1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
4 #include <linux/sort.h>
5 #include <linux/slab.h>
6 #include <linux/iversion.h>
8 #include "mds_client.h"
9 #include <linux/ceph/decode.h>
11 /* unused map expires after 5 minutes */
12 #define CEPH_SNAPID_MAP_TIMEOUT (5 * 60 * HZ)
15 * Snapshots in ceph are driven in large part by cooperation from the
16 * client. In contrast to local file systems or file servers that
17 * implement snapshots at a single point in the system, ceph's
18 * distributed access to storage requires clients to help decide
19 * whether a write logically occurs before or after a recently created
22 * This provides a perfect instantanous client-wide snapshot. Between
23 * clients, however, snapshots may appear to be applied at slightly
24 * different points in time, depending on delays in delivering the
25 * snapshot notification.
27 * Snapshots are _not_ file system-wide. Instead, each snapshot
28 * applies to the subdirectory nested beneath some directory. This
29 * effectively divides the hierarchy into multiple "realms," where all
30 * of the files contained by each realm share the same set of
31 * snapshots. An individual realm's snap set contains snapshots
32 * explicitly created on that realm, as well as any snaps in its
33 * parent's snap set _after_ the point at which the parent became it's
34 * parent (due to, say, a rename). Similarly, snaps from prior parents
35 * during the time intervals during which they were the parent are included.
37 * The client is spared most of this detail, fortunately... it must only
38 * maintains a hierarchy of realms reflecting the current parent/child
39 * realm relationship, and for each realm has an explicit list of snaps
40 * inherited from prior parents.
42 * A snap_realm struct is maintained for realms containing every inode
43 * with an open cap in the system. (The needed snap realm information is
44 * provided by the MDS whenever a cap is issued, i.e., on open.) A 'seq'
45 * version number is used to ensure that as realm parameters change (new
46 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
48 * The realm hierarchy drives the generation of a 'snap context' for each
49 * realm, which simply lists the resulting set of snaps for the realm. This
50 * is attached to any writes sent to OSDs.
53 * Unfortunately error handling is a bit mixed here. If we get a snap
54 * update, but don't have enough memory to update our realm hierarchy,
55 * it's not clear what we can do about it (besides complaining to the
61 * increase ref count for the realm
63 * caller must hold snap_rwsem for write.
65 void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
66 struct ceph_snap_realm *realm)
68 dout("get_realm %p %d -> %d\n", realm,
69 atomic_read(&realm->nref), atomic_read(&realm->nref)+1);
71 * since we _only_ increment realm refs or empty the empty
72 * list with snap_rwsem held, adjusting the empty list here is
73 * safe. we do need to protect against concurrent empty list
76 if (atomic_inc_return(&realm->nref) == 1) {
77 spin_lock(&mdsc->snap_empty_lock);
78 list_del_init(&realm->empty_item);
79 spin_unlock(&mdsc->snap_empty_lock);
83 static void __insert_snap_realm(struct rb_root *root,
84 struct ceph_snap_realm *new)
86 struct rb_node **p = &root->rb_node;
87 struct rb_node *parent = NULL;
88 struct ceph_snap_realm *r = NULL;
92 r = rb_entry(parent, struct ceph_snap_realm, node);
93 if (new->ino < r->ino)
95 else if (new->ino > r->ino)
101 rb_link_node(&new->node, parent, p);
102 rb_insert_color(&new->node, root);
106 * create and get the realm rooted at @ino and bump its ref count.
108 * caller must hold snap_rwsem for write.
110 static struct ceph_snap_realm *ceph_create_snap_realm(
111 struct ceph_mds_client *mdsc,
114 struct ceph_snap_realm *realm;
116 realm = kzalloc(sizeof(*realm), GFP_NOFS);
118 return ERR_PTR(-ENOMEM);
120 atomic_set(&realm->nref, 1); /* for caller */
122 INIT_LIST_HEAD(&realm->children);
123 INIT_LIST_HEAD(&realm->child_item);
124 INIT_LIST_HEAD(&realm->empty_item);
125 INIT_LIST_HEAD(&realm->dirty_item);
126 INIT_LIST_HEAD(&realm->inodes_with_caps);
127 spin_lock_init(&realm->inodes_with_caps_lock);
128 __insert_snap_realm(&mdsc->snap_realms, realm);
129 mdsc->num_snap_realms++;
131 dout("create_snap_realm %llx %p\n", realm->ino, realm);
136 * lookup the realm rooted at @ino.
