Merge tag 'x86_fpu_for_6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[platform/kernel/linux-rpi.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52
53 #include "internal.h"
54
55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
57                           struct writeback_control *wbc);
58
59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63         trace_block_touch_buffer(bh);
64         folio_mark_accessed(bh->b_folio);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67
68 void __lock_buffer(struct buffer_head *bh)
69 {
70         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73
74 void unlock_buffer(struct buffer_head *bh)
75 {
76         clear_bit_unlock(BH_Lock, &bh->b_state);
77         smp_mb__after_atomic();
78         wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81
82 /*
83  * Returns if the folio has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the folio_test_dirty information is stale. If
85  * any of the buffers are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct folio *folio,
88                                      bool *dirty, bool *writeback)
89 {
90         struct buffer_head *head, *bh;
91         *dirty = false;
92         *writeback = false;
93
94         BUG_ON(!folio_test_locked(folio));
95
96         head = folio_buffers(folio);
97         if (!head)
98                 return;
99
100         if (folio_test_writeback(folio))
101                 *writeback = true;
102
103         bh = head;
104         do {
105                 if (buffer_locked(bh))
106                         *writeback = true;
107
108                 if (buffer_dirty(bh))
109                         *dirty = true;
110
111                 bh = bh->b_this_page;
112         } while (bh != head);
113 }
114 EXPORT_SYMBOL(buffer_check_dirty_writeback);
115
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129         if (!test_bit(BH_Quiet, &bh->b_state))
130                 printk_ratelimited(KERN_ERR
131                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
132                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145         if (uptodate) {
146                 set_buffer_uptodate(bh);
147         } else {
148                 /* This happens, due to failed read-ahead attempts. */
149                 clear_buffer_uptodate(bh);
150         }
151         unlock_buffer(bh);
152 }
153
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160         __end_buffer_read_notouch(bh, uptodate);
161         put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167         if (uptodate) {
168                 set_buffer_uptodate(bh);
169         } else {
170                 buffer_io_error(bh, ", lost sync page write");
171                 mark_buffer_write_io_error(bh);
172                 clear_buffer_uptodate(bh);
173         }
174         unlock_buffer(bh);
175         put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * private_lock.
184  *
185  * Hack idea: for the blockdev mapping, private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192         struct inode *bd_inode = bdev->bd_inode;
193         struct address_space *bd_mapping = bd_inode->i_mapping;
194         struct buffer_head *ret = NULL;
195         pgoff_t index;
196         struct buffer_head *bh;
197         struct buffer_head *head;
198         struct page *page;
199         int all_mapped = 1;
200         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201
202         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
203         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
204         if (!page)
205                 goto out;
206
207         spin_lock(&bd_mapping->private_lock);
208         if (!page_has_buffers(page))
209                 goto out_unlock;
210         head = page_buffers(page);
211         bh = head;
212         do {
213                 if (!buffer_mapped(bh))
214                         all_mapped = 0;
215                 else if (bh->b_blocknr == block) {
216                         ret = bh;
217                         get_bh(bh);
218                         goto out_unlock;
219                 }
220                 bh = bh->b_this_page;
221         } while (bh != head);
222
223         /* we might be here because some of the buffers on this page are
224          * not mapped.  This is due to various races between
225          * file io on the block device and getblk.  It gets dealt with
226          * elsewhere, don't buffer_error if we had some unmapped buffers
227          */
228         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229         if (all_mapped && __ratelimit(&last_warned)) {
230                 printk("__find_get_block_slow() failed. block=%llu, "
231                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232                        "device %pg blocksize: %d\n",
233                        (unsigned long long)block,
234                        (unsigned long long)bh->b_blocknr,
235                        bh->b_state, bh->b_size, bdev,
236                        1 << bd_inode->i_blkbits);
237         }
238 out_unlock:
239         spin_unlock(&bd_mapping->private_lock);
240         put_page(page);
241 out:
242         return ret;
243 }
244
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247         unsigned long flags;
248         struct buffer_head *first;
249         struct buffer_head *tmp;
250         struct folio *folio;
251         int folio_uptodate = 1;
252
253         BUG_ON(!buffer_async_read(bh));
254
255         folio = bh->b_folio;
256         if (uptodate) {
257                 set_buffer_uptodate(bh);
258         } else {
259                 clear_buffer_uptodate(bh);
260                 buffer_io_error(bh, ", async page read");
261                 folio_set_error(folio);
262         }
263
264         /*
265          * Be _very_ careful from here on. Bad things can happen if
266          * two buffer heads end IO at almost the same time and both
267          * decide that the page is now completely done.
268          */
269         first = folio_buffers(folio);
270         spin_lock_irqsave(&first->b_uptodate_lock, flags);
271         clear_buffer_async_read(bh);
272         unlock_buffer(bh);
273         tmp = bh;
274         do {
275                 if (!buffer_uptodate(tmp))
276                         folio_uptodate = 0;
277                 if (buffer_async_read(tmp)) {
278                         BUG_ON(!buffer_locked(tmp));
279                         goto still_busy;
280                 }
281                 tmp = tmp->b_this_page;
282         } while (tmp != bh);
283         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284
285         /*
286          * If all of the buffers are uptodate then we can set the page
287          * uptodate.
288          */
289         if (folio_uptodate)
290                 folio_mark_uptodate(folio);
291         folio_unlock(folio);
292         return;
293
294 still_busy:
295         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
296         return;
297 }
298
299 struct postprocess_bh_ctx {
300         struct work_struct work;
301         struct buffer_head *bh;
302 };
303
304 static void verify_bh(struct work_struct *work)
305 {
306         struct postprocess_bh_ctx *ctx =
307                 container_of(work, struct postprocess_bh_ctx, work);
308         struct buffer_head *bh = ctx->bh;
309         bool valid;
310
311         valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
312         end_buffer_async_read(bh, valid);
313         kfree(ctx);
314 }
315
316 static bool need_fsverity(struct buffer_head *bh)
317 {
318         struct folio *folio = bh->b_folio;
319         struct inode *inode = folio->mapping->host;
320
321         return fsverity_active(inode) &&
322                 /* needed by ext4 */
323                 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
324 }
325
326 static void decrypt_bh(struct work_struct *work)
327 {
328         struct postprocess_bh_ctx *ctx =
329                 container_of(work, struct postprocess_bh_ctx, work);
330         struct buffer_head *bh = ctx->bh;
331         int err;
332
333         err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
334                                                bh_offset(bh));
335         if (err == 0 && need_fsverity(bh)) {
336                 /*
337                  * We use different work queues for decryption and for verity
338                  * because verity may require reading metadata pages that need
339                  * decryption, and we shouldn't recurse to the same workqueue.
340                  */
341                 INIT_WORK(&ctx->work, verify_bh);
342                 fsverity_enqueue_verify_work(&ctx->work);
343                 return;
344         }
345         end_buffer_async_read(bh, err == 0);
346         kfree(ctx);
347 }
348
349 /*
350  * I/O completion handler for block_read_full_folio() - pages
351  * which come unlocked at the end of I/O.
352  */
353 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
354 {
355         struct inode *inode = bh->b_folio->mapping->host;
356         bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
357         bool verify = need_fsverity(bh);
358
359         /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
360         if (uptodate && (decrypt || verify)) {
361                 struct postprocess_bh_ctx *ctx =
362                         kmalloc(sizeof(*ctx), GFP_ATOMIC);
363
364                 if (ctx) {
365                         ctx->bh = bh;
366                         if (decrypt) {
367                                 INIT_WORK(&ctx->work, decrypt_bh);
368                                 fscrypt_enqueue_decrypt_work(&ctx->work);
369                         } else {
370                                 INIT_WORK(&ctx->work, verify_bh);
371                                 fsverity_enqueue_verify_work(&ctx->work);
372                         }
373                         return;
374                 }
375                 uptodate = 0;
376         }
377         end_buffer_async_read(bh, uptodate);
378 }
379
380 /*
381  * Completion handler for block_write_full_page() - pages which are unlocked
382  * during I/O, and which have PageWriteback cleared upon I/O completion.
383  */
384 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
385 {
386         unsigned long flags;
387         struct buffer_head *first;
388         struct buffer_head *tmp;
389         struct folio *folio;
390
391         BUG_ON(!buffer_async_write(bh));
392
393         folio = bh->b_folio;
394         if (uptodate) {
395                 set_buffer_uptodate(bh);
396         } else {
397                 buffer_io_error(bh, ", lost async page write");
398                 mark_buffer_write_io_error(bh);
399                 clear_buffer_uptodate(bh);
400                 folio_set_error(folio);
401         }
402
403         first = folio_buffers(folio);
404         spin_lock_irqsave(&first->b_uptodate_lock, flags);
405
406         clear_buffer_async_write(bh);
407         unlock_buffer(bh);
408         tmp = bh->b_this_page;
409         while (tmp != bh) {
410                 if (buffer_async_write(tmp)) {
411                         BUG_ON(!buffer_locked(tmp));
412                         goto still_busy;
413                 }
414                 tmp = tmp->b_this_page;
415         }
416         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
417         folio_end_writeback(folio);
418         return;
419
420 still_busy:
421         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
422         return;
423 }
424 EXPORT_SYMBOL(end_buffer_async_write);
425
426 /*
427  * If a page's buffers are under async readin (end_buffer_async_read
428  * completion) then there is a possibility that another thread of
429  * control could lock one of the buffers after it has completed
430  * but while some of the other buffers have not completed.  This
431  * locked buffer would confuse end_buffer_async_read() into not unlocking
432  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
433  * that this buffer is not under async I/O.
434  *
435  * The page comes unlocked when it has no locked buffer_async buffers
436  * left.
437  *
438  * PageLocked prevents anyone starting new async I/O reads any of
439  * the buffers.
440  *
441  * PageWriteback is used to prevent simultaneous writeout of the same
442  * page.
443  *
444  * PageLocked prevents anyone from starting writeback of a page which is
445  * under read I/O (PageWriteback is only ever set against a locked page).
446  */
447 static void mark_buffer_async_read(struct buffer_head *bh)
448 {
449         bh->b_end_io = end_buffer_async_read_io;
450         set_buffer_async_read(bh);
451 }
452
453 static void mark_buffer_async_write_endio(struct buffer_head *bh,
454                                           bh_end_io_t *handler)
455 {
456         bh->b_end_io = handler;
457         set_buffer_async_write(bh);
458 }
459
460 void mark_buffer_async_write(struct buffer_head *bh)
461 {
462         mark_buffer_async_write_endio(bh, end_buffer_async_write);
463 }
464 EXPORT_SYMBOL(mark_buffer_async_write);
465
466
467 /*
468  * fs/buffer.c contains helper functions for buffer-backed address space's
469  * fsync functions.  A common requirement for buffer-based filesystems is
470  * that certain data from the backing blockdev needs to be written out for
471  * a successful fsync().  For example, ext2 indirect blocks need to be
472  * written back and waited upon before fsync() returns.
473  *
474  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
475  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
476  * management of a list of dependent buffers at ->i_mapping->private_list.
477  *
478  * Locking is a little subtle: try_to_free_buffers() will remove buffers
479  * from their controlling inode's queue when they are being freed.  But
480  * try_to_free_buffers() will be operating against the *blockdev* mapping
481  * at the time, not against the S_ISREG file which depends on those buffers.
482  * So the locking for private_list is via the private_lock in the address_space
483  * which backs the buffers.  Which is different from the address_space 
484  * against which the buffers are listed.  So for a particular address_space,
485  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
486  * mapping->private_list will always be protected by the backing blockdev's
487  * ->private_lock.
488  *
489  * Which introduces a requirement: all buffers on an address_space's
490  * ->private_list must be from the same address_space: the blockdev's.
491  *
492  * address_spaces which do not place buffers at ->private_list via these
493  * utility functions are free to use private_lock and private_list for
494  * whatever they want.  The only requirement is that list_empty(private_list)
495  * be true at clear_inode() time.
496  *
497  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
498  * filesystems should do that.  invalidate_inode_buffers() should just go
499  * BUG_ON(!list_empty).
