coredump: Also dump first pages of non-executable ELF libraries
[platform/kernel/linux-rpi.git] / fs / coredump.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/file.h>
4 #include <linux/fdtable.h>
5 #include <linux/freezer.h>
6 #include <linux/mm.h>
7 #include <linux/stat.h>
8 #include <linux/fcntl.h>
9 #include <linux/swap.h>
10 #include <linux/ctype.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/pagemap.h>
14 #include <linux/perf_event.h>
15 #include <linux/highmem.h>
16 #include <linux/spinlock.h>
17 #include <linux/key.h>
18 #include <linux/personality.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/sched/coredump.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/utsname.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/module.h>
27 #include <linux/namei.h>
28 #include <linux/mount.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/tsacct_kern.h>
32 #include <linux/cn_proc.h>
33 #include <linux/audit.h>
34 #include <linux/tracehook.h>
35 #include <linux/kmod.h>
36 #include <linux/fsnotify.h>
37 #include <linux/fs_struct.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/oom.h>
40 #include <linux/compat.h>
41 #include <linux/fs.h>
42 #include <linux/path.h>
43 #include <linux/timekeeping.h>
44 #include <linux/elf.h>
45
46 #include <linux/uaccess.h>
47 #include <asm/mmu_context.h>
48 #include <asm/tlb.h>
49 #include <asm/exec.h>
50
51 #include <trace/events/task.h>
52 #include "internal.h"
53
54 #include <trace/events/sched.h>
55
56 int core_uses_pid;
57 unsigned int core_pipe_limit;
58 char core_pattern[CORENAME_MAX_SIZE] = "core";
59 static int core_name_size = CORENAME_MAX_SIZE;
60
61 struct core_name {
62         char *corename;
63         int used, size;
64 };
65
66 /* The maximal length of core_pattern is also specified in sysctl.c */
67
68 static int expand_corename(struct core_name *cn, int size)
69 {
70         char *corename = krealloc(cn->corename, size, GFP_KERNEL);
71
72         if (!corename)
73                 return -ENOMEM;
74
75         if (size > core_name_size) /* racy but harmless */
76                 core_name_size = size;
77
78         cn->size = ksize(corename);
79         cn->corename = corename;
80         return 0;
81 }
82
83 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
84                                      va_list arg)
85 {
86         int free, need;
87         va_list arg_copy;
88
89 again:
90         free = cn->size - cn->used;
91
92         va_copy(arg_copy, arg);
93         need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
94         va_end(arg_copy);
95
96         if (need < free) {
97                 cn->used += need;
98                 return 0;
99         }
100
101         if (!expand_corename(cn, cn->size + need - free + 1))
102                 goto again;
103
104         return -ENOMEM;
105 }
106
107 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
108 {
109         va_list arg;
110         int ret;
111
112         va_start(arg, fmt);
113         ret = cn_vprintf(cn, fmt, arg);
114         va_end(arg);
115
116         return ret;
117 }
118
119 static __printf(2, 3)
120 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
121 {
122         int cur = cn->used;
123         va_list arg;
124         int ret;
125
126         va_start(arg, fmt);
127         ret = cn_vprintf(cn, fmt, arg);
128         va_end(arg);
129
130         if (ret == 0) {
131                 /*
132                  * Ensure that this coredump name component can't cause the
133                  * resulting corefile path to consist of a ".." or ".".
134                  */
135                 if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
136                                 (cn->used - cur == 2 && cn->corename[cur] == '.'
137                                 && cn->corename[cur+1] == '.'))
138                         cn->corename[cur] = '!';
139
140                 /*
141                  * Empty names are fishy and could be used to create a "//" in a
142                  * corefile name, causing the coredump to happen one directory
143                  * level too high. Enforce that all components of the core
144                  * pattern are at least one character long.
