4 * vfs operations that deal with files
6 * Copyright (C) International Business Machines Corp., 2002,2010
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <asm/div64.h>
40 #include "cifsproto.h"
41 #include "cifs_unicode.h"
42 #include "cifs_debug.h"
43 #include "cifs_fs_sb.h"
46 static inline int cifs_convert_flags(unsigned int flags)
48 if ((flags & O_ACCMODE) == O_RDONLY)
50 else if ((flags & O_ACCMODE) == O_WRONLY)
52 else if ((flags & O_ACCMODE) == O_RDWR) {
53 /* GENERIC_ALL is too much permission to request
54 can cause unnecessary access denied on create */
55 /* return GENERIC_ALL; */
56 return (GENERIC_READ | GENERIC_WRITE);
59 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
60 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
64 static u32 cifs_posix_convert_flags(unsigned int flags)
68 if ((flags & O_ACCMODE) == O_RDONLY)
69 posix_flags = SMB_O_RDONLY;
70 else if ((flags & O_ACCMODE) == O_WRONLY)
71 posix_flags = SMB_O_WRONLY;
72 else if ((flags & O_ACCMODE) == O_RDWR)
73 posix_flags = SMB_O_RDWR;
76 posix_flags |= SMB_O_CREAT;
78 posix_flags |= SMB_O_EXCL;
80 posix_flags |= SMB_O_TRUNC;
81 /* be safe and imply O_SYNC for O_DSYNC */
83 posix_flags |= SMB_O_SYNC;
84 if (flags & O_DIRECTORY)
85 posix_flags |= SMB_O_DIRECTORY;
86 if (flags & O_NOFOLLOW)
87 posix_flags |= SMB_O_NOFOLLOW;
89 posix_flags |= SMB_O_DIRECT;
94 static inline int cifs_get_disposition(unsigned int flags)
96 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
98 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
99 return FILE_OVERWRITE_IF;
100 else if ((flags & O_CREAT) == O_CREAT)
102 else if ((flags & O_TRUNC) == O_TRUNC)
103 return FILE_OVERWRITE;
108 int cifs_posix_open(char *full_path, struct inode **pinode,
109 struct super_block *sb, int mode, unsigned int f_flags,
110 __u32 *poplock, __u16 *pnetfid, int xid)
113 FILE_UNIX_BASIC_INFO *presp_data;
114 __u32 posix_flags = 0;
115 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
116 struct cifs_fattr fattr;
117 struct tcon_link *tlink;
118 struct cifs_tcon *tcon;
120 cFYI(1, "posix open %s", full_path);
122 presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
123 if (presp_data == NULL)
126 tlink = cifs_sb_tlink(cifs_sb);
132 tcon = tlink_tcon(tlink);
133 mode &= ~current_umask();
135 posix_flags = cifs_posix_convert_flags(f_flags);
136 rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
137 poplock, full_path, cifs_sb->local_nls,
138 cifs_sb->mnt_cifs_flags &
139 CIFS_MOUNT_MAP_SPECIAL_CHR);
140 cifs_put_tlink(tlink);
145 if (presp_data->Type == cpu_to_le32(-1))
146 goto posix_open_ret; /* open ok, caller does qpathinfo */
149 goto posix_open_ret; /* caller does not need info */
151 cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
153 /* get new inode and set it up */
154 if (*pinode == NULL) {
155 cifs_fill_uniqueid(sb, &fattr);
156 *pinode = cifs_iget(sb, &fattr);
162 cifs_fattr_to_inode(*pinode, &fattr);
171 cifs_nt_open(char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
172 struct cifs_tcon *tcon, unsigned int f_flags, __u32 *poplock,
173 __u16 *pnetfid, int xid)
178 int create_options = CREATE_NOT_DIR;
181 desiredAccess = cifs_convert_flags(f_flags);
183 /*********************************************************************
184 * open flag mapping table:
186 * POSIX Flag CIFS Disposition
187 * ---------- ----------------
188 * O_CREAT FILE_OPEN_IF
189 * O_CREAT | O_EXCL FILE_CREATE
190 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
191 * O_TRUNC FILE_OVERWRITE
192 * none of the above FILE_OPEN
194 * Note that there is not a direct match between disposition
195 * FILE_SUPERSEDE (ie create whether or not file exists although
196 * O_CREAT | O_TRUNC is similar but truncates the existing
197 * file rather than creating a new file as FILE_SUPERSEDE does
198 * (which uses the attributes / metadata passed in on open call)
200 *? O_SYNC is a reasonable match to CIFS writethrough flag
201 *? and the read write flags match reasonably. O_LARGEFILE
202 *? is irrelevant because largefile support is always used
203 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
204 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
205 *********************************************************************/
207 disposition = cifs_get_disposition(f_flags);
209 /* BB pass O_SYNC flag through on file attributes .. BB */
211 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
215 if (backup_cred(cifs_sb))
216 create_options |= CREATE_OPEN_BACKUP_INTENT;
218 if (tcon->ses->capabilities & CAP_NT_SMBS)
219 rc = CIFSSMBOpen(xid, tcon, full_path, disposition,
220 desiredAccess, create_options, pnetfid, poplock, buf,
221 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
222 & CIFS_MOUNT_MAP_SPECIAL_CHR);
224 rc = SMBLegacyOpen(xid, tcon, full_path, disposition,
225 desiredAccess, CREATE_NOT_DIR, pnetfid, poplock, buf,
226 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
227 & CIFS_MOUNT_MAP_SPECIAL_CHR);
233 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
236 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
244 struct cifsFileInfo *
245 cifs_new_fileinfo(__u16 fileHandle, struct file *file,
246 struct tcon_link *tlink, __u32 oplock)
248 struct dentry *dentry = file->f_path.dentry;
249 struct inode *inode = dentry->d_inode;
250 struct cifsInodeInfo *pCifsInode = CIFS_I(inode);
251 struct cifsFileInfo *pCifsFile;
253 pCifsFile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
254 if (pCifsFile == NULL)
257 pCifsFile->count = 1;
258 pCifsFile->netfid = fileHandle;
259 pCifsFile->pid = current->tgid;
260 pCifsFile->uid = current_fsuid();
261 pCifsFile->dentry = dget(dentry);
262 pCifsFile->f_flags = file->f_flags;
263 pCifsFile->invalidHandle = false;
264 pCifsFile->tlink = cifs_get_tlink(tlink);
265 mutex_init(&pCifsFile->fh_mutex);
266 INIT_WORK(&pCifsFile->oplock_break, cifs_oplock_break);
268 spin_lock(&cifs_file_list_lock);
269 list_add(&pCifsFile->tlist, &(tlink_tcon(tlink)->openFileList));
270 /* if readable file instance put first in list*/
271 if (file->f_mode & FMODE_READ)
272 list_add(&pCifsFile->flist, &pCifsInode->openFileList);
274 list_add_tail(&pCifsFile->flist, &pCifsInode->openFileList);
275 spin_unlock(&cifs_file_list_lock);
277 cifs_set_oplock_level(pCifsInode, oplock);
278 pCifsInode->can_cache_brlcks = pCifsInode->clientCanCacheAll;
280 file->private_data = pCifsFile;
284 static void cifs_del_lock_waiters(struct cifsLockInfo *lock);
287 * Release a reference on the file private data. This may involve closing
288 * the filehandle out on the server. Must be called without holding
289 * cifs_file_list_lock.
291 void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
293 struct inode *inode = cifs_file->dentry->d_inode;
294 struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink);
295 struct cifsInodeInfo *cifsi = CIFS_I(inode);
296 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
297 struct cifsLockInfo *li, *tmp;
299 spin_lock(&cifs_file_list_lock);
300 if (--cifs_file->count > 0) {
301 spin_unlock(&cifs_file_list_lock);
305 /* remove it from the lists */
306 list_del(&cifs_file->flist);
307 list_del(&cifs_file->tlist);
309 if (list_empty(&cifsi->openFileList)) {
310 cFYI(1, "closing last open instance for inode %p",
311 cifs_file->dentry->d_inode);
313 /* in strict cache mode we need invalidate mapping on the last
314 close because it may cause a error when we open this file
315 again and get at least level II oplock */
316 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
317 CIFS_I(inode)->invalid_mapping = true;
319 cifs_set_oplock_level(cifsi, 0);
321 spin_unlock(&cifs_file_list_lock);
323 cancel_work_sync(&cifs_file->oplock_break);
325 if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
329 rc = CIFSSMBClose(xid, tcon, cifs_file->netfid);
333 /* Delete any outstanding lock records. We'll lose them when the file
336 mutex_lock(&cifsi->lock_mutex);
337 list_for_each_entry_safe(li, tmp, &cifsi->llist, llist) {
338 if (li->netfid != cifs_file->netfid)
340 list_del(&li->llist);
341 cifs_del_lock_waiters(li);
344 mutex_unlock(&cifsi->lock_mutex);
346 cifs_put_tlink(cifs_file->tlink);
347 dput(cifs_file->dentry);
351 int cifs_open(struct inode *inode, struct file *file)
356 struct cifs_sb_info *cifs_sb;
357 struct cifs_tcon *tcon;
358 struct tcon_link *tlink;
359 struct cifsFileInfo *pCifsFile = NULL;
360 char *full_path = NULL;
361 bool posix_open_ok = false;
366 cifs_sb = CIFS_SB(inode->i_sb);
367 tlink = cifs_sb_tlink(cifs_sb);
370 return PTR_ERR(tlink);
372 tcon = tlink_tcon(tlink);
374 full_path = build_path_from_dentry(file->f_path.dentry);
375 if (full_path == NULL) {
380 cFYI(1, "inode = 0x%p file flags are 0x%x for %s",
381 inode, file->f_flags, full_path);
383 if (tcon->ses->server->oplocks)
388 if (!tcon->broken_posix_open && tcon->unix_ext &&
389 (tcon->ses->capabilities & CAP_UNIX) &&
390 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
391 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
392 /* can not refresh inode info since size could be stale */
393 rc = cifs_posix_open(full_path, &inode, inode->i_sb,
394 cifs_sb->mnt_file_mode /* ignored */,
395 file->f_flags, &oplock, &netfid, xid);
397 cFYI(1, "posix open succeeded");
398 posix_open_ok = true;
399 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
400 if (tcon->ses->serverNOS)
401 cERROR(1, "server %s of type %s returned"
402 " unexpected error on SMB posix open"
403 ", disabling posix open support."
