, mapping, false);
524                 xas_store(xas, NULL);   /* undo the PMD join */
525                 dax_wake_entry(xas, entry, true);
526                 mapping->nrexceptional--;
527                 entry = NULL;
528                 xas_set(xas, index);
529         }
530
531         if (entry) {
532                 dax_lock_entry(xas, entry);
533         } else {
534                 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
535                 dax_lock_entry(xas, entry);
536                 if (xas_error(xas))
537                         goto out_unlock;
538                 mapping->nrexceptional++;
539         }
540
541 out_unlock:
542         xas_unlock_irq(xas);
543         if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
544                 goto retry;
545         if (xas->xa_node == XA_ERROR(-ENOMEM))
546                 return xa_mk_internal(VM_FAULT_OOM);
547         if (xas_error(xas))
548                 return xa_mk_internal(VM_FAULT_SIGBUS);
549         return entry;
550 fallback:
551         xas_unlock_irq(xas);
552         return xa_mk_internal(VM_FAULT_FALLBACK);
553 }
554
555 /**
556  * dax_layout_busy_page - find first pinned page in @mapping
557  * @mapping: address space to scan for a page with ref count > 1
558  *
559  * DAX requires ZONE_DEVICE mapped pages. These pages are never
560  * 'onlined' to the page allocator so they are considered idle when
561  * page->count == 1. A filesystem uses this interface to determine if
562  * any page in the mapping is busy, i.e. for DMA, or other
563  * get_user_pages() usages.
564  *
565  * It is expected that the filesystem is holding locks to block the
566  * establishment of new mappings in this address_space. I.e. it expects
567  * to be able to run unmap_mapping_range() and subsequently not race
568  * mapping_mapped() becoming true.
569  */
570 struct page *dax_layout_busy_page(struct address_space *mapping)
571 {
572         XA_STATE(xas, &mapping->i_pages, 0);
573         void *entry;
574         unsigned int scanned = 0;
575         struct page *page = NULL;
576
577         /*
578          * In the 'limited' case get_user_pages() for dax is disabled.
579          */
580         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
581                 return NULL;
582
583         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
584                 return NULL;
585
586         /*
587          * If we race get_user_pages_fast() here either we'll see the
588          * elevated page count in the iteration and wait, or
589          * get_user_pages_fast() will see that the page it took a reference
590          * against is no longer mapped in the page tables and bail to the
591          * get_user_pages() slow path.  The slow path is protected by
592          * pte_lock() and pmd_lock(). New references are not taken without
593          * holding those locks, and unmap_mapping_range() will not zero the
594          * pte or pmd without holding the respective lock, so we are
595          * guaranteed to either see new references or prevent new
596          * references from being established.
597          */
598         unmap_mapping_range(mapping, 0, 0, 1);
599
600         xas_lock_irq(&xas);
601         xas_for_each(&xas, entry, ULONG_MAX) {
602                 if (WARN_ON_ONCE(!xa_is_value(entry)))
603                         continue;
604                 if (unlikely(dax_is_locked(entry)))
605                         entry = get_unlocked_entry(&xas);
606                 if (entry)
607                         page = dax_busy_page(entry);
608                 put_unlocked_entry(&xas, entry);
609                 if (page)
610                         break;
611                 if (++scanned % XA_CHECK_SCHED)
612                         continue;
613
614                 xas_pause(&xas);
615                 xas_unlock_irq(&xas);
616                 cond_resched();
617                 xas_lock_irq(&xas);
618         }
619         xas_unlock_irq(&xas);
620         return page;
621 }
622 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
623
624 static int __dax_invalidate_entry(struct address_space *mapping,
625                                           pgoff_t index, bool trunc)
626 {
627         XA_STATE(xas, &mapping->i_pages, index);
628         int ret = 0;
629         void *entry;
630
631         xas_lock_irq(&xas);
632         entry = get_unlocked_entry(&xas);
633         if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
634                 goto out;
635         if (!trunc &&
636             (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
637              xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
638                 goto out;
639         dax_disassociate_entry(entry, mapping, trunc);
640         xas_store(&xas, NULL);
641         mapping->nrexceptional--;
642         ret = 1;
643 out:
644         put_unlocked_entry(&xas, entry);
645         xas_unlock_irq(&xas);
646         return ret;
647 }
648
649 /*
650  * Delete DAX entry at @index from @mapping.  Wait for it
651  * to be unlocked before deleting it.
652  */
653 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
654 {
655         int ret = __dax_invalidate_entry(mapping, index, true);
656
657         /*
658          * This gets called from truncate / punch_hole path. As such, the caller
659          * must hold locks protecting against concurrent modifications of the
660          * page cache (usually fs-private i_mmap_sem for writing). Since the
661          * caller has seen a DAX entry for this index, we better find it
662          * at that index as well...
