1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
26 #include <linux/iomap.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
57 struct writeback_control *wbc);
59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61 inline void touch_buffer(struct buffer_head *bh)
63 trace_block_touch_buffer(bh);
64 folio_mark_accessed(bh->b_folio);
66 EXPORT_SYMBOL(touch_buffer);
68 void __lock_buffer(struct buffer_head *bh)
70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 EXPORT_SYMBOL(__lock_buffer);
74 void unlock_buffer(struct buffer_head *bh)
76 clear_bit_unlock(BH_Lock, &bh->b_state);
77 smp_mb__after_atomic();
78 wake_up_bit(&bh->b_state, BH_Lock);
80 EXPORT_SYMBOL(unlock_buffer);
83 * Returns if the folio has dirty or writeback buffers. If all the buffers
84 * are unlocked and clean then the folio_test_dirty information is stale. If
85 * any of the buffers are locked, it is assumed they are locked for IO.
87 void buffer_check_dirty_writeback(struct folio *folio,
88 bool *dirty, bool *writeback)
90 struct buffer_head *head, *bh;
94 BUG_ON(!folio_test_locked(folio));
96 head = folio_buffers(folio);
100 if (folio_test_writeback(folio))
105 if (buffer_locked(bh))
108 if (buffer_dirty(bh))
111 bh = bh->b_this_page;
112 } while (bh != head);
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
120 void __wait_on_buffer(struct buffer_head * bh)
122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 EXPORT_SYMBOL(__wait_on_buffer);
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 if (!test_bit(BH_Quiet, &bh->b_state))
129 printk_ratelimited(KERN_ERR
130 "Buffer I/O error on dev %pg, logical block %llu%s\n",
131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
135 * End-of-IO handler helper function which does not touch the bh after
137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138 * a race there is benign: unlock_buffer() only use the bh's address for
139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
145 set_buffer_uptodate(bh);
147 /* This happens, due to failed read-ahead attempts. */
148 clear_buffer_uptodate(bh);
154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 __end_buffer_read_notouch(bh, uptodate);
162 EXPORT_SYMBOL(end_buffer_read_sync);
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
167 set_buffer_uptodate(bh);
169 buffer_io_error(bh, ", lost sync page write");
170 mark_buffer_write_io_error(bh);
171 clear_buffer_uptodate(bh);
176 EXPORT_SYMBOL(end_buffer_write_sync);
179 * Various filesystems appear to want __find_get_block to be non-blocking.
180 * But it's the page lock which protects the buffers. To get around this,
181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
184 * Hack idea: for the blockdev mapping, private_lock contention
185 * may be quite high. This code could TryLock the page, and if that
186 * succeeds, there is no need to take private_lock.
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 struct inode *bd_inode = bdev->bd_inode;
192 struct address_space *bd_mapping = bd_inode->i_mapping;
193 struct buffer_head *ret = NULL;
195 struct buffer_head *bh;
196 struct buffer_head *head;
199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
206 spin_lock(&bd_mapping->private_lock);
207 if (!page_has_buffers(page))
209 head = page_buffers(page);
212 if (!buffer_mapped(bh))
214 else if (bh->b_blocknr == block) {
219 bh = bh->b_this_page;
220 } while (bh != head);
222 /* we might be here because some of the buffers on this page are
223 * not mapped. This is due to various races between
224 * file io on the block device and getblk. It gets dealt with
225 * elsewhere, don't buffer_error if we had some unmapped buffers
227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 if (all_mapped && __ratelimit(&last_warned)) {
229 printk("__find_get_block_slow() failed. block=%llu, "
230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 "device %pg blocksize: %d\n",
232 (unsigned long long)block,
233 (unsigned long long)bh->b_blocknr,
234 bh->b_state, bh->b_size, bdev,
235 1 << bd_inode->i_blkbits);
238 spin_unlock(&bd_mapping->private_lock);
