1 #include <linux/ceph/ceph_debug.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
11 #include "mds_client.h"
13 #include <linux/ceph/messenger.h>
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/pagelist.h>
16 #include <linux/ceph/auth.h>
17 #include <linux/ceph/debugfs.h>
20 * A cluster of MDS (metadata server) daemons is responsible for
21 * managing the file system namespace (the directory hierarchy and
22 * inodes) and for coordinating shared access to storage. Metadata is
23 * partitioning hierarchically across a number of servers, and that
24 * partition varies over time as the cluster adjusts the distribution
25 * in order to balance load.
27 * The MDS client is primarily responsible to managing synchronous
28 * metadata requests for operations like open, unlink, and so forth.
29 * If there is a MDS failure, we find out about it when we (possibly
30 * request and) receive a new MDS map, and can resubmit affected
33 * For the most part, though, we take advantage of a lossless
34 * communications channel to the MDS, and do not need to worry about
35 * timing out or resubmitting requests.
37 * We maintain a stateful "session" with each MDS we interact with.
38 * Within each session, we sent periodic heartbeat messages to ensure
39 * any capabilities or leases we have been issues remain valid. If
40 * the session times out and goes stale, our leases and capabilities
41 * are no longer valid.
44 struct ceph_reconnect_state {
45 struct ceph_pagelist *pagelist;
49 static void __wake_requests(struct ceph_mds_client *mdsc,
50 struct list_head *head);
52 static const struct ceph_connection_operations mds_con_ops;
60 * parse individual inode info
62 static int parse_reply_info_in(void **p, void *end,
63 struct ceph_mds_reply_info_in *info,
69 *p += sizeof(struct ceph_mds_reply_inode) +
70 sizeof(*info->in->fragtree.splits) *
71 le32_to_cpu(info->in->fragtree.nsplits);
73 ceph_decode_32_safe(p, end, info->symlink_len, bad);
74 ceph_decode_need(p, end, info->symlink_len, bad);
76 *p += info->symlink_len;
78 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
79 ceph_decode_copy_safe(p, end, &info->dir_layout,
80 sizeof(info->dir_layout), bad);
82 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
84 ceph_decode_32_safe(p, end, info->xattr_len, bad);
85 ceph_decode_need(p, end, info->xattr_len, bad);
86 info->xattr_data = *p;
87 *p += info->xattr_len;
94 * parse a normal reply, which may contain a (dir+)dentry and/or a
97 static int parse_reply_info_trace(void **p, void *end,
98 struct ceph_mds_reply_info_parsed *info,
103 if (info->head->is_dentry) {
104 err = parse_reply_info_in(p, end, &info->diri, features);
108 if (unlikely(*p + sizeof(*info->dirfrag) > end))
111 *p += sizeof(*info->dirfrag) +
112 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
113 if (unlikely(*p > end))
116 ceph_decode_32_safe(p, end, info->dname_len, bad);
117 ceph_decode_need(p, end, info->dname_len, bad);
119 *p += info->dname_len;
121 *p += sizeof(*info->dlease);
124 if (info->head->is_target) {
125 err = parse_reply_info_in(p, end, &info->targeti, features);
130 if (unlikely(*p != end))
137 pr_err("problem parsing mds trace %d\n", err);
142 * parse readdir results
144 static int parse_reply_info_dir(void **p, void *end,
145 struct ceph_mds_reply_info_parsed *info,
152 if (*p + sizeof(*info->dir_dir) > end)
154 *p += sizeof(*info->dir_dir) +
155 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
159 ceph_decode_need(p, end, sizeof(num) + 2, bad);
160 num = ceph_decode_32(p);
161 info->dir_end = ceph_decode_8(p);
162 info->dir_complete = ceph_decode_8(p);
166 /* alloc large array */
168 info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
169 sizeof(*info->dir_dname) +
170 sizeof(*info->dir_dname_len) +
171 sizeof(*info->dir_dlease),
173 if (info->dir_in == NULL) {
177 info->dir_dname = (void *)(info->dir_in + num);
178 info->dir_dname_len = (void *)(info->dir_dname + num);
179 info->dir_dlease = (void *)(info->dir_dname_len + num);
183 ceph_decode_need(p, end, sizeof(u32)*2, bad);
184 info->dir_dname_len[i] = ceph_decode_32(p);
185 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
186 info->dir_dname[i] = *p;
187 *p += info->dir_dname_len[i];
188 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
190 info->dir_dlease[i] = *p;
191 *p += sizeof(struct ceph_mds_reply_lease);
194 err = parse_reply_info_in(p, end, &info->dir_in[i], features);
209 pr_err("problem parsing dir contents %d\n", err);
214 * parse fcntl F_GETLK results
216 static int parse_reply_info_filelock(void **p, void *end,
217 struct ceph_mds_reply_info_parsed *info,
220 if (*p + sizeof(*info->filelock_reply) > end)
223 info->filelock_reply = *p;
224 *p += sizeof(*info->filelock_reply);
226 if (unlikely(*p != end))
235 * parse extra results
237 static int parse_reply_info_extra(void **p, void *end,
238 struct ceph_mds_reply_info_parsed *info,
241 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
242 return parse_reply_info_filelock(p, end, info, features);
244 return parse_reply_info_dir(p, end, info, features);
248 * parse entire mds reply
250 static int parse_reply_info(struct ceph_msg *msg,
251 struct ceph_mds_reply_info_parsed *info,
258 info->head = msg->front.iov_base;
259 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
260 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
263 ceph_decode_32_safe(&p, end, len, bad);
265 ceph_decode_need(&p, end, len, bad);
266 err = parse_reply_info_trace(&p, p+len, info, features);
272 ceph_decode_32_safe(&p, end, len, bad);
274 ceph_decode_need(&p, end, len, bad);
275 err = parse_reply_info_extra(&p, p+len, info, features);
281 ceph_decode_32_safe(&p, end, len, bad);
282 info->snapblob_len = len;
293 pr_err("mds parse_reply err %d\n", err);
297 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
306 static const char *session_state_name(int s)
309 case CEPH_MDS_SESSION_NEW: return "new";
310 case CEPH_MDS_SESSION_OPENING: return "opening";
311 case CEPH_MDS_SESSION_OPEN: return "open";
312 case CEPH_MDS_SESSION_HUNG: return "hung";
313 case CEPH_MDS_SESSION_CLOSING: return "closing";
314 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
315 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
316 default: return "???";
320 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
322 if (atomic_inc_not_zero(&s->s_ref)) {
323 dout("mdsc get_session %p %d -> %d\n", s,
324 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
327 dout("mdsc get_session %p 0 -- FAIL", s);
332 void ceph_put_mds_session(struct ceph_mds_session *s)
334 dout("mdsc put_session %p %d -> %d\n", s,
335 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
336 if (atomic_dec_and_test(&s->s_ref)) {
337 if (s->s_auth.authorizer)
338 s->s_mdsc->fsc->client->monc.auth->ops->destroy_authorizer(
339 s->s_mdsc->fsc->client->monc.auth,
340 s->s_auth.authorizer);
346 * called under mdsc->mutex
348 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
351 struct ceph_mds_session *session;
353 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
355 session = mdsc->sessions[mds];
356 dout("lookup_mds_session %p %d\n", session,
357 atomic_read(&session->s_ref));
358 get_session(session);
362 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
364 if (mds >= mdsc->max_sessions)
366 return mdsc->sessions[mds];
369 static int __verify_registered_session(struct ceph_mds_client *mdsc,
370 struct ceph_mds_session *s)
372 if (s->s_mds >= mdsc->max_sessions ||
373 mdsc->sessions[s->s_mds] != s)
379 * create+register a new session for given mds.
380 * called under mdsc->mutex.
382 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
385 struct ceph_mds_session *s;
387 s = kzalloc(sizeof(*s), GFP_NOFS);
389 return ERR_PTR(-ENOMEM);
392 s->s_state = CEPH_MDS_SESSION_NEW;
395 mutex_init(&s->s_mutex);
397 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
399 spin_lock_init(&s->s_gen_ttl_lock);
401 s->s_cap_ttl = jiffies - 1;
403 spin_lock_init(&s->s_cap_lock);
404 s->s_renew_requested = 0;
406 INIT_LIST_HEAD(&s->s_caps);
409 atomic_set(&s->s_ref, 1);
410 INIT_LIST_HEAD(&s->s_waiting);
411 INIT_LIST_HEAD(&s->s_unsafe);
412 s->s_num_cap_releases = 0;
413 s->s_cap_iterator = NULL;
414 INIT_LIST_HEAD(&s->s_cap_releases);
415 INIT_LIST_HEAD(&s->s_cap_releases_done);
416 INIT_LIST_HEAD(&s->s_cap_flushing);
417 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
419 dout("register_session mds%d\n", mds);
420 if (mds >= mdsc->max_sessions) {
421 int newmax = 1 << get_count_order(mds+1);
422 struct ceph_mds_session **sa;
424 dout("register_session realloc to %d\n", newmax);
425 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
428 if (mdsc->sessions) {
429 memcpy(sa, mdsc->sessions,
430 mdsc->max_sessions * sizeof(void *));
431 kfree(mdsc->sessions);
434 mdsc->max_sessions = newmax;
436 mdsc->sessions[mds] = s;
437 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
439 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
440 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
446 return ERR_PTR(-ENOMEM);
450 * called under mdsc->mutex
452 static void __unregister_session(struct ceph_mds_client *mdsc,
453 struct ceph_mds_session *s)
455 dout("__unregister_session mds%d %p\n", s->s_mds, s);
456 BUG_ON(mdsc->sessions[s->s_mds] != s);
457 mdsc->sessions[s->s_mds] = NULL;
458 ceph_con_close(&s->s_con);
459 ceph_put_mds_session(s);
463 * drop session refs in request.
465 * should be last request ref, or hold mdsc->mutex
467 static void put_request_session(struct ceph_mds_request *req)
469 if (req->r_session) {
470 ceph_put_mds_session(req->r_session);
471 req->r_session = NULL;
475 void ceph_mdsc_release_request(struct kref *kref)
477 struct ceph_mds_request *req = container_of(kref,
478 struct ceph_mds_request,
481 ceph_msg_put(req->r_request);
483 ceph_msg_put(req->r_reply);
484 destroy_reply_info(&req->r_reply_info);
487 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
490 if (req->r_locked_dir)
491 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
492 if (req->r_target_inode)
493 iput(req->r_target_inode);
496 if (req->r_old_dentry) {
498 * track (and drop pins for) r_old_dentry_dir
499 * separately, since r_old_dentry's d_parent may have
500 * changed between the dir mutex being dropped and
501 * this request being freed.
