1 // SPDX-License-Identifier: GPL-2.0-only
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
14 #include <linux/highmem.h>
15 #include <linux/memcontrol.h>
17 #include <linux/mutex.h>
18 #include <linux/pagevec.h>
19 #include <linux/sched.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uio.h>
22 #include <linux/vmstat.h>
23 #include <linux/pfn_t.h>
24 #include <linux/sizes.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/iomap.h>
27 #include <linux/rmap.h>
28 #include <asm/pgalloc.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
33 /* We choose 4096 entries - same as per-zone page wait tables */
34 #define DAX_WAIT_TABLE_BITS 12
35 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
37 /* The 'colour' (ie low bits) within a PMD of a page offset. */
38 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
39 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
41 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
43 static int __init init_dax_wait_table(void)
47 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
48 init_waitqueue_head(wait_table + i);
51 fs_initcall(init_dax_wait_table);
54 * DAX pagecache entries use XArray value entries so they can't be mistaken
55 * for pages. We use one bit for locking, one bit for the entry size (PMD)
56 * and two more to tell us if the entry is a zero page or an empty entry that
57 * is just used for locking. In total four special bits.
59 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
60 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
64 #define DAX_LOCKED (1UL << 0)
65 #define DAX_PMD (1UL << 1)
66 #define DAX_ZERO_PAGE (1UL << 2)
67 #define DAX_EMPTY (1UL << 3)
69 static unsigned long dax_to_pfn(void *entry)
71 return xa_to_value(entry) >> DAX_SHIFT;
74 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
76 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
79 static bool dax_is_locked(void *entry)
81 return xa_to_value(entry) & DAX_LOCKED;
84 static unsigned int dax_entry_order(void *entry)
86 if (xa_to_value(entry) & DAX_PMD)
91 static unsigned long dax_is_pmd_entry(void *entry)
93 return xa_to_value(entry) & DAX_PMD;
96 static bool dax_is_pte_entry(void *entry)
98 return !(xa_to_value(entry) & DAX_PMD);
101 static int dax_is_zero_entry(void *entry)
103 return xa_to_value(entry) & DAX_ZERO_PAGE;
106 static int dax_is_empty_entry(void *entry)
108 return xa_to_value(entry) & DAX_EMPTY;
112 * true if the entry that was found is of a smaller order than the entry
113 * we were looking for
115 static bool dax_is_conflict(void *entry)
117 return entry == XA_RETRY_ENTRY;
121 * DAX page cache entry locking
123 struct exceptional_entry_key {
128 struct wait_exceptional_entry_queue {
129 wait_queue_entry_t wait;
130 struct exceptional_entry_key key;
134 * enum dax_wake_mode: waitqueue wakeup behaviour
135 * @WAKE_ALL: wake all waiters in the waitqueue
136 * @WAKE_NEXT: wake only the first waiter in the waitqueue
143 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
144 void *entry, struct exceptional_entry_key *key)
147 unsigned long index = xas->xa_index;
150 * If 'entry' is a PMD, align the 'index' that we use for the wait
151 * queue to the start of that PMD. This ensures that all offsets in
152 * the range covered by the PMD map to the same bit lock.
154 if (dax_is_pmd_entry(entry))
155 index &= ~PG_PMD_COLOUR;
157 key->entry_start = index;
159 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
160 return wait_table + hash;
163 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
164 unsigned int mode, int sync, void *keyp)
166 struct exceptional_entry_key *key = keyp;
167 struct wait_exceptional_entry_queue *ewait =
168 container_of(wait, struct wait_exceptional_entry_queue, wait);
170 if (key->xa != ewait->key.xa ||
171 key->entry_start != ewait->key.entry_start)
173 return autoremove_wake_function(wait, mode, sync, NULL);
177 * @entry may no longer be the entry at the index in the mapping.
178 * The important information it's conveying is whether the entry at
179 * this index used to be a PMD entry.
181 static void dax_wake_entry(struct xa_state *xas, void *entry,
182 enum dax_wake_mode mode)
184 struct exceptional_entry_key key;
185 wait_queue_head_t *wq;
187 wq = dax_entry_waitqueue(xas, entry, &key);
190 * Checking for locked entry and prepare_to_wait_exclusive() happens
191 * under the i_pages lock, ditto for entry handling in our callers.
192 * So at this point all tasks that could have seen our entry locked
193 * must be in the waitqueue and the following check will see them.
195 if (waitqueue_active(wq))
196 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
200 * Look up entry in page cache, wait for it to become unlocked if it
201 * is a DAX entry and return it. The caller must subsequently call
202 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
203 * if it did. The entry returned may have a larger order than @order.
204 * If @order is larger than the order of the entry found in i_pages, this
205 * function returns a dax_is_conflict entry.
207 * Must be called with the i_pages lock held.
209 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
212 struct wait_exceptional_entry_queue ewait;
213 wait_queue_head_t *wq;
215 init_wait(&ewait.wait);
216 ewait.wait.func = wake_exceptional_entry_func;
219 entry = xas_find_conflict(xas);
220 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
222 if (dax_entry_order(entry) < order)
223 return XA_RETRY_ENTRY;
224 if (!dax_is_locked(entry))
227 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
228 prepare_to_wait_exclusive(wq, &ewait.wait,
229 TASK_UNINTERRUPTIBLE);
233 finish_wait(wq, &ewait.wait);
239 * The only thing keeping the address space around is the i_pages lock
240 * (it's cycled in clear_inode() after removing the entries from i_pages)
241 * After we call xas_unlock_irq(), we cannot touch xas->xa.