138 * caller must hold snap_rwsem for write.
140 static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
143 struct rb_node *n = mdsc->snap_realms.rb_node;
144 struct ceph_snap_realm *r;
147 r = rb_entry(n, struct ceph_snap_realm, node);
150 else if (ino > r->ino)
153 dout("lookup_snap_realm %llx %p\n", r->ino, r);
160 struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
163 struct ceph_snap_realm *r;
164 r = __lookup_snap_realm(mdsc, ino);
166 ceph_get_snap_realm(mdsc, r);
170 static void __put_snap_realm(struct ceph_mds_client *mdsc,
171 struct ceph_snap_realm *realm);
174 * called with snap_rwsem (write)
176 static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
177 struct ceph_snap_realm *realm)
179 dout("__destroy_snap_realm %p %llx\n", realm, realm->ino);
181 rb_erase(&realm->node, &mdsc->snap_realms);
182 mdsc->num_snap_realms--;
185 list_del_init(&realm->child_item);
186 __put_snap_realm(mdsc, realm->parent);
189 kfree(realm->prior_parent_snaps);
191 ceph_put_snap_context(realm->cached_context);
196 * caller holds snap_rwsem (write)
198 static void __put_snap_realm(struct ceph_mds_client *mdsc,
199 struct ceph_snap_realm *realm)
201 dout("__put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
202 atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
203 if (atomic_dec_and_test(&realm->nref))
204 __destroy_snap_realm(mdsc, realm);
208 * caller needn't hold any locks
210 void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
211 struct ceph_snap_realm *realm)
213 dout("put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
214 atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
215 if (!atomic_dec_and_test(&realm->nref))
218 if (down_write_trylock(&mdsc->snap_rwsem)) {
219 __destroy_snap_realm(mdsc, realm);
220 up_write(&mdsc->snap_rwsem);
222 spin_lock(&mdsc->snap_empty_lock);
223 list_add(&realm->empty_item, &mdsc->snap_empty);
224 spin_unlock(&mdsc->snap_empty_lock);
229 * Clean up any realms whose ref counts have dropped to zero. Note
230 * that this does not include realms who were created but not yet
233 * Called under snap_rwsem (write)
235 static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
237 struct ceph_snap_realm *realm;
239 spin_lock(&mdsc->snap_empty_lock);
240 while (!list_empty(&mdsc->snap_empty)) {
241 realm = list_first_entry(&mdsc->snap_empty,
242 struct ceph_snap_realm, empty_item);
243 list_del(&realm->empty_item);
244 spin_unlock(&mdsc->snap_empty_lock);
245 __destroy_snap_realm(mdsc, realm);
246 spin_lock(&mdsc->snap_empty_lock);
248 spin_unlock(&mdsc->snap_empty_lock);
251 void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc)
253 down_write(&mdsc->snap_rwsem);
254 __cleanup_empty_realms(mdsc);
255 up_write(&mdsc->snap_rwsem);
259 * adjust the parent realm of a given @realm. adjust child list, and parent
260 * pointers, and ref counts appropriately.
262 * return true if parent was changed, 0 if unchanged, <0 on error.
264 * caller must hold snap_rwsem for write.
266 static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
267 struct ceph_snap_realm *realm,
270 struct ceph_snap_realm *parent;
272 if (realm->parent_ino == parentino)
275 parent = ceph_lookup_snap_realm(mdsc, parentino);
277 parent = ceph_create_snap_realm(mdsc, parentino);
279 return PTR_ERR(parent);
281 dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n",
282 realm->ino, realm, realm->parent_ino, realm->parent,
285 list_del_init(&realm->child_item);
286 ceph_put_snap_realm(mdsc, realm->parent);
288 realm->parent_ino = parentino;
289 realm->parent = parent;
290 list_add(&realm->child_item, &parent->children);
295 static int cmpu64_rev(const void *a, const void *b)
297 if (*(u64 *)a < *(u64 *)b)
299 if (*(u64 *)a > *(u64 *)b)
306 * build the snap context for a given realm.