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
247 struct buffer_head *first;
248 struct buffer_head *tmp;
250 int folio_uptodate = 1;
252 BUG_ON(!buffer_async_read(bh));
256 set_buffer_uptodate(bh);
258 clear_buffer_uptodate(bh);
259 buffer_io_error(bh, ", async page read");
260 folio_set_error(folio);
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
268 first = folio_buffers(folio);
269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 clear_buffer_async_read(bh);
274 if (!buffer_uptodate(tmp))
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
280 tmp = tmp->b_this_page;
282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
285 * If all of the buffers are uptodate then we can set the page
289 folio_mark_uptodate(folio);
294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
298 struct postprocess_bh_ctx {
299 struct work_struct work;
300 struct buffer_head *bh;
303 static void verify_bh(struct work_struct *work)
305 struct postprocess_bh_ctx *ctx =
306 container_of(work, struct postprocess_bh_ctx, work);
307 struct buffer_head *bh = ctx->bh;
310 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
311 end_buffer_async_read(bh, valid);
315 static bool need_fsverity(struct buffer_head *bh)
317 struct folio *folio = bh->b_folio;
318 struct inode *inode = folio->mapping->host;
320 return fsverity_active(inode) &&
322 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
325 static void decrypt_bh(struct work_struct *work)
327 struct postprocess_bh_ctx *ctx =
328 container_of(work, struct postprocess_bh_ctx, work);
329 struct buffer_head *bh = ctx->bh;
332 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
334 if (err == 0 && need_fsverity(bh)) {
336 * We use different work queues for decryption and for verity
337 * because verity may require reading metadata pages that need
338 * decryption, and we shouldn't recurse to the same workqueue.
340 INIT_WORK(&ctx->work, verify_bh);
341 fsverity_enqueue_verify_work(&ctx->work);
344 end_buffer_async_read(bh, err == 0);
349 * I/O completion handler for block_read_full_folio() - pages
350 * which come unlocked at the end of I/O.
352 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
354 struct inode *inode = bh->b_folio->mapping->host;
355 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
356 bool verify = need_fsverity(bh);
358 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
359 if (uptodate && (decrypt || verify)) {
360 struct postprocess_bh_ctx *ctx =
361 kmalloc(sizeof(*ctx), GFP_ATOMIC);
366 INIT_WORK(&ctx->work, decrypt_bh);
367 fscrypt_enqueue_decrypt_work(&ctx->work);
369 INIT_WORK(&ctx->work, verify_bh);
370 fsverity_enqueue_verify_work(&ctx->work);
376 end_buffer_async_read(bh, uptodate);
380 * Completion handler for block_write_full_page() - pages which are unlocked
381 * during I/O, and which have PageWriteback cleared upon I/O completion.
383 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
386 struct buffer_head *first;
387 struct buffer_head *tmp;
390 BUG_ON(!buffer_async_write(bh));
394 set_buffer_uptodate(bh);
396 buffer_io_error(bh, ", lost async page write");
397 mark_buffer_write_io_error(bh);
398 clear_buffer_uptodate(bh);
399 folio_set_error(folio);
402 first = folio_buffers(folio);
403 spin_lock_irqsave(&first->b_uptodate_lock, flags);
405 clear_buffer_async_write(bh);
407 tmp = bh->b_this_page;
409 if (buffer_async_write(tmp)) {
410 BUG_ON(!buffer_locked(tmp));
413 tmp = tmp->b_this_page;
415 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416 folio_end_writeback(folio);
420 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
423 EXPORT_SYMBOL(end_buffer_async_write);
426 * If a page's buffers are under async readin (end_buffer_async_read
427 * completion) then there is a possibility that another thread of
428 * control could lock one of the buffers after it has completed
429 * but while some of the other buffers have not completed. This
430 * locked buffer would confuse end_buffer_async_read() into not unlocking
431 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
432 * that this buffer is not under async I/O.
