Merge tag 'x86-urgent-2022-08-13' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / fs / cifs / misc.c
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #endif
25 #include "fs_context.h"
26
27 extern mempool_t *cifs_sm_req_poolp;
28 extern mempool_t *cifs_req_poolp;
29
30 /* The xid serves as a useful identifier for each incoming vfs request,
31    in a similar way to the mid which is useful to track each sent smb,
32    and CurrentXid can also provide a running counter (although it
33    will eventually wrap past zero) of the total vfs operations handled
34    since the cifs fs was mounted */
35
36 unsigned int
37 _get_xid(void)
38 {
39         unsigned int xid;
40
41         spin_lock(&GlobalMid_Lock);
42         GlobalTotalActiveXid++;
43
44         /* keep high water mark for number of simultaneous ops in filesystem */
45         if (GlobalTotalActiveXid > GlobalMaxActiveXid)
46                 GlobalMaxActiveXid = GlobalTotalActiveXid;
47         if (GlobalTotalActiveXid > 65000)
48                 cifs_dbg(FYI, "warning: more than 65000 requests active\n");
49         xid = GlobalCurrentXid++;
50         spin_unlock(&GlobalMid_Lock);
51         return xid;
52 }
53
54 void
55 _free_xid(unsigned int xid)
56 {
57         spin_lock(&GlobalMid_Lock);
58         /* if (GlobalTotalActiveXid == 0)
59                 BUG(); */
60         GlobalTotalActiveXid--;
61         spin_unlock(&GlobalMid_Lock);
62 }
63
64 struct cifs_ses *
65 sesInfoAlloc(void)
66 {
67         struct cifs_ses *ret_buf;
68
69         ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
70         if (ret_buf) {
71                 atomic_inc(&sesInfoAllocCount);
72                 spin_lock_init(&ret_buf->ses_lock);
73                 ret_buf->ses_status = SES_NEW;
74                 ++ret_buf->ses_count;
75                 INIT_LIST_HEAD(&ret_buf->smb_ses_list);
76                 INIT_LIST_HEAD(&ret_buf->tcon_list);
77                 mutex_init(&ret_buf->session_mutex);
78                 spin_lock_init(&ret_buf->iface_lock);
79                 INIT_LIST_HEAD(&ret_buf->iface_list);
80                 spin_lock_init(&ret_buf->chan_lock);
81         }
82         return ret_buf;
83 }
84
85 void
86 sesInfoFree(struct cifs_ses *buf_to_free)
87 {
88         struct cifs_server_iface *iface = NULL, *niface = NULL;
89
90         if (buf_to_free == NULL) {
91                 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
92                 return;
93         }
94
95         atomic_dec(&sesInfoAllocCount);
96         kfree(buf_to_free->serverOS);
97         kfree(buf_to_free->serverDomain);
98         kfree(buf_to_free->serverNOS);
99         kfree_sensitive(buf_to_free->password);
100         kfree(buf_to_free->user_name);
101         kfree(buf_to_free->domainName);
102         kfree_sensitive(buf_to_free->auth_key.response);
103         spin_lock(&buf_to_free->iface_lock);
104         list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
105                                  iface_head)
106                 kref_put(&iface->refcount, release_iface);
107         spin_unlock(&buf_to_free->iface_lock);
108         kfree_sensitive(buf_to_free);
109 }
110
111 struct cifs_tcon *
112 tconInfoAlloc(void)
113 {
114         struct cifs_tcon *ret_buf;
115
116         ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
117         if (!ret_buf)
118                 return NULL;
119         ret_buf->crfid.fid = kzalloc(sizeof(*ret_buf->crfid.fid), GFP_KERNEL);
120         if (!ret_buf->crfid.fid) {
121                 kfree(ret_buf);
122                 return NULL;
123         }
124         INIT_LIST_HEAD(&ret_buf->crfid.dirents.entries);
125         mutex_init(&ret_buf->crfid.dirents.de_mutex);
126
127         atomic_inc(&tconInfoAllocCount);
128         ret_buf->status = TID_NEW;
129         ++ret_buf->tc_count;
130         spin_lock_init(&ret_buf->tc_lock);
131         INIT_LIST_HEAD(&ret_buf->openFileList);
132         INIT_LIST_HEAD(&ret_buf->tcon_list);
133         spin_lock_init(&ret_buf->open_file_lock);
134         mutex_init(&ret_buf->crfid.fid_mutex);
135         spin_lock_init(&ret_buf->stat_lock);
136         atomic_set(&ret_buf->num_local_opens, 0);
137         atomic_set(&ret_buf->num_remote_opens, 0);
138
139         return ret_buf;
140 }
141
142 void
143 tconInfoFree(struct cifs_tcon *buf_to_free)
144 {
145         if (buf_to_free == NULL) {
146                 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
147                 return;
148         }
149         atomic_dec(&tconInfoAllocCount);
150         kfree(buf_to_free->nativeFileSystem);
151         kfree_sensitive(buf_to_free->password);
152         kfree(buf_to_free->crfid.fid);
153         kfree(buf_to_free);
154 }
155
156 struct smb_hdr *
157 cifs_buf_get(void)
158 {
159         struct smb_hdr *ret_buf = NULL;
160         /*
161          * SMB2 header is bigger than CIFS one - no problems to clean some
162          * more bytes for CIFS.
163          */
164         size_t buf_size = sizeof(struct smb2_hdr);
165
166         /*
167          * We could use negotiated size instead of max_msgsize -
168          * but it may be more efficient to always alloc same size
169          * albeit slightly larger than necessary and maxbuffersize
170          * defaults to this and can not be bigger.
