1 // SPDX-License-Identifier: GPL-2.0-only
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
14 #include <linux/highmem.h>
15 #include <linux/memcontrol.h>
17 #include <linux/mutex.h>
18 #include <linux/pagevec.h>
19 #include <linux/sched.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uio.h>
22 #include <linux/vmstat.h>
23 #include <linux/pfn_t.h>
24 #include <linux/sizes.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/iomap.h>
27 #include <asm/pgalloc.h>
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/fs_dax.h>
32 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 if (pe_size == PE_SIZE_PTE)
35 return PAGE_SHIFT - PAGE_SHIFT;
36 if (pe_size == PE_SIZE_PMD)
37 return PMD_SHIFT - PAGE_SHIFT;
38 if (pe_size == PE_SIZE_PUD)
39 return PUD_SHIFT - PAGE_SHIFT;
43 /* We choose 4096 entries - same as per-zone page wait tables */
44 #define DAX_WAIT_TABLE_BITS 12
45 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47 /* The 'colour' (ie low bits) within a PMD of a page offset. */
48 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
49 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
51 /* The order of a PMD entry */
52 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
54 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56 static int __init init_dax_wait_table(void)
60 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
61 init_waitqueue_head(wait_table + i);
64 fs_initcall(init_dax_wait_table);
67 * DAX pagecache entries use XArray value entries so they can't be mistaken
68 * for pages. We use one bit for locking, one bit for the entry size (PMD)
69 * and two more to tell us if the entry is a zero page or an empty entry that
70 * is just used for locking. In total four special bits.
72 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
73 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
77 #define DAX_LOCKED (1UL << 0)
78 #define DAX_PMD (1UL << 1)
79 #define DAX_ZERO_PAGE (1UL << 2)
80 #define DAX_EMPTY (1UL << 3)
82 static unsigned long dax_to_pfn(void *entry)
84 return xa_to_value(entry) >> DAX_SHIFT;
87 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
92 static bool dax_is_locked(void *entry)
94 return xa_to_value(entry) & DAX_LOCKED;
97 static unsigned int dax_entry_order(void *entry)
99 if (xa_to_value(entry) & DAX_PMD)
104 static unsigned long dax_is_pmd_entry(void *entry)
106 return xa_to_value(entry) & DAX_PMD;
109 static bool dax_is_pte_entry(void *entry)
111 return !(xa_to_value(entry) & DAX_PMD);
114 static int dax_is_zero_entry(void *entry)
116 return xa_to_value(entry) & DAX_ZERO_PAGE;
119 static int dax_is_empty_entry(void *entry)
121 return xa_to_value(entry) & DAX_EMPTY;
125 * true if the entry that was found is of a smaller order than the entry
126 * we were looking for
128 static bool dax_is_conflict(void *entry)
130 return entry == XA_RETRY_ENTRY;
134 * DAX page cache entry locking
136 struct exceptional_entry_key {
141 struct wait_exceptional_entry_queue {
142 wait_queue_entry_t wait;
143 struct exceptional_entry_key key;
147 * enum dax_wake_mode: waitqueue wakeup behaviour
148 * @WAKE_ALL: wake all waiters in the waitqueue
149 * @WAKE_NEXT: wake only the first waiter in the waitqueue
156 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
157 void *entry, struct exceptional_entry_key *key)
160 unsigned long index = xas->xa_index;
163 * If 'entry' is a PMD, align the 'index' that we use for the wait
164 * queue to the start of that PMD. This ensures that all offsets in
165 * the range covered by the PMD map to the same bit lock.
167 if (dax_is_pmd_entry(entry))
168 index &= ~PG_PMD_COLOUR;
170 key->entry_start = index;
172 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
173 return wait_table + hash;
176 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
177 unsigned int mode, int sync, void *keyp)
179 struct exceptional_entry_key *key = keyp;
180 struct wait_exceptional_entry_queue *ewait =
181 container_of(wait, struct wait_exceptional_entry_queue, wait);
183 if (key->xa != ewait->key.xa ||
184 key->entry_start != ewait->key.entry_start)
186 return autoremove_wake_function(wait, mode, sync, NULL);
190 * @entry may no longer be the entry at the index in the mapping.
191 * The important information it's conveying is whether the entry at
192 * this index used to be a PMD entry.
194 static void dax_wake_entry(struct xa_state *xas, void *entry,
195 enum dax_wake_mode mode)
197 struct exceptional_entry_key key;
198 wait_queue_head_t *wq;
200 wq = dax_entry_waitqueue(xas, entry, &key);
203 * Checking for locked entry and prepare_to_wait_exclusive() happens
204 * under the i_pages lock, ditto for entry handling in our callers.
205 * So at this point all tasks that could have seen our entry locked
206 * must be in the waitqueue and the following check will see them.
