1 // SPDX-License-Identifier: GPL-2.0-only
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
14 #include <linux/highmem.h>
15 #include <linux/memcontrol.h>
17 #include <linux/mutex.h>
18 #include <linux/pagevec.h>
19 #include <linux/sched.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uio.h>
22 #include <linux/vmstat.h>
23 #include <linux/pfn_t.h>
24 #include <linux/sizes.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/iomap.h>
27 #include <linux/rmap.h>
28 #include <asm/pgalloc.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
35 if (pe_size == PE_SIZE_PTE)
36 return PAGE_SHIFT - PAGE_SHIFT;
37 if (pe_size == PE_SIZE_PMD)
38 return PMD_SHIFT - PAGE_SHIFT;
39 if (pe_size == PE_SIZE_PUD)
40 return PUD_SHIFT - PAGE_SHIFT;
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
48 /* The 'colour' (ie low bits) within a PMD of a page offset. */
49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
52 /* The order of a PMD entry */
53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
57 static int __init init_dax_wait_table(void)
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
65 fs_initcall(init_dax_wait_table);
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
78 #define DAX_LOCKED (1UL << 0)
79 #define DAX_PMD (1UL << 1)
80 #define DAX_ZERO_PAGE (1UL << 2)
81 #define DAX_EMPTY (1UL << 3)
83 static unsigned long dax_to_pfn(void *entry)
85 return xa_to_value(entry) >> DAX_SHIFT;
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
93 static bool dax_is_locked(void *entry)
95 return xa_to_value(entry) & DAX_LOCKED;
98 static unsigned int dax_entry_order(void *entry)
100 if (xa_to_value(entry) & DAX_PMD)
105 static unsigned long dax_is_pmd_entry(void *entry)
107 return xa_to_value(entry) & DAX_PMD;
110 static bool dax_is_pte_entry(void *entry)
112 return !(xa_to_value(entry) & DAX_PMD);
115 static int dax_is_zero_entry(void *entry)
117 return xa_to_value(entry) & DAX_ZERO_PAGE;
120 static int dax_is_empty_entry(void *entry)
122 return xa_to_value(entry) & DAX_EMPTY;
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
129 static bool dax_is_conflict(void *entry)
131 return entry == XA_RETRY_ENTRY;
135 * DAX page cache entry locking
137 struct exceptional_entry_key {
142 struct wait_exceptional_entry_queue {
143 wait_queue_entry_t wait;
144 struct exceptional_entry_key key;
148 * enum dax_wake_mode: waitqueue wakeup behaviour
149 * @WAKE_ALL: wake all waiters in the waitqueue
150 * @WAKE_NEXT: wake only the first waiter in the waitqueue
157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158 void *entry, struct exceptional_entry_key *key)
161 unsigned long index = xas->xa_index;
164 * If 'entry' is a PMD, align the 'index' that we use for the wait
165 * queue to the start of that PMD. This ensures that all offsets in
166 * the range covered by the PMD map to the same bit lock.
168 if (dax_is_pmd_entry(entry))
169 index &= ~PG_PMD_COLOUR;
171 key->entry_start = index;
173 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174 return wait_table + hash;
177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178 unsigned int mode, int sync, void *keyp)
180 struct exceptional_entry_key *key = keyp;
181 struct wait_exceptional_entry_queue *ewait =
182 container_of(wait, struct wait_exceptional_entry_queue, wait);
184 if (key->xa != ewait->key.xa ||
185 key->entry_start != ewait->key.entry_start)
187 return autoremove_wake_function(wait, mode, sync, NULL);
191 * @entry may no longer be the entry at the index in the mapping.
192 * The important information it's conveying is whether the entry at
193 * this index used to be a PMD entry.
195 static void dax_wake_entry(struct xa_state *xas, void *entry,
196 enum dax_wake_mode mode)
198 struct exceptional_entry_key key;
199 wait_queue_head_t *wq;
201 wq = dax_entry_waitqueue(xas, entry, &key);
204 * Checking for locked entry and prepare_to_wait_exclusive() happens
205 * under the i_pages lock, ditto for entry handling in our callers.
206 * So at this point all tasks that could have seen our entry locked
207 * must be in the waitqueue and the following check will see them.
209 if (waitqueue_active(wq))
210 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
214 * Look up entry in page cache, wait for it to become unlocked if it
215 * is a DAX entry and return it. The caller must subsequently call
216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217 * if it did. The entry returned may have a larger order than @order.
218 * If @order is larger than the order of the entry found in i_pages, this
219 * function returns a dax_is_conflict entry.
221 * Must be called with the i_pages lock held.
223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
226 struct wait_exceptional_entry_queue ewait;
227 wait_queue_head_t *wq;
229 init_wait(&ewait.wait);
230 ewait.wait.func = wake_exceptional_entry_func;
233 entry = xas_find_conflict(xas);
234 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
236 if (dax_entry_order(entry) < order)
237 return XA_RETRY_ENTRY;
238 if (!dax_is_locked(entry))
241 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242 prepare_to_wait_exclusive(wq, &ewait.wait,
243 TASK_UNINTERRUPTIBLE);
247 finish_wait(wq, &ewait.wait);
253 * The only thing keeping the address space around is the i_pages lock
254 * (it's cycled in clear_inode() after removing the entries from i_pages)
255 * After we call xas_unlock_irq(), we cannot touch xas->xa.
257 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
259 struct wait_exceptional_entry_queue ewait;
260 wait_queue_head_t *wq;
262 init_wait(&ewait.wait);
263 ewait.wait.func = wake_exceptional_entry_func;
265 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
267 * Unlike get_unlocked_entry() there is no guarantee that this
268 * path ever successfully retrieves an unlocked entry before an
269 * inode dies. Perform a non-exclusive wait in case this path
270 * never successfully performs its own wake up.