171          */
172         ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
173
174         /* clear the first few header bytes */
175         /* for most paths, more is cleared in header_assemble */
176         memset(ret_buf, 0, buf_size + 3);
177         atomic_inc(&buf_alloc_count);
178 #ifdef CONFIG_CIFS_STATS2
179         atomic_inc(&total_buf_alloc_count);
180 #endif /* CONFIG_CIFS_STATS2 */
181
182         return ret_buf;
183 }
184
185 void
186 cifs_buf_release(void *buf_to_free)
187 {
188         if (buf_to_free == NULL) {
189                 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
190                 return;
191         }
192         mempool_free(buf_to_free, cifs_req_poolp);
193
194         atomic_dec(&buf_alloc_count);
195         return;
196 }
197
198 struct smb_hdr *
199 cifs_small_buf_get(void)
200 {
201         struct smb_hdr *ret_buf = NULL;
202
203 /* We could use negotiated size instead of max_msgsize -
204    but it may be more efficient to always alloc same size
205    albeit slightly larger than necessary and maxbuffersize
206    defaults to this and can not be bigger */
207         ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
208         /* No need to clear memory here, cleared in header assemble */
209         /*      memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
210         atomic_inc(&small_buf_alloc_count);
211 #ifdef CONFIG_CIFS_STATS2
212         atomic_inc(&total_small_buf_alloc_count);
213 #endif /* CONFIG_CIFS_STATS2 */
214
215         return ret_buf;
216 }
217
218 void
219 cifs_small_buf_release(void *buf_to_free)
220 {
221
222         if (buf_to_free == NULL) {
223                 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
224                 return;
225         }
226         mempool_free(buf_to_free, cifs_sm_req_poolp);
227
228         atomic_dec(&small_buf_alloc_count);
229         return;
230 }
231
232 void
233 free_rsp_buf(int resp_buftype, void *rsp)
234 {
235         if (resp_buftype == CIFS_SMALL_BUFFER)
236                 cifs_small_buf_release(rsp);
237         else if (resp_buftype == CIFS_LARGE_BUFFER)
238                 cifs_buf_release(rsp);
239 }
240
241 /* NB: MID can not be set if treeCon not passed in, in that
242    case it is responsbility of caller to set the mid */
243 void
244 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
245                 const struct cifs_tcon *treeCon, int word_count
246                 /* length of fixed section (word count) in two byte units  */)
247 {
248         char *temp = (char *) buffer;
249
250         memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
251
252         buffer->smb_buf_length = cpu_to_be32(
253             (2 * word_count) + sizeof(struct smb_hdr) -
254             4 /*  RFC 1001 length field does not count */  +
255             2 /* for bcc field itself */) ;
256
257         buffer->Protocol[0] = 0xFF;
258         buffer->Protocol[1] = 'S';
259         buffer->Protocol[2] = 'M';
260         buffer->Protocol[3] = 'B';
261         buffer->Command = smb_command;
262         buffer->Flags = 0x00;   /* case sensitive */
263         buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
264         buffer->Pid = cpu_to_le16((__u16)current->tgid);
265         buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
266         if (treeCon) {
267                 buffer->Tid = treeCon->tid;
268                 if (treeCon->ses) {
269                         if (treeCon->ses->capabilities & CAP_UNICODE)
270                                 buffer->Flags2 |= SMBFLG2_UNICODE;
271                         if (treeCon->ses->capabilities & CAP_STATUS32)
272                                 buffer->Flags2 |= SMBFLG2_ERR_STATUS;
273
274                         /* Uid is not converted */
275                         buffer->Uid = treeCon->ses->Suid;
276                         if (treeCon->ses->server)
277                                 buffer->Mid = get_next_mid(treeCon->ses->server);
278                 }
279                 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
280                         buffer->Flags2 |= SMBFLG2_DFS;
281                 if (treeCon->nocase)
282                         buffer->Flags  |= SMBFLG_CASELESS;
283                 if ((treeCon->ses) && (treeCon->ses->server))
284                         if (treeCon->ses->server->sign)
285                                 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
286         }
287
288 /*  endian conversion of flags is now done just before sending */
289         buffer->WordCount = (char) word_count;
290         return;
291 }
292
293 static int
294 check_smb_hdr(struct smb_hdr *smb)
295 {
296         /* does it have the right SMB "signature" ? */
297         if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
298                 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
299                          *(unsigned int *)smb->Protocol);
300                 return 1;
301         }
302
303         /* if it's a response then accept */
304         if (smb->Flags & SMBFLG_RESPONSE)
305                 return 0;
306
307         /* only one valid case where server sends us request */
308         if (smb->Command == SMB_COM_LOCKING_ANDX)
309                 return 0;
310
311         cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
312                  get_mid(smb));
313         return 1;
314 }
315
316 int
317 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
318 {
319         struct smb_hdr *smb = (struct smb_hdr *)buf;
320         __u32 rfclen = be32_to_cpu(smb->smb_buf_length);
321         __u32 clc_len;  /* calculated length */
322         cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
323                  total_read, rfclen);
324
325         /* is this frame too small to even get to a BCC? */
326         if (total_read < 2 + sizeof(struct smb_hdr)) {
327                 if ((total_read >= sizeof(struct smb_hdr) - 1)
328                             && (smb->Status.CifsError != 0)) {
329                         /* it's an error return */
330                         smb->WordCount = 0;
331                         /* some error cases do not return wct and bcc */
332                         return 0;
333                 } else if ((total_read == sizeof(struct smb_hdr) + 1) &&
334                                 (smb->WordCount == 0)) {
335                         char *tmp = (char *)smb;
336                         /* Need to work around a bug in two servers here */
337                         /* First, check if the part of bcc they sent was zero */
338                         if (tmp[sizeof(struct smb_hdr)] == 0) {
339                                 /* some servers return only half of bcc
340                                  * on simple responses (wct, bcc both zero)
341                                  * in particular have seen this on
342                                  * ulogoffX and FindClose. This leaves
343                                  * one byte of bcc potentially unitialized
344                                  */
345                                 /* zero rest of bcc */
346                                 tmp[sizeof(struct smb_hdr)+1] = 0;
