Merge git://www.linux-watchdog.org/linux-watchdog
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / coredump.c
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlb.h>
39 #include <asm/exec.h>
40
41 #include <trace/events/task.h>
42 #include "internal.h"
43 #include "coredump.h"
44
45 #include <trace/events/sched.h>
46
47 int core_uses_pid;
48 unsigned int core_pipe_limit;
49 char core_pattern[CORENAME_MAX_SIZE] = "core";
50 static int core_name_size = CORENAME_MAX_SIZE;
51
52 struct core_name {
53         char *corename;
54         int used, size;
55 };
56
57 /* The maximal length of core_pattern is also specified in sysctl.c */
58
59 static int expand_corename(struct core_name *cn, int size)
60 {
61         char *corename = krealloc(cn->corename, size, GFP_KERNEL);
62
63         if (!corename)
64                 return -ENOMEM;
65
66         if (size > core_name_size) /* racy but harmless */
67                 core_name_size = size;
68
69         cn->size = ksize(corename);
70         cn->corename = corename;
71         return 0;
72 }
73
74 static int cn_vprintf(struct core_name *cn, const char *fmt, va_list arg)
75 {
76         int free, need;
77
78 again:
79         free = cn->size - cn->used;
80         need = vsnprintf(cn->corename + cn->used, free, fmt, arg);
81         if (need < free) {
82                 cn->used += need;
83                 return 0;
84         }
85
86         if (!expand_corename(cn, cn->size + need - free + 1))
87                 goto again;
88
89         return -ENOMEM;
90 }
91
92 static int cn_printf(struct core_name *cn, const char *fmt, ...)
93 {
94         va_list arg;
95         int ret;
96
97         va_start(arg, fmt);
98         ret = cn_vprintf(cn, fmt, arg);
99         va_end(arg);
100
101         return ret;
102 }
103
104 static int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
105 {
106         int cur = cn->used;
107         va_list arg;
108         int ret;
109
110         va_start(arg, fmt);
111         ret = cn_vprintf(cn, fmt, arg);
112         va_end(arg);
113
114         for (; cur < cn->used; ++cur) {
115                 if (cn->corename[cur] == '/')
116                         cn->corename[cur] = '!';
117         }
118         return ret;
119 }
120
121 static int cn_print_exe_file(struct core_name *cn)
122 {
123         struct file *exe_file;
124         char *pathbuf, *path;
125         int ret;
126
127         exe_file = get_mm_exe_file(current->mm);
128         if (!exe_file)
129                 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
130
131         pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
132         if (!pathbuf) {
133                 ret = -ENOMEM;
134                 goto put_exe_file;
135         }
136
137         path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
138         if (IS_ERR(path)) {
139                 ret = PTR_ERR(path);
140                 goto free_buf;
141         }
142
143         ret = cn_esc_printf(cn, "%s", path);
144
145 free_buf:
146         kfree(pathbuf);
147 put_exe_file:
148         fput(exe_file);
149         return ret;
150 }
151
152 /* format_corename will inspect the pattern parameter, and output a
153  * name into corename, which must have space for at least
154  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
155  */
156 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
157 {
158         const struct cred *cred = current_cred();
159         const char *pat_ptr = core_pattern;
160         int ispipe = (*pat_ptr == '|');
161         int pid_in_pattern = 0;
162         int err = 0;
163
164         cn->used = 0;
165         cn->corename = NULL;
166         if (expand_corename(cn, core_name_size))
167                 return -ENOMEM;
168         cn->corename[0] = '\0';
169
170         if (ispipe)
171                 ++pat_ptr;
172
173         /* Repeat as long as we have more pattern to process and more output
174            space */
175         while (*pat_ptr) {
176                 if (*pat_ptr != '%') {
177                         err = cn_printf(cn, "%c", *pat_ptr++);
178                 } else {
179                         switch (*++pat_ptr) {
180                         /* single % at the end, drop that */
181                         case 0:
182                                 goto out;
183                         /* Double percent, output one percent */
184                         case '%':
185                                 err = cn_printf(cn, "%c", '%');
186                                 break;
187                         /* pid */
188                         case 'p':
189                                 pid_in_pattern = 1;
190                                 err = cn_printf(cn, "%d",
191                                               task_tgid_vnr(current));
192                                 break;
193                         /* global pid */
194                         case 'P':
195                                 err = cn_printf(cn, "%d",
196                                               task_tgid_nr(current));
197                                 break;
198                         /* uid */
199                         case 'u':
200                                 err = cn_printf(cn, "%d", cred->uid);
201                                 break;
202                         /* gid */
203                         case 'g':