272 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
275 finish_wait(wq, &ewait.wait);
278 static void put_unlocked_entry(struct xa_state *xas, void *entry,
279 enum dax_wake_mode mode)
281 if (entry && !dax_is_conflict(entry))
282 dax_wake_entry(xas, entry, mode);
286 * We used the xa_state to get the entry, but then we locked the entry and
287 * dropped the xa_lock, so we know the xa_state is stale and must be reset
290 static void dax_unlock_entry(struct xa_state *xas, void *entry)
294 BUG_ON(dax_is_locked(entry));
297 old = xas_store(xas, entry);
299 BUG_ON(!dax_is_locked(old));
300 dax_wake_entry(xas, entry, WAKE_NEXT);
304 * Return: The entry stored at this location before it was locked.
306 static void *dax_lock_entry(struct xa_state *xas, void *entry)
308 unsigned long v = xa_to_value(entry);
309 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
312 static unsigned long dax_entry_size(void *entry)
314 if (dax_is_zero_entry(entry))
316 else if (dax_is_empty_entry(entry))
318 else if (dax_is_pmd_entry(entry))
324 static unsigned long dax_end_pfn(void *entry)
326 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
330 * Iterate through all mapped pfns represented by an entry, i.e. skip
331 * 'empty' and 'zero' entries.
333 #define for_each_mapped_pfn(entry, pfn) \
334 for (pfn = dax_to_pfn(entry); \
335 pfn < dax_end_pfn(entry); pfn++)
337 static inline bool dax_page_is_shared(struct page *page)
339 return page->mapping == PAGE_MAPPING_DAX_SHARED;
343 * Set the page->mapping with PAGE_MAPPING_DAX_SHARED flag, increase the
346 static inline void dax_page_share_get(struct page *page)
348 if (page->mapping != PAGE_MAPPING_DAX_SHARED) {
350 * Reset the index if the page was already mapped
355 page->mapping = PAGE_MAPPING_DAX_SHARED;
360 static inline unsigned long dax_page_share_put(struct page *page)
362 return --page->share;
366 * When it is called in dax_insert_entry(), the shared flag will indicate that
367 * whether this entry is shared by multiple files. If so, set the page->mapping
368 * PAGE_MAPPING_DAX_SHARED, and use page->share as refcount.
370 static void dax_associate_entry(void *entry, struct address_space *mapping,
371 struct vm_area_struct *vma, unsigned long address, bool shared)
373 unsigned long size = dax_entry_size(entry), pfn, index;
376 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
379 index = linear_page_index(vma, address & ~(size - 1));
380 for_each_mapped_pfn(entry, pfn) {
381 struct page *page = pfn_to_page(pfn);
384 dax_page_share_get(page);
386 WARN_ON_ONCE(page->mapping);
387 page->mapping = mapping;
388 page->index = index + i++;
393 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
398 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
401 for_each_mapped_pfn(entry, pfn) {
402 struct page *page = pfn_to_page(pfn);
404 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
405 if (dax_page_is_shared(page)) {
406 /* keep the shared flag if this page is still shared */
407 if (dax_page_share_put(page) > 0)
410 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
411 page->mapping = NULL;
416 static struct page *dax_busy_page(void *entry)
420 for_each_mapped_pfn(entry, pfn) {
421 struct page *page = pfn_to_page(pfn);
423 if (page_ref_count(page) > 1)
430 * dax_lock_page - Lock the DAX entry corresponding to a page
431 * @page: The page whose entry we want to lock
433 * Context: Process context.
434 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
437 dax_entry_t dax_lock_page(struct page *page)
439 XA_STATE(xas, NULL, 0);
442 /* Ensure page->mapping isn't freed while we look at it */
445 struct address_space *mapping = READ_ONCE(page->mapping);
448 if (!mapping || !dax_mapping(mapping))
452 * In the device-dax case there's no need to lock, a
453 * struct dev_pagemap pin is sufficient to keep the
454 * inode alive, and we assume we have dev_pagemap pin
455 * otherwise we would not have a valid pfn_to_page()
458 entry = (void *)~0UL;
459 if (S_ISCHR(mapping->host->i_mode))
462 xas.xa = &mapping->i_pages;
464 if (mapping != page->mapping) {
465 xas_unlock_irq(&xas);
468 xas_set(&xas, page->index);
469 entry = xas_load(&xas);
470 if (dax_is_locked(entry)) {
472 wait_entry_unlocked(&xas, entry);
476 dax_lock_entry(&xas, entry);
477 xas_unlock_irq(&xas);
481 return (dax_entry_t)entry;
484 void dax_unlock_page(struct page *page, dax_entry_t cookie)
486 struct address_space *mapping = page->mapping;
487 XA_STATE(xas, &mapping->i_pages, page->index);
489 if (S_ISCHR(mapping->host->i_mode))
492 dax_unlock_entry(&xas, (void *)cookie);
496 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
497 * @mapping: the file's mapping whose entry we want to lock
498 * @index: the offset within this file
499 * @page: output the dax page corresponding to this dax entry
501 * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
502 * could not be locked.