145                  */
146                 if (cn->used == cur)
147                         ret = cn_printf(cn, "!");
148         }
149
150         for (; cur < cn->used; ++cur) {
151                 if (cn->corename[cur] == '/')
152                         cn->corename[cur] = '!';
153         }
154         return ret;
155 }
156
157 static int cn_print_exe_file(struct core_name *cn, bool name_only)
158 {
159         struct file *exe_file;
160         char *pathbuf, *path, *ptr;
161         int ret;
162
163         exe_file = get_mm_exe_file(current->mm);
164         if (!exe_file)
165                 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
166
167         pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
168         if (!pathbuf) {
169                 ret = -ENOMEM;
170                 goto put_exe_file;
171         }
172
173         path = file_path(exe_file, pathbuf, PATH_MAX);
174         if (IS_ERR(path)) {
175                 ret = PTR_ERR(path);
176                 goto free_buf;
177         }
178
179         if (name_only) {
180                 ptr = strrchr(path, '/');
181                 if (ptr)
182                         path = ptr + 1;
183         }
184         ret = cn_esc_printf(cn, "%s", path);
185
186 free_buf:
187         kfree(pathbuf);
188 put_exe_file:
189         fput(exe_file);
190         return ret;
191 }
192
193 /* format_corename will inspect the pattern parameter, and output a
194  * name into corename, which must have space for at least
195  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
196  */
197 static int format_corename(struct core_name *cn, struct coredump_params *cprm,
198                            size_t **argv, int *argc)
199 {
200         const struct cred *cred = current_cred();
201         const char *pat_ptr = core_pattern;
202         int ispipe = (*pat_ptr == '|');
203         bool was_space = false;
204         int pid_in_pattern = 0;
205         int err = 0;
206
207         cn->used = 0;
208         cn->corename = NULL;
209         if (expand_corename(cn, core_name_size))
210                 return -ENOMEM;
211         cn->corename[0] = '\0';
212
213         if (ispipe) {
214                 int argvs = sizeof(core_pattern) / 2;
215                 (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
216                 if (!(*argv))
217                         return -ENOMEM;
218                 (*argv)[(*argc)++] = 0;
219                 ++pat_ptr;
220                 if (!(*pat_ptr))
221                         return -ENOMEM;
222         }
223
224         /* Repeat as long as we have more pattern to process and more output
225            space */
226         while (*pat_ptr) {
227                 /*
228                  * Split on spaces before doing template expansion so that
229                  * %e and %E don't get split if they have spaces in them
230                  */
231                 if (ispipe) {
232                         if (isspace(*pat_ptr)) {
233                                 if (cn->used != 0)
234                                         was_space = true;
235                                 pat_ptr++;
236                                 continue;
237                         } else if (was_space) {
238                                 was_space = false;
239                                 err = cn_printf(cn, "%c", '\0');
240                                 if (err)
241                                         return err;
242                                 (*argv)[(*argc)++] = cn->used;
243                         }
244                 }
245                 if (*pat_ptr != '%') {
246                         err = cn_printf(cn, "%c", *pat_ptr++);
247                 } else {
248                         switch (*++pat_ptr) {
249                         /* single % at the end, drop that */
250                         case 0:
251                                 goto out;
252                         /* Double percent, output one percent */
253                         case '%':
254                                 err = cn_printf(cn, "%c", '%');
255                                 break;
256                         /* pid */
257                         case 'p':
258                                 pid_in_pattern = 1;
259                                 err = cn_printf(cn, "%d",
260                                               task_tgid_vnr(current));
261                                 break;
262                         /* global pid */
263                         case 'P':
264                                 err = cn_printf(cn, "%d",
265                                               task_tgid_nr(current));
266                                 break;
267                         case 'i':
268                                 err = cn_printf(cn, "%d",
269                                               task_pid_vnr(current));
270                                 break;
271                         case 'I':
272                                 err = cn_printf(cn, "%d",
273                                               task_pid_nr(current));
274                                 break;
275                         /* uid */
276                         case 'u':
277                                 err = cn_printf(cn, "%u",
278                                                 from_kuid(&init_user_ns,
279                                                           cred->uid));
280                                 break;
281                         /* gid */
282                         case 'g':
283                                 err = cn_printf(cn, "%u",
284                                                 from_kgid(&init_user_ns,
285                                                           cred->gid));
286                                 break;
287                         case 'd':
288                                 err = cn_printf(cn, "%d",
289                                         __get_dumpable(cprm->mm_flags));
290                                 break;
291                         /* signal that caused the coredump */
292                         case 's':
293                                 err = cn_printf(cn, "%d",
294                                                 cprm->siginfo->si_signo);
295                                 break;
296                         /* UNIX time of coredump */
297                         case 't': {
298                                 time64_t time;
299
300                                 time = ktime_get_real_seconds();
301                                 err = cn_printf(cn, "%lld", time);
302                                 break;
303                         }
304                         /* hostname */
305                         case 'h':
306                                 down_read(&uts_sem);
307                                 err = cn_esc_printf(cn, "%s",
308                                               utsname()->nodename);
309                                 up_read(&uts_sem);
