2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include <asm/pgalloc.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/fs_dax.h>
42 static inline unsigned int pe_order(enum page_entry_size pe_size)
44 if (pe_size == PE_SIZE_PTE)
45 return PAGE_SHIFT - PAGE_SHIFT;
46 if (pe_size == PE_SIZE_PMD)
47 return PMD_SHIFT - PAGE_SHIFT;
48 if (pe_size == PE_SIZE_PUD)
49 return PUD_SHIFT - PAGE_SHIFT;
53 /* We choose 4096 entries - same as per-zone page wait tables */
54 #define DAX_WAIT_TABLE_BITS 12
55 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
57 /* The 'colour' (ie low bits) within a PMD of a page offset. */
58 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
59 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
61 /* The order of a PMD entry */
62 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
64 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
66 static int __init init_dax_wait_table(void)
70 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
71 init_waitqueue_head(wait_table + i);
74 fs_initcall(init_dax_wait_table);
77 * DAX pagecache entries use XArray value entries so they can't be mistaken
78 * for pages. We use one bit for locking, one bit for the entry size (PMD)
79 * and two more to tell us if the entry is a zero page or an empty entry that
80 * is just used for locking. In total four special bits.
82 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
83 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
87 #define DAX_LOCKED (1UL << 0)
88 #define DAX_PMD (1UL << 1)
89 #define DAX_ZERO_PAGE (1UL << 2)
90 #define DAX_EMPTY (1UL << 3)
92 static unsigned long dax_to_pfn(void *entry)
94 return xa_to_value(entry) >> DAX_SHIFT;
97 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
99 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
102 static bool dax_is_locked(void *entry)
104 return xa_to_value(entry) & DAX_LOCKED;
107 static unsigned int dax_entry_order(void *entry)
109 if (xa_to_value(entry) & DAX_PMD)
114 static unsigned long dax_is_pmd_entry(void *entry)
116 return xa_to_value(entry) & DAX_PMD;
119 static bool dax_is_pte_entry(void *entry)
121 return !(xa_to_value(entry) & DAX_PMD);
124 static int dax_is_zero_entry(void *entry)
126 return xa_to_value(entry) & DAX_ZERO_PAGE;
129 static int dax_is_empty_entry(void *entry)
131 return xa_to_value(entry) & DAX_EMPTY;
135 * DAX page cache entry locking
137 struct exceptional_entry_key {
142 struct wait_exceptional_entry_queue {
143 wait_queue_entry_t wait;
144 struct exceptional_entry_key key;
147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148 void *entry, struct exceptional_entry_key *key)
151 unsigned long index = xas->xa_index;
154 * If 'entry' is a PMD, align the 'index' that we use for the wait
155 * queue to the start of that PMD. This ensures that all offsets in
156 * the range covered by the PMD map to the same bit lock.
158 if (dax_is_pmd_entry(entry))
159 index &= ~PG_PMD_COLOUR;
161 key->entry_start = index;
163 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
164 return wait_table + hash;
167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168 unsigned int mode, int sync, void *keyp)
170 struct exceptional_entry_key *key = keyp;
171 struct wait_exceptional_entry_queue *ewait =
172 container_of(wait, struct wait_exceptional_entry_queue, wait);
174 if (key->xa != ewait->key.xa ||
175 key->entry_start != ewait->key.entry_start)
177 return autoremove_wake_function(wait, mode, sync, NULL);
181 * @entry may no longer be the entry at the index in the mapping.
182 * The important information it's conveying is whether the entry at
183 * this index used to be a PMD entry.
185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
187 struct exceptional_entry_key key;
188 wait_queue_head_t *wq;
190 wq = dax_entry_waitqueue(xas, entry, &key);
193 * Checking for locked entry and prepare_to_wait_exclusive() happens
194 * under the i_pages lock, ditto for entry handling in our callers.
195 * So at this point all tasks that could have seen our entry locked
196 * must be in the waitqueue and the following check will see them.
198 if (waitqueue_active(wq))
199 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
203 * Look up entry in page cache, wait for it to become unlocked if it
204 * is a DAX entry and return it. The caller must subsequently call
205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
208 * Must be called with the i_pages lock held.
210 static void *get_unlocked_entry(struct xa_state *xas)
213 struct wait_exceptional_entry_queue ewait;
214 wait_queue_head_t *wq;
216 init_wait(&ewait.wait);
217 ewait.wait.func = wake_exceptional_entry_func;
220 entry = xas_find_conflict(xas);
221 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
222 !dax_is_locked(entry))
225 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
226 prepare_to_wait_exclusive(wq, &ewait.wait,
227 TASK_UNINTERRUPTIBLE);
231 finish_wait(wq, &ewait.wait);
237 * The only thing keeping the address space around is the i_pages lock
238 * (it's cycled in clear_inode() after removing the entries from i_pages)
239 * After we call xas_unlock_irq(), we cannot touch xas->xa.