308 static int build_snap_context(struct ceph_snap_realm *realm,
309 struct list_head* dirty_realms)
311 struct ceph_snap_realm *parent = realm->parent;
312 struct ceph_snap_context *snapc;
314 u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
317 * build parent context, if it hasn't been built.
318 * conservatively estimate that all parent snaps might be
322 if (!parent->cached_context) {
323 err = build_snap_context(parent, dirty_realms);
327 num += parent->cached_context->num_snaps;
330 /* do i actually need to update? not if my context seq
331 matches realm seq, and my parents' does to. (this works
332 because we rebuild_snap_realms() works _downward_ in
333 hierarchy after each update.) */
334 if (realm->cached_context &&
335 realm->cached_context->seq == realm->seq &&
337 realm->cached_context->seq >= parent->cached_context->seq)) {
338 dout("build_snap_context %llx %p: %p seq %lld (%u snaps)"
340 realm->ino, realm, realm->cached_context,
341 realm->cached_context->seq,
342 (unsigned int)realm->cached_context->num_snaps);
346 /* alloc new snap context */
348 if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
350 snapc = ceph_create_snap_context(num, GFP_NOFS);
354 /* build (reverse sorted) snap vector */
356 snapc->seq = realm->seq;
360 /* include any of parent's snaps occurring _after_ my
361 parent became my parent */
362 for (i = 0; i < parent->cached_context->num_snaps; i++)
363 if (parent->cached_context->snaps[i] >=
365 snapc->snaps[num++] =
366 parent->cached_context->snaps[i];
367 if (parent->cached_context->seq > snapc->seq)
368 snapc->seq = parent->cached_context->seq;
370 memcpy(snapc->snaps + num, realm->snaps,
371 sizeof(u64)*realm->num_snaps);
372 num += realm->num_snaps;
373 memcpy(snapc->snaps + num, realm->prior_parent_snaps,
374 sizeof(u64)*realm->num_prior_parent_snaps);
375 num += realm->num_prior_parent_snaps;
377 sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
378 snapc->num_snaps = num;
379 dout("build_snap_context %llx %p: %p seq %lld (%u snaps)\n",
380 realm->ino, realm, snapc, snapc->seq,
381 (unsigned int) snapc->num_snaps);
383 ceph_put_snap_context(realm->cached_context);
384 realm->cached_context = snapc;
385 /* queue realm for cap_snap creation */
386 list_add_tail(&realm->dirty_item, dirty_realms);
391 * if we fail, clear old (incorrect) cached_context... hopefully
392 * we'll have better luck building it later
394 if (realm->cached_context) {
395 ceph_put_snap_context(realm->cached_context);
396 realm->cached_context = NULL;
398 pr_err("build_snap_context %llx %p fail %d\n", realm->ino,
404 * rebuild snap context for the given realm and all of its children.
406 static void rebuild_snap_realms(struct ceph_snap_realm *realm,
407 struct list_head *dirty_realms)
409 struct ceph_snap_realm *child;
411 dout("rebuild_snap_realms %llx %p\n", realm->ino, realm);
412 build_snap_context(realm, dirty_realms);
414 list_for_each_entry(child, &realm->children, child_item)
415 rebuild_snap_realms(child, dirty_realms);
420 * helper to allocate and decode an array of snapids. free prior
423 static int dup_array(u64 **dst, __le64 *src, u32 num)
429 *dst = kcalloc(num, sizeof(u64), GFP_NOFS);
432 for (i = 0; i < num; i++)
433 (*dst)[i] = get_unaligned_le64(src + i);
440 static bool has_new_snaps(struct ceph_snap_context *o,
441 struct ceph_snap_context *n)
443 if (n->num_snaps == 0)
445 /* snaps are in descending order */
446 return n->snaps[0] > o->seq;
450 * When a snapshot is applied, the size/mtime inode metadata is queued
451 * in a ceph_cap_snap (one for each snapshot) until writeback
452 * completes and the metadata can be flushed back to the MDS.