310                                 break;
311                         /* executable, could be changed by prctl PR_SET_NAME etc */
312                         case 'e':
313                                 err = cn_esc_printf(cn, "%s", current->comm);
314                                 break;
315                         /* file name of executable */
316                         case 'f':
317                                 err = cn_print_exe_file(cn, true);
318                                 break;
319                         case 'E':
320                                 err = cn_print_exe_file(cn, false);
321                                 break;
322                         /* core limit size */
323                         case 'c':
324                                 err = cn_printf(cn, "%lu",
325                                               rlimit(RLIMIT_CORE));
326                                 break;
327                         default:
328                                 break;
329                         }
330                         ++pat_ptr;
331                 }
332
333                 if (err)
334                         return err;
335         }
336
337 out:
338         /* Backward compatibility with core_uses_pid:
339          *
340          * If core_pattern does not include a %p (as is the default)
341          * and core_uses_pid is set, then .%pid will be appended to
342          * the filename. Do not do this for piped commands. */
343         if (!ispipe && !pid_in_pattern && core_uses_pid) {
344                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
345                 if (err)
346                         return err;
347         }
348         return ispipe;
349 }
350
351 static int zap_process(struct task_struct *start, int exit_code, int flags)
352 {
353         struct task_struct *t;
354         int nr = 0;
355
356         /* ignore all signals except SIGKILL, see prepare_signal() */
357         start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
358         start->signal->group_exit_code = exit_code;
359         start->signal->group_stop_count = 0;
360
361         for_each_thread(start, t) {
362                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
363                 if (t != current && t->mm) {
364                         sigaddset(&t->pending.signal, SIGKILL);
365                         signal_wake_up(t, 1);
366                         nr++;
367                 }
368         }
369
370         return nr;
371 }
372
373 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
374                         struct core_state *core_state, int exit_code)
375 {
376         struct task_struct *g, *p;
377         unsigned long flags;
378         int nr = -EAGAIN;
379
380         spin_lock_irq(&tsk->sighand->siglock);
381         if (!signal_group_exit(tsk->signal)) {
382                 mm->core_state = core_state;
383                 tsk->signal->group_exit_task = tsk;
384                 nr = zap_process(tsk, exit_code, 0);
385                 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
386         }
387         spin_unlock_irq(&tsk->sighand->siglock);
388         if (unlikely(nr < 0))
389                 return nr;
390
391         tsk->flags |= PF_DUMPCORE;
392         if (atomic_read(&mm->mm_users) == nr + 1)
393                 goto done;
394         /*
395          * We should find and kill all tasks which use this mm, and we should
396          * count them correctly into ->nr_threads. We don't take tasklist
397          * lock, but this is safe wrt:
398          *
399          * fork:
400          *      None of sub-threads can fork after zap_process(leader). All
401          *      processes which were created before this point should be
402          *      visible to zap_threads() because copy_process() adds the new
403          *      process to the tail of init_task.tasks list, and lock/unlock
404          *      of ->siglock provides a memory barrier.
405          *
406          * do_exit:
407          *      The caller holds mm->mmap_lock. This means that the task which
408          *      uses this mm can't pass exit_mm(), so it can't exit or clear
409          *      its ->mm.
410          *
411          * de_thread:
412          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
413          *      we must see either old or new leader, this does not matter.
414          *      However, it can change p->sighand, so lock_task_sighand(p)
415          *      must be used. Since p->mm != NULL and we hold ->mmap_lock
416          *      it can't fail.
417          *
418          *      Note also that "g" can be the old leader with ->mm == NULL
419          *      and already unhashed and thus removed from ->thread_group.
420          *      This is OK, __unhash_process()->list_del_rcu() does not
421          *      clear the ->next pointer, we will find the new leader via
422          *      next_thread().
423          */
424         rcu_read_lock();
425         for_each_process(g) {
426                 if (g == tsk->group_leader)
427                         continue;
428                 if (g->flags & PF_KTHREAD)
429                         continue;
430
431                 for_each_thread(g, p) {
432                         if (unlikely(!p->mm))
433                                 continue;
434                         if (unlikely(p->mm == mm)) {
435                                 lock_task_sighand(p, &flags);
436                                 nr += zap_process(p, exit_code,
437                                                         SIGNAL_GROUP_EXIT);
438                                 unlock_task_sighand(p, &flags);
439                         }
440                         break;
441                 }
442         }
443         rcu_read_unlock();
444 done:
445         atomic_set(&core_state->nr_threads, nr);
446         return nr;
447 }
448
449 static int coredump_wait(int exit_code, struct core_state *core_state)
450 {
451         struct task_struct *tsk = current;
452         struct mm_struct *mm = tsk->mm;
453         int core_waiters = -EBUSY;
454
455         init_completion(&core_state->startup);
456         core_state->dumper.task = tsk;
457         core_state->dumper.next = NULL;
458
459         if (mmap_write_lock_killable(mm))
460                 return -EINTR;
461
462         if (!mm->core_state)
463                 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
464         mmap_write_unlock(mm);
465
466         if (core_waiters > 0) {
467                 struct core_thread *ptr;
468
469                 freezer_do_not_count();
470                 wait_for_completion(&core_state->startup);
471                 freezer_count();
472                 /*
473                  * Wait for all the threads to become inactive, so that
474                  * all the thread context (extended register state, like
475                  * fpu etc) gets copied to the memory.