208 if (waitqueue_active(wq))
209 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
213 * Look up entry in page cache, wait for it to become unlocked if it
214 * is a DAX entry and return it. The caller must subsequently call
215 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
216 * if it did. The entry returned may have a larger order than @order.
217 * If @order is larger than the order of the entry found in i_pages, this
218 * function returns a dax_is_conflict entry.
220 * Must be called with the i_pages lock held.
222 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
225 struct wait_exceptional_entry_queue ewait;
226 wait_queue_head_t *wq;
228 init_wait(&ewait.wait);
229 ewait.wait.func = wake_exceptional_entry_func;
232 entry = xas_find_conflict(xas);
233 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235 if (dax_entry_order(entry) < order)
236 return XA_RETRY_ENTRY;
237 if (!dax_is_locked(entry))
240 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
241 prepare_to_wait_exclusive(wq, &ewait.wait,
242 TASK_UNINTERRUPTIBLE);
246 finish_wait(wq, &ewait.wait);
252 * The only thing keeping the address space around is the i_pages lock
253 * (it's cycled in clear_inode() after removing the entries from i_pages)
254 * After we call xas_unlock_irq(), we cannot touch xas->xa.
256 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258 struct wait_exceptional_entry_queue ewait;
259 wait_queue_head_t *wq;
261 init_wait(&ewait.wait);
262 ewait.wait.func = wake_exceptional_entry_func;
264 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
266 * Unlike get_unlocked_entry() there is no guarantee that this
267 * path ever successfully retrieves an unlocked entry before an
268 * inode dies. Perform a non-exclusive wait in case this path
269 * never successfully performs its own wake up.
271 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
274 finish_wait(wq, &ewait.wait);
277 static void put_unlocked_entry(struct xa_state *xas, void *entry,
278 enum dax_wake_mode mode)
280 if (entry && !dax_is_conflict(entry))
281 dax_wake_entry(xas, entry, mode);
285 * We used the xa_state to get the entry, but then we locked the entry and
286 * dropped the xa_lock, so we know the xa_state is stale and must be reset
289 static void dax_unlock_entry(struct xa_state *xas, void *entry)
293 BUG_ON(dax_is_locked(entry));
296 old = xas_store(xas, entry);
298 BUG_ON(!dax_is_locked(old));
299 dax_wake_entry(xas, entry, WAKE_NEXT);
303 * Return: The entry stored at this location before it was locked.
305 static void *dax_lock_entry(struct xa_state *xas, void *entry)
307 unsigned long v = xa_to_value(entry);
308 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
311 static unsigned long dax_entry_size(void *entry)
313 if (dax_is_zero_entry(entry))
315 else if (dax_is_empty_entry(entry))
317 else if (dax_is_pmd_entry(entry))
323 static unsigned long dax_end_pfn(void *entry)
325 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
329 * Iterate through all mapped pfns represented by an entry, i.e. skip
330 * 'empty' and 'zero' entries.
332 #define for_each_mapped_pfn(entry, pfn) \
333 for (pfn = dax_to_pfn(entry); \
334 pfn < dax_end_pfn(entry); pfn++)
337 * TODO: for reflink+dax we need a way to associate a single page with
338 * multiple address_space instances at different linear_page_index()
341 static void dax_associate_entry(void *entry, struct address_space *mapping,
342 struct vm_area_struct *vma, unsigned long address)
344 unsigned long size = dax_entry_size(entry), pfn, index;
347 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
350 index = linear_page_index(vma, address & ~(size - 1));
351 for_each_mapped_pfn(entry, pfn) {
352 struct page *page = pfn_to_page(pfn);
354 WARN_ON_ONCE(page->mapping);
355 page->mapping = mapping;
356 page->index = index + i++;
360 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
365 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
368 for_each_mapped_pfn(entry, pfn) {
369 struct page *page = pfn_to_page(pfn);
371 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
372 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
373 page->mapping = NULL;
378 static struct page *dax_busy_page(void *entry)
382 for_each_mapped_pfn(entry, pfn) {
383 struct page *page = pfn_to_page(pfn);
385 if (page_ref_count(page) > 1)
392 * dax_lock_page - Lock the DAX entry corresponding to a page
393 * @page: The page whose entry we want to lock
395 * Context: Process context.