454 * However, if a (sync) write is currently in-progress when we apply
455 * the snapshot, we have to wait until the write succeeds or fails
456 * (and a final size/mtime is known). In this case the
457 * cap_snap->writing = 1, and is said to be "pending." When the write
458 * finishes, we __ceph_finish_cap_snap().
460 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
463 void ceph_queue_cap_snap(struct ceph_inode_info *ci)
465 struct inode *inode = &ci->vfs_inode;
466 struct ceph_cap_snap *capsnap;
467 struct ceph_snap_context *old_snapc, *new_snapc;
468 struct ceph_buffer *old_blob = NULL;
471 capsnap = kzalloc(sizeof(*capsnap), GFP_NOFS);
473 pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode);
477 spin_lock(&ci->i_ceph_lock);
478 used = __ceph_caps_used(ci);
479 dirty = __ceph_caps_dirty(ci);
481 old_snapc = ci->i_head_snapc;
482 new_snapc = ci->i_snap_realm->cached_context;
485 * If there is a write in progress, treat that as a dirty Fw,
486 * even though it hasn't completed yet; by the time we finish
487 * up this capsnap it will be.
489 if (used & CEPH_CAP_FILE_WR)
490 dirty |= CEPH_CAP_FILE_WR;
492 if (__ceph_have_pending_cap_snap(ci)) {
493 /* there is no point in queuing multiple "pending" cap_snaps,
494 as no new writes are allowed to start when pending, so any
495 writes in progress now were started before the previous
496 cap_snap. lucky us. */
497 dout("queue_cap_snap %p already pending\n", inode);
500 if (ci->i_wrbuffer_ref_head == 0 &&
501 !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
502 dout("queue_cap_snap %p nothing dirty|writing\n", inode);
509 * There is no need to send FLUSHSNAP message to MDS if there is
510 * no new snapshot. But when there is dirty pages or on-going
511 * writes, we still need to create cap_snap. cap_snap is needed
512 * by the write path and page writeback path.
514 * also see ceph_try_drop_cap_snap()
516 if (has_new_snaps(old_snapc, new_snapc)) {
517 if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
518 capsnap->need_flush = true;
520 if (!(used & CEPH_CAP_FILE_WR) &&
521 ci->i_wrbuffer_ref_head == 0) {
522 dout("queue_cap_snap %p "
523 "no new_snap|dirty_page|writing\n", inode);
528 dout("queue_cap_snap %p cap_snap %p queuing under %p %s %s\n",
529 inode, capsnap, old_snapc, ceph_cap_string(dirty),
530 capsnap->need_flush ? "" : "no_flush");
533 refcount_set(&capsnap->nref, 1);
534 INIT_LIST_HEAD(&capsnap->ci_item);
536 capsnap->follows = old_snapc->seq;
537 capsnap->issued = __ceph_caps_issued(ci, NULL);
538 capsnap->dirty = dirty;
540 capsnap->mode = inode->i_mode;
541 capsnap->uid = inode->i_uid;
542 capsnap->gid = inode->i_gid;
544 if (dirty & CEPH_CAP_XATTR_EXCL) {
545 old_blob = __ceph_build_xattrs_blob(ci);
546 capsnap->xattr_blob =
547 ceph_buffer_get(ci->i_xattrs.blob);
548 capsnap->xattr_version = ci->i_xattrs.version;
550 capsnap->xattr_blob = NULL;
551 capsnap->xattr_version = 0;
554 capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
556 /* dirty page count moved from _head to this cap_snap;
557 all subsequent writes page dirties occur _after_ this
559 capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
560 ci->i_wrbuffer_ref_head = 0;
561 capsnap->context = old_snapc;
562 list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
564 if (used & CEPH_CAP_FILE_WR) {
565 dout("queue_cap_snap %p cap_snap %p snapc %p"
566 " seq %llu used WR, now pending\n", inode,
567 capsnap, old_snapc, old_snapc->seq);
568 capsnap->writing = 1;
570 /* note mtime, size NOW. */
571 __ceph_finish_cap_snap(ci, capsnap);
577 if (ci->i_wrbuffer_ref_head == 0 &&
579 ci->i_dirty_caps == 0 &&
580 ci->i_flushing_caps == 0) {
581 ci->i_head_snapc = NULL;
583 ci->i_head_snapc = ceph_get_snap_context(new_snapc);
584 dout(" new snapc is %p\n", new_snapc);
586 spin_unlock(&ci->i_ceph_lock);
588 ceph_buffer_put(old_blob);
590 ceph_put_snap_context(old_snapc);
594 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
595 * to be used for the snapshot, to be flushed back to the mds.