434 * The page comes unlocked when it has no locked buffer_async buffers
437 * PageLocked prevents anyone starting new async I/O reads any of
440 * PageWriteback is used to prevent simultaneous writeout of the same
443 * PageLocked prevents anyone from starting writeback of a page which is
444 * under read I/O (PageWriteback is only ever set against a locked page).
446 static void mark_buffer_async_read(struct buffer_head *bh)
448 bh->b_end_io = end_buffer_async_read_io;
449 set_buffer_async_read(bh);
452 static void mark_buffer_async_write_endio(struct buffer_head *bh,
453 bh_end_io_t *handler)
455 bh->b_end_io = handler;
456 set_buffer_async_write(bh);
459 void mark_buffer_async_write(struct buffer_head *bh)
461 mark_buffer_async_write_endio(bh, end_buffer_async_write);
463 EXPORT_SYMBOL(mark_buffer_async_write);
467 * fs/buffer.c contains helper functions for buffer-backed address space's
468 * fsync functions. A common requirement for buffer-based filesystems is
469 * that certain data from the backing blockdev needs to be written out for
470 * a successful fsync(). For example, ext2 indirect blocks need to be
471 * written back and waited upon before fsync() returns.
473 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
474 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
475 * management of a list of dependent buffers at ->i_mapping->private_list.
477 * Locking is a little subtle: try_to_free_buffers() will remove buffers
478 * from their controlling inode's queue when they are being freed. But
479 * try_to_free_buffers() will be operating against the *blockdev* mapping
480 * at the time, not against the S_ISREG file which depends on those buffers.
481 * So the locking for private_list is via the private_lock in the address_space
482 * which backs the buffers. Which is different from the address_space
483 * against which the buffers are listed. So for a particular address_space,
484 * mapping->private_lock does *not* protect mapping->private_list! In fact,
485 * mapping->private_list will always be protected by the backing blockdev's
488 * Which introduces a requirement: all buffers on an address_space's
489 * ->private_list must be from the same address_space: the blockdev's.
491 * address_spaces which do not place buffers at ->private_list via these
492 * utility functions are free to use private_lock and private_list for
493 * whatever they want. The only requirement is that list_empty(private_list)
494 * be true at clear_inode() time.
496 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
497 * filesystems should do that. invalidate_inode_buffers() should just go
498 * BUG_ON(!list_empty).
500 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
501 * take an address_space, not an inode. And it should be called
502 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
505 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
506 * list if it is already on a list. Because if the buffer is on a list,
507 * it *must* already be on the right one. If not, the filesystem is being
508 * silly. This will save a ton of locking. But first we have to ensure
509 * that buffers are taken *off* the old inode's list when they are freed
510 * (presumably in truncate). That requires careful auditing of all
511 * filesystems (do it inside bforget()). It could also be done by bringing
516 * The buffer's backing address_space's private_lock must be held
518 static void __remove_assoc_queue(struct buffer_head *bh)
520 list_del_init(&bh->b_assoc_buffers);
521 WARN_ON(!bh->b_assoc_map);
522 bh->b_assoc_map = NULL;
525 int inode_has_buffers(struct inode *inode)
527 return !list_empty(&inode->i_data.private_list);
531 * osync is designed to support O_SYNC io. It waits synchronously for
532 * all already-submitted IO to complete, but does not queue any new
533 * writes to the disk.
535 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
536 * as you dirty the buffers, and then use osync_inode_buffers to wait for
537 * completion. Any other dirty buffers which are not yet queued for
538 * write will not be flushed to disk by the osync.
540 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
542 struct buffer_head *bh;
548 list_for_each_prev(p, list) {
550 if (buffer_locked(bh)) {
554 if (!buffer_uptodate(bh))
565 void emergency_thaw_bdev(struct super_block *sb)
567 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
568 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
572 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
573 * @mapping: the mapping which wants those buffers written
575 * Starts I/O against the buffers at mapping->private_list, and waits upon
578 * Basically, this is a convenience function for fsync().
579 * @mapping is a file or directory which needs those buffers to be written for
580 * a successful fsync().