241 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
243 struct wait_exceptional_entry_queue ewait;
244 wait_queue_head_t *wq;
246 init_wait(&ewait.wait);
247 ewait.wait.func = wake_exceptional_entry_func;
249 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
251 * Unlike get_unlocked_entry() there is no guarantee that this
252 * path ever successfully retrieves an unlocked entry before an
253 * inode dies. Perform a non-exclusive wait in case this path
254 * never successfully performs its own wake up.
256 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
259 finish_wait(wq, &ewait.wait);
262 static void put_unlocked_entry(struct xa_state *xas, void *entry)
264 /* If we were the only waiter woken, wake the next one */
266 dax_wake_entry(xas, entry, false);
270 * We used the xa_state to get the entry, but then we locked the entry and
271 * dropped the xa_lock, so we know the xa_state is stale and must be reset
274 static void dax_unlock_entry(struct xa_state *xas, void *entry)
278 BUG_ON(dax_is_locked(entry));
281 old = xas_store(xas, entry);
283 BUG_ON(!dax_is_locked(old));
284 dax_wake_entry(xas, entry, false);
288 * Return: The entry stored at this location before it was locked.
290 static void *dax_lock_entry(struct xa_state *xas, void *entry)
292 unsigned long v = xa_to_value(entry);
293 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
296 static unsigned long dax_entry_size(void *entry)
298 if (dax_is_zero_entry(entry))
300 else if (dax_is_empty_entry(entry))
302 else if (dax_is_pmd_entry(entry))
308 static unsigned long dax_end_pfn(void *entry)
310 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
314 * Iterate through all mapped pfns represented by an entry, i.e. skip
315 * 'empty' and 'zero' entries.
317 #define for_each_mapped_pfn(entry, pfn) \
318 for (pfn = dax_to_pfn(entry); \
319 pfn < dax_end_pfn(entry); pfn++)
322 * TODO: for reflink+dax we need a way to associate a single page with
323 * multiple address_space instances at different linear_page_index()
326 static void dax_associate_entry(void *entry, struct address_space *mapping,
327 struct vm_area_struct *vma, unsigned long address)
329 unsigned long size = dax_entry_size(entry), pfn, index;
332 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
335 index = linear_page_index(vma, address & ~(size - 1));
336 for_each_mapped_pfn(entry, pfn) {
337 struct page *page = pfn_to_page(pfn);
339 WARN_ON_ONCE(page->mapping);
340 page->mapping = mapping;
341 page->index = index + i++;
345 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
350 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
353 for_each_mapped_pfn(entry, pfn) {
354 struct page *page = pfn_to_page(pfn);
356 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
357 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
358 page->mapping = NULL;
363 static struct page *dax_busy_page(void *entry)
367 for_each_mapped_pfn(entry, pfn) {
368 struct page *page = pfn_to_page(pfn);
370 if (page_ref_count(page) > 1)
377 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
378 * @page: The page whose entry we want to lock
380 * Context: Process context.
381 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
384 dax_entry_t dax_lock_page(struct page *page)
386 XA_STATE(xas, NULL, 0);
389 /* Ensure page->mapping isn't freed while we look at it */
392 struct address_space *mapping = READ_ONCE(page->mapping);
395 if (!mapping || !dax_mapping(mapping))
399 * In the device-dax case there's no need to lock, a
400 * struct dev_pagemap pin is sufficient to keep the
401 * inode alive, and we assume we have dev_pagemap pin
402 * otherwise we would not have a valid pfn_to_page()
405 entry = (void *)~0UL;
406 if (S_ISCHR(mapping->host->i_mode))
409 xas.xa = &mapping->i_pages;
411 if (mapping != page->mapping) {
412 xas_unlock_irq(&xas);
415 xas_set(&xas, page->index);
416 entry = xas_load(&xas);
417 if (dax_is_locked(entry)) {
419 wait_entry_unlocked(&xas, entry);
423 dax_lock_entry(&xas, entry);
424 xas_unlock_irq(&xas);
428 return (dax_entry_t)entry;
431 void dax_unlock_page(struct page *page, dax_entry_t cookie)
433 struct address_space *mapping = page->mapping;
434 XA_STATE(xas, &mapping->i_pages, page->index);
436 if (S_ISCHR(mapping->host->i_mode))
439 dax_unlock_entry(&xas, (void *)cookie);
443 * Find page cache entry at given index. If it is a DAX entry, return it
444 * with the entry locked. If the page cache doesn't contain an entry at
445 * that index, add a locked empty entry.