347                                 return 0;
348                         }
349                         cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
350                 } else {
351                         cifs_dbg(VFS, "Length less than smb header size\n");
352                 }
353                 return -EIO;
354         }
355
356         /* otherwise, there is enough to get to the BCC */
357         if (check_smb_hdr(smb))
358                 return -EIO;
359         clc_len = smbCalcSize(smb, server);
360
361         if (4 + rfclen != total_read) {
362                 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
363                          rfclen);
364                 return -EIO;
365         }
366
367         if (4 + rfclen != clc_len) {
368                 __u16 mid = get_mid(smb);
369                 /* check if bcc wrapped around for large read responses */
370                 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
371                         /* check if lengths match mod 64K */
372                         if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
373                                 return 0; /* bcc wrapped */
374                 }
375                 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
376                          clc_len, 4 + rfclen, mid);
377
378                 if (4 + rfclen < clc_len) {
379                         cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
380                                  rfclen, mid);
381                         return -EIO;
382                 } else if (rfclen > clc_len + 512) {
383                         /*
384                          * Some servers (Windows XP in particular) send more
385                          * data than the lengths in the SMB packet would
386                          * indicate on certain calls (byte range locks and
387                          * trans2 find first calls in particular). While the
388                          * client can handle such a frame by ignoring the
389                          * trailing data, we choose limit the amount of extra
390                          * data to 512 bytes.
391                          */
392                         cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
393                                  rfclen, mid);
394                         return -EIO;
395                 }
396         }
397         return 0;
398 }
399
400 bool
401 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
402 {
403         struct smb_hdr *buf = (struct smb_hdr *)buffer;
404         struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
405         struct cifs_ses *ses;
406         struct cifs_tcon *tcon;
407         struct cifsInodeInfo *pCifsInode;
408         struct cifsFileInfo *netfile;
409
410         cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
411         if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
412            (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
413                 struct smb_com_transaction_change_notify_rsp *pSMBr =
414                         (struct smb_com_transaction_change_notify_rsp *)buf;
415                 struct file_notify_information *pnotify;
416                 __u32 data_offset = 0;
417                 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
418
419                 if (get_bcc(buf) > sizeof(struct file_notify_information)) {
420                         data_offset = le32_to_cpu(pSMBr->DataOffset);
421
422                         if (data_offset >
423                             len - sizeof(struct file_notify_information)) {
424                                 cifs_dbg(FYI, "Invalid data_offset %u\n",
425                                          data_offset);
426                                 return true;
427                         }
428                         pnotify = (struct file_notify_information *)
429                                 ((char *)&pSMBr->hdr.Protocol + data_offset);
430                         cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
431                                  pnotify->FileName, pnotify->Action);
432                         /*   cifs_dump_mem("Rcvd notify Data: ",buf,
433                                 sizeof(struct smb_hdr)+60); */
434                         return true;
435                 }
436                 if (pSMBr->hdr.Status.CifsError) {
437                         cifs_dbg(FYI, "notify err 0x%x\n",
438                                  pSMBr->hdr.Status.CifsError);
439                         return true;
440                 }
441                 return false;
442         }
443         if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
444                 return false;
445         if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
446                 /* no sense logging error on invalid handle on oplock
447                    break - harmless race between close request and oplock
448                    break response is expected from time to time writing out
449                    large dirty files cached on the client */
450                 if ((NT_STATUS_INVALID_HANDLE) ==
451                    le32_to_cpu(pSMB->hdr.Status.CifsError)) {
452                         cifs_dbg(FYI, "Invalid handle on oplock break\n");
453                         return true;
454                 } else if (ERRbadfid ==
455                    le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
456                         return true;
457                 } else {
458                         return false; /* on valid oplock brk we get "request" */
459                 }
460         }
461         if (pSMB->hdr.WordCount != 8)
462                 return false;
463
464         cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
465                  pSMB->LockType, pSMB->OplockLevel);
466         if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
467                 return false;
468
469         /* look up tcon based on tid & uid */
470         spin_lock(&cifs_tcp_ses_lock);
471         list_for_each_entry(ses, &srv->smb_ses_list, smb_ses_list) {
472                 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
473                         if (tcon->tid != buf->Tid)
474                                 continue;
475
476                         cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
477                         spin_lock(&tcon->open_file_lock);
478                         list_for_each_entry(netfile, &tcon->openFileList, tlist) {
479                                 if (pSMB->Fid != netfile->fid.netfid)
480                                         continue;
481
482                                 cifs_dbg(FYI, "file id match, oplock break\n");
483                                 pCifsInode = CIFS_I(d_inode(netfile->dentry));
484
485                                 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
486                                         &pCifsInode->flags);
487
488                                 netfile->oplock_epoch = 0;
489                                 netfile->oplock_level = pSMB->OplockLevel;
490                                 netfile->oplock_break_cancelled = false;