504 dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
507 XA_STATE(xas, NULL, 0);
513 if (!dax_mapping(mapping))
516 xas.xa = &mapping->i_pages;
518 xas_set(&xas, index);
519 entry = xas_load(&xas);
520 if (dax_is_locked(entry)) {
522 wait_entry_unlocked(&xas, entry);
527 dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
529 * Because we are looking for entry from file's mapping
530 * and index, so the entry may not be inserted for now,
531 * or even a zero/empty entry. We don't think this is
532 * an error case. So, return a special value and do
535 entry = (void *)~0UL;
537 *page = pfn_to_page(dax_to_pfn(entry));
538 dax_lock_entry(&xas, entry);
540 xas_unlock_irq(&xas);
544 return (dax_entry_t)entry;
547 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
550 XA_STATE(xas, &mapping->i_pages, index);
555 dax_unlock_entry(&xas, (void *)cookie);
559 * Find page cache entry at given index. If it is a DAX entry, return it
560 * with the entry locked. If the page cache doesn't contain an entry at
561 * that index, add a locked empty entry.
563 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
564 * either return that locked entry or will return VM_FAULT_FALLBACK.
565 * This will happen if there are any PTE entries within the PMD range
566 * that we are requesting.
568 * We always favor PTE entries over PMD entries. There isn't a flow where we
569 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
570 * insertion will fail if it finds any PTE entries already in the tree, and a
571 * PTE insertion will cause an existing PMD entry to be unmapped and
572 * downgraded to PTE entries. This happens for both PMD zero pages as
573 * well as PMD empty entries.
575 * The exception to this downgrade path is for PMD entries that have
576 * real storage backing them. We will leave these real PMD entries in
577 * the tree, and PTE writes will simply dirty the entire PMD entry.
579 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
580 * persistent memory the benefit is doubtful. We can add that later if we can
583 * On error, this function does not return an ERR_PTR. Instead it returns
584 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
585 * overlap with xarray value entries.
587 static void *grab_mapping_entry(struct xa_state *xas,
588 struct address_space *mapping, unsigned int order)
590 unsigned long index = xas->xa_index;
591 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
595 pmd_downgrade = false;
597 entry = get_unlocked_entry(xas, order);
600 if (dax_is_conflict(entry))
602 if (!xa_is_value(entry)) {
603 xas_set_err(xas, -EIO);
608 if (dax_is_pmd_entry(entry) &&
609 (dax_is_zero_entry(entry) ||
610 dax_is_empty_entry(entry))) {
611 pmd_downgrade = true;
618 * Make sure 'entry' remains valid while we drop
621 dax_lock_entry(xas, entry);
624 * Besides huge zero pages the only other thing that gets
625 * downgraded are empty entries which don't need to be
628 if (dax_is_zero_entry(entry)) {
630 unmap_mapping_pages(mapping,
631 xas->xa_index & ~PG_PMD_COLOUR,
637 dax_disassociate_entry(entry, mapping, false);
638 xas_store(xas, NULL); /* undo the PMD join */
639 dax_wake_entry(xas, entry, WAKE_ALL);
640 mapping->nrpages -= PG_PMD_NR;
646 dax_lock_entry(xas, entry);
648 unsigned long flags = DAX_EMPTY;
652 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
653 dax_lock_entry(xas, entry);
656 mapping->nrpages += 1UL << order;
661 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
663 if (xas->xa_node == XA_ERROR(-ENOMEM))
664 return xa_mk_internal(VM_FAULT_OOM);
666 return xa_mk_internal(VM_FAULT_SIGBUS);
670 return xa_mk_internal(VM_FAULT_FALLBACK);
674 * dax_layout_busy_page_range - find first pinned page in @mapping
675 * @mapping: address space to scan for a page with ref count > 1
676 * @start: Starting offset. Page containing 'start' is included.
677 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
678 * pages from 'start' till the end of file are included.
680 * DAX requires ZONE_DEVICE mapped pages. These pages are never
681 * 'onlined' to the page allocator so they are considered idle when
682 * page->count == 1. A filesystem uses this interface to determine if
683 * any page in the mapping is busy, i.e. for DMA, or other
684 * get_user_pages() usages.
686 * It is expected that the filesystem is holding locks to block the
687 * establishment of new mappings in this address_space. I.e. it expects
688 * to be able to run unmap_mapping_range() and subsequently not race
689 * mapping_mapped() becoming true.
691 struct page *dax_layout_busy_page_range(struct address_space *mapping,
692 loff_t start, loff_t end)
695 unsigned int scanned = 0;
696 struct page *page = NULL;
697 pgoff_t start_idx = start >> PAGE_SHIFT;
699 XA_STATE(xas, &mapping->i_pages, start_idx);
702 * In the 'limited' case get_user_pages() for dax is disabled.
704 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
707 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
710 /* If end == LLONG_MAX, all pages from start to till end of file */
711 if (end == LLONG_MAX)
714 end_idx = end >> PAGE_SHIFT;
716 * If we race get_user_pages_fast() here either we'll see the
717 * elevated page count in the iteration and wait, or
718 * get_user_pages_fast() will see that the page it took a reference
719 * against is no longer mapped in the page tables and bail to the
720 * get_user_pages() slow path. The slow path is protected by
721 * pte_lock() and pmd_lock(). New references are not taken without
722 * holding those locks, and unmap_mapping_pages() will not zero the
723 * pte or pmd without holding the respective lock, so we are
724 * guaranteed to either see new references or prevent new
725 * references from being established.