447 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
448 * either return that locked entry or will return VM_FAULT_FALLBACK.
449 * This will happen if there are any PTE entries within the PMD range
450 * that we are requesting.
452 * We always favor PTE entries over PMD entries. There isn't a flow where we
453 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
454 * insertion will fail if it finds any PTE entries already in the tree, and a
455 * PTE insertion will cause an existing PMD entry to be unmapped and
456 * downgraded to PTE entries. This happens for both PMD zero pages as
457 * well as PMD empty entries.
459 * The exception to this downgrade path is for PMD entries that have
460 * real storage backing them. We will leave these real PMD entries in
461 * the tree, and PTE writes will simply dirty the entire PMD entry.
463 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
464 * persistent memory the benefit is doubtful. We can add that later if we can
467 * On error, this function does not return an ERR_PTR. Instead it returns
468 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
469 * overlap with xarray value entries.
471 static void *grab_mapping_entry(struct xa_state *xas,
472 struct address_space *mapping, unsigned long size_flag)
474 unsigned long index = xas->xa_index;
475 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
480 entry = get_unlocked_entry(xas);
483 if (!xa_is_value(entry)) {
484 xas_set_err(xas, EIO);
488 if (size_flag & DAX_PMD) {
489 if (dax_is_pte_entry(entry)) {
490 put_unlocked_entry(xas, entry);
493 } else { /* trying to grab a PTE entry */
494 if (dax_is_pmd_entry(entry) &&
495 (dax_is_zero_entry(entry) ||
496 dax_is_empty_entry(entry))) {
497 pmd_downgrade = true;
504 * Make sure 'entry' remains valid while we drop
507 dax_lock_entry(xas, entry);
510 * Besides huge zero pages the only other thing that gets
511 * downgraded are empty entries which don't need to be
514 if (dax_is_zero_entry(entry)) {
516 unmap_mapping_pages(mapping,
517 xas->xa_index & ~PG_PMD_COLOUR,
523 dax_disassociate_entry(entry, mapping, false);
524 xas_store(xas, NULL); /* undo the PMD join */
525 dax_wake_entry(xas, entry, true);
526 mapping->nrexceptional--;
532 dax_lock_entry(xas, entry);
534 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
535 dax_lock_entry(xas, entry);
538 mapping->nrexceptional++;
543 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
545 if (xas->xa_node == XA_ERROR(-ENOMEM))
546 return xa_mk_internal(VM_FAULT_OOM);
548 return xa_mk_internal(VM_FAULT_SIGBUS);
552 return xa_mk_internal(VM_FAULT_FALLBACK);
556 * dax_layout_busy_page - find first pinned page in @mapping
557 * @mapping: address space to scan for a page with ref count > 1
559 * DAX requires ZONE_DEVICE mapped pages. These pages are never
560 * 'onlined' to the page allocator so they are considered idle when
561 * page->count == 1. A filesystem uses this interface to determine if
562 * any page in the mapping is busy, i.e. for DMA, or other
563 * get_user_pages() usages.
565 * It is expected that the filesystem is holding locks to block the
566 * establishment of new mappings in this address_space. I.e. it expects
567 * to be able to run unmap_mapping_range() and subsequently not race
568 * mapping_mapped() becoming true.
570 struct page *dax_layout_busy_page(struct address_space *mapping)
572 XA_STATE(xas, &mapping->i_pages, 0);
574 unsigned int scanned = 0;
575 struct page *page = NULL;
578 * In the 'limited' case get_user_pages() for dax is disabled.
580 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
583 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
587 * If we race get_user_pages_fast() here either we'll see the
588 * elevated page count in the iteration and wait, or
589 * get_user_pages_fast() will see that the page it took a reference
590 * against is no longer mapped in the page tables and bail to the
591 * get_user_pages() slow path. The slow path is protected by
592 * pte_lock() and pmd_lock(). New references are not taken without
593 * holding those locks, and unmap_mapping_range() will not zero the
594 * pte or pmd without holding the respective lock, so we are
595 * guaranteed to either see new references or prevent new
596 * references from being established.