491                                 cifs_queue_oplock_break(netfile);
492
493                                 spin_unlock(&tcon->open_file_lock);
494                                 spin_unlock(&cifs_tcp_ses_lock);
495                                 return true;
496                         }
497                         spin_unlock(&tcon->open_file_lock);
498                         spin_unlock(&cifs_tcp_ses_lock);
499                         cifs_dbg(FYI, "No matching file for oplock break\n");
500                         return true;
501                 }
502         }
503         spin_unlock(&cifs_tcp_ses_lock);
504         cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
505         return true;
506 }
507
508 void
509 dump_smb(void *buf, int smb_buf_length)
510 {
511         if (traceSMB == 0)
512                 return;
513
514         print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
515                        smb_buf_length, true);
516 }
517
518 void
519 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
520 {
521         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
522                 struct cifs_tcon *tcon = NULL;
523
524                 if (cifs_sb->master_tlink)
525                         tcon = cifs_sb_master_tcon(cifs_sb);
526
527                 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
528                 cifs_sb->mnt_cifs_serverino_autodisabled = true;
529                 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
530                          tcon ? tcon->treeName : "new server");
531                 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
532                 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
533
534         }
535 }
536
537 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
538 {
539         oplock &= 0xF;
540
541         if (oplock == OPLOCK_EXCLUSIVE) {
542                 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
543                 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
544                          &cinode->netfs.inode);
545         } else if (oplock == OPLOCK_READ) {
546                 cinode->oplock = CIFS_CACHE_READ_FLG;
547                 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
548                          &cinode->netfs.inode);
549         } else
550                 cinode->oplock = 0;
551 }
552
553 /*
554  * We wait for oplock breaks to be processed before we attempt to perform
555  * writes.
556  */
557 int cifs_get_writer(struct cifsInodeInfo *cinode)
558 {
559         int rc;
560
561 start:
562         rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
563                          TASK_KILLABLE);
564         if (rc)
565                 return rc;
566
567         spin_lock(&cinode->writers_lock);
568         if (!cinode->writers)
569                 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
570         cinode->writers++;
571         /* Check to see if we have started servicing an oplock break */
572         if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
573                 cinode->writers--;
574                 if (cinode->writers == 0) {
575                         clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
576                         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
577                 }
578                 spin_unlock(&cinode->writers_lock);
579                 goto start;
580         }
581         spin_unlock(&cinode->writers_lock);
582         return 0;
583 }
584
585 void cifs_put_writer(struct cifsInodeInfo *cinode)
586 {
587         spin_lock(&cinode->writers_lock);
588         cinode->writers--;
589         if (cinode->writers == 0) {
590                 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
591                 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
592         }
593         spin_unlock(&cinode->writers_lock);
594 }
595
596 /**
597  * cifs_queue_oplock_break - queue the oplock break handler for cfile
598  * @cfile: The file to break the oplock on
599  *
600  * This function is called from the demultiplex thread when it
601  * receives an oplock break for @cfile.
602  *
603  * Assumes the tcon->open_file_lock is held.
604  * Assumes cfile->file_info_lock is NOT held.
605  */
606 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
607 {
608         /*
609          * Bump the handle refcount now while we hold the
610          * open_file_lock to enforce the validity of it for the oplock
611          * break handler. The matching put is done at the end of the
612          * handler.
613          */
614         cifsFileInfo_get(cfile);
615
616         queue_work(cifsoplockd_wq, &cfile->oplock_break);
617 }
618
619 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
620 {
621         clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
622         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
623 }
624
625 bool
626 backup_cred(struct cifs_sb_info *cifs_sb)
627 {
628         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
629                 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
630                         return true;
631         }
632         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
633                 if (in_group_p(cifs_sb->ctx->backupgid))
634                         return true;
635         }
636
637         return false;
638 }
639
640 void
641 cifs_del_pending_open(struct cifs_pending_open *open)
642 {
643         spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
644         list_del(&open->olist);
645         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
646 }
647
648 void
649 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
650                              struct cifs_pending_open *open)
651 {
652         memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
653         open->oplock = CIFS_OPLOCK_NO_CHANGE;
654         open->tlink = tlink;
655         fid->pending_open = open;
656         list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
657 }
658
659 void
660 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
661                       struct cifs_pending_open *open)
662 {
663         spin_lock(&tlink_tcon(tlink)->open_file_lock);
664         cifs_add_pending_open_locked(fid, tlink, open);
665         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
666 }
667
668 /*
669  * Critical section which runs after acquiring deferred_lock.
670  * As there is no reference count on cifs_deferred_close, pdclose
671  * should not be used outside deferred_lock.
672  */
673 bool
674 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
675 {
676         struct cifs_deferred_close *dclose;
677
678         list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
679                 if ((dclose->netfid == cfile->fid.netfid) &&
680                         (dclose->persistent_fid == cfile->fid.persistent_fid) &&
681                         (dclose->volatile_fid == cfile->fid.volatile_fid)) {
682                         *pdclose = dclose;
683                         return true;
684                 }
685         }
686         return false;
687 }
688
689 /*
690  * Critical section which runs after acquiring deferred_lock.
