Merge tag 'gpio-fixes-for-v6.0-rc6' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / fs / dax.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/highmem.h>
15 #include <linux/memcontrol.h>
16 #include <linux/mm.h>
17 #include <linux/mutex.h>
18 #include <linux/pagevec.h>
19 #include <linux/sched.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uio.h>
22 #include <linux/vmstat.h>
23 #include <linux/pfn_t.h>
24 #include <linux/sizes.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/iomap.h>
27 #include <linux/rmap.h>
28 #include <asm/pgalloc.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35         if (pe_size == PE_SIZE_PTE)
36                 return PAGE_SHIFT - PAGE_SHIFT;
37         if (pe_size == PE_SIZE_PMD)
38                 return PMD_SHIFT - PAGE_SHIFT;
39         if (pe_size == PE_SIZE_PUD)
40                 return PUD_SHIFT - PAGE_SHIFT;
41         return ~0;
42 }
43
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
48 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
51
52 /* The order of a PMD entry */
53 #define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
54
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56
57 static int __init init_dax_wait_table(void)
58 {
59         int i;
60
61         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62                 init_waitqueue_head(wait_table + i);
63         return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66
67 /*
68  * DAX pagecache entries use XArray value entries so they can't be mistaken
69  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70  * and two more to tell us if the entry is a zero page or an empty entry that
71  * is just used for locking.  In total four special bits.
72  *
73  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75  * block allocation.
76  */
77 #define DAX_SHIFT       (4)
78 #define DAX_LOCKED      (1UL << 0)
79 #define DAX_PMD         (1UL << 1)
80 #define DAX_ZERO_PAGE   (1UL << 2)
81 #define DAX_EMPTY       (1UL << 3)
82
83 static unsigned long dax_to_pfn(void *entry)
84 {
85         return xa_to_value(entry) >> DAX_SHIFT;
86 }
87
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90         return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92
93 static bool dax_is_locked(void *entry)
94 {
95         return xa_to_value(entry) & DAX_LOCKED;
96 }
97
98 static unsigned int dax_entry_order(void *entry)
99 {
100         if (xa_to_value(entry) & DAX_PMD)
101                 return PMD_ORDER;
102         return 0;
103 }
104
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107         return xa_to_value(entry) & DAX_PMD;
108 }
109
110 static bool dax_is_pte_entry(void *entry)
111 {
112         return !(xa_to_value(entry) & DAX_PMD);
113 }
114
115 static int dax_is_zero_entry(void *entry)
116 {
117         return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119
120 static int dax_is_empty_entry(void *entry)
121 {
122         return xa_to_value(entry) & DAX_EMPTY;
123 }
124
125 /*
126  * true if the entry that was found is of a smaller order than the entry
127  * we were looking for
128  */
129 static bool dax_is_conflict(void *entry)
130 {
131         return entry == XA_RETRY_ENTRY;
132 }
133
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138         struct xarray *xa;
139         pgoff_t entry_start;
140 };
141
142 struct wait_exceptional_entry_queue {
143         wait_queue_entry_t wait;
144         struct exceptional_entry_key key;
145 };
146
147 /**
148  * enum dax_wake_mode: waitqueue wakeup behaviour
149  * @WAKE_ALL: wake all waiters in the waitqueue
150  * @WAKE_NEXT: wake only the first waiter in the waitqueue
151  */
152 enum dax_wake_mode {
153         WAKE_ALL,
154         WAKE_NEXT,
155 };
156
157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158                 void *entry, struct exceptional_entry_key *key)
159 {
160         unsigned long hash;
161         unsigned long index = xas->xa_index;
162
163         /*
164          * If 'entry' is a PMD, align the 'index' that we use for the wait
165          * queue to the start of that PMD.  This ensures that all offsets in
166          * the range covered by the PMD map to the same bit lock.
167          */
168         if (dax_is_pmd_entry(entry))
169                 index &= ~PG_PMD_COLOUR;
170         key->xa = xas->xa;
171         key->entry_start = index;
172
173         hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174         return wait_table + hash;
175 }
176
177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178                 unsigned int mode, int sync, void *keyp)
179 {
180         struct exceptional_entry_key *key = keyp;
181         struct wait_exceptional_entry_queue *ewait =
182                 container_of(wait, struct wait_exceptional_entry_queue, wait);
183
184         if (key->xa != ewait->key.xa ||
185             key->entry_start != ewait->key.entry_start)
186                 return 0;
187         return autoremove_wake_function(wait, mode, sync, NULL);
188 }
189
190 /*
191  * @entry may no longer be the entry at the index in the mapping.
192  * The important information it's conveying is whether the entry at
193  * this index used to be a PMD entry.
194  */
195 static void dax_wake_entry(struct xa_state *xas, void *entry,
196                            enum dax_wake_mode mode)
197 {
198         struct exceptional_entry_key key;
199         wait_queue_head_t *wq;
200
201         wq = dax_entry_waitqueue(xas, entry, &key);
202
203         /*
204          * Checking for locked entry and prepare_to_wait_exclusive() happens
205          * under the i_pages lock, ditto for entry handling in our callers.
206          * So at this point all tasks that could have seen our entry locked
207          * must be in the waitqueue and the following check will see them.
208          */
209         if (waitqueue_active(wq))
210                 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
211 }
212
213 /*
214  * Look up entry in page cache, wait for it to become unlocked if it
215  * is a DAX entry and return it.  The caller must subsequently call
216  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217  * if it did.  The entry returned may have a larger order than @order.
218  * If @order is larger than the order of the entry found in i_pages, this
219  * function returns a dax_is_conflict entry.
220  *
221  * Must be called with the i_pages lock held.
222  */
223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
224 {
225         void *entry;
226         struct wait_exceptional_entry_queue ewait;
227         wait_queue_head_t *wq;
228
229         init_wait(&ewait.wait);
230         ewait.wait.func = wake_exceptional_entry_func;
231
232         for (;;) {
233                 entry = xas_find_conflict(xas);
234                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235                         return entry;
236                 if (dax_entry_order(entry) < order)
237                         return XA_RETRY_ENTRY;
238                 if (!dax_is_locked(entry))
239                         return entry;
240
241                 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242                 prepare_to_wait_exclusive(wq, &ewait.wait,
243                                           TASK_UNINTERRUPTIBLE);
244                 xas_unlock_irq(xas);
245                 xas_reset(xas);
246                 schedule();
247                 finish_wait(wq, &ewait.wait);
248                 xas_lock_irq(xas);
249         }
250 }
251
252 /*
253  * The only thing keeping the address space around is the i_pages lock
254  * (it's cycled in clear_inode() after removing the entries from i_pages)
255  * After we call xas_unlock_irq(), we cannot touch xas->xa.
256  */
257 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258 {
259         struct wait_exceptional_entry_queue ewait;
260         wait_queue_head_t *wq;
261
262         init_wait(&ewait.wait);
263         ewait.wait.func = wake_exceptional_entry_func;
264
265         wq = dax_entry_waitqueue(xas, entry, &ewait.key);
266         /*
267          * Unlike get_unlocked_entry() there is no guarantee that this
268          * path ever successfully retrieves an unlocked entry before an
269          * inode dies. Perform a non-exclusive wait in case this path
270          * never successfully performs its own wake up.
271          */
272         prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
273         xas_unlock_irq(xas);
274         schedule();
275         finish_wait(wq, &ewait.wait);
276 }
277
278 static void put_unlocked_entry(struct xa_state *xas, void *entry,
279                                enum dax_wake_mode mode)
280 {
281         if (entry && !dax_is_conflict(entry))
282                 dax_wake_entry(xas, entry, mode);
283 }
284
285 /*
286  * We used the xa_state to get the entry, but then we locked the entry and
287  * dropped the xa_lock, so we know the xa_state is stale and must be reset
288  * before use.
