1 // SPDX-License-Identifier: GPL-2.0-only
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
14 #include <linux/highmem.h>
15 #include <linux/memcontrol.h>
17 #include <linux/mutex.h>
18 #include <linux/pagevec.h>
19 #include <linux/sched.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uio.h>
22 #include <linux/vmstat.h>
23 #include <linux/pfn_t.h>
24 #include <linux/sizes.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/iomap.h>
27 #include <linux/rmap.h>
28 #include <asm/pgalloc.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
35 if (pe_size == PE_SIZE_PTE)
36 return PAGE_SHIFT - PAGE_SHIFT;
37 if (pe_size == PE_SIZE_PMD)
38 return PMD_SHIFT - PAGE_SHIFT;
39 if (pe_size == PE_SIZE_PUD)
40 return PUD_SHIFT - PAGE_SHIFT;
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
48 /* The 'colour' (ie low bits) within a PMD of a page offset. */
49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
52 /* The order of a PMD entry */
53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
57 static int __init init_dax_wait_table(void)
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
65 fs_initcall(init_dax_wait_table);
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
78 #define DAX_LOCKED (1UL << 0)
79 #define DAX_PMD (1UL << 1)
80 #define DAX_ZERO_PAGE (1UL << 2)
81 #define DAX_EMPTY (1UL << 3)
83 static unsigned long dax_to_pfn(void *entry)
85 return xa_to_value(entry) >> DAX_SHIFT;
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
93 static bool dax_is_locked(void *entry)
95 return xa_to_value(entry) & DAX_LOCKED;
98 static unsigned int dax_entry_order(void *entry)
100 if (xa_to_value(entry) & DAX_PMD)
105 static unsigned long dax_is_pmd_entry(void *entry)
107 return xa_to_value(entry) & DAX_PMD;
110 static bool dax_is_pte_entry(void *entry)
112 return !(xa_to_value(entry) & DAX_PMD);
115 static int dax_is_zero_entry(void *entry)
117 return xa_to_value(entry) & DAX_ZERO_PAGE;
120 static int dax_is_empty_entry(void *entry)
122 return xa_to_value(entry) & DAX_EMPTY;
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
129 static bool dax_is_conflict(void *entry)
131 return entry == XA_RETRY_ENTRY;
135 * DAX page cache entry locking
137 struct exceptional_entry_key {
142 struct wait_exceptional_entry_queue {
143 wait_queue_entry_t wait;
144 struct exceptional_entry_key key;
148 * enum dax_wake_mode: waitqueue wakeup behaviour
149 * @WAKE_ALL: wake all waiters in the waitqueue
150 * @WAKE_NEXT: wake only the first waiter in the waitqueue
157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158 void *entry, struct exceptional_entry_key *key)
161 unsigned long index = xas->xa_index;
164 * If 'entry' is a PMD, align the 'index' that we use for the wait
165 * queue to the start of that PMD. This ensures that all offsets in
166 * the range covered by the PMD map to the same bit lock.
168 if (dax_is_pmd_entry(entry))
169 index &= ~PG_PMD_COLOUR;
171 key->entry_start = index;
173 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174 return wait_table + hash;
177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178 unsigned int mode, int sync, void *keyp)
180 struct exceptional_entry_key *key = keyp;
181 struct wait_exceptional_entry_queue *ewait =
182 container_of(wait, struct wait_exceptional_entry_queue, wait);
184 if (key->xa != ewait->key.xa ||
185 key->entry_start != ewait->key.entry_start)
187 return autoremove_wake_function(wait, mode, sync, NULL);
191 * @entry may no longer be the entry at the index in the mapping.
192 * The important information it's conveying is whether the entry at
193 * this index used to be a PMD entry.
195 static void dax_wake_entry(struct xa_state *xas, void *entry,
196 enum dax_wake_mode mode)
198 struct exceptional_entry_key key;
199 wait_queue_head_t *wq;
201 wq = dax_entry_waitqueue(xas, entry, &key);
204 * Checking for locked entry and prepare_to_wait_exclusive() happens
205 * under the i_pages lock, ditto for entry handling in our callers.
206 * So at this point all tasks that could have seen our entry locked
207 * must be in the waitqueue and the following check will see them.
209 if (waitqueue_active(wq))
210 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
214 * Look up entry in page cache, wait for it to become unlocked if it
215 * is a DAX entry and return it. The caller must subsequently call
216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217 * if it did. The entry returned may have a larger order than @order.
218 * If @order is larger than the order of the entry found in i_pages, this
219 * function returns a dax_is_conflict entry.
221 * Must be called with the i_pages lock held.