500  *
501  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
502  * take an address_space, not an inode.  And it should be called
503  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
504  * queued up.
505  *
506  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
507  * list if it is already on a list.  Because if the buffer is on a list,
508  * it *must* already be on the right one.  If not, the filesystem is being
509  * silly.  This will save a ton of locking.  But first we have to ensure
510  * that buffers are taken *off* the old inode's list when they are freed
511  * (presumably in truncate).  That requires careful auditing of all
512  * filesystems (do it inside bforget()).  It could also be done by bringing
513  * b_inode back.
514  */
515
516 /*
517  * The buffer's backing address_space's private_lock must be held
518  */
519 static void __remove_assoc_queue(struct buffer_head *bh)
520 {
521         list_del_init(&bh->b_assoc_buffers);
522         WARN_ON(!bh->b_assoc_map);
523         bh->b_assoc_map = NULL;
524 }
525
526 int inode_has_buffers(struct inode *inode)
527 {
528         return !list_empty(&inode->i_data.private_list);
529 }
530
531 /*
532  * osync is designed to support O_SYNC io.  It waits synchronously for
533  * all already-submitted IO to complete, but does not queue any new
534  * writes to the disk.
535  *
536  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
537  * as you dirty the buffers, and then use osync_inode_buffers to wait for
538  * completion.  Any other dirty buffers which are not yet queued for
539  * write will not be flushed to disk by the osync.
540  */
541 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
542 {
543         struct buffer_head *bh;
544         struct list_head *p;
545         int err = 0;
546
547         spin_lock(lock);
548 repeat:
549         list_for_each_prev(p, list) {
550                 bh = BH_ENTRY(p);
551                 if (buffer_locked(bh)) {
552                         get_bh(bh);
553                         spin_unlock(lock);
554                         wait_on_buffer(bh);
555                         if (!buffer_uptodate(bh))
556                                 err = -EIO;
557                         brelse(bh);
558                         spin_lock(lock);
559                         goto repeat;
560                 }
561         }
562         spin_unlock(lock);
563         return err;
564 }
565
566 void emergency_thaw_bdev(struct super_block *sb)
567 {
568         while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
569                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
570 }
571
572 /**
573  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
574  * @mapping: the mapping which wants those buffers written
575  *
576  * Starts I/O against the buffers at mapping->private_list, and waits upon
577  * that I/O.
578  *
579  * Basically, this is a convenience function for fsync().
580  * @mapping is a file or directory which needs those buffers to be written for
581  * a successful fsync().
582  */
583 int sync_mapping_buffers(struct address_space *mapping)
584 {
585         struct address_space *buffer_mapping = mapping->private_data;
586
587         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
588                 return 0;
589
590         return fsync_buffers_list(&buffer_mapping->private_lock,
591                                         &mapping->private_list);
592 }
593 EXPORT_SYMBOL(sync_mapping_buffers);
594
595 /*
596  * Called when we've recently written block `bblock', and it is known that
597  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
598  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
599  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
600  */
601 void write_boundary_block(struct block_device *bdev,
602                         sector_t bblock, unsigned blocksize)
603 {
604         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
605         if (bh) {
606                 if (buffer_dirty(bh))
607                         write_dirty_buffer(bh, 0);
608                 put_bh(bh);
609         }
610 }
611
612 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
613 {
614         struct address_space *mapping = inode->i_mapping;
615         struct address_space *buffer_mapping = bh->b_folio->mapping;
616
617         mark_buffer_dirty(bh);
618         if (!mapping->private_data) {
619                 mapping->private_data = buffer_mapping;
620         } else {
621                 BUG_ON(mapping->private_data != buffer_mapping);
622         }
623         if (!bh->b_assoc_map) {
624                 spin_lock(&buffer_mapping->private_lock);
625                 list_move_tail(&bh->b_assoc_buffers,
626                                 &mapping->private_list);
627                 bh->b_assoc_map = mapping;
628                 spin_unlock(&buffer_mapping->private_lock);
629         }
630 }
631 EXPORT_SYMBOL(mark_buffer_dirty_inode);
632
633 /*
634  * Add a page to the dirty page list.
635  *
636  * It is a sad fact of life that this function is called from several places
637  * deeply under spinlocking.  It may not sleep.
638  *
639  * If the page has buffers, the uptodate buffers are set dirty, to preserve
640  * dirty-state coherency between the page and the buffers.  It the page does
641  * not have buffers then when they are later attached they will all be set
642  * dirty.
643  *
644  * The buffers are dirtied before the page is dirtied.  There's a small race
645  * window in which a writepage caller may see the page cleanness but not the
646  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
647  * before the buffers, a concurrent writepage caller could clear the page dirty
648  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
649  * page on the dirty page list.
650  *
651  * We use private_lock to lock against try_to_free_buffers while using the
652  * page's buffer list.  Also use this to protect against clean buffers being
653  * added to the page after it was set dirty.
654  *
655  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
656  * address_space though.
657  */
658 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
659 {
660         struct buffer_head *head;
661         bool newly_dirty;
662
663         spin_lock(&mapping->private_lock);
664         head = folio_buffers(folio);
665         if (head) {
666                 struct buffer_head *bh = head;
667
668                 do {
669                         set_buffer_dirty(bh);
670                         bh = bh->b_this_page;
671                 } while (bh != head);
672         }
673         /*
674          * Lock out page's memcg migration to keep PageDirty
675          * synchronized with per-memcg dirty page counters.
676          */
677         folio_memcg_lock(folio);
678         newly_dirty = !folio_test_set_dirty(folio);
679         spin_unlock(&mapping->private_lock);
680
681         if (newly_dirty)
682                 __folio_mark_dirty(folio, mapping, 1);
683
684         folio_memcg_unlock(folio);
685
686         if (newly_dirty)
687                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
688
689         return newly_dirty;
690 }
691 EXPORT_SYMBOL(block_dirty_folio);
692
693 /*
694  * Write out and wait upon a list of buffers.
695  *
696  * We have conflicting pressures: we want to make sure that all
697  * initially dirty buffers get waited on, but that any subsequently
698  * dirtied buffers don't.  After all, we don't want fsync to last
699  * forever if somebody is actively writing to the file.
700  *
701  * Do this in two main stages: first we copy dirty buffers to a
702  * temporary inode list, queueing the writes as we go.  Then we clean
703  * up, waiting for those writes to complete.
704  * 
705  * During this second stage, any subsequent updates to the file may end
706  * up refiling the buffer on the original inode's dirty list again, so
707  * there is a chance we will end up with a buffer queued for write but
708  * not yet completed on that list.  So, as a final cleanup we go through
709  * the osync code to catch these locked, dirty buffers without requeuing
710  * any newly dirty buffers for write.
711  */
712 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
713 {
714         struct buffer_head *bh;
715         struct list_head tmp;
716         struct address_space *mapping;
717         int err = 0, err2;
718         struct blk_plug plug;
719
720         INIT_LIST_HEAD(&tmp);
721         blk_start_plug(&plug);
722
723         spin_lock(lock);
724         while (!list_empty(list)) {
725                 bh = BH_ENTRY(list->next);
726                 mapping = bh->b_assoc_map;
727                 __remove_assoc_queue(bh);
728                 /* Avoid race with mark_buffer_dirty_inode() which does
729                  * a lockless check and we rely on seeing the dirty bit */
730                 smp_mb();
731                 if (buffer_dirty(bh) || buffer_locked(bh)) {
732                         list_add(&bh->b_assoc_buffers, &tmp);
733                         bh->b_assoc_map = mapping;
734                         if (buffer_dirty(bh)) {
735                                 get_bh(bh);
736                                 spin_unlock(lock);
737                                 /*
738                                  * Ensure any pending I/O completes so that
739                                  * write_dirty_buffer() actually writes the
740                                  * current contents - it is a noop if I/O is
741                                  * still in flight on potentially older
742                                  * contents.
743                                  */
744                                 write_dirty_buffer(bh, REQ_SYNC);
745
746                                 /*
747                                  * Kick off IO for the previous mapping. Note
748                                  * that we will not run the very last mapping,
749                                  * wait_on_buffer() will do that for us
750                                  * through sync_buffer().
751                                  */
752                                 brelse(bh);
753                                 spin_lock(lock);
754                         }
755                 }
756         }
757
758         spin_unlock(lock);
759         blk_finish_plug(&plug);
760         spin_lock(lock);
761
762         while (!list_empty(&tmp)) {
763                 bh = BH_ENTRY(tmp.prev);
764                 get_bh(bh);
765                 mapping = bh->b_assoc_map;
766                 __remove_assoc_queue(bh);
767                 /* Avoid race with mark_buffer_dirty_inode() which does
768                  * a lockless check and we rely on seeing the dirty bit */
769                 smp_mb();
770                 if (buffer_dirty(bh)) {
771                         list_add(&bh->b_assoc_buffers,
772                                  &mapping->private_list);
773                         bh->b_assoc_map = mapping;
774                 }
775                 spin_unlock(lock);
776                 wait_on_buffer(bh);
777                 if (!buffer_uptodate(bh))
778                         err = -EIO;
779                 brelse(bh);
780                 spin_lock(lock);
781         }
782         
783         spin_unlock(lock);
784         err2 = osync_buffers_list(lock, list);
785         if (err)
786                 return err;
787         else
788                 return err2;
789 }
790
791 /*
792  * Invalidate any and all dirty buffers on a given inode.  We are
793  * probably unmounting the fs, but that doesn't mean we have already
794  * done a sync().  Just drop the buffers from the inode list.
795  *
796  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
797  * assumes that all the buffers are against the blockdev.  Not true
798  * for reiserfs.
799  */
800 void invalidate_inode_buffers(struct inode *inode)
801 {
802         if (inode_has_buffers(inode)) {
803                 struct address_space *mapping = &inode->i_data;
804                 struct list_head *list = &mapping->private_list;
805                 struct address_space *buffer_mapping = mapping->private_data;
806
807                 spin_lock(&buffer_mapping->private_lock);
808                 while (!list_empty(list))
809                         __remove_assoc_queue(BH_ENTRY(list->next));
810                 spin_unlock(&buffer_mapping->private_lock);
811         }
812 }
813 EXPORT_SYMBOL(invalidate_inode_buffers);
814
815 /*
816  * Remove any clean buffers from the inode's buffer list.  This is called
817  * when we're trying to free the inode itself.  Those buffers can pin it.
818  *
819  * Returns true if all buffers were removed.
820  */
821 int remove_inode_buffers(struct inode *inode)
822 {
823         int ret = 1;
824
825         if (inode_has_buffers(inode)) {
826                 struct address_space *mapping = &inode->i_data;
827                 struct list_head *list = &mapping->private_list;
828                 struct address_space *buffer_mapping = mapping->private_data;
829
830                 spin_lock(&buffer_mapping->private_lock);
831                 while (!list_empty(list)) {
832                         struct buffer_head *bh = BH_ENTRY(list->next);
833                         if (buffer_dirty(bh)) {
834                                 ret = 0;
835                                 break;
836                         }
837                         __remove_assoc_queue(bh);
838                 }
839                 spin_unlock(&buffer_mapping->private_lock);
840         }
841         return ret;
842 }
843
844 /*
845  * Create the appropriate buffers when given a folio for data area and
846  * the size of each buffer.. Use the bh->b_this_page linked list to
847  * follow the buffers created.  Return NULL if unable to create more
848  * buffers.
849  *
850  * The retry flag is used to differentiate async IO (paging, swapping)
851  * which may not fail from ordinary buffer allocations.