243 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
245 struct wait_exceptional_entry_queue ewait;
246 wait_queue_head_t *wq;
248 init_wait(&ewait.wait);
249 ewait.wait.func = wake_exceptional_entry_func;
251 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
253 * Unlike get_unlocked_entry() there is no guarantee that this
254 * path ever successfully retrieves an unlocked entry before an
255 * inode dies. Perform a non-exclusive wait in case this path
256 * never successfully performs its own wake up.
258 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
261 finish_wait(wq, &ewait.wait);
264 static void put_unlocked_entry(struct xa_state *xas, void *entry,
265 enum dax_wake_mode mode)
267 if (entry && !dax_is_conflict(entry))
268 dax_wake_entry(xas, entry, mode);
272 * We used the xa_state to get the entry, but then we locked the entry and
273 * dropped the xa_lock, so we know the xa_state is stale and must be reset
276 static void dax_unlock_entry(struct xa_state *xas, void *entry)
280 BUG_ON(dax_is_locked(entry));
283 old = xas_store(xas, entry);
285 BUG_ON(!dax_is_locked(old));
286 dax_wake_entry(xas, entry, WAKE_NEXT);
290 * Return: The entry stored at this location before it was locked.
292 static void *dax_lock_entry(struct xa_state *xas, void *entry)
294 unsigned long v = xa_to_value(entry);
295 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
298 static unsigned long dax_entry_size(void *entry)
300 if (dax_is_zero_entry(entry))
302 else if (dax_is_empty_entry(entry))
304 else if (dax_is_pmd_entry(entry))
310 static unsigned long dax_end_pfn(void *entry)
312 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
316 * Iterate through all mapped pfns represented by an entry, i.e. skip
317 * 'empty' and 'zero' entries.
319 #define for_each_mapped_pfn(entry, pfn) \
320 for (pfn = dax_to_pfn(entry); \
321 pfn < dax_end_pfn(entry); pfn++)
323 static inline bool dax_page_is_shared(struct page *page)
325 return page->mapping == PAGE_MAPPING_DAX_SHARED;
329 * Set the page->mapping with PAGE_MAPPING_DAX_SHARED flag, increase the
332 static inline void dax_page_share_get(struct page *page)
334 if (page->mapping != PAGE_MAPPING_DAX_SHARED) {
336 * Reset the index if the page was already mapped
341 page->mapping = PAGE_MAPPING_DAX_SHARED;
346 static inline unsigned long dax_page_share_put(struct page *page)
348 return --page->share;
352 * When it is called in dax_insert_entry(), the shared flag will indicate that
353 * whether this entry is shared by multiple files. If so, set the page->mapping
354 * PAGE_MAPPING_DAX_SHARED, and use page->share as refcount.
356 static void dax_associate_entry(void *entry, struct address_space *mapping,
357 struct vm_area_struct *vma, unsigned long address, bool shared)
359 unsigned long size = dax_entry_size(entry), pfn, index;
362 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
365 index = linear_page_index(vma, address & ~(size - 1));
366 for_each_mapped_pfn(entry, pfn) {
367 struct page *page = pfn_to_page(pfn);
370 dax_page_share_get(page);
372 WARN_ON_ONCE(page->mapping);
373 page->mapping = mapping;
374 page->index = index + i++;
379 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
384 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
387 for_each_mapped_pfn(entry, pfn) {
388 struct page *page = pfn_to_page(pfn);
390 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
391 if (dax_page_is_shared(page)) {
392 /* keep the shared flag if this page is still shared */
393 if (dax_page_share_put(page) > 0)
396 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
397 page->mapping = NULL;
402 static struct page *dax_busy_page(void *entry)
406 for_each_mapped_pfn(entry, pfn) {
407 struct page *page = pfn_to_page(pfn);
409 if (page_ref_count(page) > 1)
416 * dax_lock_page - Lock the DAX entry corresponding to a page
417 * @page: The page whose entry we want to lock
419 * Context: Process context.
420 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
423 dax_entry_t dax_lock_page(struct page *page)
425 XA_STATE(xas, NULL, 0);
428 /* Ensure page->mapping isn't freed while we look at it */
431 struct address_space *mapping = READ_ONCE(page->mapping);
434 if (!mapping || !dax_mapping(mapping))
438 * In the device-dax case there's no need to lock, a
439 * struct dev_pagemap pin is sufficient to keep the
440 * inode alive, and we assume we have dev_pagemap pin
441 * otherwise we would not have a valid pfn_to_page()
444 entry = (void *)~0UL;
445 if (S_ISCHR(mapping->host->i_mode))
448 xas.xa = &mapping->i_pages;
450 if (mapping != page->mapping) {
451 xas_unlock_irq(&xas);
454 xas_set(&xas, page->index);
455 entry = xas_load(&xas);
456 if (dax_is_locked(entry)) {
458 wait_entry_unlocked(&xas, entry);
462 dax_lock_entry(&xas, entry);
463 xas_unlock_irq(&xas);
467 return (dax_entry_t)entry;
470 void dax_unlock_page(struct page *page, dax_entry_t cookie)
472 struct address_space *mapping = page->mapping;
473 XA_STATE(xas, &mapping->i_pages, page->index);
475 if (S_ISCHR(mapping->host->i_mode))
478 dax_unlock_entry(&xas, (void *)cookie);
482 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
483 * @mapping: the file's mapping whose entry we want to lock
484 * @index: the offset within this file
485 * @page: output the dax page corresponding to this dax entry
487 * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
488 * could not be locked.