727 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
730 xas_for_each(&xas, entry, end_idx) {
731 if (WARN_ON_ONCE(!xa_is_value(entry)))
733 if (unlikely(dax_is_locked(entry)))
734 entry = get_unlocked_entry(&xas, 0);
736 page = dax_busy_page(entry);
737 put_unlocked_entry(&xas, entry, WAKE_NEXT);
740 if (++scanned % XA_CHECK_SCHED)
744 xas_unlock_irq(&xas);
748 xas_unlock_irq(&xas);
751 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
753 struct page *dax_layout_busy_page(struct address_space *mapping)
755 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
757 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
759 static int __dax_invalidate_entry(struct address_space *mapping,
760 pgoff_t index, bool trunc)
762 XA_STATE(xas, &mapping->i_pages, index);
767 entry = get_unlocked_entry(&xas, 0);
768 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
771 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
772 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
774 dax_disassociate_entry(entry, mapping, trunc);
775 xas_store(&xas, NULL);
776 mapping->nrpages -= 1UL << dax_entry_order(entry);
779 put_unlocked_entry(&xas, entry, WAKE_ALL);
780 xas_unlock_irq(&xas);
784 static int __dax_clear_dirty_range(struct address_space *mapping,
785 pgoff_t start, pgoff_t end)
787 XA_STATE(xas, &mapping->i_pages, start);
788 unsigned int scanned = 0;
792 xas_for_each(&xas, entry, end) {
793 entry = get_unlocked_entry(&xas, 0);
794 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
795 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
796 put_unlocked_entry(&xas, entry, WAKE_NEXT);
798 if (++scanned % XA_CHECK_SCHED)
802 xas_unlock_irq(&xas);
806 xas_unlock_irq(&xas);
812 * Delete DAX entry at @index from @mapping. Wait for it
813 * to be unlocked before deleting it.
815 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
817 int ret = __dax_invalidate_entry(mapping, index, true);
820 * This gets called from truncate / punch_hole path. As such, the caller
821 * must hold locks protecting against concurrent modifications of the
822 * page cache (usually fs-private i_mmap_sem for writing). Since the
823 * caller has seen a DAX entry for this index, we better find it
824 * at that index as well...
831 * Invalidate DAX entry if it is clean.
833 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
836 return __dax_invalidate_entry(mapping, index, false);
839 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
841 return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
844 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
846 pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
851 id = dax_read_lock();
852 rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
858 vto = kmap_atomic(vmf->cow_page);
859 copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
866 * MAP_SYNC on a dax mapping guarantees dirty metadata is
867 * flushed on write-faults (non-cow), but not read-faults.
869 static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
870 struct vm_area_struct *vma)
872 return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
873 (iter->iomap.flags & IOMAP_F_DIRTY);
877 * By this point grab_mapping_entry() has ensured that we have a locked entry
878 * of the appropriate size so we don't have to worry about downgrading PMDs to
879 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
880 * already in the tree, we will skip the insertion and just dirty the PMD as
883 static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
884 const struct iomap_iter *iter, void *entry, pfn_t pfn,
887 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
888 void *new_entry = dax_make_entry(pfn, flags);
889 bool write = iter->flags & IOMAP_WRITE;
890 bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma);
891 bool shared = iter->iomap.flags & IOMAP_F_SHARED;
894 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
896 if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
897 unsigned long index = xas->xa_index;
898 /* we are replacing a zero page with block mapping */
899 if (dax_is_pmd_entry(entry))
900 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
903 unmap_mapping_pages(mapping, index, 1, false);
908 if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
911 dax_disassociate_entry(entry, mapping, false);
912 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address,
915 * Only swap our new entry into the page cache if the current
916 * entry is a zero page or an empty entry. If a normal PTE or
917 * PMD entry is already in the cache, we leave it alone. This
918 * means that if we are trying to insert a PTE and the
919 * existing entry is a PMD, we will just leave the PMD in the
920 * tree and dirty it if necessary.
922 old = dax_lock_entry(xas, new_entry);
923 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
927 xas_load(xas); /* Walk the xa_state */
931 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
934 xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
940 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
941 struct address_space *mapping, void *entry)
943 unsigned long pfn, index, count, end;
945 struct vm_area_struct *vma;
948 * A page got tagged dirty in DAX mapping? Something is seriously
951 if (WARN_ON(!xa_is_value(entry)))
954 if (unlikely(dax_is_locked(entry))) {
955 void *old_entry = entry;
957 entry = get_unlocked_entry(xas, 0);
959 /* Entry got punched out / reallocated? */
960 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
963 * Entry got reallocated elsewhere? No need to writeback.
964 * We have to compare pfns as we must not bail out due to
965 * difference in lockbit or entry type.
967 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
969 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
970 dax_is_zero_entry(entry))) {
975 /* Another fsync thread may have already done this entry */
976 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
980 /* Lock the entry to serialize with page faults */
981 dax_lock_entry(xas, entry);
984 * We can clear the tag now but we have to be careful so that concurrent
985 * dax_writeback_one() calls for the same index cannot finish before we
986 * actually flush the caches. This is achieved as the calls will look
987 * at the entry only under the i_pages lock and once they do that
988 * they will see the entry locked and wait for it to unlock.
990 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
994 * If dax_writeback_mapping_range() was given a wbc->range_start
995 * in the middle of a PMD, the 'index' we use needs to be
996 * aligned to the start of the PMD.
997 * This allows us to flush for PMD_SIZE and not have to worry about
998 * partial PMD writebacks.
1000 pfn = dax_to_pfn(entry);
1001 count = 1UL << dax_entry_order(entry);
1002 index = xas->xa_index & ~(count - 1);
1003 end = index + count - 1;
1005 /* Walk all mappings of a given index of a file and writeprotect them */
1006 i_mmap_lock_read(mapping);
1007 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
1008 pfn_mkclean_range(pfn, count, index, vma);
1011 i_mmap_unlock_read(mapping);
1013 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
1015 * After we have flushed the cache, we can clear the dirty tag. There
1016 * cannot be new dirty data in the pfn after the flush has completed as
1017 * the pfn mappings are writeprotected and fault waits for mapping
1022 xas_store(xas, entry);
1023 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
1024 dax_wake_entry(xas, entry, WAKE_NEXT);
1026 trace_dax_writeback_one(mapping->host, index, count);
1030 put_unlocked_entry(xas, entry, WAKE_NEXT);
1035 * Flush the mapping to the persistent domain within the byte range of [start,
1036 * end]. This is required by data integrity operations to ensure file data is
1037 * on persistent storage prior to completion of the operation.