503 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
505 dput(req->r_old_dentry);
506 iput(req->r_old_dentry_dir);
510 put_request_session(req);
511 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
516 * lookup session, bump ref if found.
518 * called under mdsc->mutex.
520 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
523 struct ceph_mds_request *req;
524 struct rb_node *n = mdsc->request_tree.rb_node;
527 req = rb_entry(n, struct ceph_mds_request, r_node);
528 if (tid < req->r_tid)
530 else if (tid > req->r_tid)
533 ceph_mdsc_get_request(req);
540 static void __insert_request(struct ceph_mds_client *mdsc,
541 struct ceph_mds_request *new)
543 struct rb_node **p = &mdsc->request_tree.rb_node;
544 struct rb_node *parent = NULL;
545 struct ceph_mds_request *req = NULL;
549 req = rb_entry(parent, struct ceph_mds_request, r_node);
550 if (new->r_tid < req->r_tid)
552 else if (new->r_tid > req->r_tid)
558 rb_link_node(&new->r_node, parent, p);
559 rb_insert_color(&new->r_node, &mdsc->request_tree);
563 * Register an in-flight request, and assign a tid. Link to directory
564 * are modifying (if any).
566 * Called under mdsc->mutex.
568 static void __register_request(struct ceph_mds_client *mdsc,
569 struct ceph_mds_request *req,
572 req->r_tid = ++mdsc->last_tid;
574 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
576 dout("__register_request %p tid %lld\n", req, req->r_tid);
577 ceph_mdsc_get_request(req);
578 __insert_request(mdsc, req);
580 req->r_uid = current_fsuid();
581 req->r_gid = current_fsgid();
584 struct ceph_inode_info *ci = ceph_inode(dir);
587 spin_lock(&ci->i_unsafe_lock);
588 req->r_unsafe_dir = dir;
589 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
590 spin_unlock(&ci->i_unsafe_lock);
594 static void __unregister_request(struct ceph_mds_client *mdsc,
595 struct ceph_mds_request *req)
597 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
598 rb_erase(&req->r_node, &mdsc->request_tree);
599 RB_CLEAR_NODE(&req->r_node);
601 if (req->r_unsafe_dir) {
602 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
604 spin_lock(&ci->i_unsafe_lock);
605 list_del_init(&req->r_unsafe_dir_item);
606 spin_unlock(&ci->i_unsafe_lock);
608 iput(req->r_unsafe_dir);
609 req->r_unsafe_dir = NULL;
612 ceph_mdsc_put_request(req);
616 * Choose mds to send request to next. If there is a hint set in the
617 * request (e.g., due to a prior forward hint from the mds), use that.
618 * Otherwise, consult frag tree and/or caps to identify the
619 * appropriate mds. If all else fails, choose randomly.
621 * Called under mdsc->mutex.
623 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
626 * we don't need to worry about protecting the d_parent access
627 * here because we never renaming inside the snapped namespace
628 * except to resplice to another snapdir, and either the old or new
629 * result is a valid result.
631 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
632 dentry = dentry->d_parent;
636 static int __choose_mds(struct ceph_mds_client *mdsc,
637 struct ceph_mds_request *req)
640 struct ceph_inode_info *ci;
641 struct ceph_cap *cap;
642 int mode = req->r_direct_mode;
644 u32 hash = req->r_direct_hash;
645 bool is_hash = req->r_direct_is_hash;
648 * is there a specific mds we should try? ignore hint if we have
649 * no session and the mds is not up (active or recovering).
651 if (req->r_resend_mds >= 0 &&
652 (__have_session(mdsc, req->r_resend_mds) ||
653 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
654 dout("choose_mds using resend_mds mds%d\n",
656 return req->r_resend_mds;
659 if (mode == USE_RANDOM_MDS)
664 inode = req->r_inode;
665 } else if (req->r_dentry) {
666 /* ignore race with rename; old or new d_parent is okay */
667 struct dentry *parent = req->r_dentry->d_parent;
668 struct inode *dir = parent->d_inode;
670 if (dir->i_sb != mdsc->fsc->sb) {
672 inode = req->r_dentry->d_inode;
673 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
674 /* direct snapped/virtual snapdir requests
675 * based on parent dir inode */
676 struct dentry *dn = get_nonsnap_parent(parent);
678 dout("__choose_mds using nonsnap parent %p\n", inode);
679 } else if (req->r_dentry->d_inode) {
681 inode = req->r_dentry->d_inode;
685 hash = ceph_dentry_hash(dir, req->r_dentry);
690 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
694 ci = ceph_inode(inode);
696 if (is_hash && S_ISDIR(inode->i_mode)) {
697 struct ceph_inode_frag frag;
700 ceph_choose_frag(ci, hash, &frag, &found);
702 if (mode == USE_ANY_MDS && frag.ndist > 0) {
705 /* choose a random replica */
706 get_random_bytes(&r, 1);
709 dout("choose_mds %p %llx.%llx "
710 "frag %u mds%d (%d/%d)\n",
711 inode, ceph_vinop(inode),
714 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
715 CEPH_MDS_STATE_ACTIVE)
719 /* since this file/dir wasn't known to be
720 * replicated, then we want to look for the
721 * authoritative mds. */
724 /* choose auth mds */
726 dout("choose_mds %p %llx.%llx "
727 "frag %u mds%d (auth)\n",
728 inode, ceph_vinop(inode), frag.frag, mds);
729 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
730 CEPH_MDS_STATE_ACTIVE)
736 spin_lock(&ci->i_ceph_lock);
738 if (mode == USE_AUTH_MDS)
739 cap = ci->i_auth_cap;
740 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
741 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
743 spin_unlock(&ci->i_ceph_lock);
746 mds = cap->session->s_mds;
747 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
748 inode, ceph_vinop(inode), mds,
749 cap == ci->i_auth_cap ? "auth " : "", cap);
750 spin_unlock(&ci->i_ceph_lock);
754 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
755 dout("choose_mds chose random mds%d\n", mds);
763 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
765 struct ceph_msg *msg;
766 struct ceph_mds_session_head *h;
768 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
771 pr_err("create_session_msg ENOMEM creating msg\n");
774 h = msg->front.iov_base;
775 h->op = cpu_to_le32(op);
776 h->seq = cpu_to_le64(seq);
781 * send session open request.
783 * called under mdsc->mutex
785 static int __open_session(struct ceph_mds_client *mdsc,
786 struct ceph_mds_session *session)
788 struct ceph_msg *msg;
790 int mds = session->s_mds;
792 /* wait for mds to go active? */
793 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
794 dout("open_session to mds%d (%s)\n", mds,
795 ceph_mds_state_name(mstate));
796 session->s_state = CEPH_MDS_SESSION_OPENING;
797 session->s_renew_requested = jiffies;
799 /* send connect message */
800 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
803 ceph_con_send(&session->s_con, msg);
808 * open sessions for any export targets for the given mds
810 * called under mdsc->mutex
812 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
813 struct ceph_mds_session *session)
815 struct ceph_mds_info *mi;
816 struct ceph_mds_session *ts;
817 int i, mds = session->s_mds;
820 if (mds >= mdsc->mdsmap->m_max_mds)
822 mi = &mdsc->mdsmap->m_info[mds];
823 dout("open_export_target_sessions for mds%d (%d targets)\n",
824 session->s_mds, mi->num_export_targets);
826 for (i = 0; i < mi->num_export_targets; i++) {
827 target = mi->export_targets[i];
828 ts = __ceph_lookup_mds_session(mdsc, target);
830 ts = register_session(mdsc, target);
834 if (session->s_state == CEPH_MDS_SESSION_NEW ||
835 session->s_state == CEPH_MDS_SESSION_CLOSING)
836 __open_session(mdsc, session);
838 dout(" mds%d target mds%d %p is %s\n", session->s_mds,
839 i, ts, session_state_name(ts->s_state));
840 ceph_put_mds_session(ts);
844 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
845 struct ceph_mds_session *session)
847 mutex_lock(&mdsc->mutex);
848 __open_export_target_sessions(mdsc, session);
849 mutex_unlock(&mdsc->mutex);
857 * Free preallocated cap messages assigned to this session
859 static void cleanup_cap_releases(struct ceph_mds_session *session)
861 struct ceph_msg *msg;
863 spin_lock(&session->s_cap_lock);
864 while (!list_empty(&session->s_cap_releases)) {
865 msg = list_first_entry(&session->s_cap_releases,
866 struct ceph_msg, list_head);
867 list_del_init(&msg->list_head);
870 while (!list_empty(&session->s_cap_releases_done)) {
871 msg = list_first_entry(&session->s_cap_releases_done,
872 struct ceph_msg, list_head);
873 list_del_init(&msg->list_head);
876 spin_unlock(&session->s_cap_lock);
880 * Helper to safely iterate over all caps associated with a session, with
881 * special care taken to handle a racing __ceph_remove_cap().
883 * Caller must hold session s_mutex.