691  */
692 void
693 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
694 {
695         bool is_deferred = false;
696         struct cifs_deferred_close *pdclose;
697
698         is_deferred = cifs_is_deferred_close(cfile, &pdclose);
699         if (is_deferred) {
700                 kfree(dclose);
701                 return;
702         }
703
704         dclose->tlink = cfile->tlink;
705         dclose->netfid = cfile->fid.netfid;
706         dclose->persistent_fid = cfile->fid.persistent_fid;
707         dclose->volatile_fid = cfile->fid.volatile_fid;
708         list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
709 }
710
711 /*
712  * Critical section which runs after acquiring deferred_lock.
713  */
714 void
715 cifs_del_deferred_close(struct cifsFileInfo *cfile)
716 {
717         bool is_deferred = false;
718         struct cifs_deferred_close *dclose;
719
720         is_deferred = cifs_is_deferred_close(cfile, &dclose);
721         if (!is_deferred)
722                 return;
723         list_del(&dclose->dlist);
724         kfree(dclose);
725 }
726
727 void
728 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
729 {
730         struct cifsFileInfo *cfile = NULL;
731         struct file_list *tmp_list, *tmp_next_list;
732         struct list_head file_head;
733
734         if (cifs_inode == NULL)
735                 return;
736
737         INIT_LIST_HEAD(&file_head);
738         spin_lock(&cifs_inode->open_file_lock);
739         list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
740                 if (delayed_work_pending(&cfile->deferred)) {
741                         if (cancel_delayed_work(&cfile->deferred)) {
742                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
743                                 if (tmp_list == NULL)
744                                         break;
745                                 tmp_list->cfile = cfile;
746                                 list_add_tail(&tmp_list->list, &file_head);
747                         }
748                 }
749         }
750         spin_unlock(&cifs_inode->open_file_lock);
751
752         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
753                 _cifsFileInfo_put(tmp_list->cfile, true, false);
754                 list_del(&tmp_list->list);
755                 kfree(tmp_list);
756         }
757 }
758
759 void
760 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
761 {
762         struct cifsFileInfo *cfile;
763         struct file_list *tmp_list, *tmp_next_list;
764         struct list_head file_head;
765
766         INIT_LIST_HEAD(&file_head);
767         spin_lock(&tcon->open_file_lock);
768         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
769                 if (delayed_work_pending(&cfile->deferred)) {
770                         if (cancel_delayed_work(&cfile->deferred)) {
771                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
772                                 if (tmp_list == NULL)
773                                         break;
774                                 tmp_list->cfile = cfile;
775                                 list_add_tail(&tmp_list->list, &file_head);
776                         }
777                 }
778         }
779         spin_unlock(&tcon->open_file_lock);
780
781         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
782                 _cifsFileInfo_put(tmp_list->cfile, true, false);
783                 list_del(&tmp_list->list);
784                 kfree(tmp_list);
785         }
786 }
787 void
788 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
789 {
790         struct cifsFileInfo *cfile;
791         struct file_list *tmp_list, *tmp_next_list;
792         struct list_head file_head;
793         void *page;
794         const char *full_path;
795
796         INIT_LIST_HEAD(&file_head);
797         page = alloc_dentry_path();
798         spin_lock(&tcon->open_file_lock);
799         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
800                 full_path = build_path_from_dentry(cfile->dentry, page);
801                 if (strstr(full_path, path)) {
802                         if (delayed_work_pending(&cfile->deferred)) {
803                                 if (cancel_delayed_work(&cfile->deferred)) {
804                                         tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
805                                         if (tmp_list == NULL)
806                                                 break;
807                                         tmp_list->cfile = cfile;
808                                         list_add_tail(&tmp_list->list, &file_head);
809                                 }
810                         }
811                 }
812         }
813         spin_unlock(&tcon->open_file_lock);
814
815         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
816                 _cifsFileInfo_put(tmp_list->cfile, true, false);
817                 list_del(&tmp_list->list);
818                 kfree(tmp_list);
819         }
820         free_dentry_path(page);
821 }
822
823 /* parses DFS refferal V3 structure
824  * caller is responsible for freeing target_nodes
825  * returns:
826  * - on success - 0
827  * - on failure - errno
828  */
829 int
830 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
831                     unsigned int *num_of_nodes,
832                     struct dfs_info3_param **target_nodes,
833                     const struct nls_table *nls_codepage, int remap,
834                     const char *searchName, bool is_unicode)
835 {
836         int i, rc = 0;
837         char *data_end;
838         struct dfs_referral_level_3 *ref;
839
840         *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
841
842         if (*num_of_nodes < 1) {
843                 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
844                          *num_of_nodes);
845                 rc = -EINVAL;
846                 goto parse_DFS_referrals_exit;
847         }
848
849         ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
850         if (ref->VersionNumber != cpu_to_le16(3)) {
851                 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
852                          le16_to_cpu(ref->VersionNumber));
853                 rc = -EINVAL;
854                 goto parse_DFS_referrals_exit;
855         }
856
857         /* get the upper boundary of the resp buffer */
858         data_end = (char *)rsp + rsp_size;
859
860         cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
861                  *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
862
863         *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
864                                 GFP_KERNEL);
865         if (*target_nodes == NULL) {
866                 rc = -ENOMEM;
867                 goto parse_DFS_referrals_exit;
868         }
869
870         /* collect necessary data from referrals */
871         for (i = 0; i < *num_of_nodes; i++) {
872                 char *temp;
873                 int max_len;
874                 struct dfs_info3_param *node = (*target_nodes)+i;
875
876                 node->flags = le32_to_cpu(rsp->DFSFlags);
877                 if (is_unicode) {
878                         __le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
879                                                 GFP_KERNEL);