404 " Check if server update available.",
405 tcon->ses->serverName,
406 tcon->ses->serverNOS);
407 tcon->broken_posix_open = true;
408 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
409 (rc != -EOPNOTSUPP)) /* path not found or net err */
411 /* else fallthrough to retry open the old way on network i/o
415 if (!posix_open_ok) {
416 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon,
417 file->f_flags, &oplock, &netfid, xid);
422 pCifsFile = cifs_new_fileinfo(netfid, file, tlink, oplock);
423 if (pCifsFile == NULL) {
424 CIFSSMBClose(xid, tcon, netfid);
429 cifs_fscache_set_inode_cookie(inode, file);
431 if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
432 /* time to set mode which we can not set earlier due to
433 problems creating new read-only files */
434 struct cifs_unix_set_info_args args = {
435 .mode = inode->i_mode,
438 .ctime = NO_CHANGE_64,
439 .atime = NO_CHANGE_64,
440 .mtime = NO_CHANGE_64,
443 CIFSSMBUnixSetFileInfo(xid, tcon, &args, netfid,
450 cifs_put_tlink(tlink);
454 /* Try to reacquire byte range locks that were released when session */
455 /* to server was lost */
456 static int cifs_relock_file(struct cifsFileInfo *cifsFile)
460 /* BB list all locks open on this file and relock */
465 static int cifs_reopen_file(struct cifsFileInfo *pCifsFile, bool can_flush)
470 struct cifs_sb_info *cifs_sb;
471 struct cifs_tcon *tcon;
472 struct cifsInodeInfo *pCifsInode;
474 char *full_path = NULL;
476 int disposition = FILE_OPEN;
477 int create_options = CREATE_NOT_DIR;
481 mutex_lock(&pCifsFile->fh_mutex);
482 if (!pCifsFile->invalidHandle) {
483 mutex_unlock(&pCifsFile->fh_mutex);
489 inode = pCifsFile->dentry->d_inode;
490 cifs_sb = CIFS_SB(inode->i_sb);
491 tcon = tlink_tcon(pCifsFile->tlink);
493 /* can not grab rename sem here because various ops, including
494 those that already have the rename sem can end up causing writepage
495 to get called and if the server was down that means we end up here,
496 and we can never tell if the caller already has the rename_sem */
497 full_path = build_path_from_dentry(pCifsFile->dentry);
498 if (full_path == NULL) {
500 mutex_unlock(&pCifsFile->fh_mutex);
505 cFYI(1, "inode = 0x%p file flags 0x%x for %s",
506 inode, pCifsFile->f_flags, full_path);
508 if (tcon->ses->server->oplocks)
513 if (tcon->unix_ext && (tcon->ses->capabilities & CAP_UNIX) &&
514 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
515 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
518 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
519 * original open. Must mask them off for a reopen.
521 unsigned int oflags = pCifsFile->f_flags &
522 ~(O_CREAT | O_EXCL | O_TRUNC);
524 rc = cifs_posix_open(full_path, NULL, inode->i_sb,
525 cifs_sb->mnt_file_mode /* ignored */,
526 oflags, &oplock, &netfid, xid);
528 cFYI(1, "posix reopen succeeded");
531 /* fallthrough to retry open the old way on errors, especially
532 in the reconnect path it is important to retry hard */
535 desiredAccess = cifs_convert_flags(pCifsFile->f_flags);
537 if (backup_cred(cifs_sb))
538 create_options |= CREATE_OPEN_BACKUP_INTENT;
540 /* Can not refresh inode by passing in file_info buf to be returned
541 by SMBOpen and then calling get_inode_info with returned buf
542 since file might have write behind data that needs to be flushed
543 and server version of file size can be stale. If we knew for sure
544 that inode was not dirty locally we could do this */
546 rc = CIFSSMBOpen(xid, tcon, full_path, disposition, desiredAccess,
547 create_options, &netfid, &oplock, NULL,
548 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags &
549 CIFS_MOUNT_MAP_SPECIAL_CHR);
551 mutex_unlock(&pCifsFile->fh_mutex);
552 cFYI(1, "cifs_open returned 0x%x", rc);
553 cFYI(1, "oplock: %d", oplock);
554 goto reopen_error_exit;
558 pCifsFile->netfid = netfid;
559 pCifsFile->invalidHandle = false;
560 mutex_unlock(&pCifsFile->fh_mutex);
561 pCifsInode = CIFS_I(inode);
564 rc = filemap_write_and_wait(inode->i_mapping);
565 mapping_set_error(inode->i_mapping, rc);
568 rc = cifs_get_inode_info_unix(&inode,
569 full_path, inode->i_sb, xid);
571 rc = cifs_get_inode_info(&inode,
572 full_path, NULL, inode->i_sb,
574 } /* else we are writing out data to server already
575 and could deadlock if we tried to flush data, and
576 since we do not know if we have data that would
577 invalidate the current end of file on the server
578 we can not go to the server to get the new inod
581 cifs_set_oplock_level(pCifsInode, oplock);
583 cifs_relock_file(pCifsFile);
591 int cifs_close(struct inode *inode, struct file *file)
593 if (file->private_data != NULL) {
594 cifsFileInfo_put(file->private_data);
595 file->private_data = NULL;
598 /* return code from the ->release op is always ignored */
602 int cifs_closedir(struct inode *inode, struct file *file)
606 struct cifsFileInfo *pCFileStruct = file->private_data;
609 cFYI(1, "Closedir inode = 0x%p", inode);
614 struct cifs_tcon *pTcon = tlink_tcon(pCFileStruct->tlink);
616 cFYI(1, "Freeing private data in close dir");
617 spin_lock(&cifs_file_list_lock);
618 if (!pCFileStruct->srch_inf.endOfSearch &&
619 !pCFileStruct->invalidHandle) {
620 pCFileStruct->invalidHandle = true;
621 spin_unlock(&cifs_file_list_lock);
622 rc = CIFSFindClose(xid, pTcon, pCFileStruct->netfid);
623 cFYI(1, "Closing uncompleted readdir with rc %d",
625 /* not much we can do if it fails anyway, ignore rc */
628 spin_unlock(&cifs_file_list_lock);
629 ptmp = pCFileStruct->srch_inf.ntwrk_buf_start;
631 cFYI(1, "closedir free smb buf in srch struct");
632 pCFileStruct->srch_inf.ntwrk_buf_start = NULL;
633 if (pCFileStruct->srch_inf.smallBuf)
634 cifs_small_buf_release(ptmp);
636 cifs_buf_release(ptmp);
638 cifs_put_tlink(pCFileStruct->tlink);
639 kfree(file->private_data);
640 file->private_data = NULL;
642 /* BB can we lock the filestruct while this is going on? */
647 static struct cifsLockInfo *
648 cifs_lock_init(__u64 offset, __u64 length, __u8 type, __u16 netfid)
650 struct cifsLockInfo *lock =
651 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
654 lock->offset = offset;
655 lock->length = length;
657 lock->netfid = netfid;
658 lock->pid = current->tgid;
659 INIT_LIST_HEAD(&lock->blist);
660 init_waitqueue_head(&lock->block_q);
665 cifs_del_lock_waiters(struct cifsLockInfo *lock)
667 struct cifsLockInfo *li, *tmp;
668 list_for_each_entry_safe(li, tmp, &lock->blist, blist) {
669 list_del_init(&li->blist);
670 wake_up(&li->block_q);
675 __cifs_find_lock_conflict(struct cifsInodeInfo *cinode, __u64 offset,
676 __u64 length, __u8 type, __u16 netfid,
677 struct cifsLockInfo **conf_lock)
679 struct cifsLockInfo *li, *tmp;
681 list_for_each_entry_safe(li, tmp, &cinode->llist, llist) {
682 if (offset + length <= li->offset ||
683 offset >= li->offset + li->length)
685 else if ((type & LOCKING_ANDX_SHARED_LOCK) &&
686 ((netfid == li->netfid && current->tgid == li->pid) ||
698 cifs_find_lock_conflict(struct cifsInodeInfo *cinode, struct cifsLockInfo *lock,
699 struct cifsLockInfo **conf_lock)
701 return __cifs_find_lock_conflict(cinode, lock->offset, lock->length,
702 lock->type, lock->netfid, conf_lock);
706 * Check if there is another lock that prevents us to set the lock (mandatory
707 * style). If such a lock exists, update the flock structure with its
708 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
709 * or leave it the same if we can't. Returns 0 if we don't need to request to
710 * the server or 1 otherwise.