885 static int iterate_session_caps(struct ceph_mds_session *session,
886 int (*cb)(struct inode *, struct ceph_cap *,
890 struct ceph_cap *cap;
891 struct inode *inode, *last_inode = NULL;
892 struct ceph_cap *old_cap = NULL;
895 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
896 spin_lock(&session->s_cap_lock);
897 p = session->s_caps.next;
898 while (p != &session->s_caps) {
899 cap = list_entry(p, struct ceph_cap, session_caps);
900 inode = igrab(&cap->ci->vfs_inode);
905 session->s_cap_iterator = cap;
906 spin_unlock(&session->s_cap_lock);
913 ceph_put_cap(session->s_mdsc, old_cap);
917 ret = cb(inode, cap, arg);
920 spin_lock(&session->s_cap_lock);
922 if (cap->ci == NULL) {
923 dout("iterate_session_caps finishing cap %p removal\n",
925 BUG_ON(cap->session != session);
926 list_del_init(&cap->session_caps);
927 session->s_nr_caps--;
929 old_cap = cap; /* put_cap it w/o locks held */
936 session->s_cap_iterator = NULL;
937 spin_unlock(&session->s_cap_lock);
942 ceph_put_cap(session->s_mdsc, old_cap);
947 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
950 struct ceph_inode_info *ci = ceph_inode(inode);
953 dout("removing cap %p, ci is %p, inode is %p\n",
954 cap, ci, &ci->vfs_inode);
955 spin_lock(&ci->i_ceph_lock);
956 __ceph_remove_cap(cap);
957 if (!__ceph_is_any_real_caps(ci)) {
958 struct ceph_mds_client *mdsc =
959 ceph_sb_to_client(inode->i_sb)->mdsc;
961 spin_lock(&mdsc->cap_dirty_lock);
962 if (!list_empty(&ci->i_dirty_item)) {
963 pr_info(" dropping dirty %s state for %p %lld\n",
964 ceph_cap_string(ci->i_dirty_caps),
965 inode, ceph_ino(inode));
966 ci->i_dirty_caps = 0;
967 list_del_init(&ci->i_dirty_item);
970 if (!list_empty(&ci->i_flushing_item)) {
971 pr_info(" dropping dirty+flushing %s state for %p %lld\n",
972 ceph_cap_string(ci->i_flushing_caps),
973 inode, ceph_ino(inode));
974 ci->i_flushing_caps = 0;
975 list_del_init(&ci->i_flushing_item);
976 mdsc->num_cap_flushing--;
979 if (drop && ci->i_wrbuffer_ref) {
980 pr_info(" dropping dirty data for %p %lld\n",
981 inode, ceph_ino(inode));
982 ci->i_wrbuffer_ref = 0;
983 ci->i_wrbuffer_ref_head = 0;
986 spin_unlock(&mdsc->cap_dirty_lock);
988 spin_unlock(&ci->i_ceph_lock);
995 * caller must hold session s_mutex
997 static void remove_session_caps(struct ceph_mds_session *session)
999 dout("remove_session_caps on %p\n", session);
1000 iterate_session_caps(session, remove_session_caps_cb, NULL);
1001 BUG_ON(session->s_nr_caps > 0);
1002 BUG_ON(!list_empty(&session->s_cap_flushing));
1003 cleanup_cap_releases(session);
1007 * wake up any threads waiting on this session's caps. if the cap is
1008 * old (didn't get renewed on the client reconnect), remove it now.
1010 * caller must hold s_mutex.
1012 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1015 struct ceph_inode_info *ci = ceph_inode(inode);
1017 wake_up_all(&ci->i_cap_wq);
1019 spin_lock(&ci->i_ceph_lock);
1020 ci->i_wanted_max_size = 0;
1021 ci->i_requested_max_size = 0;
1022 spin_unlock(&ci->i_ceph_lock);
1027 static void wake_up_session_caps(struct ceph_mds_session *session,
1030 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1031 iterate_session_caps(session, wake_up_session_cb,
1032 (void *)(unsigned long)reconnect);
1036 * Send periodic message to MDS renewing all currently held caps. The
1037 * ack will reset the expiration for all caps from this session.
1039 * caller holds s_mutex
1041 static int send_renew_caps(struct ceph_mds_client *mdsc,
1042 struct ceph_mds_session *session)
1044 struct ceph_msg *msg;
1047 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1048 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1049 pr_info("mds%d caps stale\n", session->s_mds);
1050 session->s_renew_requested = jiffies;
1052 /* do not try to renew caps until a recovering mds has reconnected
1053 * with its clients. */
1054 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1055 if (state < CEPH_MDS_STATE_RECONNECT) {
1056 dout("send_renew_caps ignoring mds%d (%s)\n",
1057 session->s_mds, ceph_mds_state_name(state));
1061 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1062 ceph_mds_state_name(state));
1063 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1064 ++session->s_renew_seq);
1067 ceph_con_send(&session->s_con, msg);
1072 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1074 * Called under session->s_mutex
1076 static void renewed_caps(struct ceph_mds_client *mdsc,
1077 struct ceph_mds_session *session, int is_renew)
1082 spin_lock(&session->s_cap_lock);
1083 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1085 session->s_cap_ttl = session->s_renew_requested +
1086 mdsc->mdsmap->m_session_timeout*HZ;
1089 if (time_before(jiffies, session->s_cap_ttl)) {
1090 pr_info("mds%d caps renewed\n", session->s_mds);
1093 pr_info("mds%d caps still stale\n", session->s_mds);
1096 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1097 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1098 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1099 spin_unlock(&session->s_cap_lock);
1102 wake_up_session_caps(session, 0);
1106 * send a session close request
1108 static int request_close_session(struct ceph_mds_client *mdsc,
1109 struct ceph_mds_session *session)
1111 struct ceph_msg *msg;
1113 dout("request_close_session mds%d state %s seq %lld\n",
1114 session->s_mds, session_state_name(session->s_state),
1116 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1119 ceph_con_send(&session->s_con, msg);
1124 * Called with s_mutex held.
1126 static int __close_session(struct ceph_mds_client *mdsc,
1127 struct ceph_mds_session *session)
1129 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1131 session->s_state = CEPH_MDS_SESSION_CLOSING;
1132 return request_close_session(mdsc, session);
1136 * Trim old(er) caps.
1138 * Because we can't cache an inode without one or more caps, we do
1139 * this indirectly: if a cap is unused, we prune its aliases, at which
1140 * point the inode will hopefully get dropped to.
1142 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1143 * memory pressure from the MDS, though, so it needn't be perfect.
1145 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1147 struct ceph_mds_session *session = arg;
1148 struct ceph_inode_info *ci = ceph_inode(inode);
1149 int used, oissued, mine;
1151 if (session->s_trim_caps <= 0)
1154 spin_lock(&ci->i_ceph_lock);
1155 mine = cap->issued | cap->implemented;
1156 used = __ceph_caps_used(ci);
1157 oissued = __ceph_caps_issued_other(ci, cap);
1159 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1160 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1161 ceph_cap_string(used));
1162 if (ci->i_dirty_caps)
1163 goto out; /* dirty caps */
1164 if ((used & ~oissued) & mine)
1165 goto out; /* we need these caps */
1167 session->s_trim_caps--;
1169 /* we aren't the only cap.. just remove us */
1170 __ceph_remove_cap(cap);
1172 /* try to drop referring dentries */
1173 spin_unlock(&ci->i_ceph_lock);
1174 d_prune_aliases(inode);
1175 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1176 inode, cap, atomic_read(&inode->i_count));
1181 spin_unlock(&ci->i_ceph_lock);
1186 * Trim session cap count down to some max number.
1188 static int trim_caps(struct ceph_mds_client *mdsc,
1189 struct ceph_mds_session *session,
1192 int trim_caps = session->s_nr_caps - max_caps;
1194 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1195 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1196 if (trim_caps > 0) {
1197 session->s_trim_caps = trim_caps;
1198 iterate_session_caps(session, trim_caps_cb, session);
1199 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1200 session->s_mds, session->s_nr_caps, max_caps,
1201 trim_caps - session->s_trim_caps);
1202 session->s_trim_caps = 0;
1208 * Allocate cap_release messages. If there is a partially full message
1209 * in the queue, try to allocate enough to cover it's remainder, so that
1210 * we can send it immediately.
1212 * Called under s_mutex.
1214 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1215 struct ceph_mds_session *session)
1217 struct ceph_msg *msg, *partial = NULL;
1218 struct ceph_mds_cap_release *head;
1220 int extra = mdsc->fsc->mount_options->cap_release_safety;
1223 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1226 spin_lock(&session->s_cap_lock);
1228 if (!list_empty(&session->s_cap_releases)) {
1229 msg = list_first_entry(&session->s_cap_releases,
1232 head = msg->front.iov_base;
1233 num = le32_to_cpu(head->num);
1235 dout(" partial %p with (%d/%d)\n", msg, num,
1236 (int)CEPH_CAPS_PER_RELEASE);
1237 extra += CEPH_CAPS_PER_RELEASE - num;
1241 while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1242 spin_unlock(&session->s_cap_lock);
1243 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1247 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1248 (int)msg->front.iov_len);
1249 head = msg->front.iov_base;
1250 head->num = cpu_to_le32(0);
1251 msg->front.iov_len = sizeof(*head);
1252 spin_lock(&session->s_cap_lock);
1253 list_add(&msg->list_head, &session->s_cap_releases);
1254 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1258 head = partial->front.iov_base;
1259 num = le32_to_cpu(head->num);
1260 dout(" queueing partial %p with %d/%d\n", partial, num,
1261 (int)CEPH_CAPS_PER_RELEASE);
1262 list_move_tail(&partial->list_head,
1263 &session->s_cap_releases_done);
1264 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1267 spin_unlock(&session->s_cap_lock);
1273 * flush all dirty inode data to disk.
1275 * returns true if we've flushed through want_flush_seq
1277 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1281 dout("check_cap_flush want %lld\n", want_flush_seq);
1282 mutex_lock(&mdsc->mutex);
1283 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1284 struct ceph_mds_session *session = mdsc->sessions[mds];
1288 get_session(session);
1289 mutex_unlock(&mdsc->mutex);
1291 mutex_lock(&session->s_mutex);
1292 if (!list_empty(&session->s_cap_flushing)) {
1293 struct ceph_inode_info *ci =
1294 list_entry(session->s_cap_flushing.next,
1295 struct ceph_inode_info,
1297 struct inode *inode = &ci->vfs_inode;
1299 spin_lock(&ci->i_ceph_lock);
1300 if (ci->i_cap_flush_seq <= want_flush_seq) {
1301 dout("check_cap_flush still flushing %p "
1302 "seq %lld <= %lld to mds%d\n", inode,
1303 ci->i_cap_flush_seq, want_flush_seq,
1307 spin_unlock(&ci->i_ceph_lock);
1309 mutex_unlock(&session->s_mutex);
1310 ceph_put_mds_session(session);
1314 mutex_lock(&mdsc->mutex);
1317 mutex_unlock(&mdsc->mutex);
1318 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1323 * called under s_mutex
1325 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1326 struct ceph_mds_session *session)
1328 struct ceph_msg *msg;
1330 dout("send_cap_releases mds%d\n", session->s_mds);
1331 spin_lock(&session->s_cap_lock);
1332 while (!list_empty(&session->s_cap_releases_done)) {
1333 msg = list_first_entry(&session->s_cap_releases_done,
1334 struct ceph_msg, list_head);
1335 list_del_init(&msg->list_head);
1336 spin_unlock(&session->s_cap_lock);
1337 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1338 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1339 ceph_con_send(&session->s_con, msg);
1340 spin_lock(&session->s_cap_lock);
1342 spin_unlock(&session->s_cap_lock);
1345 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1346 struct ceph_mds_session *session)
1348 struct ceph_msg *msg;
1349 struct ceph_mds_cap_release *head;
1352 dout("discard_cap_releases mds%d\n", session->s_mds);
1353 spin_lock(&session->s_cap_lock);
1355 /* zero out the in-progress message */
1356 msg = list_first_entry(&session->s_cap_releases,
1357 struct ceph_msg, list_head);
1358 head = msg->front.iov_base;
1359 num = le32_to_cpu(head->num);
1360 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1361 head->num = cpu_to_le32(0);
1362 session->s_num_cap_releases += num;
1364 /* requeue completed messages */
1365 while (!list_empty(&session->s_cap_releases_done)) {
1366 msg = list_first_entry(&session->s_cap_releases_done,
1367 struct ceph_msg, list_head);
1368 list_del_init(&msg->list_head);
1370 head = msg->front.iov_base;
1371 num = le32_to_cpu(head->num);
1372 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1374 session->s_num_cap_releases += num;
1375 head->num = cpu_to_le32(0);
1376 msg->front.iov_len = sizeof(*head);
1377 list_add(&msg->list_head, &session->s_cap_releases);
1380 spin_unlock(&session->s_cap_lock);
1388 * Create an mds request.