490 dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
493 XA_STATE(xas, NULL, 0);
499 if (!dax_mapping(mapping))
502 xas.xa = &mapping->i_pages;
504 xas_set(&xas, index);
505 entry = xas_load(&xas);
506 if (dax_is_locked(entry)) {
508 wait_entry_unlocked(&xas, entry);
513 dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
515 * Because we are looking for entry from file's mapping
516 * and index, so the entry may not be inserted for now,
517 * or even a zero/empty entry. We don't think this is
518 * an error case. So, return a special value and do
521 entry = (void *)~0UL;
523 *page = pfn_to_page(dax_to_pfn(entry));
524 dax_lock_entry(&xas, entry);
526 xas_unlock_irq(&xas);
530 return (dax_entry_t)entry;
533 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
536 XA_STATE(xas, &mapping->i_pages, index);
541 dax_unlock_entry(&xas, (void *)cookie);
545 * Find page cache entry at given index. If it is a DAX entry, return it
546 * with the entry locked. If the page cache doesn't contain an entry at
547 * that index, add a locked empty entry.
549 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
550 * either return that locked entry or will return VM_FAULT_FALLBACK.
551 * This will happen if there are any PTE entries within the PMD range
552 * that we are requesting.
554 * We always favor PTE entries over PMD entries. There isn't a flow where we
555 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
556 * insertion will fail if it finds any PTE entries already in the tree, and a
557 * PTE insertion will cause an existing PMD entry to be unmapped and
558 * downgraded to PTE entries. This happens for both PMD zero pages as
559 * well as PMD empty entries.
561 * The exception to this downgrade path is for PMD entries that have
562 * real storage backing them. We will leave these real PMD entries in
563 * the tree, and PTE writes will simply dirty the entire PMD entry.
565 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
566 * persistent memory the benefit is doubtful. We can add that later if we can
569 * On error, this function does not return an ERR_PTR. Instead it returns
570 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
571 * overlap with xarray value entries.
573 static void *grab_mapping_entry(struct xa_state *xas,
574 struct address_space *mapping, unsigned int order)
576 unsigned long index = xas->xa_index;
577 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
581 pmd_downgrade = false;
583 entry = get_unlocked_entry(xas, order);
586 if (dax_is_conflict(entry))
588 if (!xa_is_value(entry)) {
589 xas_set_err(xas, -EIO);
594 if (dax_is_pmd_entry(entry) &&
595 (dax_is_zero_entry(entry) ||
596 dax_is_empty_entry(entry))) {
597 pmd_downgrade = true;
604 * Make sure 'entry' remains valid while we drop
607 dax_lock_entry(xas, entry);
610 * Besides huge zero pages the only other thing that gets
611 * downgraded are empty entries which don't need to be
614 if (dax_is_zero_entry(entry)) {
616 unmap_mapping_pages(mapping,
617 xas->xa_index & ~PG_PMD_COLOUR,
623 dax_disassociate_entry(entry, mapping, false);
624 xas_store(xas, NULL); /* undo the PMD join */
625 dax_wake_entry(xas, entry, WAKE_ALL);
626 mapping->nrpages -= PG_PMD_NR;
632 dax_lock_entry(xas, entry);
634 unsigned long flags = DAX_EMPTY;
638 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
639 dax_lock_entry(xas, entry);
642 mapping->nrpages += 1UL << order;
647 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
649 if (xas->xa_node == XA_ERROR(-ENOMEM))
650 return xa_mk_internal(VM_FAULT_OOM);
652 return xa_mk_internal(VM_FAULT_SIGBUS);
656 return xa_mk_internal(VM_FAULT_FALLBACK);
660 * dax_layout_busy_page_range - find first pinned page in @mapping
661 * @mapping: address space to scan for a page with ref count > 1
662 * @start: Starting offset. Page containing 'start' is included.
663 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
664 * pages from 'start' till the end of file are included.
666 * DAX requires ZONE_DEVICE mapped pages. These pages are never
667 * 'onlined' to the page allocator so they are considered idle when
668 * page->count == 1. A filesystem uses this interface to determine if
669 * any page in the mapping is busy, i.e. for DMA, or other
670 * get_user_pages() usages.
672 * It is expected that the filesystem is holding locks to block the
673 * establishment of new mappings in this address_space. I.e. it expects
674 * to be able to run unmap_mapping_range() and subsequently not race
675 * mapping_mapped() becoming true.
677 struct page *dax_layout_busy_page_range(struct address_space *mapping,
678 loff_t start, loff_t end)
681 unsigned int scanned = 0;
682 struct page *page = NULL;
683 pgoff_t start_idx = start >> PAGE_SHIFT;
685 XA_STATE(xas, &mapping->i_pages, start_idx);
688 * In the 'limited' case get_user_pages() for dax is disabled.
690 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
693 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
696 /* If end == LLONG_MAX, all pages from start to till end of file */
697 if (end == LLONG_MAX)
700 end_idx = end >> PAGE_SHIFT;
702 * If we race get_user_pages_fast() here either we'll see the
703 * elevated page count in the iteration and wait, or
704 * get_user_pages_fast() will see that the page it took a reference
705 * against is no longer mapped in the page tables and bail to the
706 * get_user_pages() slow path. The slow path is protected by
707 * pte_lock() and pmd_lock(). New references are not taken without
708 * holding those locks, and unmap_mapping_pages() will not zero the
709 * pte or pmd without holding the respective lock, so we are
710 * guaranteed to either see new references or prevent new
711 * references from being established.