223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
226 struct wait_exceptional_entry_queue ewait;
227 wait_queue_head_t *wq;
229 init_wait(&ewait.wait);
230 ewait.wait.func = wake_exceptional_entry_func;
233 entry = xas_find_conflict(xas);
234 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
236 if (dax_entry_order(entry) < order)
237 return XA_RETRY_ENTRY;
238 if (!dax_is_locked(entry))
241 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242 prepare_to_wait_exclusive(wq, &ewait.wait,
243 TASK_UNINTERRUPTIBLE);
247 finish_wait(wq, &ewait.wait);
253 * The only thing keeping the address space around is the i_pages lock
254 * (it's cycled in clear_inode() after removing the entries from i_pages)
255 * After we call xas_unlock_irq(), we cannot touch xas->xa.
257 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
259 struct wait_exceptional_entry_queue ewait;
260 wait_queue_head_t *wq;
262 init_wait(&ewait.wait);
263 ewait.wait.func = wake_exceptional_entry_func;
265 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
267 * Unlike get_unlocked_entry() there is no guarantee that this
268 * path ever successfully retrieves an unlocked entry before an
269 * inode dies. Perform a non-exclusive wait in case this path
270 * never successfully performs its own wake up.
272 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
275 finish_wait(wq, &ewait.wait);
278 static void put_unlocked_entry(struct xa_state *xas, void *entry,
279 enum dax_wake_mode mode)
281 if (entry && !dax_is_conflict(entry))
282 dax_wake_entry(xas, entry, mode);
286 * We used the xa_state to get the entry, but then we locked the entry and
287 * dropped the xa_lock, so we know the xa_state is stale and must be reset
290 static void dax_unlock_entry(struct xa_state *xas, void *entry)
294 BUG_ON(dax_is_locked(entry));
297 old = xas_store(xas, entry);
299 BUG_ON(!dax_is_locked(old));
300 dax_wake_entry(xas, entry, WAKE_NEXT);
304 * Return: The entry stored at this location before it was locked.
306 static void *dax_lock_entry(struct xa_state *xas, void *entry)
308 unsigned long v = xa_to_value(entry);
309 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
312 static unsigned long dax_entry_size(void *entry)
314 if (dax_is_zero_entry(entry))
316 else if (dax_is_empty_entry(entry))
318 else if (dax_is_pmd_entry(entry))
324 static unsigned long dax_end_pfn(void *entry)
326 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
330 * Iterate through all mapped pfns represented by an entry, i.e. skip
331 * 'empty' and 'zero' entries.
333 #define for_each_mapped_pfn(entry, pfn) \
334 for (pfn = dax_to_pfn(entry); \
335 pfn < dax_end_pfn(entry); pfn++)
338 * TODO: for reflink+dax we need a way to associate a single page with
339 * multiple address_space instances at different linear_page_index()
342 static void dax_associate_entry(void *entry, struct address_space *mapping,
343 struct vm_area_struct *vma, unsigned long address)
345 unsigned long size = dax_entry_size(entry), pfn, index;
348 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
351 index = linear_page_index(vma, address & ~(size - 1));
352 for_each_mapped_pfn(entry, pfn) {
353 struct page *page = pfn_to_page(pfn);
355 WARN_ON_ONCE(page->mapping);
356 page->mapping = mapping;
357 page->index = index + i++;
361 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
366 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
369 for_each_mapped_pfn(entry, pfn) {
370 struct page *page = pfn_to_page(pfn);
372 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
373 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
374 page->mapping = NULL;
379 static struct page *dax_busy_page(void *entry)
383 for_each_mapped_pfn(entry, pfn) {
384 struct page *page = pfn_to_page(pfn);
386 if (page_ref_count(page) > 1)
393 * dax_lock_page - Lock the DAX entry corresponding to a page
394 * @page: The page whose entry we want to lock
396 * Context: Process context.
397 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
400 dax_entry_t dax_lock_page(struct page *page)
402 XA_STATE(xas, NULL, 0);
405 /* Ensure page->mapping isn't freed while we look at it */
408 struct address_space *mapping = READ_ONCE(page->mapping);
411 if (!mapping || !dax_mapping(mapping))
415 * In the device-dax case there's no need to lock, a
416 * struct dev_pagemap pin is sufficient to keep the
417 * inode alive, and we assume we have dev_pagemap pin
418 * otherwise we would not have a valid pfn_to_page()
421 entry = (void *)~0UL;
422 if (S_ISCHR(mapping->host->i_mode))
425 xas.xa = &mapping->i_pages;
427 if (mapping != page->mapping) {
428 xas_unlock_irq(&xas);
431 xas_set(&xas, page->index);
432 entry = xas_load(&xas);
433 if (dax_is_locked(entry)) {
435 wait_entry_unlocked(&xas, entry);
439 dax_lock_entry(&xas, entry);
440 xas_unlock_irq(&xas);
444 return (dax_entry_t)entry;
447 void dax_unlock_page(struct page *page, dax_entry_t cookie)
449 struct address_space *mapping = page->mapping;
450 XA_STATE(xas, &mapping->i_pages, page->index);
452 if (S_ISCHR(mapping->host->i_mode))
455 dax_unlock_entry(&xas, (void *)cookie);
459 * Find page cache entry at given index. If it is a DAX entry, return it
460 * with the entry locked. If the page cache doesn't contain an entry at
461 * that index, add a locked empty entry.
