riscv: Implement flush_cache_vmap()
[platform/kernel/linux-rpi.git] / fs / dax.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/highmem.h>
15 #include <linux/memcontrol.h>
16 #include <linux/mm.h>
17 #include <linux/mutex.h>
18 #include <linux/pagevec.h>
19 #include <linux/sched.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uio.h>
22 #include <linux/vmstat.h>
23 #include <linux/pfn_t.h>
24 #include <linux/sizes.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/iomap.h>
27 #include <linux/rmap.h>
28 #include <asm/pgalloc.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35         if (pe_size == PE_SIZE_PTE)
36                 return PAGE_SHIFT - PAGE_SHIFT;
37         if (pe_size == PE_SIZE_PMD)
38                 return PMD_SHIFT - PAGE_SHIFT;
39         if (pe_size == PE_SIZE_PUD)
40                 return PUD_SHIFT - PAGE_SHIFT;
41         return ~0;
42 }
43
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
48 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
51
52 /* The order of a PMD entry */
53 #define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
54
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56
57 static int __init init_dax_wait_table(void)
58 {
59         int i;
60
61         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62                 init_waitqueue_head(wait_table + i);
63         return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66
67 /*
68  * DAX pagecache entries use XArray value entries so they can't be mistaken
69  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70  * and two more to tell us if the entry is a zero page or an empty entry that
71  * is just used for locking.  In total four special bits.
72  *
73  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75  * block allocation.
76  */
77 #define DAX_SHIFT       (4)
78 #define DAX_LOCKED      (1UL << 0)
79 #define DAX_PMD         (1UL << 1)
80 #define DAX_ZERO_PAGE   (1UL << 2)
81 #define DAX_EMPTY       (1UL << 3)
82
83 static unsigned long dax_to_pfn(void *entry)
84 {
85         return xa_to_value(entry) >> DAX_SHIFT;
86 }
87
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90         return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92
93 static bool dax_is_locked(void *entry)
94 {
95         return xa_to_value(entry) & DAX_LOCKED;
96 }
97
98 static unsigned int dax_entry_order(void *entry)
99 {
100         if (xa_to_value(entry) & DAX_PMD)
101                 return PMD_ORDER;
102         return 0;
103 }
104
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107         return xa_to_value(entry) & DAX_PMD;
108 }
109
110 static bool dax_is_pte_entry(void *entry)
111 {
112         return !(xa_to_value(entry) & DAX_PMD);
113 }
114
115 static int dax_is_zero_entry(void *entry)
116 {
117         return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119
120 static int dax_is_empty_entry(void *entry)
121 {
122         return xa_to_value(entry) & DAX_EMPTY;
123 }
124
125 /*
126  * true if the entry that was found is of a smaller order than the entry
127  * we were looking for
128  */
129 static bool dax_is_conflict(void *entry)
130 {
131         return entry == XA_RETRY_ENTRY;
132 }
133
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138         struct xarray *xa;
139         pgoff_t entry_start;
140 };
141
142 struct wait_exceptional_entry_queue {
143         wait_queue_entry_t wait;
144         struct exceptional_entry_key key;
145 };
146
147 /**
148  * enum dax_wake_mode: waitqueue wakeup behaviour
149  * @WAKE_ALL: wake all waiters in the waitqueue
150  * @WAKE_NEXT: wake only the first waiter in the waitqueue
151  */
152 enum dax_wake_mode {
153         WAKE_ALL,
154         WAKE_NEXT,
155 };
156
157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158                 void *entry, struct exceptional_entry_key *key)
159 {
160         unsigned long hash;
161         unsigned long index = xas->xa_index;
162
163         /*
164          * If 'entry' is a PMD, align the 'index' that we use for the wait
165          * queue to the start of that PMD.  This ensures that all offsets in
166          * the range covered by the PMD map to the same bit lock.
167          */
168         if (dax_is_pmd_entry(entry))
169                 index &= ~PG_PMD_COLOUR;
170         key->xa = xas->xa;
171         key->entry_start = index;
172
173         hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174         return wait_table + hash;
175 }
176
177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178                 unsigned int mode, int sync, void *keyp)
179 {
180         struct exceptional_entry_key *key = keyp;
181         struct wait_exceptional_entry_queue *ewait =
182                 container_of(wait, struct wait_exceptional_entry_queue, wait);
183
184         if (key->xa != ewait->key.xa ||
185             key->entry_start != ewait->key.entry_start)
186                 return 0;
187         return autoremove_wake_function(wait, mode, sync, NULL);
188 }
189
190 /*
191  * @entry may no longer be the entry at the index in the mapping.
192  * The important information it's conveying is whether the entry at
193  * this index used to be a PMD entry.
194  */
195 static void dax_wake_entry(struct xa_state *xas, void *entry,
196                            enum dax_wake_mode mode)
197 {
198         struct exceptional_entry_key key;
199         wait_queue_head_t *wq;
200
201         wq = dax_entry_waitqueue(xas, entry, &key);
202
203         /*
204          * Checking for locked entry and prepare_to_wait_exclusive() happens
205          * under the i_pages lock, ditto for entry handling in our callers.
206          * So at this point all tasks that could have seen our entry locked
207          * must be in the waitqueue and the following check will see them.
208          */
209         if (waitqueue_active(wq))
210                 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
211 }
212
213 /*
214  * Look up entry in page cache, wait for it to become unlocked if it
215  * is a DAX entry and return it.  The caller must subsequently call
216  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217  * if it did.  The entry returned may have a larger order than @order.
218  * If @order is larger than the order of the entry found in i_pages, this
219  * function returns a dax_is_conflict entry.
220  *
221  * Must be called with the i_pages lock held.
222  */
223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
224 {
225         void *entry;
226         struct wait_exceptional_entry_queue ewait;
227         wait_queue_head_t *wq;
228
229         init_wait(&ewait.wait);
230         ewait.wait.func = wake_exceptional_entry_func;
231
232         for (;;) {
233                 entry = xas_find_conflict(xas);
234                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235                         return entry;
236                 if (dax_entry_order(entry) < order)
237                         return XA_RETRY_ENTRY;
238                 if (!dax_is_locked(entry))
239                         return entry;
240
241                 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242                 prepare_to_wait_exclusive(wq, &ewait.wait,
243                                           TASK_UNINTERRUPTIBLE);
244                 xas_unlock_irq(xas);
245                 xas_reset(xas);
246                 schedule();
247                 finish_wait(wq, &ewait.wait);
248                 xas_lock_irq(xas);
249         }
250 }
251
252 /*
253  * The only thing keeping the address space around is the i_pages lock
254  * (it's cycled in clear_inode() after removing the entries from i_pages)
255  * After we call xas_unlock_irq(), we cannot touch xas->xa.
256  */
257 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258 {
259         struct wait_exceptional_entry_queue ewait;
260         wait_queue_head_t *wq;
261
262         init_wait(&ewait.wait);
263         ewait.wait.func = wake_exceptional_entry_func;
264
265         wq = dax_entry_waitqueue(xas, entry, &ewait.key);
266         /*
267          * Unlike get_unlocked_entry() there is no guarantee that this
268          * path ever successfully retrieves an unlocked entry before an
269          * inode dies. Perform a non-exclusive wait in case this path
270          * never successfully performs its own wake up.
271          */
272         prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
273         xas_unlock_irq(xas);
274         schedule();
275         finish_wait(wq, &ewait.wait);
276 }
277
278 static void put_unlocked_entry(struct xa_state *xas, void *entry,
279                                enum dax_wake_mode mode)
280 {
281         if (entry && !dax_is_conflict(entry))
282                 dax_wake_entry(xas, entry, mode);
283 }
284
285 /*
286  * We used the xa_state to get the entry, but then we locked the entry and
287  * dropped the xa_lock, so we know the xa_state is stale and must be reset
288  * before use.
289  */
290 static void dax_unlock_entry(struct xa_state *xas, void *entry)
291 {
292         void *old;
293
294         BUG_ON(dax_is_locked(entry));
295         xas_reset(xas);
296         xas_lock_irq(xas);
297         old = xas_store(xas, entry);
298         xas_unlock_irq(xas);
299         BUG_ON(!dax_is_locked(old));
300         dax_wake_entry(xas, entry, WAKE_NEXT);
301 }
302
303 /*
304  * Return: The entry stored at this location before it was locked.