396 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
399 dax_entry_t dax_lock_page(struct page *page)
401 XA_STATE(xas, NULL, 0);
404 /* Ensure page->mapping isn't freed while we look at it */
407 struct address_space *mapping = READ_ONCE(page->mapping);
410 if (!mapping || !dax_mapping(mapping))
414 * In the device-dax case there's no need to lock, a
415 * struct dev_pagemap pin is sufficient to keep the
416 * inode alive, and we assume we have dev_pagemap pin
417 * otherwise we would not have a valid pfn_to_page()
420 entry = (void *)~0UL;
421 if (S_ISCHR(mapping->host->i_mode))
424 xas.xa = &mapping->i_pages;
426 if (mapping != page->mapping) {
427 xas_unlock_irq(&xas);
430 xas_set(&xas, page->index);
431 entry = xas_load(&xas);
432 if (dax_is_locked(entry)) {
434 wait_entry_unlocked(&xas, entry);
438 dax_lock_entry(&xas, entry);
439 xas_unlock_irq(&xas);
443 return (dax_entry_t)entry;
446 void dax_unlock_page(struct page *page, dax_entry_t cookie)
448 struct address_space *mapping = page->mapping;
449 XA_STATE(xas, &mapping->i_pages, page->index);
451 if (S_ISCHR(mapping->host->i_mode))
454 dax_unlock_entry(&xas, (void *)cookie);
458 * Find page cache entry at given index. If it is a DAX entry, return it
459 * with the entry locked. If the page cache doesn't contain an entry at
460 * that index, add a locked empty entry.
462 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
463 * either return that locked entry or will return VM_FAULT_FALLBACK.
464 * This will happen if there are any PTE entries within the PMD range
465 * that we are requesting.
467 * We always favor PTE entries over PMD entries. There isn't a flow where we
468 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
469 * insertion will fail if it finds any PTE entries already in the tree, and a
470 * PTE insertion will cause an existing PMD entry to be unmapped and
471 * downgraded to PTE entries. This happens for both PMD zero pages as
472 * well as PMD empty entries.
474 * The exception to this downgrade path is for PMD entries that have
475 * real storage backing them. We will leave these real PMD entries in
476 * the tree, and PTE writes will simply dirty the entire PMD entry.
478 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
479 * persistent memory the benefit is doubtful. We can add that later if we can
482 * On error, this function does not return an ERR_PTR. Instead it returns
483 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
484 * overlap with xarray value entries.
486 static void *grab_mapping_entry(struct xa_state *xas,
487 struct address_space *mapping, unsigned int order)
489 unsigned long index = xas->xa_index;
490 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
494 pmd_downgrade = false;
496 entry = get_unlocked_entry(xas, order);
499 if (dax_is_conflict(entry))
501 if (!xa_is_value(entry)) {
502 xas_set_err(xas, -EIO);
507 if (dax_is_pmd_entry(entry) &&
508 (dax_is_zero_entry(entry) ||
509 dax_is_empty_entry(entry))) {
510 pmd_downgrade = true;
517 * Make sure 'entry' remains valid while we drop
520 dax_lock_entry(xas, entry);
523 * Besides huge zero pages the only other thing that gets
524 * downgraded are empty entries which don't need to be
527 if (dax_is_zero_entry(entry)) {
529 unmap_mapping_pages(mapping,
530 xas->xa_index & ~PG_PMD_COLOUR,
536 dax_disassociate_entry(entry, mapping, false);
537 xas_store(xas, NULL); /* undo the PMD join */
538 dax_wake_entry(xas, entry, WAKE_ALL);
539 mapping->nrpages -= PG_PMD_NR;
545 dax_lock_entry(xas, entry);
547 unsigned long flags = DAX_EMPTY;
551 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
552 dax_lock_entry(xas, entry);
555 mapping->nrpages += 1UL << order;
560 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
562 if (xas->xa_node == XA_ERROR(-ENOMEM))
563 return xa_mk_internal(VM_FAULT_OOM);
565 return xa_mk_internal(VM_FAULT_SIGBUS);
569 return xa_mk_internal(VM_FAULT_FALLBACK);
573 * dax_layout_busy_page_range - find first pinned page in @mapping
574 * @mapping: address space to scan for a page with ref count > 1
575 * @start: Starting offset. Page containing 'start' is included.
576 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
577 * pages from 'start' till the end of file are included.
579 * DAX requires ZONE_DEVICE mapped pages. These pages are never
580 * 'onlined' to the page allocator so they are considered idle when
581 * page->count == 1. A filesystem uses this interface to determine if
582 * any page in the mapping is busy, i.e. for DMA, or other
583 * get_user_pages() usages.
585 * It is expected that the filesystem is holding locks to block the
586 * establishment of new mappings in this address_space. I.e. it expects
587 * to be able to run unmap_mapping_range() and subsequently not race
588 * mapping_mapped() becoming true.
590 struct page *dax_layout_busy_page_range(struct address_space *mapping,
591 loff_t start, loff_t end)
594 unsigned int scanned = 0;
595 struct page *page = NULL;
596 pgoff_t start_idx = start >> PAGE_SHIFT;
598 XA_STATE(xas, &mapping->i_pages, start_idx);
601 * In the 'limited' case get_user_pages() for dax is disabled.