463 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
464 * either return that locked entry or will return VM_FAULT_FALLBACK.
465 * This will happen if there are any PTE entries within the PMD range
466 * that we are requesting.
468 * We always favor PTE entries over PMD entries. There isn't a flow where we
469 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
470 * insertion will fail if it finds any PTE entries already in the tree, and a
471 * PTE insertion will cause an existing PMD entry to be unmapped and
472 * downgraded to PTE entries. This happens for both PMD zero pages as
473 * well as PMD empty entries.
475 * The exception to this downgrade path is for PMD entries that have
476 * real storage backing them. We will leave these real PMD entries in
477 * the tree, and PTE writes will simply dirty the entire PMD entry.
479 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
480 * persistent memory the benefit is doubtful. We can add that later if we can
483 * On error, this function does not return an ERR_PTR. Instead it returns
484 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
485 * overlap with xarray value entries.
487 static void *grab_mapping_entry(struct xa_state *xas,
488 struct address_space *mapping, unsigned int order)
490 unsigned long index = xas->xa_index;
491 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
495 pmd_downgrade = false;
497 entry = get_unlocked_entry(xas, order);
500 if (dax_is_conflict(entry))
502 if (!xa_is_value(entry)) {
503 xas_set_err(xas, -EIO);
508 if (dax_is_pmd_entry(entry) &&
509 (dax_is_zero_entry(entry) ||
510 dax_is_empty_entry(entry))) {
511 pmd_downgrade = true;
518 * Make sure 'entry' remains valid while we drop
521 dax_lock_entry(xas, entry);
524 * Besides huge zero pages the only other thing that gets
525 * downgraded are empty entries which don't need to be
528 if (dax_is_zero_entry(entry)) {
530 unmap_mapping_pages(mapping,
531 xas->xa_index & ~PG_PMD_COLOUR,
537 dax_disassociate_entry(entry, mapping, false);
538 xas_store(xas, NULL); /* undo the PMD join */
539 dax_wake_entry(xas, entry, WAKE_ALL);
540 mapping->nrpages -= PG_PMD_NR;
546 dax_lock_entry(xas, entry);
548 unsigned long flags = DAX_EMPTY;
552 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
553 dax_lock_entry(xas, entry);
556 mapping->nrpages += 1UL << order;
561 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
563 if (xas->xa_node == XA_ERROR(-ENOMEM))
564 return xa_mk_internal(VM_FAULT_OOM);
566 return xa_mk_internal(VM_FAULT_SIGBUS);
570 return xa_mk_internal(VM_FAULT_FALLBACK);
574 * dax_layout_busy_page_range - find first pinned page in @mapping
575 * @mapping: address space to scan for a page with ref count > 1
576 * @start: Starting offset. Page containing 'start' is included.
577 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
578 * pages from 'start' till the end of file are included.
580 * DAX requires ZONE_DEVICE mapped pages. These pages are never
581 * 'onlined' to the page allocator so they are considered idle when
582 * page->count == 1. A filesystem uses this interface to determine if
583 * any page in the mapping is busy, i.e. for DMA, or other
584 * get_user_pages() usages.
586 * It is expected that the filesystem is holding locks to block the
587 * establishment of new mappings in this address_space. I.e. it expects
588 * to be able to run unmap_mapping_range() and subsequently not race
589 * mapping_mapped() becoming true.
591 struct page *dax_layout_busy_page_range(struct address_space *mapping,
592 loff_t start, loff_t end)
595 unsigned int scanned = 0;
596 struct page *page = NULL;
597 pgoff_t start_idx = start >> PAGE_SHIFT;
599 XA_STATE(xas, &mapping->i_pages, start_idx);
602 * In the 'limited' case get_user_pages() for dax is disabled.