305  */
306 static void *dax_lock_entry(struct xa_state *xas, void *entry)
307 {
308         unsigned long v = xa_to_value(entry);
309         return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310 }
311
312 static unsigned long dax_entry_size(void *entry)
313 {
314         if (dax_is_zero_entry(entry))
315                 return 0;
316         else if (dax_is_empty_entry(entry))
317                 return 0;
318         else if (dax_is_pmd_entry(entry))
319                 return PMD_SIZE;
320         else
321                 return PAGE_SIZE;
322 }
323
324 static unsigned long dax_end_pfn(void *entry)
325 {
326         return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
327 }
328
329 /*
330  * Iterate through all mapped pfns represented by an entry, i.e. skip
331  * 'empty' and 'zero' entries.
332  */
333 #define for_each_mapped_pfn(entry, pfn) \
334         for (pfn = dax_to_pfn(entry); \
335                         pfn < dax_end_pfn(entry); pfn++)
336
337 static inline bool dax_page_is_shared(struct page *page)
338 {
339         return page->mapping == PAGE_MAPPING_DAX_SHARED;
340 }
341
342 /*
343  * Set the page->mapping with PAGE_MAPPING_DAX_SHARED flag, increase the
344  * refcount.
345  */
346 static inline void dax_page_share_get(struct page *page)
347 {
348         if (page->mapping != PAGE_MAPPING_DAX_SHARED) {
349                 /*
350                  * Reset the index if the page was already mapped
351                  * regularly before.
352                  */
353                 if (page->mapping)
354                         page->share = 1;
355                 page->mapping = PAGE_MAPPING_DAX_SHARED;
356         }
357         page->share++;
358 }
359
360 static inline unsigned long dax_page_share_put(struct page *page)
361 {
362         return --page->share;
363 }
364
365 /*
366  * When it is called in dax_insert_entry(), the shared flag will indicate that
367  * whether this entry is shared by multiple files.  If so, set the page->mapping
368  * PAGE_MAPPING_DAX_SHARED, and use page->share as refcount.
369  */
370 static void dax_associate_entry(void *entry, struct address_space *mapping,
371                 struct vm_area_struct *vma, unsigned long address, bool shared)
372 {
373         unsigned long size = dax_entry_size(entry), pfn, index;
374         int i = 0;
375
376         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
377                 return;
378
379         index = linear_page_index(vma, address & ~(size - 1));
380         for_each_mapped_pfn(entry, pfn) {
381                 struct page *page = pfn_to_page(pfn);
382
383                 if (shared) {
384                         dax_page_share_get(page);
385                 } else {
386                         WARN_ON_ONCE(page->mapping);
387                         page->mapping = mapping;
388                         page->index = index + i++;
389                 }
390         }
391 }
392
393 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
394                 bool trunc)
395 {
396         unsigned long pfn;
397
398         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
399                 return;
400
401         for_each_mapped_pfn(entry, pfn) {
402                 struct page *page = pfn_to_page(pfn);
403
404                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
405                 if (dax_page_is_shared(page)) {
406                         /* keep the shared flag if this page is still shared */
407                         if (dax_page_share_put(page) > 0)
408                                 continue;
409                 } else
410                         WARN_ON_ONCE(page->mapping && page->mapping != mapping);
411                 page->mapping = NULL;
412                 page->index = 0;
413         }
414 }
415
416 static struct page *dax_busy_page(void *entry)
417 {
418         unsigned long pfn;
419
420         for_each_mapped_pfn(entry, pfn) {
421                 struct page *page = pfn_to_page(pfn);
422
423                 if (page_ref_count(page) > 1)
424                         return page;
425         }
426         return NULL;
427 }
428
429 /*
430  * dax_lock_page - Lock the DAX entry corresponding to a page
431  * @page: The page whose entry we want to lock
432  *
433  * Context: Process context.
434  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
435  * not be locked.
436  */
437 dax_entry_t dax_lock_page(struct page *page)
438 {
439         XA_STATE(xas, NULL, 0);
440         void *entry;
441
442         /* Ensure page->mapping isn't freed while we look at it */
443         rcu_read_lock();
444         for (;;) {
445                 struct address_space *mapping = READ_ONCE(page->mapping);
446
447                 entry = NULL;
448                 if (!mapping || !dax_mapping(mapping))
449                         break;
450
451                 /*
452                  * In the device-dax case there's no need to lock, a
453                  * struct dev_pagemap pin is sufficient to keep the
454                  * inode alive, and we assume we have dev_pagemap pin
455                  * otherwise we would not have a valid pfn_to_page()
456                  * translation.
457                  */
458                 entry = (void *)~0UL;
459                 if (S_ISCHR(mapping->host->i_mode))
460                         break;
461
462                 xas.xa = &mapping->i_pages;
463                 xas_lock_irq(&xas);
464                 if (mapping != page->mapping) {
465                         xas_unlock_irq(&xas);
466                         continue;
467                 }
468                 xas_set(&xas, page->index);
469                 entry = xas_load(&xas);
470                 if (dax_is_locked(entry)) {
471                         rcu_read_unlock();
472                         wait_entry_unlocked(&xas, entry);
473                         rcu_read_lock();
474                         continue;
475                 }
476                 dax_lock_entry(&xas, entry);
477                 xas_unlock_irq(&xas);
478                 break;
479         }
480         rcu_read_unlock();
481         return (dax_entry_t)entry;
482 }
483
484 void dax_unlock_page(struct page *page, dax_entry_t cookie)
485 {
486         struct address_space *mapping = page->mapping;
487         XA_STATE(xas, &mapping->i_pages, page->index);
488
489         if (S_ISCHR(mapping->host->i_mode))
490                 return;
491
492         dax_unlock_entry(&xas, (void *)cookie);
493 }
494
495 /*
496  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
497  * @mapping: the file's mapping whose entry we want to lock
498  * @index: the offset within this file
499  * @page: output the dax page corresponding to this dax entry
500  *
501  * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
502  * could not be locked.
503  */
504 dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
505                 struct page **page)
506 {
507         XA_STATE(xas, NULL, 0);
508         void *entry;
509
510         rcu_read_lock();
511         for (;;) {
512                 entry = NULL;
513                 if (!dax_mapping(mapping))
514                         break;
515
516                 xas.xa = &mapping->i_pages;
517                 xas_lock_irq(&xas);
518                 xas_set(&xas, index);
519                 entry = xas_load(&xas);
520                 if (dax_is_locked(entry)) {
521                         rcu_read_unlock();
522                         wait_entry_unlocked(&xas, entry);
523                         rcu_read_lock();
524                         continue;
525                 }
526                 if (!entry ||
527                     dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
528                         /*
529                          * Because we are looking for entry from file's mapping
530                          * and index, so the entry may not be inserted for now,
531                          * or even a zero/empty entry.  We don't think this is
532                          * an error case.  So, return a special value and do
533                          * not output @page.
534                          */
535                         entry = (void *)~0UL;
536                 } else {
537                         *page = pfn_to_page(dax_to_pfn(entry));
538                         dax_lock_entry(&xas, entry);
539                 }
540                 xas_unlock_irq(&xas);
541                 break;
542         }
543         rcu_read_unlock();
544         return (dax_entry_t)entry;
545 }
546
547 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
548                 dax_entry_t cookie)
549 {
550         XA_STATE(xas, &mapping->i_pages, index);
551
552         if (cookie == ~0UL)
553                 return;
554
555         dax_unlock_entry(&xas, (void *)cookie);
556 }
557
558 /*
559  * Find page cache entry at given index. If it is a DAX entry, return it
560  * with the entry locked. If the page cache doesn't contain an entry at
561  * that index, add a locked empty entry.
562  *
563  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
564  * either return that locked entry or will return VM_FAULT_FALLBACK.
565  * This will happen if there are any PTE entries within the PMD range
566  * that we are requesting.
