Merge tag 'drm-misc-fixes-2023-02-16' of git://anongit.freedesktop.org/drm/drm-misc...
[platform/kernel/linux-rpi.git] / fs / cifs / misc.c
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #endif
25 #include "fs_context.h"
26 #include "cached_dir.h"
27
28 extern mempool_t *cifs_sm_req_poolp;
29 extern mempool_t *cifs_req_poolp;
30
31 /* The xid serves as a useful identifier for each incoming vfs request,
32    in a similar way to the mid which is useful to track each sent smb,
33    and CurrentXid can also provide a running counter (although it
34    will eventually wrap past zero) of the total vfs operations handled
35    since the cifs fs was mounted */
36
37 unsigned int
38 _get_xid(void)
39 {
40         unsigned int xid;
41
42         spin_lock(&GlobalMid_Lock);
43         GlobalTotalActiveXid++;
44
45         /* keep high water mark for number of simultaneous ops in filesystem */
46         if (GlobalTotalActiveXid > GlobalMaxActiveXid)
47                 GlobalMaxActiveXid = GlobalTotalActiveXid;
48         if (GlobalTotalActiveXid > 65000)
49                 cifs_dbg(FYI, "warning: more than 65000 requests active\n");
50         xid = GlobalCurrentXid++;
51         spin_unlock(&GlobalMid_Lock);
52         return xid;
53 }
54
55 void
56 _free_xid(unsigned int xid)
57 {
58         spin_lock(&GlobalMid_Lock);
59         /* if (GlobalTotalActiveXid == 0)
60                 BUG(); */
61         GlobalTotalActiveXid--;
62         spin_unlock(&GlobalMid_Lock);
63 }
64
65 struct cifs_ses *
66 sesInfoAlloc(void)
67 {
68         struct cifs_ses *ret_buf;
69
70         ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
71         if (ret_buf) {
72                 atomic_inc(&sesInfoAllocCount);
73                 spin_lock_init(&ret_buf->ses_lock);
74                 ret_buf->ses_status = SES_NEW;
75                 ++ret_buf->ses_count;
76                 INIT_LIST_HEAD(&ret_buf->smb_ses_list);
77                 INIT_LIST_HEAD(&ret_buf->tcon_list);
78                 mutex_init(&ret_buf->session_mutex);
79                 spin_lock_init(&ret_buf->iface_lock);
80                 INIT_LIST_HEAD(&ret_buf->iface_list);
81                 spin_lock_init(&ret_buf->chan_lock);
82         }
83         return ret_buf;
84 }
85
86 void
87 sesInfoFree(struct cifs_ses *buf_to_free)
88 {
89         struct cifs_server_iface *iface = NULL, *niface = NULL;
90
91         if (buf_to_free == NULL) {
92                 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
93                 return;
94         }
95
96         atomic_dec(&sesInfoAllocCount);
97         kfree(buf_to_free->serverOS);
98         kfree(buf_to_free->serverDomain);
99         kfree(buf_to_free->serverNOS);
100         kfree_sensitive(buf_to_free->password);
101         kfree(buf_to_free->user_name);
102         kfree(buf_to_free->domainName);
103         kfree_sensitive(buf_to_free->auth_key.response);
104         spin_lock(&buf_to_free->iface_lock);
105         list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
106                                  iface_head)
107                 kref_put(&iface->refcount, release_iface);
108         spin_unlock(&buf_to_free->iface_lock);
109         kfree_sensitive(buf_to_free);
110 }
111
112 struct cifs_tcon *
113 tconInfoAlloc(void)
114 {
115         struct cifs_tcon *ret_buf;
116
117         ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
118         if (!ret_buf)
119                 return NULL;
120         ret_buf->cfids = init_cached_dirs();
121         if (!ret_buf->cfids) {
122                 kfree(ret_buf);
123                 return NULL;
124         }
125
126         atomic_inc(&tconInfoAllocCount);
127         ret_buf->status = TID_NEW;
128         ++ret_buf->tc_count;
129         spin_lock_init(&ret_buf->tc_lock);
130         INIT_LIST_HEAD(&ret_buf->openFileList);
131         INIT_LIST_HEAD(&ret_buf->tcon_list);
132         spin_lock_init(&ret_buf->open_file_lock);
133         spin_lock_init(&ret_buf->stat_lock);
134         atomic_set(&ret_buf->num_local_opens, 0);
135         atomic_set(&ret_buf->num_remote_opens, 0);
136
137         return ret_buf;
138 }
139
140 void
141 tconInfoFree(struct cifs_tcon *tcon)
142 {
143         if (tcon == NULL) {
144                 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
145                 return;
146         }
147         free_cached_dirs(tcon->cfids);
148         atomic_dec(&tconInfoAllocCount);
149         kfree(tcon->nativeFileSystem);
150         kfree_sensitive(tcon->password);
151         kfree(tcon);
152 }
153
154 struct smb_hdr *
155 cifs_buf_get(void)
156 {
157         struct smb_hdr *ret_buf = NULL;
158         /*
159          * SMB2 header is bigger than CIFS one - no problems to clean some
160          * more bytes for CIFS.