289  */
290 static void dax_unlock_entry(struct xa_state *xas, void *entry)
291 {
292         void *old;
293
294         BUG_ON(dax_is_locked(entry));
295         xas_reset(xas);
296         xas_lock_irq(xas);
297         old = xas_store(xas, entry);
298         xas_unlock_irq(xas);
299         BUG_ON(!dax_is_locked(old));
300         dax_wake_entry(xas, entry, WAKE_NEXT);
301 }
302
303 /*
304  * Return: The entry stored at this location before it was locked.
305  */
306 static void *dax_lock_entry(struct xa_state *xas, void *entry)
307 {
308         unsigned long v = xa_to_value(entry);
309         return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310 }
311
312 static unsigned long dax_entry_size(void *entry)
313 {
314         if (dax_is_zero_entry(entry))
315                 return 0;
316         else if (dax_is_empty_entry(entry))
317                 return 0;
318         else if (dax_is_pmd_entry(entry))
319                 return PMD_SIZE;
320         else
321                 return PAGE_SIZE;
322 }
323
324 static unsigned long dax_end_pfn(void *entry)
325 {
326         return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
327 }
328
329 /*
330  * Iterate through all mapped pfns represented by an entry, i.e. skip
331  * 'empty' and 'zero' entries.
332  */
333 #define for_each_mapped_pfn(entry, pfn) \
334         for (pfn = dax_to_pfn(entry); \
335                         pfn < dax_end_pfn(entry); pfn++)
336
337 static inline bool dax_mapping_is_cow(struct address_space *mapping)
338 {
339         return (unsigned long)mapping == PAGE_MAPPING_DAX_COW;
340 }
341
342 /*
343  * Set the page->mapping with FS_DAX_MAPPING_COW flag, increase the refcount.
344  */
345 static inline void dax_mapping_set_cow(struct page *page)
346 {
347         if ((uintptr_t)page->mapping != PAGE_MAPPING_DAX_COW) {
348                 /*
349                  * Reset the index if the page was already mapped
350                  * regularly before.
351                  */
352                 if (page->mapping)
353                         page->index = 1;
354                 page->mapping = (void *)PAGE_MAPPING_DAX_COW;
355         }
356         page->index++;
357 }
358
359 /*
360  * When it is called in dax_insert_entry(), the cow flag will indicate that
361  * whether this entry is shared by multiple files.  If so, set the page->mapping
362  * FS_DAX_MAPPING_COW, and use page->index as refcount.
363  */
364 static void dax_associate_entry(void *entry, struct address_space *mapping,
365                 struct vm_area_struct *vma, unsigned long address, bool cow)
366 {
367         unsigned long size = dax_entry_size(entry), pfn, index;
368         int i = 0;
369
370         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
371                 return;
372
373         index = linear_page_index(vma, address & ~(size - 1));
374         for_each_mapped_pfn(entry, pfn) {
375                 struct page *page = pfn_to_page(pfn);
376
377                 if (cow) {
378                         dax_mapping_set_cow(page);
379                 } else {
380                         WARN_ON_ONCE(page->mapping);
381                         page->mapping = mapping;
382                         page->index = index + i++;
383                 }
384         }
385 }
386
387 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
388                 bool trunc)
389 {
390         unsigned long pfn;
391
392         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
393                 return;
394
395         for_each_mapped_pfn(entry, pfn) {
396                 struct page *page = pfn_to_page(pfn);
397
398                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
399                 if (dax_mapping_is_cow(page->mapping)) {
400                         /* keep the CoW flag if this page is still shared */
401                         if (page->index-- > 0)
402                                 continue;
403                 } else
404                         WARN_ON_ONCE(page->mapping && page->mapping != mapping);
405                 page->mapping = NULL;
406                 page->index = 0;
407         }
408 }
409
410 static struct page *dax_busy_page(void *entry)
411 {
412         unsigned long pfn;
413
414         for_each_mapped_pfn(entry, pfn) {
415                 struct page *page = pfn_to_page(pfn);
416
417                 if (page_ref_count(page) > 1)
418                         return page;
419         }
420         return NULL;
421 }
422
423 /*
424  * dax_lock_page - Lock the DAX entry corresponding to a page
425  * @page: The page whose entry we want to lock
426  *
427  * Context: Process context.
428  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
429  * not be locked.
430  */
431 dax_entry_t dax_lock_page(struct page *page)
432 {
433         XA_STATE(xas, NULL, 0);
434         void *entry;
435
436         /* Ensure page->mapping isn't freed while we look at it */
437         rcu_read_lock();
438         for (;;) {
439                 struct address_space *mapping = READ_ONCE(page->mapping);
440
441                 entry = NULL;
442                 if (!mapping || !dax_mapping(mapping))
443                         break;
444
445                 /*
446                  * In the device-dax case there's no need to lock, a
447                  * struct dev_pagemap pin is sufficient to keep the
448                  * inode alive, and we assume we have dev_pagemap pin
449                  * otherwise we would not have a valid pfn_to_page()
450                  * translation.
451                  */
452                 entry = (void *)~0UL;
453                 if (S_ISCHR(mapping->host->i_mode))
454                         break;
455
456                 xas.xa = &mapping->i_pages;
457                 xas_lock_irq(&xas);
458                 if (mapping != page->mapping) {
459                         xas_unlock_irq(&xas);
460                         continue;
461                 }
462                 xas_set(&xas, page->index);
463                 entry = xas_load(&xas);
464                 if (dax_is_locked(entry)) {
465                         rcu_read_unlock();
466                         wait_entry_unlocked(&xas, entry);
467                         rcu_read_lock();
468                         continue;
469                 }
470                 dax_lock_entry(&xas, entry);
471                 xas_unlock_irq(&xas);
472                 break;
473         }
474         rcu_read_unlock();
475         return (dax_entry_t)entry;
476 }
477
478 void dax_unlock_page(struct page *page, dax_entry_t cookie)
479 {
480         struct address_space *mapping = page->mapping;
481         XA_STATE(xas, &mapping->i_pages, page->index);
482
483         if (S_ISCHR(mapping->host->i_mode))
484                 return;
485
486         dax_unlock_entry(&xas, (void *)cookie);
487 }
488
489 /*
490  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
491  * @mapping: the file's mapping whose entry we want to lock
492  * @index: the offset within this file
493  * @page: output the dax page corresponding to this dax entry
494  *
495  * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
496  * could not be locked.
497  */
498 dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
499                 struct page **page)
500 {
501         XA_STATE(xas, NULL, 0);
502         void *entry;
503
504         rcu_read_lock();
505         for (;;) {
506                 entry = NULL;
507                 if (!dax_mapping(mapping))
508                         break;
509
510                 xas.xa = &mapping->i_pages;
511                 xas_lock_irq(&xas);
512                 xas_set(&xas, index);
513                 entry = xas_load(&xas);
514                 if (dax_is_locked(entry)) {
515                         rcu_read_unlock();
516                         wait_entry_unlocked(&xas, entry);
517                         rcu_read_lock();
518                         continue;
519                 }
520                 if (!entry ||
521                     dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
522                         /*
523                          * Because we are looking for entry from file's mapping
524                          * and index, so the entry may not be inserted for now,
525                          * or even a zero/empty entry.  We don't think this is
526                          * an error case.  So, return a special value and do
527                          * not output @page.