852  */
853 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
854                                         bool retry)
855 {
856         struct buffer_head *bh, *head;
857         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
858         long offset;
859         struct mem_cgroup *memcg, *old_memcg;
860
861         if (retry)
862                 gfp |= __GFP_NOFAIL;
863
864         /* The folio lock pins the memcg */
865         memcg = folio_memcg(folio);
866         old_memcg = set_active_memcg(memcg);
867
868         head = NULL;
869         offset = folio_size(folio);
870         while ((offset -= size) >= 0) {
871                 bh = alloc_buffer_head(gfp);
872                 if (!bh)
873                         goto no_grow;
874
875                 bh->b_this_page = head;
876                 bh->b_blocknr = -1;
877                 head = bh;
878
879                 bh->b_size = size;
880
881                 /* Link the buffer to its folio */
882                 folio_set_bh(bh, folio, offset);
883         }
884 out:
885         set_active_memcg(old_memcg);
886         return head;
887 /*
888  * In case anything failed, we just free everything we got.
889  */
890 no_grow:
891         if (head) {
892                 do {
893                         bh = head;
894                         head = head->b_this_page;
895                         free_buffer_head(bh);
896                 } while (head);
897         }
898
899         goto out;
900 }
901 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
902
903 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
904                                        bool retry)
905 {
906         return folio_alloc_buffers(page_folio(page), size, retry);
907 }
908 EXPORT_SYMBOL_GPL(alloc_page_buffers);
909
910 static inline void
911 link_dev_buffers(struct page *page, struct buffer_head *head)
912 {
913         struct buffer_head *bh, *tail;
914
915         bh = head;
916         do {
917                 tail = bh;
918                 bh = bh->b_this_page;
919         } while (bh);
920         tail->b_this_page = head;
921         attach_page_private(page, head);
922 }
923
924 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
925 {
926         sector_t retval = ~((sector_t)0);
927         loff_t sz = bdev_nr_bytes(bdev);
928
929         if (sz) {
930                 unsigned int sizebits = blksize_bits(size);
931                 retval = (sz >> sizebits);
932         }
933         return retval;
934 }
935
936 /*
937  * Initialise the state of a blockdev page's buffers.
938  */ 
939 static sector_t
940 init_page_buffers(struct page *page, struct block_device *bdev,
941                         sector_t block, int size)
942 {
943         struct buffer_head *head = page_buffers(page);
944         struct buffer_head *bh = head;
945         int uptodate = PageUptodate(page);
946         sector_t end_block = blkdev_max_block(bdev, size);
947
948         do {
949                 if (!buffer_mapped(bh)) {
950                         bh->b_end_io = NULL;
951                         bh->b_private = NULL;
952                         bh->b_bdev = bdev;
953                         bh->b_blocknr = block;
954                         if (uptodate)
955                                 set_buffer_uptodate(bh);
956                         if (block < end_block)
957                                 set_buffer_mapped(bh);
958                 }
959                 block++;
960                 bh = bh->b_this_page;
961         } while (bh != head);
962
963         /*
964          * Caller needs to validate requested block against end of device.
965          */
966         return end_block;
967 }
968
969 /*
970  * Create the page-cache page that contains the requested block.
971  *
972  * This is used purely for blockdev mappings.
973  */
974 static int
975 grow_dev_page(struct block_device *bdev, sector_t block,
976               pgoff_t index, int size, int sizebits, gfp_t gfp)
977 {
978         struct inode *inode = bdev->bd_inode;
979         struct page *page;
980         struct buffer_head *bh;
981         sector_t end_block;
982         int ret = 0;
983         gfp_t gfp_mask;
984
985         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
986
987         /*
988          * XXX: __getblk_slow() can not really deal with failure and
989          * will endlessly loop on improvised global reclaim.  Prefer
990          * looping in the allocator rather than here, at least that
991          * code knows what it's doing.
992          */
993         gfp_mask |= __GFP_NOFAIL;
994
995         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
996
997         BUG_ON(!PageLocked(page));
998
999         if (page_has_buffers(page)) {
1000                 bh = page_buffers(page);
1001                 if (bh->b_size == size) {
1002                         end_block = init_page_buffers(page, bdev,
1003                                                 (sector_t)index << sizebits,
1004                                                 size);
1005                         goto done;
1006                 }
1007                 if (!try_to_free_buffers(page_folio(page)))
1008                         goto failed;
1009         }
1010
1011         /*
1012          * Allocate some buffers for this page
1013          */
1014         bh = alloc_page_buffers(page, size, true);
1015
1016         /*
1017          * Link the page to the buffers and initialise them.  Take the
1018          * lock to be atomic wrt __find_get_block(), which does not
1019          * run under the page lock.
1020          */
1021         spin_lock(&inode->i_mapping->private_lock);
1022         link_dev_buffers(page, bh);
1023         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1024                         size);
1025         spin_unlock(&inode->i_mapping->private_lock);
1026 done:
1027         ret = (block < end_block) ? 1 : -ENXIO;
1028 failed:
1029         unlock_page(page);
1030         put_page(page);
1031         return ret;
1032 }
1033
1034 /*
1035  * Create buffers for the specified block device block's page.  If
1036  * that page was dirty, the buffers are set dirty also.
1037  */
1038 static int
1039 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1040 {
1041         pgoff_t index;
1042         int sizebits;
1043
1044         sizebits = PAGE_SHIFT - __ffs(size);
1045         index = block >> sizebits;
1046
1047         /*
1048          * Check for a block which wants to lie outside our maximum possible
1049          * pagecache index.  (this comparison is done using sector_t types).
1050          */
1051         if (unlikely(index != block >> sizebits)) {
1052                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1053                         "device %pg\n",
1054                         __func__, (unsigned long long)block,
1055                         bdev);
1056                 return -EIO;
1057         }
1058
1059         /* Create a page with the proper size buffers.. */
1060         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1061 }
1062
1063 static struct buffer_head *
1064 __getblk_slow(struct block_device *bdev, sector_t block,
1065              unsigned size, gfp_t gfp)
1066 {
1067         /* Size must be multiple of hard sectorsize */
1068         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1069                         (size < 512 || size > PAGE_SIZE))) {
1070                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1071                                         size);
1072                 printk(KERN_ERR "logical block size: %d\n",
1073                                         bdev_logical_block_size(bdev));
1074
1075                 dump_stack();
1076                 return NULL;
1077         }
1078
1079         for (;;) {
1080                 struct buffer_head *bh;
1081                 int ret;
1082
1083                 bh = __find_get_block(bdev, block, size);
1084                 if (bh)
1085                         return bh;
1086
1087                 ret = grow_buffers(bdev, block, size, gfp);
1088                 if (ret < 0)
1089                         return NULL;
1090         }
1091 }
1092
1093 /*
1094  * The relationship between dirty buffers and dirty pages:
1095  *
1096  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1097  * the page is tagged dirty in the page cache.
1098  *
1099  * At all times, the dirtiness of the buffers represents the dirtiness of
1100  * subsections of the page.  If the page has buffers, the page dirty bit is
1101  * merely a hint about the true dirty state.
1102  *
1103  * When a page is set dirty in its entirety, all its buffers are marked dirty
1104  * (if the page has buffers).
1105  *
1106  * When a buffer is marked dirty, its page is dirtied, but the page's other
1107  * buffers are not.
1108  *
1109  * Also.  When blockdev buffers are explicitly read with bread(), they
1110  * individually become uptodate.  But their backing page remains not
1111  * uptodate - even if all of its buffers are uptodate.  A subsequent
1112  * block_read_full_folio() against that folio will discover all the uptodate
1113  * buffers, will set the folio uptodate and will perform no I/O.
1114  */
1115
1116 /**
1117  * mark_buffer_dirty - mark a buffer_head as needing writeout
1118  * @bh: the buffer_head to mark dirty
1119  *
1120  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1121  * its backing page dirty, then tag the page as dirty in the page cache
1122  * and then attach the address_space's inode to its superblock's dirty
1123  * inode list.
1124  *
1125  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->private_lock,
1126  * i_pages lock and mapping->host->i_lock.
1127  */
1128 void mark_buffer_dirty(struct buffer_head *bh)
1129 {
1130         WARN_ON_ONCE(!buffer_uptodate(bh));
1131
1132         trace_block_dirty_buffer(bh);
1133
1134         /*
1135          * Very *carefully* optimize the it-is-already-dirty case.
1136          *
1137          * Don't let the final "is it dirty" escape to before we
1138          * perhaps modified the buffer.
1139          */
1140         if (buffer_dirty(bh)) {
1141                 smp_mb();
1142                 if (buffer_dirty(bh))
1143                         return;
1144         }
1145
1146         if (!test_set_buffer_dirty(bh)) {
1147                 struct folio *folio = bh->b_folio;
1148                 struct address_space *mapping = NULL;
1149
1150                 folio_memcg_lock(folio);
1151                 if (!folio_test_set_dirty(folio)) {
1152                         mapping = folio->mapping;
1153                         if (mapping)
1154                                 __folio_mark_dirty(folio, mapping, 0);
1155                 }
1156                 folio_memcg_unlock(folio);
1157                 if (mapping)
1158                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1159         }
1160 }
1161 EXPORT_SYMBOL(mark_buffer_dirty);
1162
1163 void mark_buffer_write_io_error(struct buffer_head *bh)
1164 {
1165         struct super_block *sb;
1166
1167         set_buffer_write_io_error(bh);
1168         /* FIXME: do we need to set this in both places? */
1169         if (bh->b_folio && bh->b_folio->mapping)
1170                 mapping_set_error(bh->b_folio->mapping, -EIO);
1171         if (bh->b_assoc_map)
1172                 mapping_set_error(bh->b_assoc_map, -EIO);
1173         rcu_read_lock();
1174         sb = READ_ONCE(bh->b_bdev->bd_super);
1175         if (sb)
1176                 errseq_set(&sb->s_wb_err, -EIO);
1177         rcu_read_unlock();
1178 }
1179 EXPORT_SYMBOL(mark_buffer_write_io_error);
1180
1181 /*
1182  * Decrement a buffer_head's reference count.  If all buffers against a page
1183  * have zero reference count, are clean and unlocked, and if the page is clean
1184  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1185  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1186  * a page but it ends up not being freed, and buffers may later be reattached).
1187  */
1188 void __brelse(struct buffer_head * buf)
1189 {
1190         if (atomic_read(&buf->b_count)) {
1191                 put_bh(buf);
1192                 return;
1193         }
1194         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1195 }
1196 EXPORT_SYMBOL(__brelse);
1197
1198 /*
1199  * bforget() is like brelse(), except it discards any
1200  * potentially dirty data.
1201  */
1202 void __bforget(struct buffer_head *bh)
1203 {
1204         clear_buffer_dirty(bh);
1205         if (bh->b_assoc_map) {
1206                 struct address_space *buffer_mapping = bh->b_folio->mapping;
1207
1208                 spin_lock(&buffer_mapping->private_lock);
1209                 list_del_init(&bh->b_assoc_buffers);
1210                 bh->b_assoc_map = NULL;
1211                 spin_unlock(&buffer_mapping->private_lock);
1212         }
1213         __brelse(bh);
1214 }
1215 EXPORT_SYMBOL(__bforget);
1216
1217 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1218 {
1219         lock_buffer(bh);
1220         if (buffer_uptodate(bh)) {
1221                 unlock_buffer(bh);
1222                 return bh;
1223         } else {
1224                 get_bh(bh);
1225                 bh->b_end_io = end_buffer_read_sync;
1226                 submit_bh(REQ_OP_READ, bh);
1227                 wait_on_buffer(bh);
1228                 if (buffer_uptodate(bh))
1229                         return bh;
1230         }
1231         brelse(bh);
1232         return NULL;
1233 }
1234
1235 /*
1236  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1237  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1238  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1239  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1240  * CPU's LRUs at the same time.
1241  *
1242  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1243  * sb_find_get_block().
1244  *
1245  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1246  * a local interrupt disable for that.
1247  */
1248
1249 #define BH_LRU_SIZE     16
1250
1251 struct bh_lru {
1252         struct buffer_head *bhs[BH_LRU_SIZE];
1253 };
1254
1255 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1256
1257 #ifdef CONFIG_SMP
1258 #define bh_lru_lock()   local_irq_disable()
1259 #define bh_lru_unlock() local_irq_enable()
1260 #else
1261 #define bh_lru_lock()   preempt_disable()
1262 #define bh_lru_unlock() preempt_enable()
1263 #endif
1264
1265 static inline void check_irqs_on(void)
1266 {
1267 #ifdef irqs_disabled
1268         BUG_ON(irqs_disabled());
1269 #endif
1270 }
1271
1272 /*
1273  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1274  * inserted at the front, and the buffer_head at the back if any is evicted.