663          */
664         WARN_ON_ONCE(!ret);
665         return ret;
666 }
667
668 /*
669  * Invalidate DAX entry if it is clean.
670  */
671 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
672                                       pgoff_t index)
673 {
674         return __dax_invalidate_entry(mapping, index, false);
675 }
676
677 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
678                 sector_t sector, size_t size, struct page *to,
679                 unsigned long vaddr)
680 {
681         void *vto, *kaddr;
682         pgoff_t pgoff;
683         long rc;
684         int id;
685
686         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
687         if (rc)
688                 return rc;
689
690         id = dax_read_lock();
691         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
692         if (rc < 0) {
693                 dax_read_unlock(id);
694                 return rc;
695         }
696         vto = kmap_atomic(to);
697         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
698         kunmap_atomic(vto);
699         dax_read_unlock(id);
700         return 0;
701 }
702
703 /*
704  * By this point grab_mapping_entry() has ensured that we have a locked entry
705  * of the appropriate size so we don't have to worry about downgrading PMDs to
706  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
707  * already in the tree, we will skip the insertion and just dirty the PMD as
708  * appropriate.
709  */
710 static void *dax_insert_entry(struct xa_state *xas,
711                 struct address_space *mapping, struct vm_fault *vmf,
712                 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
713 {
714         void *new_entry = dax_make_entry(pfn, flags);
715
716         if (dirty)
717                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
718
719         if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
720                 unsigned long index = xas->xa_index;
721                 /* we are replacing a zero page with block mapping */
722                 if (dax_is_pmd_entry(entry))
723                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
724                                         PG_PMD_NR, false);
725                 else /* pte entry */
726                         unmap_mapping_pages(mapping, index, 1, false);
727         }
728
729         xas_reset(xas);
730         xas_lock_irq(xas);
731         if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
732                 dax_disassociate_entry(entry, mapping, false);
733                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
734         }
735
736         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
737                 /*
738                  * Only swap our new entry into the page cache if the current
739                  * entry is a zero page or an empty entry.  If a normal PTE or
740                  * PMD entry is already in the cache, we leave it alone.  This
741                  * means that if we are trying to insert a PTE and the
742                  * existing entry is a PMD, we will just leave the PMD in the
743                  * tree and dirty it if necessary.
744                  */
745                 void *old = dax_lock_entry(xas, new_entry);
746                 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
747                                         DAX_LOCKED));
748                 entry = new_entry;
749         } else {
750                 xas_load(xas);  /* Walk the xa_state */
751         }
752
753         if (dirty)
754                 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
755
756         xas_unlock_irq(xas);
757         return entry;
758 }
759
760 static inline
761 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
762 {
763         unsigned long address;
764
765         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
766         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
767         return address;
768 }
769
770 /* Walk all mappings of a given index of a file and writeprotect them */
771 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
772                 unsigned long pfn)
773 {
774         struct vm_area_struct *vma;
775         pte_t pte, *ptep = NULL;
776         pmd_t *pmdp = NULL;
777         spinlock_t *ptl;
778
779         i_mmap_lock_read(mapping);
780         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
781                 struct mmu_notifier_range range;
782                 unsigned long address;
783
784                 cond_resched();
785
786                 if (!(vma->vm_flags & VM_SHARED))
787                         continue;
788
789                 address = pgoff_address(index, vma);
790
791                 /*
792                  * Note because we provide range to follow_pte_pmd it will
793                  * call mmu_notifier_invalidate_range_start() on our behalf
794                  * before taking any lock.
795                  */
796                 if (follow_pte_pmd(vma->vm_mm, address, &range,
797                                    &ptep, &pmdp, &ptl))
798                         continue;
799
800                 /*
801                  * No need to call mmu_notifier_invalidate_range() as we are
802                  * downgrading page table protection not changing it to point
803                  * to a new page.