567  *
568  * We always favor PTE entries over PMD entries. There isn't a flow where we
569  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
570  * insertion will fail if it finds any PTE entries already in the tree, and a
571  * PTE insertion will cause an existing PMD entry to be unmapped and
572  * downgraded to PTE entries.  This happens for both PMD zero pages as
573  * well as PMD empty entries.
574  *
575  * The exception to this downgrade path is for PMD entries that have
576  * real storage backing them.  We will leave these real PMD entries in
577  * the tree, and PTE writes will simply dirty the entire PMD entry.
578  *
579  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
580  * persistent memory the benefit is doubtful. We can add that later if we can
581  * show it helps.
582  *
583  * On error, this function does not return an ERR_PTR.  Instead it returns
584  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
585  * overlap with xarray value entries.
586  */
587 static void *grab_mapping_entry(struct xa_state *xas,
588                 struct address_space *mapping, unsigned int order)
589 {
590         unsigned long index = xas->xa_index;
591         bool pmd_downgrade;     /* splitting PMD entry into PTE entries? */
592         void *entry;
593
594 retry:
595         pmd_downgrade = false;
596         xas_lock_irq(xas);
597         entry = get_unlocked_entry(xas, order);
598
599         if (entry) {
600                 if (dax_is_conflict(entry))
601                         goto fallback;
602                 if (!xa_is_value(entry)) {
603                         xas_set_err(xas, -EIO);
604                         goto out_unlock;
605                 }
606
607                 if (order == 0) {
608                         if (dax_is_pmd_entry(entry) &&
609                             (dax_is_zero_entry(entry) ||
610                              dax_is_empty_entry(entry))) {
611                                 pmd_downgrade = true;
612                         }
613                 }
614         }
615
616         if (pmd_downgrade) {
617                 /*
618                  * Make sure 'entry' remains valid while we drop
619                  * the i_pages lock.
620                  */
621                 dax_lock_entry(xas, entry);
622
623                 /*
624                  * Besides huge zero pages the only other thing that gets
625                  * downgraded are empty entries which don't need to be
626                  * unmapped.
627                  */
628                 if (dax_is_zero_entry(entry)) {
629                         xas_unlock_irq(xas);
630                         unmap_mapping_pages(mapping,
631                                         xas->xa_index & ~PG_PMD_COLOUR,
632                                         PG_PMD_NR, false);
633                         xas_reset(xas);
634                         xas_lock_irq(xas);
635                 }
636
637                 dax_disassociate_entry(entry, mapping, false);
638                 xas_store(xas, NULL);   /* undo the PMD join */
639                 dax_wake_entry(xas, entry, WAKE_ALL);
640                 mapping->nrpages -= PG_PMD_NR;
641                 entry = NULL;
642                 xas_set(xas, index);
643         }
644
645         if (entry) {
646                 dax_lock_entry(xas, entry);
647         } else {
648                 unsigned long flags = DAX_EMPTY;
649
650                 if (order > 0)
651                         flags |= DAX_PMD;
652                 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
653                 dax_lock_entry(xas, entry);
654                 if (xas_error(xas))
655                         goto out_unlock;
656                 mapping->nrpages += 1UL << order;
657         }
658
659 out_unlock:
660         xas_unlock_irq(xas);
661         if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
662                 goto retry;
663         if (xas->xa_node == XA_ERROR(-ENOMEM))
664                 return xa_mk_internal(VM_FAULT_OOM);
665         if (xas_error(xas))
666                 return xa_mk_internal(VM_FAULT_SIGBUS);
667         return entry;
668 fallback:
669         xas_unlock_irq(xas);
670         return xa_mk_internal(VM_FAULT_FALLBACK);
671 }
672
673 /**
674  * dax_layout_busy_page_range - find first pinned page in @mapping
675  * @mapping: address space to scan for a page with ref count > 1
676  * @start: Starting offset. Page containing 'start' is included.
677  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
678  *       pages from 'start' till the end of file are included.
679  *
680  * DAX requires ZONE_DEVICE mapped pages. These pages are never
681  * 'onlined' to the page allocator so they are considered idle when
682  * page->count == 1. A filesystem uses this interface to determine if
683  * any page in the mapping is busy, i.e. for DMA, or other
684  * get_user_pages() usages.
685  *
686  * It is expected that the filesystem is holding locks to block the
687  * establishment of new mappings in this address_space. I.e. it expects
688  * to be able to run unmap_mapping_range() and subsequently not race
689  * mapping_mapped() becoming true.
690  */
691 struct page *dax_layout_busy_page_range(struct address_space *mapping,
692                                         loff_t start, loff_t end)
693 {
694         void *entry;
695         unsigned int scanned = 0;
696         struct page *page = NULL;
697         pgoff_t start_idx = start >> PAGE_SHIFT;
698         pgoff_t end_idx;
699         XA_STATE(xas, &mapping->i_pages, start_idx);
700
701         /*
702          * In the 'limited' case get_user_pages() for dax is disabled.
703          */
704         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
705                 return NULL;
706
707         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
708                 return NULL;
709
710         /* If end == LLONG_MAX, all pages from start to till end of file */
711         if (end == LLONG_MAX)
712                 end_idx = ULONG_MAX;
713         else
714                 end_idx = end >> PAGE_SHIFT;
715         /*
716          * If we race get_user_pages_fast() here either we'll see the
717          * elevated page count in the iteration and wait, or
718          * get_user_pages_fast() will see that the page it took a reference
719          * against is no longer mapped in the page tables and bail to the
720          * get_user_pages() slow path.  The slow path is protected by
721          * pte_lock() and pmd_lock(). New references are not taken without
722          * holding those locks, and unmap_mapping_pages() will not zero the
723          * pte or pmd without holding the respective lock, so we are
724          * guaranteed to either see new references or prevent new
725          * references from being established.
726          */
727         unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
728
729         xas_lock_irq(&xas);
730         xas_for_each(&xas, entry, end_idx) {
731                 if (WARN_ON_ONCE(!xa_is_value(entry)))
732                         continue;
733                 if (unlikely(dax_is_locked(entry)))
734                         entry = get_unlocked_entry(&xas, 0);
735                 if (entry)
736                         page = dax_busy_page(entry);
737                 put_unlocked_entry(&xas, entry, WAKE_NEXT);
738                 if (page)
739                         break;
740                 if (++scanned % XA_CHECK_SCHED)
741                         continue;
742
743                 xas_pause(&xas);
744                 xas_unlock_irq(&xas);
745                 cond_resched();
746                 xas_lock_irq(&xas);
747         }
748         xas_unlock_irq(&xas);
749         return page;
750 }
751 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
752
753 struct page *dax_layout_busy_page(struct address_space *mapping)
754 {
755         return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
756 }
757 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
758
759 static int __dax_invalidate_entry(struct address_space *mapping,
760                                           pgoff_t index, bool trunc)
761 {
762         XA_STATE(xas, &mapping->i_pages, index);
763         int ret = 0;
764         void *entry;
765
766         xas_lock_irq(&xas);
767         entry = get_unlocked_entry(&xas, 0);
768         if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
769                 goto out;
770         if (!trunc &&
771             (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
772              xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
773                 goto out;
774         dax_disassociate_entry(entry, mapping, trunc);
775         xas_store(&xas, NULL);
776         mapping->nrpages -= 1UL << dax_entry_order(entry);
777         ret = 1;
778 out:
779         put_unlocked_entry(&xas, entry, WAKE_ALL);
780         xas_unlock_irq(&xas);
781         return ret;
782 }
783
784 static int __dax_clear_dirty_range(struct address_space *mapping,
785                 pgoff_t start, pgoff_t end)
786 {
787         XA_STATE(xas, &mapping->i_pages, start);
788         unsigned int scanned = 0;
789         void *entry;
790
791         xas_lock_irq(&xas);
792         xas_for_each(&xas, entry, end) {
793                 entry = get_unlocked_entry(&xas, 0);
794                 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
795                 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
796                 put_unlocked_entry(&xas, entry, WAKE_NEXT);
797
798                 if (++scanned % XA_CHECK_SCHED)
799                         continue;
800
801                 xas_pause(&xas);
802                 xas_unlock_irq(&xas);
803                 cond_resched();
804                 xas_lock_irq(&xas);
805         }
806         xas_unlock_irq(&xas);
807
808         return 0;
809 }
810
811 /*
812  * Delete DAX entry at @index from @mapping.  Wait for it
813  * to be unlocked before deleting it.