1039 int dax_writeback_mapping_range(struct address_space *mapping,
1040 struct dax_device *dax_dev, struct writeback_control *wbc)
1042 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
1043 struct inode *inode = mapping->host;
1044 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
1047 unsigned int scanned = 0;
1049 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1052 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
1055 trace_dax_writeback_range(inode, xas.xa_index, end_index);
1057 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
1060 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1061 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1063 mapping_set_error(mapping, ret);
1066 if (++scanned % XA_CHECK_SCHED)
1070 xas_unlock_irq(&xas);
1074 xas_unlock_irq(&xas);
1075 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1078 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1080 static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1081 size_t size, void **kaddr, pfn_t *pfnp)
1083 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1087 id = dax_read_lock();
1088 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1089 DAX_ACCESS, kaddr, pfnp);
1095 goto out_check_addr;
1097 if (PFN_PHYS(length) < size)
1099 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1101 /* For larger pages we need devmap */
1102 if (length > 1 && !pfn_t_devmap(*pfnp))
1112 dax_read_unlock(id);
1117 * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page
1118 * by copying the data before and after the range to be written.
1119 * @pos: address to do copy from.
1120 * @length: size of copy operation.
1121 * @align_size: aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1122 * @srcmap: iomap srcmap
1123 * @daddr: destination address to copy to.
1125 * This can be called from two places. Either during DAX write fault (page
1126 * aligned), to copy the length size data to daddr. Or, while doing normal DAX
1127 * write operation, dax_iomap_iter() might call this to do the copy of either
1128 * start or end unaligned address. In the latter case the rest of the copy of
1129 * aligned ranges is taken care by dax_iomap_iter() itself.
1130 * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the
1131 * area to make sure no old data remains.
1133 static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size,
1134 const struct iomap *srcmap, void *daddr)
1136 loff_t head_off = pos & (align_size - 1);
1137 size_t size = ALIGN(head_off + length, align_size);
1138 loff_t end = pos + length;
1139 loff_t pg_end = round_up(end, align_size);
1140 /* copy_all is usually in page fault case */
1141 bool copy_all = head_off == 0 && end == pg_end;
1142 /* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */
1143 bool zero_edge = srcmap->flags & IOMAP_F_SHARED ||
1144 srcmap->type == IOMAP_UNWRITTEN;
1149 ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1156 memset(daddr, 0, size);
1158 ret = copy_mc_to_kernel(daddr, saddr, length);
1162 /* Copy the head part of the range */
1165 memset(daddr, 0, head_off);
1167 ret = copy_mc_to_kernel(daddr, saddr, head_off);
1173 /* Copy the tail part of the range */
1175 loff_t tail_off = head_off + length;
1176 loff_t tail_len = pg_end - end;
1179 memset(daddr + tail_off, 0, tail_len);
1181 ret = copy_mc_to_kernel(daddr + tail_off,
1182 saddr + tail_off, tail_len);
1189 dax_flush(srcmap->dax_dev, daddr, size);
1190 return ret ? -EIO : 0;
1194 * The user has performed a load from a hole in the file. Allocating a new
1195 * page in the file would cause excessive storage usage for workloads with
1196 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1197 * If this page is ever written to we will re-fault and change the mapping to
1198 * point to real DAX storage instead.
1200 static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1201 const struct iomap_iter *iter, void **entry)
1203 struct inode *inode = iter->inode;
1204 unsigned long vaddr = vmf->address;
1205 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1208 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
1210 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1211 trace_dax_load_hole(inode, vmf, ret);
1215 #ifdef CONFIG_FS_DAX_PMD
1216 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1217 const struct iomap_iter *iter, void **entry)
1219 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1220 unsigned long pmd_addr = vmf->address & PMD_MASK;
1221 struct vm_area_struct *vma = vmf->vma;
1222 struct inode *inode = mapping->host;
1223 pgtable_t pgtable = NULL;
1224 struct page *zero_page;
1229 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1231 if (unlikely(!zero_page))
1234 pfn = page_to_pfn_t(zero_page);
1235 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
1236 DAX_PMD | DAX_ZERO_PAGE);
1238 if (arch_needs_pgtable_deposit()) {
1239 pgtable = pte_alloc_one(vma->vm_mm);
1241 return VM_FAULT_OOM;
1244 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1245 if (!pmd_none(*(vmf->pmd))) {
1251 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1252 mm_inc_nr_ptes(vma->vm_mm);
1254 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1255 pmd_entry = pmd_mkhuge(pmd_entry);
1256 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1258 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1259 return VM_FAULT_NOPAGE;
1263 pte_free(vma->vm_mm, pgtable);
1264 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1265 return VM_FAULT_FALLBACK;
1268 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1269 const struct iomap_iter *iter, void **entry)
1271 return VM_FAULT_FALLBACK;
1273 #endif /* CONFIG_FS_DAX_PMD */
1275 static s64 dax_unshare_iter(struct iomap_iter *iter)
1277 struct iomap *iomap = &iter->iomap;
1278 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1279 loff_t pos = iter->pos;