713 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
716 xas_for_each(&xas, entry, end_idx) {
717 if (WARN_ON_ONCE(!xa_is_value(entry)))
719 if (unlikely(dax_is_locked(entry)))
720 entry = get_unlocked_entry(&xas, 0);
722 page = dax_busy_page(entry);
723 put_unlocked_entry(&xas, entry, WAKE_NEXT);
726 if (++scanned % XA_CHECK_SCHED)
730 xas_unlock_irq(&xas);
734 xas_unlock_irq(&xas);
737 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
739 struct page *dax_layout_busy_page(struct address_space *mapping)
741 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
743 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
745 static int __dax_invalidate_entry(struct address_space *mapping,
746 pgoff_t index, bool trunc)
748 XA_STATE(xas, &mapping->i_pages, index);
753 entry = get_unlocked_entry(&xas, 0);
754 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
757 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
758 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
760 dax_disassociate_entry(entry, mapping, trunc);
761 xas_store(&xas, NULL);
762 mapping->nrpages -= 1UL << dax_entry_order(entry);
765 put_unlocked_entry(&xas, entry, WAKE_ALL);
766 xas_unlock_irq(&xas);
770 static int __dax_clear_dirty_range(struct address_space *mapping,
771 pgoff_t start, pgoff_t end)
773 XA_STATE(xas, &mapping->i_pages, start);
774 unsigned int scanned = 0;
778 xas_for_each(&xas, entry, end) {
779 entry = get_unlocked_entry(&xas, 0);
780 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
781 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
782 put_unlocked_entry(&xas, entry, WAKE_NEXT);
784 if (++scanned % XA_CHECK_SCHED)
788 xas_unlock_irq(&xas);
792 xas_unlock_irq(&xas);
798 * Delete DAX entry at @index from @mapping. Wait for it
799 * to be unlocked before deleting it.
801 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
803 int ret = __dax_invalidate_entry(mapping, index, true);
806 * This gets called from truncate / punch_hole path. As such, the caller
807 * must hold locks protecting against concurrent modifications of the
808 * page cache (usually fs-private i_mmap_sem for writing). Since the
809 * caller has seen a DAX entry for this index, we better find it
810 * at that index as well...
817 * Invalidate DAX entry if it is clean.
819 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
822 return __dax_invalidate_entry(mapping, index, false);
825 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
827 return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
830 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
832 pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
837 id = dax_read_lock();
838 rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
844 vto = kmap_atomic(vmf->cow_page);
845 copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
852 * MAP_SYNC on a dax mapping guarantees dirty metadata is
853 * flushed on write-faults (non-cow), but not read-faults.
855 static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
856 struct vm_area_struct *vma)
858 return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
859 (iter->iomap.flags & IOMAP_F_DIRTY);
863 * By this point grab_mapping_entry() has ensured that we have a locked entry
864 * of the appropriate size so we don't have to worry about downgrading PMDs to
865 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
866 * already in the tree, we will skip the insertion and just dirty the PMD as
869 static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
870 const struct iomap_iter *iter, void *entry, pfn_t pfn,
873 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
874 void *new_entry = dax_make_entry(pfn, flags);
875 bool write = iter->flags & IOMAP_WRITE;
876 bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma);
877 bool shared = iter->iomap.flags & IOMAP_F_SHARED;
880 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
882 if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
883 unsigned long index = xas->xa_index;
884 /* we are replacing a zero page with block mapping */
885 if (dax_is_pmd_entry(entry))
886 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
889 unmap_mapping_pages(mapping, index, 1, false);
894 if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
897 dax_disassociate_entry(entry, mapping, false);
898 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address,
901 * Only swap our new entry into the page cache if the current
902 * entry is a zero page or an empty entry. If a normal PTE or
903 * PMD entry is already in the cache, we leave it alone. This
904 * means that if we are trying to insert a PTE and the
905 * existing entry is a PMD, we will just leave the PMD in the
906 * tree and dirty it if necessary.
908 old = dax_lock_entry(xas, new_entry);
909 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
913 xas_load(xas); /* Walk the xa_state */
917 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
920 xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
926 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
927 struct address_space *mapping, void *entry)
929 unsigned long pfn, index, count, end;
931 struct vm_area_struct *vma;
934 * A page got tagged dirty in DAX mapping? Something is seriously
937 if (WARN_ON(!xa_is_value(entry)))
940 if (unlikely(dax_is_locked(entry))) {
941 void *old_entry = entry;
943 entry = get_unlocked_entry(xas, 0);
945 /* Entry got punched out / reallocated? */
946 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
949 * Entry got reallocated elsewhere? No need to writeback.
950 * We have to compare pfns as we must not bail out due to
951 * difference in lockbit or entry type.
953 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
955 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
956 dax_is_zero_entry(entry))) {
961 /* Another fsync thread may have already done this entry */
962 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
966 /* Lock the entry to serialize with page faults */
967 dax_lock_entry(xas, entry);
970 * We can clear the tag now but we have to be careful so that concurrent
971 * dax_writeback_one() calls for the same index cannot finish before we
972 * actually flush the caches. This is achieved as the calls will look
973 * at the entry only under the i_pages lock and once they do that
974 * they will see the entry locked and wait for it to unlock.
976 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
980 * If dax_writeback_mapping_range() was given a wbc->range_start
981 * in the middle of a PMD, the 'index' we use needs to be
982 * aligned to the start of the PMD.
983 * This allows us to flush for PMD_SIZE and not have to worry about
984 * partial PMD writebacks.
986 pfn = dax_to_pfn(entry);
987 count = 1UL << dax_entry_order(entry);
988 index = xas->xa_index & ~(count - 1);
989 end = index + count - 1;
991 /* Walk all mappings of a given index of a file and writeprotect them */
992 i_mmap_lock_read(mapping);
993 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
994 pfn_mkclean_range(pfn, count, index, vma);
997 i_mmap_unlock_read(mapping);
999 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
1001 * After we have flushed the cache, we can clear the dirty tag. There
1002 * cannot be new dirty data in the pfn after the flush has completed as
1003 * the pfn mappings are writeprotected and fault waits for mapping
1008 xas_store(xas, entry);
1009 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
1010 dax_wake_entry(xas, entry, WAKE_NEXT);
1012 trace_dax_writeback_one(mapping->host, index, count);
1016 put_unlocked_entry(xas, entry, WAKE_NEXT);
1021 * Flush the mapping to the persistent domain within the byte range of [start,
1022 * end]. This is required by data integrity operations to ensure file data is
1023 * on persistent storage prior to completion of the operation.