814  */
815 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
816 {
817         int ret = __dax_invalidate_entry(mapping, index, true);
818
819         /*
820          * This gets called from truncate / punch_hole path. As such, the caller
821          * must hold locks protecting against concurrent modifications of the
822          * page cache (usually fs-private i_mmap_sem for writing). Since the
823          * caller has seen a DAX entry for this index, we better find it
824          * at that index as well...
825          */
826         WARN_ON_ONCE(!ret);
827         return ret;
828 }
829
830 /*
831  * Invalidate DAX entry if it is clean.
832  */
833 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
834                                       pgoff_t index)
835 {
836         return __dax_invalidate_entry(mapping, index, false);
837 }
838
839 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
840 {
841         return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
842 }
843
844 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
845 {
846         pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
847         void *vto, *kaddr;
848         long rc;
849         int id;
850
851         id = dax_read_lock();
852         rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
853                                 &kaddr, NULL);
854         if (rc < 0) {
855                 dax_read_unlock(id);
856                 return rc;
857         }
858         vto = kmap_atomic(vmf->cow_page);
859         copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
860         kunmap_atomic(vto);
861         dax_read_unlock(id);
862         return 0;
863 }
864
865 /*
866  * MAP_SYNC on a dax mapping guarantees dirty metadata is
867  * flushed on write-faults (non-cow), but not read-faults.
868  */
869 static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
870                 struct vm_area_struct *vma)
871 {
872         return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
873                 (iter->iomap.flags & IOMAP_F_DIRTY);
874 }
875
876 /*
877  * By this point grab_mapping_entry() has ensured that we have a locked entry
878  * of the appropriate size so we don't have to worry about downgrading PMDs to
879  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
880  * already in the tree, we will skip the insertion and just dirty the PMD as
881  * appropriate.
882  */
883 static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
884                 const struct iomap_iter *iter, void *entry, pfn_t pfn,
885                 unsigned long flags)
886 {
887         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
888         void *new_entry = dax_make_entry(pfn, flags);
889         bool write = iter->flags & IOMAP_WRITE;
890         bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma);
891         bool shared = iter->iomap.flags & IOMAP_F_SHARED;
892
893         if (dirty)
894                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
895
896         if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
897                 unsigned long index = xas->xa_index;
898                 /* we are replacing a zero page with block mapping */
899                 if (dax_is_pmd_entry(entry))
900                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
901                                         PG_PMD_NR, false);
902                 else /* pte entry */
903                         unmap_mapping_pages(mapping, index, 1, false);
904         }
905
906         xas_reset(xas);
907         xas_lock_irq(xas);
908         if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
909                 void *old;
910
911                 dax_disassociate_entry(entry, mapping, false);
912                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address,
913                                 shared);
914                 /*
915                  * Only swap our new entry into the page cache if the current
916                  * entry is a zero page or an empty entry.  If a normal PTE or
917                  * PMD entry is already in the cache, we leave it alone.  This
918                  * means that if we are trying to insert a PTE and the
919                  * existing entry is a PMD, we will just leave the PMD in the
920                  * tree and dirty it if necessary.
921                  */
922                 old = dax_lock_entry(xas, new_entry);
923                 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
924                                         DAX_LOCKED));
925                 entry = new_entry;
926         } else {
927                 xas_load(xas);  /* Walk the xa_state */
928         }
929
930         if (dirty)
931                 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
932
933         if (write && shared)
934                 xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
935
936         xas_unlock_irq(xas);
937         return entry;
938 }
939
940 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
941                 struct address_space *mapping, void *entry)
942 {
943         unsigned long pfn, index, count, end;
944         long ret = 0;
945         struct vm_area_struct *vma;
946
947         /*
948          * A page got tagged dirty in DAX mapping? Something is seriously
949          * wrong.
950          */
951         if (WARN_ON(!xa_is_value(entry)))
952                 return -EIO;
953
954         if (unlikely(dax_is_locked(entry))) {
955                 void *old_entry = entry;
956
957                 entry = get_unlocked_entry(xas, 0);
958
959                 /* Entry got punched out / reallocated? */
960                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
961                         goto put_unlocked;
962                 /*
963                  * Entry got reallocated elsewhere? No need to writeback.
964                  * We have to compare pfns as we must not bail out due to
965                  * difference in lockbit or entry type.
966                  */
967                 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
968                         goto put_unlocked;
969                 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
970                                         dax_is_zero_entry(entry))) {
971                         ret = -EIO;
972                         goto put_unlocked;
973                 }
974
975                 /* Another fsync thread may have already done this entry */
976                 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
977                         goto put_unlocked;
978         }
979
980         /* Lock the entry to serialize with page faults */
981         dax_lock_entry(xas, entry);
982
983         /*
984          * We can clear the tag now but we have to be careful so that concurrent
985          * dax_writeback_one() calls for the same index cannot finish before we
986          * actually flush the caches. This is achieved as the calls will look
987          * at the entry only under the i_pages lock and once they do that
988          * they will see the entry locked and wait for it to unlock.
989          */
990         xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
991         xas_unlock_irq(xas);
992
993         /*
994          * If dax_writeback_mapping_range() was given a wbc->range_start
995          * in the middle of a PMD, the 'index' we use needs to be
996          * aligned to the start of the PMD.
997          * This allows us to flush for PMD_SIZE and not have to worry about
998          * partial PMD writebacks.
999          */
1000         pfn = dax_to_pfn(entry);
1001         count = 1UL << dax_entry_order(entry);
1002         index = xas->xa_index & ~(count - 1);
1003         end = index + count - 1;
1004
1005         /* Walk all mappings of a given index of a file and writeprotect them */
1006         i_mmap_lock_read(mapping);
1007         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
1008                 pfn_mkclean_range(pfn, count, index, vma);
1009                 cond_resched();
1010         }
1011         i_mmap_unlock_read(mapping);
1012
1013         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
1014         /*
1015          * After we have flushed the cache, we can clear the dirty tag. There
1016          * cannot be new dirty data in the pfn after the flush has completed as
1017          * the pfn mappings are writeprotected and fault waits for mapping
1018          * entry lock.
1019          */
1020         xas_reset(xas);
1021         xas_lock_irq(xas);
1022         xas_store(xas, entry);
1023         xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
1024         dax_wake_entry(xas, entry, WAKE_NEXT);
1025
1026         trace_dax_writeback_one(mapping->host, index, count);
1027         return ret;
1028
1029  put_unlocked:
1030         put_unlocked_entry(xas, entry, WAKE_NEXT);
1031         return ret;
1032 }
1033
1034 /*
1035  * Flush the mapping to the persistent domain within the byte range of [start,
1036  * end]. This is required by data integrity operations to ensure file data is
1037  * on persistent storage prior to completion of the operation.
1038  */
1039 int dax_writeback_mapping_range(struct address_space *mapping,
1040                 struct dax_device *dax_dev, struct writeback_control *wbc)
1041 {
1042         XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
1043         struct inode *inode = mapping->host;
1044         pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
1045         void *entry;
1046         int ret = 0;
1047         unsigned int scanned = 0;
1048
1049         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1050                 return -EIO;
1051
1052         if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
1053                 return 0;
1054
1055         trace_dax_writeback_range(inode, xas.xa_index, end_index);
1056
1057         tag_pages_for_writeback(mapping, xas.xa_index, end_index);
1058
1059         xas_lock_irq(&xas);
1060         xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1061                 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1062                 if (ret < 0) {
1063                         mapping_set_error(mapping, ret);
1064                         break;
1065                 }
1066                 if (++scanned % XA_CHECK_SCHED)
1067                         continue;
1068
1069                 xas_pause(&xas);
1070                 xas_unlock_irq(&xas);
1071                 cond_resched();
1072                 xas_lock_irq(&xas);
1073         }
1074         xas_unlock_irq(&xas);
1075         trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1076         return ret;
1077 }
1078 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1079
1080 static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1081                 size_t size, void **kaddr, pfn_t *pfnp)
1082 {
1083         pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1084         int id, rc = 0;
1085         long length;
1086
1087         id = dax_read_lock();
1088         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1089                                    DAX_ACCESS, kaddr, pfnp);
1090         if (length < 0) {
1091                 rc = length;
1092                 goto out;
1093         }
1094         if (!pfnp)
1095                 goto out_check_addr;
1096         rc = -EINVAL;
1097         if (PFN_PHYS(length) < size)
1098                 goto out;
1099         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1100                 goto out;
1101         /* For larger pages we need devmap */
1102         if (length > 1 && !pfn_t_devmap(*pfnp))
1103                 goto out;
1104         rc = 0;
1105
1106 out_check_addr:
1107         if (!kaddr)
1108                 goto out;
1109         if (!*kaddr)
1110                 rc = -EFAULT;
1111 out:
1112         dax_read_unlock(id);
1113         return rc;
1114 }
1115
1116 /**
1117  * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page
1118  * by copying the data before and after the range to be written.