598 unmap_mapping_range(mapping, 0, 0, 1);
601 xas_for_each(&xas, entry, ULONG_MAX) {
602 if (WARN_ON_ONCE(!xa_is_value(entry)))
604 if (unlikely(dax_is_locked(entry)))
605 entry = get_unlocked_entry(&xas);
607 page = dax_busy_page(entry);
608 put_unlocked_entry(&xas, entry);
611 if (++scanned % XA_CHECK_SCHED)
615 xas_unlock_irq(&xas);
619 xas_unlock_irq(&xas);
622 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
624 static int __dax_invalidate_entry(struct address_space *mapping,
625 pgoff_t index, bool trunc)
627 XA_STATE(xas, &mapping->i_pages, index);
632 entry = get_unlocked_entry(&xas);
633 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
636 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
637 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
639 dax_disassociate_entry(entry, mapping, trunc);
640 xas_store(&xas, NULL);
641 mapping->nrexceptional--;
644 put_unlocked_entry(&xas, entry);
645 xas_unlock_irq(&xas);
650 * Delete DAX entry at @index from @mapping. Wait for it
651 * to be unlocked before deleting it.
653 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
655 int ret = __dax_invalidate_entry(mapping, index, true);
658 * This gets called from truncate / punch_hole path. As such, the caller
659 * must hold locks protecting against concurrent modifications of the
660 * page cache (usually fs-private i_mmap_sem for writing). Since the
661 * caller has seen a DAX entry for this index, we better find it
662 * at that index as well...
669 * Invalidate DAX entry if it is clean.
671 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
674 return __dax_invalidate_entry(mapping, index, false);
677 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
678 sector_t sector, size_t size, struct page *to,
686 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
690 id = dax_read_lock();
691 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
696 vto = kmap_atomic(to);
697 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
704 * By this point grab_mapping_entry() has ensured that we have a locked entry
705 * of the appropriate size so we don't have to worry about downgrading PMDs to
706 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
707 * already in the tree, we will skip the insertion and just dirty the PMD as
710 static void *dax_insert_entry(struct xa_state *xas,
711 struct address_space *mapping, struct vm_fault *vmf,
712 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
714 void *new_entry = dax_make_entry(pfn, flags);
717 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
719 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
720 unsigned long index = xas->xa_index;
721 /* we are replacing a zero page with block mapping */
722 if (dax_is_pmd_entry(entry))
723 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
726 unmap_mapping_pages(mapping, index, 1, false);
731 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
732 dax_disassociate_entry(entry, mapping, false);
733 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
736 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
738 * Only swap our new entry into the page cache if the current
739 * entry is a zero page or an empty entry. If a normal PTE or
740 * PMD entry is already in the cache, we leave it alone. This
741 * means that if we are trying to insert a PTE and the
742 * existing entry is a PMD, we will just leave the PMD in the
743 * tree and dirty it if necessary.
745 void *old = dax_lock_entry(xas, new_entry);
746 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
750 xas_load(xas); /* Walk the xa_state */
754 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
761 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
763 unsigned long address;
765 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
766 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
770 /* Walk all mappings of a given index of a file and writeprotect them */
771 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
774 struct vm_area_struct *vma;
775 pte_t pte, *ptep = NULL;
779 i_mmap_lock_read(mapping);
780 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
781 struct mmu_notifier_range range;
782 unsigned long address;
786 if (!(vma->vm_flags & VM_SHARED))
789 address = pgoff_address(index, vma);
792 * Note because we provide range to follow_pte_pmd it will
793 * call mmu_notifier_invalidate_range_start() on our behalf
794 * before taking any lock.
796 if (follow_pte_pmd(vma->vm_mm, address, &range,
801 * No need to call mmu_notifier_invalidate_range() as we are
802 * downgrading page table protection not changing it to point
805 * See Documentation/vm/mmu_notifier.rst
808 #ifdef CONFIG_FS_DAX_PMD
811 if (pfn != pmd_pfn(*pmdp))
813 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
816 flush_cache_page(vma, address, pfn);
817 pmd = pmdp_invalidate(vma, address, pmdp);
818 pmd = pmd_wrprotect(pmd);
819 pmd = pmd_mkclean(pmd);
820 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
825 if (pfn != pte_pfn(*ptep))
827 if (!pte_dirty(*ptep) && !pte_write(*ptep))
830 flush_cache_page(vma, address, pfn);
831 pte = ptep_clear_flush(vma, address, ptep);
832 pte = pte_wrprotect(pte);
833 pte = pte_mkclean(pte);
834 set_pte_at(vma->vm_mm, address, ptep, pte);
836 pte_unmap_unlock(ptep, ptl);
839 mmu_notifier_invalidate_range_end(&range);
841 i_mmap_unlock_read(mapping);
844 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
845 struct address_space *mapping, void *entry)
847 unsigned long pfn, index, count;
851 * A page got tagged dirty in DAX mapping? Something is seriously
854 if (WARN_ON(!xa_is_value(entry)))
857 if (unlikely(dax_is_locked(entry))) {
858 void *old_entry = entry;
860 entry = get_unlocked_entry(xas);
862 /* Entry got punched out / reallocated? */
863 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
866 * Entry got reallocated elsewhere? No need to writeback.