804                  *
805                  * See Documentation/vm/mmu_notifier.rst
806                  */
807                 if (pmdp) {
808 #ifdef CONFIG_FS_DAX_PMD
809                         pmd_t pmd;
810
811                         if (pfn != pmd_pfn(*pmdp))
812                                 goto unlock_pmd;
813                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
814                                 goto unlock_pmd;
815
816                         flush_cache_page(vma, address, pfn);
817                         pmd = pmdp_invalidate(vma, address, pmdp);
818                         pmd = pmd_wrprotect(pmd);
819                         pmd = pmd_mkclean(pmd);
820                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
821 unlock_pmd:
822 #endif
823                         spin_unlock(ptl);
824                 } else {
825                         if (pfn != pte_pfn(*ptep))
826                                 goto unlock_pte;
827                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
828                                 goto unlock_pte;
829
830                         flush_cache_page(vma, address, pfn);
831                         pte = ptep_clear_flush(vma, address, ptep);
832                         pte = pte_wrprotect(pte);
833                         pte = pte_mkclean(pte);
834                         set_pte_at(vma->vm_mm, address, ptep, pte);
835 unlock_pte:
836                         pte_unmap_unlock(ptep, ptl);
837                 }
838
839                 mmu_notifier_invalidate_range_end(&range);
840         }
841         i_mmap_unlock_read(mapping);
842 }
843
844 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
845                 struct address_space *mapping, void *entry)
846 {
847         unsigned long pfn, index, count;
848         long ret = 0;
849
850         /*
851          * A page got tagged dirty in DAX mapping? Something is seriously
852          * wrong.
853          */
854         if (WARN_ON(!xa_is_value(entry)))
855                 return -EIO;
856
857         if (unlikely(dax_is_locked(entry))) {
858                 void *old_entry = entry;
859
860                 entry = get_unlocked_entry(xas);
861
862                 /* Entry got punched out / reallocated? */
863                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
864                         goto put_unlocked;
865                 /*
866                  * Entry got reallocated elsewhere? No need to writeback.
867                  * We have to compare pfns as we must not bail out due to
868                  * difference in lockbit or entry type.
869                  */
870                 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
871                         goto put_unlocked;
872                 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
873                                         dax_is_zero_entry(entry))) {
874                         ret = -EIO;
875                         goto put_unlocked;
876                 }
877
878                 /* Another fsync thread may have already done this entry */
879                 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
880                         goto put_unlocked;
881         }
882
883         /* Lock the entry to serialize with page faults */
884         dax_lock_entry(xas, entry);
885
886         /*
887          * We can clear the tag now but we have to be careful so that concurrent
888          * dax_writeback_one() calls for the same index cannot finish before we
889          * actually flush the caches. This is achieved as the calls will look
890          * at the entry only under the i_pages lock and once they do that
891          * they will see the entry locked and wait for it to unlock.
892          */
893         xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
894         xas_unlock_irq(xas);
895
896         /*
897          * If dax_writeback_mapping_range() was given a wbc->range_start
898          * in the middle of a PMD, the 'index' we use needs to be
899          * aligned to the start of the PMD.
900          * This allows us to flush for PMD_SIZE and not have to worry about
901          * partial PMD writebacks.
902          */
903         pfn = dax_to_pfn(entry);
904         count = 1UL << dax_entry_order(entry);
905         index = xas->xa_index & ~(count - 1);
906
907         dax_entry_mkclean(mapping, index, pfn);
908         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
909         /*
910          * After we have flushed the cache, we can clear the dirty tag. There
911          * cannot be new dirty data in the pfn after the flush has completed as
912          * the pfn mappings are writeprotected and fault waits for mapping
913          * entry lock.
914          */
915         xas_reset(xas);
916         xas_lock_irq(xas);
917         xas_store(xas, entry);
918         xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
919         dax_wake_entry(xas, entry, false);
920
921         trace_dax_writeback_one(mapping->host, index, count);
922         return ret;
923
924  put_unlocked:
925         put_unlocked_entry(xas, entry);
926         return ret;
927 }
928
929 /*
930  * Flush the mapping to the persistent domain within the byte range of [start,
931  * end]. This is required by data integrity operations to ensure file data is
932  * on persistent storage prior to completion of the operation.