204                                 err = cn_printf(cn, "%d", cred->gid);
205                                 break;
206                         case 'd':
207                                 err = cn_printf(cn, "%d",
208                                         __get_dumpable(cprm->mm_flags));
209                                 break;
210                         /* signal that caused the coredump */
211                         case 's':
212                                 err = cn_printf(cn, "%ld", cprm->siginfo->si_signo);
213                                 break;
214                         /* UNIX time of coredump */
215                         case 't': {
216                                 struct timeval tv;
217                                 do_gettimeofday(&tv);
218                                 err = cn_printf(cn, "%lu", tv.tv_sec);
219                                 break;
220                         }
221                         /* hostname */
222                         case 'h':
223                                 down_read(&uts_sem);
224                                 err = cn_esc_printf(cn, "%s",
225                                               utsname()->nodename);
226                                 up_read(&uts_sem);
227                                 break;
228                         /* executable */
229                         case 'e':
230                                 err = cn_esc_printf(cn, "%s", current->comm);
231                                 break;
232                         case 'E':
233                                 err = cn_print_exe_file(cn);
234                                 break;
235                         /* core limit size */
236                         case 'c':
237                                 err = cn_printf(cn, "%lu",
238                                               rlimit(RLIMIT_CORE));
239                                 break;
240                         default:
241                                 break;
242                         }
243                         ++pat_ptr;
244                 }
245
246                 if (err)
247                         return err;
248         }
249
250 out:
251         /* Backward compatibility with core_uses_pid:
252          *
253          * If core_pattern does not include a %p (as is the default)
254          * and core_uses_pid is set, then .%pid will be appended to
255          * the filename. Do not do this for piped commands. */
256         if (!ispipe && !pid_in_pattern && core_uses_pid) {
257                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
258                 if (err)
259                         return err;
260         }
261         return ispipe;
262 }
263
264 static int zap_process(struct task_struct *start, int exit_code)
265 {
266         struct task_struct *t;
267         int nr = 0;
268
269         start->signal->group_exit_code = exit_code;
270         start->signal->group_stop_count = 0;
271
272         t = start;
273         do {
274                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
275                 if (t != current && t->mm) {
276                         sigaddset(&t->pending.signal, SIGKILL);
277                         signal_wake_up(t, 1);
278                         nr++;
279                 }
280         } while_each_thread(start, t);
281
282         return nr;
283 }
284
285 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
286                         struct core_state *core_state, int exit_code)
287 {
288         struct task_struct *g, *p;
289         unsigned long flags;
290         int nr = -EAGAIN;
291
292         spin_lock_irq(&tsk->sighand->siglock);
293         if (!signal_group_exit(tsk->signal)) {
294                 mm->core_state = core_state;
295                 nr = zap_process(tsk, exit_code);
296                 tsk->signal->group_exit_task = tsk;
297                 /* ignore all signals except SIGKILL, see prepare_signal() */
298                 tsk->signal->flags = SIGNAL_GROUP_COREDUMP;
299                 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
300         }
301         spin_unlock_irq(&tsk->sighand->siglock);
302         if (unlikely(nr < 0))
303                 return nr;
304
305         tsk->flags = PF_DUMPCORE;
306         if (atomic_read(&mm->mm_users) == nr + 1)
307                 goto done;
308         /*
309          * We should find and kill all tasks which use this mm, and we should
310          * count them correctly into ->nr_threads. We don't take tasklist
311          * lock, but this is safe wrt:
312          *
313          * fork:
314          *      None of sub-threads can fork after zap_process(leader). All
315          *      processes which were created before this point should be
316          *      visible to zap_threads() because copy_process() adds the new
317          *      process to the tail of init_task.tasks list, and lock/unlock
318          *      of ->siglock provides a memory barrier.
319          *
320          * do_exit:
321          *      The caller holds mm->mmap_sem. This means that the task which
322          *      uses this mm can't pass exit_mm(), so it can't exit or clear
323          *      its ->mm.
324          *
325          * de_thread:
326          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
327          *      we must see either old or new leader, this does not matter.