597 * If capsnap can now be flushed, add to snap_flush list, and return 1.
599 * Caller must hold i_ceph_lock.
601 int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
602 struct ceph_cap_snap *capsnap)
604 struct inode *inode = &ci->vfs_inode;
605 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
607 BUG_ON(capsnap->writing);
608 capsnap->size = inode->i_size;
609 capsnap->mtime = inode->i_mtime;
610 capsnap->atime = inode->i_atime;
611 capsnap->ctime = inode->i_ctime;
612 capsnap->btime = ci->i_btime;
613 capsnap->change_attr = inode_peek_iversion_raw(inode);
614 capsnap->time_warp_seq = ci->i_time_warp_seq;
615 capsnap->truncate_size = ci->i_truncate_size;
616 capsnap->truncate_seq = ci->i_truncate_seq;
617 if (capsnap->dirty_pages) {
618 dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu "
619 "still has %d dirty pages\n", inode, capsnap,
620 capsnap->context, capsnap->context->seq,
621 ceph_cap_string(capsnap->dirty), capsnap->size,
622 capsnap->dirty_pages);
626 /* Fb cap still in use, delay it */
628 dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu "
629 "used WRBUFFER, delaying\n", inode, capsnap,
630 capsnap->context, capsnap->context->seq,
631 ceph_cap_string(capsnap->dirty), capsnap->size);
632 capsnap->writing = 1;
636 ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS;
637 dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n",
638 inode, capsnap, capsnap->context,
639 capsnap->context->seq, ceph_cap_string(capsnap->dirty),
642 spin_lock(&mdsc->snap_flush_lock);
643 if (list_empty(&ci->i_snap_flush_item))
644 list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
645 spin_unlock(&mdsc->snap_flush_lock);
646 return 1; /* caller may want to ceph_flush_snaps */
650 * Queue cap_snaps for snap writeback for this realm and its children.
651 * Called under snap_rwsem, so realm topology won't change.
653 static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
655 struct ceph_inode_info *ci;
656 struct inode *lastinode = NULL;
658 dout("queue_realm_cap_snaps %p %llx inodes\n", realm, realm->ino);
660 spin_lock(&realm->inodes_with_caps_lock);
661 list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) {
662 struct inode *inode = igrab(&ci->vfs_inode);
665 spin_unlock(&realm->inodes_with_caps_lock);
666 /* avoid calling iput_final() while holding
667 * mdsc->snap_rwsem or in mds dispatch threads */
668 ceph_async_iput(lastinode);
670 ceph_queue_cap_snap(ci);
671 spin_lock(&realm->inodes_with_caps_lock);
673 spin_unlock(&realm->inodes_with_caps_lock);
674 ceph_async_iput(lastinode);
676 dout("queue_realm_cap_snaps %p %llx done\n", realm, realm->ino);
680 * Parse and apply a snapblob "snap trace" from the MDS. This specifies
681 * the snap realm parameters from a given realm and all of its ancestors,
684 * Caller must hold snap_rwsem for write.