603 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
606 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
609 /* If end == LLONG_MAX, all pages from start to till end of file */
610 if (end == LLONG_MAX)
613 end_idx = end >> PAGE_SHIFT;
615 * If we race get_user_pages_fast() here either we'll see the
616 * elevated page count in the iteration and wait, or
617 * get_user_pages_fast() will see that the page it took a reference
618 * against is no longer mapped in the page tables and bail to the
619 * get_user_pages() slow path. The slow path is protected by
620 * pte_lock() and pmd_lock(). New references are not taken without
621 * holding those locks, and unmap_mapping_pages() will not zero the
622 * pte or pmd without holding the respective lock, so we are
623 * guaranteed to either see new references or prevent new
624 * references from being established.
626 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
629 xas_for_each(&xas, entry, end_idx) {
630 if (WARN_ON_ONCE(!xa_is_value(entry)))
632 if (unlikely(dax_is_locked(entry)))
633 entry = get_unlocked_entry(&xas, 0);
635 page = dax_busy_page(entry);
636 put_unlocked_entry(&xas, entry, WAKE_NEXT);
639 if (++scanned % XA_CHECK_SCHED)
643 xas_unlock_irq(&xas);
647 xas_unlock_irq(&xas);
650 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
652 struct page *dax_layout_busy_page(struct address_space *mapping)
654 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
656 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
658 static int __dax_invalidate_entry(struct address_space *mapping,
659 pgoff_t index, bool trunc)
661 XA_STATE(xas, &mapping->i_pages, index);
666 entry = get_unlocked_entry(&xas, 0);
667 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
670 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
671 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
673 dax_disassociate_entry(entry, mapping, trunc);
674 xas_store(&xas, NULL);
675 mapping->nrpages -= 1UL << dax_entry_order(entry);
678 put_unlocked_entry(&xas, entry, WAKE_ALL);
679 xas_unlock_irq(&xas);
684 * Delete DAX entry at @index from @mapping. Wait for it
685 * to be unlocked before deleting it.
687 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
689 int ret = __dax_invalidate_entry(mapping, index, true);
692 * This gets called from truncate / punch_hole path. As such, the caller
693 * must hold locks protecting against concurrent modifications of the
694 * page cache (usually fs-private i_mmap_sem for writing). Since the
695 * caller has seen a DAX entry for this index, we better find it
696 * at that index as well...
703 * Invalidate DAX entry if it is clean.
705 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
708 return __dax_invalidate_entry(mapping, index, false);
711 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
713 return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
716 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
718 pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
723 id = dax_read_lock();
724 rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, &kaddr, NULL);
729 vto = kmap_atomic(vmf->cow_page);
730 copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
737 * By this point grab_mapping_entry() has ensured that we have a locked entry
738 * of the appropriate size so we don't have to worry about downgrading PMDs to
739 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
740 * already in the tree, we will skip the insertion and just dirty the PMD as
743 static void *dax_insert_entry(struct xa_state *xas,
744 struct address_space *mapping, struct vm_fault *vmf,
745 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
747 void *new_entry = dax_make_entry(pfn, flags);
750 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
752 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
753 unsigned long index = xas->xa_index;
754 /* we are replacing a zero page with block mapping */
755 if (dax_is_pmd_entry(entry))
756 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
759 unmap_mapping_pages(mapping, index, 1, false);
764 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
767 dax_disassociate_entry(entry, mapping, false);
768 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
770 * Only swap our new entry into the page cache if the current
771 * entry is a zero page or an empty entry. If a normal PTE or
772 * PMD entry is already in the cache, we leave it alone. This
773 * means that if we are trying to insert a PTE and the
774 * existing entry is a PMD, we will just leave the PMD in the
775 * tree and dirty it if necessary.
777 old = dax_lock_entry(xas, new_entry);
778 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
782 xas_load(xas); /* Walk the xa_state */
786 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
793 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
795 unsigned long address;
797 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
798 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
802 /* Walk all mappings of a given index of a file and writeprotect them */
803 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
806 struct vm_area_struct *vma;
807 pte_t pte, *ptep = NULL;
811 i_mmap_lock_read(mapping);
812 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
813 struct mmu_notifier_range range;
814 unsigned long address;
818 if (!(vma->vm_flags & VM_SHARED))
821 address = pgoff_address(index, vma);
824 * follow_invalidate_pte() will use the range to call
825 * mmu_notifier_invalidate_range_start() on our behalf before
828 if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep,
833 * No need to call mmu_notifier_invalidate_range() as we are
834 * downgrading page table protection not changing it to point
837 * See Documentation/vm/mmu_notifier.rst
840 #ifdef CONFIG_FS_DAX_PMD
843 if (pfn != pmd_pfn(*pmdp))
845 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
848 flush_cache_page(vma, address, pfn);
849 pmd = pmdp_invalidate(vma, address, pmdp);
850 pmd = pmd_wrprotect(pmd);
851 pmd = pmd_mkclean(pmd);
852 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
857 if (pfn != pte_pfn(*ptep))
859 if (!pte_dirty(*ptep) && !pte_write(*ptep))
862 flush_cache_page(vma, address, pfn);
863 pte = ptep_clear_flush(vma, address, ptep);
864 pte = pte_wrprotect(pte);
865 pte = pte_mkclean(pte);
866 set_pte_at(vma->vm_mm, address, ptep, pte);
868 pte_unmap_unlock(ptep, ptl);
871 mmu_notifier_invalidate_range_end(&range);
873 i_mmap_unlock_read(mapping);
876 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
877 struct address_space *mapping, void *entry)
879 unsigned long pfn, index, count;
883 * A page got tagged dirty in DAX mapping? Something is seriously
886 if (WARN_ON(!xa_is_value(entry)))
889 if (unlikely(dax_is_locked(entry))) {
890 void *old_entry = entry;
892 entry = get_unlocked_entry(xas, 0);
894 /* Entry got punched out / reallocated? */
895 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
898 * Entry got reallocated elsewhere? No need to writeback.