528                          */
529                         entry = (void *)~0UL;
530                 } else {
531                         *page = pfn_to_page(dax_to_pfn(entry));
532                         dax_lock_entry(&xas, entry);
533                 }
534                 xas_unlock_irq(&xas);
535                 break;
536         }
537         rcu_read_unlock();
538         return (dax_entry_t)entry;
539 }
540
541 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
542                 dax_entry_t cookie)
543 {
544         XA_STATE(xas, &mapping->i_pages, index);
545
546         if (cookie == ~0UL)
547                 return;
548
549         dax_unlock_entry(&xas, (void *)cookie);
550 }
551
552 /*
553  * Find page cache entry at given index. If it is a DAX entry, return it
554  * with the entry locked. If the page cache doesn't contain an entry at
555  * that index, add a locked empty entry.
556  *
557  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
558  * either return that locked entry or will return VM_FAULT_FALLBACK.
559  * This will happen if there are any PTE entries within the PMD range
560  * that we are requesting.
561  *
562  * We always favor PTE entries over PMD entries. There isn't a flow where we
563  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
564  * insertion will fail if it finds any PTE entries already in the tree, and a
565  * PTE insertion will cause an existing PMD entry to be unmapped and
566  * downgraded to PTE entries.  This happens for both PMD zero pages as
567  * well as PMD empty entries.
568  *
569  * The exception to this downgrade path is for PMD entries that have
570  * real storage backing them.  We will leave these real PMD entries in
571  * the tree, and PTE writes will simply dirty the entire PMD entry.
572  *
573  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
574  * persistent memory the benefit is doubtful. We can add that later if we can
575  * show it helps.
576  *
577  * On error, this function does not return an ERR_PTR.  Instead it returns
578  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
579  * overlap with xarray value entries.
580  */
581 static void *grab_mapping_entry(struct xa_state *xas,
582                 struct address_space *mapping, unsigned int order)
583 {
584         unsigned long index = xas->xa_index;
585         bool pmd_downgrade;     /* splitting PMD entry into PTE entries? */
586         void *entry;
587
588 retry:
589         pmd_downgrade = false;
590         xas_lock_irq(xas);
591         entry = get_unlocked_entry(xas, order);
592
593         if (entry) {
594                 if (dax_is_conflict(entry))
595                         goto fallback;
596                 if (!xa_is_value(entry)) {
597                         xas_set_err(xas, -EIO);
598                         goto out_unlock;
599                 }
600
601                 if (order == 0) {
602                         if (dax_is_pmd_entry(entry) &&
603                             (dax_is_zero_entry(entry) ||
604                              dax_is_empty_entry(entry))) {
605                                 pmd_downgrade = true;
606                         }
607                 }
608         }
609
610         if (pmd_downgrade) {
611                 /*
612                  * Make sure 'entry' remains valid while we drop
613                  * the i_pages lock.
614                  */
615                 dax_lock_entry(xas, entry);
616
617                 /*
618                  * Besides huge zero pages the only other thing that gets
619                  * downgraded are empty entries which don't need to be
620                  * unmapped.
621                  */
622                 if (dax_is_zero_entry(entry)) {
623                         xas_unlock_irq(xas);
624                         unmap_mapping_pages(mapping,
625                                         xas->xa_index & ~PG_PMD_COLOUR,
626                                         PG_PMD_NR, false);
627                         xas_reset(xas);
628                         xas_lock_irq(xas);
629                 }
630
631                 dax_disassociate_entry(entry, mapping, false);
632                 xas_store(xas, NULL);   /* undo the PMD join */
633                 dax_wake_entry(xas, entry, WAKE_ALL);
634                 mapping->nrpages -= PG_PMD_NR;
635                 entry = NULL;
636                 xas_set(xas, index);
637         }
638
639         if (entry) {
640                 dax_lock_entry(xas, entry);
641         } else {
642                 unsigned long flags = DAX_EMPTY;
643
644                 if (order > 0)
645                         flags |= DAX_PMD;
646                 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
647                 dax_lock_entry(xas, entry);
648                 if (xas_error(xas))
649                         goto out_unlock;
650                 mapping->nrpages += 1UL << order;
651         }
652
653 out_unlock:
654         xas_unlock_irq(xas);
655         if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
656                 goto retry;
657         if (xas->xa_node == XA_ERROR(-ENOMEM))
658                 return xa_mk_internal(VM_FAULT_OOM);
659         if (xas_error(xas))
660                 return xa_mk_internal(VM_FAULT_SIGBUS);
661         return entry;
662 fallback:
663         xas_unlock_irq(xas);
664         return xa_mk_internal(VM_FAULT_FALLBACK);
665 }
666
667 /**
668  * dax_layout_busy_page_range - find first pinned page in @mapping
669  * @mapping: address space to scan for a page with ref count > 1
670  * @start: Starting offset. Page containing 'start' is included.
671  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
672  *       pages from 'start' till the end of file are included.
673  *
674  * DAX requires ZONE_DEVICE mapped pages. These pages are never
675  * 'onlined' to the page allocator so they are considered idle when
676  * page->count == 1. A filesystem uses this interface to determine if
677  * any page in the mapping is busy, i.e. for DMA, or other
678  * get_user_pages() usages.
679  *
680  * It is expected that the filesystem is holding locks to block the
681  * establishment of new mappings in this address_space. I.e. it expects
682  * to be able to run unmap_mapping_range() and subsequently not race
683  * mapping_mapped() becoming true.
684  */
685 struct page *dax_layout_busy_page_range(struct address_space *mapping,
686                                         loff_t start, loff_t end)
687 {
688         void *entry;
689         unsigned int scanned = 0;
690         struct page *page = NULL;
691         pgoff_t start_idx = start >> PAGE_SHIFT;
692         pgoff_t end_idx;
693         XA_STATE(xas, &mapping->i_pages, start_idx);
694
695         /*
696          * In the 'limited' case get_user_pages() for dax is disabled.
697          */
698         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
699                 return NULL;
700
701         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
702                 return NULL;
703
704         /* If end == LLONG_MAX, all pages from start to till end of file */
705         if (end == LLONG_MAX)
706                 end_idx = ULONG_MAX;
707         else
708                 end_idx = end >> PAGE_SHIFT;
709         /*
710          * If we race get_user_pages_fast() here either we'll see the
711          * elevated page count in the iteration and wait, or
712          * get_user_pages_fast() will see that the page it took a reference
713          * against is no longer mapped in the page tables and bail to the
714          * get_user_pages() slow path.  The slow path is protected by
715          * pte_lock() and pmd_lock(). New references are not taken without
716          * holding those locks, and unmap_mapping_pages() will not zero the
717          * pte or pmd without holding the respective lock, so we are
718          * guaranteed to either see new references or prevent new
719          * references from being established.
720          */
721         unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
722
723         xas_lock_irq(&xas);
724         xas_for_each(&xas, entry, end_idx) {
725                 if (WARN_ON_ONCE(!xa_is_value(entry)))
726                         continue;
727                 if (unlikely(dax_is_locked(entry)))
728                         entry = get_unlocked_entry(&xas, 0);
729                 if (entry)
730                         page = dax_busy_page(entry);
731                 put_unlocked_entry(&xas, entry, WAKE_NEXT);
732                 if (page)
733                         break;
734                 if (++scanned % XA_CHECK_SCHED)
735                         continue;
736
737                 xas_pause(&xas);
738                 xas_unlock_irq(&xas);
739                 cond_resched();
740                 xas_lock_irq(&xas);
741         }
742         xas_unlock_irq(&xas);
743         return page;
744 }
745 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
746
747 struct page *dax_layout_busy_page(struct address_space *mapping)
748 {
749         return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
750 }
751 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
752
753 static int __dax_invalidate_entry(struct address_space *mapping,
754                                           pgoff_t index, bool trunc)
755 {
756         XA_STATE(xas, &mapping->i_pages, index);
757         int ret = 0;
758         void *entry;
759
760         xas_lock_irq(&xas);
761         entry = get_unlocked_entry(&xas, 0);
762         if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
763                 goto out;
764         if (!trunc &&
765             (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
766              xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
767                 goto out;
768         dax_disassociate_entry(entry, mapping, trunc);
769         xas_store(&xas, NULL);
770         mapping->nrpages -= 1UL << dax_entry_order(entry);
771         ret = 1;
772 out:
773         put_unlocked_entry(&xas, entry, WAKE_ALL);
774         xas_unlock_irq(&xas);
775         return ret;
776 }
777
778 /*
779  * Delete DAX entry at @index from @mapping.  Wait for it
780  * to be unlocked before deleting it.