604 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
607 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
610 /* If end == LLONG_MAX, all pages from start to till end of file */
611 if (end == LLONG_MAX)
614 end_idx = end >> PAGE_SHIFT;
616 * If we race get_user_pages_fast() here either we'll see the
617 * elevated page count in the iteration and wait, or
618 * get_user_pages_fast() will see that the page it took a reference
619 * against is no longer mapped in the page tables and bail to the
620 * get_user_pages() slow path. The slow path is protected by
621 * pte_lock() and pmd_lock(). New references are not taken without
622 * holding those locks, and unmap_mapping_pages() will not zero the
623 * pte or pmd without holding the respective lock, so we are
624 * guaranteed to either see new references or prevent new
625 * references from being established.
627 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
630 xas_for_each(&xas, entry, end_idx) {
631 if (WARN_ON_ONCE(!xa_is_value(entry)))
633 if (unlikely(dax_is_locked(entry)))
634 entry = get_unlocked_entry(&xas, 0);
636 page = dax_busy_page(entry);
637 put_unlocked_entry(&xas, entry, WAKE_NEXT);
640 if (++scanned % XA_CHECK_SCHED)
644 xas_unlock_irq(&xas);
648 xas_unlock_irq(&xas);
651 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
653 struct page *dax_layout_busy_page(struct address_space *mapping)
655 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
657 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
659 static int __dax_invalidate_entry(struct address_space *mapping,
660 pgoff_t index, bool trunc)
662 XA_STATE(xas, &mapping->i_pages, index);
667 entry = get_unlocked_entry(&xas, 0);
668 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
671 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
672 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
674 dax_disassociate_entry(entry, mapping, trunc);
675 xas_store(&xas, NULL);
676 mapping->nrpages -= 1UL << dax_entry_order(entry);
679 put_unlocked_entry(&xas, entry, WAKE_ALL);
680 xas_unlock_irq(&xas);
685 * Delete DAX entry at @index from @mapping. Wait for it
686 * to be unlocked before deleting it.
688 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
690 int ret = __dax_invalidate_entry(mapping, index, true);
693 * This gets called from truncate / punch_hole path. As such, the caller
694 * must hold locks protecting against concurrent modifications of the
695 * page cache (usually fs-private i_mmap_sem for writing). Since the
696 * caller has seen a DAX entry for this index, we better find it
697 * at that index as well...
704 * Invalidate DAX entry if it is clean.
706 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
709 return __dax_invalidate_entry(mapping, index, false);
712 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
714 return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
717 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
719 pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
724 id = dax_read_lock();
725 rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
731 vto = kmap_atomic(vmf->cow_page);
732 copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
739 * By this point grab_mapping_entry() has ensured that we have a locked entry
740 * of the appropriate size so we don't have to worry about downgrading PMDs to
741 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
742 * already in the tree, we will skip the insertion and just dirty the PMD as
745 static void *dax_insert_entry(struct xa_state *xas,
746 struct address_space *mapping, struct vm_fault *vmf,
747 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
749 void *new_entry = dax_make_entry(pfn, flags);
752 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
754 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
755 unsigned long index = xas->xa_index;
756 /* we are replacing a zero page with block mapping */
757 if (dax_is_pmd_entry(entry))
758 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
761 unmap_mapping_pages(mapping, index, 1, false);
766 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
769 dax_disassociate_entry(entry, mapping, false);
770 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
772 * Only swap our new entry into the page cache if the current
773 * entry is a zero page or an empty entry. If a normal PTE or
774 * PMD entry is already in the cache, we leave it alone. This
775 * means that if we are trying to insert a PTE and the
776 * existing entry is a PMD, we will just leave the PMD in the
777 * tree and dirty it if necessary.
779 old = dax_lock_entry(xas, new_entry);
780 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
784 xas_load(xas); /* Walk the xa_state */
788 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
794 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
795 struct address_space *mapping, void *entry)
797 unsigned long pfn, index, count, end;
799 struct vm_area_struct *vma;
802 * A page got tagged dirty in DAX mapping? Something is seriously
805 if (WARN_ON(!xa_is_value(entry)))
808 if (unlikely(dax_is_locked(entry))) {
809 void *old_entry = entry;
811 entry = get_unlocked_entry(xas, 0);
813 /* Entry got punched out / reallocated? */
814 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
817 * Entry got reallocated elsewhere? No need to writeback.
818 * We have to compare pfns as we must not bail out due to
819 * difference in lockbit or entry type.
821 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
823 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
824 dax_is_zero_entry(entry))) {
829 /* Another fsync thread may have already done this entry */
830 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
834 /* Lock the entry to serialize with page faults */
835 dax_lock_entry(xas, entry);
838 * We can clear the tag now but we have to be careful so that concurrent
839 * dax_writeback_one() calls for the same index cannot finish before we
840 * actually flush the caches. This is achieved as the calls will look
841 * at the entry only under the i_pages lock and once they do that
842 * they will see the entry locked and wait for it to unlock.