1275  * Or, if already in the LRU it is moved to the front.
1276  */
1277 static void bh_lru_install(struct buffer_head *bh)
1278 {
1279         struct buffer_head *evictee = bh;
1280         struct bh_lru *b;
1281         int i;
1282
1283         check_irqs_on();
1284         bh_lru_lock();
1285
1286         /*
1287          * the refcount of buffer_head in bh_lru prevents dropping the
1288          * attached page(i.e., try_to_free_buffers) so it could cause
1289          * failing page migration.
1290          * Skip putting upcoming bh into bh_lru until migration is done.
1291          */
1292         if (lru_cache_disabled()) {
1293                 bh_lru_unlock();
1294                 return;
1295         }
1296
1297         b = this_cpu_ptr(&bh_lrus);
1298         for (i = 0; i < BH_LRU_SIZE; i++) {
1299                 swap(evictee, b->bhs[i]);
1300                 if (evictee == bh) {
1301                         bh_lru_unlock();
1302                         return;
1303                 }
1304         }
1305
1306         get_bh(bh);
1307         bh_lru_unlock();
1308         brelse(evictee);
1309 }
1310
1311 /*
1312  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1313  */
1314 static struct buffer_head *
1315 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1316 {
1317         struct buffer_head *ret = NULL;
1318         unsigned int i;
1319
1320         check_irqs_on();
1321         bh_lru_lock();
1322         for (i = 0; i < BH_LRU_SIZE; i++) {
1323                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1324
1325                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1326                     bh->b_size == size) {
1327                         if (i) {
1328                                 while (i) {
1329                                         __this_cpu_write(bh_lrus.bhs[i],
1330                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1331                                         i--;
1332                                 }
1333                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1334                         }
1335                         get_bh(bh);
1336                         ret = bh;
1337                         break;
1338                 }
1339         }
1340         bh_lru_unlock();
1341         return ret;
1342 }
1343
1344 /*
1345  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1346  * it in the LRU and mark it as accessed.  If it is not present then return
1347  * NULL
1348  */
1349 struct buffer_head *
1350 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1351 {
1352         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1353
1354         if (bh == NULL) {
1355                 /* __find_get_block_slow will mark the page accessed */
1356                 bh = __find_get_block_slow(bdev, block);
1357                 if (bh)
1358                         bh_lru_install(bh);
1359         } else
1360                 touch_buffer(bh);
1361
1362         return bh;
1363 }
1364 EXPORT_SYMBOL(__find_get_block);
1365
1366 /*
1367  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1368  * which corresponds to the passed block_device, block and size. The
1369  * returned buffer has its reference count incremented.
1370  *
1371  * __getblk_gfp() will lock up the machine if grow_dev_page's
1372  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1373  */
1374 struct buffer_head *
1375 __getblk_gfp(struct block_device *bdev, sector_t block,
1376              unsigned size, gfp_t gfp)
1377 {
1378         struct buffer_head *bh = __find_get_block(bdev, block, size);
1379
1380         might_sleep();
1381         if (bh == NULL)
1382                 bh = __getblk_slow(bdev, block, size, gfp);
1383         return bh;
1384 }
1385 EXPORT_SYMBOL(__getblk_gfp);
1386
1387 /*
1388  * Do async read-ahead on a buffer..
1389  */
1390 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1391 {
1392         struct buffer_head *bh = __getblk(bdev, block, size);
1393         if (likely(bh)) {
1394                 bh_readahead(bh, REQ_RAHEAD);
1395                 brelse(bh);
1396         }
1397 }
1398 EXPORT_SYMBOL(__breadahead);
1399
1400 /**
1401  *  __bread_gfp() - reads a specified block and returns the bh
1402  *  @bdev: the block_device to read from
1403  *  @block: number of block
1404  *  @size: size (in bytes) to read
1405  *  @gfp: page allocation flag
1406  *
1407  *  Reads a specified block, and returns buffer head that contains it.
1408  *  The page cache can be allocated from non-movable area
1409  *  not to prevent page migration if you set gfp to zero.
1410  *  It returns NULL if the block was unreadable.
1411  */
1412 struct buffer_head *
1413 __bread_gfp(struct block_device *bdev, sector_t block,
1414                    unsigned size, gfp_t gfp)
1415 {
1416         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1417
1418         if (likely(bh) && !buffer_uptodate(bh))
1419                 bh = __bread_slow(bh);
1420         return bh;
1421 }
1422 EXPORT_SYMBOL(__bread_gfp);
1423
1424 static void __invalidate_bh_lrus(struct bh_lru *b)
1425 {
1426         int i;
1427
1428         for (i = 0; i < BH_LRU_SIZE; i++) {
1429                 brelse(b->bhs[i]);
1430                 b->bhs[i] = NULL;
1431         }
1432 }
1433 /*
1434  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1435  * This doesn't race because it runs in each cpu either in irq
1436  * or with preempt disabled.
1437  */
1438 static void invalidate_bh_lru(void *arg)
1439 {
1440         struct bh_lru *b = &get_cpu_var(bh_lrus);
1441
1442         __invalidate_bh_lrus(b);
1443         put_cpu_var(bh_lrus);
1444 }
1445
1446 bool has_bh_in_lru(int cpu, void *dummy)
1447 {
1448         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1449         int i;
1450         
1451         for (i = 0; i < BH_LRU_SIZE; i++) {
1452                 if (b->bhs[i])
1453                         return true;
1454         }
1455
1456         return false;
1457 }
1458
1459 void invalidate_bh_lrus(void)
1460 {
1461         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1462 }
1463 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1464
1465 /*
1466  * It's called from workqueue context so we need a bh_lru_lock to close
1467  * the race with preemption/irq.
1468  */
1469 void invalidate_bh_lrus_cpu(void)
1470 {
1471         struct bh_lru *b;
1472
1473         bh_lru_lock();
1474         b = this_cpu_ptr(&bh_lrus);
1475         __invalidate_bh_lrus(b);
1476         bh_lru_unlock();
1477 }
1478
1479 void set_bh_page(struct buffer_head *bh,
1480                 struct page *page, unsigned long offset)
1481 {
1482         bh->b_page = page;
1483         BUG_ON(offset >= PAGE_SIZE);
1484         if (PageHighMem(page))
1485                 /*
1486                  * This catches illegal uses and preserves the offset:
1487                  */
1488                 bh->b_data = (char *)(0 + offset);
1489         else
1490                 bh->b_data = page_address(page) + offset;
1491 }
1492 EXPORT_SYMBOL(set_bh_page);
1493
1494 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1495                   unsigned long offset)
1496 {
1497         bh->b_folio = folio;
1498         BUG_ON(offset >= folio_size(folio));
1499         if (folio_test_highmem(folio))
1500                 /*
1501                  * This catches illegal uses and preserves the offset:
1502                  */
1503                 bh->b_data = (char *)(0 + offset);
1504         else
1505                 bh->b_data = folio_address(folio) + offset;
1506 }
1507 EXPORT_SYMBOL(folio_set_bh);
1508
1509 /*
1510  * Called when truncating a buffer on a page completely.
1511  */
1512
1513 /* Bits that are cleared during an invalidate */
1514 #define BUFFER_FLAGS_DISCARD \
1515         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1516          1 << BH_Delay | 1 << BH_Unwritten)
1517
1518 static void discard_buffer(struct buffer_head * bh)
1519 {
1520         unsigned long b_state;
1521
1522         lock_buffer(bh);
1523         clear_buffer_dirty(bh);
1524         bh->b_bdev = NULL;
1525         b_state = READ_ONCE(bh->b_state);
1526         do {
1527         } while (!try_cmpxchg(&bh->b_state, &b_state,
1528                               b_state & ~BUFFER_FLAGS_DISCARD));
1529         unlock_buffer(bh);
1530 }
1531
1532 /**
1533  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1534  * @folio: The folio which is affected.
1535  * @offset: start of the range to invalidate
1536  * @length: length of the range to invalidate
1537  *
1538  * block_invalidate_folio() is called when all or part of the folio has been
1539  * invalidated by a truncate operation.
1540  *
1541  * block_invalidate_folio() does not have to release all buffers, but it must
1542  * ensure that no dirty buffer is left outside @offset and that no I/O
1543  * is underway against any of the blocks which are outside the truncation
1544  * point.  Because the caller is about to free (and possibly reuse) those
1545  * blocks on-disk.
1546  */
1547 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1548 {
1549         struct buffer_head *head, *bh, *next;
1550         size_t curr_off = 0;
1551         size_t stop = length + offset;
1552
1553         BUG_ON(!folio_test_locked(folio));
1554
1555         /*
1556          * Check for overflow
1557          */
1558         BUG_ON(stop > folio_size(folio) || stop < length);
1559
1560         head = folio_buffers(folio);
1561         if (!head)
1562                 return;
1563
1564         bh = head;
1565         do {
1566                 size_t next_off = curr_off + bh->b_size;
1567                 next = bh->b_this_page;
1568
1569                 /*
1570                  * Are we still fully in range ?
1571                  */
1572                 if (next_off > stop)
1573                         goto out;
1574
1575                 /*
1576                  * is this block fully invalidated?
1577                  */
1578                 if (offset <= curr_off)
1579                         discard_buffer(bh);
1580                 curr_off = next_off;
1581                 bh = next;
1582         } while (bh != head);
1583
1584         /*
1585          * We release buffers only if the entire folio is being invalidated.
1586          * The get_block cached value has been unconditionally invalidated,
1587          * so real IO is not possible anymore.
1588          */
1589         if (length == folio_size(folio))
1590                 filemap_release_folio(folio, 0);
1591 out:
1592         return;
1593 }
1594 EXPORT_SYMBOL(block_invalidate_folio);
1595
1596 /*
1597  * We attach and possibly dirty the buffers atomically wrt
1598  * block_dirty_folio() via private_lock.  try_to_free_buffers
1599  * is already excluded via the folio lock.
1600  */
1601 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize,
1602                                 unsigned long b_state)
1603 {
1604         struct buffer_head *bh, *head, *tail;
1605
1606         head = folio_alloc_buffers(folio, blocksize, true);
1607         bh = head;
1608         do {
1609                 bh->b_state |= b_state;
1610                 tail = bh;
1611                 bh = bh->b_this_page;
1612         } while (bh);
1613         tail->b_this_page = head;
1614
1615         spin_lock(&folio->mapping->private_lock);
1616         if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1617                 bh = head;
1618                 do {
1619                         if (folio_test_dirty(folio))
1620                                 set_buffer_dirty(bh);
1621                         if (folio_test_uptodate(folio))
1622                                 set_buffer_uptodate(bh);
1623                         bh = bh->b_this_page;
1624                 } while (bh != head);
1625         }
1626         folio_attach_private(folio, head);
1627         spin_unlock(&folio->mapping->private_lock);
1628 }
1629 EXPORT_SYMBOL(folio_create_empty_buffers);
1630
1631 void create_empty_buffers(struct page *page,
1632                         unsigned long blocksize, unsigned long b_state)
1633 {
1634         folio_create_empty_buffers(page_folio(page), blocksize, b_state);
1635 }
1636 EXPORT_SYMBOL(create_empty_buffers);
1637
1638 /**
1639  * clean_bdev_aliases: clean a range of buffers in block device
1640  * @bdev: Block device to clean buffers in
1641  * @block: Start of a range of blocks to clean
1642  * @len: Number of blocks to clean
1643  *
1644  * We are taking a range of blocks for data and we don't want writeback of any
1645  * buffer-cache aliases starting from return from this function and until the
1646  * moment when something will explicitly mark the buffer dirty (hopefully that
1647  * will not happen until we will free that block ;-) We don't even need to mark
1648  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1649  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1650  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1651  * would confuse anyone who might pick it with bread() afterwards...