781  */
782 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
783 {
784         int ret = __dax_invalidate_entry(mapping, index, true);
785
786         /*
787          * This gets called from truncate / punch_hole path. As such, the caller
788          * must hold locks protecting against concurrent modifications of the
789          * page cache (usually fs-private i_mmap_sem for writing). Since the
790          * caller has seen a DAX entry for this index, we better find it
791          * at that index as well...
792          */
793         WARN_ON_ONCE(!ret);
794         return ret;
795 }
796
797 /*
798  * Invalidate DAX entry if it is clean.
799  */
800 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
801                                       pgoff_t index)
802 {
803         return __dax_invalidate_entry(mapping, index, false);
804 }
805
806 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
807 {
808         return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
809 }
810
811 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
812 {
813         pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
814         void *vto, *kaddr;
815         long rc;
816         int id;
817
818         id = dax_read_lock();
819         rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
820                                 &kaddr, NULL);
821         if (rc < 0) {
822                 dax_read_unlock(id);
823                 return rc;
824         }
825         vto = kmap_atomic(vmf->cow_page);
826         copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
827         kunmap_atomic(vto);
828         dax_read_unlock(id);
829         return 0;
830 }
831
832 /*
833  * MAP_SYNC on a dax mapping guarantees dirty metadata is
834  * flushed on write-faults (non-cow), but not read-faults.
835  */
836 static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
837                 struct vm_area_struct *vma)
838 {
839         return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
840                 (iter->iomap.flags & IOMAP_F_DIRTY);
841 }
842
843 static bool dax_fault_is_cow(const struct iomap_iter *iter)
844 {
845         return (iter->flags & IOMAP_WRITE) &&
846                 (iter->iomap.flags & IOMAP_F_SHARED);
847 }
848
849 /*
850  * By this point grab_mapping_entry() has ensured that we have a locked entry
851  * of the appropriate size so we don't have to worry about downgrading PMDs to
852  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
853  * already in the tree, we will skip the insertion and just dirty the PMD as
854  * appropriate.
855  */
856 static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
857                 const struct iomap_iter *iter, void *entry, pfn_t pfn,
858                 unsigned long flags)
859 {
860         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
861         void *new_entry = dax_make_entry(pfn, flags);
862         bool dirty = !dax_fault_is_synchronous(iter, vmf->vma);
863         bool cow = dax_fault_is_cow(iter);
864
865         if (dirty)
866                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
867
868         if (cow || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
869                 unsigned long index = xas->xa_index;
870                 /* we are replacing a zero page with block mapping */
871                 if (dax_is_pmd_entry(entry))
872                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
873                                         PG_PMD_NR, false);
874                 else /* pte entry */
875                         unmap_mapping_pages(mapping, index, 1, false);
876         }
877
878         xas_reset(xas);
879         xas_lock_irq(xas);
880         if (cow || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
881                 void *old;
882
883                 dax_disassociate_entry(entry, mapping, false);
884                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address,
885                                 cow);
886                 /*
887                  * Only swap our new entry into the page cache if the current
888                  * entry is a zero page or an empty entry.  If a normal PTE or
889                  * PMD entry is already in the cache, we leave it alone.  This
890                  * means that if we are trying to insert a PTE and the
891                  * existing entry is a PMD, we will just leave the PMD in the
892                  * tree and dirty it if necessary.
893                  */
894                 old = dax_lock_entry(xas, new_entry);
895                 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
896                                         DAX_LOCKED));
897                 entry = new_entry;
898         } else {
899                 xas_load(xas);  /* Walk the xa_state */
900         }
901
902         if (dirty)
903                 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
904
905         if (cow)
906                 xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
907
908         xas_unlock_irq(xas);
909         return entry;
910 }
911
912 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
913                 struct address_space *mapping, void *entry)
914 {
915         unsigned long pfn, index, count, end;
916         long ret = 0;
917         struct vm_area_struct *vma;
918
919         /*
920          * A page got tagged dirty in DAX mapping? Something is seriously
921          * wrong.
922          */
923         if (WARN_ON(!xa_is_value(entry)))
924                 return -EIO;
925
926         if (unlikely(dax_is_locked(entry))) {
927                 void *old_entry = entry;
928
929                 entry = get_unlocked_entry(xas, 0);
930
931                 /* Entry got punched out / reallocated? */
932                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
933                         goto put_unlocked;
934                 /*
935                  * Entry got reallocated elsewhere? No need to writeback.
936                  * We have to compare pfns as we must not bail out due to
937                  * difference in lockbit or entry type.
938                  */
939                 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
940                         goto put_unlocked;
941                 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
942                                         dax_is_zero_entry(entry))) {
943                         ret = -EIO;
944                         goto put_unlocked;
945                 }
946
947                 /* Another fsync thread may have already done this entry */
948                 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
949                         goto put_unlocked;
950         }
951
952         /* Lock the entry to serialize with page faults */
953         dax_lock_entry(xas, entry);
954
955         /*
956          * We can clear the tag now but we have to be careful so that concurrent
957          * dax_writeback_one() calls for the same index cannot finish before we
958          * actually flush the caches. This is achieved as the calls will look
959          * at the entry only under the i_pages lock and once they do that
960          * they will see the entry locked and wait for it to unlock.
961          */
962         xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
963         xas_unlock_irq(xas);
964
965         /*
966          * If dax_writeback_mapping_range() was given a wbc->range_start
967          * in the middle of a PMD, the 'index' we use needs to be
968          * aligned to the start of the PMD.
969          * This allows us to flush for PMD_SIZE and not have to worry about
970          * partial PMD writebacks.
971          */
972         pfn = dax_to_pfn(entry);
973         count = 1UL << dax_entry_order(entry);
974         index = xas->xa_index & ~(count - 1);
975         end = index + count - 1;
976
977         /* Walk all mappings of a given index of a file and writeprotect them */
978         i_mmap_lock_read(mapping);
979         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
980                 pfn_mkclean_range(pfn, count, index, vma);
981                 cond_resched();
982         }
983         i_mmap_unlock_read(mapping);
984
985         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
986         /*
987          * After we have flushed the cache, we can clear the dirty tag. There
988          * cannot be new dirty data in the pfn after the flush has completed as
989          * the pfn mappings are writeprotected and fault waits for mapping
990          * entry lock.
991          */
992         xas_reset(xas);
993         xas_lock_irq(xas);
994         xas_store(xas, entry);
995         xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
996         dax_wake_entry(xas, entry, WAKE_NEXT);
997
998         trace_dax_writeback_one(mapping->host, index, count);
999         return ret;
1000
1001  put_unlocked:
1002         put_unlocked_entry(xas, entry, WAKE_NEXT);
1003         return ret;
1004 }
1005
1006 /*
1007  * Flush the mapping to the persistent domain within the byte range of [start,
1008  * end]. This is required by data integrity operations to ensure file data is
1009  * on persistent storage prior to completion of the operation.