713 cifs_lock_test(struct cifsInodeInfo *cinode, __u64 offset, __u64 length,
714 __u8 type, __u16 netfid, struct file_lock *flock)
717 struct cifsLockInfo *conf_lock;
720 mutex_lock(&cinode->lock_mutex);
722 exist = __cifs_find_lock_conflict(cinode, offset, length, type, netfid,
725 flock->fl_start = conf_lock->offset;
726 flock->fl_end = conf_lock->offset + conf_lock->length - 1;
727 flock->fl_pid = conf_lock->pid;
728 if (conf_lock->type & LOCKING_ANDX_SHARED_LOCK)
729 flock->fl_type = F_RDLCK;
731 flock->fl_type = F_WRLCK;
732 } else if (!cinode->can_cache_brlcks)
735 flock->fl_type = F_UNLCK;
737 mutex_unlock(&cinode->lock_mutex);
742 cifs_lock_add(struct cifsInodeInfo *cinode, struct cifsLockInfo *lock)
744 mutex_lock(&cinode->lock_mutex);
745 list_add_tail(&lock->llist, &cinode->llist);
746 mutex_unlock(&cinode->lock_mutex);
750 * Set the byte-range lock (mandatory style). Returns:
751 * 1) 0, if we set the lock and don't need to request to the server;
752 * 2) 1, if no locks prevent us but we need to request to the server;
753 * 3) -EACCESS, if there is a lock that prevents us and wait is false.
756 cifs_lock_add_if(struct cifsInodeInfo *cinode, struct cifsLockInfo *lock,
759 struct cifsLockInfo *conf_lock;
765 mutex_lock(&cinode->lock_mutex);
767 exist = cifs_find_lock_conflict(cinode, lock, &conf_lock);
768 if (!exist && cinode->can_cache_brlcks) {
769 list_add_tail(&lock->llist, &cinode->llist);
770 mutex_unlock(&cinode->lock_mutex);
779 list_add_tail(&lock->blist, &conf_lock->blist);
780 mutex_unlock(&cinode->lock_mutex);
781 rc = wait_event_interruptible(lock->block_q,
782 (lock->blist.prev == &lock->blist) &&
783 (lock->blist.next == &lock->blist));
786 mutex_lock(&cinode->lock_mutex);
787 list_del_init(&lock->blist);
790 mutex_unlock(&cinode->lock_mutex);
795 * Check if there is another lock that prevents us to set the lock (posix
796 * style). If such a lock exists, update the flock structure with its
797 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
798 * or leave it the same if we can't. Returns 0 if we don't need to request to
799 * the server or 1 otherwise.
802 cifs_posix_lock_test(struct file *file, struct file_lock *flock)
805 struct cifsInodeInfo *cinode = CIFS_I(file->f_path.dentry->d_inode);
806 unsigned char saved_type = flock->fl_type;
808 if ((flock->fl_flags & FL_POSIX) == 0)
811 mutex_lock(&cinode->lock_mutex);
812 posix_test_lock(file, flock);
814 if (flock->fl_type == F_UNLCK && !cinode->can_cache_brlcks) {
815 flock->fl_type = saved_type;
819 mutex_unlock(&cinode->lock_mutex);
824 * Set the byte-range lock (posix style). Returns:
825 * 1) 0, if we set the lock and don't need to request to the server;
826 * 2) 1, if we need to request to the server;
827 * 3) <0, if the error occurs while setting the lock.
830 cifs_posix_lock_set(struct file *file, struct file_lock *flock)
832 struct cifsInodeInfo *cinode = CIFS_I(file->f_path.dentry->d_inode);
835 if ((flock->fl_flags & FL_POSIX) == 0)
838 mutex_lock(&cinode->lock_mutex);
839 if (!cinode->can_cache_brlcks) {
840 mutex_unlock(&cinode->lock_mutex);
843 rc = posix_lock_file_wait(file, flock);
844 mutex_unlock(&cinode->lock_mutex);
849 cifs_push_mandatory_locks(struct cifsFileInfo *cfile)
851 int xid, rc = 0, stored_rc;
852 struct cifsLockInfo *li, *tmp;
853 struct cifs_tcon *tcon;
854 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
855 unsigned int num, max_num;
856 LOCKING_ANDX_RANGE *buf, *cur;
857 int types[] = {LOCKING_ANDX_LARGE_FILES,
858 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
862 tcon = tlink_tcon(cfile->tlink);
864 mutex_lock(&cinode->lock_mutex);
865 if (!cinode->can_cache_brlcks) {
866 mutex_unlock(&cinode->lock_mutex);
871 max_num = (tcon->ses->server->maxBuf - sizeof(struct smb_hdr)) /
872 sizeof(LOCKING_ANDX_RANGE);
873 buf = kzalloc(max_num * sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
875 mutex_unlock(&cinode->lock_mutex);
880 for (i = 0; i < 2; i++) {
883 list_for_each_entry_safe(li, tmp, &cinode->llist, llist) {
884 if (li->type != types[i])
886 cur->Pid = cpu_to_le16(li->pid);
887 cur->LengthLow = cpu_to_le32((u32)li->length);
888 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
889 cur->OffsetLow = cpu_to_le32((u32)li->offset);
890 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
891 if (++num == max_num) {
892 stored_rc = cifs_lockv(xid, tcon, cfile->netfid,
893 li->type, 0, num, buf);
903 stored_rc = cifs_lockv(xid, tcon, cfile->netfid,
904 types[i], 0, num, buf);
910 cinode->can_cache_brlcks = false;
911 mutex_unlock(&cinode->lock_mutex);
918 /* copied from fs/locks.c with a name change */
919 #define cifs_for_each_lock(inode, lockp) \
920 for (lockp = &inode->i_flock; *lockp != NULL; \
921 lockp = &(*lockp)->fl_next)
923 struct lock_to_push {
924 struct list_head llist;
933 cifs_push_posix_locks(struct cifsFileInfo *cfile)
935 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
936 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
937 struct file_lock *flock, **before;
938 unsigned int count = 0, i = 0;
939 int rc = 0, xid, type;
940 struct list_head locks_to_send, *el;
941 struct lock_to_push *lck, *tmp;
946 mutex_lock(&cinode->lock_mutex);
947 if (!cinode->can_cache_brlcks) {
948 mutex_unlock(&cinode->lock_mutex);
954 cifs_for_each_lock(cfile->dentry->d_inode, before) {
955 if ((*before)->fl_flags & FL_POSIX)
960 INIT_LIST_HEAD(&locks_to_send);
963 * Allocating count locks is enough because no FL_POSIX locks can be
964 * added to the list while we are holding cinode->lock_mutex that
965 * protects locking operations of this inode.
967 for (; i < count; i++) {
968 lck = kmalloc(sizeof(struct lock_to_push), GFP_KERNEL);
973 list_add_tail(&lck->llist, &locks_to_send);
976 el = locks_to_send.next;
978 cifs_for_each_lock(cfile->dentry->d_inode, before) {
980 if ((flock->fl_flags & FL_POSIX) == 0)
982 if (el == &locks_to_send) {
984 * The list ended. We don't have enough allocated
985 * structures - something is really wrong.
987 cERROR(1, "Can't push all brlocks!");
990 length = 1 + flock->fl_end - flock->fl_start;
991 if (flock->fl_type == F_RDLCK || flock->fl_type == F_SHLCK)
995 lck = list_entry(el, struct lock_to_push, llist);
996 lck->pid = flock->fl_pid;
997 lck->netfid = cfile->netfid;
998 lck->length = length;
1000 lck->offset = flock->fl_start;
1005 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1006 struct file_lock tmp_lock;
1009 tmp_lock.fl_start = lck->offset;
1010 stored_rc = CIFSSMBPosixLock(xid, tcon, lck->netfid, lck->pid,
1011 0, lck->length, &tmp_lock,
1015 list_del(&lck->llist);
1020 cinode->can_cache_brlcks = false;
1021 mutex_unlock(&cinode->lock_mutex);
1026 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1027 list_del(&lck->llist);
1034 cifs_push_locks(struct cifsFileInfo *cfile)
1036 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1037 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1039 if ((tcon->ses->capabilities & CAP_UNIX) &&
1040 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1041 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1042 return cifs_push_posix_locks(cfile);
1044 return cifs_push_mandatory_locks(cfile);
1048 cifs_read_flock(struct file_lock *flock, __u8 *type, int *lock, int *unlock,
1051 if (flock->fl_flags & FL_POSIX)
1053 if (flock->fl_flags & FL_FLOCK)
1055 if (flock->fl_flags & FL_SLEEP) {