1119  * @pos:        address to do copy from.
1120  * @length:     size of copy operation.
1121  * @align_size: aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1122  * @srcmap:     iomap srcmap
1123  * @daddr:      destination address to copy to.
1124  *
1125  * This can be called from two places. Either during DAX write fault (page
1126  * aligned), to copy the length size data to daddr. Or, while doing normal DAX
1127  * write operation, dax_iomap_iter() might call this to do the copy of either
1128  * start or end unaligned address. In the latter case the rest of the copy of
1129  * aligned ranges is taken care by dax_iomap_iter() itself.
1130  * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the
1131  * area to make sure no old data remains.
1132  */
1133 static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size,
1134                 const struct iomap *srcmap, void *daddr)
1135 {
1136         loff_t head_off = pos & (align_size - 1);
1137         size_t size = ALIGN(head_off + length, align_size);
1138         loff_t end = pos + length;
1139         loff_t pg_end = round_up(end, align_size);
1140         /* copy_all is usually in page fault case */
1141         bool copy_all = head_off == 0 && end == pg_end;
1142         /* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */
1143         bool zero_edge = srcmap->flags & IOMAP_F_SHARED ||
1144                          srcmap->type == IOMAP_UNWRITTEN;
1145         void *saddr = 0;
1146         int ret = 0;
1147
1148         if (!zero_edge) {
1149                 ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1150                 if (ret)
1151                         return dax_mem2blk_err(ret);
1152         }
1153
1154         if (copy_all) {
1155                 if (zero_edge)
1156                         memset(daddr, 0, size);
1157                 else
1158                         ret = copy_mc_to_kernel(daddr, saddr, length);
1159                 goto out;
1160         }
1161
1162         /* Copy the head part of the range */
1163         if (head_off) {
1164                 if (zero_edge)
1165                         memset(daddr, 0, head_off);
1166                 else {
1167                         ret = copy_mc_to_kernel(daddr, saddr, head_off);
1168                         if (ret)
1169                                 return -EIO;
1170                 }
1171         }
1172
1173         /* Copy the tail part of the range */
1174         if (end < pg_end) {
1175                 loff_t tail_off = head_off + length;
1176                 loff_t tail_len = pg_end - end;
1177
1178                 if (zero_edge)
1179                         memset(daddr + tail_off, 0, tail_len);
1180                 else {
1181                         ret = copy_mc_to_kernel(daddr + tail_off,
1182                                                 saddr + tail_off, tail_len);
1183                         if (ret)
1184                                 return -EIO;
1185                 }
1186         }
1187 out:
1188         if (zero_edge)
1189                 dax_flush(srcmap->dax_dev, daddr, size);
1190         return ret ? -EIO : 0;
1191 }
1192
1193 /*
1194  * The user has performed a load from a hole in the file.  Allocating a new
1195  * page in the file would cause excessive storage usage for workloads with
1196  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1197  * If this page is ever written to we will re-fault and change the mapping to
1198  * point to real DAX storage instead.
1199  */
1200 static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1201                 const struct iomap_iter *iter, void **entry)
1202 {
1203         struct inode *inode = iter->inode;
1204         unsigned long vaddr = vmf->address;
1205         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1206         vm_fault_t ret;
1207
1208         *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
1209
1210         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1211         trace_dax_load_hole(inode, vmf, ret);
1212         return ret;
1213 }
1214
1215 #ifdef CONFIG_FS_DAX_PMD
1216 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1217                 const struct iomap_iter *iter, void **entry)
1218 {
1219         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1220         unsigned long pmd_addr = vmf->address & PMD_MASK;
1221         struct vm_area_struct *vma = vmf->vma;
1222         struct inode *inode = mapping->host;
1223         pgtable_t pgtable = NULL;
1224         struct page *zero_page;
1225         spinlock_t *ptl;
1226         pmd_t pmd_entry;
1227         pfn_t pfn;
1228
1229         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1230
1231         if (unlikely(!zero_page))
1232                 goto fallback;
1233
1234         pfn = page_to_pfn_t(zero_page);
1235         *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
1236                                   DAX_PMD | DAX_ZERO_PAGE);
1237
1238         if (arch_needs_pgtable_deposit()) {
1239                 pgtable = pte_alloc_one(vma->vm_mm);
1240                 if (!pgtable)
1241                         return VM_FAULT_OOM;
1242         }
1243
1244         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1245         if (!pmd_none(*(vmf->pmd))) {
1246                 spin_unlock(ptl);
1247                 goto fallback;
1248         }
1249
1250         if (pgtable) {
1251                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1252                 mm_inc_nr_ptes(vma->vm_mm);
1253         }
1254         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1255         pmd_entry = pmd_mkhuge(pmd_entry);
1256         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1257         spin_unlock(ptl);
1258         trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1259         return VM_FAULT_NOPAGE;
1260
1261 fallback:
1262         if (pgtable)
1263                 pte_free(vma->vm_mm, pgtable);
1264         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1265         return VM_FAULT_FALLBACK;
1266 }
1267 #else
1268 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1269                 const struct iomap_iter *iter, void **entry)
1270 {
1271         return VM_FAULT_FALLBACK;
1272 }
1273 #endif /* CONFIG_FS_DAX_PMD */
1274
1275 static s64 dax_unshare_iter(struct iomap_iter *iter)
1276 {
1277         struct iomap *iomap = &iter->iomap;
1278         const struct iomap *srcmap = iomap_iter_srcmap(iter);
1279         loff_t pos = iter->pos;
1280         loff_t length = iomap_length(iter);
1281         int id = 0;
1282         s64 ret = 0;
1283         void *daddr = NULL, *saddr = NULL;
1284
1285         /* don't bother with blocks that are not shared to start with */
1286         if (!(iomap->flags & IOMAP_F_SHARED))
1287                 return length;
1288
1289         id = dax_read_lock();
1290         ret = dax_iomap_direct_access(iomap, pos, length, &daddr, NULL);
1291         if (ret < 0)
1292                 goto out_unlock;
1293
1294         /* zero the distance if srcmap is HOLE or UNWRITTEN */
1295         if (srcmap->flags & IOMAP_F_SHARED || srcmap->type == IOMAP_UNWRITTEN) {
1296                 memset(daddr, 0, length);
1297                 dax_flush(iomap->dax_dev, daddr, length);
1298                 ret = length;
1299                 goto out_unlock;
1300         }
1301
1302         ret = dax_iomap_direct_access(srcmap, pos, length, &saddr, NULL);
1303         if (ret < 0)
1304                 goto out_unlock;
1305
1306         if (copy_mc_to_kernel(daddr, saddr, length) == 0)
1307                 ret = length;
1308         else
1309                 ret = -EIO;
1310
1311 out_unlock:
1312         dax_read_unlock(id);
1313         return dax_mem2blk_err(ret);
1314 }
1315
1316 int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1317                 const struct iomap_ops *ops)
1318 {
1319         struct iomap_iter iter = {
1320                 .inode          = inode,
1321                 .pos            = pos,
1322                 .len            = len,
1323                 .flags          = IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX,
1324         };
1325         int ret;
1326
1327         while ((ret = iomap_iter(&iter, ops)) > 0)
1328                 iter.processed = dax_unshare_iter(&iter);
1329         return ret;
1330 }
1331 EXPORT_SYMBOL_GPL(dax_file_unshare);
1332
1333 static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
1334 {
1335         const struct iomap *iomap = &iter->iomap;
1336         const struct iomap *srcmap = iomap_iter_srcmap(iter);
1337         unsigned offset = offset_in_page(pos);
1338         pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1339         void *kaddr;
1340         long ret;
1341
1342         ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
1343                                 NULL);
1344         if (ret < 0)
1345                 return dax_mem2blk_err(ret);
1346
1347         memset(kaddr + offset, 0, size);
1348         if (iomap->flags & IOMAP_F_SHARED)
1349                 ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap,
1350                                             kaddr);
1351         else
1352                 dax_flush(iomap->dax_dev, kaddr + offset, size);
1353         return ret;
1354 }
1355
1356 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1357 {
1358         const struct iomap *iomap = &iter->iomap;
1359         const struct iomap *srcmap = iomap_iter_srcmap(iter);
1360         loff_t pos = iter->pos;
1361         u64 length = iomap_length(iter);
1362         s64 written = 0;
1363
1364         /* already zeroed?  we're done. */
1365         if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1366                 return length;
1367
1368         /*
1369          * invalidate the pages whose sharing state is to be changed
1370          * because of CoW.