476                  */
477                 ptr = core_state->dumper.next;
478                 while (ptr != NULL) {
479                         wait_task_inactive(ptr->task, 0);
480                         ptr = ptr->next;
481                 }
482         }
483
484         return core_waiters;
485 }
486
487 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
488 {
489         struct core_thread *curr, *next;
490         struct task_struct *task;
491
492         spin_lock_irq(&current->sighand->siglock);
493         if (core_dumped && !__fatal_signal_pending(current))
494                 current->signal->group_exit_code |= 0x80;
495         current->signal->group_exit_task = NULL;
496         current->signal->flags = SIGNAL_GROUP_EXIT;
497         spin_unlock_irq(&current->sighand->siglock);
498
499         next = mm->core_state->dumper.next;
500         while ((curr = next) != NULL) {
501                 next = curr->next;
502                 task = curr->task;
503                 /*
504                  * see exit_mm(), curr->task must not see
505                  * ->task == NULL before we read ->next.
506                  */
507                 smp_mb();
508                 curr->task = NULL;
509                 wake_up_process(task);
510         }
511
512         mm->core_state = NULL;
513 }
514
515 static bool dump_interrupted(void)
516 {
517         /*
518          * SIGKILL or freezing() interrupt the coredumping. Perhaps we
519          * can do try_to_freeze() and check __fatal_signal_pending(),
520          * but then we need to teach dump_write() to restart and clear
521          * TIF_SIGPENDING.
522          */
523         return fatal_signal_pending(current) || freezing(current);
524 }
525
526 static void wait_for_dump_helpers(struct file *file)
527 {
528         struct pipe_inode_info *pipe = file->private_data;
529
530         pipe_lock(pipe);
531         pipe->readers++;
532         pipe->writers--;
533         wake_up_interruptible_sync(&pipe->rd_wait);
534         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
535         pipe_unlock(pipe);
536
537         /*
538          * We actually want wait_event_freezable() but then we need
539          * to clear TIF_SIGPENDING and improve dump_interrupted().
540          */
541         wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
542
543         pipe_lock(pipe);
544         pipe->readers--;
545         pipe->writers++;
546         pipe_unlock(pipe);
547 }
548
549 /*
550  * umh_pipe_setup
551  * helper function to customize the process used
552  * to collect the core in userspace.  Specifically
553  * it sets up a pipe and installs it as fd 0 (stdin)
554  * for the process.  Returns 0 on success, or
555  * PTR_ERR on failure.
556  * Note that it also sets the core limit to 1.  This
557  * is a special value that we use to trap recursive
558  * core dumps
559  */
560 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
561 {
562         struct file *files[2];
563         struct coredump_params *cp = (struct coredump_params *)info->data;
564         int err = create_pipe_files(files, 0);
565         if (err)
566                 return err;
567
568         cp->file = files[1];
569
570         err = replace_fd(0, files[0], 0);
571         fput(files[0]);
572         /* and disallow core files too */
573         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
574
575         return err;
576 }
577
578 void do_coredump(const kernel_siginfo_t *siginfo)
579 {
580         struct core_state core_state;
581         struct core_name cn;
582         struct mm_struct *mm = current->mm;
583         struct linux_binfmt * binfmt;
584         const struct cred *old_cred;
585         struct cred *cred;
586         int retval = 0;
587         int ispipe;
588         size_t *argv = NULL;
589         int argc = 0;
590         /* require nonrelative corefile path and be extra careful */
591         bool need_suid_safe = false;
592         bool core_dumped = false;
593         static atomic_t core_dump_count = ATOMIC_INIT(0);
594         struct coredump_params cprm = {
595                 .siginfo = siginfo,
596                 .regs = signal_pt_regs(),
597                 .limit = rlimit(RLIMIT_CORE),
598                 /*
599                  * We must use the same mm->flags while dumping core to avoid
600                  * inconsistency of bit flags, since this flag is not protected
601                  * by any locks.