844 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
848 * If dax_writeback_mapping_range() was given a wbc->range_start
849 * in the middle of a PMD, the 'index' we use needs to be
850 * aligned to the start of the PMD.
851 * This allows us to flush for PMD_SIZE and not have to worry about
852 * partial PMD writebacks.
854 pfn = dax_to_pfn(entry);
855 count = 1UL << dax_entry_order(entry);
856 index = xas->xa_index & ~(count - 1);
857 end = index + count - 1;
859 /* Walk all mappings of a given index of a file and writeprotect them */
860 i_mmap_lock_read(mapping);
861 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
862 pfn_mkclean_range(pfn, count, index, vma);
865 i_mmap_unlock_read(mapping);
867 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
869 * After we have flushed the cache, we can clear the dirty tag. There
870 * cannot be new dirty data in the pfn after the flush has completed as
871 * the pfn mappings are writeprotected and fault waits for mapping
876 xas_store(xas, entry);
877 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
878 dax_wake_entry(xas, entry, WAKE_NEXT);
880 trace_dax_writeback_one(mapping->host, index, count);
884 put_unlocked_entry(xas, entry, WAKE_NEXT);
889 * Flush the mapping to the persistent domain within the byte range of [start,
890 * end]. This is required by data integrity operations to ensure file data is
891 * on persistent storage prior to completion of the operation.
893 int dax_writeback_mapping_range(struct address_space *mapping,
894 struct dax_device *dax_dev, struct writeback_control *wbc)
896 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
897 struct inode *inode = mapping->host;
898 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
901 unsigned int scanned = 0;
903 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
906 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
909 trace_dax_writeback_range(inode, xas.xa_index, end_index);
911 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
914 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
915 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
917 mapping_set_error(mapping, ret);
920 if (++scanned % XA_CHECK_SCHED)
924 xas_unlock_irq(&xas);
928 xas_unlock_irq(&xas);
929 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
932 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
934 static int dax_iomap_pfn(const struct iomap *iomap, loff_t pos, size_t size,
937 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
941 id = dax_read_lock();
942 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
943 DAX_ACCESS, NULL, pfnp);
949 if (PFN_PHYS(length) < size)
951 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
953 /* For larger pages we need devmap */
954 if (length > 1 && !pfn_t_devmap(*pfnp))
963 * The user has performed a load from a hole in the file. Allocating a new
964 * page in the file would cause excessive storage usage for workloads with
965 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
966 * If this page is ever written to we will re-fault and change the mapping to
967 * point to real DAX storage instead.
969 static vm_fault_t dax_load_hole(struct xa_state *xas,
970 struct address_space *mapping, void **entry,
971 struct vm_fault *vmf)
973 struct inode *inode = mapping->host;
974 unsigned long vaddr = vmf->address;
975 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
978 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
979 DAX_ZERO_PAGE, false);
981 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
982 trace_dax_load_hole(inode, vmf, ret);
986 #ifdef CONFIG_FS_DAX_PMD
987 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
988 const struct iomap *iomap, void **entry)
990 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
991 unsigned long pmd_addr = vmf->address & PMD_MASK;
992 struct vm_area_struct *vma = vmf->vma;
993 struct inode *inode = mapping->host;
994 pgtable_t pgtable = NULL;
995 struct page *zero_page;
1000 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1002 if (unlikely(!zero_page))
1005 pfn = page_to_pfn_t(zero_page);
1006 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1007 DAX_PMD | DAX_ZERO_PAGE, false);
1009 if (arch_needs_pgtable_deposit()) {
1010 pgtable = pte_alloc_one(vma->vm_mm);
1012 return VM_FAULT_OOM;
1015 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1016 if (!pmd_none(*(vmf->pmd))) {
1022 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1023 mm_inc_nr_ptes(vma->vm_mm);
1025 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1026 pmd_entry = pmd_mkhuge(pmd_entry);
1027 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1029 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1030 return VM_FAULT_NOPAGE;
1034 pte_free(vma->vm_mm, pgtable);
1035 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1036 return VM_FAULT_FALLBACK;