1010  */
1011 int dax_writeback_mapping_range(struct address_space *mapping,
1012                 struct dax_device *dax_dev, struct writeback_control *wbc)
1013 {
1014         XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
1015         struct inode *inode = mapping->host;
1016         pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
1017         void *entry;
1018         int ret = 0;
1019         unsigned int scanned = 0;
1020
1021         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1022                 return -EIO;
1023
1024         if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
1025                 return 0;
1026
1027         trace_dax_writeback_range(inode, xas.xa_index, end_index);
1028
1029         tag_pages_for_writeback(mapping, xas.xa_index, end_index);
1030
1031         xas_lock_irq(&xas);
1032         xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1033                 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1034                 if (ret < 0) {
1035                         mapping_set_error(mapping, ret);
1036                         break;
1037                 }
1038                 if (++scanned % XA_CHECK_SCHED)
1039                         continue;
1040
1041                 xas_pause(&xas);
1042                 xas_unlock_irq(&xas);
1043                 cond_resched();
1044                 xas_lock_irq(&xas);
1045         }
1046         xas_unlock_irq(&xas);
1047         trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1048         return ret;
1049 }
1050 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1051
1052 static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1053                 size_t size, void **kaddr, pfn_t *pfnp)
1054 {
1055         pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1056         int id, rc = 0;
1057         long length;
1058
1059         id = dax_read_lock();
1060         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1061                                    DAX_ACCESS, kaddr, pfnp);
1062         if (length < 0) {
1063                 rc = length;
1064                 goto out;
1065         }
1066         if (!pfnp)
1067                 goto out_check_addr;
1068         rc = -EINVAL;
1069         if (PFN_PHYS(length) < size)
1070                 goto out;
1071         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1072                 goto out;
1073         /* For larger pages we need devmap */
1074         if (length > 1 && !pfn_t_devmap(*pfnp))
1075                 goto out;
1076         rc = 0;
1077
1078 out_check_addr:
1079         if (!kaddr)
1080                 goto out;
1081         if (!*kaddr)
1082                 rc = -EFAULT;
1083 out:
1084         dax_read_unlock(id);
1085         return rc;
1086 }
1087
1088 /**
1089  * dax_iomap_cow_copy - Copy the data from source to destination before write
1090  * @pos:        address to do copy from.
1091  * @length:     size of copy operation.
1092  * @align_size: aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1093  * @srcmap:     iomap srcmap
1094  * @daddr:      destination address to copy to.
1095  *
1096  * This can be called from two places. Either during DAX write fault (page
1097  * aligned), to copy the length size data to daddr. Or, while doing normal DAX
1098  * write operation, dax_iomap_actor() might call this to do the copy of either
1099  * start or end unaligned address. In the latter case the rest of the copy of
1100  * aligned ranges is taken care by dax_iomap_actor() itself.
1101  */
1102 static int dax_iomap_cow_copy(loff_t pos, uint64_t length, size_t align_size,
1103                 const struct iomap *srcmap, void *daddr)
1104 {
1105         loff_t head_off = pos & (align_size - 1);
1106         size_t size = ALIGN(head_off + length, align_size);
1107         loff_t end = pos + length;
1108         loff_t pg_end = round_up(end, align_size);
1109         bool copy_all = head_off == 0 && end == pg_end;
1110         void *saddr = 0;
1111         int ret = 0;
1112
1113         ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1114         if (ret)
1115                 return ret;
1116
1117         if (copy_all) {
1118                 ret = copy_mc_to_kernel(daddr, saddr, length);
1119                 return ret ? -EIO : 0;
1120         }
1121
1122         /* Copy the head part of the range */
1123         if (head_off) {
1124                 ret = copy_mc_to_kernel(daddr, saddr, head_off);
1125                 if (ret)
1126                         return -EIO;
1127         }
1128
1129         /* Copy the tail part of the range */
1130         if (end < pg_end) {
1131                 loff_t tail_off = head_off + length;
1132                 loff_t tail_len = pg_end - end;
1133
1134                 ret = copy_mc_to_kernel(daddr + tail_off, saddr + tail_off,
1135                                         tail_len);
1136                 if (ret)
1137                         return -EIO;
1138         }
1139         return 0;
1140 }
1141
1142 /*
1143  * The user has performed a load from a hole in the file.  Allocating a new
1144  * page in the file would cause excessive storage usage for workloads with
1145  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1146  * If this page is ever written to we will re-fault and change the mapping to
1147  * point to real DAX storage instead.
1148  */
1149 static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1150                 const struct iomap_iter *iter, void **entry)
1151 {
1152         struct inode *inode = iter->inode;
1153         unsigned long vaddr = vmf->address;
1154         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1155         vm_fault_t ret;
1156
1157         *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
1158
1159         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1160         trace_dax_load_hole(inode, vmf, ret);
1161         return ret;
1162 }
1163
1164 #ifdef CONFIG_FS_DAX_PMD
1165 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1166                 const struct iomap_iter *iter, void **entry)
1167 {
1168         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1169         unsigned long pmd_addr = vmf->address & PMD_MASK;
1170         struct vm_area_struct *vma = vmf->vma;
1171         struct inode *inode = mapping->host;
1172         pgtable_t pgtable = NULL;
1173         struct page *zero_page;
1174         spinlock_t *ptl;
1175         pmd_t pmd_entry;
1176         pfn_t pfn;
1177
1178         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1179
1180         if (unlikely(!zero_page))
1181                 goto fallback;
1182
1183         pfn = page_to_pfn_t(zero_page);
1184         *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
1185                                   DAX_PMD | DAX_ZERO_PAGE);
1186
1187         if (arch_needs_pgtable_deposit()) {
1188                 pgtable = pte_alloc_one(vma->vm_mm);
1189                 if (!pgtable)
1190                         return VM_FAULT_OOM;
1191         }
1192
1193         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1194         if (!pmd_none(*(vmf->pmd))) {
1195                 spin_unlock(ptl);
1196                 goto fallback;
1197         }
1198
1199         if (pgtable) {
1200                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1201                 mm_inc_nr_ptes(vma->vm_mm);
1202         }
1203         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1204         pmd_entry = pmd_mkhuge(pmd_entry);
1205         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1206         spin_unlock(ptl);
1207         trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1208         return VM_FAULT_NOPAGE;
1209
1210 fallback:
1211         if (pgtable)
1212                 pte_free(vma->vm_mm, pgtable);
1213         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1214         return VM_FAULT_FALLBACK;
1215 }
1216 #else
1217 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1218                 const struct iomap_iter *iter, void **entry)
1219 {
1220         return VM_FAULT_FALLBACK;
1221 }
1222 #endif /* CONFIG_FS_DAX_PMD */
1223
1224 static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
1225 {
1226         const struct iomap *iomap = &iter->iomap;
1227         const struct iomap *srcmap = iomap_iter_srcmap(iter);
1228         unsigned offset = offset_in_page(pos);
1229         pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1230         void *kaddr;
1231         long ret;
1232
1233         ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
1234                                 NULL);
1235         if (ret < 0)
1236                 return ret;
1237         memset(kaddr + offset, 0, size);
1238         if (srcmap->addr != iomap->addr) {
1239                 ret = dax_iomap_cow_copy(pos, size, PAGE_SIZE, srcmap,
1240                                          kaddr);
1241                 if (ret < 0)
1242                         return ret;
1243                 dax_flush(iomap->dax_dev, kaddr, PAGE_SIZE);
1244         } else
1245                 dax_flush(iomap->dax_dev, kaddr + offset, size);