899 * We have to compare pfns as we must not bail out due to
900 * difference in lockbit or entry type.
902 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
904 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
905 dax_is_zero_entry(entry))) {
910 /* Another fsync thread may have already done this entry */
911 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
915 /* Lock the entry to serialize with page faults */
916 dax_lock_entry(xas, entry);
919 * We can clear the tag now but we have to be careful so that concurrent
920 * dax_writeback_one() calls for the same index cannot finish before we
921 * actually flush the caches. This is achieved as the calls will look
922 * at the entry only under the i_pages lock and once they do that
923 * they will see the entry locked and wait for it to unlock.
925 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
929 * If dax_writeback_mapping_range() was given a wbc->range_start
930 * in the middle of a PMD, the 'index' we use needs to be
931 * aligned to the start of the PMD.
932 * This allows us to flush for PMD_SIZE and not have to worry about
933 * partial PMD writebacks.
935 pfn = dax_to_pfn(entry);
936 count = 1UL << dax_entry_order(entry);
937 index = xas->xa_index & ~(count - 1);
939 dax_entry_mkclean(mapping, index, pfn);
940 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
942 * After we have flushed the cache, we can clear the dirty tag. There
943 * cannot be new dirty data in the pfn after the flush has completed as
944 * the pfn mappings are writeprotected and fault waits for mapping
949 xas_store(xas, entry);
950 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
951 dax_wake_entry(xas, entry, WAKE_NEXT);
953 trace_dax_writeback_one(mapping->host, index, count);
957 put_unlocked_entry(xas, entry, WAKE_NEXT);
962 * Flush the mapping to the persistent domain within the byte range of [start,
963 * end]. This is required by data integrity operations to ensure file data is
964 * on persistent storage prior to completion of the operation.
966 int dax_writeback_mapping_range(struct address_space *mapping,
967 struct dax_device *dax_dev, struct writeback_control *wbc)
969 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
970 struct inode *inode = mapping->host;
971 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
974 unsigned int scanned = 0;
976 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
979 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
982 trace_dax_writeback_range(inode, xas.xa_index, end_index);
984 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
987 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
988 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
990 mapping_set_error(mapping, ret);
993 if (++scanned % XA_CHECK_SCHED)
997 xas_unlock_irq(&xas);
1001 xas_unlock_irq(&xas);
1002 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1005 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1007 static int dax_iomap_pfn(const struct iomap *iomap, loff_t pos, size_t size,
1010 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1014 id = dax_read_lock();
1015 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1022 if (PFN_PHYS(length) < size)
1024 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1026 /* For larger pages we need devmap */
1027 if (length > 1 && !pfn_t_devmap(*pfnp))
1031 dax_read_unlock(id);
1036 * The user has performed a load from a hole in the file. Allocating a new
1037 * page in the file would cause excessive storage usage for workloads with
1038 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1039 * If this page is ever written to we will re-fault and change the mapping to
1040 * point to real DAX storage instead.