1039 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1040 const struct iomap *iomap, void **entry)
1042 return VM_FAULT_FALLBACK;
1044 #endif /* CONFIG_FS_DAX_PMD */
1046 static int dax_memzero(struct dax_device *dax_dev, pgoff_t pgoff,
1047 unsigned int offset, size_t size)
1052 ret = dax_direct_access(dax_dev, pgoff, 1, DAX_ACCESS, &kaddr, NULL);
1054 memset(kaddr + offset, 0, size);
1055 dax_flush(dax_dev, kaddr + offset, size);
1060 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1062 const struct iomap *iomap = &iter->iomap;
1063 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1064 loff_t pos = iter->pos;
1065 u64 length = iomap_length(iter);
1068 /* already zeroed? we're done. */
1069 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1073 unsigned offset = offset_in_page(pos);
1074 unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1075 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1079 id = dax_read_lock();
1080 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1081 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1083 rc = dax_memzero(iomap->dax_dev, pgoff, offset, size);
1084 dax_read_unlock(id);
1093 } while (length > 0);
1098 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1099 const struct iomap_ops *ops)
1101 struct iomap_iter iter = {
1105 .flags = IOMAP_DAX | IOMAP_ZERO,
1109 while ((ret = iomap_iter(&iter, ops)) > 0)
1110 iter.processed = dax_zero_iter(&iter, did_zero);
1113 EXPORT_SYMBOL_GPL(dax_zero_range);
1115 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1116 const struct iomap_ops *ops)
1118 unsigned int blocksize = i_blocksize(inode);
1119 unsigned int off = pos & (blocksize - 1);
1121 /* Block boundary? Nothing to do */
1124 return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1126 EXPORT_SYMBOL_GPL(dax_truncate_page);
1128 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1129 struct iov_iter *iter)
1131 const struct iomap *iomap = &iomi->iomap;
1132 loff_t length = iomap_length(iomi);
1133 loff_t pos = iomi->pos;
1134 struct dax_device *dax_dev = iomap->dax_dev;
1135 loff_t end = pos + length, done = 0;
1140 if (iov_iter_rw(iter) == READ) {
1141 end = min(end, i_size_read(iomi->inode));
1145 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1146 return iov_iter_zero(min(length, end - pos), iter);
1149 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1153 * Write can allocate block for an area which has a hole page mapped
1154 * into page tables. We have to tear down these mappings so that data
1155 * written by write(2) is visible in mmap.
1157 if (iomap->flags & IOMAP_F_NEW) {
1158 invalidate_inode_pages2_range(iomi->inode->i_mapping,
1160 (end - 1) >> PAGE_SHIFT);
1163 id = dax_read_lock();
1165 unsigned offset = pos & (PAGE_SIZE - 1);
1166 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1167 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1169 bool recovery = false;
1172 if (fatal_signal_pending(current)) {
1177 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1178 DAX_ACCESS, &kaddr, NULL);
1179 if (map_len == -EIO && iov_iter_rw(iter) == WRITE) {
1180 map_len = dax_direct_access(dax_dev, pgoff,
1181 PHYS_PFN(size), DAX_RECOVERY_WRITE,
1191 map_len = PFN_PHYS(map_len);
1194 if (map_len > end - pos)
1195 map_len = end - pos;
1198 xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1200 else if (iov_iter_rw(iter) == WRITE)
1201 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1204 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1216 dax_read_unlock(id);
1218 return done ? done : ret;
1222 * dax_iomap_rw - Perform I/O to a DAX file
1223 * @iocb: The control block for this I/O
1224 * @iter: The addresses to do I/O from or to
1225 * @ops: iomap ops passed from the file system
1227 * This function performs read and write operations to directly mapped
1228 * persistent memory. The callers needs to take care of read/write exclusion
1229 * and evicting any page cache pages in the region under I/O.
1232 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1233 const struct iomap_ops *ops)
1235 struct iomap_iter iomi = {
1236 .inode = iocb->ki_filp->f_mapping->host,
1237 .pos = iocb->ki_pos,
1238 .len = iov_iter_count(iter),
1244 if (iov_iter_rw(iter) == WRITE) {
1245 lockdep_assert_held_write(&iomi.inode->i_rwsem);
1246 iomi.flags |= IOMAP_WRITE;
1248 lockdep_assert_held(&iomi.inode->i_rwsem);
1251 if (iocb->ki_flags & IOCB_NOWAIT)
1252 iomi.flags |= IOMAP_NOWAIT;
1254 while ((ret = iomap_iter(&iomi, ops)) > 0)
1255 iomi.processed = dax_iomap_iter(&iomi, iter);
1257 done = iomi.pos - iocb->ki_pos;
1258 iocb->ki_pos = iomi.pos;
1259 return done ? done : ret;
1261 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1263 static vm_fault_t dax_fault_return(int error)
1266 return VM_FAULT_NOPAGE;
1267 return vmf_error(error);
1271 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1272 * flushed on write-faults (non-cow), but not read-faults.