1246         return ret;
1247 }
1248
1249 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1250 {
1251         const struct iomap *iomap = &iter->iomap;
1252         const struct iomap *srcmap = iomap_iter_srcmap(iter);
1253         loff_t pos = iter->pos;
1254         u64 length = iomap_length(iter);
1255         s64 written = 0;
1256
1257         /* already zeroed?  we're done. */
1258         if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1259                 return length;
1260
1261         do {
1262                 unsigned offset = offset_in_page(pos);
1263                 unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1264                 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1265                 long rc;
1266                 int id;
1267
1268                 id = dax_read_lock();
1269                 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1270                         rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1271                 else
1272                         rc = dax_memzero(iter, pos, size);
1273                 dax_read_unlock(id);
1274
1275                 if (rc < 0)
1276                         return rc;
1277                 pos += size;
1278                 length -= size;
1279                 written += size;
1280         } while (length > 0);
1281
1282         if (did_zero)
1283                 *did_zero = true;
1284         return written;
1285 }
1286
1287 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1288                 const struct iomap_ops *ops)
1289 {
1290         struct iomap_iter iter = {
1291                 .inode          = inode,
1292                 .pos            = pos,
1293                 .len            = len,
1294                 .flags          = IOMAP_DAX | IOMAP_ZERO,
1295         };
1296         int ret;
1297
1298         while ((ret = iomap_iter(&iter, ops)) > 0)
1299                 iter.processed = dax_zero_iter(&iter, did_zero);
1300         return ret;
1301 }
1302 EXPORT_SYMBOL_GPL(dax_zero_range);
1303
1304 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1305                 const struct iomap_ops *ops)
1306 {
1307         unsigned int blocksize = i_blocksize(inode);
1308         unsigned int off = pos & (blocksize - 1);
1309
1310         /* Block boundary? Nothing to do */
1311         if (!off)
1312                 return 0;
1313         return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1314 }
1315 EXPORT_SYMBOL_GPL(dax_truncate_page);
1316
1317 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1318                 struct iov_iter *iter)
1319 {
1320         const struct iomap *iomap = &iomi->iomap;
1321         const struct iomap *srcmap = &iomi->srcmap;
1322         loff_t length = iomap_length(iomi);
1323         loff_t pos = iomi->pos;
1324         struct dax_device *dax_dev = iomap->dax_dev;
1325         loff_t end = pos + length, done = 0;
1326         bool write = iov_iter_rw(iter) == WRITE;
1327         ssize_t ret = 0;
1328         size_t xfer;
1329         int id;
1330
1331         if (!write) {
1332                 end = min(end, i_size_read(iomi->inode));
1333                 if (pos >= end)
1334                         return 0;
1335
1336                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1337                         return iov_iter_zero(min(length, end - pos), iter);
1338         }
1339
1340         /*
1341          * In DAX mode, enforce either pure overwrites of written extents, or
1342          * writes to unwritten extents as part of a copy-on-write operation.
1343          */
1344         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1345                         !(iomap->flags & IOMAP_F_SHARED)))
1346                 return -EIO;
1347
1348         /*
1349          * Write can allocate block for an area which has a hole page mapped
1350          * into page tables. We have to tear down these mappings so that data
1351          * written by write(2) is visible in mmap.
1352          */
1353         if (iomap->flags & IOMAP_F_NEW) {
1354                 invalidate_inode_pages2_range(iomi->inode->i_mapping,
1355                                               pos >> PAGE_SHIFT,
1356                                               (end - 1) >> PAGE_SHIFT);
1357         }
1358
1359         id = dax_read_lock();
1360         while (pos < end) {
1361                 unsigned offset = pos & (PAGE_SIZE - 1);
1362                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1363                 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1364                 ssize_t map_len;
1365                 bool recovery = false;
1366                 void *kaddr;
1367
1368                 if (fatal_signal_pending(current)) {
1369                         ret = -EINTR;
1370                         break;
1371                 }
1372
1373                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1374                                 DAX_ACCESS, &kaddr, NULL);
1375                 if (map_len == -EIO && iov_iter_rw(iter) == WRITE) {
1376                         map_len = dax_direct_access(dax_dev, pgoff,
1377                                         PHYS_PFN(size), DAX_RECOVERY_WRITE,
1378                                         &kaddr, NULL);
1379                         if (map_len > 0)
1380                                 recovery = true;
1381                 }
1382                 if (map_len < 0) {
1383                         ret = map_len;
1384                         break;
1385                 }
1386
1387                 if (write &&
1388                     srcmap->type != IOMAP_HOLE && srcmap->addr != iomap->addr) {
1389                         ret = dax_iomap_cow_copy(pos, length, PAGE_SIZE, srcmap,
1390                                                  kaddr);
1391                         if (ret)
1392                                 break;
1393                 }
1394
1395                 map_len = PFN_PHYS(map_len);
1396                 kaddr += offset;
1397                 map_len -= offset;
1398                 if (map_len > end - pos)
1399                         map_len = end - pos;
1400
1401                 if (recovery)
1402                         xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1403                                         map_len, iter);
1404                 else if (write)
1405                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1406                                         map_len, iter);
1407                 else
1408                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1409                                         map_len, iter);
1410
1411                 pos += xfer;
1412                 length -= xfer;
1413                 done += xfer;
1414
1415                 if (xfer == 0)
1416                         ret = -EFAULT;
1417                 if (xfer < map_len)
1418                         break;
1419         }
1420         dax_read_unlock(id);
1421
1422         return done ? done : ret;
1423 }
1424
1425 /**
1426  * dax_iomap_rw - Perform I/O to a DAX file
1427  * @iocb:       The control block for this I/O
1428  * @iter:       The addresses to do I/O from or to
1429  * @ops:        iomap ops passed from the file system
1430  *
1431  * This function performs read and write operations to directly mapped
1432  * persistent memory.  The callers needs to take care of read/write exclusion
1433  * and evicting any page cache pages in the region under I/O.
1434  */
1435 ssize_t
1436 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1437                 const struct iomap_ops *ops)
1438 {
1439         struct iomap_iter iomi = {
1440                 .inode          = iocb->ki_filp->f_mapping->host,
1441                 .pos            = iocb->ki_pos,
1442                 .len            = iov_iter_count(iter),
1443                 .flags          = IOMAP_DAX,
1444         };
1445         loff_t done = 0;
1446         int ret;
1447
1448         if (iov_iter_rw(iter) == WRITE) {
1449                 lockdep_assert_held_write(&iomi.inode->i_rwsem);
1450                 iomi.flags |= IOMAP_WRITE;
1451         } else {
1452                 lockdep_assert_held(&iomi.inode->i_rwsem);
1453         }
1454
1455         if (iocb->ki_flags & IOCB_NOWAIT)
1456                 iomi.flags |= IOMAP_NOWAIT;
1457
1458         while ((ret = iomap_iter(&iomi, ops)) > 0)
1459                 iomi.processed = dax_iomap_iter(&iomi, iter);
1460
1461         done = iomi.pos - iocb->ki_pos;
1462         iocb->ki_pos = iomi.pos;
1463         return done ? done : ret;
1464 }
1465 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1466
1467 static vm_fault_t dax_fault_return(int error)
1468 {
1469         if (error == 0)
1470                 return VM_FAULT_NOPAGE;
1471         return vmf_error(error);
1472 }
1473
1474 /*
1475  * When handling a synchronous page fault and the inode need a fsync, we can
1476  * insert the PTE/PMD into page tables only after that fsync happened. Skip
1477  * insertion for now and return the pfn so that caller can insert it after the
1478  * fsync is done.