161          */
162         size_t buf_size = sizeof(struct smb2_hdr);
163
164         /*
165          * We could use negotiated size instead of max_msgsize -
166          * but it may be more efficient to always alloc same size
167          * albeit slightly larger than necessary and maxbuffersize
168          * defaults to this and can not be bigger.
169          */
170         ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
171
172         /* clear the first few header bytes */
173         /* for most paths, more is cleared in header_assemble */
174         memset(ret_buf, 0, buf_size + 3);
175         atomic_inc(&buf_alloc_count);
176 #ifdef CONFIG_CIFS_STATS2
177         atomic_inc(&total_buf_alloc_count);
178 #endif /* CONFIG_CIFS_STATS2 */
179
180         return ret_buf;
181 }
182
183 void
184 cifs_buf_release(void *buf_to_free)
185 {
186         if (buf_to_free == NULL) {
187                 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
188                 return;
189         }
190         mempool_free(buf_to_free, cifs_req_poolp);
191
192         atomic_dec(&buf_alloc_count);
193         return;
194 }
195
196 struct smb_hdr *
197 cifs_small_buf_get(void)
198 {
199         struct smb_hdr *ret_buf = NULL;
200
201 /* We could use negotiated size instead of max_msgsize -
202    but it may be more efficient to always alloc same size
203    albeit slightly larger than necessary and maxbuffersize
204    defaults to this and can not be bigger */
205         ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
206         /* No need to clear memory here, cleared in header assemble */
207         /*      memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
208         atomic_inc(&small_buf_alloc_count);
209 #ifdef CONFIG_CIFS_STATS2
210         atomic_inc(&total_small_buf_alloc_count);
211 #endif /* CONFIG_CIFS_STATS2 */
212
213         return ret_buf;
214 }
215
216 void
217 cifs_small_buf_release(void *buf_to_free)
218 {
219
220         if (buf_to_free == NULL) {
221                 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
222                 return;
223         }
224         mempool_free(buf_to_free, cifs_sm_req_poolp);
225
226         atomic_dec(&small_buf_alloc_count);
227         return;
228 }
229
230 void
231 free_rsp_buf(int resp_buftype, void *rsp)
232 {
233         if (resp_buftype == CIFS_SMALL_BUFFER)
234                 cifs_small_buf_release(rsp);
235         else if (resp_buftype == CIFS_LARGE_BUFFER)
236                 cifs_buf_release(rsp);
237 }
238
239 /* NB: MID can not be set if treeCon not passed in, in that
240    case it is responsbility of caller to set the mid */
241 void
242 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
243                 const struct cifs_tcon *treeCon, int word_count
244                 /* length of fixed section (word count) in two byte units  */)
245 {
246         char *temp = (char *) buffer;
247
248         memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
249
250         buffer->smb_buf_length = cpu_to_be32(
251             (2 * word_count) + sizeof(struct smb_hdr) -
252             4 /*  RFC 1001 length field does not count */  +
253             2 /* for bcc field itself */) ;
254
255         buffer->Protocol[0] = 0xFF;
256         buffer->Protocol[1] = 'S';
257         buffer->Protocol[2] = 'M';
258         buffer->Protocol[3] = 'B';
259         buffer->Command = smb_command;
260         buffer->Flags = 0x00;   /* case sensitive */
261         buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
262         buffer->Pid = cpu_to_le16((__u16)current->tgid);
263         buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
264         if (treeCon) {
265                 buffer->Tid = treeCon->tid;
266                 if (treeCon->ses) {
267                         if (treeCon->ses->capabilities & CAP_UNICODE)
268                                 buffer->Flags2 |= SMBFLG2_UNICODE;
269                         if (treeCon->ses->capabilities & CAP_STATUS32)
270                                 buffer->Flags2 |= SMBFLG2_ERR_STATUS;
271
272                         /* Uid is not converted */
273                         buffer->Uid = treeCon->ses->Suid;
274                         if (treeCon->ses->server)
275                                 buffer->Mid = get_next_mid(treeCon->ses->server);
276                 }
277                 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
278                         buffer->Flags2 |= SMBFLG2_DFS;
279                 if (treeCon->nocase)
280                         buffer->Flags  |= SMBFLG_CASELESS;
281                 if ((treeCon->ses) && (treeCon->ses->server))
282                         if (treeCon->ses->server->sign)
283                                 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
284         }
285
286 /*  endian conversion of flags is now done just before sending */
287         buffer->WordCount = (char) word_count;
288         return;
289 }
290
291 static int
292 check_smb_hdr(struct smb_hdr *smb)
293 {
294         /* does it have the right SMB "signature" ? */
295         if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
296                 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
297                          *(unsigned int *)smb->Protocol);
298                 return 1;
299         }
300
301         /* if it's a response then accept */
302         if (smb->Flags & SMBFLG_RESPONSE)
303                 return 0;
304
305         /* only one valid case where server sends us request */
306         if (smb->Command == SMB_COM_LOCKING_ANDX)
307                 return 0;
308
309         cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
310                  get_mid(smb));
311         return 1;
312 }
313
314 int
315 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
316 {
317         struct smb_hdr *smb = (struct smb_hdr *)buf;
318         __u32 rfclen = be32_to_cpu(smb->smb_buf_length);
319         __u32 clc_len;  /* calculated length */
320         cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
321                  total_read, rfclen);
322
323         /* is this frame too small to even get to a BCC? */
324         if (total_read < 2 + sizeof(struct smb_hdr)) {
325                 if ((total_read >= sizeof(struct smb_hdr) - 1)
326                             && (smb->Status.CifsError != 0)) {
327                         /* it's an error return */
328                         smb->WordCount = 0;
329                         /* some error cases do not return wct and bcc */
330                         return 0;
331                 } else if ((total_read == sizeof(struct smb_hdr) + 1) &&
332                                 (smb->WordCount == 0)) {
333                         char *tmp = (char *)smb;
334                         /* Need to work around a bug in two servers here */
335                         /* First, check if the part of bcc they sent was zero */
336                         if (tmp[sizeof(struct smb_hdr)] == 0) {
337                                 /* some servers return only half of bcc
338                                  * on simple responses (wct, bcc both zero)