1056 cFYI(1, "Blocking lock");
1059 if (flock->fl_flags & FL_ACCESS)
1060 cFYI(1, "Process suspended by mandatory locking - "
1061 "not implemented yet");
1062 if (flock->fl_flags & FL_LEASE)
1063 cFYI(1, "Lease on file - not implemented yet");
1064 if (flock->fl_flags &
1065 (~(FL_POSIX | FL_FLOCK | FL_SLEEP | FL_ACCESS | FL_LEASE)))
1066 cFYI(1, "Unknown lock flags 0x%x", flock->fl_flags);
1068 *type = LOCKING_ANDX_LARGE_FILES;
1069 if (flock->fl_type == F_WRLCK) {
1070 cFYI(1, "F_WRLCK ");
1072 } else if (flock->fl_type == F_UNLCK) {
1075 /* Check if unlock includes more than one lock range */
1076 } else if (flock->fl_type == F_RDLCK) {
1078 *type |= LOCKING_ANDX_SHARED_LOCK;
1080 } else if (flock->fl_type == F_EXLCK) {
1083 } else if (flock->fl_type == F_SHLCK) {
1085 *type |= LOCKING_ANDX_SHARED_LOCK;
1088 cFYI(1, "Unknown type of lock");
1092 cifs_getlk(struct file *file, struct file_lock *flock, __u8 type,
1093 bool wait_flag, bool posix_lck, int xid)
1096 __u64 length = 1 + flock->fl_end - flock->fl_start;
1097 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1098 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1099 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
1100 __u16 netfid = cfile->netfid;
1103 int posix_lock_type;
1105 rc = cifs_posix_lock_test(file, flock);
1109 if (type & LOCKING_ANDX_SHARED_LOCK)
1110 posix_lock_type = CIFS_RDLCK;
1112 posix_lock_type = CIFS_WRLCK;
1113 rc = CIFSSMBPosixLock(xid, tcon, netfid, current->tgid,
1114 1 /* get */, length, flock,
1115 posix_lock_type, wait_flag);
1119 rc = cifs_lock_test(cinode, flock->fl_start, length, type, netfid,
1124 /* BB we could chain these into one lock request BB */
1125 rc = CIFSSMBLock(xid, tcon, netfid, current->tgid, length,
1126 flock->fl_start, 0, 1, type, 0, 0);
1128 rc = CIFSSMBLock(xid, tcon, netfid, current->tgid,
1129 length, flock->fl_start, 1, 0,
1131 flock->fl_type = F_UNLCK;
1133 cERROR(1, "Error unlocking previously locked "
1134 "range %d during test of lock", rc);
1138 if (type & LOCKING_ANDX_SHARED_LOCK) {
1139 flock->fl_type = F_WRLCK;
1143 rc = CIFSSMBLock(xid, tcon, netfid, current->tgid, length,
1144 flock->fl_start, 0, 1,
1145 type | LOCKING_ANDX_SHARED_LOCK, 0, 0);
1147 rc = CIFSSMBLock(xid, tcon, netfid, current->tgid,
1148 length, flock->fl_start, 1, 0,
1149 type | LOCKING_ANDX_SHARED_LOCK,
1151 flock->fl_type = F_RDLCK;
1153 cERROR(1, "Error unlocking previously locked "
1154 "range %d during test of lock", rc);
1156 flock->fl_type = F_WRLCK;
1162 cifs_move_llist(struct list_head *source, struct list_head *dest)
1164 struct list_head *li, *tmp;
1165 list_for_each_safe(li, tmp, source)
1166 list_move(li, dest);
1170 cifs_free_llist(struct list_head *llist)
1172 struct cifsLockInfo *li, *tmp;
1173 list_for_each_entry_safe(li, tmp, llist, llist) {
1174 cifs_del_lock_waiters(li);
1175 list_del(&li->llist);
1181 cifs_unlock_range(struct cifsFileInfo *cfile, struct file_lock *flock, int xid)
1183 int rc = 0, stored_rc;
1184 int types[] = {LOCKING_ANDX_LARGE_FILES,
1185 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
1187 unsigned int max_num, num;
1188 LOCKING_ANDX_RANGE *buf, *cur;
1189 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1190 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
1191 struct cifsLockInfo *li, *tmp;
1192 __u64 length = 1 + flock->fl_end - flock->fl_start;
1193 struct list_head tmp_llist;
1195 INIT_LIST_HEAD(&tmp_llist);
1197 max_num = (tcon->ses->server->maxBuf - sizeof(struct smb_hdr)) /
1198 sizeof(LOCKING_ANDX_RANGE);
1199 buf = kzalloc(max_num * sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1203 mutex_lock(&cinode->lock_mutex);
1204 for (i = 0; i < 2; i++) {
1207 list_for_each_entry_safe(li, tmp, &cinode->llist, llist) {
1208 if (flock->fl_start > li->offset ||
1209 (flock->fl_start + length) <
1210 (li->offset + li->length))
1212 if (current->tgid != li->pid)
1214 if (cfile->netfid != li->netfid)
1216 if (types[i] != li->type)
1218 if (!cinode->can_cache_brlcks) {
1219 cur->Pid = cpu_to_le16(li->pid);
1220 cur->LengthLow = cpu_to_le32((u32)li->length);
1222 cpu_to_le32((u32)(li->length>>32));
1223 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1225 cpu_to_le32((u32)(li->offset>>32));
1227 * We need to save a lock here to let us add
1228 * it again to the inode list if the unlock
1229 * range request fails on the server.
1231 list_move(&li->llist, &tmp_llist);
1232 if (++num == max_num) {
1233 stored_rc = cifs_lockv(xid, tcon,
1239 * We failed on the unlock range
1240 * request - add all locks from
1241 * the tmp list to the head of
1244 cifs_move_llist(&tmp_llist,
1249 * The unlock range request
1250 * succeed - free the tmp list.
1252 cifs_free_llist(&tmp_llist);
1259 * We can cache brlock requests - simply remove
1260 * a lock from the inode list.
1262 list_del(&li->llist);
1263 cifs_del_lock_waiters(li);
1268 stored_rc = cifs_lockv(xid, tcon, cfile->netfid,
1269 types[i], num, 0, buf);
1271 cifs_move_llist(&tmp_llist, &cinode->llist);
1274 cifs_free_llist(&tmp_llist);
1278 mutex_unlock(&cinode->lock_mutex);
1284 cifs_setlk(struct file *file, struct file_lock *flock, __u8 type,
1285 bool wait_flag, bool posix_lck, int lock, int unlock, int xid)
1288 __u64 length = 1 + flock->fl_end - flock->fl_start;
1289 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1290 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1291 struct cifsInodeInfo *cinode = CIFS_I(file->f_path.dentry->d_inode);
1292 __u16 netfid = cfile->netfid;
1295 int posix_lock_type;
1297 rc = cifs_posix_lock_set(file, flock);
1301 if (type & LOCKING_ANDX_SHARED_LOCK)
1302 posix_lock_type = CIFS_RDLCK;
1304 posix_lock_type = CIFS_WRLCK;
1307 posix_lock_type = CIFS_UNLCK;
1309 rc = CIFSSMBPosixLock(xid, tcon, netfid, current->tgid,
1310 0 /* set */, length, flock,
1311 posix_lock_type, wait_flag);
1316 struct cifsLockInfo *lock;
1318 lock = cifs_lock_init(flock->fl_start, length, type, netfid);
1322 rc = cifs_lock_add_if(cinode, lock, wait_flag);
1328 rc = CIFSSMBLock(xid, tcon, netfid, current->tgid, length,
1329 flock->fl_start, 0, 1, type, wait_flag, 0);
1335 cifs_lock_add(cinode, lock);
1337 rc = cifs_unlock_range(cfile, flock, xid);
1340 if (flock->fl_flags & FL_POSIX)
1341 posix_lock_file_wait(file, flock);
1345 int cifs_lock(struct file *file, int cmd, struct file_lock *flock)
1348 int lock = 0, unlock = 0;
1349 bool wait_flag = false;
1350 bool posix_lck = false;
1351 struct cifs_sb_info *cifs_sb;
1352 struct cifs_tcon *tcon;
1353 struct cifsInodeInfo *cinode;
1354 struct cifsFileInfo *cfile;
1361 cFYI(1, "Lock parm: 0x%x flockflags: 0x%x flocktype: 0x%x start: %lld "
1362 "end: %lld", cmd, flock->fl_flags, flock->fl_type,
1363 flock->fl_start, flock->fl_end);
1365 cifs_read_flock(flock, &type, &lock, &unlock, &wait_flag);
1367 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1368 cfile = (struct cifsFileInfo *)file->private_data;
1369 tcon = tlink_tcon(cfile->tlink);
1370 netfid = cfile->netfid;
1371 cinode = CIFS_I(file->f_path.dentry->d_inode);
1373 if ((tcon->ses->capabilities & CAP_UNIX) &&
1374 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1375 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1378 * BB add code here to normalize offset and length to account for
1379 * negative length which we can not accept over the wire.