1025 int dax_writeback_mapping_range(struct address_space *mapping,
1026 struct dax_device *dax_dev, struct writeback_control *wbc)
1028 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
1029 struct inode *inode = mapping->host;
1030 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
1033 unsigned int scanned = 0;
1035 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1038 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
1041 trace_dax_writeback_range(inode, xas.xa_index, end_index);
1043 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
1046 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1047 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1049 mapping_set_error(mapping, ret);
1052 if (++scanned % XA_CHECK_SCHED)
1056 xas_unlock_irq(&xas);
1060 xas_unlock_irq(&xas);
1061 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1064 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1066 static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1067 size_t size, void **kaddr, pfn_t *pfnp)
1069 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1073 id = dax_read_lock();
1074 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1075 DAX_ACCESS, kaddr, pfnp);
1081 goto out_check_addr;
1083 if (PFN_PHYS(length) < size)
1085 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1087 /* For larger pages we need devmap */
1088 if (length > 1 && !pfn_t_devmap(*pfnp))
1098 dax_read_unlock(id);
1103 * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page
1104 * by copying the data before and after the range to be written.
1105 * @pos: address to do copy from.
1106 * @length: size of copy operation.
1107 * @align_size: aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1108 * @srcmap: iomap srcmap
1109 * @daddr: destination address to copy to.
1111 * This can be called from two places. Either during DAX write fault (page
1112 * aligned), to copy the length size data to daddr. Or, while doing normal DAX
1113 * write operation, dax_iomap_iter() might call this to do the copy of either
1114 * start or end unaligned address. In the latter case the rest of the copy of
1115 * aligned ranges is taken care by dax_iomap_iter() itself.
1116 * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the
1117 * area to make sure no old data remains.
1119 static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size,
1120 const struct iomap *srcmap, void *daddr)
1122 loff_t head_off = pos & (align_size - 1);
1123 size_t size = ALIGN(head_off + length, align_size);
1124 loff_t end = pos + length;
1125 loff_t pg_end = round_up(end, align_size);
1126 /* copy_all is usually in page fault case */
1127 bool copy_all = head_off == 0 && end == pg_end;
1128 /* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */
1129 bool zero_edge = srcmap->flags & IOMAP_F_SHARED ||
1130 srcmap->type == IOMAP_UNWRITTEN;
1135 ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1137 return dax_mem2blk_err(ret);
1142 memset(daddr, 0, size);
1144 ret = copy_mc_to_kernel(daddr, saddr, length);
1148 /* Copy the head part of the range */
1151 memset(daddr, 0, head_off);
1153 ret = copy_mc_to_kernel(daddr, saddr, head_off);
1159 /* Copy the tail part of the range */
1161 loff_t tail_off = head_off + length;
1162 loff_t tail_len = pg_end - end;
1165 memset(daddr + tail_off, 0, tail_len);
1167 ret = copy_mc_to_kernel(daddr + tail_off,
1168 saddr + tail_off, tail_len);
1175 dax_flush(srcmap->dax_dev, daddr, size);
1176 return ret ? -EIO : 0;
1180 * The user has performed a load from a hole in the file. Allocating a new
1181 * page in the file would cause excessive storage usage for workloads with
1182 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1183 * If this page is ever written to we will re-fault and change the mapping to
1184 * point to real DAX storage instead.
1186 static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1187 const struct iomap_iter *iter, void **entry)
1189 struct inode *inode = iter->inode;
1190 unsigned long vaddr = vmf->address;
1191 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1194 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
1196 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1197 trace_dax_load_hole(inode, vmf, ret);
1201 #ifdef CONFIG_FS_DAX_PMD
1202 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1203 const struct iomap_iter *iter, void **entry)
1205 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1206 unsigned long pmd_addr = vmf->address & PMD_MASK;
1207 struct vm_area_struct *vma = vmf->vma;
1208 struct inode *inode = mapping->host;
1209 pgtable_t pgtable = NULL;
1210 struct page *zero_page;
1215 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1217 if (unlikely(!zero_page))
1220 pfn = page_to_pfn_t(zero_page);
1221 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
1222 DAX_PMD | DAX_ZERO_PAGE);
1224 if (arch_needs_pgtable_deposit()) {
1225 pgtable = pte_alloc_one(vma->vm_mm);
1227 return VM_FAULT_OOM;
1230 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1231 if (!pmd_none(*(vmf->pmd))) {
1237 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1238 mm_inc_nr_ptes(vma->vm_mm);
1240 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1241 pmd_entry = pmd_mkhuge(pmd_entry);
1242 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1244 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1245 return VM_FAULT_NOPAGE;
1249 pte_free(vma->vm_mm, pgtable);
1250 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1251 return VM_FAULT_FALLBACK;
1254 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1255 const struct iomap_iter *iter, void **entry)
1257 return VM_FAULT_FALLBACK;
1259 #endif /* CONFIG_FS_DAX_PMD */
1261 static s64 dax_unshare_iter(struct iomap_iter *iter)
1263 struct iomap *iomap = &iter->iomap;
1264 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1265 loff_t pos = iter->pos;
1266 loff_t length = iomap_length(iter);