880                         if (tmp == NULL) {
881                                 rc = -ENOMEM;
882                                 goto parse_DFS_referrals_exit;
883                         }
884                         cifsConvertToUTF16((__le16 *) tmp, searchName,
885                                            PATH_MAX, nls_codepage, remap);
886                         node->path_consumed = cifs_utf16_bytes(tmp,
887                                         le16_to_cpu(rsp->PathConsumed),
888                                         nls_codepage);
889                         kfree(tmp);
890                 } else
891                         node->path_consumed = le16_to_cpu(rsp->PathConsumed);
892
893                 node->server_type = le16_to_cpu(ref->ServerType);
894                 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
895
896                 /* copy DfsPath */
897                 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
898                 max_len = data_end - temp;
899                 node->path_name = cifs_strndup_from_utf16(temp, max_len,
900                                                 is_unicode, nls_codepage);
901                 if (!node->path_name) {
902                         rc = -ENOMEM;
903                         goto parse_DFS_referrals_exit;
904                 }
905
906                 /* copy link target UNC */
907                 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
908                 max_len = data_end - temp;
909                 node->node_name = cifs_strndup_from_utf16(temp, max_len,
910                                                 is_unicode, nls_codepage);
911                 if (!node->node_name) {
912                         rc = -ENOMEM;
913                         goto parse_DFS_referrals_exit;
914                 }
915
916                 node->ttl = le32_to_cpu(ref->TimeToLive);
917
918                 ref++;
919         }
920
921 parse_DFS_referrals_exit:
922         if (rc) {
923                 free_dfs_info_array(*target_nodes, *num_of_nodes);
924                 *target_nodes = NULL;
925                 *num_of_nodes = 0;
926         }
927         return rc;
928 }
929
930 struct cifs_aio_ctx *
931 cifs_aio_ctx_alloc(void)
932 {
933         struct cifs_aio_ctx *ctx;
934
935         /*
936          * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
937          * to false so that we know when we have to unreference pages within
938          * cifs_aio_ctx_release()
939          */
940         ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
941         if (!ctx)
942                 return NULL;
943
944         INIT_LIST_HEAD(&ctx->list);
945         mutex_init(&ctx->aio_mutex);
946         init_completion(&ctx->done);
947         kref_init(&ctx->refcount);
948         return ctx;
949 }
950
951 void
952 cifs_aio_ctx_release(struct kref *refcount)
953 {
954         struct cifs_aio_ctx *ctx = container_of(refcount,
955                                         struct cifs_aio_ctx, refcount);
956
957         cifsFileInfo_put(ctx->cfile);
958
959         /*
960          * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
961          * which means that iov_iter_get_pages() was a success and thus that
962          * we have taken reference on pages.
963          */
964         if (ctx->bv) {
965                 unsigned i;
966
967                 for (i = 0; i < ctx->npages; i++) {
968                         if (ctx->should_dirty)
969                                 set_page_dirty(ctx->bv[i].bv_page);
970                         put_page(ctx->bv[i].bv_page);
971                 }
972                 kvfree(ctx->bv);
973         }
974
975         kfree(ctx);
976 }
977
978 #define CIFS_AIO_KMALLOC_LIMIT (1024 * 1024)
979
980 int
981 setup_aio_ctx_iter(struct cifs_aio_ctx *ctx, struct iov_iter *iter, int rw)
982 {
983         ssize_t rc;
984         unsigned int cur_npages;
985         unsigned int npages = 0;
986         unsigned int i;
987         size_t len;
988         size_t count = iov_iter_count(iter);
989         unsigned int saved_len;
990         size_t start;
991         unsigned int max_pages = iov_iter_npages(iter, INT_MAX);
992         struct page **pages = NULL;
993         struct bio_vec *bv = NULL;
994
995         if (iov_iter_is_kvec(iter)) {
996                 memcpy(&ctx->iter, iter, sizeof(*iter));
997                 ctx->len = count;
998                 iov_iter_advance(iter, count);
999                 return 0;
1000         }
1001
1002         if (array_size(max_pages, sizeof(*bv)) <= CIFS_AIO_KMALLOC_LIMIT)
1003                 bv = kmalloc_array(max_pages, sizeof(*bv), GFP_KERNEL);
1004
1005         if (!bv) {
1006                 bv = vmalloc(array_size(max_pages, sizeof(*bv)));
1007                 if (!bv)
1008                         return -ENOMEM;
1009         }
1010
1011         if (array_size(max_pages, sizeof(*pages)) <= CIFS_AIO_KMALLOC_LIMIT)
1012                 pages = kmalloc_array(max_pages, sizeof(*pages), GFP_KERNEL);
1013
1014         if (!pages) {
1015                 pages = vmalloc(array_size(max_pages, sizeof(*pages)));
1016                 if (!pages) {
1017                         kvfree(bv);
1018                         return -ENOMEM;
1019                 }
1020         }
1021
1022         saved_len = count;
1023
1024         while (count && npages < max_pages) {
1025                 rc = iov_iter_get_pages2(iter, pages, count, max_pages, &start);
1026                 if (rc < 0) {
1027                         cifs_dbg(VFS, "Couldn't get user pages (rc=%zd)\n", rc);
1028                         break;
1029                 }
1030
1031                 if (rc > count) {
1032                         cifs_dbg(VFS, "get pages rc=%zd more than %zu\n", rc,
1033                                  count);
1034                         break;
1035                 }
1036
1037                 count -= rc;
1038                 rc += start;
1039                 cur_npages = DIV_ROUND_UP(rc, PAGE_SIZE);
1040
1041                 if (npages + cur_npages > max_pages) {
1042                         cifs_dbg(VFS, "out of vec array capacity (%u vs %u)\n",
1043                                  npages + cur_npages, max_pages);
1044                         break;
1045                 }
1046
1047                 for (i = 0; i < cur_npages; i++) {
1048                         len = rc > PAGE_SIZE ? PAGE_SIZE : rc;
1049                         bv[npages + i].bv_page = pages[i];
1050                         bv[npages + i].bv_offset = start;
1051                         bv[npages + i].bv_len = len - start;
1052                         rc -= len;
1053                         start = 0;
1054                 }
1055
1056                 npages += cur_npages;
1057         }
1058
1059         kvfree(pages);
1060         ctx->bv = bv;
1061         ctx->len = saved_len - count;
1062         ctx->npages = npages;
1063         iov_iter_bvec(&ctx->iter, rw, ctx->bv, npages, ctx->len);
1064         return 0;
1065 }
1066
1067 /**
1068  * cifs_alloc_hash - allocate hash and hash context together
1069  * @name: The name of the crypto hash algo
1070  * @shash: Where to put the pointer to the hash algo
1071  * @sdesc: Where to put the pointer to the hash descriptor
1072  *
1073  * The caller has to make sure @sdesc is initialized to either NULL or
1074  * a valid context. Both can be freed via cifs_free_hash().