1381 if (IS_GETLK(cmd)) {
1382 rc = cifs_getlk(file, flock, type, wait_flag, posix_lck, xid);
1387 if (!lock && !unlock) {
1389 * if no lock or unlock then nothing to do since we do not
1396 rc = cifs_setlk(file, flock, type, wait_flag, posix_lck, lock, unlock,
1403 * update the file size (if needed) after a write. Should be called with
1404 * the inode->i_lock held
1407 cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
1408 unsigned int bytes_written)
1410 loff_t end_of_write = offset + bytes_written;
1412 if (end_of_write > cifsi->server_eof)
1413 cifsi->server_eof = end_of_write;
1416 static ssize_t cifs_write(struct cifsFileInfo *open_file, __u32 pid,
1417 const char *write_data, size_t write_size,
1421 unsigned int bytes_written = 0;
1422 unsigned int total_written;
1423 struct cifs_sb_info *cifs_sb;
1424 struct cifs_tcon *pTcon;
1426 struct dentry *dentry = open_file->dentry;
1427 struct cifsInodeInfo *cifsi = CIFS_I(dentry->d_inode);
1428 struct cifs_io_parms io_parms;
1430 cifs_sb = CIFS_SB(dentry->d_sb);
1432 cFYI(1, "write %zd bytes to offset %lld of %s", write_size,
1433 *poffset, dentry->d_name.name);
1435 pTcon = tlink_tcon(open_file->tlink);
1439 for (total_written = 0; write_size > total_written;
1440 total_written += bytes_written) {
1442 while (rc == -EAGAIN) {
1446 if (open_file->invalidHandle) {
1447 /* we could deadlock if we called
1448 filemap_fdatawait from here so tell
1449 reopen_file not to flush data to
1451 rc = cifs_reopen_file(open_file, false);
1456 len = min((size_t)cifs_sb->wsize,
1457 write_size - total_written);
1458 /* iov[0] is reserved for smb header */
1459 iov[1].iov_base = (char *)write_data + total_written;
1460 iov[1].iov_len = len;
1461 io_parms.netfid = open_file->netfid;
1463 io_parms.tcon = pTcon;
1464 io_parms.offset = *poffset;
1465 io_parms.length = len;
1466 rc = CIFSSMBWrite2(xid, &io_parms, &bytes_written, iov,
1469 if (rc || (bytes_written == 0)) {
1477 spin_lock(&dentry->d_inode->i_lock);
1478 cifs_update_eof(cifsi, *poffset, bytes_written);
1479 spin_unlock(&dentry->d_inode->i_lock);
1480 *poffset += bytes_written;
1484 cifs_stats_bytes_written(pTcon, total_written);
1486 if (total_written > 0) {
1487 spin_lock(&dentry->d_inode->i_lock);
1488 if (*poffset > dentry->d_inode->i_size)
1489 i_size_write(dentry->d_inode, *poffset);
1490 spin_unlock(&dentry->d_inode->i_lock);
1492 mark_inode_dirty_sync(dentry->d_inode);
1494 return total_written;
1497 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode,
1500 struct cifsFileInfo *open_file = NULL;
1501 struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1503 /* only filter by fsuid on multiuser mounts */
1504 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1507 spin_lock(&cifs_file_list_lock);
1508 /* we could simply get the first_list_entry since write-only entries
1509 are always at the end of the list but since the first entry might
1510 have a close pending, we go through the whole list */
1511 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1512 if (fsuid_only && open_file->uid != current_fsuid())
1514 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) {
1515 if (!open_file->invalidHandle) {
1516 /* found a good file */
1517 /* lock it so it will not be closed on us */
1518 cifsFileInfo_get(open_file);
1519 spin_unlock(&cifs_file_list_lock);
1521 } /* else might as well continue, and look for
1522 another, or simply have the caller reopen it
1523 again rather than trying to fix this handle */
1524 } else /* write only file */
1525 break; /* write only files are last so must be done */
1527 spin_unlock(&cifs_file_list_lock);
1531 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode,
1534 struct cifsFileInfo *open_file;
1535 struct cifs_sb_info *cifs_sb;
1536 bool any_available = false;
1539 /* Having a null inode here (because mapping->host was set to zero by
1540 the VFS or MM) should not happen but we had reports of on oops (due to
1541 it being zero) during stress testcases so we need to check for it */
1543 if (cifs_inode == NULL) {
1544 cERROR(1, "Null inode passed to cifs_writeable_file");
1549 cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1551 /* only filter by fsuid on multiuser mounts */
1552 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1555 spin_lock(&cifs_file_list_lock);
1557 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1558 if (!any_available && open_file->pid != current->tgid)
1560 if (fsuid_only && open_file->uid != current_fsuid())
1562 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
1563 cifsFileInfo_get(open_file);
1565 if (!open_file->invalidHandle) {
1566 /* found a good writable file */
1567 spin_unlock(&cifs_file_list_lock);
1571 spin_unlock(&cifs_file_list_lock);
1573 /* Had to unlock since following call can block */
1574 rc = cifs_reopen_file(open_file, false);
1578 /* if it fails, try another handle if possible */
1579 cFYI(1, "wp failed on reopen file");
1580 cifsFileInfo_put(open_file);
1582 spin_lock(&cifs_file_list_lock);
1584 /* else we simply continue to the next entry. Thus
1585 we do not loop on reopen errors. If we
1586 can not reopen the file, for example if we
1587 reconnected to a server with another client
1588 racing to delete or lock the file we would not
1589 make progress if we restarted before the beginning
1590 of the loop here. */
1593 /* couldn't find useable FH with same pid, try any available */
1594 if (!any_available) {
1595 any_available = true;
1596 goto refind_writable;
1598 spin_unlock(&cifs_file_list_lock);
1602 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1604 struct address_space *mapping = page->mapping;
1605 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1608 int bytes_written = 0;
1609 struct inode *inode;
1610 struct cifsFileInfo *open_file;
1612 if (!mapping || !mapping->host)
1615 inode = page->mapping->host;
1617 offset += (loff_t)from;
1618 write_data = kmap(page);
1621 if ((to > PAGE_CACHE_SIZE) || (from > to)) {
1626 /* racing with truncate? */
1627 if (offset > mapping->host->i_size) {
1629 return 0; /* don't care */
1632 /* check to make sure that we are not extending the file */
1633 if (mapping->host->i_size - offset < (loff_t)to)
1634 to = (unsigned)(mapping->host->i_size - offset);
1636 open_file = find_writable_file(CIFS_I(mapping->host), false);
1638 bytes_written = cifs_write(open_file, open_file->pid,
1639 write_data, to - from, &offset);
1640 cifsFileInfo_put(open_file);
1641 /* Does mm or vfs already set times? */
1642 inode->i_atime = inode->i_mtime = current_fs_time(inode->i_sb);
1643 if ((bytes_written > 0) && (offset))
1645 else if (bytes_written < 0)
1648 cFYI(1, "No writeable filehandles for inode");
1657 * Marshal up the iov array, reserving the first one for the header. Also,
1661 cifs_writepages_marshal_iov(struct kvec *iov, struct cifs_writedata *wdata)
1664 struct inode *inode = wdata->cfile->dentry->d_inode;
1665 loff_t size = i_size_read(inode);
1667 /* marshal up the pages into iov array */
1669 for (i = 0; i < wdata->nr_pages; i++) {
1670 iov[i + 1].iov_len = min(size - page_offset(wdata->pages[i]),
1671 (loff_t)PAGE_CACHE_SIZE);
1672 iov[i + 1].iov_base = kmap(wdata->pages[i]);
1673 wdata->bytes += iov[i + 1].iov_len;
1677 static int cifs_writepages(struct address_space *mapping,
1678 struct writeback_control *wbc)
1680 struct cifs_sb_info *cifs_sb = CIFS_SB(mapping->host->i_sb);
1681 bool done = false, scanned = false, range_whole = false;
1683 struct cifs_writedata *wdata;
1688 * If wsize is smaller than the page cache size, default to writing
1689 * one page at a time via cifs_writepage
1691 if (cifs_sb->wsize < PAGE_CACHE_SIZE)
1692 return generic_writepages(mapping, wbc);
1694 if (wbc->range_cyclic) {
1695 index = mapping->writeback_index; /* Start from prev offset */
1698 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1699 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1700 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1705 while (!done && index <= end) {
1706 unsigned int i, nr_pages, found_pages;
1707 pgoff_t next = 0, tofind;
1708 struct page **pages;
1710 tofind = min((cifs_sb->wsize / PAGE_CACHE_SIZE) - 1,
1713 wdata = cifs_writedata_alloc((unsigned int)tofind,
1714 cifs_writev_complete);
1721 * find_get_pages_tag seems to return a max of 256 on each
1722 * iteration, so we must call it several times in order to
1723 * fill the array or the wsize is effectively limited to
1724 * 256 * PAGE_CACHE_SIZE.
1727 pages = wdata->pages;
1729 nr_pages = find_get_pages_tag(mapping, &index,
1730 PAGECACHE_TAG_DIRTY,
1732 found_pages += nr_pages;
1735 } while (nr_pages && tofind && index <= end);
1737 if (found_pages == 0) {
1738 kref_put(&wdata->refcount, cifs_writedata_release);
1743 for (i = 0; i < found_pages; i++) {
1744 page = wdata->pages[i];
1746 * At this point we hold neither mapping->tree_lock nor
1747 * lock on the page itself: the page may be truncated or
1748 * invalidated (changing page->mapping to NULL), or even
1749 * swizzled back from swapper_space to tmpfs file
1755 else if (!trylock_page(page))
1758 if (unlikely(page->mapping != mapping)) {
1763 if (!wbc->range_cyclic && page->index > end) {
1769 if (next && (page->index != next)) {
1770 /* Not next consecutive page */
1775 if (wbc->sync_mode != WB_SYNC_NONE)
1776 wait_on_page_writeback(page);
1778 if (PageWriteback(page) ||
1779 !clear_page_dirty_for_io(page)) {
1785 * This actually clears the dirty bit in the radix tree.
1786 * See cifs_writepage() for more commentary.
1788 set_page_writeback(page);
1790 if (page_offset(page) >= mapping->host->i_size) {
1793 end_page_writeback(page);
1797 wdata->pages[i] = page;
1798 next = page->index + 1;
1802 /* reset index to refind any pages skipped */
1804 index = wdata->pages[0]->index + 1;
1806 /* put any pages we aren't going to use */
1807 for (i = nr_pages; i < found_pages; i++) {
1808 page_cache_release(wdata->pages[i]);
1809 wdata->pages[i] = NULL;
1812 /* nothing to write? */
1813 if (nr_pages == 0) {
1814 kref_put(&wdata->refcount, cifs_writedata_release);
1818 wdata->sync_mode = wbc->sync_mode;
1819 wdata->nr_pages = nr_pages;
1820 wdata->offset = page_offset(wdata->pages[0]);
1821 wdata->marshal_iov = cifs_writepages_marshal_iov;
1824 if (wdata->cfile != NULL)
1825 cifsFileInfo_put(wdata->cfile);
1826 wdata->cfile = find_writable_file(CIFS_I(mapping->host),
1828 if (!wdata->cfile) {
1829 cERROR(1, "No writable handles for inode");
1833 wdata->pid = wdata->cfile->pid;
1834 rc = cifs_async_writev(wdata);
1835 } while (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN);
1837 for (i = 0; i < nr_pages; ++i)
1838 unlock_page(wdata->pages[i]);
1840 /* send failure -- clean up the mess */
1842 for (i = 0; i < nr_pages; ++i) {
1844 redirty_page_for_writepage(wbc,
1847 SetPageError(wdata->pages[i]);
1848 end_page_writeback(wdata->pages[i]);
1849 page_cache_release(wdata->pages[i]);
1852 mapping_set_error(mapping, rc);
1854 kref_put(&wdata->refcount, cifs_writedata_release);
1856 wbc->nr_to_write -= nr_pages;
1857 if (wbc->nr_to_write <= 0)
1863 if (!scanned && !done) {
1865 * We hit the last page and there is more work to be done: wrap
1866 * back to the start of the file
1873 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1874 mapping->writeback_index = index;
1880 cifs_writepage_locked(struct page *page, struct writeback_control *wbc)
1886 /* BB add check for wbc flags */
1887 page_cache_get(page);
1888 if (!PageUptodate(page))
1889 cFYI(1, "ppw - page not up to date");
1892 * Set the "writeback" flag, and clear "dirty" in the radix tree.