1652  *
1653  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1654  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1655  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1656  * need to.  That happens here.
1657  */
1658 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1659 {
1660         struct inode *bd_inode = bdev->bd_inode;
1661         struct address_space *bd_mapping = bd_inode->i_mapping;
1662         struct folio_batch fbatch;
1663         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1664         pgoff_t end;
1665         int i, count;
1666         struct buffer_head *bh;
1667         struct buffer_head *head;
1668
1669         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1670         folio_batch_init(&fbatch);
1671         while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1672                 count = folio_batch_count(&fbatch);
1673                 for (i = 0; i < count; i++) {
1674                         struct folio *folio = fbatch.folios[i];
1675
1676                         if (!folio_buffers(folio))
1677                                 continue;
1678                         /*
1679                          * We use folio lock instead of bd_mapping->private_lock
1680                          * to pin buffers here since we can afford to sleep and
1681                          * it scales better than a global spinlock lock.
1682                          */
1683                         folio_lock(folio);
1684                         /* Recheck when the folio is locked which pins bhs */
1685                         head = folio_buffers(folio);
1686                         if (!head)
1687                                 goto unlock_page;
1688                         bh = head;
1689                         do {
1690                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1691                                         goto next;
1692                                 if (bh->b_blocknr >= block + len)
1693                                         break;
1694                                 clear_buffer_dirty(bh);
1695                                 wait_on_buffer(bh);
1696                                 clear_buffer_req(bh);
1697 next:
1698                                 bh = bh->b_this_page;
1699                         } while (bh != head);
1700 unlock_page:
1701                         folio_unlock(folio);
1702                 }
1703                 folio_batch_release(&fbatch);
1704                 cond_resched();
1705                 /* End of range already reached? */
1706                 if (index > end || !index)
1707                         break;
1708         }
1709 }
1710 EXPORT_SYMBOL(clean_bdev_aliases);
1711
1712 /*
1713  * Size is a power-of-two in the range 512..PAGE_SIZE,
1714  * and the case we care about most is PAGE_SIZE.
1715  *
1716  * So this *could* possibly be written with those
1717  * constraints in mind (relevant mostly if some
1718  * architecture has a slow bit-scan instruction)
1719  */
1720 static inline int block_size_bits(unsigned int blocksize)
1721 {
1722         return ilog2(blocksize);
1723 }
1724
1725 static struct buffer_head *folio_create_buffers(struct folio *folio,
1726                                                 struct inode *inode,
1727                                                 unsigned int b_state)
1728 {
1729         BUG_ON(!folio_test_locked(folio));
1730
1731         if (!folio_buffers(folio))
1732                 folio_create_empty_buffers(folio,
1733                                            1 << READ_ONCE(inode->i_blkbits),
1734                                            b_state);
1735         return folio_buffers(folio);
1736 }
1737
1738 /*
1739  * NOTE! All mapped/uptodate combinations are valid:
1740  *
1741  *      Mapped  Uptodate        Meaning
1742  *
1743  *      No      No              "unknown" - must do get_block()
1744  *      No      Yes             "hole" - zero-filled
1745  *      Yes     No              "allocated" - allocated on disk, not read in
1746  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1747  *
1748  * "Dirty" is valid only with the last case (mapped+uptodate).
1749  */
1750
1751 /*
1752  * While block_write_full_page is writing back the dirty buffers under
1753  * the page lock, whoever dirtied the buffers may decide to clean them
1754  * again at any time.  We handle that by only looking at the buffer
1755  * state inside lock_buffer().
1756  *
1757  * If block_write_full_page() is called for regular writeback
1758  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1759  * locked buffer.   This only can happen if someone has written the buffer
1760  * directly, with submit_bh().  At the address_space level PageWriteback
1761  * prevents this contention from occurring.
1762  *
1763  * If block_write_full_page() is called with wbc->sync_mode ==
1764  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1765  * causes the writes to be flagged as synchronous writes.
1766  */
1767 int __block_write_full_page(struct inode *inode, struct page *page,
1768                         get_block_t *get_block, struct writeback_control *wbc,
1769                         bh_end_io_t *handler)
1770 {
1771         int err;
1772         sector_t block;
1773         sector_t last_block;
1774         struct buffer_head *bh, *head;
1775         unsigned int blocksize, bbits;
1776         int nr_underway = 0;
1777         blk_opf_t write_flags = wbc_to_write_flags(wbc);
1778
1779         head = folio_create_buffers(page_folio(page), inode,
1780                                     (1 << BH_Dirty) | (1 << BH_Uptodate));
1781
1782         /*
1783          * Be very careful.  We have no exclusion from block_dirty_folio
1784          * here, and the (potentially unmapped) buffers may become dirty at
1785          * any time.  If a buffer becomes dirty here after we've inspected it
1786          * then we just miss that fact, and the page stays dirty.
1787          *
1788          * Buffers outside i_size may be dirtied by block_dirty_folio;
1789          * handle that here by just cleaning them.
1790          */
1791
1792         bh = head;
1793         blocksize = bh->b_size;
1794         bbits = block_size_bits(blocksize);
1795
1796         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1797         last_block = (i_size_read(inode) - 1) >> bbits;
1798
1799         /*
1800          * Get all the dirty buffers mapped to disk addresses and
1801          * handle any aliases from the underlying blockdev's mapping.
1802          */
1803         do {
1804                 if (block > last_block) {
1805                         /*
1806                          * mapped buffers outside i_size will occur, because
1807                          * this page can be outside i_size when there is a
1808                          * truncate in progress.
1809                          */
1810                         /*
1811                          * The buffer was zeroed by block_write_full_page()
1812                          */
1813                         clear_buffer_dirty(bh);
1814                         set_buffer_uptodate(bh);
1815                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1816                            buffer_dirty(bh)) {
1817                         WARN_ON(bh->b_size != blocksize);
1818                         err = get_block(inode, block, bh, 1);
1819                         if (err)
1820                                 goto recover;
1821                         clear_buffer_delay(bh);
1822                         if (buffer_new(bh)) {
1823                                 /* blockdev mappings never come here */
1824                                 clear_buffer_new(bh);
1825                                 clean_bdev_bh_alias(bh);
1826                         }
1827                 }
1828                 bh = bh->b_this_page;
1829                 block++;
1830         } while (bh != head);
1831
1832         do {
1833                 if (!buffer_mapped(bh))
1834                         continue;
1835                 /*
1836                  * If it's a fully non-blocking write attempt and we cannot
1837                  * lock the buffer then redirty the page.  Note that this can
1838                  * potentially cause a busy-wait loop from writeback threads
1839                  * and kswapd activity, but those code paths have their own
1840                  * higher-level throttling.
1841                  */
1842                 if (wbc->sync_mode != WB_SYNC_NONE) {
1843                         lock_buffer(bh);
1844                 } else if (!trylock_buffer(bh)) {
1845                         redirty_page_for_writepage(wbc, page);
1846                         continue;
1847                 }
1848                 if (test_clear_buffer_dirty(bh)) {
1849                         mark_buffer_async_write_endio(bh, handler);
1850                 } else {
1851                         unlock_buffer(bh);
1852                 }
1853         } while ((bh = bh->b_this_page) != head);
1854
1855         /*
1856          * The page and its buffers are protected by PageWriteback(), so we can
1857          * drop the bh refcounts early.
1858          */
1859         BUG_ON(PageWriteback(page));
1860         set_page_writeback(page);
1861
1862         do {
1863                 struct buffer_head *next = bh->b_this_page;
1864                 if (buffer_async_write(bh)) {
1865                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1866                         nr_underway++;
1867                 }
1868                 bh = next;
1869         } while (bh != head);
1870         unlock_page(page);
1871
1872         err = 0;
1873 done:
1874         if (nr_underway == 0) {
1875                 /*
1876                  * The page was marked dirty, but the buffers were
1877                  * clean.  Someone wrote them back by hand with
1878                  * write_dirty_buffer/submit_bh.  A rare case.
1879                  */
1880                 end_page_writeback(page);
1881
1882                 /*
1883                  * The page and buffer_heads can be released at any time from
1884                  * here on.
1885                  */
1886         }
1887         return err;
1888
1889 recover:
1890         /*
1891          * ENOSPC, or some other error.  We may already have added some
1892          * blocks to the file, so we need to write these out to avoid
1893          * exposing stale data.
1894          * The page is currently locked and not marked for writeback
1895          */
1896         bh = head;
1897         /* Recovery: lock and submit the mapped buffers */
1898         do {
1899                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1900                     !buffer_delay(bh)) {
1901                         lock_buffer(bh);
1902                         mark_buffer_async_write_endio(bh, handler);
1903                 } else {
1904                         /*
1905                          * The buffer may have been set dirty during
1906                          * attachment to a dirty page.
1907                          */
1908                         clear_buffer_dirty(bh);
1909                 }
1910         } while ((bh = bh->b_this_page) != head);
1911         SetPageError(page);
1912         BUG_ON(PageWriteback(page));
1913         mapping_set_error(page->mapping, err);
1914         set_page_writeback(page);
1915         do {
1916                 struct buffer_head *next = bh->b_this_page;
1917                 if (buffer_async_write(bh)) {
1918                         clear_buffer_dirty(bh);
1919                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1920                         nr_underway++;
1921                 }
1922                 bh = next;
1923         } while (bh != head);
1924         unlock_page(page);
1925         goto done;
1926 }
1927 EXPORT_SYMBOL(__block_write_full_page);
1928
1929 /*
1930  * If a page has any new buffers, zero them out here, and mark them uptodate
1931  * and dirty so they'll be written out (in order to prevent uninitialised
1932  * block data from leaking). And clear the new bit.
1933  */
1934 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1935 {
1936         unsigned int block_start, block_end;
1937         struct buffer_head *head, *bh;
1938
1939         BUG_ON(!PageLocked(page));
1940         if (!page_has_buffers(page))
1941                 return;
1942
1943         bh = head = page_buffers(page);
1944         block_start = 0;
1945         do {
1946                 block_end = block_start + bh->b_size;
1947
1948                 if (buffer_new(bh)) {
1949                         if (block_end > from && block_start < to) {
1950                                 if (!PageUptodate(page)) {
1951                                         unsigned start, size;
1952
1953                                         start = max(from, block_start);
1954                                         size = min(to, block_end) - start;
1955
1956                                         zero_user(page, start, size);
1957                                         set_buffer_uptodate(bh);
1958                                 }
1959
1960                                 clear_buffer_new(bh);
1961                                 mark_buffer_dirty(bh);
1962                         }
1963                 }
1964
1965                 block_start = block_end;
1966                 bh = bh->b_this_page;
1967         } while (bh != head);
1968 }
1969 EXPORT_SYMBOL(page_zero_new_buffers);
1970
1971 static void
1972 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1973                 const struct iomap *iomap)
1974 {
1975         loff_t offset = block << inode->i_blkbits;
1976
1977         bh->b_bdev = iomap->bdev;
1978
1979         /*
1980          * Block points to offset in file we need to map, iomap contains
1981          * the offset at which the map starts. If the map ends before the
1982          * current block, then do not map the buffer and let the caller
1983          * handle it.
1984          */
1985         BUG_ON(offset >= iomap->offset + iomap->length);
1986
1987         switch (iomap->type) {
1988         case IOMAP_HOLE:
1989                 /*
1990                  * If the buffer is not up to date or beyond the current EOF,
1991                  * we need to mark it as new to ensure sub-block zeroing is
1992                  * executed if necessary.
1993                  */
1994                 if (!buffer_uptodate(bh) ||
1995                     (offset >= i_size_read(inode)))
1996                         set_buffer_new(bh);
1997                 break;
1998         case IOMAP_DELALLOC:
1999                 if (!buffer_uptodate(bh) ||
2000                     (offset >= i_size_read(inode)))
2001                         set_buffer_new(bh);
2002                 set_buffer_uptodate(bh);
2003                 set_buffer_mapped(bh);
2004                 set_buffer_delay(bh);
2005                 break;
2006         case IOMAP_UNWRITTEN:
2007                 /*
2008                  * For unwritten regions, we always need to ensure that regions
2009                  * in the block we are not writing to are zeroed. Mark the
2010                  * buffer as new to ensure this.