867 * We have to compare pfns as we must not bail out due to
868 * difference in lockbit or entry type.
870 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
872 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
873 dax_is_zero_entry(entry))) {
878 /* Another fsync thread may have already done this entry */
879 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
883 /* Lock the entry to serialize with page faults */
884 dax_lock_entry(xas, entry);
887 * We can clear the tag now but we have to be careful so that concurrent
888 * dax_writeback_one() calls for the same index cannot finish before we
889 * actually flush the caches. This is achieved as the calls will look
890 * at the entry only under the i_pages lock and once they do that
891 * they will see the entry locked and wait for it to unlock.
893 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
897 * If dax_writeback_mapping_range() was given a wbc->range_start
898 * in the middle of a PMD, the 'index' we use needs to be
899 * aligned to the start of the PMD.
900 * This allows us to flush for PMD_SIZE and not have to worry about
901 * partial PMD writebacks.
903 pfn = dax_to_pfn(entry);
904 count = 1UL << dax_entry_order(entry);
905 index = xas->xa_index & ~(count - 1);
907 dax_entry_mkclean(mapping, index, pfn);
908 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
910 * After we have flushed the cache, we can clear the dirty tag. There
911 * cannot be new dirty data in the pfn after the flush has completed as
912 * the pfn mappings are writeprotected and fault waits for mapping
917 xas_store(xas, entry);
918 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
919 dax_wake_entry(xas, entry, false);
921 trace_dax_writeback_one(mapping->host, index, count);
925 put_unlocked_entry(xas, entry);
930 * Flush the mapping to the persistent domain within the byte range of [start,
931 * end]. This is required by data integrity operations to ensure file data is
932 * on persistent storage prior to completion of the operation.
934 int dax_writeback_mapping_range(struct address_space *mapping,
935 struct block_device *bdev, struct writeback_control *wbc)
937 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
938 struct inode *inode = mapping->host;
939 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
940 struct dax_device *dax_dev;
943 unsigned int scanned = 0;
945 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
948 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
951 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
955 trace_dax_writeback_range(inode, xas.xa_index, end_index);
957 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
960 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
961 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
963 mapping_set_error(mapping, ret);
966 if (++scanned % XA_CHECK_SCHED)
970 xas_unlock_irq(&xas);
974 xas_unlock_irq(&xas);
976 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
979 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
981 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
983 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
986 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
989 const sector_t sector = dax_iomap_sector(iomap, pos);
994 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
997 id = dax_read_lock();
998 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1005 if (PFN_PHYS(length) < size)
1007 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1009 /* For larger pages we need devmap */
1010 if (length > 1 && !pfn_t_devmap(*pfnp))
1014 dax_read_unlock(id);
1019 * The user has performed a load from a hole in the file. Allocating a new
1020 * page in the file would cause excessive storage usage for workloads with
1021 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1022 * If this page is ever written to we will re-fault and change the mapping to
1023 * point to real DAX storage instead.
1025 static vm_fault_t dax_load_hole(struct xa_state *xas,
1026 struct address_space *mapping, void **entry,
1027 struct vm_fault *vmf)
1029 struct inode *inode = mapping->host;
1030 unsigned long vaddr = vmf->address;
1031 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1034 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1035 DAX_ZERO_PAGE, false);
1037 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1038 trace_dax_load_hole(inode, vmf, ret);
1042 static bool dax_range_is_aligned(struct block_device *bdev,
1043 unsigned int offset, unsigned int length)
1045 unsigned short sector_size = bdev_logical_block_size(bdev);
1047 if (!IS_ALIGNED(offset, sector_size))
1049 if (!IS_ALIGNED(length, sector_size))
1055 int __dax_zero_page_range(struct block_device *bdev,
1056 struct dax_device *dax_dev, sector_t sector,
1057 unsigned int offset, unsigned int size)
1059 if (dax_range_is_aligned(bdev, offset, size)) {
1060 sector_t start_sector = sector + (offset >> 9);
1062 return blkdev_issue_zeroout(bdev, start_sector,
1063 size >> 9, GFP_NOFS, 0);
1069 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1073 id = dax_read_lock();
1074 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1076 dax_read_unlock(id);
1079 memset(kaddr + offset, 0, size);
1080 dax_flush(dax_dev, kaddr + offset, size);
1081 dax_read_unlock(id);
1085 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1088 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1089 struct iomap *iomap)
1091 struct block_device *bdev = iomap->bdev;
1092 struct dax_device *dax_dev = iomap->dax_dev;
1093 struct iov_iter *iter = data;
1094 loff_t end = pos + length, done = 0;
1099 if (iov_iter_rw(iter) == READ) {
1100 end = min(end, i_size_read(inode));
1104 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1105 return iov_iter_zero(min(length, end - pos), iter);
1108 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1112 * Write can allocate block for an area which has a hole page mapped
1113 * into page tables. We have to tear down these mappings so that data
1114 * written by write(2) is visible in mmap.