686 int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
687 void *p, void *e, bool deletion,
688 struct ceph_snap_realm **realm_ret)
690 struct ceph_mds_snap_realm *ri; /* encoded */
691 __le64 *snaps; /* encoded */
692 __le64 *prior_parent_snaps; /* encoded */
693 struct ceph_snap_realm *realm = NULL;
694 struct ceph_snap_realm *first_realm = NULL;
697 LIST_HEAD(dirty_realms);
699 dout("update_snap_trace deletion=%d\n", deletion);
701 ceph_decode_need(&p, e, sizeof(*ri), bad);
704 ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
705 le32_to_cpu(ri->num_prior_parent_snaps)), bad);
707 p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
708 prior_parent_snaps = p;
709 p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
711 realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
713 realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
715 err = PTR_ERR(realm);
720 /* ensure the parent is correct */
721 err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
726 if (le64_to_cpu(ri->seq) > realm->seq) {
727 dout("update_snap_trace updating %llx %p %lld -> %lld\n",
728 realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
729 /* update realm parameters, snap lists */
730 realm->seq = le64_to_cpu(ri->seq);
731 realm->created = le64_to_cpu(ri->created);
732 realm->parent_since = le64_to_cpu(ri->parent_since);
734 realm->num_snaps = le32_to_cpu(ri->num_snaps);
735 err = dup_array(&realm->snaps, snaps, realm->num_snaps);
739 realm->num_prior_parent_snaps =
740 le32_to_cpu(ri->num_prior_parent_snaps);
741 err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
742 realm->num_prior_parent_snaps);
746 if (realm->seq > mdsc->last_snap_seq)
747 mdsc->last_snap_seq = realm->seq;
750 } else if (!realm->cached_context) {
751 dout("update_snap_trace %llx %p seq %lld new\n",
752 realm->ino, realm, realm->seq);
755 dout("update_snap_trace %llx %p seq %lld unchanged\n",
756 realm->ino, realm, realm->seq);
759 dout("done with %llx %p, invalidated=%d, %p %p\n", realm->ino,
760 realm, invalidate, p, e);
762 /* invalidate when we reach the _end_ (root) of the trace */
763 if (invalidate && p >= e)
764 rebuild_snap_realms(realm, &dirty_realms);
769 ceph_put_snap_realm(mdsc, realm);
775 * queue cap snaps _after_ we've built the new snap contexts,
776 * so that i_head_snapc can be set appropriately.
778 while (!list_empty(&dirty_realms)) {
779 realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
781 list_del_init(&realm->dirty_item);
782 queue_realm_cap_snaps(realm);
786 *realm_ret = first_realm;
788 ceph_put_snap_realm(mdsc, first_realm);
790 __cleanup_empty_realms(mdsc);
796 if (realm && !IS_ERR(realm))
797 ceph_put_snap_realm(mdsc, realm);
799 ceph_put_snap_realm(mdsc, first_realm);
800 pr_err("update_snap_trace error %d\n", err);
806 * Send any cap_snaps that are queued for flush. Try to carry
807 * s_mutex across multiple snap flushes to avoid locking overhead.
809 * Caller holds no locks.
811 static void flush_snaps(struct ceph_mds_client *mdsc)
813 struct ceph_inode_info *ci;
815 struct ceph_mds_session *session = NULL;
817 dout("flush_snaps\n");
818 spin_lock(&mdsc->snap_flush_lock);
819 while (!list_empty(&mdsc->snap_flush_list)) {
820 ci = list_first_entry(&mdsc->snap_flush_list,
821 struct ceph_inode_info, i_snap_flush_item);
822 inode = &ci->vfs_inode;
824 spin_unlock(&mdsc->snap_flush_lock);
825 ceph_flush_snaps(ci, &session);
826 /* avoid calling iput_final() while holding
827 * session->s_mutex or in mds dispatch threads */
828 ceph_async_iput(inode);
829 spin_lock(&mdsc->snap_flush_lock);
831 spin_unlock(&mdsc->snap_flush_lock);
834 mutex_unlock(&session->s_mutex);
835 ceph_put_mds_session(session);
837 dout("flush_snaps done\n");
842 * Handle a snap notification from the MDS.
844 * This can take two basic forms: the simplest is just a snap creation
845 * or deletion notification on an existing realm. This should update the
846 * realm and its children.
848 * The more difficult case is realm creation, due to snap creation at a
849 * new point in the file hierarchy, or due to a rename that moves a file or
850 * directory into another realm.