1479  */
1480 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1481 {
1482         if (WARN_ON_ONCE(!pfnp))
1483                 return VM_FAULT_SIGBUS;
1484         *pfnp = pfn;
1485         return VM_FAULT_NEEDDSYNC;
1486 }
1487
1488 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1489                 const struct iomap_iter *iter)
1490 {
1491         vm_fault_t ret;
1492         int error = 0;
1493
1494         switch (iter->iomap.type) {
1495         case IOMAP_HOLE:
1496         case IOMAP_UNWRITTEN:
1497                 clear_user_highpage(vmf->cow_page, vmf->address);
1498                 break;
1499         case IOMAP_MAPPED:
1500                 error = copy_cow_page_dax(vmf, iter);
1501                 break;
1502         default:
1503                 WARN_ON_ONCE(1);
1504                 error = -EIO;
1505                 break;
1506         }
1507
1508         if (error)
1509                 return dax_fault_return(error);
1510
1511         __SetPageUptodate(vmf->cow_page);
1512         ret = finish_fault(vmf);
1513         if (!ret)
1514                 return VM_FAULT_DONE_COW;
1515         return ret;
1516 }
1517
1518 /**
1519  * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1520  * @vmf:        vm fault instance
1521  * @iter:       iomap iter
1522  * @pfnp:       pfn to be returned
1523  * @xas:        the dax mapping tree of a file
1524  * @entry:      an unlocked dax entry to be inserted
1525  * @pmd:        distinguish whether it is a pmd fault
1526  */
1527 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1528                 const struct iomap_iter *iter, pfn_t *pfnp,
1529                 struct xa_state *xas, void **entry, bool pmd)
1530 {
1531         const struct iomap *iomap = &iter->iomap;
1532         const struct iomap *srcmap = &iter->srcmap;
1533         size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1534         loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1535         bool write = iter->flags & IOMAP_WRITE;
1536         unsigned long entry_flags = pmd ? DAX_PMD : 0;
1537         int err = 0;
1538         pfn_t pfn;
1539         void *kaddr;
1540
1541         if (!pmd && vmf->cow_page)
1542                 return dax_fault_cow_page(vmf, iter);
1543
1544         /* if we are reading UNWRITTEN and HOLE, return a hole. */
1545         if (!write &&
1546             (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1547                 if (!pmd)
1548                         return dax_load_hole(xas, vmf, iter, entry);
1549                 return dax_pmd_load_hole(xas, vmf, iter, entry);
1550         }
1551
1552         if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
1553                 WARN_ON_ONCE(1);
1554                 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1555         }
1556
1557         err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
1558         if (err)
1559                 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1560
1561         *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
1562
1563         if (write &&
1564             srcmap->type != IOMAP_HOLE && srcmap->addr != iomap->addr) {
1565                 err = dax_iomap_cow_copy(pos, size, size, srcmap, kaddr);
1566                 if (err)
1567                         return dax_fault_return(err);
1568         }
1569
1570         if (dax_fault_is_synchronous(iter, vmf->vma))
1571                 return dax_fault_synchronous_pfnp(pfnp, pfn);
1572
1573         /* insert PMD pfn */
1574         if (pmd)
1575                 return vmf_insert_pfn_pmd(vmf, pfn, write);
1576
1577         /* insert PTE pfn */
1578         if (write)
1579                 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1580         return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1581 }
1582
1583 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1584                                int *iomap_errp, const struct iomap_ops *ops)
1585 {
1586         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1587         XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1588         struct iomap_iter iter = {
1589                 .inode          = mapping->host,
1590                 .pos            = (loff_t)vmf->pgoff << PAGE_SHIFT,
1591                 .len            = PAGE_SIZE,
1592                 .flags          = IOMAP_DAX | IOMAP_FAULT,
1593         };
1594         vm_fault_t ret = 0;
1595         void *entry;
1596         int error;
1597
1598         trace_dax_pte_fault(iter.inode, vmf, ret);
1599         /*
1600          * Check whether offset isn't beyond end of file now. Caller is supposed
1601          * to hold locks serializing us with truncate / punch hole so this is
1602          * a reliable test.
1603          */
1604         if (iter.pos >= i_size_read(iter.inode)) {
1605                 ret = VM_FAULT_SIGBUS;
1606                 goto out;
1607         }
1608
1609         if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1610                 iter.flags |= IOMAP_WRITE;
1611
1612         entry = grab_mapping_entry(&xas, mapping, 0);
1613         if (xa_is_internal(entry)) {
1614                 ret = xa_to_internal(entry);
1615                 goto out;
1616         }
1617
1618         /*
1619          * It is possible, particularly with mixed reads & writes to private
1620          * mappings, that we have raced with a PMD fault that overlaps with
1621          * the PTE we need to set up.  If so just return and the fault will be
1622          * retried.
1623          */
1624         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1625                 ret = VM_FAULT_NOPAGE;
1626                 goto unlock_entry;
1627         }
1628
1629         while ((error = iomap_iter(&iter, ops)) > 0) {
1630                 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1631                         iter.processed = -EIO;  /* fs corruption? */
1632                         continue;
1633                 }
1634
1635                 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1636                 if (ret != VM_FAULT_SIGBUS &&
1637                     (iter.iomap.flags & IOMAP_F_NEW)) {
1638                         count_vm_event(PGMAJFAULT);
1639                         count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1640                         ret |= VM_FAULT_MAJOR;
1641                 }
1642
1643                 if (!(ret & VM_FAULT_ERROR))
1644                         iter.processed = PAGE_SIZE;
1645         }
1646
1647         if (iomap_errp)
1648                 *iomap_errp = error;
1649         if (!ret && error)
1650                 ret = dax_fault_return(error);
1651
1652 unlock_entry:
1653         dax_unlock_entry(&xas, entry);
1654 out:
1655         trace_dax_pte_fault_done(iter.inode, vmf, ret);
1656         return ret;
1657 }
1658
1659 #ifdef CONFIG_FS_DAX_PMD
1660 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1661                 pgoff_t max_pgoff)
1662 {
1663         unsigned long pmd_addr = vmf->address & PMD_MASK;
1664         bool write = vmf->flags & FAULT_FLAG_WRITE;
1665
1666         /*
1667          * Make sure that the faulting address's PMD offset (color) matches
1668          * the PMD offset from the start of the file.  This is necessary so
1669          * that a PMD range in the page table overlaps exactly with a PMD
1670          * range in the page cache.
1671          */
1672         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1673             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1674                 return true;
1675
1676         /* Fall back to PTEs if we're going to COW */
1677         if (write && !(vmf->vma->vm_flags & VM_SHARED))
1678                 return true;
1679
1680         /* If the PMD would extend outside the VMA */
1681         if (pmd_addr < vmf->vma->vm_start)
1682                 return true;
1683         if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1684                 return true;
1685
1686         /* If the PMD would extend beyond the file size */
1687         if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1688                 return true;
1689
1690         return false;
1691 }
1692
1693 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1694                                const struct iomap_ops *ops)
1695 {
1696         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1697         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1698         struct iomap_iter iter = {
1699                 .inode          = mapping->host,
1700                 .len            = PMD_SIZE,
1701                 .flags          = IOMAP_DAX | IOMAP_FAULT,
1702         };
1703         vm_fault_t ret = VM_FAULT_FALLBACK;
1704         pgoff_t max_pgoff;
1705         void *entry;
1706         int error;
1707
1708         if (vmf->flags & FAULT_FLAG_WRITE)
1709                 iter.flags |= IOMAP_WRITE;
1710
1711         /*
1712          * Check whether offset isn't beyond end of file now. Caller is
1713          * supposed to hold locks serializing us with truncate / punch hole so
1714          * this is a reliable test.
