Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[platform/kernel/linux-starfive.git] / fs / crypto / hooks.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/crypto/hooks.c
4  *
5  * Encryption hooks for higher-level filesystem operations.
6  */
7
8 #include "fscrypt_private.h"
9
10 /**
11  * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
12  * @inode: the inode being opened
13  * @filp: the struct file being set up
14  *
15  * Currently, an encrypted regular file can only be opened if its encryption key
16  * is available; access to the raw encrypted contents is not supported.
17  * Therefore, we first set up the inode's encryption key (if not already done)
18  * and return an error if it's unavailable.
19  *
20  * We also verify that if the parent directory (from the path via which the file
21  * is being opened) is encrypted, then the inode being opened uses the same
22  * encryption policy.  This is needed as part of the enforcement that all files
23  * in an encrypted directory tree use the same encryption policy, as a
24  * protection against certain types of offline attacks.  Note that this check is
25  * needed even when opening an *unencrypted* file, since it's forbidden to have
26  * an unencrypted file in an encrypted directory.
27  *
28  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
29  */
30 int fscrypt_file_open(struct inode *inode, struct file *filp)
31 {
32         int err;
33         struct dentry *dir;
34
35         err = fscrypt_require_key(inode);
36         if (err)
37                 return err;
38
39         dir = dget_parent(file_dentry(filp));
40         if (IS_ENCRYPTED(d_inode(dir)) &&
41             !fscrypt_has_permitted_context(d_inode(dir), inode)) {
42                 fscrypt_warn(inode,
43                              "Inconsistent encryption context (parent directory: %lu)",
44                              d_inode(dir)->i_ino);
45                 err = -EPERM;
46         }
47         dput(dir);
48         return err;
49 }
50 EXPORT_SYMBOL_GPL(fscrypt_file_open);
51
52 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
53                            struct dentry *dentry)
54 {
55         if (fscrypt_is_nokey_name(dentry))
56                 return -ENOKEY;
57         /*
58          * We don't need to separately check that the directory inode's key is
59          * available, as it's implied by the dentry not being a no-key name.
60          */
61
62         if (!fscrypt_has_permitted_context(dir, inode))
63                 return -EXDEV;
64
65         return 0;
66 }
67 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
68
69 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
70                              struct inode *new_dir, struct dentry *new_dentry,
71                              unsigned int flags)
72 {
73         if (fscrypt_is_nokey_name(old_dentry) ||
74             fscrypt_is_nokey_name(new_dentry))
75                 return -ENOKEY;
76         /*
77          * We don't need to separately check that the directory inodes' keys are
78          * available, as it's implied by the dentries not being no-key names.
79          */
80
81         if (old_dir != new_dir) {
82                 if (IS_ENCRYPTED(new_dir) &&
83                     !fscrypt_has_permitted_context(new_dir,
84                                                    d_inode(old_dentry)))
85                         return -EXDEV;
86
87                 if ((flags & RENAME_EXCHANGE) &&
88                     IS_ENCRYPTED(old_dir) &&
89                     !fscrypt_has_permitted_context(old_dir,
90                                                    d_inode(new_dentry)))
91                         return -EXDEV;
92         }
93         return 0;
94 }
95 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
96
97 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
98                              struct fscrypt_name *fname)
99 {
100         int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
101
102         if (err && err != -ENOENT)
103                 return err;
104
105         if (fname->is_nokey_name) {
106                 spin_lock(&dentry->d_lock);
107                 dentry->d_flags |= DCACHE_NOKEY_NAME;
108                 spin_unlock(&dentry->d_lock);
109         }
110         return err;
111 }
112 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
113
114 /**
115  * fscrypt_prepare_lookup_partial() - prepare lookup without filename setup
116  * @dir: the encrypted directory being searched
117  * @dentry: the dentry being looked up in @dir
118  *
119  * This function should be used by the ->lookup and ->atomic_open methods of
120  * filesystems that handle filename encryption and no-key name encoding
121  * themselves and thus can't use fscrypt_prepare_lookup().  Like
122  * fscrypt_prepare_lookup(), this will try to set up the directory's encryption
123  * key and will set DCACHE_NOKEY_NAME on the dentry if the key is unavailable.