1042 static vm_fault_t dax_load_hole(struct xa_state *xas,
1043 struct address_space *mapping, void **entry,
1044 struct vm_fault *vmf)
1046 struct inode *inode = mapping->host;
1047 unsigned long vaddr = vmf->address;
1048 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1051 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1052 DAX_ZERO_PAGE, false);
1054 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1055 trace_dax_load_hole(inode, vmf, ret);
1059 #ifdef CONFIG_FS_DAX_PMD
1060 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1061 const struct iomap *iomap, void **entry)
1063 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1064 unsigned long pmd_addr = vmf->address & PMD_MASK;
1065 struct vm_area_struct *vma = vmf->vma;
1066 struct inode *inode = mapping->host;
1067 pgtable_t pgtable = NULL;
1068 struct page *zero_page;
1073 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1075 if (unlikely(!zero_page))
1078 pfn = page_to_pfn_t(zero_page);
1079 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1080 DAX_PMD | DAX_ZERO_PAGE, false);
1082 if (arch_needs_pgtable_deposit()) {
1083 pgtable = pte_alloc_one(vma->vm_mm);
1085 return VM_FAULT_OOM;
1088 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1089 if (!pmd_none(*(vmf->pmd))) {
1095 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1096 mm_inc_nr_ptes(vma->vm_mm);
1098 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1099 pmd_entry = pmd_mkhuge(pmd_entry);
1100 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1102 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1103 return VM_FAULT_NOPAGE;
1107 pte_free(vma->vm_mm, pgtable);
1108 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1109 return VM_FAULT_FALLBACK;
1112 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1113 const struct iomap *iomap, void **entry)
1115 return VM_FAULT_FALLBACK;
1117 #endif /* CONFIG_FS_DAX_PMD */
1119 static int dax_memzero(struct dax_device *dax_dev, pgoff_t pgoff,
1120 unsigned int offset, size_t size)
1125 ret = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1127 memset(kaddr + offset, 0, size);
1128 dax_flush(dax_dev, kaddr + offset, size);
1133 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1135 const struct iomap *iomap = &iter->iomap;
1136 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1137 loff_t pos = iter->pos;
1138 u64 length = iomap_length(iter);
1141 /* already zeroed? we're done. */
1142 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1146 unsigned offset = offset_in_page(pos);
1147 unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1148 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1152 id = dax_read_lock();
1153 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1154 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1156 rc = dax_memzero(iomap->dax_dev, pgoff, offset, size);
1157 dax_read_unlock(id);
1166 } while (length > 0);
1171 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1172 const struct iomap_ops *ops)
1174 struct iomap_iter iter = {
1178 .flags = IOMAP_DAX | IOMAP_ZERO,
1182 while ((ret = iomap_iter(&iter, ops)) > 0)
1183 iter.processed = dax_zero_iter(&iter, did_zero);
1186 EXPORT_SYMBOL_GPL(dax_zero_range);
1188 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1189 const struct iomap_ops *ops)
1191 unsigned int blocksize = i_blocksize(inode);
1192 unsigned int off = pos & (blocksize - 1);
1194 /* Block boundary? Nothing to do */
1197 return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1199 EXPORT_SYMBOL_GPL(dax_truncate_page);
1201 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1202 struct iov_iter *iter)
1204 const struct iomap *iomap = &iomi->iomap;
1205 loff_t length = iomap_length(iomi);
1206 loff_t pos = iomi->pos;
1207 struct dax_device *dax_dev = iomap->dax_dev;
1208 loff_t end = pos + length, done = 0;
1213 if (iov_iter_rw(iter) == READ) {
1214 end = min(end, i_size_read(iomi->inode));
1218 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1219 return iov_iter_zero(min(length, end - pos), iter);
1222 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1226 * Write can allocate block for an area which has a hole page mapped
1227 * into page tables. We have to tear down these mappings so that data
1228 * written by write(2) is visible in mmap.
1230 if (iomap->flags & IOMAP_F_NEW) {
1231 invalidate_inode_pages2_range(iomi->inode->i_mapping,
1233 (end - 1) >> PAGE_SHIFT);
1236 id = dax_read_lock();
1238 unsigned offset = pos & (PAGE_SIZE - 1);
1239 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1240 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1244 if (fatal_signal_pending(current)) {
1249 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1256 map_len = PFN_PHYS(map_len);
1259 if (map_len > end - pos)
1260 map_len = end - pos;
1262 if (iov_iter_rw(iter) == WRITE)
1263 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1266 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1278 dax_read_unlock(id);
1280 return done ? done : ret;
1284 * dax_iomap_rw - Perform I/O to a DAX file
1285 * @iocb: The control block for this I/O
1286 * @iter: The addresses to do I/O from or to
1287 * @ops: iomap ops passed from the file system
1289 * This function performs read and write operations to directly mapped
1290 * persistent memory. The callers needs to take care of read/write exclusion
1291 * and evicting any page cache pages in the region under I/O.
1294 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1295 const struct iomap_ops *ops)
1297 struct iomap_iter iomi = {
1298 .inode = iocb->ki_filp->f_mapping->host,
1299 .pos = iocb->ki_pos,
1300 .len = iov_iter_count(iter),
1306 if (iov_iter_rw(iter) == WRITE) {
1307 lockdep_assert_held_write(&iomi.inode->i_rwsem);
1308 iomi.flags |= IOMAP_WRITE;
1310 lockdep_assert_held(&iomi.inode->i_rwsem);
1313 if (iocb->ki_flags & IOCB_NOWAIT)
1314 iomi.flags |= IOMAP_NOWAIT;
1316 while ((ret = iomap_iter(&iomi, ops)) > 0)
1317 iomi.processed = dax_iomap_iter(&iomi, iter);
1319 done = iomi.pos - iocb->ki_pos;
1320 iocb->ki_pos = iomi.pos;
1321 return done ? done : ret;
1323 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1325 static vm_fault_t dax_fault_return(int error)
1328 return VM_FAULT_NOPAGE;
1329 return vmf_error(error);
1333 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1334 * flushed on write-faults (non-cow), but not read-faults.