1280 loff_t length = iomap_length(iter);
1283 void *daddr = NULL, *saddr = NULL;
1285 /* don't bother with blocks that are not shared to start with */
1286 if (!(iomap->flags & IOMAP_F_SHARED))
1289 id = dax_read_lock();
1290 ret = dax_iomap_direct_access(iomap, pos, length, &daddr, NULL);
1294 /* zero the distance if srcmap is HOLE or UNWRITTEN */
1295 if (srcmap->flags & IOMAP_F_SHARED || srcmap->type == IOMAP_UNWRITTEN) {
1296 memset(daddr, 0, length);
1297 dax_flush(iomap->dax_dev, daddr, length);
1302 ret = dax_iomap_direct_access(srcmap, pos, length, &saddr, NULL);
1306 if (copy_mc_to_kernel(daddr, saddr, length) == 0)
1312 dax_read_unlock(id);
1316 int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1317 const struct iomap_ops *ops)
1319 struct iomap_iter iter = {
1323 .flags = IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX,
1327 while ((ret = iomap_iter(&iter, ops)) > 0)
1328 iter.processed = dax_unshare_iter(&iter);
1331 EXPORT_SYMBOL_GPL(dax_file_unshare);
1333 static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
1335 const struct iomap *iomap = &iter->iomap;
1336 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1337 unsigned offset = offset_in_page(pos);
1338 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1342 ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
1346 memset(kaddr + offset, 0, size);
1347 if (iomap->flags & IOMAP_F_SHARED)
1348 ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap,
1351 dax_flush(iomap->dax_dev, kaddr + offset, size);
1355 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1357 const struct iomap *iomap = &iter->iomap;
1358 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1359 loff_t pos = iter->pos;
1360 u64 length = iomap_length(iter);
1363 /* already zeroed? we're done. */
1364 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1368 * invalidate the pages whose sharing state is to be changed
1371 if (iomap->flags & IOMAP_F_SHARED)
1372 invalidate_inode_pages2_range(iter->inode->i_mapping,
1374 (pos + length - 1) >> PAGE_SHIFT);
1377 unsigned offset = offset_in_page(pos);
1378 unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1379 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1383 id = dax_read_lock();
1384 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1385 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1387 rc = dax_memzero(iter, pos, size);
1388 dax_read_unlock(id);
1395 } while (length > 0);
1402 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1403 const struct iomap_ops *ops)
1405 struct iomap_iter iter = {
1409 .flags = IOMAP_DAX | IOMAP_ZERO,
1413 while ((ret = iomap_iter(&iter, ops)) > 0)
1414 iter.processed = dax_zero_iter(&iter, did_zero);
1417 EXPORT_SYMBOL_GPL(dax_zero_range);
1419 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1420 const struct iomap_ops *ops)
1422 unsigned int blocksize = i_blocksize(inode);
1423 unsigned int off = pos & (blocksize - 1);
1425 /* Block boundary? Nothing to do */
1428 return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1430 EXPORT_SYMBOL_GPL(dax_truncate_page);
1432 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1433 struct iov_iter *iter)
1435 const struct iomap *iomap = &iomi->iomap;
1436 const struct iomap *srcmap = iomap_iter_srcmap(iomi);
1437 loff_t length = iomap_length(iomi);
1438 loff_t pos = iomi->pos;
1439 struct dax_device *dax_dev = iomap->dax_dev;
1440 loff_t end = pos + length, done = 0;
1441 bool write = iov_iter_rw(iter) == WRITE;
1442 bool cow = write && iomap->flags & IOMAP_F_SHARED;
1448 end = min(end, i_size_read(iomi->inode));
1452 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1453 return iov_iter_zero(min(length, end - pos), iter);
1457 * In DAX mode, enforce either pure overwrites of written extents, or
1458 * writes to unwritten extents as part of a copy-on-write operation.
1460 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1461 !(iomap->flags & IOMAP_F_SHARED)))
1465 * Write can allocate block for an area which has a hole page mapped
1466 * into page tables. We have to tear down these mappings so that data
1467 * written by write(2) is visible in mmap.
1469 if (iomap->flags & IOMAP_F_NEW || cow) {
1471 * Filesystem allows CoW on non-shared extents. The src extents
1472 * may have been mmapped with dirty mark before. To be able to
1473 * invalidate its dax entries, we need to clear the dirty mark
1477 __dax_clear_dirty_range(iomi->inode->i_mapping,
1479 (end - 1) >> PAGE_SHIFT);
1480 invalidate_inode_pages2_range(iomi->inode->i_mapping,
1482 (end - 1) >> PAGE_SHIFT);
1485 id = dax_read_lock();
1487 unsigned offset = pos & (PAGE_SIZE - 1);
1488 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1489 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1491 bool recovery = false;
1494 if (fatal_signal_pending(current)) {
1499 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1500 DAX_ACCESS, &kaddr, NULL);
1501 if (map_len == -EIO && iov_iter_rw(iter) == WRITE) {
1502 map_len = dax_direct_access(dax_dev, pgoff,
1503 PHYS_PFN(size), DAX_RECOVERY_WRITE,
1514 ret = dax_iomap_copy_around(pos, length, PAGE_SIZE,
1520 map_len = PFN_PHYS(map_len);
1523 if (map_len > end - pos)
1524 map_len = end - pos;
1527 xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1530 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1533 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1545 dax_read_unlock(id);
1547 return done ? done : ret;
1551 * dax_iomap_rw - Perform I/O to a DAX file
1552 * @iocb: The control block for this I/O
1553 * @iter: The addresses to do I/O from or to
1554 * @ops: iomap ops passed from the file system
1556 * This function performs read and write operations to directly mapped
1557 * persistent memory. The callers needs to take care of read/write exclusion
1558 * and evicting any page cache pages in the region under I/O.