124  * However, this function doesn't set up a struct fscrypt_name for the filename.
125  *
126  * Return: 0 on success; -errno on error.  Note that the encryption key being
127  *         unavailable is not considered an error.  It is also not an error if
128  *         the encryption policy is unsupported by this kernel; that is treated
129  *         like the key being unavailable, so that files can still be deleted.
130  */
131 int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry)
132 {
133         int err = fscrypt_get_encryption_info(dir, true);
134
135         if (!err && !fscrypt_has_encryption_key(dir)) {
136                 spin_lock(&dentry->d_lock);
137                 dentry->d_flags |= DCACHE_NOKEY_NAME;
138                 spin_unlock(&dentry->d_lock);
139         }
140         return err;
141 }
142 EXPORT_SYMBOL_GPL(fscrypt_prepare_lookup_partial);
143
144 int __fscrypt_prepare_readdir(struct inode *dir)
145 {
146         return fscrypt_get_encryption_info(dir, true);
147 }
148 EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir);
149
150 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr)
151 {
152         if (attr->ia_valid & ATTR_SIZE)
153                 return fscrypt_require_key(d_inode(dentry));
154         return 0;
155 }
156 EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr);
157
158 /**
159  * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
160  * @inode: the inode on which flags are being changed
161  * @oldflags: the old flags
162  * @flags: the new flags
163  *
164  * The caller should be holding i_rwsem for write.
165  *
166  * Return: 0 on success; -errno if the flags change isn't allowed or if
167  *         another error occurs.
168  */
169 int fscrypt_prepare_setflags(struct inode *inode,
170                              unsigned int oldflags, unsigned int flags)
171 {
172         struct fscrypt_info *ci;
173         struct fscrypt_master_key *mk;
174         int err;
175
176         /*
177          * When the CASEFOLD flag is set on an encrypted directory, we must
178          * derive the secret key needed for the dirhash.  This is only possible
179          * if the directory uses a v2 encryption policy.
180          */
181         if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
182                 err = fscrypt_require_key(inode);
183                 if (err)
184                         return err;
185                 ci = inode->i_crypt_info;
186                 if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
187                         return -EINVAL;
188                 mk = ci->ci_master_key;
189                 down_read(&mk->mk_sem);
190                 if (is_master_key_secret_present(&mk->mk_secret))
191                         err = fscrypt_derive_dirhash_key(ci, mk);
192                 else
193                         err = -ENOKEY;
194                 up_read(&mk->mk_sem);
195                 return err;
196         }
197         return 0;
198 }
199
200 /**
201  * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
202  * @dir: directory in which the symlink is being created
203  * @target: plaintext symlink target
204  * @len: length of @target excluding null terminator
205  * @max_len: space the filesystem has available to store the symlink target
206  * @disk_link: (out) the on-disk symlink target being prepared
207  *
208  * This function computes the size the symlink target will require on-disk,
209  * stores it in @disk_link->len, and validates it against @max_len.  An
210  * encrypted symlink may be longer than the original.
211  *
212  * Additionally, @disk_link->name is set to @target if the symlink will be
213  * unencrypted, but left NULL if the symlink will be encrypted.  For encrypted
214  * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
215  * on-disk target later.  (The reason for the two-step process is that some
216  * filesystems need to know the size of the symlink target before creating the
217  * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
218  *
219  * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
220  * -ENOKEY if the encryption key is missing, or another -errno code if a problem
221  * occurred while setting up the encryption key.
222  */
223 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
224                             unsigned int len, unsigned int max_len,
225                             struct fscrypt_str *disk_link)
226 {
227         const union fscrypt_policy *policy;
228
229         /*
230          * To calculate the size of the encrypted symlink target we need to know
231          * the amount of NUL padding, which is determined by the flags set in
232          * the encryption policy which will be inherited from the directory.