933  */
934 int dax_writeback_mapping_range(struct address_space *mapping,
935                 struct block_device *bdev, struct writeback_control *wbc)
936 {
937         XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
938         struct inode *inode = mapping->host;
939         pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
940         struct dax_device *dax_dev;
941         void *entry;
942         int ret = 0;
943         unsigned int scanned = 0;
944
945         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
946                 return -EIO;
947
948         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
949                 return 0;
950
951         dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
952         if (!dax_dev)
953                 return -EIO;
954
955         trace_dax_writeback_range(inode, xas.xa_index, end_index);
956
957         tag_pages_for_writeback(mapping, xas.xa_index, end_index);
958
959         xas_lock_irq(&xas);
960         xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
961                 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
962                 if (ret < 0) {
963                         mapping_set_error(mapping, ret);
964                         break;
965                 }
966                 if (++scanned % XA_CHECK_SCHED)
967                         continue;
968
969                 xas_pause(&xas);
970                 xas_unlock_irq(&xas);
971                 cond_resched();
972                 xas_lock_irq(&xas);
973         }
974         xas_unlock_irq(&xas);
975         put_dax(dax_dev);
976         trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
977         return ret;
978 }
979 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
980
981 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
982 {
983         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
984 }
985
986 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
987                          pfn_t *pfnp)
988 {
989         const sector_t sector = dax_iomap_sector(iomap, pos);
990         pgoff_t pgoff;
991         int id, rc;
992         long length;
993
994         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
995         if (rc)
996                 return rc;
997         id = dax_read_lock();
998         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
999                                    NULL, pfnp);
1000         if (length < 0) {
1001                 rc = length;
1002                 goto out;
1003         }
1004         rc = -EINVAL;
1005         if (PFN_PHYS(length) < size)
1006                 goto out;
1007         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1008                 goto out;
1009         /* For larger pages we need devmap */
1010         if (length > 1 && !pfn_t_devmap(*pfnp))
1011                 goto out;
1012         rc = 0;
1013 out:
1014         dax_read_unlock(id);
1015         return rc;
1016 }
1017
1018 /*
1019  * The user has performed a load from a hole in the file.  Allocating a new
1020  * page in the file would cause excessive storage usage for workloads with
1021  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1022  * If this page is ever written to we will re-fault and change the mapping to
1023  * point to real DAX storage instead.
1024  */
1025 static vm_fault_t dax_load_hole(struct xa_state *xas,
1026                 struct address_space *mapping, void **entry,
1027                 struct vm_fault *vmf)
1028 {
1029         struct inode *inode = mapping->host;
1030         unsigned long vaddr = vmf->address;
1031         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1032         vm_fault_t ret;
1033
1034         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1035                         DAX_ZERO_PAGE, false);
1036
1037         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1038         trace_dax_load_hole(inode, vmf, ret);
1039         return ret;
1040 }
1041
1042 static bool dax_range_is_aligned(struct block_device *bdev,
1043                                  unsigned int offset, unsigned int length)
1044 {
1045         unsigned short sector_size = bdev_logical_block_size(bdev);
1046
1047         if (!IS_ALIGNED(offset, sector_size))
1048                 return false;
1049         if (!IS_ALIGNED(length, sector_size))
1050                 return false;
1051
1052         return true;
1053 }
1054
1055 int __dax_zero_page_range(struct block_device *bdev,
1056                 struct dax_device *dax_dev, sector_t sector,
1057                 unsigned int offset, unsigned int size)
1058 {
1059         if (dax_range_is_aligned(bdev, offset, size)) {
1060                 sector_t start_sector = sector + (offset >> 9);
1061
1062                 return blkdev_issue_zeroout(bdev, start_sector,
1063                                 size >> 9, GFP_NOFS, 0);
1064         } else {
1065                 pgoff_t pgoff;
1066                 long rc, id;
1067                 void *kaddr;
1068
1069                 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1070                 if (rc)
1071                         return rc;
1072
1073                 id = dax_read_lock();
1074                 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1075                 if (rc < 0) {
1076                         dax_read_unlock(id);
1077                         return rc;
1078                 }
1079                 memset(kaddr + offset, 0, size);
1080                 dax_flush(dax_dev, kaddr + offset, size);
1081                 dax_read_unlock(id);
1082         }
1083         return 0;
1084 }
1085 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1086
1087 static loff_t
1088 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1089                 struct iomap *iomap)
1090 {
1091         struct block_device *bdev = iomap->bdev;
1092         struct dax_device *dax_dev = iomap->dax_dev;
1093         struct iov_iter *iter = data;
1094         loff_t end = pos + length, done = 0;
1095         ssize_t ret = 0;
1096         size_t xfer;
1097         int id;
1098
1099         if (iov_iter_rw(iter) == READ) {
1100                 end = min(end, i_size_read(inode));
1101                 if (pos >= end)
1102                         return 0;
1103
1104                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1105                         return iov_iter_zero(min(length, end - pos), iter);
1106         }
1107
1108         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1109                 return -EIO;
1110
1111         /*
1112          * Write can allocate block for an area which has a hole page mapped
1113          * into page tables. We have to tear down these mappings so that data
1114          * written by write(2) is visible in mmap.