1274 static bool dax_fault_is_synchronous(unsigned long flags,
1275 struct vm_area_struct *vma, const struct iomap *iomap)
1277 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1278 && (iomap->flags & IOMAP_F_DIRTY);
1282 * When handling a synchronous page fault and the inode need a fsync, we can
1283 * insert the PTE/PMD into page tables only after that fsync happened. Skip
1284 * insertion for now and return the pfn so that caller can insert it after the
1287 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1289 if (WARN_ON_ONCE(!pfnp))
1290 return VM_FAULT_SIGBUS;
1292 return VM_FAULT_NEEDDSYNC;
1295 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1296 const struct iomap_iter *iter)
1301 switch (iter->iomap.type) {
1303 case IOMAP_UNWRITTEN:
1304 clear_user_highpage(vmf->cow_page, vmf->address);
1307 error = copy_cow_page_dax(vmf, iter);
1316 return dax_fault_return(error);
1318 __SetPageUptodate(vmf->cow_page);
1319 ret = finish_fault(vmf);
1321 return VM_FAULT_DONE_COW;
1326 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1327 * @vmf: vm fault instance
1329 * @pfnp: pfn to be returned
1330 * @xas: the dax mapping tree of a file
1331 * @entry: an unlocked dax entry to be inserted
1332 * @pmd: distinguish whether it is a pmd fault
1334 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1335 const struct iomap_iter *iter, pfn_t *pfnp,
1336 struct xa_state *xas, void **entry, bool pmd)
1338 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1339 const struct iomap *iomap = &iter->iomap;
1340 size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1341 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1342 bool write = vmf->flags & FAULT_FLAG_WRITE;
1343 bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap);
1344 unsigned long entry_flags = pmd ? DAX_PMD : 0;
1348 if (!pmd && vmf->cow_page)
1349 return dax_fault_cow_page(vmf, iter);
1351 /* if we are reading UNWRITTEN and HOLE, return a hole. */
1353 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1355 return dax_load_hole(xas, mapping, entry, vmf);
1356 return dax_pmd_load_hole(xas, vmf, iomap, entry);
1359 if (iomap->type != IOMAP_MAPPED) {
1361 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1364 err = dax_iomap_pfn(&iter->iomap, pos, size, &pfn);
1366 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1368 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags,
1372 return dax_fault_synchronous_pfnp(pfnp, pfn);
1374 /* insert PMD pfn */
1376 return vmf_insert_pfn_pmd(vmf, pfn, write);
1378 /* insert PTE pfn */
1380 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1381 return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1384 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1385 int *iomap_errp, const struct iomap_ops *ops)
1387 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1388 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1389 struct iomap_iter iter = {
1390 .inode = mapping->host,
1391 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT,
1393 .flags = IOMAP_DAX | IOMAP_FAULT,
1399 trace_dax_pte_fault(iter.inode, vmf, ret);
1401 * Check whether offset isn't beyond end of file now. Caller is supposed
1402 * to hold locks serializing us with truncate / punch hole so this is
1405 if (iter.pos >= i_size_read(iter.inode)) {
1406 ret = VM_FAULT_SIGBUS;
1410 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1411 iter.flags |= IOMAP_WRITE;
1413 entry = grab_mapping_entry(&xas, mapping, 0);
1414 if (xa_is_internal(entry)) {
1415 ret = xa_to_internal(entry);
1420 * It is possible, particularly with mixed reads & writes to private
1421 * mappings, that we have raced with a PMD fault that overlaps with
1422 * the PTE we need to set up. If so just return and the fault will be
1425 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1426 ret = VM_FAULT_NOPAGE;
1430 while ((error = iomap_iter(&iter, ops)) > 0) {
1431 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1432 iter.processed = -EIO; /* fs corruption? */
1436 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1437 if (ret != VM_FAULT_SIGBUS &&
1438 (iter.iomap.flags & IOMAP_F_NEW)) {
1439 count_vm_event(PGMAJFAULT);
1440 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1441 ret |= VM_FAULT_MAJOR;
1444 if (!(ret & VM_FAULT_ERROR))
1445 iter.processed = PAGE_SIZE;
1449 *iomap_errp = error;
1451 ret = dax_fault_return(error);
1454 dax_unlock_entry(&xas, entry);
1456 trace_dax_pte_fault_done(iter.inode, vmf, ret);
1460 #ifdef CONFIG_FS_DAX_PMD
1461 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1464 unsigned long pmd_addr = vmf->address & PMD_MASK;
1465 bool write = vmf->flags & FAULT_FLAG_WRITE;
1468 * Make sure that the faulting address's PMD offset (color) matches
1469 * the PMD offset from the start of the file. This is necessary so
1470 * that a PMD range in the page table overlaps exactly with a PMD
1471 * range in the page cache.