339                                  * in particular have seen this on
340                                  * ulogoffX and FindClose. This leaves
341                                  * one byte of bcc potentially unitialized
342                                  */
343                                 /* zero rest of bcc */
344                                 tmp[sizeof(struct smb_hdr)+1] = 0;
345                                 return 0;
346                         }
347                         cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
348                 } else {
349                         cifs_dbg(VFS, "Length less than smb header size\n");
350                 }
351                 return -EIO;
352         }
353
354         /* otherwise, there is enough to get to the BCC */
355         if (check_smb_hdr(smb))
356                 return -EIO;
357         clc_len = smbCalcSize(smb);
358
359         if (4 + rfclen != total_read) {
360                 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
361                          rfclen);
362                 return -EIO;
363         }
364
365         if (4 + rfclen != clc_len) {
366                 __u16 mid = get_mid(smb);
367                 /* check if bcc wrapped around for large read responses */
368                 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
369                         /* check if lengths match mod 64K */
370                         if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
371                                 return 0; /* bcc wrapped */
372                 }
373                 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
374                          clc_len, 4 + rfclen, mid);
375
376                 if (4 + rfclen < clc_len) {
377                         cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
378                                  rfclen, mid);
379                         return -EIO;
380                 } else if (rfclen > clc_len + 512) {
381                         /*
382                          * Some servers (Windows XP in particular) send more
383                          * data than the lengths in the SMB packet would
384                          * indicate on certain calls (byte range locks and
385                          * trans2 find first calls in particular). While the
386                          * client can handle such a frame by ignoring the
387                          * trailing data, we choose limit the amount of extra
388                          * data to 512 bytes.
389                          */
390                         cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
391                                  rfclen, mid);
392                         return -EIO;
393                 }
394         }
395         return 0;
396 }
397
398 bool
399 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
400 {
401         struct smb_hdr *buf = (struct smb_hdr *)buffer;
402         struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
403         struct TCP_Server_Info *pserver;
404         struct cifs_ses *ses;
405         struct cifs_tcon *tcon;
406         struct cifsInodeInfo *pCifsInode;
407         struct cifsFileInfo *netfile;
408
409         cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
410         if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
411            (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
412                 struct smb_com_transaction_change_notify_rsp *pSMBr =
413                         (struct smb_com_transaction_change_notify_rsp *)buf;
414                 struct file_notify_information *pnotify;
415                 __u32 data_offset = 0;
416                 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
417
418                 if (get_bcc(buf) > sizeof(struct file_notify_information)) {
419                         data_offset = le32_to_cpu(pSMBr->DataOffset);
420
421                         if (data_offset >
422                             len - sizeof(struct file_notify_information)) {
423                                 cifs_dbg(FYI, "Invalid data_offset %u\n",
424                                          data_offset);
425                                 return true;
426                         }
427                         pnotify = (struct file_notify_information *)
428                                 ((char *)&pSMBr->hdr.Protocol + data_offset);
429                         cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
430                                  pnotify->FileName, pnotify->Action);
431                         /*   cifs_dump_mem("Rcvd notify Data: ",buf,
432                                 sizeof(struct smb_hdr)+60); */
433                         return true;
434                 }
435                 if (pSMBr->hdr.Status.CifsError) {
436                         cifs_dbg(FYI, "notify err 0x%x\n",
437                                  pSMBr->hdr.Status.CifsError);
438                         return true;
439                 }
440                 return false;
441         }
442         if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
443                 return false;
444         if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
445                 /* no sense logging error on invalid handle on oplock
446                    break - harmless race between close request and oplock
447                    break response is expected from time to time writing out
448                    large dirty files cached on the client */
449                 if ((NT_STATUS_INVALID_HANDLE) ==
450                    le32_to_cpu(pSMB->hdr.Status.CifsError)) {
451                         cifs_dbg(FYI, "Invalid handle on oplock break\n");
452                         return true;
453                 } else if (ERRbadfid ==
454                    le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
455                         return true;
456                 } else {
457                         return false; /* on valid oplock brk we get "request" */
458                 }
459         }
460         if (pSMB->hdr.WordCount != 8)
461                 return false;
462
463         cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
464                  pSMB->LockType, pSMB->OplockLevel);
465         if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
466                 return false;
467
468         /* If server is a channel, select the primary channel */
469         pserver = CIFS_SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
470
471         /* look up tcon based on tid & uid */
472         spin_lock(&cifs_tcp_ses_lock);
473         list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
474                 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
475                         if (tcon->tid != buf->Tid)
476                                 continue;
477
478                         cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
479                         spin_lock(&tcon->open_file_lock);
480                         list_for_each_entry(netfile, &tcon->openFileList, tlist) {