602                  */
603                 .mm_flags = mm->flags,
604         };
605
606         audit_core_dumps(siginfo->si_signo);
607
608         binfmt = mm->binfmt;
609         if (!binfmt || !binfmt->core_dump)
610                 goto fail;
611         if (!__get_dumpable(cprm.mm_flags))
612                 goto fail;
613
614         cred = prepare_creds();
615         if (!cred)
616                 goto fail;
617         /*
618          * We cannot trust fsuid as being the "true" uid of the process
619          * nor do we know its entire history. We only know it was tainted
620          * so we dump it as root in mode 2, and only into a controlled
621          * environment (pipe handler or fully qualified path).
622          */
623         if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
624                 /* Setuid core dump mode */
625                 cred->fsuid = GLOBAL_ROOT_UID;  /* Dump root private */
626                 need_suid_safe = true;
627         }
628
629         retval = coredump_wait(siginfo->si_signo, &core_state);
630         if (retval < 0)
631                 goto fail_creds;
632
633         old_cred = override_creds(cred);
634
635         ispipe = format_corename(&cn, &cprm, &argv, &argc);
636
637         if (ispipe) {
638                 int argi;
639                 int dump_count;
640                 char **helper_argv;
641                 struct subprocess_info *sub_info;
642
643                 if (ispipe < 0) {
644                         printk(KERN_WARNING "format_corename failed\n");
645                         printk(KERN_WARNING "Aborting core\n");
646                         goto fail_unlock;
647                 }
648
649                 if (cprm.limit == 1) {
650                         /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
651                          *
652                          * Normally core limits are irrelevant to pipes, since
653                          * we're not writing to the file system, but we use
654                          * cprm.limit of 1 here as a special value, this is a
655                          * consistent way to catch recursive crashes.
656                          * We can still crash if the core_pattern binary sets
657                          * RLIM_CORE = !1, but it runs as root, and can do
658                          * lots of stupid things.
659                          *
660                          * Note that we use task_tgid_vnr here to grab the pid
661                          * of the process group leader.  That way we get the
662                          * right pid if a thread in a multi-threaded
663                          * core_pattern process dies.
664                          */
665                         printk(KERN_WARNING
666                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
667                                 task_tgid_vnr(current), current->comm);
668                         printk(KERN_WARNING "Aborting core\n");
669                         goto fail_unlock;
670                 }
671                 cprm.limit = RLIM_INFINITY;
672
673                 dump_count = atomic_inc_return(&core_dump_count);
674                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
675                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
676                                task_tgid_vnr(current), current->comm);
677                         printk(KERN_WARNING "Skipping core dump\n");
678                         goto fail_dropcount;
679                 }
680
681                 helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
682                                             GFP_KERNEL);
683                 if (!helper_argv) {
684                         printk(KERN_WARNING "%s failed to allocate memory\n",
685                                __func__);
686                         goto fail_dropcount;
687                 }
688                 for (argi = 0; argi < argc; argi++)
689                         helper_argv[argi] = cn.corename + argv[argi];
690                 helper_argv[argi] = NULL;
691
692                 retval = -ENOMEM;
693                 sub_info = call_usermodehelper_setup(helper_argv[0],
694                                                 helper_argv, NULL, GFP_KERNEL,
695                                                 umh_pipe_setup, NULL, &cprm);
696                 if (sub_info)
697                         retval = call_usermodehelper_exec(sub_info,
698                                                           UMH_WAIT_EXEC);
699
700                 kfree(helper_argv);
701                 if (retval) {
702                         printk(KERN_INFO "Core dump to |%s pipe failed\n",
703                                cn.corename);
704                         goto close_fail;
705                 }
706         } else {
707                 struct user_namespace *mnt_userns;
708                 struct inode *inode;
709                 int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
710                                  O_LARGEFILE | O_EXCL;
711
712                 if (cprm.limit < binfmt->min_coredump)
713                         goto fail_unlock;
714
715                 if (need_suid_safe && cn.corename[0] != '/') {
716                         printk(KERN_WARNING "Pid %d(%s) can only dump core "\
717                                 "to fully qualified path!\n",
718                                 task_tgid_vnr(current), current->comm);
719                         printk(KERN_WARNING "Skipping core dump\n");
720                         goto fail_unlock;
721                 }
722
723                 /*
724                  * Unlink the file if it exists unless this is a SUID
725                  * binary - in that case, we're running around with root
726                  * privs and don't want to unlink another user's coredump.
727                  */
728                 if (!need_suid_safe) {
729                         /*
730                          * If it doesn't exist, that's fine. If there's some
731                          * other problem, we'll catch it at the filp_open().
732                          */
733                         do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
734                 }
735
736                 /*
737                  * There is a race between unlinking and creating the
738                  * file, but if that causes an EEXIST here, that's
739                  * fine - another process raced with us while creating
740                  * the corefile, and the other process won. To userspace,
741                  * what matters is that at least one of the two processes
742                  * writes its coredump successfully, not which one.