2011                  */
2012                 set_buffer_new(bh);
2013                 set_buffer_unwritten(bh);
2014                 fallthrough;
2015         case IOMAP_MAPPED:
2016                 if ((iomap->flags & IOMAP_F_NEW) ||
2017                     offset >= i_size_read(inode))
2018                         set_buffer_new(bh);
2019                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2020                                 inode->i_blkbits;
2021                 set_buffer_mapped(bh);
2022                 break;
2023         }
2024 }
2025
2026 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2027                 get_block_t *get_block, const struct iomap *iomap)
2028 {
2029         unsigned from = pos & (PAGE_SIZE - 1);
2030         unsigned to = from + len;
2031         struct inode *inode = folio->mapping->host;
2032         unsigned block_start, block_end;
2033         sector_t block;
2034         int err = 0;
2035         unsigned blocksize, bbits;
2036         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2037
2038         BUG_ON(!folio_test_locked(folio));
2039         BUG_ON(from > PAGE_SIZE);
2040         BUG_ON(to > PAGE_SIZE);
2041         BUG_ON(from > to);
2042
2043         head = folio_create_buffers(folio, inode, 0);
2044         blocksize = head->b_size;
2045         bbits = block_size_bits(blocksize);
2046
2047         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2048
2049         for(bh = head, block_start = 0; bh != head || !block_start;
2050             block++, block_start=block_end, bh = bh->b_this_page) {
2051                 block_end = block_start + blocksize;
2052                 if (block_end <= from || block_start >= to) {
2053                         if (folio_test_uptodate(folio)) {
2054                                 if (!buffer_uptodate(bh))
2055                                         set_buffer_uptodate(bh);
2056                         }
2057                         continue;
2058                 }
2059                 if (buffer_new(bh))
2060                         clear_buffer_new(bh);
2061                 if (!buffer_mapped(bh)) {
2062                         WARN_ON(bh->b_size != blocksize);
2063                         if (get_block) {
2064                                 err = get_block(inode, block, bh, 1);
2065                                 if (err)
2066                                         break;
2067                         } else {
2068                                 iomap_to_bh(inode, block, bh, iomap);
2069                         }
2070
2071                         if (buffer_new(bh)) {
2072                                 clean_bdev_bh_alias(bh);
2073                                 if (folio_test_uptodate(folio)) {
2074                                         clear_buffer_new(bh);
2075                                         set_buffer_uptodate(bh);
2076                                         mark_buffer_dirty(bh);
2077                                         continue;
2078                                 }
2079                                 if (block_end > to || block_start < from)
2080                                         folio_zero_segments(folio,
2081                                                 to, block_end,
2082                                                 block_start, from);
2083                                 continue;
2084                         }
2085                 }
2086                 if (folio_test_uptodate(folio)) {
2087                         if (!buffer_uptodate(bh))
2088                                 set_buffer_uptodate(bh);
2089                         continue; 
2090                 }
2091                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2092                     !buffer_unwritten(bh) &&
2093                      (block_start < from || block_end > to)) {
2094                         bh_read_nowait(bh, 0);
2095                         *wait_bh++=bh;
2096                 }
2097         }
2098         /*
2099          * If we issued read requests - let them complete.
2100          */
2101         while(wait_bh > wait) {
2102                 wait_on_buffer(*--wait_bh);
2103                 if (!buffer_uptodate(*wait_bh))
2104                         err = -EIO;
2105         }
2106         if (unlikely(err))
2107                 page_zero_new_buffers(&folio->page, from, to);
2108         return err;
2109 }
2110
2111 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2112                 get_block_t *get_block)
2113 {
2114         return __block_write_begin_int(page_folio(page), pos, len, get_block,
2115                                        NULL);
2116 }
2117 EXPORT_SYMBOL(__block_write_begin);
2118
2119 static int __block_commit_write(struct inode *inode, struct page *page,
2120                 unsigned from, unsigned to)
2121 {
2122         unsigned block_start, block_end;
2123         int partial = 0;
2124         unsigned blocksize;
2125         struct buffer_head *bh, *head;
2126
2127         bh = head = page_buffers(page);
2128         blocksize = bh->b_size;
2129
2130         block_start = 0;
2131         do {
2132                 block_end = block_start + blocksize;
2133                 if (block_end <= from || block_start >= to) {
2134                         if (!buffer_uptodate(bh))
2135                                 partial = 1;
2136                 } else {
2137                         set_buffer_uptodate(bh);
2138                         mark_buffer_dirty(bh);
2139                 }
2140                 if (buffer_new(bh))
2141                         clear_buffer_new(bh);
2142
2143                 block_start = block_end;
2144                 bh = bh->b_this_page;
2145         } while (bh != head);
2146
2147         /*
2148          * If this is a partial write which happened to make all buffers
2149          * uptodate then we can optimize away a bogus read_folio() for
2150          * the next read(). Here we 'discover' whether the page went
2151          * uptodate as a result of this (potentially partial) write.
2152          */
2153         if (!partial)
2154                 SetPageUptodate(page);
2155         return 0;
2156 }
2157
2158 /*
2159  * block_write_begin takes care of the basic task of block allocation and
2160  * bringing partial write blocks uptodate first.
2161  *
2162  * The filesystem needs to handle block truncation upon failure.
2163  */
2164 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2165                 struct page **pagep, get_block_t *get_block)
2166 {
2167         pgoff_t index = pos >> PAGE_SHIFT;
2168         struct page *page;
2169         int status;
2170
2171         page = grab_cache_page_write_begin(mapping, index);
2172         if (!page)
2173                 return -ENOMEM;
2174
2175         status = __block_write_begin(page, pos, len, get_block);
2176         if (unlikely(status)) {
2177                 unlock_page(page);
2178                 put_page(page);
2179                 page = NULL;
2180         }
2181
2182         *pagep = page;
2183         return status;
2184 }
2185 EXPORT_SYMBOL(block_write_begin);
2186
2187 int block_write_end(struct file *file, struct address_space *mapping,
2188                         loff_t pos, unsigned len, unsigned copied,
2189                         struct page *page, void *fsdata)
2190 {
2191         struct inode *inode = mapping->host;
2192         unsigned start;
2193
2194         start = pos & (PAGE_SIZE - 1);
2195
2196         if (unlikely(copied < len)) {
2197                 /*
2198                  * The buffers that were written will now be uptodate, so
2199                  * we don't have to worry about a read_folio reading them
2200                  * and overwriting a partial write. However if we have
2201                  * encountered a short write and only partially written
2202                  * into a buffer, it will not be marked uptodate, so a
2203                  * read_folio might come in and destroy our partial write.
2204                  *
2205                  * Do the simplest thing, and just treat any short write to a
2206                  * non uptodate page as a zero-length write, and force the
2207                  * caller to redo the whole thing.
2208                  */
2209                 if (!PageUptodate(page))
2210                         copied = 0;
2211
2212                 page_zero_new_buffers(page, start+copied, start+len);
2213         }
2214         flush_dcache_page(page);
2215
2216         /* This could be a short (even 0-length) commit */
2217         __block_commit_write(inode, page, start, start+copied);
2218
2219         return copied;
2220 }
2221 EXPORT_SYMBOL(block_write_end);
2222
2223 int generic_write_end(struct file *file, struct address_space *mapping,
2224                         loff_t pos, unsigned len, unsigned copied,
2225                         struct page *page, void *fsdata)
2226 {
2227         struct inode *inode = mapping->host;
2228         loff_t old_size = inode->i_size;
2229         bool i_size_changed = false;
2230
2231         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2232
2233         /*
2234          * No need to use i_size_read() here, the i_size cannot change under us
2235          * because we hold i_rwsem.
2236          *
2237          * But it's important to update i_size while still holding page lock:
2238          * page writeout could otherwise come in and zero beyond i_size.
2239          */
2240         if (pos + copied > inode->i_size) {
2241                 i_size_write(inode, pos + copied);
2242                 i_size_changed = true;
2243         }
2244
2245         unlock_page(page);
2246         put_page(page);
2247
2248         if (old_size < pos)
2249                 pagecache_isize_extended(inode, old_size, pos);
2250         /*
2251          * Don't mark the inode dirty under page lock. First, it unnecessarily
2252          * makes the holding time of page lock longer. Second, it forces lock
2253          * ordering of page lock and transaction start for journaling
2254          * filesystems.
2255          */
2256         if (i_size_changed)
2257                 mark_inode_dirty(inode);
2258         return copied;
2259 }
2260 EXPORT_SYMBOL(generic_write_end);
2261
2262 /*
2263  * block_is_partially_uptodate checks whether buffers within a folio are
2264  * uptodate or not.
2265  *
2266  * Returns true if all buffers which correspond to the specified part
2267  * of the folio are uptodate.
2268  */
2269 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2270 {
2271         unsigned block_start, block_end, blocksize;
2272         unsigned to;
2273         struct buffer_head *bh, *head;
2274         bool ret = true;
2275
2276         head = folio_buffers(folio);
2277         if (!head)
2278                 return false;
2279         blocksize = head->b_size;
2280         to = min_t(unsigned, folio_size(folio) - from, count);
2281         to = from + to;
2282         if (from < blocksize && to > folio_size(folio) - blocksize)
2283                 return false;
2284
2285         bh = head;
2286         block_start = 0;
2287         do {
2288                 block_end = block_start + blocksize;
2289                 if (block_end > from && block_start < to) {
2290                         if (!buffer_uptodate(bh)) {
2291                                 ret = false;
2292                                 break;
2293                         }
2294                         if (block_end >= to)
2295                                 break;
2296                 }
2297                 block_start = block_end;
2298                 bh = bh->b_this_page;
2299         } while (bh != head);
2300
2301         return ret;
2302 }
2303 EXPORT_SYMBOL(block_is_partially_uptodate);
2304
2305 /*
2306  * Generic "read_folio" function for block devices that have the normal
2307  * get_block functionality. This is most of the block device filesystems.
2308  * Reads the folio asynchronously --- the unlock_buffer() and
2309  * set/clear_buffer_uptodate() functions propagate buffer state into the
2310  * folio once IO has completed.
2311  */
2312 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2313 {
2314         struct inode *inode = folio->mapping->host;
2315         sector_t iblock, lblock;
2316         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2317         unsigned int blocksize, bbits;
2318         int nr, i;
2319         int fully_mapped = 1;
2320         bool page_error = false;
2321         loff_t limit = i_size_read(inode);
2322
2323         /* This is needed for ext4. */
2324         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2325                 limit = inode->i_sb->s_maxbytes;
2326
2327         VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2328
2329         head = folio_create_buffers(folio, inode, 0);
2330         blocksize = head->b_size;
2331         bbits = block_size_bits(blocksize);
2332
2333         iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2334         lblock = (limit+blocksize-1) >> bbits;
2335         bh = head;
2336         nr = 0;
2337         i = 0;
2338
2339         do {
2340                 if (buffer_uptodate(bh))
2341                         continue;
2342
2343                 if (!buffer_mapped(bh)) {
2344                         int err = 0;
2345
2346                         fully_mapped = 0;
2347                         if (iblock < lblock) {
2348                                 WARN_ON(bh->b_size != blocksize);
2349                                 err = get_block(inode, iblock, bh, 0);
2350                                 if (err) {
2351                                         folio_set_error(folio);
2352                                         page_error = true;
2353                                 }
2354                         }
2355                         if (!buffer_mapped(bh)) {
2356                                 folio_zero_range(folio, i * blocksize,
2357                                                 blocksize);
2358                                 if (!err)
2359                                         set_buffer_uptodate(bh);
2360                                 continue;
2361                         }
2362                         /*
2363                          * get_block() might have updated the buffer
2364                          * synchronously
2365                          */
2366                         if (buffer_uptodate(bh))
2367                                 continue;
2368                 }
2369                 arr[nr++] = bh;
2370         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2371
2372         if (fully_mapped)
2373                 folio_set_mappedtodisk(folio);
2374
2375         if (!nr) {
2376                 /*
2377                  * All buffers are uptodate - we can set the folio uptodate
2378                  * as well. But not if get_block() returned an error.