481                                 if (pSMB->Fid != netfile->fid.netfid)
482                                         continue;
483
484                                 cifs_dbg(FYI, "file id match, oplock break\n");
485                                 pCifsInode = CIFS_I(d_inode(netfile->dentry));
486
487                                 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
488                                         &pCifsInode->flags);
489
490                                 netfile->oplock_epoch = 0;
491                                 netfile->oplock_level = pSMB->OplockLevel;
492                                 netfile->oplock_break_cancelled = false;
493                                 cifs_queue_oplock_break(netfile);
494
495                                 spin_unlock(&tcon->open_file_lock);
496                                 spin_unlock(&cifs_tcp_ses_lock);
497                                 return true;
498                         }
499                         spin_unlock(&tcon->open_file_lock);
500                         spin_unlock(&cifs_tcp_ses_lock);
501                         cifs_dbg(FYI, "No matching file for oplock break\n");
502                         return true;
503                 }
504         }
505         spin_unlock(&cifs_tcp_ses_lock);
506         cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
507         return true;
508 }
509
510 void
511 dump_smb(void *buf, int smb_buf_length)
512 {
513         if (traceSMB == 0)
514                 return;
515
516         print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
517                        smb_buf_length, true);
518 }
519
520 void
521 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
522 {
523         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
524                 struct cifs_tcon *tcon = NULL;
525
526                 if (cifs_sb->master_tlink)
527                         tcon = cifs_sb_master_tcon(cifs_sb);
528
529                 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
530                 cifs_sb->mnt_cifs_serverino_autodisabled = true;
531                 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
532                          tcon ? tcon->tree_name : "new server");
533                 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
534                 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
535
536         }
537 }
538
539 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
540 {
541         oplock &= 0xF;
542
543         if (oplock == OPLOCK_EXCLUSIVE) {
544                 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
545                 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
546                          &cinode->netfs.inode);
547         } else if (oplock == OPLOCK_READ) {
548                 cinode->oplock = CIFS_CACHE_READ_FLG;
549                 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
550                          &cinode->netfs.inode);
551         } else
552                 cinode->oplock = 0;
553 }
554
555 /*
556  * We wait for oplock breaks to be processed before we attempt to perform
557  * writes.
558  */
559 int cifs_get_writer(struct cifsInodeInfo *cinode)
560 {
561         int rc;
562
563 start:
564         rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
565                          TASK_KILLABLE);
566         if (rc)
567                 return rc;
568
569         spin_lock(&cinode->writers_lock);
570         if (!cinode->writers)
571                 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
572         cinode->writers++;
573         /* Check to see if we have started servicing an oplock break */
574         if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
575                 cinode->writers--;
576                 if (cinode->writers == 0) {
577                         clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
578                         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
579                 }
580                 spin_unlock(&cinode->writers_lock);
581                 goto start;
582         }
583         spin_unlock(&cinode->writers_lock);
584         return 0;
585 }
586
587 void cifs_put_writer(struct cifsInodeInfo *cinode)
588 {
589         spin_lock(&cinode->writers_lock);
590         cinode->writers--;
591         if (cinode->writers == 0) {
592                 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
593                 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
594         }
595         spin_unlock(&cinode->writers_lock);
596 }
597
598 /**
599  * cifs_queue_oplock_break - queue the oplock break handler for cfile
600  * @cfile: The file to break the oplock on
601  *
602  * This function is called from the demultiplex thread when it
603  * receives an oplock break for @cfile.
604  *
605  * Assumes the tcon->open_file_lock is held.
606  * Assumes cfile->file_info_lock is NOT held.
607  */
608 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
609 {
610         /*
611          * Bump the handle refcount now while we hold the
612          * open_file_lock to enforce the validity of it for the oplock
613          * break handler. The matching put is done at the end of the
614          * handler.
615          */
616         cifsFileInfo_get(cfile);
617
618         queue_work(cifsoplockd_wq, &cfile->oplock_break);
619 }
620
621 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
622 {
623         clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
624         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
625 }
626
627 bool
628 backup_cred(struct cifs_sb_info *cifs_sb)
629 {
630         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
631                 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
632                         return true;
633         }
634         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
635                 if (in_group_p(cifs_sb->ctx->backupgid))
636                         return true;
637         }
638
639         return false;
640 }
641
642 void
643 cifs_del_pending_open(struct cifs_pending_open *open)
644 {
645         spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
646         list_del(&open->olist);
647         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
648 }
649
650 void
651 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
652                              struct cifs_pending_open *open)
653 {
654         memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
655         open->oplock = CIFS_OPLOCK_NO_CHANGE;
656         open->tlink = tlink;
657         fid->pending_open = open;
658         list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
659 }
660
661 void
662 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
663                       struct cifs_pending_open *open)
664 {
665         spin_lock(&tlink_tcon(tlink)->open_file_lock);
666         cifs_add_pending_open_locked(fid, tlink, open);
667         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
668 }
669
670 /*
671  * Critical section which runs after acquiring deferred_lock.