743                  */
744                 if (need_suid_safe) {
745                         /*
746                          * Using user namespaces, normal user tasks can change
747                          * their current->fs->root to point to arbitrary
748                          * directories. Since the intention of the "only dump
749                          * with a fully qualified path" rule is to control where
750                          * coredumps may be placed using root privileges,
751                          * current->fs->root must not be used. Instead, use the
752                          * root directory of init_task.
753                          */
754                         struct path root;
755
756                         task_lock(&init_task);
757                         get_fs_root(init_task.fs, &root);
758                         task_unlock(&init_task);
759                         cprm.file = file_open_root(&root, cn.corename,
760                                                    open_flags, 0600);
761                         path_put(&root);
762                 } else {
763                         cprm.file = filp_open(cn.corename, open_flags, 0600);
764                 }
765                 if (IS_ERR(cprm.file))
766                         goto fail_unlock;
767
768                 inode = file_inode(cprm.file);
769                 if (inode->i_nlink > 1)
770                         goto close_fail;
771                 if (d_unhashed(cprm.file->f_path.dentry))
772                         goto close_fail;
773                 /*
774                  * AK: actually i see no reason to not allow this for named
775                  * pipes etc, but keep the previous behaviour for now.
776                  */
777                 if (!S_ISREG(inode->i_mode))
778                         goto close_fail;
779                 /*
780                  * Don't dump core if the filesystem changed owner or mode
781                  * of the file during file creation. This is an issue when
782                  * a process dumps core while its cwd is e.g. on a vfat
783                  * filesystem.
784                  */
785                 mnt_userns = file_mnt_user_ns(cprm.file);
786                 if (!uid_eq(i_uid_into_mnt(mnt_userns, inode),
787                             current_fsuid())) {
788                         pr_info_ratelimited("Core dump to %s aborted: cannot preserve file owner\n",
789                                             cn.corename);
790                         goto close_fail;
791                 }
792                 if ((inode->i_mode & 0677) != 0600) {
793                         pr_info_ratelimited("Core dump to %s aborted: cannot preserve file permissions\n",
794                                             cn.corename);
795                         goto close_fail;
796                 }
797                 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
798                         goto close_fail;
799                 if (do_truncate(mnt_userns, cprm.file->f_path.dentry,
800                                 0, 0, cprm.file))
801                         goto close_fail;
802         }
803
804         /* get us an unshared descriptor table; almost always a no-op */
805         /* The cell spufs coredump code reads the file descriptor tables */
806         retval = unshare_files();
807         if (retval)
808                 goto close_fail;
809         if (!dump_interrupted()) {
810                 /*
811                  * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
812                  * have this set to NULL.
813                  */
814                 if (!cprm.file) {
815                         pr_info("Core dump to |%s disabled\n", cn.corename);
816                         goto close_fail;
817                 }
818                 file_start_write(cprm.file);
819                 core_dumped = binfmt->core_dump(&cprm);
820                 /*
821                  * Ensures that file size is big enough to contain the current
822                  * file postion. This prevents gdb from complaining about
823                  * a truncated file if the last "write" to the file was
824                  * dump_skip.
825                  */
826                 if (cprm.to_skip) {
827                         cprm.to_skip--;
828                         dump_emit(&cprm, "", 1);
829                 }
830                 file_end_write(cprm.file);
831         }
832         if (ispipe && core_pipe_limit)
833                 wait_for_dump_helpers(cprm.file);
834 close_fail:
835         if (cprm.file)
836                 filp_close(cprm.file, NULL);
837 fail_dropcount:
838         if (ispipe)
839                 atomic_dec(&core_dump_count);
840 fail_unlock:
841         kfree(argv);
842         kfree(cn.corename);
843         coredump_finish(mm, core_dumped);
844         revert_creds(old_cred);
845 fail_creds:
846         put_cred(cred);
847 fail:
848         return;
849 }
850
851 /*
852  * Core dumping helper functions.  These are the only things you should
853  * do on a core-file: use only these functions to write out all the
854  * necessary info.