1075  */
1076 int
1077 cifs_alloc_hash(const char *name,
1078                 struct crypto_shash **shash, struct sdesc **sdesc)
1079 {
1080         int rc = 0;
1081         size_t size;
1082
1083         if (*sdesc != NULL)
1084                 return 0;
1085
1086         *shash = crypto_alloc_shash(name, 0, 0);
1087         if (IS_ERR(*shash)) {
1088                 cifs_dbg(VFS, "Could not allocate crypto %s\n", name);
1089                 rc = PTR_ERR(*shash);
1090                 *shash = NULL;
1091                 *sdesc = NULL;
1092                 return rc;
1093         }
1094
1095         size = sizeof(struct shash_desc) + crypto_shash_descsize(*shash);
1096         *sdesc = kmalloc(size, GFP_KERNEL);
1097         if (*sdesc == NULL) {
1098                 cifs_dbg(VFS, "no memory left to allocate crypto %s\n", name);
1099                 crypto_free_shash(*shash);
1100                 *shash = NULL;
1101                 return -ENOMEM;
1102         }
1103
1104         (*sdesc)->shash.tfm = *shash;
1105         return 0;
1106 }
1107
1108 /**
1109  * cifs_free_hash - free hash and hash context together
1110  * @shash: Where to find the pointer to the hash algo
1111  * @sdesc: Where to find the pointer to the hash descriptor
1112  *
1113  * Freeing a NULL hash or context is safe.
1114  */
1115 void
1116 cifs_free_hash(struct crypto_shash **shash, struct sdesc **sdesc)
1117 {
1118         kfree(*sdesc);
1119         *sdesc = NULL;
1120         if (*shash)
1121                 crypto_free_shash(*shash);
1122         *shash = NULL;
1123 }
1124
1125 /**
1126  * rqst_page_get_length - obtain the length and offset for a page in smb_rqst
1127  * @rqst: The request descriptor
1128  * @page: The index of the page to query
1129  * @len: Where to store the length for this page:
1130  * @offset: Where to store the offset for this page
1131  */
1132 void rqst_page_get_length(struct smb_rqst *rqst, unsigned int page,
1133                                 unsigned int *len, unsigned int *offset)
1134 {
1135         *len = rqst->rq_pagesz;
1136         *offset = (page == 0) ? rqst->rq_offset : 0;
1137
1138         if (rqst->rq_npages == 1 || page == rqst->rq_npages-1)
1139                 *len = rqst->rq_tailsz;
1140         else if (page == 0)
1141                 *len = rqst->rq_pagesz - rqst->rq_offset;
1142 }
1143
1144 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1145 {
1146         const char *end;
1147
1148         /* skip initial slashes */
1149         while (*unc && (*unc == '\\' || *unc == '/'))
1150                 unc++;
1151
1152         end = unc;
1153
1154         while (*end && !(*end == '\\' || *end == '/'))
1155                 end++;
1156
1157         *h = unc;
1158         *len = end - unc;
1159 }
1160
1161 /**
1162  * copy_path_name - copy src path to dst, possibly truncating
1163  * @dst: The destination buffer
1164  * @src: The source name
1165  *
1166  * returns number of bytes written (including trailing nul)
1167  */
1168 int copy_path_name(char *dst, const char *src)
1169 {
1170         int name_len;
1171
1172         /*
1173          * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1174          * will truncate and strlen(dst) will be PATH_MAX-1
1175          */
1176         name_len = strscpy(dst, src, PATH_MAX);
1177         if (WARN_ON_ONCE(name_len < 0))
1178                 name_len = PATH_MAX-1;
1179
1180         /* we count the trailing nul */
1181         name_len++;
1182         return name_len;
1183 }
1184
1185 struct super_cb_data {
1186         void *data;
1187         struct super_block *sb;
1188 };
1189
1190 static void tcp_super_cb(struct super_block *sb, void *arg)
1191 {
1192         struct super_cb_data *sd = arg;
1193         struct TCP_Server_Info *server = sd->data;
1194         struct cifs_sb_info *cifs_sb;
1195         struct cifs_tcon *tcon;
1196
1197         if (sd->sb)
1198                 return;
1199
1200         cifs_sb = CIFS_SB(sb);
1201         tcon = cifs_sb_master_tcon(cifs_sb);
1202         if (tcon->ses->server == server)
1203                 sd->sb = sb;
1204 }
1205
1206 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1207                                             void *data)
1208 {
1209         struct super_cb_data sd = {
1210                 .data = data,
1211                 .sb = NULL,
1212         };
1213         struct file_system_type **fs_type = (struct file_system_type *[]) {
1214                 &cifs_fs_type, &smb3_fs_type, NULL,
1215         };
1216
1217         for (; *fs_type; fs_type++) {
1218                 iterate_supers_type(*fs_type, f, &sd);
1219                 if (sd.sb) {
1220                         /*
1221                          * Grab an active reference in order to prevent automounts (DFS links)
1222                          * of expiring and then freeing up our cifs superblock pointer while
1223                          * we're doing failover.