1116 if (iomap->flags & IOMAP_F_NEW) {
1117 invalidate_inode_pages2_range(inode->i_mapping,
1119 (end - 1) >> PAGE_SHIFT);
1122 id = dax_read_lock();
1124 unsigned offset = pos & (PAGE_SIZE - 1);
1125 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1126 const sector_t sector = dax_iomap_sector(iomap, pos);
1131 if (fatal_signal_pending(current)) {
1136 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1140 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1147 map_len = PFN_PHYS(map_len);
1150 if (map_len > end - pos)
1151 map_len = end - pos;
1154 * The userspace address for the memory copy has already been
1155 * validated via access_ok() in either vfs_read() or
1156 * vfs_write(), depending on which operation we are doing.
1158 if (iov_iter_rw(iter) == WRITE)
1159 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1162 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1174 dax_read_unlock(id);
1176 return done ? done : ret;
1180 * dax_iomap_rw - Perform I/O to a DAX file
1181 * @iocb: The control block for this I/O
1182 * @iter: The addresses to do I/O from or to
1183 * @ops: iomap ops passed from the file system
1185 * This function performs read and write operations to directly mapped
1186 * persistent memory. The callers needs to take care of read/write exclusion
1187 * and evicting any page cache pages in the region under I/O.
1190 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1191 const struct iomap_ops *ops)
1193 struct address_space *mapping = iocb->ki_filp->f_mapping;
1194 struct inode *inode = mapping->host;
1195 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1198 if (iov_iter_rw(iter) == WRITE) {
1199 lockdep_assert_held_exclusive(&inode->i_rwsem);
1200 flags |= IOMAP_WRITE;
1202 lockdep_assert_held(&inode->i_rwsem);
1205 while (iov_iter_count(iter)) {
1206 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1207 iter, dax_iomap_actor);
1214 iocb->ki_pos += done;
1215 return done ? done : ret;
1217 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1219 static vm_fault_t dax_fault_return(int error)
1222 return VM_FAULT_NOPAGE;
1223 return vmf_error(error);
1227 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1228 * flushed on write-faults (non-cow), but not read-faults.
1230 static bool dax_fault_is_synchronous(unsigned long flags,
1231 struct vm_area_struct *vma, struct iomap *iomap)
1233 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1234 && (iomap->flags & IOMAP_F_DIRTY);
1237 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1238 int *iomap_errp, const struct iomap_ops *ops)
1240 struct vm_area_struct *vma = vmf->vma;
1241 struct address_space *mapping = vma->vm_file->f_mapping;
1242 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1243 struct inode *inode = mapping->host;
1244 unsigned long vaddr = vmf->address;
1245 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1246 struct iomap iomap = { 0 };
1247 unsigned flags = IOMAP_FAULT;
1248 int error, major = 0;
1249 bool write = vmf->flags & FAULT_FLAG_WRITE;
1255 trace_dax_pte_fault(inode, vmf, ret);
1257 * Check whether offset isn't beyond end of file now. Caller is supposed
1258 * to hold locks serializing us with truncate / punch hole so this is
1261 if (pos >= i_size_read(inode)) {
1262 ret = VM_FAULT_SIGBUS;
1266 if (write && !vmf->cow_page)
1267 flags |= IOMAP_WRITE;
1269 entry = grab_mapping_entry(&xas, mapping, 0);
1270 if (xa_is_internal(entry)) {
1271 ret = xa_to_internal(entry);
1276 * It is possible, particularly with mixed reads & writes to private
1277 * mappings, that we have raced with a PMD fault that overlaps with
1278 * the PTE we need to set up. If so just return and the fault will be
1281 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1282 ret = VM_FAULT_NOPAGE;
1287 * Note that we don't bother to use iomap_apply here: DAX required
1288 * the file system block size to be equal the page size, which means
1289 * that we never have to deal with more than a single extent here.