1390 struct ceph_mds_request *
1391 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1393 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1396 return ERR_PTR(-ENOMEM);
1398 mutex_init(&req->r_fill_mutex);
1400 req->r_started = jiffies;
1401 req->r_resend_mds = -1;
1402 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1404 kref_init(&req->r_kref);
1405 INIT_LIST_HEAD(&req->r_wait);
1406 init_completion(&req->r_completion);
1407 init_completion(&req->r_safe_completion);
1408 INIT_LIST_HEAD(&req->r_unsafe_item);
1411 req->r_direct_mode = mode;
1416 * return oldest (lowest) request, tid in request tree, 0 if none.
1418 * called under mdsc->mutex.
1420 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1422 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1424 return rb_entry(rb_first(&mdsc->request_tree),
1425 struct ceph_mds_request, r_node);
1428 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1430 struct ceph_mds_request *req = __get_oldest_req(mdsc);
1438 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1439 * on build_path_from_dentry in fs/cifs/dir.c.
1441 * If @stop_on_nosnap, generate path relative to the first non-snapped
1444 * Encode hidden .snap dirs as a double /, i.e.
1445 * foo/.snap/bar -> foo//bar
1447 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1450 struct dentry *temp;
1456 return ERR_PTR(-EINVAL);
1460 seq = read_seqbegin(&rename_lock);
1462 for (temp = dentry; !IS_ROOT(temp);) {
1463 struct inode *inode = temp->d_inode;
1464 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1465 len++; /* slash only */
1466 else if (stop_on_nosnap && inode &&
1467 ceph_snap(inode) == CEPH_NOSNAP)
1470 len += 1 + temp->d_name.len;
1471 temp = temp->d_parent;
1475 len--; /* no leading '/' */
1477 path = kmalloc(len+1, GFP_NOFS);
1479 return ERR_PTR(-ENOMEM);
1481 path[pos] = 0; /* trailing null */
1483 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1484 struct inode *inode;
1486 spin_lock(&temp->d_lock);
1487 inode = temp->d_inode;
1488 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1489 dout("build_path path+%d: %p SNAPDIR\n",
1491 } else if (stop_on_nosnap && inode &&
1492 ceph_snap(inode) == CEPH_NOSNAP) {
1493 spin_unlock(&temp->d_lock);
1496 pos -= temp->d_name.len;
1498 spin_unlock(&temp->d_lock);
1501 strncpy(path + pos, temp->d_name.name,
1504 spin_unlock(&temp->d_lock);
1507 temp = temp->d_parent;
1510 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1511 pr_err("build_path did not end path lookup where "
1512 "expected, namelen is %d, pos is %d\n", len, pos);
1513 /* presumably this is only possible if racing with a
1514 rename of one of the parent directories (we can not
1515 lock the dentries above us to prevent this, but
1516 retrying should be harmless) */
1521 *base = ceph_ino(temp->d_inode);
1523 dout("build_path on %p %d built %llx '%.*s'\n",
1524 dentry, dentry->d_count, *base, len, path);
1528 static int build_dentry_path(struct dentry *dentry,
1529 const char **ppath, int *ppathlen, u64 *pino,
1534 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1535 *pino = ceph_ino(dentry->d_parent->d_inode);
1536 *ppath = dentry->d_name.name;
1537 *ppathlen = dentry->d_name.len;
1540 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1542 return PTR_ERR(path);
1548 static int build_inode_path(struct inode *inode,
1549 const char **ppath, int *ppathlen, u64 *pino,
1552 struct dentry *dentry;
1555 if (ceph_snap(inode) == CEPH_NOSNAP) {
1556 *pino = ceph_ino(inode);
1560 dentry = d_find_alias(inode);
1561 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1564 return PTR_ERR(path);
1571 * request arguments may be specified via an inode *, a dentry *, or
1572 * an explicit ino+path.
1574 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1575 const char *rpath, u64 rino,
1576 const char **ppath, int *pathlen,
1577 u64 *ino, int *freepath)
1582 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1583 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1585 } else if (rdentry) {
1586 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1587 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1589 } else if (rpath || rino) {
1592 *pathlen = strlen(rpath);
1593 dout(" path %.*s\n", *pathlen, rpath);
1600 * called under mdsc->mutex
1602 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1603 struct ceph_mds_request *req,
1606 struct ceph_msg *msg;
1607 struct ceph_mds_request_head *head;
1608 const char *path1 = NULL;
1609 const char *path2 = NULL;
1610 u64 ino1 = 0, ino2 = 0;
1611 int pathlen1 = 0, pathlen2 = 0;
1612 int freepath1 = 0, freepath2 = 0;
1618 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1619 req->r_path1, req->r_ino1.ino,
1620 &path1, &pathlen1, &ino1, &freepath1);
1626 ret = set_request_path_attr(NULL, req->r_old_dentry,
1627 req->r_path2, req->r_ino2.ino,
1628 &path2, &pathlen2, &ino2, &freepath2);
1634 len = sizeof(*head) +
1635 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1637 /* calculate (max) length for cap releases */
1638 len += sizeof(struct ceph_mds_request_release) *
1639 (!!req->r_inode_drop + !!req->r_dentry_drop +
1640 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1641 if (req->r_dentry_drop)
1642 len += req->r_dentry->d_name.len;
1643 if (req->r_old_dentry_drop)
1644 len += req->r_old_dentry->d_name.len;
1646 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1648 msg = ERR_PTR(-ENOMEM);
1652 msg->hdr.tid = cpu_to_le64(req->r_tid);
1654 head = msg->front.iov_base;
1655 p = msg->front.iov_base + sizeof(*head);
1656 end = msg->front.iov_base + msg->front.iov_len;
1658 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1659 head->op = cpu_to_le32(req->r_op);
1660 head->caller_uid = cpu_to_le32(req->r_uid);
1661 head->caller_gid = cpu_to_le32(req->r_gid);
1662 head->args = req->r_args;
1664 ceph_encode_filepath(&p, end, ino1, path1);
1665 ceph_encode_filepath(&p, end, ino2, path2);
1667 /* make note of release offset, in case we need to replay */
1668 req->r_request_release_offset = p - msg->front.iov_base;
1672 if (req->r_inode_drop)
1673 releases += ceph_encode_inode_release(&p,
1674 req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1675 mds, req->r_inode_drop, req->r_inode_unless, 0);
1676 if (req->r_dentry_drop)
1677 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1678 mds, req->r_dentry_drop, req->r_dentry_unless);
1679 if (req->r_old_dentry_drop)
1680 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1681 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1682 if (req->r_old_inode_drop)
1683 releases += ceph_encode_inode_release(&p,
1684 req->r_old_dentry->d_inode,
1685 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1686 head->num_releases = cpu_to_le16(releases);
1689 msg->front.iov_len = p - msg->front.iov_base;
1690 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1692 msg->pages = req->r_pages;
1693 msg->nr_pages = req->r_num_pages;
1694 msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1695 msg->hdr.data_off = cpu_to_le16(0);
1699 kfree((char *)path2);
1702 kfree((char *)path1);
1708 * called under mdsc->mutex if error, under no mutex if
1711 static void complete_request(struct ceph_mds_client *mdsc,
1712 struct ceph_mds_request *req)
1714 if (req->r_callback)
1715 req->r_callback(mdsc, req);
1717 complete_all(&req->r_completion);
1721 * called under mdsc->mutex
1723 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1724 struct ceph_mds_request *req,
1727 struct ceph_mds_request_head *rhead;
1728 struct ceph_msg *msg;
1733 struct ceph_cap *cap =
1734 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1737 req->r_sent_on_mseq = cap->mseq;
1739 req->r_sent_on_mseq = -1;
1741 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1742 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1744 if (req->r_got_unsafe) {
1746 * Replay. Do not regenerate message (and rebuild
1747 * paths, etc.); just use the original message.
1748 * Rebuilding paths will break for renames because
1749 * d_move mangles the src name.
1751 msg = req->r_request;
1752 rhead = msg->front.iov_base;
1754 flags = le32_to_cpu(rhead->flags);
1755 flags |= CEPH_MDS_FLAG_REPLAY;
1756 rhead->flags = cpu_to_le32(flags);
1758 if (req->r_target_inode)
1759 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1761 rhead->num_retry = req->r_attempts - 1;
1763 /* remove cap/dentry releases from message */
1764 rhead->num_releases = 0;
1765 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1766 msg->front.iov_len = req->r_request_release_offset;
1770 if (req->r_request) {
1771 ceph_msg_put(req->r_request);
1772 req->r_request = NULL;
1774 msg = create_request_message(mdsc, req, mds);
1776 req->r_err = PTR_ERR(msg);
1777 complete_request(mdsc, req);
1778 return PTR_ERR(msg);
1780 req->r_request = msg;
1782 rhead = msg->front.iov_base;
1783 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1784 if (req->r_got_unsafe)
1785 flags |= CEPH_MDS_FLAG_REPLAY;
1786 if (req->r_locked_dir)
1787 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1788 rhead->flags = cpu_to_le32(flags);
1789 rhead->num_fwd = req->r_num_fwd;
1790 rhead->num_retry = req->r_attempts - 1;
1793 dout(" r_locked_dir = %p\n", req->r_locked_dir);
1798 * send request, or put it on the appropriate wait list.