1371          */
1372         if (iomap->flags & IOMAP_F_SHARED)
1373                 invalidate_inode_pages2_range(iter->inode->i_mapping,
1374                                               pos >> PAGE_SHIFT,
1375                                               (pos + length - 1) >> PAGE_SHIFT);
1376
1377         do {
1378                 unsigned offset = offset_in_page(pos);
1379                 unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1380                 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1381                 long rc;
1382                 int id;
1383
1384                 id = dax_read_lock();
1385                 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1386                         rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1387                 else
1388                         rc = dax_memzero(iter, pos, size);
1389                 dax_read_unlock(id);
1390
1391                 if (rc < 0)
1392                         return rc;
1393                 pos += size;
1394                 length -= size;
1395                 written += size;
1396         } while (length > 0);
1397
1398         if (did_zero)
1399                 *did_zero = true;
1400         return written;
1401 }
1402
1403 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1404                 const struct iomap_ops *ops)
1405 {
1406         struct iomap_iter iter = {
1407                 .inode          = inode,
1408                 .pos            = pos,
1409                 .len            = len,
1410                 .flags          = IOMAP_DAX | IOMAP_ZERO,
1411         };
1412         int ret;
1413
1414         while ((ret = iomap_iter(&iter, ops)) > 0)
1415                 iter.processed = dax_zero_iter(&iter, did_zero);
1416         return ret;
1417 }
1418 EXPORT_SYMBOL_GPL(dax_zero_range);
1419
1420 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1421                 const struct iomap_ops *ops)
1422 {
1423         unsigned int blocksize = i_blocksize(inode);
1424         unsigned int off = pos & (blocksize - 1);
1425
1426         /* Block boundary? Nothing to do */
1427         if (!off)
1428                 return 0;
1429         return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1430 }
1431 EXPORT_SYMBOL_GPL(dax_truncate_page);
1432
1433 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1434                 struct iov_iter *iter)
1435 {
1436         const struct iomap *iomap = &iomi->iomap;
1437         const struct iomap *srcmap = iomap_iter_srcmap(iomi);
1438         loff_t length = iomap_length(iomi);
1439         loff_t pos = iomi->pos;
1440         struct dax_device *dax_dev = iomap->dax_dev;
1441         loff_t end = pos + length, done = 0;
1442         bool write = iov_iter_rw(iter) == WRITE;
1443         bool cow = write && iomap->flags & IOMAP_F_SHARED;
1444         ssize_t ret = 0;
1445         size_t xfer;
1446         int id;
1447
1448         if (!write) {
1449                 end = min(end, i_size_read(iomi->inode));
1450                 if (pos >= end)
1451                         return 0;
1452
1453                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1454                         return iov_iter_zero(min(length, end - pos), iter);
1455         }
1456
1457         /*
1458          * In DAX mode, enforce either pure overwrites of written extents, or
1459          * writes to unwritten extents as part of a copy-on-write operation.
1460          */
1461         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1462                         !(iomap->flags & IOMAP_F_SHARED)))
1463                 return -EIO;
1464
1465         /*
1466          * Write can allocate block for an area which has a hole page mapped
1467          * into page tables. We have to tear down these mappings so that data
1468          * written by write(2) is visible in mmap.
1469          */
1470         if (iomap->flags & IOMAP_F_NEW || cow) {
1471                 /*
1472                  * Filesystem allows CoW on non-shared extents. The src extents
1473                  * may have been mmapped with dirty mark before. To be able to
1474                  * invalidate its dax entries, we need to clear the dirty mark
1475                  * in advance.
1476                  */
1477                 if (cow)
1478                         __dax_clear_dirty_range(iomi->inode->i_mapping,
1479                                                 pos >> PAGE_SHIFT,
1480                                                 (end - 1) >> PAGE_SHIFT);
1481                 invalidate_inode_pages2_range(iomi->inode->i_mapping,
1482                                               pos >> PAGE_SHIFT,
1483                                               (end - 1) >> PAGE_SHIFT);
1484         }
1485
1486         id = dax_read_lock();
1487         while (pos < end) {
1488                 unsigned offset = pos & (PAGE_SIZE - 1);
1489                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1490                 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1491                 ssize_t map_len;
1492                 bool recovery = false;
1493                 void *kaddr;
1494
1495                 if (fatal_signal_pending(current)) {
1496                         ret = -EINTR;
1497                         break;
1498                 }
1499
1500                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1501                                 DAX_ACCESS, &kaddr, NULL);
1502                 if (map_len == -EHWPOISON && iov_iter_rw(iter) == WRITE) {
1503                         map_len = dax_direct_access(dax_dev, pgoff,
1504                                         PHYS_PFN(size), DAX_RECOVERY_WRITE,
1505                                         &kaddr, NULL);
1506                         if (map_len > 0)
1507                                 recovery = true;
1508                 }
1509                 if (map_len < 0) {
1510                         ret = dax_mem2blk_err(map_len);
1511                         break;
1512                 }
1513
1514                 if (cow) {
1515                         ret = dax_iomap_copy_around(pos, length, PAGE_SIZE,
1516                                                     srcmap, kaddr);
1517                         if (ret)
1518                                 break;
1519                 }
1520
1521                 map_len = PFN_PHYS(map_len);
1522                 kaddr += offset;
1523                 map_len -= offset;
1524                 if (map_len > end - pos)
1525                         map_len = end - pos;
1526
1527                 if (recovery)
1528                         xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1529                                         map_len, iter);
1530                 else if (write)
1531                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1532                                         map_len, iter);
1533                 else
1534                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1535                                         map_len, iter);
1536
1537                 pos += xfer;
1538                 length -= xfer;
1539                 done += xfer;
1540
1541                 if (xfer == 0)
1542                         ret = -EFAULT;
1543                 if (xfer < map_len)
1544                         break;
1545         }
1546         dax_read_unlock(id);
1547
1548         return done ? done : ret;
1549 }
1550
1551 /**
1552  * dax_iomap_rw - Perform I/O to a DAX file
1553  * @iocb:       The control block for this I/O
1554  * @iter:       The addresses to do I/O from or to
1555  * @ops:        iomap ops passed from the file system
1556  *
1557  * This function performs read and write operations to directly mapped
1558  * persistent memory.  The callers needs to take care of read/write exclusion
1559  * and evicting any page cache pages in the region under I/O.