1473 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1474 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1477 /* Fall back to PTEs if we're going to COW */
1478 if (write && !(vmf->vma->vm_flags & VM_SHARED))
1481 /* If the PMD would extend outside the VMA */
1482 if (pmd_addr < vmf->vma->vm_start)
1484 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1487 /* If the PMD would extend beyond the file size */
1488 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1494 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1495 const struct iomap_ops *ops)
1497 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1498 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1499 struct iomap_iter iter = {
1500 .inode = mapping->host,
1502 .flags = IOMAP_DAX | IOMAP_FAULT,
1504 vm_fault_t ret = VM_FAULT_FALLBACK;
1509 if (vmf->flags & FAULT_FLAG_WRITE)
1510 iter.flags |= IOMAP_WRITE;
1513 * Check whether offset isn't beyond end of file now. Caller is
1514 * supposed to hold locks serializing us with truncate / punch hole so
1515 * this is a reliable test.
1517 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1519 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1521 if (xas.xa_index >= max_pgoff) {
1522 ret = VM_FAULT_SIGBUS;
1526 if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1530 * grab_mapping_entry() will make sure we get an empty PMD entry,
1531 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1532 * entry is already in the array, for instance), it will return
1533 * VM_FAULT_FALLBACK.
1535 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1536 if (xa_is_internal(entry)) {
1537 ret = xa_to_internal(entry);
1542 * It is possible, particularly with mixed reads & writes to private
1543 * mappings, that we have raced with a PTE fault that overlaps with
1544 * the PMD we need to set up. If so just return and the fault will be
1547 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1548 !pmd_devmap(*vmf->pmd)) {
1553 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1554 while ((error = iomap_iter(&iter, ops)) > 0) {
1555 if (iomap_length(&iter) < PMD_SIZE)
1556 continue; /* actually breaks out of the loop */
1558 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1559 if (ret != VM_FAULT_FALLBACK)
1560 iter.processed = PMD_SIZE;
1564 dax_unlock_entry(&xas, entry);
1566 if (ret == VM_FAULT_FALLBACK) {
1567 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1568 count_vm_event(THP_FAULT_FALLBACK);
1571 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1575 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1576 const struct iomap_ops *ops)
1578 return VM_FAULT_FALLBACK;
1580 #endif /* CONFIG_FS_DAX_PMD */
1583 * dax_iomap_fault - handle a page fault on a DAX file
1584 * @vmf: The description of the fault
1585 * @pe_size: Size of the page to fault in
1586 * @pfnp: PFN to insert for synchronous faults if fsync is required
1587 * @iomap_errp: Storage for detailed error code in case of error
1588 * @ops: Iomap ops passed from the file system
1590 * When a page fault occurs, filesystems may call this helper in
1591 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1592 * has done all the necessary locking for page fault to proceed
1595 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1596 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1600 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1602 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1604 return VM_FAULT_FALLBACK;
1607 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1610 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1611 * @vmf: The description of the fault
1612 * @pfn: PFN to insert
1613 * @order: Order of entry to insert.
1615 * This function inserts a writeable PTE or PMD entry into the page tables
1616 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1619 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1621 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1622 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1627 entry = get_unlocked_entry(&xas, order);
1628 /* Did we race with someone splitting entry or so? */
1629 if (!entry || dax_is_conflict(entry) ||
1630 (order == 0 && !dax_is_pte_entry(entry))) {
1631 put_unlocked_entry(&xas, entry, WAKE_NEXT);
1632 xas_unlock_irq(&xas);
1633 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1635 return VM_FAULT_NOPAGE;
1637 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1638 dax_lock_entry(&xas, entry);
1639 xas_unlock_irq(&xas);
1641 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1642 #ifdef CONFIG_FS_DAX_PMD
1643 else if (order == PMD_ORDER)
1644 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1647 ret = VM_FAULT_FALLBACK;
1648 dax_unlock_entry(&xas, entry);
1649 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1654 * dax_finish_sync_fault - finish synchronous page fault
1655 * @vmf: The description of the fault
1656 * @pe_size: Size of entry to be inserted
1657 * @pfn: PFN to insert
1659 * This function ensures that the file range touched by the page fault is
1660 * stored persistently on the media and handles inserting of appropriate page
1663 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1664 enum page_entry_size pe_size, pfn_t pfn)
1667 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1668 unsigned int order = pe_order(pe_size);
1669 size_t len = PAGE_SIZE << order;
1671 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1673 return VM_FAULT_SIGBUS;
1674 return dax_insert_pfn_mkwrite(vmf, pfn, order);
1676 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);