1800 static int __do_request(struct ceph_mds_client *mdsc,
1801 struct ceph_mds_request *req)
1803 struct ceph_mds_session *session = NULL;
1807 if (req->r_err || req->r_got_result)
1810 if (req->r_timeout &&
1811 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1812 dout("do_request timed out\n");
1817 put_request_session(req);
1819 mds = __choose_mds(mdsc, req);
1821 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1822 dout("do_request no mds or not active, waiting for map\n");
1823 list_add(&req->r_wait, &mdsc->waiting_for_map);
1827 /* get, open session */
1828 session = __ceph_lookup_mds_session(mdsc, mds);
1830 session = register_session(mdsc, mds);
1831 if (IS_ERR(session)) {
1832 err = PTR_ERR(session);
1836 req->r_session = get_session(session);
1838 dout("do_request mds%d session %p state %s\n", mds, session,
1839 session_state_name(session->s_state));
1840 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1841 session->s_state != CEPH_MDS_SESSION_HUNG) {
1842 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1843 session->s_state == CEPH_MDS_SESSION_CLOSING)
1844 __open_session(mdsc, session);
1845 list_add(&req->r_wait, &session->s_waiting);
1850 req->r_resend_mds = -1; /* forget any previous mds hint */
1852 if (req->r_request_started == 0) /* note request start time */
1853 req->r_request_started = jiffies;
1855 err = __prepare_send_request(mdsc, req, mds);
1857 ceph_msg_get(req->r_request);
1858 ceph_con_send(&session->s_con, req->r_request);
1862 ceph_put_mds_session(session);
1868 complete_request(mdsc, req);
1873 * called under mdsc->mutex
1875 static void __wake_requests(struct ceph_mds_client *mdsc,
1876 struct list_head *head)
1878 struct ceph_mds_request *req, *nreq;
1880 list_for_each_entry_safe(req, nreq, head, r_wait) {
1881 list_del_init(&req->r_wait);
1882 __do_request(mdsc, req);
1887 * Wake up threads with requests pending for @mds, so that they can
1888 * resubmit their requests to a possibly different mds.
1890 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1892 struct ceph_mds_request *req;
1895 dout("kick_requests mds%d\n", mds);
1896 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1897 req = rb_entry(p, struct ceph_mds_request, r_node);
1898 if (req->r_got_unsafe)
1900 if (req->r_session &&
1901 req->r_session->s_mds == mds) {
1902 dout(" kicking tid %llu\n", req->r_tid);
1903 __do_request(mdsc, req);
1908 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1909 struct ceph_mds_request *req)
1911 dout("submit_request on %p\n", req);
1912 mutex_lock(&mdsc->mutex);
1913 __register_request(mdsc, req, NULL);
1914 __do_request(mdsc, req);
1915 mutex_unlock(&mdsc->mutex);
1919 * Synchrously perform an mds request. Take care of all of the
1920 * session setup, forwarding, retry details.
1922 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1924 struct ceph_mds_request *req)
1928 dout("do_request on %p\n", req);
1930 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1932 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1933 if (req->r_locked_dir)
1934 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1935 if (req->r_old_dentry)
1936 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
1940 mutex_lock(&mdsc->mutex);
1941 __register_request(mdsc, req, dir);
1942 __do_request(mdsc, req);
1946 __unregister_request(mdsc, req);
1947 dout("do_request early error %d\n", err);
1952 mutex_unlock(&mdsc->mutex);
1953 dout("do_request waiting\n");
1954 if (req->r_timeout) {
1955 err = (long)wait_for_completion_killable_timeout(
1956 &req->r_completion, req->r_timeout);
1960 err = wait_for_completion_killable(&req->r_completion);
1962 dout("do_request waited, got %d\n", err);
1963 mutex_lock(&mdsc->mutex);
1965 /* only abort if we didn't race with a real reply */
1966 if (req->r_got_result) {
1967 err = le32_to_cpu(req->r_reply_info.head->result);
1968 } else if (err < 0) {
1969 dout("aborted request %lld with %d\n", req->r_tid, err);
1972 * ensure we aren't running concurrently with
1973 * ceph_fill_trace or ceph_readdir_prepopulate, which
1974 * rely on locks (dir mutex) held by our caller.
1976 mutex_lock(&req->r_fill_mutex);
1978 req->r_aborted = true;
1979 mutex_unlock(&req->r_fill_mutex);
1981 if (req->r_locked_dir &&
1982 (req->r_op & CEPH_MDS_OP_WRITE))
1983 ceph_invalidate_dir_request(req);
1989 mutex_unlock(&mdsc->mutex);
1990 dout("do_request %p done, result %d\n", req, err);
1995 * Invalidate dir D_COMPLETE, dentry lease state on an aborted MDS
1996 * namespace request.
1998 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2000 struct inode *inode = req->r_locked_dir;
2001 struct ceph_inode_info *ci = ceph_inode(inode);
2003 dout("invalidate_dir_request %p (D_COMPLETE, lease(s))\n", inode);
2004 spin_lock(&ci->i_ceph_lock);
2005 ceph_dir_clear_complete(inode);
2006 ci->i_release_count++;
2007 spin_unlock(&ci->i_ceph_lock);
2010 ceph_invalidate_dentry_lease(req->r_dentry);
2011 if (req->r_old_dentry)
2012 ceph_invalidate_dentry_lease(req->r_old_dentry);
2018 * We take the session mutex and parse and process the reply immediately.
2019 * This preserves the logical ordering of replies, capabilities, etc., sent
2020 * by the MDS as they are applied to our local cache.
2022 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2024 struct ceph_mds_client *mdsc = session->s_mdsc;
2025 struct ceph_mds_request *req;
2026 struct ceph_mds_reply_head *head = msg->front.iov_base;
2027 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2030 int mds = session->s_mds;
2032 if (msg->front.iov_len < sizeof(*head)) {
2033 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2038 /* get request, session */
2039 tid = le64_to_cpu(msg->hdr.tid);
2040 mutex_lock(&mdsc->mutex);
2041 req = __lookup_request(mdsc, tid);
2043 dout("handle_reply on unknown tid %llu\n", tid);
2044 mutex_unlock(&mdsc->mutex);
2047 dout("handle_reply %p\n", req);
2049 /* correct session? */
2050 if (req->r_session != session) {
2051 pr_err("mdsc_handle_reply got %llu on session mds%d"
2052 " not mds%d\n", tid, session->s_mds,
2053 req->r_session ? req->r_session->s_mds : -1);
2054 mutex_unlock(&mdsc->mutex);
2059 if ((req->r_got_unsafe && !head->safe) ||
2060 (req->r_got_safe && head->safe)) {
2061 pr_warning("got a dup %s reply on %llu from mds%d\n",
2062 head->safe ? "safe" : "unsafe", tid, mds);
2063 mutex_unlock(&mdsc->mutex);
2066 if (req->r_got_safe && !head->safe) {
2067 pr_warning("got unsafe after safe on %llu from mds%d\n",
2069 mutex_unlock(&mdsc->mutex);
2073 result = le32_to_cpu(head->result);
2077 * if we're not talking to the authority, send to them
2078 * if the authority has changed while we weren't looking,
2079 * send to new authority
2080 * Otherwise we just have to return an ESTALE
2082 if (result == -ESTALE) {
2083 dout("got ESTALE on request %llu", req->r_tid);
2084 if (!req->r_inode) {
2085 /* do nothing; not an authority problem */
2086 } else if (req->r_direct_mode != USE_AUTH_MDS) {
2087 dout("not using auth, setting for that now");
2088 req->r_direct_mode = USE_AUTH_MDS;
2089 __do_request(mdsc, req);
2090 mutex_unlock(&mdsc->mutex);
2093 struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2094 struct ceph_cap *cap = NULL;
2097 cap = ceph_get_cap_for_mds(ci,
2098 req->r_session->s_mds);
2100 dout("already using auth");
2101 if ((!cap || cap != ci->i_auth_cap) ||
2102 (cap->mseq != req->r_sent_on_mseq)) {
2103 dout("but cap changed, so resending");
2104 __do_request(mdsc, req);
2105 mutex_unlock(&mdsc->mutex);
2109 dout("have to return ESTALE on request %llu", req->r_tid);
2114 req->r_got_safe = true;
2115 __unregister_request(mdsc, req);
2116 complete_all(&req->r_safe_completion);
2118 if (req->r_got_unsafe) {
2120 * We already handled the unsafe response, now do the
2121 * cleanup. No need to examine the response; the MDS
2122 * doesn't include any result info in the safe
2123 * response. And even if it did, there is nothing
2124 * useful we could do with a revised return value.
2126 dout("got safe reply %llu, mds%d\n", tid, mds);
2127 list_del_init(&req->r_unsafe_item);
2129 /* last unsafe request during umount? */
2130 if (mdsc->stopping && !__get_oldest_req(mdsc))
2131 complete_all(&mdsc->safe_umount_waiters);
2132 mutex_unlock(&mdsc->mutex);
2136 req->r_got_unsafe = true;
2137 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2140 dout("handle_reply tid %lld result %d\n", tid, result);
2141 rinfo = &req->r_reply_info;
2142 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2143 mutex_unlock(&mdsc->mutex);
2145 mutex_lock(&session->s_mutex);
2147 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2153 if (rinfo->snapblob_len) {
2154 down_write(&mdsc->snap_rwsem);
2155 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2156 rinfo->snapblob + rinfo->snapblob_len,
2157 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2158 downgrade_write(&mdsc->snap_rwsem);
2160 down_read(&mdsc->snap_rwsem);
2163 /* insert trace into our cache */
2164 mutex_lock(&req->r_fill_mutex);
2165 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2167 if (result == 0 && req->r_op != CEPH_MDS_OP_GETFILELOCK &&
2169 ceph_readdir_prepopulate(req, req->r_session);
2170 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2172 mutex_unlock(&req->r_fill_mutex);
2174 up_read(&mdsc->snap_rwsem);
2176 mutex_lock(&mdsc->mutex);
2177 if (!req->r_aborted) {
2183 req->r_got_result = true;
2186 dout("reply arrived after request %lld was aborted\n", tid);
2188 mutex_unlock(&mdsc->mutex);
2190 ceph_add_cap_releases(mdsc, req->r_session);
2191 mutex_unlock(&session->s_mutex);
2193 /* kick calling process */
2194 complete_request(mdsc, req);
2196 ceph_mdsc_put_request(req);
2203 * handle mds notification that our request has been forwarded.