1560  */
1561 ssize_t
1562 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1563                 const struct iomap_ops *ops)
1564 {
1565         struct iomap_iter iomi = {
1566                 .inode          = iocb->ki_filp->f_mapping->host,
1567                 .pos            = iocb->ki_pos,
1568                 .len            = iov_iter_count(iter),
1569                 .flags          = IOMAP_DAX,
1570         };
1571         loff_t done = 0;
1572         int ret;
1573
1574         if (!iomi.len)
1575                 return 0;
1576
1577         if (iov_iter_rw(iter) == WRITE) {
1578                 lockdep_assert_held_write(&iomi.inode->i_rwsem);
1579                 iomi.flags |= IOMAP_WRITE;
1580         } else {
1581                 lockdep_assert_held(&iomi.inode->i_rwsem);
1582         }
1583
1584         if (iocb->ki_flags & IOCB_NOWAIT)
1585                 iomi.flags |= IOMAP_NOWAIT;
1586
1587         while ((ret = iomap_iter(&iomi, ops)) > 0)
1588                 iomi.processed = dax_iomap_iter(&iomi, iter);
1589
1590         done = iomi.pos - iocb->ki_pos;
1591         iocb->ki_pos = iomi.pos;
1592         return done ? done : ret;
1593 }
1594 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1595
1596 static vm_fault_t dax_fault_return(int error)
1597 {
1598         if (error == 0)
1599                 return VM_FAULT_NOPAGE;
1600         return vmf_error(error);
1601 }
1602
1603 /*
1604  * When handling a synchronous page fault and the inode need a fsync, we can
1605  * insert the PTE/PMD into page tables only after that fsync happened. Skip
1606  * insertion for now and return the pfn so that caller can insert it after the
1607  * fsync is done.
1608  */
1609 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1610 {
1611         if (WARN_ON_ONCE(!pfnp))
1612                 return VM_FAULT_SIGBUS;
1613         *pfnp = pfn;
1614         return VM_FAULT_NEEDDSYNC;
1615 }
1616
1617 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1618                 const struct iomap_iter *iter)
1619 {
1620         vm_fault_t ret;
1621         int error = 0;
1622
1623         switch (iter->iomap.type) {
1624         case IOMAP_HOLE:
1625         case IOMAP_UNWRITTEN:
1626                 clear_user_highpage(vmf->cow_page, vmf->address);
1627                 break;
1628         case IOMAP_MAPPED:
1629                 error = copy_cow_page_dax(vmf, iter);
1630                 break;
1631         default:
1632                 WARN_ON_ONCE(1);
1633                 error = -EIO;
1634                 break;
1635         }
1636
1637         if (error)
1638                 return dax_fault_return(error);
1639
1640         __SetPageUptodate(vmf->cow_page);
1641         ret = finish_fault(vmf);
1642         if (!ret)
1643                 return VM_FAULT_DONE_COW;
1644         return ret;
1645 }
1646
1647 /**
1648  * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1649  * @vmf:        vm fault instance
1650  * @iter:       iomap iter
1651  * @pfnp:       pfn to be returned
1652  * @xas:        the dax mapping tree of a file
1653  * @entry:      an unlocked dax entry to be inserted
1654  * @pmd:        distinguish whether it is a pmd fault
1655  */
1656 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1657                 const struct iomap_iter *iter, pfn_t *pfnp,
1658                 struct xa_state *xas, void **entry, bool pmd)
1659 {
1660         const struct iomap *iomap = &iter->iomap;
1661         const struct iomap *srcmap = iomap_iter_srcmap(iter);
1662         size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1663         loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1664         bool write = iter->flags & IOMAP_WRITE;
1665         unsigned long entry_flags = pmd ? DAX_PMD : 0;
1666         int err = 0;
1667         pfn_t pfn;
1668         void *kaddr;
1669
1670         if (!pmd && vmf->cow_page)
1671                 return dax_fault_cow_page(vmf, iter);
1672
1673         /* if we are reading UNWRITTEN and HOLE, return a hole. */
1674         if (!write &&
1675             (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1676                 if (!pmd)
1677                         return dax_load_hole(xas, vmf, iter, entry);
1678                 return dax_pmd_load_hole(xas, vmf, iter, entry);
1679         }
1680
1681         if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
1682                 WARN_ON_ONCE(1);
1683                 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1684         }
1685
1686         err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
1687         if (err)
1688                 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1689
1690         *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
1691
1692         if (write && iomap->flags & IOMAP_F_SHARED) {
1693                 err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr);
1694                 if (err)
1695                         return dax_fault_return(err);
1696         }
1697
1698         if (dax_fault_is_synchronous(iter, vmf->vma))
1699                 return dax_fault_synchronous_pfnp(pfnp, pfn);
1700
1701         /* insert PMD pfn */
1702         if (pmd)
1703                 return vmf_insert_pfn_pmd(vmf, pfn, write);
1704
1705         /* insert PTE pfn */
1706         if (write)
1707                 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1708         return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1709 }
1710
1711 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1712                                int *iomap_errp, const struct iomap_ops *ops)
1713 {
1714         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1715         XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1716         struct iomap_iter iter = {
1717                 .inode          = mapping->host,
1718                 .pos            = (loff_t)vmf->pgoff << PAGE_SHIFT,
1719                 .len            = PAGE_SIZE,
1720                 .flags          = IOMAP_DAX | IOMAP_FAULT,
1721         };
1722         vm_fault_t ret = 0;
1723         void *entry;
1724         int error;
1725
1726         trace_dax_pte_fault(iter.inode, vmf, ret);
1727         /*
1728          * Check whether offset isn't beyond end of file now. Caller is supposed
1729          * to hold locks serializing us with truncate / punch hole so this is
1730          * a reliable test.
1731          */
1732         if (iter.pos >= i_size_read(iter.inode)) {
1733                 ret = VM_FAULT_SIGBUS;
1734                 goto out;
1735         }
1736
1737         if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1738                 iter.flags |= IOMAP_WRITE;
1739
1740         entry = grab_mapping_entry(&xas, mapping, 0);
1741         if (xa_is_internal(entry)) {
1742                 ret = xa_to_internal(entry);
1743                 goto out;
1744         }
1745
1746         /*
1747          * It is possible, particularly with mixed reads & writes to private
1748          * mappings, that we have raced with a PMD fault that overlaps with
1749          * the PTE we need to set up.  If so just return and the fault will be
1750          * retried.
1751          */
1752         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1753                 ret = VM_FAULT_NOPAGE;
1754                 goto unlock_entry;
1755         }
1756
1757         while ((error = iomap_iter(&iter, ops)) > 0) {
1758                 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1759                         iter.processed = -EIO;  /* fs corruption? */
1760                         continue;
1761                 }
1762
1763                 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1764                 if (ret != VM_FAULT_SIGBUS &&
1765                     (iter.iomap.flags & IOMAP_F_NEW)) {
1766                         count_vm_event(PGMAJFAULT);
1767                         count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1768                         ret |= VM_FAULT_MAJOR;
1769                 }
1770
1771                 if (!(ret & VM_FAULT_ERROR))
1772                         iter.processed = PAGE_SIZE;
1773         }
1774
1775         if (iomap_errp)
1776                 *iomap_errp = error;
1777         if (!ret && error)
1778                 ret = dax_fault_return(error);
1779
1780 unlock_entry:
1781         dax_unlock_entry(&xas, entry);
1782 out:
1783         trace_dax_pte_fault_done(iter.inode, vmf, ret);
1784         return ret;
1785 }
1786
1787 #ifdef CONFIG_FS_DAX_PMD
1788 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1789                 pgoff_t max_pgoff)
1790 {
1791         unsigned long pmd_addr = vmf->address & PMD_MASK;
1792         bool write = vmf->flags & FAULT_FLAG_WRITE;
1793
1794         /*
1795          * Make sure that the faulting address's PMD offset (color) matches
1796          * the PMD offset from the start of the file.  This is necessary so
1797          * that a PMD range in the page table overlaps exactly with a PMD
1798          * range in the page cache.