852 void ceph_handle_snap(struct ceph_mds_client *mdsc,
853 struct ceph_mds_session *session,
854 struct ceph_msg *msg)
856 struct super_block *sb = mdsc->fsc->sb;
857 int mds = session->s_mds;
861 struct ceph_snap_realm *realm = NULL;
862 void *p = msg->front.iov_base;
863 void *e = p + msg->front.iov_len;
864 struct ceph_mds_snap_head *h;
865 int num_split_inos, num_split_realms;
866 __le64 *split_inos = NULL, *split_realms = NULL;
868 int locked_rwsem = 0;
871 if (msg->front.iov_len < sizeof(*h))
874 op = le32_to_cpu(h->op);
875 split = le64_to_cpu(h->split); /* non-zero if we are splitting an
877 num_split_inos = le32_to_cpu(h->num_split_inos);
878 num_split_realms = le32_to_cpu(h->num_split_realms);
879 trace_len = le32_to_cpu(h->trace_len);
882 dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds,
883 ceph_snap_op_name(op), split, trace_len);
885 mutex_lock(&session->s_mutex);
886 inc_session_sequence(session);
887 mutex_unlock(&session->s_mutex);
889 down_write(&mdsc->snap_rwsem);
892 if (op == CEPH_SNAP_OP_SPLIT) {
893 struct ceph_mds_snap_realm *ri;
896 * A "split" breaks part of an existing realm off into
897 * a new realm. The MDS provides a list of inodes
898 * (with caps) and child realms that belong to the new
902 p += sizeof(u64) * num_split_inos;
904 p += sizeof(u64) * num_split_realms;
905 ceph_decode_need(&p, e, sizeof(*ri), bad);
906 /* we will peek at realm info here, but will _not_
907 * advance p, as the realm update will occur below in
908 * ceph_update_snap_trace. */
911 realm = ceph_lookup_snap_realm(mdsc, split);
913 realm = ceph_create_snap_realm(mdsc, split);
918 dout("splitting snap_realm %llx %p\n", realm->ino, realm);
919 for (i = 0; i < num_split_inos; i++) {
920 struct ceph_vino vino = {
921 .ino = le64_to_cpu(split_inos[i]),
924 struct inode *inode = ceph_find_inode(sb, vino);
925 struct ceph_inode_info *ci;
926 struct ceph_snap_realm *oldrealm;
930 ci = ceph_inode(inode);
932 spin_lock(&ci->i_ceph_lock);
933 if (!ci->i_snap_realm)
936 * If this inode belongs to a realm that was
937 * created after our new realm, we experienced
938 * a race (due to another split notifications
939 * arriving from a different MDS). So skip
942 if (ci->i_snap_realm->created >
943 le64_to_cpu(ri->created)) {
944 dout(" leaving %p in newer realm %llx %p\n",
945 inode, ci->i_snap_realm->ino,
949 dout(" will move %p to split realm %llx %p\n",
950 inode, realm->ino, realm);
952 * Move the inode to the new realm
954 oldrealm = ci->i_snap_realm;
955 spin_lock(&oldrealm->inodes_with_caps_lock);
956 list_del_init(&ci->i_snap_realm_item);
957 spin_unlock(&oldrealm->inodes_with_caps_lock);
959 spin_lock(&realm->inodes_with_caps_lock);
960 list_add(&ci->i_snap_realm_item,
961 &realm->inodes_with_caps);
962 ci->i_snap_realm = realm;
963 if (realm->ino == ci->i_vino.ino)
964 realm->inode = inode;
965 spin_unlock(&realm->inodes_with_caps_lock);
967 spin_unlock(&ci->i_ceph_lock);
969 ceph_get_snap_realm(mdsc, realm);
970 ceph_put_snap_realm(mdsc, oldrealm);
972 /* avoid calling iput_final() while holding
973 * mdsc->snap_rwsem or mds in dispatch threads */
974 ceph_async_iput(inode);
978 spin_unlock(&ci->i_ceph_lock);
979 ceph_async_iput(inode);
982 /* we may have taken some of the old realm's children. */
983 for (i = 0; i < num_split_realms; i++) {
984 struct ceph_snap_realm *child =
985 __lookup_snap_realm(mdsc,
986 le64_to_cpu(split_realms[i]));
989 adjust_snap_realm_parent(mdsc, child, realm->ino);
994 * update using the provided snap trace. if we are deleting a
995 * snap, we can avoid queueing cap_snaps.