582 int sync_mapping_buffers(struct address_space *mapping)
584 struct address_space *buffer_mapping = mapping->private_data;
586 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
589 return fsync_buffers_list(&buffer_mapping->private_lock,
590 &mapping->private_list);
592 EXPORT_SYMBOL(sync_mapping_buffers);
595 * Called when we've recently written block `bblock', and it is known that
596 * `bblock' was for a buffer_boundary() buffer. This means that the block at
597 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
598 * dirty, schedule it for IO. So that indirects merge nicely with their data.
600 void write_boundary_block(struct block_device *bdev,
601 sector_t bblock, unsigned blocksize)
603 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
605 if (buffer_dirty(bh))
606 write_dirty_buffer(bh, 0);
611 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
613 struct address_space *mapping = inode->i_mapping;
614 struct address_space *buffer_mapping = bh->b_folio->mapping;
616 mark_buffer_dirty(bh);
617 if (!mapping->private_data) {
618 mapping->private_data = buffer_mapping;
620 BUG_ON(mapping->private_data != buffer_mapping);
622 if (!bh->b_assoc_map) {
623 spin_lock(&buffer_mapping->private_lock);
624 list_move_tail(&bh->b_assoc_buffers,
625 &mapping->private_list);
626 bh->b_assoc_map = mapping;
627 spin_unlock(&buffer_mapping->private_lock);
630 EXPORT_SYMBOL(mark_buffer_dirty_inode);
633 * Add a page to the dirty page list.
635 * It is a sad fact of life that this function is called from several places
636 * deeply under spinlocking. It may not sleep.
638 * If the page has buffers, the uptodate buffers are set dirty, to preserve
639 * dirty-state coherency between the page and the buffers. It the page does
640 * not have buffers then when they are later attached they will all be set
643 * The buffers are dirtied before the page is dirtied. There's a small race
644 * window in which a writepage caller may see the page cleanness but not the
645 * buffer dirtiness. That's fine. If this code were to set the page dirty
646 * before the buffers, a concurrent writepage caller could clear the page dirty
647 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
648 * page on the dirty page list.
650 * We use private_lock to lock against try_to_free_buffers while using the
651 * page's buffer list. Also use this to protect against clean buffers being
652 * added to the page after it was set dirty.
654 * FIXME: may need to call ->reservepage here as well. That's rather up to the
655 * address_space though.
657 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
659 struct buffer_head *head;
662 spin_lock(&mapping->private_lock);
663 head = folio_buffers(folio);
665 struct buffer_head *bh = head;
668 set_buffer_dirty(bh);
669 bh = bh->b_this_page;
670 } while (bh != head);
673 * Lock out page's memcg migration to keep PageDirty
674 * synchronized with per-memcg dirty page counters.
676 folio_memcg_lock(folio);
677 newly_dirty = !folio_test_set_dirty(folio);
678 spin_unlock(&mapping->private_lock);
681 __folio_mark_dirty(folio, mapping, 1);
683 folio_memcg_unlock(folio);
686 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
690 EXPORT_SYMBOL(block_dirty_folio);
693 * Write out and wait upon a list of buffers.
695 * We have conflicting pressures: we want to make sure that all
696 * initially dirty buffers get waited on, but that any subsequently
697 * dirtied buffers don't. After all, we don't want fsync to last
698 * forever if somebody is actively writing to the file.
700 * Do this in two main stages: first we copy dirty buffers to a
701 * temporary inode list, queueing the writes as we go. Then we clean
702 * up, waiting for those writes to complete.
704 * During this second stage, any subsequent updates to the file may end
705 * up refiling the buffer on the original inode's dirty list again, so
706 * there is a chance we will end up with a buffer queued for write but
707 * not yet completed on that list. So, as a final cleanup we go through
708 * the osync code to catch these locked, dirty buffers without requeuing
709 * any newly dirty buffers for write.