1799          */
1800         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1801             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1802                 return true;
1803
1804         /* Fall back to PTEs if we're going to COW */
1805         if (write && !(vmf->vma->vm_flags & VM_SHARED))
1806                 return true;
1807
1808         /* If the PMD would extend outside the VMA */
1809         if (pmd_addr < vmf->vma->vm_start)
1810                 return true;
1811         if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1812                 return true;
1813
1814         /* If the PMD would extend beyond the file size */
1815         if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1816                 return true;
1817
1818         return false;
1819 }
1820
1821 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1822                                const struct iomap_ops *ops)
1823 {
1824         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1825         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1826         struct iomap_iter iter = {
1827                 .inode          = mapping->host,
1828                 .len            = PMD_SIZE,
1829                 .flags          = IOMAP_DAX | IOMAP_FAULT,
1830         };
1831         vm_fault_t ret = VM_FAULT_FALLBACK;
1832         pgoff_t max_pgoff;
1833         void *entry;
1834
1835         if (vmf->flags & FAULT_FLAG_WRITE)
1836                 iter.flags |= IOMAP_WRITE;
1837
1838         /*
1839          * Check whether offset isn't beyond end of file now. Caller is
1840          * supposed to hold locks serializing us with truncate / punch hole so
1841          * this is a reliable test.
1842          */
1843         max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1844
1845         trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1846
1847         if (xas.xa_index >= max_pgoff) {
1848                 ret = VM_FAULT_SIGBUS;
1849                 goto out;
1850         }
1851
1852         if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1853                 goto fallback;
1854
1855         /*
1856          * grab_mapping_entry() will make sure we get an empty PMD entry,
1857          * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1858          * entry is already in the array, for instance), it will return
1859          * VM_FAULT_FALLBACK.
1860          */
1861         entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1862         if (xa_is_internal(entry)) {
1863                 ret = xa_to_internal(entry);
1864                 goto fallback;
1865         }
1866
1867         /*
1868          * It is possible, particularly with mixed reads & writes to private
1869          * mappings, that we have raced with a PTE fault that overlaps with
1870          * the PMD we need to set up.  If so just return and the fault will be
1871          * retried.
1872          */
1873         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1874                         !pmd_devmap(*vmf->pmd)) {
1875                 ret = 0;
1876                 goto unlock_entry;
1877         }
1878
1879         iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1880         while (iomap_iter(&iter, ops) > 0) {
1881                 if (iomap_length(&iter) < PMD_SIZE)
1882                         continue; /* actually breaks out of the loop */
1883
1884                 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1885                 if (ret != VM_FAULT_FALLBACK)
1886                         iter.processed = PMD_SIZE;
1887         }
1888
1889 unlock_entry:
1890         dax_unlock_entry(&xas, entry);
1891 fallback:
1892         if (ret == VM_FAULT_FALLBACK) {
1893                 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1894                 count_vm_event(THP_FAULT_FALLBACK);
1895         }
1896 out:
1897         trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1898         return ret;
1899 }
1900 #else
1901 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1902                                const struct iomap_ops *ops)
1903 {
1904         return VM_FAULT_FALLBACK;
1905 }
1906 #endif /* CONFIG_FS_DAX_PMD */
1907
1908 /**
1909  * dax_iomap_fault - handle a page fault on a DAX file
1910  * @vmf: The description of the fault
1911  * @pe_size: Size of the page to fault in
1912  * @pfnp: PFN to insert for synchronous faults if fsync is required
1913  * @iomap_errp: Storage for detailed error code in case of error
1914  * @ops: Iomap ops passed from the file system
1915  *
1916  * When a page fault occurs, filesystems may call this helper in
1917  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1918  * has done all the necessary locking for page fault to proceed
1919  * successfully.
1920  */
1921 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1922                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1923 {
1924         switch (pe_size) {
1925         case PE_SIZE_PTE:
1926                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1927         case PE_SIZE_PMD:
1928                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1929         default:
1930                 return VM_FAULT_FALLBACK;
1931         }
1932 }
1933 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1934
1935 /*
1936  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1937  * @vmf: The description of the fault
1938  * @pfn: PFN to insert
1939  * @order: Order of entry to insert.
1940  *
1941  * This function inserts a writeable PTE or PMD entry into the page tables
1942  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1943  */
1944 static vm_fault_t
1945 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1946 {
1947         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1948         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1949         void *entry;
1950         vm_fault_t ret;
1951
1952         xas_lock_irq(&xas);
1953         entry = get_unlocked_entry(&xas, order);
1954         /* Did we race with someone splitting entry or so? */
1955         if (!entry || dax_is_conflict(entry) ||
1956             (order == 0 && !dax_is_pte_entry(entry))) {
1957                 put_unlocked_entry(&xas, entry, WAKE_NEXT);
1958                 xas_unlock_irq(&xas);
1959                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1960                                                       VM_FAULT_NOPAGE);
1961                 return VM_FAULT_NOPAGE;
1962         }
1963         xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1964         dax_lock_entry(&xas, entry);
1965         xas_unlock_irq(&xas);
1966         if (order == 0)
1967                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1968 #ifdef CONFIG_FS_DAX_PMD
1969         else if (order == PMD_ORDER)
1970                 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1971 #endif
1972         else
1973                 ret = VM_FAULT_FALLBACK;
1974         dax_unlock_entry(&xas, entry);
1975         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1976         return ret;
1977 }
1978
1979 /**
1980  * dax_finish_sync_fault - finish synchronous page fault
1981  * @vmf: The description of the fault
1982  * @pe_size: Size of entry to be inserted
1983  * @pfn: PFN to insert
1984  *
1985  * This function ensures that the file range touched by the page fault is
1986  * stored persistently on the media and handles inserting of appropriate page
1987  * table entry.
1988  */
1989 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1990                 enum page_entry_size pe_size, pfn_t pfn)
1991 {
1992         int err;
1993         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1994         unsigned int order = pe_order(pe_size);
1995         size_t len = PAGE_SIZE << order;
1996
1997         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1998         if (err)
1999                 return VM_FAULT_SIGBUS;
2000         return dax_insert_pfn_mkwrite(vmf, pfn, order);
2001 }
2002 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
2003
2004 static loff_t dax_range_compare_iter(struct iomap_iter *it_src,
2005                 struct iomap_iter *it_dest, u64 len, bool *same)
2006 {
2007         const struct iomap *smap = &it_src->iomap;
2008         const struct iomap *dmap = &it_dest->iomap;
2009         loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
2010         void *saddr, *daddr;
2011         int id, ret;
2012
2013         len = min(len, min(smap->length, dmap->length));
2014
2015         if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
2016                 *same = true;
2017                 return len;
2018         }
2019
2020         if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
2021                 *same = false;
2022                 return 0;
2023         }
2024
2025         id = dax_read_lock();
2026         ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
2027                                       &saddr, NULL);
2028         if (ret < 0)
2029                 goto out_unlock;
2030
2031         ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
2032                                       &daddr, NULL);
2033         if (ret < 0)
2034                 goto out_unlock;
2035
2036         *same = !memcmp(saddr, daddr, len);
2037         if (!*same)
2038                 len = 0;
2039         dax_read_unlock(id);
2040         return len;
2041
2042 out_unlock:
2043         dax_read_unlock(id);
2044         return -EIO;
2045 }
2046
2047 int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
2048                 struct inode *dst, loff_t dstoff, loff_t len, bool *same,
2049                 const struct iomap_ops *ops)
2050 {
2051         struct iomap_iter src_iter = {
2052                 .inode          = src,
2053                 .pos            = srcoff,
2054                 .len            = len,
2055                 .flags          = IOMAP_DAX,
2056         };
2057         struct iomap_iter dst_iter = {
2058                 .inode          = dst,
2059                 .pos            = dstoff,
2060                 .len            = len,
2061                 .flags          = IOMAP_DAX,
2062         };
2063         int ret, compared = 0;
2064
2065         while ((ret = iomap_iter(&src_iter, ops)) > 0 &&
2066                (ret = iomap_iter(&dst_iter, ops)) > 0) {
2067                 compared = dax_range_compare_iter(&src_iter, &dst_iter,
2068                                 min(src_iter.len, dst_iter.len), same);
2069                 if (compared < 0)
2070                         return ret;
2071                 src_iter.processed = dst_iter.processed = compared;
2072         }
2073         return ret;
2074 }
2075
2076 int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2077                               struct file *file_out, loff_t pos_out,
2078                               loff_t *len, unsigned int remap_flags,
2079                               const struct iomap_ops *ops)
2080 {
2081         return __generic_remap_file_range_prep(file_in, pos_in, file_out,
2082                                                pos_out, len, remap_flags, ops);
2083 }
2084 EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);