1894 * A writepage() implementation always needs to do either this,
1895 * or re-dirty the page with "redirty_page_for_writepage()" in
1896 * the case of a failure.
1898 * Just unlocking the page will cause the radix tree tag-bits
1899 * to fail to update with the state of the page correctly.
1901 set_page_writeback(page);
1903 rc = cifs_partialpagewrite(page, 0, PAGE_CACHE_SIZE);
1904 if (rc == -EAGAIN && wbc->sync_mode == WB_SYNC_ALL)
1906 else if (rc == -EAGAIN)
1907 redirty_page_for_writepage(wbc, page);
1911 SetPageUptodate(page);
1912 end_page_writeback(page);
1913 page_cache_release(page);
1918 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
1920 int rc = cifs_writepage_locked(page, wbc);
1925 static int cifs_write_end(struct file *file, struct address_space *mapping,
1926 loff_t pos, unsigned len, unsigned copied,
1927 struct page *page, void *fsdata)
1930 struct inode *inode = mapping->host;
1931 struct cifsFileInfo *cfile = file->private_data;
1932 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1935 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
1938 pid = current->tgid;
1940 cFYI(1, "write_end for page %p from pos %lld with %d bytes",
1943 if (PageChecked(page)) {
1945 SetPageUptodate(page);
1946 ClearPageChecked(page);
1947 } else if (!PageUptodate(page) && copied == PAGE_CACHE_SIZE)
1948 SetPageUptodate(page);
1950 if (!PageUptodate(page)) {
1952 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1956 /* this is probably better than directly calling
1957 partialpage_write since in this function the file handle is
1958 known which we might as well leverage */
1959 /* BB check if anything else missing out of ppw
1960 such as updating last write time */
1961 page_data = kmap(page);
1962 rc = cifs_write(cfile, pid, page_data + offset, copied, &pos);
1963 /* if (rc < 0) should we set writebehind rc? */
1970 set_page_dirty(page);
1974 spin_lock(&inode->i_lock);
1975 if (pos > inode->i_size)
1976 i_size_write(inode, pos);
1977 spin_unlock(&inode->i_lock);
1981 page_cache_release(page);
1986 int cifs_strict_fsync(struct file *file, loff_t start, loff_t end,
1991 struct cifs_tcon *tcon;
1992 struct cifsFileInfo *smbfile = file->private_data;
1993 struct inode *inode = file->f_path.dentry->d_inode;
1994 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
1996 rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
1999 mutex_lock(&inode->i_mutex);
2003 cFYI(1, "Sync file - name: %s datasync: 0x%x",
2004 file->f_path.dentry->d_name.name, datasync);
2006 if (!CIFS_I(inode)->clientCanCacheRead) {
2007 rc = cifs_invalidate_mapping(inode);
2009 cFYI(1, "rc: %d during invalidate phase", rc);
2010 rc = 0; /* don't care about it in fsync */
2014 tcon = tlink_tcon(smbfile->tlink);
2015 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
2016 rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
2019 mutex_unlock(&inode->i_mutex);
2023 int cifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
2027 struct cifs_tcon *tcon;
2028 struct cifsFileInfo *smbfile = file->private_data;
2029 struct cifs_sb_info *cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2030 struct inode *inode = file->f_mapping->host;
2032 rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2035 mutex_lock(&inode->i_mutex);
2039 cFYI(1, "Sync file - name: %s datasync: 0x%x",
2040 file->f_path.dentry->d_name.name, datasync);
2042 tcon = tlink_tcon(smbfile->tlink);
2043 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
2044 rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
2047 mutex_unlock(&inode->i_mutex);
2052 * As file closes, flush all cached write data for this inode checking
2053 * for write behind errors.
2055 int cifs_flush(struct file *file, fl_owner_t id)
2057 struct inode *inode = file->f_path.dentry->d_inode;
2060 if (file->f_mode & FMODE_WRITE)
2061 rc = filemap_write_and_wait(inode->i_mapping);
2063 cFYI(1, "Flush inode %p file %p rc %d", inode, file, rc);
2069 cifs_write_allocate_pages(struct page **pages, unsigned long num_pages)
2074 for (i = 0; i < num_pages; i++) {
2075 pages[i] = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2078 * save number of pages we have already allocated and
2079 * return with ENOMEM error
2088 for (i = 0; i < num_pages; i++)
2095 size_t get_numpages(const size_t wsize, const size_t len, size_t *cur_len)
2100 clen = min_t(const size_t, len, wsize);
2101 num_pages = DIV_ROUND_UP(clen, PAGE_SIZE);
2110 cifs_uncached_marshal_iov(struct kvec *iov, struct cifs_writedata *wdata)
2113 size_t bytes = wdata->bytes;
2115 /* marshal up the pages into iov array */
2116 for (i = 0; i < wdata->nr_pages; i++) {
2117 iov[i + 1].iov_len = min_t(size_t, bytes, PAGE_SIZE);
2118 iov[i + 1].iov_base = kmap(wdata->pages[i]);
2119 bytes -= iov[i + 1].iov_len;
2124 cifs_uncached_writev_complete(struct work_struct *work)
2127 struct cifs_writedata *wdata = container_of(work,
2128 struct cifs_writedata, work);
2129 struct inode *inode = wdata->cfile->dentry->d_inode;
2130 struct cifsInodeInfo *cifsi = CIFS_I(inode);
2132 spin_lock(&inode->i_lock);
2133 cifs_update_eof(cifsi, wdata->offset, wdata->bytes);
2134 if (cifsi->server_eof > inode->i_size)
2135 i_size_write(inode, cifsi->server_eof);
2136 spin_unlock(&inode->i_lock);
2138 complete(&wdata->done);
2140 if (wdata->result != -EAGAIN) {
2141 for (i = 0; i < wdata->nr_pages; i++)
2142 put_page(wdata->pages[i]);
2145 kref_put(&wdata->refcount, cifs_writedata_release);
2148 /* attempt to send write to server, retry on any -EAGAIN errors */
2150 cifs_uncached_retry_writev(struct cifs_writedata *wdata)
2155 if (wdata->cfile->invalidHandle) {
2156 rc = cifs_reopen_file(wdata->cfile, false);
2160 rc = cifs_async_writev(wdata);
2161 } while (rc == -EAGAIN);
2167 cifs_iovec_write(struct file *file, const struct iovec *iov,
2168 unsigned long nr_segs, loff_t *poffset)
2170 unsigned long nr_pages, i;
2171 size_t copied, len, cur_len;
2172 ssize_t total_written = 0;
2173 loff_t offset = *poffset;
2175 struct cifsFileInfo *open_file;
2176 struct cifs_tcon *tcon;
2177 struct cifs_sb_info *cifs_sb;
2178 struct cifs_writedata *wdata, *tmp;
2179 struct list_head wdata_list;
2183 len = iov_length(iov, nr_segs);
2187 rc = generic_write_checks(file, poffset, &len, 0);
2191 INIT_LIST_HEAD(&wdata_list);
2192 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2193 open_file = file->private_data;
2194 tcon = tlink_tcon(open_file->tlink);
2196 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2197 pid = open_file->pid;
2199 pid = current->tgid;
2201 iov_iter_init(&it, iov, nr_segs, len, 0);
2205 nr_pages = get_numpages(cifs_sb->wsize, len, &cur_len);
2206 wdata = cifs_writedata_alloc(nr_pages,
2207 cifs_uncached_writev_complete);
2213 rc = cifs_write_allocate_pages(wdata->pages, nr_pages);
2220 for (i = 0; i < nr_pages; i++) {
2221 copied = min_t(const size_t, cur_len, PAGE_SIZE);
2222 copied = iov_iter_copy_from_user(wdata->pages[i], &it,
2225 iov_iter_advance(&it, copied);
2227 cur_len = save_len - cur_len;
2229 wdata->sync_mode = WB_SYNC_ALL;
2230 wdata->nr_pages = nr_pages;
2231 wdata->offset = (__u64)offset;
2232 wdata->cfile = cifsFileInfo_get(open_file);
2234 wdata->bytes = cur_len;
2235 wdata->marshal_iov = cifs_uncached_marshal_iov;
2236 rc = cifs_uncached_retry_writev(wdata);
2238 kref_put(&wdata->refcount, cifs_writedata_release);
2242 list_add_tail(&wdata->list, &wdata_list);
2248 * If at least one write was successfully sent, then discard any rc
2249 * value from the later writes. If the other write succeeds, then
2250 * we'll end up returning whatever was written. If it fails, then
2251 * we'll get a new rc value from that.
2253 if (!list_empty(&wdata_list))
2257 * Wait for and collect replies for any successful sends in order of
2258 * increasing offset. Once an error is hit or we get a fatal signal
2259 * while waiting, then return without waiting for any more replies.