672  * As there is no reference count on cifs_deferred_close, pdclose
673  * should not be used outside deferred_lock.
674  */
675 bool
676 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
677 {
678         struct cifs_deferred_close *dclose;
679
680         list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
681                 if ((dclose->netfid == cfile->fid.netfid) &&
682                         (dclose->persistent_fid == cfile->fid.persistent_fid) &&
683                         (dclose->volatile_fid == cfile->fid.volatile_fid)) {
684                         *pdclose = dclose;
685                         return true;
686                 }
687         }
688         return false;
689 }
690
691 /*
692  * Critical section which runs after acquiring deferred_lock.
693  */
694 void
695 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
696 {
697         bool is_deferred = false;
698         struct cifs_deferred_close *pdclose;
699
700         is_deferred = cifs_is_deferred_close(cfile, &pdclose);
701         if (is_deferred) {
702                 kfree(dclose);
703                 return;
704         }
705
706         dclose->tlink = cfile->tlink;
707         dclose->netfid = cfile->fid.netfid;
708         dclose->persistent_fid = cfile->fid.persistent_fid;
709         dclose->volatile_fid = cfile->fid.volatile_fid;
710         list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
711 }
712
713 /*
714  * Critical section which runs after acquiring deferred_lock.
715  */
716 void
717 cifs_del_deferred_close(struct cifsFileInfo *cfile)
718 {
719         bool is_deferred = false;
720         struct cifs_deferred_close *dclose;
721
722         is_deferred = cifs_is_deferred_close(cfile, &dclose);
723         if (!is_deferred)
724                 return;
725         list_del(&dclose->dlist);
726         kfree(dclose);
727 }
728
729 void
730 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
731 {
732         struct cifsFileInfo *cfile = NULL;
733         struct file_list *tmp_list, *tmp_next_list;
734         struct list_head file_head;
735
736         if (cifs_inode == NULL)
737                 return;
738
739         INIT_LIST_HEAD(&file_head);
740         spin_lock(&cifs_inode->open_file_lock);
741         list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
742                 if (delayed_work_pending(&cfile->deferred)) {
743                         if (cancel_delayed_work(&cfile->deferred)) {
744                                 cifs_del_deferred_close(cfile);
745
746                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
747                                 if (tmp_list == NULL)
748                                         break;
749                                 tmp_list->cfile = cfile;
750                                 list_add_tail(&tmp_list->list, &file_head);
751                         }
752                 }
753         }
754         spin_unlock(&cifs_inode->open_file_lock);
755
756         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
757                 _cifsFileInfo_put(tmp_list->cfile, true, false);
758                 list_del(&tmp_list->list);
759                 kfree(tmp_list);
760         }
761 }
762
763 void
764 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
765 {
766         struct cifsFileInfo *cfile;
767         struct file_list *tmp_list, *tmp_next_list;
768         struct list_head file_head;
769
770         INIT_LIST_HEAD(&file_head);
771         spin_lock(&tcon->open_file_lock);
772         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
773                 if (delayed_work_pending(&cfile->deferred)) {
774                         if (cancel_delayed_work(&cfile->deferred)) {
775                                 cifs_del_deferred_close(cfile);
776
777                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
778                                 if (tmp_list == NULL)
779                                         break;
780                                 tmp_list->cfile = cfile;
781                                 list_add_tail(&tmp_list->list, &file_head);
782                         }
783                 }
784         }
785         spin_unlock(&tcon->open_file_lock);
786
787         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
788                 _cifsFileInfo_put(tmp_list->cfile, true, false);
789                 list_del(&tmp_list->list);
790                 kfree(tmp_list);
791         }
792 }
793 void
794 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
795 {
796         struct cifsFileInfo *cfile;
797         struct file_list *tmp_list, *tmp_next_list;
798         struct list_head file_head;
799         void *page;
800         const char *full_path;
801
802         INIT_LIST_HEAD(&file_head);
803         page = alloc_dentry_path();
804         spin_lock(&tcon->open_file_lock);
805         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
806                 full_path = build_path_from_dentry(cfile->dentry, page);
807                 if (strstr(full_path, path)) {
808                         if (delayed_work_pending(&cfile->deferred)) {
809                                 if (cancel_delayed_work(&cfile->deferred)) {
810                                         cifs_del_deferred_close(cfile);
811
812                                         tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
813                                         if (tmp_list == NULL)
814                                                 break;
815                                         tmp_list->cfile = cfile;
816                                         list_add_tail(&tmp_list->list, &file_head);
817                                 }
818                         }
819                 }
820         }
821         spin_unlock(&tcon->open_file_lock);
822