1336 static bool dax_fault_is_synchronous(unsigned long flags,
1337 struct vm_area_struct *vma, const struct iomap *iomap)
1339 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1340 && (iomap->flags & IOMAP_F_DIRTY);
1344 * When handling a synchronous page fault and the inode need a fsync, we can
1345 * insert the PTE/PMD into page tables only after that fsync happened. Skip
1346 * insertion for now and return the pfn so that caller can insert it after the
1349 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1351 if (WARN_ON_ONCE(!pfnp))
1352 return VM_FAULT_SIGBUS;
1354 return VM_FAULT_NEEDDSYNC;
1357 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1358 const struct iomap_iter *iter)
1363 switch (iter->iomap.type) {
1365 case IOMAP_UNWRITTEN:
1366 clear_user_highpage(vmf->cow_page, vmf->address);
1369 error = copy_cow_page_dax(vmf, iter);
1378 return dax_fault_return(error);
1380 __SetPageUptodate(vmf->cow_page);
1381 ret = finish_fault(vmf);
1383 return VM_FAULT_DONE_COW;
1388 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1389 * @vmf: vm fault instance
1391 * @pfnp: pfn to be returned
1392 * @xas: the dax mapping tree of a file
1393 * @entry: an unlocked dax entry to be inserted
1394 * @pmd: distinguish whether it is a pmd fault
1396 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1397 const struct iomap_iter *iter, pfn_t *pfnp,
1398 struct xa_state *xas, void **entry, bool pmd)
1400 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1401 const struct iomap *iomap = &iter->iomap;
1402 size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1403 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1404 bool write = vmf->flags & FAULT_FLAG_WRITE;
1405 bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap);
1406 unsigned long entry_flags = pmd ? DAX_PMD : 0;
1410 if (!pmd && vmf->cow_page)
1411 return dax_fault_cow_page(vmf, iter);
1413 /* if we are reading UNWRITTEN and HOLE, return a hole. */
1415 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1417 return dax_load_hole(xas, mapping, entry, vmf);
1418 return dax_pmd_load_hole(xas, vmf, iomap, entry);
1421 if (iomap->type != IOMAP_MAPPED) {
1423 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1426 err = dax_iomap_pfn(&iter->iomap, pos, size, &pfn);
1428 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1430 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags,
1434 return dax_fault_synchronous_pfnp(pfnp, pfn);
1436 /* insert PMD pfn */
1438 return vmf_insert_pfn_pmd(vmf, pfn, write);
1440 /* insert PTE pfn */
1442 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1443 return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1446 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1447 int *iomap_errp, const struct iomap_ops *ops)
1449 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1450 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1451 struct iomap_iter iter = {
1452 .inode = mapping->host,
1453 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT,
1455 .flags = IOMAP_DAX | IOMAP_FAULT,
1461 trace_dax_pte_fault(iter.inode, vmf, ret);
1463 * Check whether offset isn't beyond end of file now. Caller is supposed
1464 * to hold locks serializing us with truncate / punch hole so this is
1467 if (iter.pos >= i_size_read(iter.inode)) {
1468 ret = VM_FAULT_SIGBUS;
1472 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1473 iter.flags |= IOMAP_WRITE;
1475 entry = grab_mapping_entry(&xas, mapping, 0);
1476 if (xa_is_internal(entry)) {
1477 ret = xa_to_internal(entry);
1482 * It is possible, particularly with mixed reads & writes to private
1483 * mappings, that we have raced with a PMD fault that overlaps with
1484 * the PTE we need to set up. If so just return and the fault will be
1487 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1488 ret = VM_FAULT_NOPAGE;
1492 while ((error = iomap_iter(&iter, ops)) > 0) {
1493 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1494 iter.processed = -EIO; /* fs corruption? */
1498 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1499 if (ret != VM_FAULT_SIGBUS &&
1500 (iter.iomap.flags & IOMAP_F_NEW)) {
1501 count_vm_event(PGMAJFAULT);
1502 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1503 ret |= VM_FAULT_MAJOR;
1506 if (!(ret & VM_FAULT_ERROR))
1507 iter.processed = PAGE_SIZE;
1511 *iomap_errp = error;
1513 ret = dax_fault_return(error);
1516 dax_unlock_entry(&xas, entry);
1518 trace_dax_pte_fault_done(iter.inode, vmf, ret);
1522 #ifdef CONFIG_FS_DAX_PMD
1523 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1526 unsigned long pmd_addr = vmf->address & PMD_MASK;
1527 bool write = vmf->flags & FAULT_FLAG_WRITE;
1530 * Make sure that the faulting address's PMD offset (color) matches
1531 * the PMD offset from the start of the file. This is necessary so
1532 * that a PMD range in the page table overlaps exactly with a PMD
1533 * range in the page cache.