2262 list_for_each_entry_safe(wdata, tmp, &wdata_list, list) {
2264 /* FIXME: freezable too? */
2265 rc = wait_for_completion_killable(&wdata->done);
2268 else if (wdata->result)
2271 total_written += wdata->bytes;
2273 /* resend call if it's a retryable error */
2274 if (rc == -EAGAIN) {
2275 rc = cifs_uncached_retry_writev(wdata);
2279 list_del_init(&wdata->list);
2280 kref_put(&wdata->refcount, cifs_writedata_release);
2283 if (total_written > 0)
2284 *poffset += total_written;
2286 cifs_stats_bytes_written(tcon, total_written);
2287 return total_written ? total_written : (ssize_t)rc;
2290 ssize_t cifs_user_writev(struct kiocb *iocb, const struct iovec *iov,
2291 unsigned long nr_segs, loff_t pos)
2294 struct inode *inode;
2296 inode = iocb->ki_filp->f_path.dentry->d_inode;
2299 * BB - optimize the way when signing is disabled. We can drop this
2300 * extra memory-to-memory copying and use iovec buffers for constructing
2304 written = cifs_iovec_write(iocb->ki_filp, iov, nr_segs, &pos);
2306 CIFS_I(inode)->invalid_mapping = true;
2313 ssize_t cifs_strict_writev(struct kiocb *iocb, const struct iovec *iov,
2314 unsigned long nr_segs, loff_t pos)
2316 struct inode *inode;
2318 inode = iocb->ki_filp->f_path.dentry->d_inode;
2320 if (CIFS_I(inode)->clientCanCacheAll)
2321 return generic_file_aio_write(iocb, iov, nr_segs, pos);
2324 * In strict cache mode we need to write the data to the server exactly
2325 * from the pos to pos+len-1 rather than flush all affected pages
2326 * because it may cause a error with mandatory locks on these pages but
2327 * not on the region from pos to ppos+len-1.
2330 return cifs_user_writev(iocb, iov, nr_segs, pos);
2334 cifs_iovec_read(struct file *file, const struct iovec *iov,
2335 unsigned long nr_segs, loff_t *poffset)
2340 unsigned int bytes_read = 0;
2341 size_t len, cur_len;
2343 struct cifs_sb_info *cifs_sb;
2344 struct cifs_tcon *pTcon;
2345 struct cifsFileInfo *open_file;
2346 struct smb_com_read_rsp *pSMBr;
2347 struct cifs_io_parms io_parms;
2355 len = iov_length(iov, nr_segs);
2360 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2362 /* FIXME: set up handlers for larger reads and/or convert to async */
2363 rsize = min_t(unsigned int, cifs_sb->rsize, CIFSMaxBufSize);
2365 open_file = file->private_data;
2366 pTcon = tlink_tcon(open_file->tlink);
2368 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2369 pid = open_file->pid;
2371 pid = current->tgid;
2373 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
2374 cFYI(1, "attempting read on write only file instance");
2376 for (total_read = 0; total_read < len; total_read += bytes_read) {
2377 cur_len = min_t(const size_t, len - total_read, rsize);
2381 while (rc == -EAGAIN) {
2382 int buf_type = CIFS_NO_BUFFER;
2383 if (open_file->invalidHandle) {
2384 rc = cifs_reopen_file(open_file, true);
2388 io_parms.netfid = open_file->netfid;
2390 io_parms.tcon = pTcon;
2391 io_parms.offset = *poffset;
2392 io_parms.length = cur_len;
2393 rc = CIFSSMBRead(xid, &io_parms, &bytes_read,
2394 &read_data, &buf_type);
2395 pSMBr = (struct smb_com_read_rsp *)read_data;
2397 char *data_offset = read_data + 4 +
2398 le16_to_cpu(pSMBr->DataOffset);
2399 if (memcpy_toiovecend(iov, data_offset,
2400 iov_offset, bytes_read))
2402 if (buf_type == CIFS_SMALL_BUFFER)
2403 cifs_small_buf_release(read_data);
2404 else if (buf_type == CIFS_LARGE_BUFFER)
2405 cifs_buf_release(read_data);
2407 iov_offset += bytes_read;
2411 if (rc || (bytes_read == 0)) {
2419 cifs_stats_bytes_read(pTcon, bytes_read);
2420 *poffset += bytes_read;
2428 ssize_t cifs_user_readv(struct kiocb *iocb, const struct iovec *iov,
2429 unsigned long nr_segs, loff_t pos)
2433 read = cifs_iovec_read(iocb->ki_filp, iov, nr_segs, &pos);
2440 ssize_t cifs_strict_readv(struct kiocb *iocb, const struct iovec *iov,
2441 unsigned long nr_segs, loff_t pos)
2443 struct inode *inode;
2445 inode = iocb->ki_filp->f_path.dentry->d_inode;
2447 if (CIFS_I(inode)->clientCanCacheRead)
2448 return generic_file_aio_read(iocb, iov, nr_segs, pos);
2451 * In strict cache mode we need to read from the server all the time
2452 * if we don't have level II oplock because the server can delay mtime
2453 * change - so we can't make a decision about inode invalidating.
2454 * And we can also fail with pagereading if there are mandatory locks
2455 * on pages affected by this read but not on the region from pos to
2459 return cifs_user_readv(iocb, iov, nr_segs, pos);
2462 static ssize_t cifs_read(struct file *file, char *read_data, size_t read_size,
2466 unsigned int bytes_read = 0;
2467 unsigned int total_read;
2468 unsigned int current_read_size;
2470 struct cifs_sb_info *cifs_sb;
2471 struct cifs_tcon *pTcon;
2473 char *current_offset;
2474 struct cifsFileInfo *open_file;
2475 struct cifs_io_parms io_parms;
2476 int buf_type = CIFS_NO_BUFFER;
2480 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2482 /* FIXME: set up handlers for larger reads and/or convert to async */
2483 rsize = min_t(unsigned int, cifs_sb->rsize, CIFSMaxBufSize);
2485 if (file->private_data == NULL) {
2490 open_file = file->private_data;
2491 pTcon = tlink_tcon(open_file->tlink);
2493 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2494 pid = open_file->pid;
2496 pid = current->tgid;
2498 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
2499 cFYI(1, "attempting read on write only file instance");
2501 for (total_read = 0, current_offset = read_data;
2502 read_size > total_read;
2503 total_read += bytes_read, current_offset += bytes_read) {
2504 current_read_size = min_t(uint, read_size - total_read, rsize);
2506 /* For windows me and 9x we do not want to request more
2507 than it negotiated since it will refuse the read then */
2509 !(pTcon->ses->capabilities & CAP_LARGE_FILES)) {
2510 current_read_size = min_t(uint, current_read_size,
2514 while (rc == -EAGAIN) {
2515 if (open_file->invalidHandle) {
2516 rc = cifs_reopen_file(open_file, true);
2520 io_parms.netfid = open_file->netfid;
2522 io_parms.tcon = pTcon;
2523 io_parms.offset = *poffset;
2524 io_parms.length = current_read_size;
2525 rc = CIFSSMBRead(xid, &io_parms, &bytes_read,
2526 ¤t_offset, &buf_type);
2528 if (rc || (bytes_read == 0)) {
2536 cifs_stats_bytes_read(pTcon, total_read);
2537 *poffset += bytes_read;
2545 * If the page is mmap'ed into a process' page tables, then we need to make
2546 * sure that it doesn't change while being written back.
2549 cifs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2551 struct page *page = vmf->page;
2554 return VM_FAULT_LOCKED;
2557 static struct vm_operations_struct cifs_file_vm_ops = {
2558 .fault = filemap_fault,
2559 .page_mkwrite = cifs_page_mkwrite,
2562 int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma)
2565 struct inode *inode = file->f_path.dentry->d_inode;
2569 if (!CIFS_I(inode)->clientCanCacheRead) {
2570 rc = cifs_invalidate_mapping(inode);
2575 rc = generic_file_mmap(file, vma);
2577 vma->vm_ops = &cifs_file_vm_ops;
2582 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
2587 rc = cifs_revalidate_file(file);
2589 cFYI(1, "Validation prior to mmap failed, error=%d", rc);
2593 rc = generic_file_mmap(file, vma);
2595 vma->vm_ops = &cifs_file_vm_ops;
2600 static int cifs_readpages(struct file *file, struct address_space *mapping,
2601 struct list_head *page_list, unsigned num_pages)
2604 struct list_head tmplist;
2605 struct cifsFileInfo *open_file = file->private_data;
2606 struct cifs_sb_info *cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2607 unsigned int rsize = cifs_sb->rsize;
2611 * Give up immediately if rsize is too small to read an entire page.
2612 * The VFS will fall back to readpage. We should never reach this
2613 * point however since we set ra_pages to 0 when the rsize is smaller
2614 * than a cache page.
2616 if (unlikely(rsize < PAGE_CACHE_SIZE))
2620 * Reads as many pages as possible from fscache. Returns -ENOBUFS
2621 * immediately if the cookie is negative
2623 rc = cifs_readpages_from_fscache(mapping->host, mapping, page_list,
2628 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2629 pid = open_file->pid;
2631 pid = current->tgid;
2634 INIT_LIST_HEAD(&tmplist);
2636 cFYI(1, "%s: file=%p mapping=%p num_pages=%u", __func__, file,
2637 mapping, num_pages);
2640 * Start with the page at end of list and move it to private
2641 * list. Do the same with any following pages until we hit
2642 * the rsize limit, hit an index discontinuity, or run out of
2643 * pages. Issue the async read and then start the loop again
2644 * until the list is empty.
2646 * Note that list order is important. The page_list is in
2647 * the order of declining indexes. When we put the pages in
2648 * the rdata->pages, then we want them in increasing order.
2650 while (!list_empty(page_list)) {
2651 unsigned int bytes = PAGE_CACHE_SIZE;
2652 unsigned int expected_index;
2653 unsigned int nr_pages = 1;
2655 struct page *page, *tpage;
2656 struct cifs_readdata *rdata;
2658 page = list_entry(page_list->prev, struct page, lru);
2661 * Lock the page and put it in the cache. Since no one else
2662 * should have access to this page, we're safe to simply set
2663 * PG_locked without checking it first.