823         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
824                 _cifsFileInfo_put(tmp_list->cfile, true, false);
825                 list_del(&tmp_list->list);
826                 kfree(tmp_list);
827         }
828         free_dentry_path(page);
829 }
830
831 /* parses DFS referral V3 structure
832  * caller is responsible for freeing target_nodes
833  * returns:
834  * - on success - 0
835  * - on failure - errno
836  */
837 int
838 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
839                     unsigned int *num_of_nodes,
840                     struct dfs_info3_param **target_nodes,
841                     const struct nls_table *nls_codepage, int remap,
842                     const char *searchName, bool is_unicode)
843 {
844         int i, rc = 0;
845         char *data_end;
846         struct dfs_referral_level_3 *ref;
847
848         *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
849
850         if (*num_of_nodes < 1) {
851                 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
852                          *num_of_nodes);
853                 rc = -EINVAL;
854                 goto parse_DFS_referrals_exit;
855         }
856
857         ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
858         if (ref->VersionNumber != cpu_to_le16(3)) {
859                 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
860                          le16_to_cpu(ref->VersionNumber));
861                 rc = -EINVAL;
862                 goto parse_DFS_referrals_exit;
863         }
864
865         /* get the upper boundary of the resp buffer */
866         data_end = (char *)rsp + rsp_size;
867
868         cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
869                  *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
870
871         *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
872                                 GFP_KERNEL);
873         if (*target_nodes == NULL) {
874                 rc = -ENOMEM;
875                 goto parse_DFS_referrals_exit;
876         }
877
878         /* collect necessary data from referrals */
879         for (i = 0; i < *num_of_nodes; i++) {
880                 char *temp;
881                 int max_len;
882                 struct dfs_info3_param *node = (*target_nodes)+i;
883
884                 node->flags = le32_to_cpu(rsp->DFSFlags);
885                 if (is_unicode) {
886                         __le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
887                                                 GFP_KERNEL);
888                         if (tmp == NULL) {
889                                 rc = -ENOMEM;
890                                 goto parse_DFS_referrals_exit;
891                         }
892                         cifsConvertToUTF16((__le16 *) tmp, searchName,
893                                            PATH_MAX, nls_codepage, remap);
894                         node->path_consumed = cifs_utf16_bytes(tmp,
895                                         le16_to_cpu(rsp->PathConsumed),
896                                         nls_codepage);
897                         kfree(tmp);
898                 } else
899                         node->path_consumed = le16_to_cpu(rsp->PathConsumed);
900
901                 node->server_type = le16_to_cpu(ref->ServerType);
902                 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
903
904                 /* copy DfsPath */
905                 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
906                 max_len = data_end - temp;
907                 node->path_name = cifs_strndup_from_utf16(temp, max_len,
908                                                 is_unicode, nls_codepage);
909                 if (!node->path_name) {
910                         rc = -ENOMEM;
911                         goto parse_DFS_referrals_exit;
912                 }
913
914                 /* copy link target UNC */
915                 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
916                 max_len = data_end - temp;
917                 node->node_name = cifs_strndup_from_utf16(temp, max_len,
918                                                 is_unicode, nls_codepage);
919                 if (!node->node_name) {
920                         rc = -ENOMEM;
921                         goto parse_DFS_referrals_exit;
922                 }
923
924                 node->ttl = le32_to_cpu(ref->TimeToLive);
925
926                 ref++;
927         }
928
929 parse_DFS_referrals_exit:
930         if (rc) {
931                 free_dfs_info_array(*target_nodes, *num_of_nodes);
932                 *target_nodes = NULL;
933                 *num_of_nodes = 0;
934         }
935         return rc;
936 }
937
938 struct cifs_aio_ctx *
939 cifs_aio_ctx_alloc(void)
940 {
941         struct cifs_aio_ctx *ctx;
942
943         /*
944          * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
945          * to false so that we know when we have to unreference pages within
946          * cifs_aio_ctx_release()
947          */
948         ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
949         if (!ctx)
950                 return NULL;
951
952         INIT_LIST_HEAD(&ctx->list);
953         mutex_init(&ctx->aio_mutex);
954         init_completion(&ctx->done);
955         kref_init(&ctx->refcount);
956         return ctx;
957 }
958
959 void
960 cifs_aio_ctx_release(struct kref *refcount)
961 {
962         struct cifs_aio_ctx *ctx = container_of(refcount,
963                                         struct cifs_aio_ctx, refcount);
964
965         cifsFileInfo_put(ctx->cfile);
966
967         /*
968          * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
969          * which means that iov_iter_get_pages() was a success and thus that
970          * we have taken reference on pages.