233          */
234         policy = fscrypt_policy_to_inherit(dir);
235         if (policy == NULL) {
236                 /* Not encrypted */
237                 disk_link->name = (unsigned char *)target;
238                 disk_link->len = len + 1;
239                 if (disk_link->len > max_len)
240                         return -ENAMETOOLONG;
241                 return 0;
242         }
243         if (IS_ERR(policy))
244                 return PTR_ERR(policy);
245
246         /*
247          * Calculate the size of the encrypted symlink and verify it won't
248          * exceed max_len.  Note that for historical reasons, encrypted symlink
249          * targets are prefixed with the ciphertext length, despite this
250          * actually being redundant with i_size.  This decreases by 2 bytes the
251          * longest symlink target we can accept.
252          *
253          * We could recover 1 byte by not counting a null terminator, but
254          * counting it (even though it is meaningless for ciphertext) is simpler
255          * for now since filesystems will assume it is there and subtract it.
256          */
257         if (!__fscrypt_fname_encrypted_size(policy, len,
258                                             max_len - sizeof(struct fscrypt_symlink_data) - 1,
259                                             &disk_link->len))
260                 return -ENAMETOOLONG;
261         disk_link->len += sizeof(struct fscrypt_symlink_data) + 1;
262
263         disk_link->name = NULL;
264         return 0;
265 }
266 EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
267
268 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
269                               unsigned int len, struct fscrypt_str *disk_link)
270 {
271         int err;
272         struct qstr iname = QSTR_INIT(target, len);
273         struct fscrypt_symlink_data *sd;
274         unsigned int ciphertext_len;
275
276         /*
277          * fscrypt_prepare_new_inode() should have already set up the new
278          * symlink inode's encryption key.  We don't wait until now to do it,
279          * since we may be in a filesystem transaction now.
280          */
281         if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
282                 return -ENOKEY;
283
284         if (disk_link->name) {
285                 /* filesystem-provided buffer */
286                 sd = (struct fscrypt_symlink_data *)disk_link->name;
287         } else {
288                 sd = kmalloc(disk_link->len, GFP_NOFS);
289                 if (!sd)
290                         return -ENOMEM;
291         }
292         ciphertext_len = disk_link->len - sizeof(*sd) - 1;
293         sd->len = cpu_to_le16(ciphertext_len);
294
295         err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
296                                     ciphertext_len);
297         if (err)
298                 goto err_free_sd;
299
300         /*
301          * Null-terminating the ciphertext doesn't make sense, but we still
302          * count the null terminator in the length, so we might as well
303          * initialize it just in case the filesystem writes it out.
304          */
305         sd->encrypted_path[ciphertext_len] = '\0';
306
307         /* Cache the plaintext symlink target for later use by get_link() */
308         err = -ENOMEM;
309         inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
310         if (!inode->i_link)
311                 goto err_free_sd;
312
313         if (!disk_link->name)
314                 disk_link->name = (unsigned char *)sd;
315         return 0;
316
317 err_free_sd:
318         if (!disk_link->name)
319                 kfree(sd);
320         return err;
321 }
322 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
323
324 /**
325  * fscrypt_get_symlink() - get the target of an encrypted symlink
326  * @inode: the symlink inode
327  * @caddr: the on-disk contents of the symlink
328  * @max_size: size of @caddr buffer
329  * @done: if successful, will be set up to free the returned target if needed
330  *
331  * If the symlink's encryption key is available, we decrypt its target.
332  * Otherwise, we encode its target for presentation.
333  *
334  * This may sleep, so the filesystem must have dropped out of RCU mode already.