1535 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1536 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1539 /* Fall back to PTEs if we're going to COW */
1540 if (write && !(vmf->vma->vm_flags & VM_SHARED))
1543 /* If the PMD would extend outside the VMA */
1544 if (pmd_addr < vmf->vma->vm_start)
1546 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1549 /* If the PMD would extend beyond the file size */
1550 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1556 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1557 const struct iomap_ops *ops)
1559 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1560 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1561 struct iomap_iter iter = {
1562 .inode = mapping->host,
1564 .flags = IOMAP_DAX | IOMAP_FAULT,
1566 vm_fault_t ret = VM_FAULT_FALLBACK;
1571 if (vmf->flags & FAULT_FLAG_WRITE)
1572 iter.flags |= IOMAP_WRITE;
1575 * Check whether offset isn't beyond end of file now. Caller is
1576 * supposed to hold locks serializing us with truncate / punch hole so
1577 * this is a reliable test.
1579 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1581 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1583 if (xas.xa_index >= max_pgoff) {
1584 ret = VM_FAULT_SIGBUS;
1588 if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1592 * grab_mapping_entry() will make sure we get an empty PMD entry,
1593 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1594 * entry is already in the array, for instance), it will return
1595 * VM_FAULT_FALLBACK.
1597 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1598 if (xa_is_internal(entry)) {
1599 ret = xa_to_internal(entry);
1604 * It is possible, particularly with mixed reads & writes to private
1605 * mappings, that we have raced with a PTE fault that overlaps with
1606 * the PMD we need to set up. If so just return and the fault will be
1609 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1610 !pmd_devmap(*vmf->pmd)) {
1615 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1616 while ((error = iomap_iter(&iter, ops)) > 0) {
1617 if (iomap_length(&iter) < PMD_SIZE)
1618 continue; /* actually breaks out of the loop */
1620 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1621 if (ret != VM_FAULT_FALLBACK)
1622 iter.processed = PMD_SIZE;
1626 dax_unlock_entry(&xas, entry);
1628 if (ret == VM_FAULT_FALLBACK) {
1629 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1630 count_vm_event(THP_FAULT_FALLBACK);
1633 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1637 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1638 const struct iomap_ops *ops)
1640 return VM_FAULT_FALLBACK;
1642 #endif /* CONFIG_FS_DAX_PMD */
1645 * dax_iomap_fault - handle a page fault on a DAX file
1646 * @vmf: The description of the fault
1647 * @pe_size: Size of the page to fault in
1648 * @pfnp: PFN to insert for synchronous faults if fsync is required
1649 * @iomap_errp: Storage for detailed error code in case of error
1650 * @ops: Iomap ops passed from the file system
1652 * When a page fault occurs, filesystems may call this helper in
1653 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1654 * has done all the necessary locking for page fault to proceed
1657 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1658 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1662 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1664 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1666 return VM_FAULT_FALLBACK;
1669 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1672 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1673 * @vmf: The description of the fault
1674 * @pfn: PFN to insert
1675 * @order: Order of entry to insert.
1677 * This function inserts a writeable PTE or PMD entry into the page tables
1678 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1681 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1683 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1684 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1689 entry = get_unlocked_entry(&xas, order);
1690 /* Did we race with someone splitting entry or so? */
1691 if (!entry || dax_is_conflict(entry) ||
1692 (order == 0 && !dax_is_pte_entry(entry))) {
1693 put_unlocked_entry(&xas, entry, WAKE_NEXT);
1694 xas_unlock_irq(&xas);
1695 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1697 return VM_FAULT_NOPAGE;
1699 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1700 dax_lock_entry(&xas, entry);
1701 xas_unlock_irq(&xas);
1703 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1704 #ifdef CONFIG_FS_DAX_PMD
1705 else if (order == PMD_ORDER)
1706 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1709 ret = VM_FAULT_FALLBACK;
1710 dax_unlock_entry(&xas, entry);
1711 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1716 * dax_finish_sync_fault - finish synchronous page fault
1717 * @vmf: The description of the fault
1718 * @pe_size: Size of entry to be inserted
1719 * @pfn: PFN to insert
1721 * This function ensures that the file range touched by the page fault is
1722 * stored persistently on the media and handles inserting of appropriate page
1725 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1726 enum page_entry_size pe_size, pfn_t pfn)
1729 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1730 unsigned int order = pe_order(pe_size);
1731 size_t len = PAGE_SIZE << order;
1733 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1735 return VM_FAULT_SIGBUS;
1736 return dax_insert_pfn_mkwrite(vmf, pfn, order);
1738 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);