1715          */
1716         max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1717
1718         trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1719
1720         if (xas.xa_index >= max_pgoff) {
1721                 ret = VM_FAULT_SIGBUS;
1722                 goto out;
1723         }
1724
1725         if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1726                 goto fallback;
1727
1728         /*
1729          * grab_mapping_entry() will make sure we get an empty PMD entry,
1730          * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1731          * entry is already in the array, for instance), it will return
1732          * VM_FAULT_FALLBACK.
1733          */
1734         entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1735         if (xa_is_internal(entry)) {
1736                 ret = xa_to_internal(entry);
1737                 goto fallback;
1738         }
1739
1740         /*
1741          * It is possible, particularly with mixed reads & writes to private
1742          * mappings, that we have raced with a PTE fault that overlaps with
1743          * the PMD we need to set up.  If so just return and the fault will be
1744          * retried.
1745          */
1746         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1747                         !pmd_devmap(*vmf->pmd)) {
1748                 ret = 0;
1749                 goto unlock_entry;
1750         }
1751
1752         iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1753         while ((error = iomap_iter(&iter, ops)) > 0) {
1754                 if (iomap_length(&iter) < PMD_SIZE)
1755                         continue; /* actually breaks out of the loop */
1756
1757                 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1758                 if (ret != VM_FAULT_FALLBACK)
1759                         iter.processed = PMD_SIZE;
1760         }
1761
1762 unlock_entry:
1763         dax_unlock_entry(&xas, entry);
1764 fallback:
1765         if (ret == VM_FAULT_FALLBACK) {
1766                 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1767                 count_vm_event(THP_FAULT_FALLBACK);
1768         }
1769 out:
1770         trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1771         return ret;
1772 }
1773 #else
1774 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1775                                const struct iomap_ops *ops)
1776 {
1777         return VM_FAULT_FALLBACK;
1778 }
1779 #endif /* CONFIG_FS_DAX_PMD */
1780
1781 /**
1782  * dax_iomap_fault - handle a page fault on a DAX file
1783  * @vmf: The description of the fault
1784  * @pe_size: Size of the page to fault in
1785  * @pfnp: PFN to insert for synchronous faults if fsync is required
1786  * @iomap_errp: Storage for detailed error code in case of error
1787  * @ops: Iomap ops passed from the file system
1788  *
1789  * When a page fault occurs, filesystems may call this helper in
1790  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1791  * has done all the necessary locking for page fault to proceed
1792  * successfully.
1793  */
1794 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1795                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1796 {
1797         switch (pe_size) {
1798         case PE_SIZE_PTE:
1799                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1800         case PE_SIZE_PMD:
1801                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1802         default:
1803                 return VM_FAULT_FALLBACK;
1804         }
1805 }
1806 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1807
1808 /*
1809  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1810  * @vmf: The description of the fault
1811  * @pfn: PFN to insert
1812  * @order: Order of entry to insert.
1813  *
1814  * This function inserts a writeable PTE or PMD entry into the page tables
1815  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1816  */
1817 static vm_fault_t
1818 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1819 {
1820         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1821         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1822         void *entry;
1823         vm_fault_t ret;
1824
1825         xas_lock_irq(&xas);
1826         entry = get_unlocked_entry(&xas, order);
1827         /* Did we race with someone splitting entry or so? */
1828         if (!entry || dax_is_conflict(entry) ||
1829             (order == 0 && !dax_is_pte_entry(entry))) {
1830                 put_unlocked_entry(&xas, entry, WAKE_NEXT);
1831                 xas_unlock_irq(&xas);
1832                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1833                                                       VM_FAULT_NOPAGE);
1834                 return VM_FAULT_NOPAGE;
1835         }
1836         xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1837         dax_lock_entry(&xas, entry);
1838         xas_unlock_irq(&xas);
1839         if (order == 0)
1840                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1841 #ifdef CONFIG_FS_DAX_PMD
1842         else if (order == PMD_ORDER)
1843                 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1844 #endif
1845         else
1846                 ret = VM_FAULT_FALLBACK;
1847         dax_unlock_entry(&xas, entry);
1848         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1849         return ret;
1850 }
1851
1852 /**
1853  * dax_finish_sync_fault - finish synchronous page fault
1854  * @vmf: The description of the fault
1855  * @pe_size: Size of entry to be inserted
1856  * @pfn: PFN to insert
1857  *
1858  * This function ensures that the file range touched by the page fault is
1859  * stored persistently on the media and handles inserting of appropriate page
1860  * table entry.
1861  */
1862 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1863                 enum page_entry_size pe_size, pfn_t pfn)
1864 {
1865         int err;
1866         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1867         unsigned int order = pe_order(pe_size);
1868         size_t len = PAGE_SIZE << order;
1869
1870         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1871         if (err)
1872                 return VM_FAULT_SIGBUS;
1873         return dax_insert_pfn_mkwrite(vmf, pfn, order);
1874 }
1875 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1876
1877 static loff_t dax_range_compare_iter(struct iomap_iter *it_src,
1878                 struct iomap_iter *it_dest, u64 len, bool *same)
1879 {
1880         const struct iomap *smap = &it_src->iomap;
1881         const struct iomap *dmap = &it_dest->iomap;
1882         loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
1883         void *saddr, *daddr;
1884         int id, ret;
1885
1886         len = min(len, min(smap->length, dmap->length));
1887
1888         if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
1889                 *same = true;
1890                 return len;
1891         }
1892
1893         if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
1894                 *same = false;
1895                 return 0;
1896         }
1897
1898         id = dax_read_lock();
1899         ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
1900                                       &saddr, NULL);
1901         if (ret < 0)
1902                 goto out_unlock;
1903
1904         ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
1905                                       &daddr, NULL);
1906         if (ret < 0)
1907                 goto out_unlock;
1908
1909         *same = !memcmp(saddr, daddr, len);
1910         if (!*same)
1911                 len = 0;
1912         dax_read_unlock(id);
1913         return len;
1914
1915 out_unlock:
1916         dax_read_unlock(id);
1917         return -EIO;
1918 }
1919
1920 int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
1921                 struct inode *dst, loff_t dstoff, loff_t len, bool *same,
1922                 const struct iomap_ops *ops)
1923 {
1924         struct iomap_iter src_iter = {
1925                 .inode          = src,
1926                 .pos            = srcoff,
1927                 .len            = len,
1928                 .flags          = IOMAP_DAX,
1929         };
1930         struct iomap_iter dst_iter = {
1931                 .inode          = dst,
1932                 .pos            = dstoff,
1933                 .len            = len,
1934                 .flags          = IOMAP_DAX,
1935         };
1936         int ret;
1937
1938         while ((ret = iomap_iter(&src_iter, ops)) > 0) {
1939                 while ((ret = iomap_iter(&dst_iter, ops)) > 0) {
1940                         dst_iter.processed = dax_range_compare_iter(&src_iter,
1941                                                 &dst_iter, len, same);
1942                 }
1943                 if (ret <= 0)
1944                         src_iter.processed = ret;
1945         }
1946         return ret;
1947 }
1948
1949 int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
1950                               struct file *file_out, loff_t pos_out,
1951                               loff_t *len, unsigned int remap_flags,
1952                               const struct iomap_ops *ops)
1953 {
1954         return __generic_remap_file_range_prep(file_in, pos_in, file_out,
1955                                                pos_out, len, remap_flags, ops);
1956 }
1957 EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);