971          */
972         if (ctx->bv) {
973                 unsigned i;
974
975                 for (i = 0; i < ctx->npages; i++) {
976                         if (ctx->should_dirty)
977                                 set_page_dirty(ctx->bv[i].bv_page);
978                         put_page(ctx->bv[i].bv_page);
979                 }
980                 kvfree(ctx->bv);
981         }
982
983         kfree(ctx);
984 }
985
986 #define CIFS_AIO_KMALLOC_LIMIT (1024 * 1024)
987
988 int
989 setup_aio_ctx_iter(struct cifs_aio_ctx *ctx, struct iov_iter *iter, int rw)
990 {
991         ssize_t rc;
992         unsigned int cur_npages;
993         unsigned int npages = 0;
994         unsigned int i;
995         size_t len;
996         size_t count = iov_iter_count(iter);
997         unsigned int saved_len;
998         size_t start;
999         unsigned int max_pages = iov_iter_npages(iter, INT_MAX);
1000         struct page **pages = NULL;
1001         struct bio_vec *bv = NULL;
1002
1003         if (iov_iter_is_kvec(iter)) {
1004                 memcpy(&ctx->iter, iter, sizeof(*iter));
1005                 ctx->len = count;
1006                 iov_iter_advance(iter, count);
1007                 return 0;
1008         }
1009
1010         if (array_size(max_pages, sizeof(*bv)) <= CIFS_AIO_KMALLOC_LIMIT)
1011                 bv = kmalloc_array(max_pages, sizeof(*bv), GFP_KERNEL);
1012
1013         if (!bv) {
1014                 bv = vmalloc(array_size(max_pages, sizeof(*bv)));
1015                 if (!bv)
1016                         return -ENOMEM;
1017         }
1018
1019         if (array_size(max_pages, sizeof(*pages)) <= CIFS_AIO_KMALLOC_LIMIT)
1020                 pages = kmalloc_array(max_pages, sizeof(*pages), GFP_KERNEL);
1021
1022         if (!pages) {
1023                 pages = vmalloc(array_size(max_pages, sizeof(*pages)));
1024                 if (!pages) {
1025                         kvfree(bv);
1026                         return -ENOMEM;
1027                 }
1028         }
1029
1030         saved_len = count;
1031
1032         while (count && npages < max_pages) {
1033                 rc = iov_iter_get_pages2(iter, pages, count, max_pages, &start);
1034                 if (rc < 0) {
1035                         cifs_dbg(VFS, "Couldn't get user pages (rc=%zd)\n", rc);
1036                         break;
1037                 }
1038
1039                 if (rc > count) {
1040                         cifs_dbg(VFS, "get pages rc=%zd more than %zu\n", rc,
1041                                  count);
1042                         break;
1043                 }
1044
1045                 count -= rc;
1046                 rc += start;
1047                 cur_npages = DIV_ROUND_UP(rc, PAGE_SIZE);
1048
1049                 if (npages + cur_npages > max_pages) {
1050                         cifs_dbg(VFS, "out of vec array capacity (%u vs %u)\n",
1051                                  npages + cur_npages, max_pages);
1052                         break;
1053                 }
1054
1055                 for (i = 0; i < cur_npages; i++) {
1056                         len = rc > PAGE_SIZE ? PAGE_SIZE : rc;
1057                         bv[npages + i].bv_page = pages[i];
1058                         bv[npages + i].bv_offset = start;
1059                         bv[npages + i].bv_len = len - start;
1060                         rc -= len;
1061                         start = 0;
1062                 }
1063
1064                 npages += cur_npages;
1065         }
1066
1067         kvfree(pages);
1068         ctx->bv = bv;
1069         ctx->len = saved_len - count;
1070         ctx->npages = npages;
1071         iov_iter_bvec(&ctx->iter, rw, ctx->bv, npages, ctx->len);
1072         return 0;
1073 }
1074
1075 /**
1076  * cifs_alloc_hash - allocate hash and hash context together
1077  * @name: The name of the crypto hash algo
1078  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1079  *
1080  * The caller has to make sure @sdesc is initialized to either NULL or
1081  * a valid context. It can be freed via cifs_free_hash().
1082  */
1083 int
1084 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1085 {
1086         int rc = 0;
1087         struct crypto_shash *alg = NULL;
1088
1089         if (*sdesc)
1090                 return 0;
1091
1092         alg = crypto_alloc_shash(name, 0, 0);
1093         if (IS_ERR(alg)) {
1094                 cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1095                 rc = PTR_ERR(alg);
1096                 *sdesc = NULL;
1097                 return rc;
1098         }
1099
1100         *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1101         if (*sdesc == NULL) {
1102                 cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1103                 crypto_free_shash(alg);
1104                 return -ENOMEM;
1105         }
1106
1107         (*sdesc)->tfm = alg;
1108         return 0;
1109 }
1110
1111 /**
1112  * cifs_free_hash - free hash and hash context together
1113  * @sdesc: Where to find the pointer to the hash TFM
1114  *
1115  * Freeing a NULL descriptor is safe.