2205 static void handle_forward(struct ceph_mds_client *mdsc,
2206 struct ceph_mds_session *session,
2207 struct ceph_msg *msg)
2209 struct ceph_mds_request *req;
2210 u64 tid = le64_to_cpu(msg->hdr.tid);
2214 void *p = msg->front.iov_base;
2215 void *end = p + msg->front.iov_len;
2217 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2218 next_mds = ceph_decode_32(&p);
2219 fwd_seq = ceph_decode_32(&p);
2221 mutex_lock(&mdsc->mutex);
2222 req = __lookup_request(mdsc, tid);
2224 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2225 goto out; /* dup reply? */
2228 if (req->r_aborted) {
2229 dout("forward tid %llu aborted, unregistering\n", tid);
2230 __unregister_request(mdsc, req);
2231 } else if (fwd_seq <= req->r_num_fwd) {
2232 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2233 tid, next_mds, req->r_num_fwd, fwd_seq);
2235 /* resend. forward race not possible; mds would drop */
2236 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2238 BUG_ON(req->r_got_result);
2239 req->r_num_fwd = fwd_seq;
2240 req->r_resend_mds = next_mds;
2241 put_request_session(req);
2242 __do_request(mdsc, req);
2244 ceph_mdsc_put_request(req);
2246 mutex_unlock(&mdsc->mutex);
2250 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2254 * handle a mds session control message
2256 static void handle_session(struct ceph_mds_session *session,
2257 struct ceph_msg *msg)
2259 struct ceph_mds_client *mdsc = session->s_mdsc;
2262 int mds = session->s_mds;
2263 struct ceph_mds_session_head *h = msg->front.iov_base;
2267 if (msg->front.iov_len != sizeof(*h))
2269 op = le32_to_cpu(h->op);
2270 seq = le64_to_cpu(h->seq);
2272 mutex_lock(&mdsc->mutex);
2273 if (op == CEPH_SESSION_CLOSE)
2274 __unregister_session(mdsc, session);
2275 /* FIXME: this ttl calculation is generous */
2276 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2277 mutex_unlock(&mdsc->mutex);
2279 mutex_lock(&session->s_mutex);
2281 dout("handle_session mds%d %s %p state %s seq %llu\n",
2282 mds, ceph_session_op_name(op), session,
2283 session_state_name(session->s_state), seq);
2285 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2286 session->s_state = CEPH_MDS_SESSION_OPEN;
2287 pr_info("mds%d came back\n", session->s_mds);
2291 case CEPH_SESSION_OPEN:
2292 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2293 pr_info("mds%d reconnect success\n", session->s_mds);
2294 session->s_state = CEPH_MDS_SESSION_OPEN;
2295 renewed_caps(mdsc, session, 0);
2298 __close_session(mdsc, session);
2301 case CEPH_SESSION_RENEWCAPS:
2302 if (session->s_renew_seq == seq)
2303 renewed_caps(mdsc, session, 1);
2306 case CEPH_SESSION_CLOSE:
2307 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2308 pr_info("mds%d reconnect denied\n", session->s_mds);
2309 remove_session_caps(session);
2310 wake = 1; /* for good measure */
2311 wake_up_all(&mdsc->session_close_wq);
2312 kick_requests(mdsc, mds);
2315 case CEPH_SESSION_STALE:
2316 pr_info("mds%d caps went stale, renewing\n",
2318 spin_lock(&session->s_gen_ttl_lock);
2319 session->s_cap_gen++;
2320 session->s_cap_ttl = jiffies - 1;
2321 spin_unlock(&session->s_gen_ttl_lock);
2322 send_renew_caps(mdsc, session);
2325 case CEPH_SESSION_RECALL_STATE:
2326 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2330 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2334 mutex_unlock(&session->s_mutex);
2336 mutex_lock(&mdsc->mutex);
2337 __wake_requests(mdsc, &session->s_waiting);
2338 mutex_unlock(&mdsc->mutex);
2343 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2344 (int)msg->front.iov_len);
2351 * called under session->mutex.
2353 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2354 struct ceph_mds_session *session)
2356 struct ceph_mds_request *req, *nreq;
2359 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2361 mutex_lock(&mdsc->mutex);
2362 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2363 err = __prepare_send_request(mdsc, req, session->s_mds);
2365 ceph_msg_get(req->r_request);
2366 ceph_con_send(&session->s_con, req->r_request);
2369 mutex_unlock(&mdsc->mutex);
2373 * Encode information about a cap for a reconnect with the MDS.
2375 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2379 struct ceph_mds_cap_reconnect v2;
2380 struct ceph_mds_cap_reconnect_v1 v1;
2383 struct ceph_inode_info *ci;
2384 struct ceph_reconnect_state *recon_state = arg;
2385 struct ceph_pagelist *pagelist = recon_state->pagelist;
2389 struct dentry *dentry;
2393 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2394 inode, ceph_vinop(inode), cap, cap->cap_id,
2395 ceph_cap_string(cap->issued));
2396 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2400 dentry = d_find_alias(inode);
2402 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2404 err = PTR_ERR(path);
2411 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2415 spin_lock(&ci->i_ceph_lock);
2416 cap->seq = 0; /* reset cap seq */
2417 cap->issue_seq = 0; /* and issue_seq */
2419 if (recon_state->flock) {
2420 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2421 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2422 rec.v2.issued = cpu_to_le32(cap->issued);
2423 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2424 rec.v2.pathbase = cpu_to_le64(pathbase);
2425 rec.v2.flock_len = 0;
2426 reclen = sizeof(rec.v2);
2428 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2429 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2430 rec.v1.issued = cpu_to_le32(cap->issued);
2431 rec.v1.size = cpu_to_le64(inode->i_size);
2432 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2433 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2434 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2435 rec.v1.pathbase = cpu_to_le64(pathbase);
2436 reclen = sizeof(rec.v1);
2438 spin_unlock(&ci->i_ceph_lock);
2440 if (recon_state->flock) {
2441 int num_fcntl_locks, num_flock_locks;
2442 struct ceph_pagelist_cursor trunc_point;
2444 ceph_pagelist_set_cursor(pagelist, &trunc_point);
2447 ceph_count_locks(inode, &num_fcntl_locks,
2449 rec.v2.flock_len = (2*sizeof(u32) +
2450 (num_fcntl_locks+num_flock_locks) *
2451 sizeof(struct ceph_filelock));
2454 /* pre-alloc pagelist */
2455 ceph_pagelist_truncate(pagelist, &trunc_point);
2456 err = ceph_pagelist_append(pagelist, &rec, reclen);
2458 err = ceph_pagelist_reserve(pagelist,
2464 err = ceph_encode_locks(inode,
2470 } while (err == -ENOSPC);
2472 err = ceph_pagelist_append(pagelist, &rec, reclen);
2484 * If an MDS fails and recovers, clients need to reconnect in order to
2485 * reestablish shared state. This includes all caps issued through
2486 * this session _and_ the snap_realm hierarchy. Because it's not
2487 * clear which snap realms the mds cares about, we send everything we
2488 * know about.. that ensures we'll then get any new info the
2489 * recovering MDS might have.
2491 * This is a relatively heavyweight operation, but it's rare.
2493 * called with mdsc->mutex held.
2495 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2496 struct ceph_mds_session *session)
2498 struct ceph_msg *reply;
2500 int mds = session->s_mds;
2502 struct ceph_pagelist *pagelist;
2503 struct ceph_reconnect_state recon_state;
2505 pr_info("mds%d reconnect start\n", mds);
2507 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2509 goto fail_nopagelist;
2510 ceph_pagelist_init(pagelist);
2512 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2516 mutex_lock(&session->s_mutex);
2517 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2520 ceph_con_open(&session->s_con,
2521 CEPH_ENTITY_TYPE_MDS, mds,
2522 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2524 /* replay unsafe requests */
2525 replay_unsafe_requests(mdsc, session);
2527 down_read(&mdsc->snap_rwsem);
2529 dout("session %p state %s\n", session,
2530 session_state_name(session->s_state));
2532 /* drop old cap expires; we're about to reestablish that state */
2533 discard_cap_releases(mdsc, session);
2535 /* traverse this session's caps */
2536 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2540 recon_state.pagelist = pagelist;
2541 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2542 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2547 * snaprealms. we provide mds with the ino, seq (version), and
2548 * parent for all of our realms. If the mds has any newer info,
2551 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2552 struct ceph_snap_realm *realm =
2553 rb_entry(p, struct ceph_snap_realm, node);
2554 struct ceph_mds_snaprealm_reconnect sr_rec;
2556 dout(" adding snap realm %llx seq %lld parent %llx\n",
2557 realm->ino, realm->seq, realm->parent_ino);
2558 sr_rec.ino = cpu_to_le64(realm->ino);
2559 sr_rec.seq = cpu_to_le64(realm->seq);
2560 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2561 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2566 reply->pagelist = pagelist;
2567 if (recon_state.flock)
2568 reply->hdr.version = cpu_to_le16(2);
2569 reply->hdr.data_len = cpu_to_le32(pagelist->length);
2570 reply->nr_pages = calc_pages_for(0, pagelist->length);
2571 ceph_con_send(&session->s_con, reply);
2573 mutex_unlock(&session->s_mutex);
2575 mutex_lock(&mdsc->mutex);
2576 __wake_requests(mdsc, &session->s_waiting);
2577 mutex_unlock(&mdsc->mutex);
2579 up_read(&mdsc->snap_rwsem);
2583 ceph_msg_put(reply);
2584 up_read(&mdsc->snap_rwsem);
2585 mutex_unlock(&session->s_mutex);
2587 ceph_pagelist_release(pagelist);
2590 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2596 * compare old and new mdsmaps, kicking requests
2597 * and closing out old connections as necessary
2599 * called under mdsc->mutex.