1115          */
1116         if (iomap->flags & IOMAP_F_NEW) {
1117                 invalidate_inode_pages2_range(inode->i_mapping,
1118                                               pos >> PAGE_SHIFT,
1119                                               (end - 1) >> PAGE_SHIFT);
1120         }
1121
1122         id = dax_read_lock();
1123         while (pos < end) {
1124                 unsigned offset = pos & (PAGE_SIZE - 1);
1125                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1126                 const sector_t sector = dax_iomap_sector(iomap, pos);
1127                 ssize_t map_len;
1128                 pgoff_t pgoff;
1129                 void *kaddr;
1130
1131                 if (fatal_signal_pending(current)) {
1132                         ret = -EINTR;
1133                         break;
1134                 }
1135
1136                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1137                 if (ret)
1138                         break;
1139
1140                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1141                                 &kaddr, NULL);
1142                 if (map_len < 0) {
1143                         ret = map_len;
1144                         break;
1145                 }
1146
1147                 map_len = PFN_PHYS(map_len);
1148                 kaddr += offset;
1149                 map_len -= offset;
1150                 if (map_len > end - pos)
1151                         map_len = end - pos;
1152
1153                 /*
1154                  * The userspace address for the memory copy has already been
1155                  * validated via access_ok() in either vfs_read() or
1156                  * vfs_write(), depending on which operation we are doing.
1157                  */
1158                 if (iov_iter_rw(iter) == WRITE)
1159                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1160                                         map_len, iter);
1161                 else
1162                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1163                                         map_len, iter);
1164
1165                 pos += xfer;
1166                 length -= xfer;
1167                 done += xfer;
1168
1169                 if (xfer == 0)
1170                         ret = -EFAULT;
1171                 if (xfer < map_len)
1172                         break;
1173         }
1174         dax_read_unlock(id);
1175
1176         return done ? done : ret;
1177 }
1178
1179 /**
1180  * dax_iomap_rw - Perform I/O to a DAX file
1181  * @iocb:       The control block for this I/O
1182  * @iter:       The addresses to do I/O from or to
1183  * @ops:        iomap ops passed from the file system
1184  *
1185  * This function performs read and write operations to directly mapped
1186  * persistent memory.  The callers needs to take care of read/write exclusion
1187  * and evicting any page cache pages in the region under I/O.
1188  */
1189 ssize_t
1190 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1191                 const struct iomap_ops *ops)
1192 {
1193         struct address_space *mapping = iocb->ki_filp->f_mapping;
1194         struct inode *inode = mapping->host;
1195         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1196         unsigned flags = 0;
1197
1198         if (iov_iter_rw(iter) == WRITE) {
1199                 lockdep_assert_held_exclusive(&inode->i_rwsem);
1200                 flags |= IOMAP_WRITE;
1201         } else {
1202                 lockdep_assert_held(&inode->i_rwsem);
1203         }
1204
1205         while (iov_iter_count(iter)) {
1206                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1207                                 iter, dax_iomap_actor);
1208                 if (ret <= 0)
1209                         break;
1210                 pos += ret;
1211                 done += ret;
1212         }
1213
1214         iocb->ki_pos += done;
1215         return done ? done : ret;
1216 }
1217 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1218
1219 static vm_fault_t dax_fault_return(int error)
1220 {
1221         if (error == 0)
1222                 return VM_FAULT_NOPAGE;
1223         return vmf_error(error);
1224 }
1225
1226 /*
1227  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1228  * flushed on write-faults (non-cow), but not read-faults.
1229  */
1230 static bool dax_fault_is_synchronous(unsigned long flags,
1231                 struct vm_area_struct *vma, struct iomap *iomap)
1232 {
1233         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1234                 && (iomap->flags & IOMAP_F_DIRTY);
1235 }
1236
1237 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1238                                int *iomap_errp, const struct iomap_ops *ops)
1239 {
1240         struct vm_area_struct *vma = vmf->vma;
1241         struct address_space *mapping = vma->vm_file->f_mapping;
1242         XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1243         struct inode *inode = mapping->host;
1244         unsigned long vaddr = vmf->address;
1245         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1246         struct iomap iomap = { 0 };
1247         unsigned flags = IOMAP_FAULT;
1248         int error, major = 0;
1249         bool write = vmf->flags & FAULT_FLAG_WRITE;
1250         bool sync;
1251         vm_fault_t ret = 0;
1252         void *entry;
1253         pfn_t pfn;
1254
1255         trace_dax_pte_fault(inode, vmf, ret);
1256         /*
1257          * Check whether offset isn't beyond end of file now. Caller is supposed
1258          * to hold locks serializing us with truncate / punch hole so this is
1259          * a reliable test.
1260          */
1261         if (pos >= i_size_read(inode)) {
1262                 ret = VM_FAULT_SIGBUS;
1263                 goto out;
1264         }
1265
1266         if (write && !vmf->cow_page)
1267                 flags |= IOMAP_WRITE;
1268
1269         entry = grab_mapping_entry(&xas, mapping, 0);
1270         if (xa_is_internal(entry)) {
1271                 ret = xa_to_internal(entry);
1272                 goto out;
1273         }
1274
1275         /*
1276          * It is possible, particularly with mixed reads & writes to private
1277          * mappings, that we have raced with a PMD fault that overlaps with
1278          * the PTE we need to set up.  If so just return and the fault will be
1279          * retried.