1116  */
1117 void
1118 cifs_free_hash(struct shash_desc **sdesc)
1119 {
1120         if (unlikely(!sdesc) || !*sdesc)
1121                 return;
1122
1123         if ((*sdesc)->tfm) {
1124                 crypto_free_shash((*sdesc)->tfm);
1125                 (*sdesc)->tfm = NULL;
1126         }
1127
1128         kfree_sensitive(*sdesc);
1129         *sdesc = NULL;
1130 }
1131
1132 /**
1133  * rqst_page_get_length - obtain the length and offset for a page in smb_rqst
1134  * @rqst: The request descriptor
1135  * @page: The index of the page to query
1136  * @len: Where to store the length for this page:
1137  * @offset: Where to store the offset for this page
1138  */
1139 void rqst_page_get_length(const struct smb_rqst *rqst, unsigned int page,
1140                           unsigned int *len, unsigned int *offset)
1141 {
1142         *len = rqst->rq_pagesz;
1143         *offset = (page == 0) ? rqst->rq_offset : 0;
1144
1145         if (rqst->rq_npages == 1 || page == rqst->rq_npages-1)
1146                 *len = rqst->rq_tailsz;
1147         else if (page == 0)
1148                 *len = rqst->rq_pagesz - rqst->rq_offset;
1149 }
1150
1151 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1152 {
1153         const char *end;
1154
1155         /* skip initial slashes */
1156         while (*unc && (*unc == '\\' || *unc == '/'))
1157                 unc++;
1158
1159         end = unc;
1160
1161         while (*end && !(*end == '\\' || *end == '/'))
1162                 end++;
1163
1164         *h = unc;
1165         *len = end - unc;
1166 }
1167
1168 /**
1169  * copy_path_name - copy src path to dst, possibly truncating
1170  * @dst: The destination buffer
1171  * @src: The source name
1172  *
1173  * returns number of bytes written (including trailing nul)
1174  */
1175 int copy_path_name(char *dst, const char *src)
1176 {
1177         int name_len;
1178
1179         /*
1180          * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1181          * will truncate and strlen(dst) will be PATH_MAX-1
1182          */
1183         name_len = strscpy(dst, src, PATH_MAX);
1184         if (WARN_ON_ONCE(name_len < 0))
1185                 name_len = PATH_MAX-1;
1186
1187         /* we count the trailing nul */
1188         name_len++;
1189         return name_len;
1190 }
1191
1192 struct super_cb_data {
1193         void *data;
1194         struct super_block *sb;
1195 };
1196
1197 static void tcp_super_cb(struct super_block *sb, void *arg)
1198 {
1199         struct super_cb_data *sd = arg;
1200         struct TCP_Server_Info *server = sd->data;
1201         struct cifs_sb_info *cifs_sb;
1202         struct cifs_tcon *tcon;
1203
1204         if (sd->sb)
1205                 return;
1206
1207         cifs_sb = CIFS_SB(sb);
1208         tcon = cifs_sb_master_tcon(cifs_sb);
1209         if (tcon->ses->server == server)
1210                 sd->sb = sb;
1211 }
1212
1213 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1214                                             void *data)
1215 {
1216         struct super_cb_data sd = {
1217                 .data = data,
1218                 .sb = NULL,
1219         };
1220         struct file_system_type **fs_type = (struct file_system_type *[]) {
1221                 &cifs_fs_type, &smb3_fs_type, NULL,
1222         };
1223
1224         for (; *fs_type; fs_type++) {
1225                 iterate_supers_type(*fs_type, f, &sd);
1226                 if (sd.sb) {
1227                         /*
1228                          * Grab an active reference in order to prevent automounts (DFS links)
1229                          * of expiring and then freeing up our cifs superblock pointer while
1230                          * we're doing failover.
1231                          */
1232                         cifs_sb_active(sd.sb);
1233                         return sd.sb;
1234                 }
1235         }
1236         return ERR_PTR(-EINVAL);
1237 }
1238
1239 static void __cifs_put_super(struct super_block *sb)
1240 {
1241         if (!IS_ERR_OR_NULL(sb))
1242                 cifs_sb_deactive(sb);
1243 }
1244
1245 struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server)
1246 {
1247         return __cifs_get_super(tcp_super_cb, server);
1248 }
1249
1250 void cifs_put_tcp_super(struct super_block *sb)
1251 {
1252         __cifs_put_super(sb);
1253 }
1254
1255 #ifdef CONFIG_CIFS_DFS_UPCALL
1256 int match_target_ip(struct TCP_Server_Info *server,
1257                     const char *share, size_t share_len,
1258                     bool *result)
1259 {
1260         int rc;
1261         char *target;
1262         struct sockaddr_storage ss;
1263
1264         *result = false;
1265
1266         target = kzalloc(share_len + 3, GFP_KERNEL);
1267         if (!target)
1268                 return -ENOMEM;
1269
1270         scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1271
1272         cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1273
1274         rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1275         kfree(target);
1276
1277         if (rc < 0)
1278                 return rc;
1279
1280         spin_lock(&server->srv_lock);
1281         *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1282         spin_unlock(&server->srv_lock);
1283         cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1284         return 0;
1285 }
1286
1287 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1288 {
1289         kfree(cifs_sb->prepath);
1290
1291         if (prefix && *prefix) {
1292                 cifs_sb->prepath = kstrdup(prefix, GFP_ATOMIC);
1293                 if (!cifs_sb->prepath)
1294                         return -ENOMEM;
1295
1296                 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1297         } else
1298                 cifs_sb->prepath = NULL;
1299
1300         cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1301         return 0;
1302 }
1303 #endif