2601 static void check_new_map(struct ceph_mds_client *mdsc,
2602 struct ceph_mdsmap *newmap,
2603 struct ceph_mdsmap *oldmap)
2606 int oldstate, newstate;
2607 struct ceph_mds_session *s;
2609 dout("check_new_map new %u old %u\n",
2610 newmap->m_epoch, oldmap->m_epoch);
2612 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2613 if (mdsc->sessions[i] == NULL)
2615 s = mdsc->sessions[i];
2616 oldstate = ceph_mdsmap_get_state(oldmap, i);
2617 newstate = ceph_mdsmap_get_state(newmap, i);
2619 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2620 i, ceph_mds_state_name(oldstate),
2621 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2622 ceph_mds_state_name(newstate),
2623 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2624 session_state_name(s->s_state));
2626 if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2627 ceph_mdsmap_get_addr(newmap, i),
2628 sizeof(struct ceph_entity_addr))) {
2629 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2630 /* the session never opened, just close it
2632 __wake_requests(mdsc, &s->s_waiting);
2633 __unregister_session(mdsc, s);
2636 mutex_unlock(&mdsc->mutex);
2637 mutex_lock(&s->s_mutex);
2638 mutex_lock(&mdsc->mutex);
2639 ceph_con_close(&s->s_con);
2640 mutex_unlock(&s->s_mutex);
2641 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2644 /* kick any requests waiting on the recovering mds */
2645 kick_requests(mdsc, i);
2646 } else if (oldstate == newstate) {
2647 continue; /* nothing new with this mds */
2653 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2654 newstate >= CEPH_MDS_STATE_RECONNECT) {
2655 mutex_unlock(&mdsc->mutex);
2656 send_mds_reconnect(mdsc, s);
2657 mutex_lock(&mdsc->mutex);
2661 * kick request on any mds that has gone active.
2663 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2664 newstate >= CEPH_MDS_STATE_ACTIVE) {
2665 if (oldstate != CEPH_MDS_STATE_CREATING &&
2666 oldstate != CEPH_MDS_STATE_STARTING)
2667 pr_info("mds%d recovery completed\n", s->s_mds);
2668 kick_requests(mdsc, i);
2669 ceph_kick_flushing_caps(mdsc, s);
2670 wake_up_session_caps(s, 1);
2674 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2675 s = mdsc->sessions[i];
2678 if (!ceph_mdsmap_is_laggy(newmap, i))
2680 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2681 s->s_state == CEPH_MDS_SESSION_HUNG ||
2682 s->s_state == CEPH_MDS_SESSION_CLOSING) {
2683 dout(" connecting to export targets of laggy mds%d\n",
2685 __open_export_target_sessions(mdsc, s);
2697 * caller must hold session s_mutex, dentry->d_lock
2699 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2701 struct ceph_dentry_info *di = ceph_dentry(dentry);
2703 ceph_put_mds_session(di->lease_session);
2704 di->lease_session = NULL;
2707 static void handle_lease(struct ceph_mds_client *mdsc,
2708 struct ceph_mds_session *session,
2709 struct ceph_msg *msg)
2711 struct super_block *sb = mdsc->fsc->sb;
2712 struct inode *inode;
2713 struct dentry *parent, *dentry;
2714 struct ceph_dentry_info *di;
2715 int mds = session->s_mds;
2716 struct ceph_mds_lease *h = msg->front.iov_base;
2718 struct ceph_vino vino;
2722 dout("handle_lease from mds%d\n", mds);
2725 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2727 vino.ino = le64_to_cpu(h->ino);
2728 vino.snap = CEPH_NOSNAP;
2729 seq = le32_to_cpu(h->seq);
2730 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2731 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2732 if (dname.len != get_unaligned_le32(h+1))
2735 mutex_lock(&session->s_mutex);
2739 inode = ceph_find_inode(sb, vino);
2740 dout("handle_lease %s, ino %llx %p %.*s\n",
2741 ceph_lease_op_name(h->action), vino.ino, inode,
2742 dname.len, dname.name);
2743 if (inode == NULL) {
2744 dout("handle_lease no inode %llx\n", vino.ino);
2749 parent = d_find_alias(inode);
2751 dout("no parent dentry on inode %p\n", inode);
2753 goto release; /* hrm... */
2755 dname.hash = full_name_hash(dname.name, dname.len);
2756 dentry = d_lookup(parent, &dname);
2761 spin_lock(&dentry->d_lock);
2762 di = ceph_dentry(dentry);
2763 switch (h->action) {
2764 case CEPH_MDS_LEASE_REVOKE:
2765 if (di->lease_session == session) {
2766 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2767 h->seq = cpu_to_le32(di->lease_seq);
2768 __ceph_mdsc_drop_dentry_lease(dentry);
2773 case CEPH_MDS_LEASE_RENEW:
2774 if (di->lease_session == session &&
2775 di->lease_gen == session->s_cap_gen &&
2776 di->lease_renew_from &&
2777 di->lease_renew_after == 0) {
2778 unsigned long duration =
2779 le32_to_cpu(h->duration_ms) * HZ / 1000;
2781 di->lease_seq = seq;
2782 dentry->d_time = di->lease_renew_from + duration;
2783 di->lease_renew_after = di->lease_renew_from +
2785 di->lease_renew_from = 0;
2789 spin_unlock(&dentry->d_lock);
2796 /* let's just reuse the same message */
2797 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2799 ceph_con_send(&session->s_con, msg);
2803 mutex_unlock(&session->s_mutex);
2807 pr_err("corrupt lease message\n");
2811 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2812 struct inode *inode,
2813 struct dentry *dentry, char action,
2816 struct ceph_msg *msg;
2817 struct ceph_mds_lease *lease;
2818 int len = sizeof(*lease) + sizeof(u32);
2821 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2822 inode, dentry, ceph_lease_op_name(action), session->s_mds);
2823 dnamelen = dentry->d_name.len;
2826 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2829 lease = msg->front.iov_base;
2830 lease->action = action;
2831 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2832 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2833 lease->seq = cpu_to_le32(seq);
2834 put_unaligned_le32(dnamelen, lease + 1);
2835 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2838 * if this is a preemptive lease RELEASE, no need to
2839 * flush request stream, since the actual request will
2842 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2844 ceph_con_send(&session->s_con, msg);
2848 * Preemptively release a lease we expect to invalidate anyway.
2849 * Pass @inode always, @dentry is optional.
2851 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2852 struct dentry *dentry)
2854 struct ceph_dentry_info *di;
2855 struct ceph_mds_session *session;
2858 BUG_ON(inode == NULL);
2859 BUG_ON(dentry == NULL);
2861 /* is dentry lease valid? */
2862 spin_lock(&dentry->d_lock);
2863 di = ceph_dentry(dentry);
2864 if (!di || !di->lease_session ||
2865 di->lease_session->s_mds < 0 ||
2866 di->lease_gen != di->lease_session->s_cap_gen ||
2867 !time_before(jiffies, dentry->d_time)) {
2868 dout("lease_release inode %p dentry %p -- "
2871 spin_unlock(&dentry->d_lock);
2875 /* we do have a lease on this dentry; note mds and seq */
2876 session = ceph_get_mds_session(di->lease_session);
2877 seq = di->lease_seq;
2878 __ceph_mdsc_drop_dentry_lease(dentry);
2879 spin_unlock(&dentry->d_lock);
2881 dout("lease_release inode %p dentry %p to mds%d\n",
2882 inode, dentry, session->s_mds);
2883 ceph_mdsc_lease_send_msg(session, inode, dentry,
2884 CEPH_MDS_LEASE_RELEASE, seq);
2885 ceph_put_mds_session(session);
2889 * drop all leases (and dentry refs) in preparation for umount
2891 static void drop_leases(struct ceph_mds_client *mdsc)
2895 dout("drop_leases\n");
2896 mutex_lock(&mdsc->mutex);
2897 for (i = 0; i < mdsc->max_sessions; i++) {
2898 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2901 mutex_unlock(&mdsc->mutex);
2902 mutex_lock(&s->s_mutex);
2903 mutex_unlock(&s->s_mutex);
2904 ceph_put_mds_session(s);
2905 mutex_lock(&mdsc->mutex);
2907 mutex_unlock(&mdsc->mutex);
2913 * delayed work -- periodically trim expired leases, renew caps with mds
2915 static void schedule_delayed(struct ceph_mds_client *mdsc)
2918 unsigned hz = round_jiffies_relative(HZ * delay);
2919 schedule_delayed_work(&mdsc->delayed_work, hz);
2922 static void delayed_work(struct work_struct *work)
2925 struct ceph_mds_client *mdsc =
2926 container_of(work, struct ceph_mds_client, delayed_work.work);
2930 dout("mdsc delayed_work\n");
2931 ceph_check_delayed_caps(mdsc);
2933 mutex_lock(&mdsc->mutex);
2934 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2935 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2936 mdsc->last_renew_caps);
2938 mdsc->last_renew_caps = jiffies;
2940 for (i = 0; i < mdsc->max_sessions; i++) {
2941 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2944 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2945 dout("resending session close request for mds%d\n",
2947 request_close_session(mdsc, s);
2948 ceph_put_mds_session(s);
2951 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2952 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2953 s->s_state = CEPH_MDS_SESSION_HUNG;
2954 pr_info("mds%d hung\n", s->s_mds);
2957 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2958 /* this mds is failed or recovering, just wait */
2959 ceph_put_mds_session(s);
2962 mutex_unlock(&mdsc->mutex);
2964 mutex_lock(&s->s_mutex);
2966 send_renew_caps(mdsc, s);
2968 ceph_con_keepalive(&s->s_con);
2969 ceph_add_cap_releases(mdsc, s);
2970 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2971 s->s_state == CEPH_MDS_SESSION_HUNG)
2972 ceph_send_cap_releases(mdsc, s);
2973 mutex_unlock(&s->s_mutex);
2974 ceph_put_mds_session(s);
2976 mutex_lock(&mdsc->mutex);
2978 mutex_unlock(&mdsc->mutex);
2980 schedule_delayed(mdsc);
2983 int ceph_mdsc_init(struct ceph_fs_client *fsc)
2986 struct ceph_mds_client *mdsc;
2988 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
2993 mutex_init(&mdsc->mutex);
2994 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
2995 if (mdsc->mdsmap == NULL)
2998 init_completion(&mdsc->safe_umount_waiters);
2999 init_waitqueue_head(&mdsc->session_close_wq);
3000 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3001 mdsc->sessions = NULL;
3002 mdsc->max_sessions = 0;
3004 init_rwsem(&mdsc->snap_rwsem);
3005 mdsc->snap_realms = RB_ROOT;
3006 INIT_LIST_HEAD(&mdsc->snap_empty);
3007 spin_lock_init(&mdsc->snap_empty_lock);
3009 mdsc->request_tree = RB_ROOT;
3010 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3011 mdsc->last_renew_caps = jiffies;
3012 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3013 spin_lock_init(&mdsc->cap_delay_lock);
3014 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3015 spin_lock_init(&mdsc->snap_flush_lock);
3016 mdsc->cap_flush_seq = 0;
3017 INIT_LIST_HEAD(&mdsc->cap_dirty);
3018 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3019 mdsc->num_cap_flushing = 0;
3020 spin_lock_init(&mdsc->cap_dirty_lock);
3021 init_waitqueue_head(&mdsc->cap_flushing_wq);
3022 spin_lock_init(&mdsc->dentry_lru_lock);
3023 INIT_LIST_HEAD(&mdsc->dentry_lru);
3025 ceph_caps_init(mdsc);
3026 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3032 * Wait for safe replies on open mds requests. If we time out, drop
3033 * all requests from the tree to avoid dangling dentry refs.