1280          */
1281         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1282                 ret = VM_FAULT_NOPAGE;
1283                 goto unlock_entry;
1284         }
1285
1286         /*
1287          * Note that we don't bother to use iomap_apply here: DAX required
1288          * the file system block size to be equal the page size, which means
1289          * that we never have to deal with more than a single extent here.
1290          */
1291         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1292         if (iomap_errp)
1293                 *iomap_errp = error;
1294         if (error) {
1295                 ret = dax_fault_return(error);
1296                 goto unlock_entry;
1297         }
1298         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1299                 error = -EIO;   /* fs corruption? */
1300                 goto error_finish_iomap;
1301         }
1302
1303         if (vmf->cow_page) {
1304                 sector_t sector = dax_iomap_sector(&iomap, pos);
1305
1306                 switch (iomap.type) {
1307                 case IOMAP_HOLE:
1308                 case IOMAP_UNWRITTEN:
1309                         clear_user_highpage(vmf->cow_page, vaddr);
1310                         break;
1311                 case IOMAP_MAPPED:
1312                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1313                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1314                         break;
1315                 default:
1316                         WARN_ON_ONCE(1);
1317                         error = -EIO;
1318                         break;
1319                 }
1320
1321                 if (error)
1322                         goto error_finish_iomap;
1323
1324                 __SetPageUptodate(vmf->cow_page);
1325                 ret = finish_fault(vmf);
1326                 if (!ret)
1327                         ret = VM_FAULT_DONE_COW;
1328                 goto finish_iomap;
1329         }
1330
1331         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1332
1333         switch (iomap.type) {
1334         case IOMAP_MAPPED:
1335                 if (iomap.flags & IOMAP_F_NEW) {
1336                         count_vm_event(PGMAJFAULT);
1337                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1338                         major = VM_FAULT_MAJOR;
1339                 }
1340                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1341                 if (error < 0)
1342                         goto error_finish_iomap;
1343
1344                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1345                                                  0, write && !sync);
1346
1347                 /*
1348                  * If we are doing synchronous page fault and inode needs fsync,
1349                  * we can insert PTE into page tables only after that happens.
1350                  * Skip insertion for now and return the pfn so that caller can
1351                  * insert it after fsync is done.
1352                  */
1353                 if (sync) {
1354                         if (WARN_ON_ONCE(!pfnp)) {
1355                                 error = -EIO;
1356                                 goto error_finish_iomap;
1357                         }
1358                         *pfnp = pfn;
1359                         ret = VM_FAULT_NEEDDSYNC | major;
1360                         goto finish_iomap;
1361                 }
1362                 trace_dax_insert_mapping(inode, vmf, entry);
1363                 if (write)
1364                         ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1365                 else
1366                         ret = vmf_insert_mixed(vma, vaddr, pfn);
1367
1368                 goto finish_iomap;
1369         case IOMAP_UNWRITTEN:
1370         case IOMAP_HOLE:
1371                 if (!write) {
1372                         ret = dax_load_hole(&xas, mapping, &entry, vmf);
1373                         goto finish_iomap;
1374                 }
1375                 /*FALLTHRU*/
1376         default:
1377                 WARN_ON_ONCE(1);
1378                 error = -EIO;
1379                 break;
1380         }
1381
1382  error_finish_iomap:
1383         ret = dax_fault_return(error);
1384  finish_iomap:
1385         if (ops->iomap_end) {
1386                 int copied = PAGE_SIZE;
1387
1388                 if (ret & VM_FAULT_ERROR)
1389                         copied = 0;
1390                 /*
1391                  * The fault is done by now and there's no way back (other
1392                  * thread may be already happily using PTE we have installed).
1393                  * Just ignore error from ->iomap_end since we cannot do much
1394                  * with it.