328          *      However, it can change p->sighand, so lock_task_sighand(p)
329          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
330          *      it can't fail.
331          *
332          *      Note also that "g" can be the old leader with ->mm == NULL
333          *      and already unhashed and thus removed from ->thread_group.
334          *      This is OK, __unhash_process()->list_del_rcu() does not
335          *      clear the ->next pointer, we will find the new leader via
336          *      next_thread().
337          */
338         rcu_read_lock();
339         for_each_process(g) {
340                 if (g == tsk->group_leader)
341                         continue;
342                 if (g->flags & PF_KTHREAD)
343                         continue;
344                 p = g;
345                 do {
346                         if (p->mm) {
347                                 if (unlikely(p->mm == mm)) {
348                                         lock_task_sighand(p, &flags);
349                                         nr += zap_process(p, exit_code);
350                                         p->signal->flags = SIGNAL_GROUP_EXIT;
351                                         unlock_task_sighand(p, &flags);
352                                 }
353                                 break;
354                         }
355                 } while_each_thread(g, p);
356         }
357         rcu_read_unlock();
358 done:
359         atomic_set(&core_state->nr_threads, nr);
360         return nr;
361 }
362
363 static int coredump_wait(int exit_code, struct core_state *core_state)
364 {
365         struct task_struct *tsk = current;
366         struct mm_struct *mm = tsk->mm;
367         int core_waiters = -EBUSY;
368
369         init_completion(&core_state->startup);
370         core_state->dumper.task = tsk;
371         core_state->dumper.next = NULL;
372
373         down_write(&mm->mmap_sem);
374         if (!mm->core_state)
375                 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
376         up_write(&mm->mmap_sem);
377
378         if (core_waiters > 0) {
379                 struct core_thread *ptr;
380
381                 wait_for_completion(&core_state->startup);
382                 /*
383                  * Wait for all the threads to become inactive, so that
384                  * all the thread context (extended register state, like
385                  * fpu etc) gets copied to the memory.
386                  */
387                 ptr = core_state->dumper.next;
388                 while (ptr != NULL) {
389                         wait_task_inactive(ptr->task, 0);
390                         ptr = ptr->next;
391                 }
392         }
393
394         return core_waiters;
395 }
396
397 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
398 {
399         struct core_thread *curr, *next;
400         struct task_struct *task;
401
402         spin_lock_irq(&current->sighand->siglock);
403         if (core_dumped && !__fatal_signal_pending(current))
404                 current->signal->group_exit_code |= 0x80;
405         current->signal->group_exit_task = NULL;
406         current->signal->flags = SIGNAL_GROUP_EXIT;
407         spin_unlock_irq(&current->sighand->siglock);
408
409         next = mm->core_state->dumper.next;
410         while ((curr = next) != NULL) {
411                 next = curr->next;
412                 task = curr->task;
413                 /*
414                  * see exit_mm(), curr->task must not see
415                  * ->task == NULL before we read ->next.
416                  */
417                 smp_mb();
418                 curr->task = NULL;
419                 wake_up_process(task);
420         }
421
422         mm->core_state = NULL;
423 }
424
425 static bool dump_interrupted(void)
426 {
427         /*
428          * SIGKILL or freezing() interrupt the coredumping. Perhaps we
429          * can do try_to_freeze() and check __fatal_signal_pending(),
430          * but then we need to teach dump_write() to restart and clear
431          * TIF_SIGPENDING.
432          */
433         return signal_pending(current);
434 }
435
436 static void wait_for_dump_helpers(struct file *file)
437 {
438         struct pipe_inode_info *pipe = file->private_data;
439
440         pipe_lock(pipe);
441         pipe->readers++;
442         pipe->writers--;
443         wake_up_interruptible_sync(&pipe->wait);
444         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
445         pipe_unlock(pipe);
446
447         /*
448          * We actually want wait_event_freezable() but then we need
449          * to clear TIF_SIGPENDING and improve dump_interrupted().
450          */
451         wait_event_interruptible(pipe->wait, pipe->readers == 1);
452
453         pipe_lock(pipe);
454         pipe->readers--;
455         pipe->writers++;
456         pipe_unlock(pipe);
457 }
458
459 /*
460  * umh_pipe_setup
461  * helper function to customize the process used
462  * to collect the core in userspace.  Specifically
463  * it sets up a pipe and installs it as fd 0 (stdin)
464  * for the process.  Returns 0 on success, or
465  * PTR_ERR on failure.