3035 static void wait_requests(struct ceph_mds_client *mdsc)
3037 struct ceph_mds_request *req;
3038 struct ceph_fs_client *fsc = mdsc->fsc;
3040 mutex_lock(&mdsc->mutex);
3041 if (__get_oldest_req(mdsc)) {
3042 mutex_unlock(&mdsc->mutex);
3044 dout("wait_requests waiting for requests\n");
3045 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3046 fsc->client->options->mount_timeout * HZ);
3048 /* tear down remaining requests */
3049 mutex_lock(&mdsc->mutex);
3050 while ((req = __get_oldest_req(mdsc))) {
3051 dout("wait_requests timed out on tid %llu\n",
3053 __unregister_request(mdsc, req);
3056 mutex_unlock(&mdsc->mutex);
3057 dout("wait_requests done\n");
3061 * called before mount is ro, and before dentries are torn down.
3062 * (hmm, does this still race with new lookups?)
3064 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3066 dout("pre_umount\n");
3070 ceph_flush_dirty_caps(mdsc);
3071 wait_requests(mdsc);
3074 * wait for reply handlers to drop their request refs and
3075 * their inode/dcache refs
3081 * wait for all write mds requests to flush.
3083 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3085 struct ceph_mds_request *req = NULL, *nextreq;
3088 mutex_lock(&mdsc->mutex);
3089 dout("wait_unsafe_requests want %lld\n", want_tid);
3091 req = __get_oldest_req(mdsc);
3092 while (req && req->r_tid <= want_tid) {
3093 /* find next request */
3094 n = rb_next(&req->r_node);
3096 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3099 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3101 ceph_mdsc_get_request(req);
3103 ceph_mdsc_get_request(nextreq);
3104 mutex_unlock(&mdsc->mutex);
3105 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3106 req->r_tid, want_tid);
3107 wait_for_completion(&req->r_safe_completion);
3108 mutex_lock(&mdsc->mutex);
3109 ceph_mdsc_put_request(req);
3111 break; /* next dne before, so we're done! */
3112 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3113 /* next request was removed from tree */
3114 ceph_mdsc_put_request(nextreq);
3117 ceph_mdsc_put_request(nextreq); /* won't go away */
3121 mutex_unlock(&mdsc->mutex);
3122 dout("wait_unsafe_requests done\n");
3125 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3127 u64 want_tid, want_flush;
3129 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3133 mutex_lock(&mdsc->mutex);
3134 want_tid = mdsc->last_tid;
3135 want_flush = mdsc->cap_flush_seq;
3136 mutex_unlock(&mdsc->mutex);
3137 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3139 ceph_flush_dirty_caps(mdsc);
3141 wait_unsafe_requests(mdsc, want_tid);
3142 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3146 * true if all sessions are closed, or we force unmount
3148 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3152 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3155 mutex_lock(&mdsc->mutex);
3156 for (i = 0; i < mdsc->max_sessions; i++)
3157 if (mdsc->sessions[i])
3159 mutex_unlock(&mdsc->mutex);
3164 * called after sb is ro.
3166 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3168 struct ceph_mds_session *session;
3170 struct ceph_fs_client *fsc = mdsc->fsc;
3171 unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3173 dout("close_sessions\n");
3175 /* close sessions */
3176 mutex_lock(&mdsc->mutex);
3177 for (i = 0; i < mdsc->max_sessions; i++) {
3178 session = __ceph_lookup_mds_session(mdsc, i);
3181 mutex_unlock(&mdsc->mutex);
3182 mutex_lock(&session->s_mutex);
3183 __close_session(mdsc, session);
3184 mutex_unlock(&session->s_mutex);
3185 ceph_put_mds_session(session);
3186 mutex_lock(&mdsc->mutex);
3188 mutex_unlock(&mdsc->mutex);
3190 dout("waiting for sessions to close\n");
3191 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3194 /* tear down remaining sessions */
3195 mutex_lock(&mdsc->mutex);
3196 for (i = 0; i < mdsc->max_sessions; i++) {
3197 if (mdsc->sessions[i]) {
3198 session = get_session(mdsc->sessions[i]);
3199 __unregister_session(mdsc, session);
3200 mutex_unlock(&mdsc->mutex);
3201 mutex_lock(&session->s_mutex);
3202 remove_session_caps(session);
3203 mutex_unlock(&session->s_mutex);
3204 ceph_put_mds_session(session);
3205 mutex_lock(&mdsc->mutex);
3208 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3209 mutex_unlock(&mdsc->mutex);
3211 ceph_cleanup_empty_realms(mdsc);
3213 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3218 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3221 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3223 ceph_mdsmap_destroy(mdsc->mdsmap);
3224 kfree(mdsc->sessions);
3225 ceph_caps_finalize(mdsc);
3228 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3230 struct ceph_mds_client *mdsc = fsc->mdsc;
3232 dout("mdsc_destroy %p\n", mdsc);
3233 ceph_mdsc_stop(mdsc);
3235 /* flush out any connection work with references to us */
3240 dout("mdsc_destroy %p done\n", mdsc);
3245 * handle mds map update.
3247 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3251 void *p = msg->front.iov_base;
3252 void *end = p + msg->front.iov_len;
3253 struct ceph_mdsmap *newmap, *oldmap;
3254 struct ceph_fsid fsid;
3257 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3258 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3259 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3261 epoch = ceph_decode_32(&p);
3262 maplen = ceph_decode_32(&p);
3263 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3265 /* do we need it? */
3266 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3267 mutex_lock(&mdsc->mutex);
3268 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3269 dout("handle_map epoch %u <= our %u\n",
3270 epoch, mdsc->mdsmap->m_epoch);
3271 mutex_unlock(&mdsc->mutex);
3275 newmap = ceph_mdsmap_decode(&p, end);
3276 if (IS_ERR(newmap)) {
3277 err = PTR_ERR(newmap);
3281 /* swap into place */
3283 oldmap = mdsc->mdsmap;
3284 mdsc->mdsmap = newmap;
3285 check_new_map(mdsc, newmap, oldmap);
3286 ceph_mdsmap_destroy(oldmap);
3288 mdsc->mdsmap = newmap; /* first mds map */
3290 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3292 __wake_requests(mdsc, &mdsc->waiting_for_map);
3294 mutex_unlock(&mdsc->mutex);
3295 schedule_delayed(mdsc);
3299 mutex_unlock(&mdsc->mutex);
3301 pr_err("error decoding mdsmap %d\n", err);
3305 static struct ceph_connection *con_get(struct ceph_connection *con)
3307 struct ceph_mds_session *s = con->private;
3309 if (get_session(s)) {
3310 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3313 dout("mdsc con_get %p FAIL\n", s);
3317 static void con_put(struct ceph_connection *con)
3319 struct ceph_mds_session *s = con->private;
3321 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3322 ceph_put_mds_session(s);
3326 * if the client is unresponsive for long enough, the mds will kill
3327 * the session entirely.
3329 static void peer_reset(struct ceph_connection *con)
3331 struct ceph_mds_session *s = con->private;
3332 struct ceph_mds_client *mdsc = s->s_mdsc;
3334 pr_warning("mds%d closed our session\n", s->s_mds);
3335 send_mds_reconnect(mdsc, s);
3338 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3340 struct ceph_mds_session *s = con->private;
3341 struct ceph_mds_client *mdsc = s->s_mdsc;
3342 int type = le16_to_cpu(msg->hdr.type);
3344 mutex_lock(&mdsc->mutex);
3345 if (__verify_registered_session(mdsc, s) < 0) {
3346 mutex_unlock(&mdsc->mutex);
3349 mutex_unlock(&mdsc->mutex);
3352 case CEPH_MSG_MDS_MAP:
3353 ceph_mdsc_handle_map(mdsc, msg);
3355 case CEPH_MSG_CLIENT_SESSION:
3356 handle_session(s, msg);
3358 case CEPH_MSG_CLIENT_REPLY:
3359 handle_reply(s, msg);
3361 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3362 handle_forward(mdsc, s, msg);
3364 case CEPH_MSG_CLIENT_CAPS:
3365 ceph_handle_caps(s, msg);
3367 case CEPH_MSG_CLIENT_SNAP:
3368 ceph_handle_snap(mdsc, s, msg);
3370 case CEPH_MSG_CLIENT_LEASE:
3371 handle_lease(mdsc, s, msg);
3375 pr_err("received unknown message type %d %s\n", type,
3376 ceph_msg_type_name(type));
3387 * Note: returned pointer is the address of a structure that's
3388 * managed separately. Caller must *not* attempt to free it.
3390 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3391 int *proto, int force_new)
3393 struct ceph_mds_session *s = con->private;
3394 struct ceph_mds_client *mdsc = s->s_mdsc;
3395 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3396 struct ceph_auth_handshake *auth = &s->s_auth;
3398 if (force_new && auth->authorizer) {
3399 if (ac->ops && ac->ops->destroy_authorizer)
3400 ac->ops->destroy_authorizer(ac, auth->authorizer);
3401 auth->authorizer = NULL;
3403 if (!auth->authorizer && ac->ops && ac->ops->create_authorizer) {
3404 int ret = ac->ops->create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3407 return ERR_PTR(ret);
3409 *proto = ac->protocol;
3415 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3417 struct ceph_mds_session *s = con->private;
3418 struct ceph_mds_client *mdsc = s->s_mdsc;
3419 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3421 return ac->ops->verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3424 static int invalidate_authorizer(struct ceph_connection *con)
3426 struct ceph_mds_session *s = con->private;
3427 struct ceph_mds_client *mdsc = s->s_mdsc;
3428 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3430 if (ac->ops->invalidate_authorizer)
3431 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3433 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3436 static const struct ceph_connection_operations mds_con_ops = {
3439 .dispatch = dispatch,
3440 .get_authorizer = get_authorizer,
3441 .verify_authorizer_reply = verify_authorizer_reply,
3442 .invalidate_authorizer = invalidate_authorizer,
3443 .peer_reset = peer_reset,