855  */
856 static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
857 {
858         struct file *file = cprm->file;
859         loff_t pos = file->f_pos;
860         ssize_t n;
861         if (cprm->written + nr > cprm->limit)
862                 return 0;
863
864
865         if (dump_interrupted())
866                 return 0;
867         n = __kernel_write(file, addr, nr, &pos);
868         if (n != nr)
869                 return 0;
870         file->f_pos = pos;
871         cprm->written += n;
872         cprm->pos += n;
873
874         return 1;
875 }
876
877 static int __dump_skip(struct coredump_params *cprm, size_t nr)
878 {
879         static char zeroes[PAGE_SIZE];
880         struct file *file = cprm->file;
881         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
882                 if (dump_interrupted() ||
883                     file->f_op->llseek(file, nr, SEEK_CUR) < 0)
884                         return 0;
885                 cprm->pos += nr;
886                 return 1;
887         } else {
888                 while (nr > PAGE_SIZE) {
889                         if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
890                                 return 0;
891                         nr -= PAGE_SIZE;
892                 }
893                 return __dump_emit(cprm, zeroes, nr);
894         }
895 }
896
897 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
898 {
899         if (cprm->to_skip) {
900                 if (!__dump_skip(cprm, cprm->to_skip))
901                         return 0;
902                 cprm->to_skip = 0;
903         }
904         return __dump_emit(cprm, addr, nr);
905 }
906 EXPORT_SYMBOL(dump_emit);
907
908 void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
909 {
910         cprm->to_skip = pos - cprm->pos;
911 }
912 EXPORT_SYMBOL(dump_skip_to);
913
914 void dump_skip(struct coredump_params *cprm, size_t nr)
915 {
916         cprm->to_skip += nr;
917 }
918 EXPORT_SYMBOL(dump_skip);
919
920 #ifdef CONFIG_ELF_CORE
921 int dump_user_range(struct coredump_params *cprm, unsigned long start,
922                     unsigned long len)
923 {
924         unsigned long addr;
925
926         for (addr = start; addr < start + len; addr += PAGE_SIZE) {
927                 struct page *page;
928                 int stop;
929
930                 /*
931                  * To avoid having to allocate page tables for virtual address
932                  * ranges that have never been used yet, and also to make it
933                  * easy to generate sparse core files, use a helper that returns
934                  * NULL when encountering an empty page table entry that would
935                  * otherwise have been filled with the zero page.
936                  */
937                 page = get_dump_page(addr);
938                 if (page) {
939                         void *kaddr = kmap_local_page(page);
940
941                         stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
942                         kunmap_local(kaddr);
943                         put_page(page);
944                         if (stop)
945                                 return 0;
946                 } else {
947                         dump_skip(cprm, PAGE_SIZE);
948                 }
949         }
950         return 1;
951 }
952 #endif
953
954 int dump_align(struct coredump_params *cprm, int align)
955 {
956         unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
957         if (align & (align - 1))
958                 return 0;
959         if (mod)
960                 cprm->to_skip += align - mod;
961         return 1;
962 }
963 EXPORT_SYMBOL(dump_align);
964
965 /*
966  * The purpose of always_dump_vma() is to make sure that special kernel mappings
967  * that are useful for post-mortem analysis are included in every core dump.
968  * In that way we ensure that the core dump is fully interpretable later
969  * without matching up the same kernel and hardware config to see what PC values
970  * meant. These special mappings include - vDSO, vsyscall, and other
971  * architecture specific mappings
972  */
973 static bool always_dump_vma(struct vm_area_struct *vma)
974 {
975         /* Any vsyscall mappings? */
976         if (vma == get_gate_vma(vma->vm_mm))
977                 return true;
978
979         /*
980          * Assume that all vmas with a .name op should always be dumped.
981          * If this changes, a new vm_ops field can easily be added.
982          */
983         if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
984                 return true;
985
986         /*
987          * arch_vma_name() returns non-NULL for special architecture mappings,
988          * such as vDSO sections.
989          */
990         if (arch_vma_name(vma))
991                 return true;
992
993         return false;
994 }
995
996 #define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1
997
998 /*
999  * Decide how much of @vma's contents should be included in a core dump.
1000  */
1001 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1002                                    unsigned long mm_flags)
1003 {
1004 #define FILTER(type)    (mm_flags & (1UL << MMF_DUMP_##type))
1005
1006         /* always dump the vdso and vsyscall sections */
1007         if (always_dump_vma(vma))
1008                 goto whole;
1009
1010         if (vma->vm_flags & VM_DONTDUMP)
1011                 return 0;
1012
1013         /* support for DAX */
1014         if (vma_is_dax(vma)) {
1015                 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1016                         goto whole;
1017                 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1018                         goto whole;
1019                 return 0;
1020         }
1021
1022         /* Hugetlb memory check */
1023         if (is_vm_hugetlb_page(vma)) {
1024                 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1025                         goto whole;
1026                 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1027                         goto whole;
1028                 return 0;
1029         }
1030
1031         /* Do not dump I/O mapped devices or special mappings */
1032         if (vma->vm_flags & VM_IO)
1033                 return 0;
1034
1035         /* By default, dump shared memory if mapped from an anonymous file. */
1036         if (vma->vm_flags & VM_SHARED) {
1037                 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1038                     FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1039                         goto whole;
1040                 return 0;
1041         }
1042
1043         /* Dump segments that have been written to.  */
1044         if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
1045                 goto whole;
1046         if (vma->vm_file == NULL)
1047                 return 0;
1048
1049         if (FILTER(MAPPED_PRIVATE))
1050                 goto whole;
1051
1052         /*
1053          * If this is the beginning of an executable file mapping,
1054          * dump the first page to aid in determining what was mapped here.