2665 __set_page_locked(page);
2666 rc = add_to_page_cache_locked(page, mapping,
2667 page->index, GFP_KERNEL);
2669 /* give up if we can't stick it in the cache */
2671 __clear_page_locked(page);
2675 /* move first page to the tmplist */
2676 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2677 list_move_tail(&page->lru, &tmplist);
2679 /* now try and add more pages onto the request */
2680 expected_index = page->index + 1;
2681 list_for_each_entry_safe_reverse(page, tpage, page_list, lru) {
2682 /* discontinuity ? */
2683 if (page->index != expected_index)
2686 /* would this page push the read over the rsize? */
2687 if (bytes + PAGE_CACHE_SIZE > rsize)
2690 __set_page_locked(page);
2691 if (add_to_page_cache_locked(page, mapping,
2692 page->index, GFP_KERNEL)) {
2693 __clear_page_locked(page);
2696 list_move_tail(&page->lru, &tmplist);
2697 bytes += PAGE_CACHE_SIZE;
2702 rdata = cifs_readdata_alloc(nr_pages);
2704 /* best to give up if we're out of mem */
2705 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
2706 list_del(&page->lru);
2707 lru_cache_add_file(page);
2709 page_cache_release(page);
2715 spin_lock(&cifs_file_list_lock);
2716 cifsFileInfo_get(open_file);
2717 spin_unlock(&cifs_file_list_lock);
2718 rdata->cfile = open_file;
2719 rdata->mapping = mapping;
2720 rdata->offset = offset;
2721 rdata->bytes = bytes;
2723 list_splice_init(&tmplist, &rdata->pages);
2726 if (open_file->invalidHandle) {
2727 rc = cifs_reopen_file(open_file, true);
2731 rc = cifs_async_readv(rdata);
2732 } while (rc == -EAGAIN);
2735 list_for_each_entry_safe(page, tpage, &rdata->pages,
2737 list_del(&page->lru);
2738 lru_cache_add_file(page);
2740 page_cache_release(page);
2742 cifs_readdata_free(rdata);
2750 static int cifs_readpage_worker(struct file *file, struct page *page,
2756 /* Is the page cached? */
2757 rc = cifs_readpage_from_fscache(file->f_path.dentry->d_inode, page);
2761 page_cache_get(page);
2762 read_data = kmap(page);
2763 /* for reads over a certain size could initiate async read ahead */
2765 rc = cifs_read(file, read_data, PAGE_CACHE_SIZE, poffset);
2770 cFYI(1, "Bytes read %d", rc);
2772 file->f_path.dentry->d_inode->i_atime =
2773 current_fs_time(file->f_path.dentry->d_inode->i_sb);
2775 if (PAGE_CACHE_SIZE > rc)
2776 memset(read_data + rc, 0, PAGE_CACHE_SIZE - rc);
2778 flush_dcache_page(page);
2779 SetPageUptodate(page);
2781 /* send this page to the cache */
2782 cifs_readpage_to_fscache(file->f_path.dentry->d_inode, page);
2788 page_cache_release(page);
2794 static int cifs_readpage(struct file *file, struct page *page)
2796 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2802 if (file->private_data == NULL) {
2808 cFYI(1, "readpage %p at offset %d 0x%x\n",
2809 page, (int)offset, (int)offset);
2811 rc = cifs_readpage_worker(file, page, &offset);
2819 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
2821 struct cifsFileInfo *open_file;
2823 spin_lock(&cifs_file_list_lock);
2824 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
2825 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
2826 spin_unlock(&cifs_file_list_lock);
2830 spin_unlock(&cifs_file_list_lock);
2834 /* We do not want to update the file size from server for inodes
2835 open for write - to avoid races with writepage extending
2836 the file - in the future we could consider allowing
2837 refreshing the inode only on increases in the file size
2838 but this is tricky to do without racing with writebehind
2839 page caching in the current Linux kernel design */
2840 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
2845 if (is_inode_writable(cifsInode)) {
2846 /* This inode is open for write at least once */
2847 struct cifs_sb_info *cifs_sb;
2849 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
2850 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
2851 /* since no page cache to corrupt on directio
2852 we can change size safely */
2856 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
2864 static int cifs_write_begin(struct file *file, struct address_space *mapping,
2865 loff_t pos, unsigned len, unsigned flags,
2866 struct page **pagep, void **fsdata)
2868 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2869 loff_t offset = pos & (PAGE_CACHE_SIZE - 1);
2870 loff_t page_start = pos & PAGE_MASK;
2875 cFYI(1, "write_begin from %lld len %d", (long long)pos, len);
2877 page = grab_cache_page_write_begin(mapping, index, flags);
2883 if (PageUptodate(page))
2887 * If we write a full page it will be up to date, no need to read from
2888 * the server. If the write is short, we'll end up doing a sync write
2891 if (len == PAGE_CACHE_SIZE)
2895 * optimize away the read when we have an oplock, and we're not
2896 * expecting to use any of the data we'd be reading in. That
2897 * is, when the page lies beyond the EOF, or straddles the EOF
2898 * and the write will cover all of the existing data.
2900 if (CIFS_I(mapping->host)->clientCanCacheRead) {
2901 i_size = i_size_read(mapping->host);
2902 if (page_start >= i_size ||
2903 (offset == 0 && (pos + len) >= i_size)) {
2904 zero_user_segments(page, 0, offset,
2908 * PageChecked means that the parts of the page
2909 * to which we're not writing are considered up
2910 * to date. Once the data is copied to the
2911 * page, it can be set uptodate.
2913 SetPageChecked(page);
2918 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
2920 * might as well read a page, it is fast enough. If we get
2921 * an error, we don't need to return it. cifs_write_end will
2922 * do a sync write instead since PG_uptodate isn't set.
2924 cifs_readpage_worker(file, page, &page_start);
2926 /* we could try using another file handle if there is one -
2927 but how would we lock it to prevent close of that handle
2928 racing with this read? In any case
2929 this will be written out by write_end so is fine */
2936 static int cifs_release_page(struct page *page, gfp_t gfp)
2938 if (PagePrivate(page))
2941 return cifs_fscache_release_page(page, gfp);
2944 static void cifs_invalidate_page(struct page *page, unsigned long offset)
2946 struct cifsInodeInfo *cifsi = CIFS_I(page->mapping->host);
2949 cifs_fscache_invalidate_page(page, &cifsi->vfs_inode);
2952 static int cifs_launder_page(struct page *page)
2955 loff_t range_start = page_offset(page);
2956 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
2957 struct writeback_control wbc = {
2958 .sync_mode = WB_SYNC_ALL,
2960 .range_start = range_start,
2961 .range_end = range_end,
2964 cFYI(1, "Launder page: %p", page);
2966 if (clear_page_dirty_for_io(page))
2967 rc = cifs_writepage_locked(page, &wbc);
2969 cifs_fscache_invalidate_page(page, page->mapping->host);
2973 void cifs_oplock_break(struct work_struct *work)
2975 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
2977 struct inode *inode = cfile->dentry->d_inode;
2978 struct cifsInodeInfo *cinode = CIFS_I(inode);
2981 if (inode && S_ISREG(inode->i_mode)) {
2982 if (cinode->clientCanCacheRead)
2983 break_lease(inode, O_RDONLY);
2985 break_lease(inode, O_WRONLY);
2986 rc = filemap_fdatawrite(inode->i_mapping);
2987 if (cinode->clientCanCacheRead == 0) {
2988 rc = filemap_fdatawait(inode->i_mapping);
2989 mapping_set_error(inode->i_mapping, rc);
2990 invalidate_remote_inode(inode);
2992 cFYI(1, "Oplock flush inode %p rc %d", inode, rc);
2995 rc = cifs_push_locks(cfile);
2997 cERROR(1, "Push locks rc = %d", rc);
3000 * releasing stale oplock after recent reconnect of smb session using
3001 * a now incorrect file handle is not a data integrity issue but do
3002 * not bother sending an oplock release if session to server still is
3003 * disconnected since oplock already released by the server
3005 if (!cfile->oplock_break_cancelled) {
3006 rc = CIFSSMBLock(0, tlink_tcon(cfile->tlink), cfile->netfid,
3007 current->tgid, 0, 0, 0, 0,
3008 LOCKING_ANDX_OPLOCK_RELEASE, false,
3009 cinode->clientCanCacheRead ? 1 : 0);
3010 cFYI(1, "Oplock release rc = %d", rc);
3014 const struct address_space_operations cifs_addr_ops = {
3015 .readpage = cifs_readpage,
3016 .readpages = cifs_readpages,
3017 .writepage = cifs_writepage,
3018 .writepages = cifs_writepages,
3019 .write_begin = cifs_write_begin,
3020 .write_end = cifs_write_end,
3021 .set_page_dirty = __set_page_dirty_nobuffers,
3022 .releasepage = cifs_release_page,
3023 .invalidatepage = cifs_invalidate_page,
3024 .launder_page = cifs_launder_page,
3028 * cifs_readpages requires the server to support a buffer large enough to
3029 * contain the header plus one complete page of data. Otherwise, we need
3030 * to leave cifs_readpages out of the address space operations.
3032 const struct address_space_operations cifs_addr_ops_smallbuf = {
3033 .readpage = cifs_readpage,
3034 .writepage = cifs_writepage,
3035 .writepages = cifs_writepages,
3036 .write_begin = cifs_write_begin,
3037 .write_end = cifs_write_end,
3038 .set_page_dirty = __set_page_dirty_nobuffers,
3039 .releasepage = cifs_release_page,
3040 .invalidatepage = cifs_invalidate_page,
3041 .launder_page = cifs_launder_page,