2379                  */
2380                 if (!page_error)
2381                         folio_mark_uptodate(folio);
2382                 folio_unlock(folio);
2383                 return 0;
2384         }
2385
2386         /* Stage two: lock the buffers */
2387         for (i = 0; i < nr; i++) {
2388                 bh = arr[i];
2389                 lock_buffer(bh);
2390                 mark_buffer_async_read(bh);
2391         }
2392
2393         /*
2394          * Stage 3: start the IO.  Check for uptodateness
2395          * inside the buffer lock in case another process reading
2396          * the underlying blockdev brought it uptodate (the sct fix).
2397          */
2398         for (i = 0; i < nr; i++) {
2399                 bh = arr[i];
2400                 if (buffer_uptodate(bh))
2401                         end_buffer_async_read(bh, 1);
2402                 else
2403                         submit_bh(REQ_OP_READ, bh);
2404         }
2405         return 0;
2406 }
2407 EXPORT_SYMBOL(block_read_full_folio);
2408
2409 /* utility function for filesystems that need to do work on expanding
2410  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2411  * deal with the hole.  
2412  */
2413 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2414 {
2415         struct address_space *mapping = inode->i_mapping;
2416         const struct address_space_operations *aops = mapping->a_ops;
2417         struct page *page;
2418         void *fsdata = NULL;
2419         int err;
2420
2421         err = inode_newsize_ok(inode, size);
2422         if (err)
2423                 goto out;
2424
2425         err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2426         if (err)
2427                 goto out;
2428
2429         err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2430         BUG_ON(err > 0);
2431
2432 out:
2433         return err;
2434 }
2435 EXPORT_SYMBOL(generic_cont_expand_simple);
2436
2437 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2438                             loff_t pos, loff_t *bytes)
2439 {
2440         struct inode *inode = mapping->host;
2441         const struct address_space_operations *aops = mapping->a_ops;
2442         unsigned int blocksize = i_blocksize(inode);
2443         struct page *page;
2444         void *fsdata = NULL;
2445         pgoff_t index, curidx;
2446         loff_t curpos;
2447         unsigned zerofrom, offset, len;
2448         int err = 0;
2449
2450         index = pos >> PAGE_SHIFT;
2451         offset = pos & ~PAGE_MASK;
2452
2453         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2454                 zerofrom = curpos & ~PAGE_MASK;
2455                 if (zerofrom & (blocksize-1)) {
2456                         *bytes |= (blocksize-1);
2457                         (*bytes)++;
2458                 }
2459                 len = PAGE_SIZE - zerofrom;
2460
2461                 err = aops->write_begin(file, mapping, curpos, len,
2462                                             &page, &fsdata);
2463                 if (err)
2464                         goto out;
2465                 zero_user(page, zerofrom, len);
2466                 err = aops->write_end(file, mapping, curpos, len, len,
2467                                                 page, fsdata);
2468                 if (err < 0)
2469                         goto out;
2470                 BUG_ON(err != len);
2471                 err = 0;
2472
2473                 balance_dirty_pages_ratelimited(mapping);
2474
2475                 if (fatal_signal_pending(current)) {
2476                         err = -EINTR;
2477                         goto out;
2478                 }
2479         }
2480
2481         /* page covers the boundary, find the boundary offset */
2482         if (index == curidx) {
2483                 zerofrom = curpos & ~PAGE_MASK;
2484                 /* if we will expand the thing last block will be filled */
2485                 if (offset <= zerofrom) {
2486                         goto out;
2487                 }
2488                 if (zerofrom & (blocksize-1)) {
2489                         *bytes |= (blocksize-1);
2490                         (*bytes)++;
2491                 }
2492                 len = offset - zerofrom;
2493
2494                 err = aops->write_begin(file, mapping, curpos, len,
2495                                             &page, &fsdata);
2496                 if (err)
2497                         goto out;
2498                 zero_user(page, zerofrom, len);
2499                 err = aops->write_end(file, mapping, curpos, len, len,
2500                                                 page, fsdata);
2501                 if (err < 0)
2502                         goto out;
2503                 BUG_ON(err != len);
2504                 err = 0;
2505         }
2506 out:
2507         return err;
2508 }
2509
2510 /*
2511  * For moronic filesystems that do not allow holes in file.
2512  * We may have to extend the file.
2513  */
2514 int cont_write_begin(struct file *file, struct address_space *mapping,
2515                         loff_t pos, unsigned len,
2516                         struct page **pagep, void **fsdata,
2517                         get_block_t *get_block, loff_t *bytes)
2518 {
2519         struct inode *inode = mapping->host;
2520         unsigned int blocksize = i_blocksize(inode);
2521         unsigned int zerofrom;
2522         int err;
2523
2524         err = cont_expand_zero(file, mapping, pos, bytes);
2525         if (err)
2526                 return err;
2527
2528         zerofrom = *bytes & ~PAGE_MASK;
2529         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2530                 *bytes |= (blocksize-1);
2531                 (*bytes)++;
2532         }
2533
2534         return block_write_begin(mapping, pos, len, pagep, get_block);
2535 }
2536 EXPORT_SYMBOL(cont_write_begin);
2537
2538 int block_commit_write(struct page *page, unsigned from, unsigned to)
2539 {
2540         struct inode *inode = page->mapping->host;
2541         __block_commit_write(inode,page,from,to);
2542         return 0;
2543 }
2544 EXPORT_SYMBOL(block_commit_write);
2545
2546 /*
2547  * block_page_mkwrite() is not allowed to change the file size as it gets
2548  * called from a page fault handler when a page is first dirtied. Hence we must
2549  * be careful to check for EOF conditions here. We set the page up correctly
2550  * for a written page which means we get ENOSPC checking when writing into
2551  * holes and correct delalloc and unwritten extent mapping on filesystems that
2552  * support these features.
2553  *
2554  * We are not allowed to take the i_mutex here so we have to play games to
2555  * protect against truncate races as the page could now be beyond EOF.  Because
2556  * truncate writes the inode size before removing pages, once we have the
2557  * page lock we can determine safely if the page is beyond EOF. If it is not
2558  * beyond EOF, then the page is guaranteed safe against truncation until we
2559  * unlock the page.
2560  *
2561  * Direct callers of this function should protect against filesystem freezing
2562  * using sb_start_pagefault() - sb_end_pagefault() functions.
2563  */
2564 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2565                          get_block_t get_block)
2566 {
2567         struct page *page = vmf->page;
2568         struct inode *inode = file_inode(vma->vm_file);
2569         unsigned long end;
2570         loff_t size;
2571         int ret;
2572
2573         lock_page(page);
2574         size = i_size_read(inode);
2575         if ((page->mapping != inode->i_mapping) ||
2576             (page_offset(page) > size)) {
2577                 /* We overload EFAULT to mean page got truncated */
2578                 ret = -EFAULT;
2579                 goto out_unlock;
2580         }
2581
2582         /* page is wholly or partially inside EOF */
2583         if (((page->index + 1) << PAGE_SHIFT) > size)
2584                 end = size & ~PAGE_MASK;
2585         else
2586                 end = PAGE_SIZE;
2587
2588         ret = __block_write_begin(page, 0, end, get_block);
2589         if (!ret)
2590                 ret = block_commit_write(page, 0, end);
2591
2592         if (unlikely(ret < 0))
2593                 goto out_unlock;
2594         set_page_dirty(page);
2595         wait_for_stable_page(page);
2596         return 0;
2597 out_unlock:
2598         unlock_page(page);
2599         return ret;
2600 }
2601 EXPORT_SYMBOL(block_page_mkwrite);
2602
2603 int block_truncate_page(struct address_space *mapping,
2604                         loff_t from, get_block_t *get_block)
2605 {
2606         pgoff_t index = from >> PAGE_SHIFT;
2607         unsigned offset = from & (PAGE_SIZE-1);
2608         unsigned blocksize;
2609         sector_t iblock;
2610         unsigned length, pos;
2611         struct inode *inode = mapping->host;
2612         struct page *page;
2613         struct buffer_head *bh;
2614         int err = 0;
2615
2616         blocksize = i_blocksize(inode);
2617         length = offset & (blocksize - 1);
2618
2619         /* Block boundary? Nothing to do */
2620         if (!length)
2621                 return 0;
2622
2623         length = blocksize - length;
2624         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2625         
2626         page = grab_cache_page(mapping, index);
2627         if (!page)
2628                 return -ENOMEM;
2629
2630         if (!page_has_buffers(page))
2631                 create_empty_buffers(page, blocksize, 0);
2632
2633         /* Find the buffer that contains "offset" */
2634         bh = page_buffers(page);
2635         pos = blocksize;
2636         while (offset >= pos) {
2637                 bh = bh->b_this_page;
2638                 iblock++;
2639                 pos += blocksize;
2640         }
2641
2642         if (!buffer_mapped(bh)) {
2643                 WARN_ON(bh->b_size != blocksize);
2644                 err = get_block(inode, iblock, bh, 0);
2645                 if (err)
2646                         goto unlock;
2647                 /* unmapped? It's a hole - nothing to do */
2648                 if (!buffer_mapped(bh))
2649                         goto unlock;
2650         }
2651
2652         /* Ok, it's mapped. Make sure it's up-to-date */
2653         if (PageUptodate(page))
2654                 set_buffer_uptodate(bh);
2655
2656         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2657                 err = bh_read(bh, 0);
2658                 /* Uhhuh. Read error. Complain and punt. */
2659                 if (err < 0)
2660                         goto unlock;
2661         }
2662
2663         zero_user(page, offset, length);
2664         mark_buffer_dirty(bh);
2665
2666 unlock:
2667         unlock_page(page);
2668         put_page(page);
2669
2670         return err;
2671 }
2672 EXPORT_SYMBOL(block_truncate_page);
2673
2674 /*
2675  * The generic ->writepage function for buffer-backed address_spaces
2676  */
2677 int block_write_full_page(struct page *page, get_block_t *get_block,
2678                         struct writeback_control *wbc)
2679 {
2680         struct inode * const inode = page->mapping->host;
2681         loff_t i_size = i_size_read(inode);
2682         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2683         unsigned offset;
2684
2685         /* Is the page fully inside i_size? */
2686         if (page->index < end_index)
2687                 return __block_write_full_page(inode, page, get_block, wbc,
2688                                                end_buffer_async_write);
2689
2690         /* Is the page fully outside i_size? (truncate in progress) */
2691         offset = i_size & (PAGE_SIZE-1);
2692         if (page->index >= end_index+1 || !offset) {
2693                 unlock_page(page);
2694                 return 0; /* don't care */
2695         }
2696
2697         /*
2698          * The page straddles i_size.  It must be zeroed out on each and every
2699          * writepage invocation because it may be mmapped.  "A file is mapped
2700          * in multiples of the page size.  For a file that is not a multiple of
2701          * the  page size, the remaining memory is zeroed when mapped, and
2702          * writes to that region are not written out to the file."