1291 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1293 *iomap_errp = error;
1295 ret = dax_fault_return(error);
1298 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1299 error = -EIO; /* fs corruption? */
1300 goto error_finish_iomap;
1303 if (vmf->cow_page) {
1304 sector_t sector = dax_iomap_sector(&iomap, pos);
1306 switch (iomap.type) {
1308 case IOMAP_UNWRITTEN:
1309 clear_user_highpage(vmf->cow_page, vaddr);
1312 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1313 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1322 goto error_finish_iomap;
1324 __SetPageUptodate(vmf->cow_page);
1325 ret = finish_fault(vmf);
1327 ret = VM_FAULT_DONE_COW;
1331 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1333 switch (iomap.type) {
1335 if (iomap.flags & IOMAP_F_NEW) {
1336 count_vm_event(PGMAJFAULT);
1337 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1338 major = VM_FAULT_MAJOR;
1340 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1342 goto error_finish_iomap;
1344 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1348 * If we are doing synchronous page fault and inode needs fsync,
1349 * we can insert PTE into page tables only after that happens.
1350 * Skip insertion for now and return the pfn so that caller can
1351 * insert it after fsync is done.
1354 if (WARN_ON_ONCE(!pfnp)) {
1356 goto error_finish_iomap;
1359 ret = VM_FAULT_NEEDDSYNC | major;
1362 trace_dax_insert_mapping(inode, vmf, entry);
1364 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1366 ret = vmf_insert_mixed(vma, vaddr, pfn);
1369 case IOMAP_UNWRITTEN:
1372 ret = dax_load_hole(&xas, mapping, &entry, vmf);
1383 ret = dax_fault_return(error);
1385 if (ops->iomap_end) {
1386 int copied = PAGE_SIZE;
1388 if (ret & VM_FAULT_ERROR)
1391 * The fault is done by now and there's no way back (other
1392 * thread may be already happily using PTE we have installed).
1393 * Just ignore error from ->iomap_end since we cannot do much
1396 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1399 dax_unlock_entry(&xas, entry);
1401 trace_dax_pte_fault_done(inode, vmf, ret);
1405 #ifdef CONFIG_FS_DAX_PMD
1406 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1407 struct iomap *iomap, void **entry)
1409 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1410 unsigned long pmd_addr = vmf->address & PMD_MASK;
1411 struct vm_area_struct *vma = vmf->vma;
1412 struct inode *inode = mapping->host;
1413 pgtable_t pgtable = NULL;
1414 struct page *zero_page;
1419 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1421 if (unlikely(!zero_page))
1424 pfn = page_to_pfn_t(zero_page);
1425 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1426 DAX_PMD | DAX_ZERO_PAGE, false);
1428 if (arch_needs_pgtable_deposit()) {
1429 pgtable = pte_alloc_one(vma->vm_mm);
1431 return VM_FAULT_OOM;
1434 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1435 if (!pmd_none(*(vmf->pmd))) {
1441 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1442 mm_inc_nr_ptes(vma->vm_mm);
1444 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1445 pmd_entry = pmd_mkhuge(pmd_entry);
1446 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1448 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1449 return VM_FAULT_NOPAGE;
1453 pte_free(vma->vm_mm, pgtable);
1454 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1455 return VM_FAULT_FALLBACK;
1458 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1459 const struct iomap_ops *ops)
1461 struct vm_area_struct *vma = vmf->vma;
1462 struct address_space *mapping = vma->vm_file->f_mapping;
1463 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1464 unsigned long pmd_addr = vmf->address & PMD_MASK;
1465 bool write = vmf->flags & FAULT_FLAG_WRITE;
1467 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1468 struct inode *inode = mapping->host;
1469 vm_fault_t result = VM_FAULT_FALLBACK;
1470 struct iomap iomap = { 0 };
1478 * Check whether offset isn't beyond end of file now. Caller is
1479 * supposed to hold locks serializing us with truncate / punch hole so
1480 * this is a reliable test.
1482 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1484 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1487 * Make sure that the faulting address's PMD offset (color) matches
1488 * the PMD offset from the start of the file. This is necessary so
1489 * that a PMD range in the page table overlaps exactly with a PMD
1490 * range in the page cache.