1224                          */
1225                         cifs_sb_active(sd.sb);
1226                         return sd.sb;
1227                 }
1228         }
1229         return ERR_PTR(-EINVAL);
1230 }
1231
1232 static void __cifs_put_super(struct super_block *sb)
1233 {
1234         if (!IS_ERR_OR_NULL(sb))
1235                 cifs_sb_deactive(sb);
1236 }
1237
1238 struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server)
1239 {
1240         return __cifs_get_super(tcp_super_cb, server);
1241 }
1242
1243 void cifs_put_tcp_super(struct super_block *sb)
1244 {
1245         __cifs_put_super(sb);
1246 }
1247
1248 #ifdef CONFIG_CIFS_DFS_UPCALL
1249 int match_target_ip(struct TCP_Server_Info *server,
1250                     const char *share, size_t share_len,
1251                     bool *result)
1252 {
1253         int rc;
1254         char *target, *tip = NULL;
1255         struct sockaddr tipaddr;
1256
1257         *result = false;
1258
1259         target = kzalloc(share_len + 3, GFP_KERNEL);
1260         if (!target) {
1261                 rc = -ENOMEM;
1262                 goto out;
1263         }
1264
1265         scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1266
1267         cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1268
1269         rc = dns_resolve_server_name_to_ip(target, &tip, NULL);
1270         if (rc < 0)
1271                 goto out;
1272
1273         cifs_dbg(FYI, "%s: target ip: %s\n", __func__, tip);
1274
1275         if (!cifs_convert_address(&tipaddr, tip, strlen(tip))) {
1276                 cifs_dbg(VFS, "%s: failed to convert target ip address\n",
1277                          __func__);
1278                 rc = -EINVAL;
1279                 goto out;
1280         }
1281
1282         *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr,
1283                                     &tipaddr);
1284         cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1285         rc = 0;
1286
1287 out:
1288         kfree(target);
1289         kfree(tip);
1290
1291         return rc;
1292 }
1293
1294 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1295 {
1296         kfree(cifs_sb->prepath);
1297
1298         if (prefix && *prefix) {
1299                 cifs_sb->prepath = kstrdup(prefix, GFP_ATOMIC);
1300                 if (!cifs_sb->prepath)
1301                         return -ENOMEM;
1302
1303                 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1304         } else
1305                 cifs_sb->prepath = NULL;
1306
1307         cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1308         return 0;
1309 }
1310
1311 /** cifs_dfs_query_info_nonascii_quirk
1312  * Handle weird Windows SMB server behaviour. It responds with
1313  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request
1314  * for "\<server>\<dfsname>\<linkpath>" DFS reference,
1315  * where <dfsname> contains non-ASCII unicode symbols.
1316  *
1317  * Check such DFS reference.
1318  */
1319 int cifs_dfs_query_info_nonascii_quirk(const unsigned int xid,
1320                                        struct cifs_tcon *tcon,
1321                                        struct cifs_sb_info *cifs_sb,
1322                                        const char *linkpath)
1323 {
1324         char *treename, *dfspath, sep;
1325         int treenamelen, linkpathlen, rc;
1326
1327         treename = tcon->treeName;
1328         /* MS-DFSC: All paths in REQ_GET_DFS_REFERRAL and RESP_GET_DFS_REFERRAL
1329          * messages MUST be encoded with exactly one leading backslash, not two
1330          * leading backslashes.
1331          */
1332         sep = CIFS_DIR_SEP(cifs_sb);
1333         if (treename[0] == sep && treename[1] == sep)
1334                 treename++;
1335         linkpathlen = strlen(linkpath);
1336         treenamelen = strnlen(treename, MAX_TREE_SIZE + 1);
1337         dfspath = kzalloc(treenamelen + linkpathlen + 1, GFP_KERNEL);
1338         if (!dfspath)
1339                 return -ENOMEM;
1340         if (treenamelen)
1341                 memcpy(dfspath, treename, treenamelen);
1342         memcpy(dfspath + treenamelen, linkpath, linkpathlen);
1343         rc = dfs_cache_find(xid, tcon->ses, cifs_sb->local_nls,
1344                             cifs_remap(cifs_sb), dfspath, NULL, NULL);
1345         if (rc == 0) {
1346                 cifs_dbg(FYI, "DFS ref '%s' is found, emulate -EREMOTE\n",
1347                          dfspath);
1348                 rc = -EREMOTE;
1349         } else {
1350                 cifs_dbg(FYI, "%s: dfs_cache_find returned %d\n", __func__, rc);
1351         }
1352         kfree(dfspath);
1353         return rc;
1354 }
1355 #endif