997 ceph_update_snap_trace(mdsc, p, e,
998 op == CEPH_SNAP_OP_DESTROY, NULL);
1000 if (op == CEPH_SNAP_OP_SPLIT)
1001 /* we took a reference when we created the realm, above */
1002 ceph_put_snap_realm(mdsc, realm);
1004 __cleanup_empty_realms(mdsc);
1006 up_write(&mdsc->snap_rwsem);
1012 pr_err("corrupt snap message from mds%d\n", mds);
1016 up_write(&mdsc->snap_rwsem);
1020 struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc,
1023 struct ceph_snapid_map *sm, *exist;
1024 struct rb_node **p, *parent;
1028 spin_lock(&mdsc->snapid_map_lock);
1029 p = &mdsc->snapid_map_tree.rb_node;
1031 exist = rb_entry(*p, struct ceph_snapid_map, node);
1032 if (snap > exist->snap) {
1034 } else if (snap < exist->snap) {
1035 p = &(*p)->rb_right;
1037 if (atomic_inc_return(&exist->ref) == 1)
1038 list_del_init(&exist->lru);
1043 spin_unlock(&mdsc->snapid_map_lock);
1045 dout("found snapid map %llx -> %x\n", exist->snap, exist->dev);
1049 sm = kmalloc(sizeof(*sm), GFP_NOFS);
1053 ret = get_anon_bdev(&sm->dev);
1059 INIT_LIST_HEAD(&sm->lru);
1060 atomic_set(&sm->ref, 1);
1065 p = &mdsc->snapid_map_tree.rb_node;
1066 spin_lock(&mdsc->snapid_map_lock);
1069 exist = rb_entry(*p, struct ceph_snapid_map, node);
1070 if (snap > exist->snap)
1072 else if (snap < exist->snap)
1073 p = &(*p)->rb_right;
1079 if (atomic_inc_return(&exist->ref) == 1)
1080 list_del_init(&exist->lru);
1082 rb_link_node(&sm->node, parent, p);
1083 rb_insert_color(&sm->node, &mdsc->snapid_map_tree);
1085 spin_unlock(&mdsc->snapid_map_lock);
1087 free_anon_bdev(sm->dev);
1089 dout("found snapid map %llx -> %x\n", exist->snap, exist->dev);
1093 dout("create snapid map %llx -> %x\n", sm->snap, sm->dev);
1097 void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
1098 struct ceph_snapid_map *sm)
1102 if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) {
1103 if (!RB_EMPTY_NODE(&sm->node)) {
1104 sm->last_used = jiffies;
1105 list_add_tail(&sm->lru, &mdsc->snapid_map_lru);
1106 spin_unlock(&mdsc->snapid_map_lock);
1108 /* already cleaned up by
1109 * ceph_cleanup_snapid_map() */
1110 spin_unlock(&mdsc->snapid_map_lock);
1116 void ceph_trim_snapid_map(struct ceph_mds_client *mdsc)
1118 struct ceph_snapid_map *sm;
1122 spin_lock(&mdsc->snapid_map_lock);
1125 while (!list_empty(&mdsc->snapid_map_lru)) {
1126 sm = list_first_entry(&mdsc->snapid_map_lru,
1127 struct ceph_snapid_map, lru);
1128 if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now))
1131 rb_erase(&sm->node, &mdsc->snapid_map_tree);
1132 list_move(&sm->lru, &to_free);
1134 spin_unlock(&mdsc->snapid_map_lock);
1136 while (!list_empty(&to_free)) {
1137 sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1139 dout("trim snapid map %llx -> %x\n", sm->snap, sm->dev);
1140 free_anon_bdev(sm->dev);
1145 void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc)
1147 struct ceph_snapid_map *sm;
1151 spin_lock(&mdsc->snapid_map_lock);
1152 while ((p = rb_first(&mdsc->snapid_map_tree))) {
1153 sm = rb_entry(p, struct ceph_snapid_map, node);
1154 rb_erase(p, &mdsc->snapid_map_tree);
1156 list_move(&sm->lru, &to_free);
1158 spin_unlock(&mdsc->snapid_map_lock);
1160 while (!list_empty(&to_free)) {
1161 sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1163 free_anon_bdev(sm->dev);
1164 if (WARN_ON_ONCE(atomic_read(&sm->ref))) {
1165 pr_err("snapid map %llx -> %x still in use\n",