1492 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1493 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1496 /* Fall back to PTEs if we're going to COW */
1497 if (write && !(vma->vm_flags & VM_SHARED))
1500 /* If the PMD would extend outside the VMA */
1501 if (pmd_addr < vma->vm_start)
1503 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1506 if (xas.xa_index >= max_pgoff) {
1507 result = VM_FAULT_SIGBUS;
1511 /* If the PMD would extend beyond the file size */
1512 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1516 * grab_mapping_entry() will make sure we get an empty PMD entry,
1517 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1518 * entry is already in the array, for instance), it will return
1519 * VM_FAULT_FALLBACK.
1521 entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1522 if (xa_is_internal(entry)) {
1523 result = xa_to_internal(entry);
1528 * It is possible, particularly with mixed reads & writes to private
1529 * mappings, that we have raced with a PTE fault that overlaps with
1530 * the PMD we need to set up. If so just return and the fault will be
1533 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1534 !pmd_devmap(*vmf->pmd)) {
1540 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1541 * setting up a mapping, so really we're using iomap_begin() as a way
1542 * to look up our filesystem block.
1544 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1545 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1549 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1552 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1554 switch (iomap.type) {
1556 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1560 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1561 DAX_PMD, write && !sync);
1564 * If we are doing synchronous page fault and inode needs fsync,
1565 * we can insert PMD into page tables only after that happens.
1566 * Skip insertion for now and return the pfn so that caller can
1567 * insert it after fsync is done.
1570 if (WARN_ON_ONCE(!pfnp))
1573 result = VM_FAULT_NEEDDSYNC;
1577 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1578 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1580 case IOMAP_UNWRITTEN:
1582 if (WARN_ON_ONCE(write))
1584 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1592 if (ops->iomap_end) {
1593 int copied = PMD_SIZE;
1595 if (result == VM_FAULT_FALLBACK)
1598 * The fault is done by now and there's no way back (other
1599 * thread may be already happily using PMD we have installed).
1600 * Just ignore error from ->iomap_end since we cannot do much
1603 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1607 dax_unlock_entry(&xas, entry);
1609 if (result == VM_FAULT_FALLBACK) {
1610 split_huge_pmd(vma, vmf->pmd, vmf->address);
1611 count_vm_event(THP_FAULT_FALLBACK);
1614 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1618 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1619 const struct iomap_ops *ops)
1621 return VM_FAULT_FALLBACK;
1623 #endif /* CONFIG_FS_DAX_PMD */
1626 * dax_iomap_fault - handle a page fault on a DAX file
1627 * @vmf: The description of the fault
1628 * @pe_size: Size of the page to fault in
1629 * @pfnp: PFN to insert for synchronous faults if fsync is required
1630 * @iomap_errp: Storage for detailed error code in case of error
1631 * @ops: Iomap ops passed from the file system
1633 * When a page fault occurs, filesystems may call this helper in
1634 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1635 * has done all the necessary locking for page fault to proceed
1638 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1639 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1643 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1645 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1647 return VM_FAULT_FALLBACK;
1650 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1653 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1654 * @vmf: The description of the fault
1655 * @pfn: PFN to insert
1656 * @order: Order of entry to insert.
1658 * This function inserts a writeable PTE or PMD entry into the page tables
1659 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1662 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1664 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1665 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1670 entry = get_unlocked_entry(&xas);
1671 /* Did we race with someone splitting entry or so? */
1673 (order == 0 && !dax_is_pte_entry(entry)) ||
1674 (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
1675 put_unlocked_entry(&xas, entry);
1676 xas_unlock_irq(&xas);
1677 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1679 return VM_FAULT_NOPAGE;
1681 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1682 dax_lock_entry(&xas, entry);
1683 xas_unlock_irq(&xas);
1685 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1686 #ifdef CONFIG_FS_DAX_PMD
1687 else if (order == PMD_ORDER)
1688 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1691 ret = VM_FAULT_FALLBACK;
1692 dax_unlock_entry(&xas, entry);
1693 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1698 * dax_finish_sync_fault - finish synchronous page fault
1699 * @vmf: The description of the fault
1700 * @pe_size: Size of entry to be inserted
1701 * @pfn: PFN to insert
1703 * This function ensures that the file range touched by the page fault is
1704 * stored persistently on the media and handles inserting of appropriate page
1707 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1708 enum page_entry_size pe_size, pfn_t pfn)
1711 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1712 unsigned int order = pe_order(pe_size);
1713 size_t len = PAGE_SIZE << order;
1715 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1717 return VM_FAULT_SIGBUS;
1718 return dax_insert_pfn_mkwrite(vmf, pfn, order);
1720 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);