2703          */
2704         zero_user_segment(page, offset, PAGE_SIZE);
2705         return __block_write_full_page(inode, page, get_block, wbc,
2706                                                         end_buffer_async_write);
2707 }
2708 EXPORT_SYMBOL(block_write_full_page);
2709
2710 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2711                             get_block_t *get_block)
2712 {
2713         struct inode *inode = mapping->host;
2714         struct buffer_head tmp = {
2715                 .b_size = i_blocksize(inode),
2716         };
2717
2718         get_block(inode, block, &tmp, 0);
2719         return tmp.b_blocknr;
2720 }
2721 EXPORT_SYMBOL(generic_block_bmap);
2722
2723 static void end_bio_bh_io_sync(struct bio *bio)
2724 {
2725         struct buffer_head *bh = bio->bi_private;
2726
2727         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2728                 set_bit(BH_Quiet, &bh->b_state);
2729
2730         bh->b_end_io(bh, !bio->bi_status);
2731         bio_put(bio);
2732 }
2733
2734 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2735                           struct writeback_control *wbc)
2736 {
2737         const enum req_op op = opf & REQ_OP_MASK;
2738         struct bio *bio;
2739
2740         BUG_ON(!buffer_locked(bh));
2741         BUG_ON(!buffer_mapped(bh));
2742         BUG_ON(!bh->b_end_io);
2743         BUG_ON(buffer_delay(bh));
2744         BUG_ON(buffer_unwritten(bh));
2745
2746         /*
2747          * Only clear out a write error when rewriting
2748          */
2749         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2750                 clear_buffer_write_io_error(bh);
2751
2752         if (buffer_meta(bh))
2753                 opf |= REQ_META;
2754         if (buffer_prio(bh))
2755                 opf |= REQ_PRIO;
2756
2757         bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2758
2759         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2760
2761         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2762
2763         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2764         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
2765
2766         bio->bi_end_io = end_bio_bh_io_sync;
2767         bio->bi_private = bh;
2768
2769         /* Take care of bh's that straddle the end of the device */
2770         guard_bio_eod(bio);
2771
2772         if (wbc) {
2773                 wbc_init_bio(wbc, bio);
2774                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2775         }
2776
2777         submit_bio(bio);
2778 }
2779
2780 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2781 {
2782         submit_bh_wbc(opf, bh, NULL);
2783 }
2784 EXPORT_SYMBOL(submit_bh);
2785
2786 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2787 {
2788         lock_buffer(bh);
2789         if (!test_clear_buffer_dirty(bh)) {
2790                 unlock_buffer(bh);
2791                 return;
2792         }
2793         bh->b_end_io = end_buffer_write_sync;
2794         get_bh(bh);
2795         submit_bh(REQ_OP_WRITE | op_flags, bh);
2796 }
2797 EXPORT_SYMBOL(write_dirty_buffer);
2798
2799 /*
2800  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2801  * and then start new I/O and then wait upon it.  The caller must have a ref on
2802  * the buffer_head.
2803  */
2804 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2805 {
2806         WARN_ON(atomic_read(&bh->b_count) < 1);
2807         lock_buffer(bh);
2808         if (test_clear_buffer_dirty(bh)) {
2809                 /*
2810                  * The bh should be mapped, but it might not be if the
2811                  * device was hot-removed. Not much we can do but fail the I/O.
2812                  */
2813                 if (!buffer_mapped(bh)) {
2814                         unlock_buffer(bh);
2815                         return -EIO;
2816                 }
2817
2818                 get_bh(bh);
2819                 bh->b_end_io = end_buffer_write_sync;
2820                 submit_bh(REQ_OP_WRITE | op_flags, bh);
2821                 wait_on_buffer(bh);
2822                 if (!buffer_uptodate(bh))
2823                         return -EIO;
2824         } else {
2825                 unlock_buffer(bh);
2826         }
2827         return 0;
2828 }
2829 EXPORT_SYMBOL(__sync_dirty_buffer);
2830
2831 int sync_dirty_buffer(struct buffer_head *bh)
2832 {
2833         return __sync_dirty_buffer(bh, REQ_SYNC);
2834 }
2835 EXPORT_SYMBOL(sync_dirty_buffer);
2836
2837 /*
2838  * try_to_free_buffers() checks if all the buffers on this particular folio
2839  * are unused, and releases them if so.
2840  *
2841  * Exclusion against try_to_free_buffers may be obtained by either
2842  * locking the folio or by holding its mapping's private_lock.
2843  *
2844  * If the folio is dirty but all the buffers are clean then we need to
2845  * be sure to mark the folio clean as well.  This is because the folio
2846  * may be against a block device, and a later reattachment of buffers
2847  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2848  * filesystem data on the same device.
2849  *
2850  * The same applies to regular filesystem folios: if all the buffers are
2851  * clean then we set the folio clean and proceed.  To do that, we require
2852  * total exclusion from block_dirty_folio().  That is obtained with
2853  * private_lock.
2854  *
2855  * try_to_free_buffers() is non-blocking.
2856  */
2857 static inline int buffer_busy(struct buffer_head *bh)
2858 {
2859         return atomic_read(&bh->b_count) |
2860                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2861 }
2862
2863 static bool
2864 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2865 {
2866         struct buffer_head *head = folio_buffers(folio);
2867         struct buffer_head *bh;
2868
2869         bh = head;
2870         do {
2871                 if (buffer_busy(bh))
2872                         goto failed;
2873                 bh = bh->b_this_page;
2874         } while (bh != head);
2875
2876         do {
2877                 struct buffer_head *next = bh->b_this_page;
2878
2879                 if (bh->b_assoc_map)
2880                         __remove_assoc_queue(bh);
2881                 bh = next;
2882         } while (bh != head);
2883         *buffers_to_free = head;
2884         folio_detach_private(folio);
2885         return true;
2886 failed:
2887         return false;
2888 }
2889
2890 bool try_to_free_buffers(struct folio *folio)
2891 {
2892         struct address_space * const mapping = folio->mapping;
2893         struct buffer_head *buffers_to_free = NULL;
2894         bool ret = 0;
2895
2896         BUG_ON(!folio_test_locked(folio));
2897         if (folio_test_writeback(folio))
2898                 return false;
2899
2900         if (mapping == NULL) {          /* can this still happen? */
2901                 ret = drop_buffers(folio, &buffers_to_free);
2902                 goto out;
2903         }
2904
2905         spin_lock(&mapping->private_lock);
2906         ret = drop_buffers(folio, &buffers_to_free);
2907
2908         /*
2909          * If the filesystem writes its buffers by hand (eg ext3)
2910          * then we can have clean buffers against a dirty folio.  We
2911          * clean the folio here; otherwise the VM will never notice
2912          * that the filesystem did any IO at all.
2913          *
2914          * Also, during truncate, discard_buffer will have marked all
2915          * the folio's buffers clean.  We discover that here and clean
2916          * the folio also.
2917          *
2918          * private_lock must be held over this entire operation in order
2919          * to synchronise against block_dirty_folio and prevent the
2920          * dirty bit from being lost.
2921          */
2922         if (ret)
2923                 folio_cancel_dirty(folio);
2924         spin_unlock(&mapping->private_lock);
2925 out:
2926         if (buffers_to_free) {
2927                 struct buffer_head *bh = buffers_to_free;
2928
2929                 do {
2930                         struct buffer_head *next = bh->b_this_page;
2931                         free_buffer_head(bh);
2932                         bh = next;
2933                 } while (bh != buffers_to_free);
2934         }
2935         return ret;
2936 }
2937 EXPORT_SYMBOL(try_to_free_buffers);
2938
2939 /*
2940  * Buffer-head allocation
2941  */
2942 static struct kmem_cache *bh_cachep __read_mostly;
2943
2944 /*
2945  * Once the number of bh's in the machine exceeds this level, we start
2946  * stripping them in writeback.
2947  */
2948 static unsigned long max_buffer_heads;
2949
2950 int buffer_heads_over_limit;
2951
2952 struct bh_accounting {
2953         int nr;                 /* Number of live bh's */
2954         int ratelimit;          /* Limit cacheline bouncing */
2955 };
2956
2957 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2958
2959 static void recalc_bh_state(void)
2960 {
2961         int i;
2962         int tot = 0;
2963
2964         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2965                 return;
2966         __this_cpu_write(bh_accounting.ratelimit, 0);
2967         for_each_online_cpu(i)
2968                 tot += per_cpu(bh_accounting, i).nr;
2969         buffer_heads_over_limit = (tot > max_buffer_heads);
2970 }
2971
2972 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2973 {
2974         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2975         if (ret) {
2976                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
2977                 spin_lock_init(&ret->b_uptodate_lock);
2978                 preempt_disable();
2979                 __this_cpu_inc(bh_accounting.nr);
2980                 recalc_bh_state();
2981                 preempt_enable();
2982         }
2983         return ret;
2984 }
2985 EXPORT_SYMBOL(alloc_buffer_head);
2986
2987 void free_buffer_head(struct buffer_head *bh)
2988 {
2989         BUG_ON(!list_empty(&bh->b_assoc_buffers));
2990         kmem_cache_free(bh_cachep, bh);
2991         preempt_disable();
2992         __this_cpu_dec(bh_accounting.nr);
2993         recalc_bh_state();
2994         preempt_enable();
2995 }
2996 EXPORT_SYMBOL(free_buffer_head);
2997
2998 static int buffer_exit_cpu_dead(unsigned int cpu)
2999 {
3000         int i;
3001         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3002
3003         for (i = 0; i < BH_LRU_SIZE; i++) {
3004                 brelse(b->bhs[i]);
3005                 b->bhs[i] = NULL;
3006         }
3007         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3008         per_cpu(bh_accounting, cpu).nr = 0;
3009         return 0;
3010 }
3011
3012 /**
3013  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3014  * @bh: struct buffer_head
3015  *
3016  * Return true if the buffer is up-to-date and false,
3017  * with the buffer locked, if not.
3018  */
3019 int bh_uptodate_or_lock(struct buffer_head *bh)
3020 {
3021         if (!buffer_uptodate(bh)) {
3022                 lock_buffer(bh);
3023                 if (!buffer_uptodate(bh))
3024                         return 0;
3025                 unlock_buffer(bh);
3026         }
3027         return 1;
3028 }
3029 EXPORT_SYMBOL(bh_uptodate_or_lock);
3030
3031 /**
3032  * __bh_read - Submit read for a locked buffer
3033  * @bh: struct buffer_head
3034  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3035  * @wait: wait until reading finish
3036  *
3037  * Returns zero on success or don't wait, and -EIO on error.
3038  */
3039 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3040 {
3041         int ret = 0;
3042
3043         BUG_ON(!buffer_locked(bh));
3044
3045         get_bh(bh);
3046         bh->b_end_io = end_buffer_read_sync;
3047         submit_bh(REQ_OP_READ | op_flags, bh);
3048         if (wait) {
3049                 wait_on_buffer(bh);
3050                 if (!buffer_uptodate(bh))
3051                         ret = -EIO;
3052         }
3053         return ret;
3054 }
3055 EXPORT_SYMBOL(__bh_read);
3056
3057 /**
3058  * __bh_read_batch - Submit read for a batch of unlocked buffers
3059  * @nr: entry number of the buffer batch
3060  * @bhs: a batch of struct buffer_head
3061  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3062  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3063  *              buffer that cannot lock.
3064  *
3065  * Returns zero on success or don't wait, and -EIO on error.
3066  */
3067 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3068                      blk_opf_t op_flags, bool force_lock)
3069 {
3070         int i;
3071
3072         for (i = 0; i < nr; i++) {
3073                 struct buffer_head *bh = bhs[i];
3074
3075                 if (buffer_uptodate(bh))
3076                         continue;
3077
3078                 if (force_lock)
3079                         lock_buffer(bh);
3080                 else
3081                         if (!trylock_buffer(bh))
3082                                 continue;
3083
3084                 if (buffer_uptodate(bh)) {
3085                         unlock_buffer(bh);
3086                         continue;
3087                 }
3088
3089                 bh->b_end_io = end_buffer_read_sync;
3090                 get_bh(bh);
3091                 submit_bh(REQ_OP_READ | op_flags, bh);
3092         }
3093 }
3094 EXPORT_SYMBOL(__bh_read_batch);
3095
3096 void __init buffer_init(void)
3097 {
3098         unsigned long nrpages;
3099         int ret;
3100
3101         bh_cachep = kmem_cache_create("buffer_head",
3102                         sizeof(struct buffer_head), 0,
3103                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3104                                 SLAB_MEM_SPREAD),
3105                                 NULL);
3106
3107         /*
3108          * Limit the bh occupancy to 10% of ZONE_NORMAL
3109          */
3110         nrpages = (nr_free_buffer_pages() * 10) / 100;
3111         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3112         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3113                                         NULL, buffer_exit_cpu_dead);
3114         WARN_ON(ret < 0);
3115 }