1395                  */
1396                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1397         }
1398  unlock_entry:
1399         dax_unlock_entry(&xas, entry);
1400  out:
1401         trace_dax_pte_fault_done(inode, vmf, ret);
1402         return ret | major;
1403 }
1404
1405 #ifdef CONFIG_FS_DAX_PMD
1406 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1407                 struct iomap *iomap, void **entry)
1408 {
1409         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1410         unsigned long pmd_addr = vmf->address & PMD_MASK;
1411         struct vm_area_struct *vma = vmf->vma;
1412         struct inode *inode = mapping->host;
1413         pgtable_t pgtable = NULL;
1414         struct page *zero_page;
1415         spinlock_t *ptl;
1416         pmd_t pmd_entry;
1417         pfn_t pfn;
1418
1419         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1420
1421         if (unlikely(!zero_page))
1422                 goto fallback;
1423
1424         pfn = page_to_pfn_t(zero_page);
1425         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1426                         DAX_PMD | DAX_ZERO_PAGE, false);
1427
1428         if (arch_needs_pgtable_deposit()) {
1429                 pgtable = pte_alloc_one(vma->vm_mm);
1430                 if (!pgtable)
1431                         return VM_FAULT_OOM;
1432         }
1433
1434         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1435         if (!pmd_none(*(vmf->pmd))) {
1436                 spin_unlock(ptl);
1437                 goto fallback;
1438         }
1439
1440         if (pgtable) {
1441                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1442                 mm_inc_nr_ptes(vma->vm_mm);
1443         }
1444         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1445         pmd_entry = pmd_mkhuge(pmd_entry);
1446         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1447         spin_unlock(ptl);
1448         trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1449         return VM_FAULT_NOPAGE;
1450
1451 fallback:
1452         if (pgtable)
1453                 pte_free(vma->vm_mm, pgtable);
1454         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1455         return VM_FAULT_FALLBACK;
1456 }
1457
1458 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1459                                const struct iomap_ops *ops)
1460 {
1461         struct vm_area_struct *vma = vmf->vma;
1462         struct address_space *mapping = vma->vm_file->f_mapping;
1463         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1464         unsigned long pmd_addr = vmf->address & PMD_MASK;
1465         bool write = vmf->flags & FAULT_FLAG_WRITE;
1466         bool sync;
1467         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1468         struct inode *inode = mapping->host;
1469         vm_fault_t result = VM_FAULT_FALLBACK;
1470         struct iomap iomap = { 0 };
1471         pgoff_t max_pgoff;
1472         void *entry;
1473         loff_t pos;
1474         int error;
1475         pfn_t pfn;
1476
1477         /*
1478          * Check whether offset isn't beyond end of file now. Caller is
1479          * supposed to hold locks serializing us with truncate / punch hole so
1480          * this is a reliable test.
1481          */
1482         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1483
1484         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1485
1486         /*
1487          * Make sure that the faulting address's PMD offset (color) matches
1488          * the PMD offset from the start of the file.  This is necessary so
1489          * that a PMD range in the page table overlaps exactly with a PMD
1490          * range in the page cache.
1491          */
1492         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1493             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1494                 goto fallback;
1495
1496         /* Fall back to PTEs if we're going to COW */
1497         if (write && !(vma->vm_flags & VM_SHARED))
1498                 goto fallback;
1499
1500         /* If the PMD would extend outside the VMA */
1501         if (pmd_addr < vma->vm_start)
1502                 goto fallback;
1503         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1504                 goto fallback;
1505
1506         if (xas.xa_index >= max_pgoff) {
1507                 result = VM_FAULT_SIGBUS;
1508                 goto out;
1509         }
1510
1511         /* If the PMD would extend beyond the file size */
1512         if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1513                 goto fallback;
1514
1515         /*
1516          * grab_mapping_entry() will make sure we get an empty PMD entry,
1517          * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1518          * entry is already in the array, for instance), it will return
1519          * VM_FAULT_FALLBACK.
1520          */
1521         entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1522         if (xa_is_internal(entry)) {
1523                 result = xa_to_internal(entry);
1524                 goto fallback;
1525         }
1526
1527         /*
1528          * It is possible, particularly with mixed reads & writes to private
1529          * mappings, that we have raced with a PTE fault that overlaps with
1530          * the PMD we need to set up.  If so just return and the fault will be
1531          * retried.
1532          */
1533         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1534                         !pmd_devmap(*vmf->pmd)) {
1535                 result = 0;
1536                 goto unlock_entry;
1537         }
1538
1539         /*
1540          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1541          * setting up a mapping, so really we're using iomap_begin() as a way
1542          * to look up our filesystem block.
1543          */
1544         pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1545         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1546         if (error)
1547                 goto unlock_entry;
1548
1549         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1550                 goto finish_iomap;
1551
1552         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1553
1554         switch (iomap.type) {
1555         case IOMAP_MAPPED:
1556                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1557                 if (error < 0)
1558                         goto finish_iomap;
1559
1560                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1561                                                 DAX_PMD, write && !sync);
1562
1563                 /*
1564                  * If we are doing synchronous page fault and inode needs fsync,
1565                  * we can insert PMD into page tables only after that happens.
1566                  * Skip insertion for now and return the pfn so that caller can
1567                  * insert it after fsync is done.