1561 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1562 const struct iomap_ops *ops)
1564 struct iomap_iter iomi = {
1565 .inode = iocb->ki_filp->f_mapping->host,
1566 .pos = iocb->ki_pos,
1567 .len = iov_iter_count(iter),
1576 if (iov_iter_rw(iter) == WRITE) {
1577 lockdep_assert_held_write(&iomi.inode->i_rwsem);
1578 iomi.flags |= IOMAP_WRITE;
1580 lockdep_assert_held(&iomi.inode->i_rwsem);
1583 if (iocb->ki_flags & IOCB_NOWAIT)
1584 iomi.flags |= IOMAP_NOWAIT;
1586 while ((ret = iomap_iter(&iomi, ops)) > 0)
1587 iomi.processed = dax_iomap_iter(&iomi, iter);
1589 done = iomi.pos - iocb->ki_pos;
1590 iocb->ki_pos = iomi.pos;
1591 return done ? done : ret;
1593 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1595 static vm_fault_t dax_fault_return(int error)
1598 return VM_FAULT_NOPAGE;
1599 return vmf_error(error);
1603 * When handling a synchronous page fault and the inode need a fsync, we can
1604 * insert the PTE/PMD into page tables only after that fsync happened. Skip
1605 * insertion for now and return the pfn so that caller can insert it after the
1608 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1610 if (WARN_ON_ONCE(!pfnp))
1611 return VM_FAULT_SIGBUS;
1613 return VM_FAULT_NEEDDSYNC;
1616 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1617 const struct iomap_iter *iter)
1622 switch (iter->iomap.type) {
1624 case IOMAP_UNWRITTEN:
1625 clear_user_highpage(vmf->cow_page, vmf->address);
1628 error = copy_cow_page_dax(vmf, iter);
1637 return dax_fault_return(error);
1639 __SetPageUptodate(vmf->cow_page);
1640 ret = finish_fault(vmf);
1642 return VM_FAULT_DONE_COW;
1647 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1648 * @vmf: vm fault instance
1650 * @pfnp: pfn to be returned
1651 * @xas: the dax mapping tree of a file
1652 * @entry: an unlocked dax entry to be inserted
1653 * @pmd: distinguish whether it is a pmd fault
1655 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1656 const struct iomap_iter *iter, pfn_t *pfnp,
1657 struct xa_state *xas, void **entry, bool pmd)
1659 const struct iomap *iomap = &iter->iomap;
1660 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1661 size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1662 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1663 bool write = iter->flags & IOMAP_WRITE;
1664 unsigned long entry_flags = pmd ? DAX_PMD : 0;
1669 if (!pmd && vmf->cow_page)
1670 return dax_fault_cow_page(vmf, iter);
1672 /* if we are reading UNWRITTEN and HOLE, return a hole. */
1674 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1676 return dax_load_hole(xas, vmf, iter, entry);
1677 return dax_pmd_load_hole(xas, vmf, iter, entry);
1680 if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
1682 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1685 err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
1687 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1689 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
1691 if (write && iomap->flags & IOMAP_F_SHARED) {
1692 err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr);
1694 return dax_fault_return(err);
1697 if (dax_fault_is_synchronous(iter, vmf->vma))
1698 return dax_fault_synchronous_pfnp(pfnp, pfn);
1700 /* insert PMD pfn */
1702 return vmf_insert_pfn_pmd(vmf, pfn, write);
1704 /* insert PTE pfn */
1706 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1707 return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1710 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1711 int *iomap_errp, const struct iomap_ops *ops)
1713 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1714 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1715 struct iomap_iter iter = {
1716 .inode = mapping->host,
1717 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT,
1719 .flags = IOMAP_DAX | IOMAP_FAULT,
1725 trace_dax_pte_fault(iter.inode, vmf, ret);
1727 * Check whether offset isn't beyond end of file now. Caller is supposed
1728 * to hold locks serializing us with truncate / punch hole so this is
1731 if (iter.pos >= i_size_read(iter.inode)) {
1732 ret = VM_FAULT_SIGBUS;
1736 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1737 iter.flags |= IOMAP_WRITE;
1739 entry = grab_mapping_entry(&xas, mapping, 0);
1740 if (xa_is_internal(entry)) {
1741 ret = xa_to_internal(entry);
1746 * It is possible, particularly with mixed reads & writes to private
1747 * mappings, that we have raced with a PMD fault that overlaps with
1748 * the PTE we need to set up. If so just return and the fault will be
1751 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1752 ret = VM_FAULT_NOPAGE;
1756 while ((error = iomap_iter(&iter, ops)) > 0) {
1757 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1758 iter.processed = -EIO; /* fs corruption? */
1762 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1763 if (ret != VM_FAULT_SIGBUS &&
1764 (iter.iomap.flags & IOMAP_F_NEW)) {
1765 count_vm_event(PGMAJFAULT);
1766 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1767 ret |= VM_FAULT_MAJOR;
1770 if (!(ret & VM_FAULT_ERROR))
1771 iter.processed = PAGE_SIZE;
1775 *iomap_errp = error;
1777 ret = dax_fault_return(error);
1780 dax_unlock_entry(&xas, entry);
1782 trace_dax_pte_fault_done(iter.inode, vmf, ret);
1786 #ifdef CONFIG_FS_DAX_PMD
1787 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1790 unsigned long pmd_addr = vmf->address & PMD_MASK;
1791 bool write = vmf->flags & FAULT_FLAG_WRITE;
1794 * Make sure that the faulting address's PMD offset (color) matches
1795 * the PMD offset from the start of the file. This is necessary so
1796 * that a PMD range in the page table overlaps exactly with a PMD
1797 * range in the page cache.