1269 void *daddr = NULL, *saddr = NULL;
1271 /* don't bother with blocks that are not shared to start with */
1272 if (!(iomap->flags & IOMAP_F_SHARED))
1275 id = dax_read_lock();
1276 ret = dax_iomap_direct_access(iomap, pos, length, &daddr, NULL);
1280 /* zero the distance if srcmap is HOLE or UNWRITTEN */
1281 if (srcmap->flags & IOMAP_F_SHARED || srcmap->type == IOMAP_UNWRITTEN) {
1282 memset(daddr, 0, length);
1283 dax_flush(iomap->dax_dev, daddr, length);
1288 ret = dax_iomap_direct_access(srcmap, pos, length, &saddr, NULL);
1292 if (copy_mc_to_kernel(daddr, saddr, length) == 0)
1298 dax_read_unlock(id);
1299 return dax_mem2blk_err(ret);
1302 int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1303 const struct iomap_ops *ops)
1305 struct iomap_iter iter = {
1309 .flags = IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX,
1313 while ((ret = iomap_iter(&iter, ops)) > 0)
1314 iter.processed = dax_unshare_iter(&iter);
1317 EXPORT_SYMBOL_GPL(dax_file_unshare);
1319 static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
1321 const struct iomap *iomap = &iter->iomap;
1322 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1323 unsigned offset = offset_in_page(pos);
1324 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1328 ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
1331 return dax_mem2blk_err(ret);
1333 memset(kaddr + offset, 0, size);
1334 if (iomap->flags & IOMAP_F_SHARED)
1335 ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap,
1338 dax_flush(iomap->dax_dev, kaddr + offset, size);
1342 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1344 const struct iomap *iomap = &iter->iomap;
1345 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1346 loff_t pos = iter->pos;
1347 u64 length = iomap_length(iter);
1350 /* already zeroed? we're done. */
1351 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1355 * invalidate the pages whose sharing state is to be changed
1358 if (iomap->flags & IOMAP_F_SHARED)
1359 invalidate_inode_pages2_range(iter->inode->i_mapping,
1361 (pos + length - 1) >> PAGE_SHIFT);
1364 unsigned offset = offset_in_page(pos);
1365 unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1366 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1370 id = dax_read_lock();
1371 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1372 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1374 rc = dax_memzero(iter, pos, size);
1375 dax_read_unlock(id);
1382 } while (length > 0);
1389 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1390 const struct iomap_ops *ops)
1392 struct iomap_iter iter = {
1396 .flags = IOMAP_DAX | IOMAP_ZERO,
1400 while ((ret = iomap_iter(&iter, ops)) > 0)
1401 iter.processed = dax_zero_iter(&iter, did_zero);
1404 EXPORT_SYMBOL_GPL(dax_zero_range);
1406 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1407 const struct iomap_ops *ops)
1409 unsigned int blocksize = i_blocksize(inode);
1410 unsigned int off = pos & (blocksize - 1);
1412 /* Block boundary? Nothing to do */
1415 return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1417 EXPORT_SYMBOL_GPL(dax_truncate_page);
1419 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1420 struct iov_iter *iter)
1422 const struct iomap *iomap = &iomi->iomap;
1423 const struct iomap *srcmap = iomap_iter_srcmap(iomi);
1424 loff_t length = iomap_length(iomi);
1425 loff_t pos = iomi->pos;
1426 struct dax_device *dax_dev = iomap->dax_dev;
1427 loff_t end = pos + length, done = 0;
1428 bool write = iov_iter_rw(iter) == WRITE;
1429 bool cow = write && iomap->flags & IOMAP_F_SHARED;
1435 end = min(end, i_size_read(iomi->inode));
1439 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1440 return iov_iter_zero(min(length, end - pos), iter);
1444 * In DAX mode, enforce either pure overwrites of written extents, or
1445 * writes to unwritten extents as part of a copy-on-write operation.
1447 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1448 !(iomap->flags & IOMAP_F_SHARED)))
1452 * Write can allocate block for an area which has a hole page mapped
1453 * into page tables. We have to tear down these mappings so that data
1454 * written by write(2) is visible in mmap.
1456 if (iomap->flags & IOMAP_F_NEW || cow) {
1458 * Filesystem allows CoW on non-shared extents. The src extents
1459 * may have been mmapped with dirty mark before. To be able to
1460 * invalidate its dax entries, we need to clear the dirty mark
1464 __dax_clear_dirty_range(iomi->inode->i_mapping,
1466 (end - 1) >> PAGE_SHIFT);
1467 invalidate_inode_pages2_range(iomi->inode->i_mapping,
1469 (end - 1) >> PAGE_SHIFT);
1472 id = dax_read_lock();
1474 unsigned offset = pos & (PAGE_SIZE - 1);
1475 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1476 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1478 bool recovery = false;
1481 if (fatal_signal_pending(current)) {
1486 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1487 DAX_ACCESS, &kaddr, NULL);
1488 if (map_len == -EHWPOISON && iov_iter_rw(iter) == WRITE) {
1489 map_len = dax_direct_access(dax_dev, pgoff,
1490 PHYS_PFN(size), DAX_RECOVERY_WRITE,
1496 ret = dax_mem2blk_err(map_len);
1501 ret = dax_iomap_copy_around(pos, length, PAGE_SIZE,
1507 map_len = PFN_PHYS(map_len);
1510 if (map_len > end - pos)
1511 map_len = end - pos;
1514 xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1517 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1520 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1532 dax_read_unlock(id);
1534 return done ? done : ret;
1538 * dax_iomap_rw - Perform I/O to a DAX file
1539 * @iocb: The control block for this I/O
1540 * @iter: The addresses to do I/O from or to
1541 * @ops: iomap ops passed from the file system
1543 * This function performs read and write operations to directly mapped
1544 * persistent memory. The callers needs to take care of read/write exclusion
1545 * and evicting any page cache pages in the region under I/O.