466  * Note that it also sets the core limit to 1.  This
467  * is a special value that we use to trap recursive
468  * core dumps
469  */
470 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
471 {
472         struct file *files[2];
473         struct coredump_params *cp = (struct coredump_params *)info->data;
474         int err = create_pipe_files(files, 0);
475         if (err)
476                 return err;
477
478         cp->file = files[1];
479
480         err = replace_fd(0, files[0], 0);
481         fput(files[0]);
482         /* and disallow core files too */
483         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
484
485         return err;
486 }
487
488 void do_coredump(siginfo_t *siginfo)
489 {
490         struct core_state core_state;
491         struct core_name cn;
492         struct mm_struct *mm = current->mm;
493         struct linux_binfmt * binfmt;
494         const struct cred *old_cred;
495         struct cred *cred;
496         int retval = 0;
497         int flag = 0;
498         int ispipe;
499         struct files_struct *displaced;
500         bool need_nonrelative = false;
501         bool core_dumped = false;
502         static atomic_t core_dump_count = ATOMIC_INIT(0);
503         struct coredump_params cprm = {
504                 .siginfo = siginfo,
505                 .regs = signal_pt_regs(),
506                 .limit = rlimit(RLIMIT_CORE),
507                 /*
508                  * We must use the same mm->flags while dumping core to avoid
509                  * inconsistency of bit flags, since this flag is not protected
510                  * by any locks.
511                  */
512                 .mm_flags = mm->flags,
513         };
514
515         audit_core_dumps(siginfo->si_signo);
516
517         binfmt = mm->binfmt;
518         if (!binfmt || !binfmt->core_dump)
519                 goto fail;
520         if (!__get_dumpable(cprm.mm_flags))
521                 goto fail;
522
523         cred = prepare_creds();
524         if (!cred)
525                 goto fail;
526         /*
527          * We cannot trust fsuid as being the "true" uid of the process
528          * nor do we know its entire history. We only know it was tainted
529          * so we dump it as root in mode 2, and only into a controlled
530          * environment (pipe handler or fully qualified path).
531          */
532         if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
533                 /* Setuid core dump mode */
534                 flag = O_EXCL;          /* Stop rewrite attacks */
535                 cred->fsuid = GLOBAL_ROOT_UID;  /* Dump root private */
536                 need_nonrelative = true;
537         }
538
539         retval = coredump_wait(siginfo->si_signo, &core_state);
540         if (retval < 0)
541                 goto fail_creds;
542
543         old_cred = override_creds(cred);
544
545         ispipe = format_corename(&cn, &cprm);
546
547         if (ispipe) {
548                 int dump_count;
549                 char **helper_argv;
550                 struct subprocess_info *sub_info;
551
552                 if (ispipe < 0) {
553                         printk(KERN_WARNING "format_corename failed\n");
554                         printk(KERN_WARNING "Aborting core\n");
555                         goto fail_unlock;
556                 }
557
558                 if (cprm.limit == 1) {
559                         /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
560                          *
561                          * Normally core limits are irrelevant to pipes, since
562                          * we're not writing to the file system, but we use
563                          * cprm.limit of 1 here as a speacial value, this is a
564                          * consistent way to catch recursive crashes.
565                          * We can still crash if the core_pattern binary sets
566                          * RLIM_CORE = !1, but it runs as root, and can do
567                          * lots of stupid things.
568                          *
569                          * Note that we use task_tgid_vnr here to grab the pid
570                          * of the process group leader.  That way we get the
571                          * right pid if a thread in a multi-threaded
572                          * core_pattern process dies.