335  *
336  * Return: the presentable symlink target or an ERR_PTR()
337  */
338 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
339                                 unsigned int max_size,
340                                 struct delayed_call *done)
341 {
342         const struct fscrypt_symlink_data *sd;
343         struct fscrypt_str cstr, pstr;
344         bool has_key;
345         int err;
346
347         /* This is for encrypted symlinks only */
348         if (WARN_ON_ONCE(!IS_ENCRYPTED(inode)))
349                 return ERR_PTR(-EINVAL);
350
351         /* If the decrypted target is already cached, just return it. */
352         pstr.name = READ_ONCE(inode->i_link);
353         if (pstr.name)
354                 return pstr.name;
355
356         /*
357          * Try to set up the symlink's encryption key, but we can continue
358          * regardless of whether the key is available or not.
359          */
360         err = fscrypt_get_encryption_info(inode, false);
361         if (err)
362                 return ERR_PTR(err);
363         has_key = fscrypt_has_encryption_key(inode);
364
365         /*
366          * For historical reasons, encrypted symlink targets are prefixed with
367          * the ciphertext length, even though this is redundant with i_size.
368          */
369
370         if (max_size < sizeof(*sd) + 1)
371                 return ERR_PTR(-EUCLEAN);
372         sd = caddr;
373         cstr.name = (unsigned char *)sd->encrypted_path;
374         cstr.len = le16_to_cpu(sd->len);
375
376         if (cstr.len == 0)
377                 return ERR_PTR(-EUCLEAN);
378
379         if (cstr.len + sizeof(*sd) > max_size)
380                 return ERR_PTR(-EUCLEAN);
381
382         err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
383         if (err)
384                 return ERR_PTR(err);
385
386         err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
387         if (err)
388                 goto err_kfree;
389
390         err = -EUCLEAN;
391         if (pstr.name[0] == '\0')
392                 goto err_kfree;
393
394         pstr.name[pstr.len] = '\0';
395
396         /*
397          * Cache decrypted symlink targets in i_link for later use.  Don't cache
398          * symlink targets encoded without the key, since those become outdated
399          * once the key is added.  This pairs with the READ_ONCE() above and in
400          * the VFS path lookup code.
401          */
402         if (!has_key ||
403             cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
404                 set_delayed_call(done, kfree_link, pstr.name);
405
406         return pstr.name;
407
408 err_kfree:
409         kfree(pstr.name);
410         return ERR_PTR(err);
411 }
412 EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
413
414 /**
415  * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
416  * @path: the path for the encrypted symlink being queried
417  * @stat: the struct being filled with the symlink's attributes
418  *
419  * Override st_size of encrypted symlinks to be the length of the decrypted
420  * symlink target (or the no-key encoded symlink target, if the key is
421  * unavailable) rather than the length of the encrypted symlink target.  This is
422  * necessary for st_size to match the symlink target that userspace actually
423  * sees.  POSIX requires this, and some userspace programs depend on it.
424  *
425  * This requires reading the symlink target from disk if needed, setting up the
426  * inode's encryption key if possible, and then decrypting or encoding the
427  * symlink target.  This makes lstat() more heavyweight than is normally the
428  * case.  However, decrypted symlink targets will be cached in ->i_link, so
429  * usually the symlink won't have to be read and decrypted again later if/when
430  * it is actually followed, readlink() is called, or lstat() is called again.
431  *
432  * Return: 0 on success, -errno on failure
433  */
434 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
435 {
436         struct dentry *dentry = path->dentry;
437         struct inode *inode = d_inode(dentry);
438         const char *link;
439         DEFINE_DELAYED_CALL(done);
440
441         /*
442          * To get the symlink target that userspace will see (whether it's the
443          * decrypted target or the no-key encoded target), we can just get it in
444          * the same way the VFS does during path resolution and readlink().
445          */
446         link = READ_ONCE(inode->i_link);
447         if (!link) {
448                 link = inode->i_op->get_link(dentry, inode, &done);
449                 if (IS_ERR(link))
450                         return PTR_ERR(link);
451         }
452         stat->size = strlen(link);
453         do_delayed_call(&done);
454         return 0;
455 }
456 EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);