1548 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1549 const struct iomap_ops *ops)
1551 struct iomap_iter iomi = {
1552 .inode = iocb->ki_filp->f_mapping->host,
1553 .pos = iocb->ki_pos,
1554 .len = iov_iter_count(iter),
1563 if (iov_iter_rw(iter) == WRITE) {
1564 lockdep_assert_held_write(&iomi.inode->i_rwsem);
1565 iomi.flags |= IOMAP_WRITE;
1567 lockdep_assert_held(&iomi.inode->i_rwsem);
1570 if (iocb->ki_flags & IOCB_NOWAIT)
1571 iomi.flags |= IOMAP_NOWAIT;
1573 while ((ret = iomap_iter(&iomi, ops)) > 0)
1574 iomi.processed = dax_iomap_iter(&iomi, iter);
1576 done = iomi.pos - iocb->ki_pos;
1577 iocb->ki_pos = iomi.pos;
1578 return done ? done : ret;
1580 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1582 static vm_fault_t dax_fault_return(int error)
1585 return VM_FAULT_NOPAGE;
1586 return vmf_error(error);
1590 * When handling a synchronous page fault and the inode need a fsync, we can
1591 * insert the PTE/PMD into page tables only after that fsync happened. Skip
1592 * insertion for now and return the pfn so that caller can insert it after the
1595 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1597 if (WARN_ON_ONCE(!pfnp))
1598 return VM_FAULT_SIGBUS;
1600 return VM_FAULT_NEEDDSYNC;
1603 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1604 const struct iomap_iter *iter)
1609 switch (iter->iomap.type) {
1611 case IOMAP_UNWRITTEN:
1612 clear_user_highpage(vmf->cow_page, vmf->address);
1615 error = copy_cow_page_dax(vmf, iter);
1624 return dax_fault_return(error);
1626 __SetPageUptodate(vmf->cow_page);
1627 ret = finish_fault(vmf);
1629 return VM_FAULT_DONE_COW;
1634 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1635 * @vmf: vm fault instance
1637 * @pfnp: pfn to be returned
1638 * @xas: the dax mapping tree of a file
1639 * @entry: an unlocked dax entry to be inserted
1640 * @pmd: distinguish whether it is a pmd fault
1642 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1643 const struct iomap_iter *iter, pfn_t *pfnp,
1644 struct xa_state *xas, void **entry, bool pmd)
1646 const struct iomap *iomap = &iter->iomap;
1647 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1648 size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1649 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1650 bool write = iter->flags & IOMAP_WRITE;
1651 unsigned long entry_flags = pmd ? DAX_PMD : 0;
1656 if (!pmd && vmf->cow_page)
1657 return dax_fault_cow_page(vmf, iter);
1659 /* if we are reading UNWRITTEN and HOLE, return a hole. */
1661 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1663 return dax_load_hole(xas, vmf, iter, entry);
1664 return dax_pmd_load_hole(xas, vmf, iter, entry);
1667 if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
1669 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1672 err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
1674 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1676 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
1678 if (write && iomap->flags & IOMAP_F_SHARED) {
1679 err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr);
1681 return dax_fault_return(err);
1684 if (dax_fault_is_synchronous(iter, vmf->vma))
1685 return dax_fault_synchronous_pfnp(pfnp, pfn);
1687 /* insert PMD pfn */
1689 return vmf_insert_pfn_pmd(vmf, pfn, write);
1691 /* insert PTE pfn */
1693 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1694 return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1697 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1698 int *iomap_errp, const struct iomap_ops *ops)
1700 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1701 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1702 struct iomap_iter iter = {
1703 .inode = mapping->host,
1704 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT,
1706 .flags = IOMAP_DAX | IOMAP_FAULT,
1712 trace_dax_pte_fault(iter.inode, vmf, ret);
1714 * Check whether offset isn't beyond end of file now. Caller is supposed
1715 * to hold locks serializing us with truncate / punch hole so this is
1718 if (iter.pos >= i_size_read(iter.inode)) {
1719 ret = VM_FAULT_SIGBUS;
1723 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1724 iter.flags |= IOMAP_WRITE;
1726 entry = grab_mapping_entry(&xas, mapping, 0);
1727 if (xa_is_internal(entry)) {
1728 ret = xa_to_internal(entry);
1733 * It is possible, particularly with mixed reads & writes to private
1734 * mappings, that we have raced with a PMD fault that overlaps with
1735 * the PTE we need to set up. If so just return and the fault will be
1738 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1739 ret = VM_FAULT_NOPAGE;
1743 while ((error = iomap_iter(&iter, ops)) > 0) {
1744 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1745 iter.processed = -EIO; /* fs corruption? */
1749 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1750 if (ret != VM_FAULT_SIGBUS &&
1751 (iter.iomap.flags & IOMAP_F_NEW)) {
1752 count_vm_event(PGMAJFAULT);
1753 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1754 ret |= VM_FAULT_MAJOR;
1757 if (!(ret & VM_FAULT_ERROR))
1758 iter.processed = PAGE_SIZE;
1762 *iomap_errp = error;
1764 ret = dax_fault_return(error);
1767 dax_unlock_entry(&xas, entry);
1769 trace_dax_pte_fault_done(iter.inode, vmf, ret);
1773 #ifdef CONFIG_FS_DAX_PMD
1774 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1777 unsigned long pmd_addr = vmf->address & PMD_MASK;
1778 bool write = vmf->flags & FAULT_FLAG_WRITE;
1781 * Make sure that the faulting address's PMD offset (color) matches
1782 * the PMD offset from the start of the file. This is necessary so
1783 * that a PMD range in the page table overlaps exactly with a PMD
1784 * range in the page cache.