1055          */
1056         if (FILTER(ELF_HEADERS) &&
1057             vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1058                 if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
1059                         return PAGE_SIZE;
1060
1061                 /*
1062                  * ELF libraries aren't always executable.
1063                  * We'll want to check whether the mapping starts with the ELF
1064                  * magic, but not now - we're holding the mmap lock,
1065                  * so copy_from_user() doesn't work here.
1066                  * Use a placeholder instead, and fix it up later in
1067                  * dump_vma_snapshot().
1068                  */
1069                 return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER;
1070         }
1071
1072 #undef  FILTER
1073
1074         return 0;
1075
1076 whole:
1077         return vma->vm_end - vma->vm_start;
1078 }
1079
1080 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1081                                         struct vm_area_struct *gate_vma)
1082 {
1083         struct vm_area_struct *ret = tsk->mm->mmap;
1084
1085         if (ret)
1086                 return ret;
1087         return gate_vma;
1088 }
1089
1090 /*
1091  * Helper function for iterating across a vma list.  It ensures that the caller
1092  * will visit `gate_vma' prior to terminating the search.
1093  */
1094 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1095                                        struct vm_area_struct *gate_vma)
1096 {
1097         struct vm_area_struct *ret;
1098
1099         ret = this_vma->vm_next;
1100         if (ret)
1101                 return ret;
1102         if (this_vma == gate_vma)
1103                 return NULL;
1104         return gate_vma;
1105 }
1106
1107 /*
1108  * Under the mmap_lock, take a snapshot of relevant information about the task's
1109  * VMAs.
1110  */
1111 int dump_vma_snapshot(struct coredump_params *cprm, int *vma_count,
1112                       struct core_vma_metadata **vma_meta,
1113                       size_t *vma_data_size_ptr)
1114 {
1115         struct vm_area_struct *vma, *gate_vma;
1116         struct mm_struct *mm = current->mm;
1117         int i;
1118         size_t vma_data_size = 0;
1119
1120         /*
1121          * Once the stack expansion code is fixed to not change VMA bounds
1122          * under mmap_lock in read mode, this can be changed to take the
1123          * mmap_lock in read mode.
1124          */
1125         if (mmap_write_lock_killable(mm))
1126                 return -EINTR;
1127
1128         gate_vma = get_gate_vma(mm);
1129         *vma_count = mm->map_count + (gate_vma ? 1 : 0);
1130
1131         *vma_meta = kvmalloc_array(*vma_count, sizeof(**vma_meta), GFP_KERNEL);
1132         if (!*vma_meta) {
1133                 mmap_write_unlock(mm);
1134                 return -ENOMEM;
1135         }
1136
1137         for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
1138                         vma = next_vma(vma, gate_vma), i++) {
1139                 struct core_vma_metadata *m = (*vma_meta) + i;
1140
1141                 m->start = vma->vm_start;
1142                 m->end = vma->vm_end;
1143                 m->flags = vma->vm_flags;
1144                 m->dump_size = vma_dump_size(vma, cprm->mm_flags);
1145         }
1146
1147         mmap_write_unlock(mm);
1148
1149         if (WARN_ON(i != *vma_count)) {
1150                 kvfree(*vma_meta);
1151                 return -EFAULT;
1152         }
1153
1154         for (i = 0; i < *vma_count; i++) {
1155                 struct core_vma_metadata *m = (*vma_meta) + i;
1156
1157                 if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) {
1158                         char elfmag[SELFMAG];
1159
1160                         if (copy_from_user(elfmag, (void __user *)m->start, SELFMAG) ||
1161                                         memcmp(elfmag, ELFMAG, SELFMAG) != 0) {
1162                                 m->dump_size = 0;
1163                         } else {
1164                                 m->dump_size = PAGE_SIZE;
1165                         }
1166                 }
1167
1168                 vma_data_size += m->dump_size;
1169         }
1170
1171         *vma_data_size_ptr = vma_data_size;
1172         return 0;
1173 }