573                          */
574                         printk(KERN_WARNING
575                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
576                                 task_tgid_vnr(current), current->comm);
577                         printk(KERN_WARNING "Aborting core\n");
578                         goto fail_unlock;
579                 }
580                 cprm.limit = RLIM_INFINITY;
581
582                 dump_count = atomic_inc_return(&core_dump_count);
583                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
584                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
585                                task_tgid_vnr(current), current->comm);
586                         printk(KERN_WARNING "Skipping core dump\n");
587                         goto fail_dropcount;
588                 }
589
590                 helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
591                 if (!helper_argv) {
592                         printk(KERN_WARNING "%s failed to allocate memory\n",
593                                __func__);
594                         goto fail_dropcount;
595                 }
596
597                 retval = -ENOMEM;
598                 sub_info = call_usermodehelper_setup(helper_argv[0],
599                                                 helper_argv, NULL, GFP_KERNEL,
600                                                 umh_pipe_setup, NULL, &cprm);
601                 if (sub_info)
602                         retval = call_usermodehelper_exec(sub_info,
603                                                           UMH_WAIT_EXEC);
604
605                 argv_free(helper_argv);
606                 if (retval) {
607                         printk(KERN_INFO "Core dump to |%s pipe failed\n",
608                                cn.corename);
609                         goto close_fail;
610                 }
611         } else {
612                 struct inode *inode;
613
614                 if (cprm.limit < binfmt->min_coredump)
615                         goto fail_unlock;
616
617                 if (need_nonrelative && cn.corename[0] != '/') {
618                         printk(KERN_WARNING "Pid %d(%s) can only dump core "\
619                                 "to fully qualified path!\n",
620                                 task_tgid_vnr(current), current->comm);
621                         printk(KERN_WARNING "Skipping core dump\n");
622                         goto fail_unlock;
623                 }
624
625                 cprm.file = filp_open(cn.corename,
626                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
627                                  0600);
628                 if (IS_ERR(cprm.file))
629                         goto fail_unlock;
630
631                 inode = file_inode(cprm.file);
632                 if (inode->i_nlink > 1)
633                         goto close_fail;
634                 if (d_unhashed(cprm.file->f_path.dentry))
635                         goto close_fail;
636                 /*
637                  * AK: actually i see no reason to not allow this for named
638                  * pipes etc, but keep the previous behaviour for now.
639                  */
640                 if (!S_ISREG(inode->i_mode))
641                         goto close_fail;
642                 /*
643                  * Dont allow local users get cute and trick others to coredump
644                  * into their pre-created files.
645                  */
646                 if (!uid_eq(inode->i_uid, current_fsuid()))
647                         goto close_fail;
648                 if (!cprm.file->f_op || !cprm.file->f_op->write)
649                         goto close_fail;
650                 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
651                         goto close_fail;
652         }
653
654         /* get us an unshared descriptor table; almost always a no-op */
655         retval = unshare_files(&displaced);
656         if (retval)
657                 goto close_fail;
658         if (displaced)
659                 put_files_struct(displaced);
660         if (!dump_interrupted()) {
661                 file_start_write(cprm.file);
662                 core_dumped = binfmt->core_dump(&cprm);
663                 file_end_write(cprm.file);
664         }
665         if (ispipe && core_pipe_limit)
666                 wait_for_dump_helpers(cprm.file);
667 close_fail:
668         if (cprm.file)
669                 filp_close(cprm.file, NULL);
670 fail_dropcount:
671         if (ispipe)
672                 atomic_dec(&core_dump_count);
673 fail_unlock:
674         kfree(cn.corename);
675         coredump_finish(mm, core_dumped);
676         revert_creds(old_cred);
677 fail_creds:
678         put_cred(cred);
679 fail:
680         return;
681 }
682
683 /*
684  * Core dumping helper functions.  These are the only things you should
685  * do on a core-file: use only these functions to write out all the
686  * necessary info.
687  */
688 int dump_write(struct file *file, const void *addr, int nr)
689 {
690         return !dump_interrupted() &&
691                 access_ok(VERIFY_READ, addr, nr) &&
692                 file->f_op->write(file, addr, nr, &file->f_pos) == nr;
693 }
694 EXPORT_SYMBOL(dump_write);
695
696 int dump_seek(struct file *file, loff_t off)
697 {
698         int ret = 1;
699
700         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
701                 if (dump_interrupted() ||
702                     file->f_op->llseek(file, off, SEEK_CUR) < 0)
703                         return 0;
704         } else {
705                 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
706
707                 if (!buf)
708                         return 0;
709                 while (off > 0) {
710                         unsigned long n = off;
711
712                         if (n > PAGE_SIZE)
713                                 n = PAGE_SIZE;
714                         if (!dump_write(file, buf, n)) {
715                                 ret = 0;
716                                 break;
717                         }
718                         off -= n;
719                 }
720                 free_page((unsigned long)buf);
721         }
722         return ret;
723 }
724 EXPORT_SYMBOL(dump_seek);