1786 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1787 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1790 /* Fall back to PTEs if we're going to COW */
1791 if (write && !(vmf->vma->vm_flags & VM_SHARED))
1794 /* If the PMD would extend outside the VMA */
1795 if (pmd_addr < vmf->vma->vm_start)
1797 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1800 /* If the PMD would extend beyond the file size */
1801 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1807 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1808 const struct iomap_ops *ops)
1810 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1811 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1812 struct iomap_iter iter = {
1813 .inode = mapping->host,
1815 .flags = IOMAP_DAX | IOMAP_FAULT,
1817 vm_fault_t ret = VM_FAULT_FALLBACK;
1821 if (vmf->flags & FAULT_FLAG_WRITE)
1822 iter.flags |= IOMAP_WRITE;
1825 * Check whether offset isn't beyond end of file now. Caller is
1826 * supposed to hold locks serializing us with truncate / punch hole so
1827 * this is a reliable test.
1829 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1831 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1833 if (xas.xa_index >= max_pgoff) {
1834 ret = VM_FAULT_SIGBUS;
1838 if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1842 * grab_mapping_entry() will make sure we get an empty PMD entry,
1843 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1844 * entry is already in the array, for instance), it will return
1845 * VM_FAULT_FALLBACK.
1847 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1848 if (xa_is_internal(entry)) {
1849 ret = xa_to_internal(entry);
1854 * It is possible, particularly with mixed reads & writes to private
1855 * mappings, that we have raced with a PTE fault that overlaps with
1856 * the PMD we need to set up. If so just return and the fault will be
1859 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1860 !pmd_devmap(*vmf->pmd)) {
1865 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1866 while (iomap_iter(&iter, ops) > 0) {
1867 if (iomap_length(&iter) < PMD_SIZE)
1868 continue; /* actually breaks out of the loop */
1870 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1871 if (ret != VM_FAULT_FALLBACK)
1872 iter.processed = PMD_SIZE;
1876 dax_unlock_entry(&xas, entry);
1878 if (ret == VM_FAULT_FALLBACK) {
1879 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1880 count_vm_event(THP_FAULT_FALLBACK);
1883 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1887 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1888 const struct iomap_ops *ops)
1890 return VM_FAULT_FALLBACK;
1892 #endif /* CONFIG_FS_DAX_PMD */
1895 * dax_iomap_fault - handle a page fault on a DAX file
1896 * @vmf: The description of the fault
1897 * @order: Order of the page to fault in
1898 * @pfnp: PFN to insert for synchronous faults if fsync is required
1899 * @iomap_errp: Storage for detailed error code in case of error
1900 * @ops: Iomap ops passed from the file system
1902 * When a page fault occurs, filesystems may call this helper in
1903 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1904 * has done all the necessary locking for page fault to proceed
1907 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, unsigned int order,
1908 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1911 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1912 else if (order == PMD_ORDER)
1913 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1915 return VM_FAULT_FALLBACK;
1917 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1920 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1921 * @vmf: The description of the fault
1922 * @pfn: PFN to insert
1923 * @order: Order of entry to insert.
1925 * This function inserts a writeable PTE or PMD entry into the page tables
1926 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1929 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1931 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1932 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1937 entry = get_unlocked_entry(&xas, order);
1938 /* Did we race with someone splitting entry or so? */
1939 if (!entry || dax_is_conflict(entry) ||
1940 (order == 0 && !dax_is_pte_entry(entry))) {
1941 put_unlocked_entry(&xas, entry, WAKE_NEXT);
1942 xas_unlock_irq(&xas);
1943 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1945 return VM_FAULT_NOPAGE;
1947 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1948 dax_lock_entry(&xas, entry);
1949 xas_unlock_irq(&xas);
1951 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1952 #ifdef CONFIG_FS_DAX_PMD
1953 else if (order == PMD_ORDER)
1954 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1957 ret = VM_FAULT_FALLBACK;
1958 dax_unlock_entry(&xas, entry);
1959 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1964 * dax_finish_sync_fault - finish synchronous page fault
1965 * @vmf: The description of the fault
1966 * @order: Order of entry to be inserted
1967 * @pfn: PFN to insert
1969 * This function ensures that the file range touched by the page fault is
1970 * stored persistently on the media and handles inserting of appropriate page
1973 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, unsigned int order,
1977 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1978 size_t len = PAGE_SIZE << order;
1980 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1982 return VM_FAULT_SIGBUS;
1983 return dax_insert_pfn_mkwrite(vmf, pfn, order);
1985 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1987 static loff_t dax_range_compare_iter(struct iomap_iter *it_src,
1988 struct iomap_iter *it_dest, u64 len, bool *same)
1990 const struct iomap *smap = &it_src->iomap;
1991 const struct iomap *dmap = &it_dest->iomap;
1992 loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
1993 void *saddr, *daddr;
1996 len = min(len, min(smap->length, dmap->length));
1998 if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
2003 if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
2008 id = dax_read_lock();
2009 ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
2014 ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
2019 *same = !memcmp(saddr, daddr, len);
2022 dax_read_unlock(id);
2026 dax_read_unlock(id);
2030 int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
2031 struct inode *dst, loff_t dstoff, loff_t len, bool *same,
2032 const struct iomap_ops *ops)
2034 struct iomap_iter src_iter = {
2040 struct iomap_iter dst_iter = {
2046 int ret, compared = 0;
2048 while ((ret = iomap_iter(&src_iter, ops)) > 0 &&
2049 (ret = iomap_iter(&dst_iter, ops)) > 0) {
2050 compared = dax_range_compare_iter(&src_iter, &dst_iter,
2051 min(src_iter.len, dst_iter.len), same);
2054 src_iter.processed = dst_iter.processed = compared;
2059 int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2060 struct file *file_out, loff_t pos_out,
2061 loff_t *len, unsigned int remap_flags,
2062 const struct iomap_ops *ops)
2064 return __generic_remap_file_range_prep(file_in, pos_in, file_out,
2065 pos_out, len, remap_flags, ops);
2067 EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);