1568                  */
1569                 if (sync) {
1570                         if (WARN_ON_ONCE(!pfnp))
1571                                 goto finish_iomap;
1572                         *pfnp = pfn;
1573                         result = VM_FAULT_NEEDDSYNC;
1574                         goto finish_iomap;
1575                 }
1576
1577                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1578                 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1579                 break;
1580         case IOMAP_UNWRITTEN:
1581         case IOMAP_HOLE:
1582                 if (WARN_ON_ONCE(write))
1583                         break;
1584                 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1585                 break;
1586         default:
1587                 WARN_ON_ONCE(1);
1588                 break;
1589         }
1590
1591  finish_iomap:
1592         if (ops->iomap_end) {
1593                 int copied = PMD_SIZE;
1594
1595                 if (result == VM_FAULT_FALLBACK)
1596                         copied = 0;
1597                 /*
1598                  * The fault is done by now and there's no way back (other
1599                  * thread may be already happily using PMD we have installed).
1600                  * Just ignore error from ->iomap_end since we cannot do much
1601                  * with it.
1602                  */
1603                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1604                                 &iomap);
1605         }
1606  unlock_entry:
1607         dax_unlock_entry(&xas, entry);
1608  fallback:
1609         if (result == VM_FAULT_FALLBACK) {
1610                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1611                 count_vm_event(THP_FAULT_FALLBACK);
1612         }
1613 out:
1614         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1615         return result;
1616 }
1617 #else
1618 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1619                                const struct iomap_ops *ops)
1620 {
1621         return VM_FAULT_FALLBACK;
1622 }
1623 #endif /* CONFIG_FS_DAX_PMD */
1624
1625 /**
1626  * dax_iomap_fault - handle a page fault on a DAX file
1627  * @vmf: The description of the fault
1628  * @pe_size: Size of the page to fault in
1629  * @pfnp: PFN to insert for synchronous faults if fsync is required
1630  * @iomap_errp: Storage for detailed error code in case of error
1631  * @ops: Iomap ops passed from the file system
1632  *
1633  * When a page fault occurs, filesystems may call this helper in
1634  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1635  * has done all the necessary locking for page fault to proceed
1636  * successfully.
1637  */
1638 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1639                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1640 {
1641         switch (pe_size) {
1642         case PE_SIZE_PTE:
1643                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1644         case PE_SIZE_PMD:
1645                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1646         default:
1647                 return VM_FAULT_FALLBACK;
1648         }
1649 }
1650 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1651
1652 /*
1653  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1654  * @vmf: The description of the fault
1655  * @pfn: PFN to insert
1656  * @order: Order of entry to insert.
1657  *
1658  * This function inserts a writeable PTE or PMD entry into the page tables
1659  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1660  */
1661 static vm_fault_t
1662 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1663 {
1664         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1665         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1666         void *entry;
1667         vm_fault_t ret;
1668
1669         xas_lock_irq(&xas);
1670         entry = get_unlocked_entry(&xas);
1671         /* Did we race with someone splitting entry or so? */
1672         if (!entry ||
1673             (order == 0 && !dax_is_pte_entry(entry)) ||
1674             (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
1675                 put_unlocked_entry(&xas, entry);
1676                 xas_unlock_irq(&xas);
1677                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1678                                                       VM_FAULT_NOPAGE);
1679                 return VM_FAULT_NOPAGE;
1680         }
1681         xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1682         dax_lock_entry(&xas, entry);
1683         xas_unlock_irq(&xas);
1684         if (order == 0)
1685                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1686 #ifdef CONFIG_FS_DAX_PMD
1687         else if (order == PMD_ORDER)
1688                 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1689 #endif
1690         else
1691                 ret = VM_FAULT_FALLBACK;
1692         dax_unlock_entry(&xas, entry);
1693         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1694         return ret;
1695 }
1696
1697 /**
1698  * dax_finish_sync_fault - finish synchronous page fault
1699  * @vmf: The description of the fault
1700  * @pe_size: Size of entry to be inserted
1701  * @pfn: PFN to insert
1702  *
1703  * This function ensures that the file range touched by the page fault is
1704  * stored persistently on the media and handles inserting of appropriate page
1705  * table entry.
1706  */
1707 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1708                 enum page_entry_size pe_size, pfn_t pfn)
1709 {
1710         int err;
1711         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1712         unsigned int order = pe_order(pe_size);
1713         size_t len = PAGE_SIZE << order;
1714
1715         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1716         if (err)
1717                 return VM_FAULT_SIGBUS;
1718         return dax_insert_pfn_mkwrite(vmf, pfn, order);
1719 }
1720 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);