1799 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1800 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1803 /* Fall back to PTEs if we're going to COW */
1804 if (write && !(vmf->vma->vm_flags & VM_SHARED))
1807 /* If the PMD would extend outside the VMA */
1808 if (pmd_addr < vmf->vma->vm_start)
1810 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1813 /* If the PMD would extend beyond the file size */
1814 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1820 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1821 const struct iomap_ops *ops)
1823 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1824 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1825 struct iomap_iter iter = {
1826 .inode = mapping->host,
1828 .flags = IOMAP_DAX | IOMAP_FAULT,
1830 vm_fault_t ret = VM_FAULT_FALLBACK;
1835 if (vmf->flags & FAULT_FLAG_WRITE)
1836 iter.flags |= IOMAP_WRITE;
1839 * Check whether offset isn't beyond end of file now. Caller is
1840 * supposed to hold locks serializing us with truncate / punch hole so
1841 * this is a reliable test.
1843 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1845 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1847 if (xas.xa_index >= max_pgoff) {
1848 ret = VM_FAULT_SIGBUS;
1852 if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1856 * grab_mapping_entry() will make sure we get an empty PMD entry,
1857 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1858 * entry is already in the array, for instance), it will return
1859 * VM_FAULT_FALLBACK.
1861 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1862 if (xa_is_internal(entry)) {
1863 ret = xa_to_internal(entry);
1868 * It is possible, particularly with mixed reads & writes to private
1869 * mappings, that we have raced with a PTE fault that overlaps with
1870 * the PMD we need to set up. If so just return and the fault will be
1873 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1874 !pmd_devmap(*vmf->pmd)) {
1879 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1880 while ((error = iomap_iter(&iter, ops)) > 0) {
1881 if (iomap_length(&iter) < PMD_SIZE)
1882 continue; /* actually breaks out of the loop */
1884 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1885 if (ret != VM_FAULT_FALLBACK)
1886 iter.processed = PMD_SIZE;
1890 dax_unlock_entry(&xas, entry);
1892 if (ret == VM_FAULT_FALLBACK) {
1893 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1894 count_vm_event(THP_FAULT_FALLBACK);
1897 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1901 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1902 const struct iomap_ops *ops)
1904 return VM_FAULT_FALLBACK;
1906 #endif /* CONFIG_FS_DAX_PMD */
1909 * dax_iomap_fault - handle a page fault on a DAX file
1910 * @vmf: The description of the fault
1911 * @pe_size: Size of the page to fault in
1912 * @pfnp: PFN to insert for synchronous faults if fsync is required
1913 * @iomap_errp: Storage for detailed error code in case of error
1914 * @ops: Iomap ops passed from the file system
1916 * When a page fault occurs, filesystems may call this helper in
1917 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1918 * has done all the necessary locking for page fault to proceed
1921 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1922 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1926 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1928 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1930 return VM_FAULT_FALLBACK;
1933 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1936 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1937 * @vmf: The description of the fault
1938 * @pfn: PFN to insert
1939 * @order: Order of entry to insert.
1941 * This function inserts a writeable PTE or PMD entry into the page tables
1942 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1945 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1947 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1948 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1953 entry = get_unlocked_entry(&xas, order);
1954 /* Did we race with someone splitting entry or so? */
1955 if (!entry || dax_is_conflict(entry) ||
1956 (order == 0 && !dax_is_pte_entry(entry))) {
1957 put_unlocked_entry(&xas, entry, WAKE_NEXT);
1958 xas_unlock_irq(&xas);
1959 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1961 return VM_FAULT_NOPAGE;
1963 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1964 dax_lock_entry(&xas, entry);
1965 xas_unlock_irq(&xas);
1967 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1968 #ifdef CONFIG_FS_DAX_PMD
1969 else if (order == PMD_ORDER)
1970 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1973 ret = VM_FAULT_FALLBACK;
1974 dax_unlock_entry(&xas, entry);
1975 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1980 * dax_finish_sync_fault - finish synchronous page fault
1981 * @vmf: The description of the fault
1982 * @pe_size: Size of entry to be inserted
1983 * @pfn: PFN to insert
1985 * This function ensures that the file range touched by the page fault is
1986 * stored persistently on the media and handles inserting of appropriate page
1989 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1990 enum page_entry_size pe_size, pfn_t pfn)
1993 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1994 unsigned int order = pe_order(pe_size);
1995 size_t len = PAGE_SIZE << order;
1997 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1999 return VM_FAULT_SIGBUS;
2000 return dax_insert_pfn_mkwrite(vmf, pfn, order);
2002 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
2004 static loff_t dax_range_compare_iter(struct iomap_iter *it_src,
2005 struct iomap_iter *it_dest, u64 len, bool *same)
2007 const struct iomap *smap = &it_src->iomap;
2008 const struct iomap *dmap = &it_dest->iomap;
2009 loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
2010 void *saddr, *daddr;
2013 len = min(len, min(smap->length, dmap->length));
2015 if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
2020 if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
2025 id = dax_read_lock();
2026 ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
2031 ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
2036 *same = !memcmp(saddr, daddr, len);
2039 dax_read_unlock(id);
2043 dax_read_unlock(id);
2047 int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
2048 struct inode *dst, loff_t dstoff, loff_t len, bool *same,
2049 const struct iomap_ops *ops)
2051 struct iomap_iter src_iter = {
2057 struct iomap_iter dst_iter = {
2063 int ret, compared = 0;
2065 while ((ret = iomap_iter(&src_iter, ops)) > 0 &&
2066 (ret = iomap_iter(&dst_iter, ops)) > 0) {
2067 compared = dax_range_compare_iter(&src_iter, &dst_iter,
2068 min(src_iter.len, dst_iter.len), same);
2071 src_iter.processed = dst_iter.processed = compared;
2076 int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2077 struct file *file_out, loff_t pos_out,
2078 loff_t *len, unsigned int remap_flags,
2079 const struct iomap_ops *ops)
2081 return __generic_remap_file_range_prep(file_in, pos_in, file_out,
2082 pos_out, len, remap_flags, ops);
2084 EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);