711 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
713 struct buffer_head *bh;
714 struct list_head tmp;
715 struct address_space *mapping;
717 struct blk_plug plug;
719 INIT_LIST_HEAD(&tmp);
720 blk_start_plug(&plug);
723 while (!list_empty(list)) {
724 bh = BH_ENTRY(list->next);
725 mapping = bh->b_assoc_map;
726 __remove_assoc_queue(bh);
727 /* Avoid race with mark_buffer_dirty_inode() which does
728 * a lockless check and we rely on seeing the dirty bit */
730 if (buffer_dirty(bh) || buffer_locked(bh)) {
731 list_add(&bh->b_assoc_buffers, &tmp);
732 bh->b_assoc_map = mapping;
733 if (buffer_dirty(bh)) {
737 * Ensure any pending I/O completes so that
738 * write_dirty_buffer() actually writes the
739 * current contents - it is a noop if I/O is
740 * still in flight on potentially older
743 write_dirty_buffer(bh, REQ_SYNC);
746 * Kick off IO for the previous mapping. Note
747 * that we will not run the very last mapping,
748 * wait_on_buffer() will do that for us
749 * through sync_buffer().
758 blk_finish_plug(&plug);
761 while (!list_empty(&tmp)) {
762 bh = BH_ENTRY(tmp.prev);
764 mapping = bh->b_assoc_map;
765 __remove_assoc_queue(bh);
766 /* Avoid race with mark_buffer_dirty_inode() which does
767 * a lockless check and we rely on seeing the dirty bit */
769 if (buffer_dirty(bh)) {
770 list_add(&bh->b_assoc_buffers,
771 &mapping->private_list);
772 bh->b_assoc_map = mapping;
776 if (!buffer_uptodate(bh))
783 err2 = osync_buffers_list(lock, list);
791 * Invalidate any and all dirty buffers on a given inode. We are
792 * probably unmounting the fs, but that doesn't mean we have already
793 * done a sync(). Just drop the buffers from the inode list.
795 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
796 * assumes that all the buffers are against the blockdev. Not true
799 void invalidate_inode_buffers(struct inode *inode)
801 if (inode_has_buffers(inode)) {
802 struct address_space *mapping = &inode->i_data;
803 struct list_head *list = &mapping->private_list;
804 struct address_space *buffer_mapping = mapping->private_data;
806 spin_lock(&buffer_mapping->private_lock);
807 while (!list_empty(list))
808 __remove_assoc_queue(BH_ENTRY(list->next));
809 spin_unlock(&buffer_mapping->private_lock);
812 EXPORT_SYMBOL(invalidate_inode_buffers);
815 * Remove any clean buffers from the inode's buffer list. This is called
816 * when we're trying to free the inode itself. Those buffers can pin it.
818 * Returns true if all buffers were removed.
820 int remove_inode_buffers(struct inode *inode)
824 if (inode_has_buffers(inode)) {
825 struct address_space *mapping = &inode->i_data;
826 struct list_head *list = &mapping->private_list;
827 struct address_space *buffer_mapping = mapping->private_data;
829 spin_lock(&buffer_mapping->private_lock);
830 while (!list_empty(list)) {
831 struct buffer_head *bh = BH_ENTRY(list->next);
832 if (buffer_dirty(bh)) {
836 __remove_assoc_queue(bh);
838 spin_unlock(&buffer_mapping->private_lock);
844 * Create the appropriate buffers when given a folio for data area and
845 * the size of each buffer.. Use the bh->b_this_page linked list to
846 * follow the buffers created. Return NULL if unable to create more
849 * The retry flag is used to differentiate async IO (paging, swapping)
850 * which may not fail from ordinary buffer allocations.
852 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
855 struct buffer_head *bh, *head;
856 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
858 struct mem_cgroup *memcg, *old_memcg;
863 /* The folio lock pins the memcg */
864 memcg = folio_memcg(folio);
865 old_memcg = set_active_memcg(memcg);
868 offset = folio_size(folio);
869 while ((offset -= size) >= 0) {
870 bh = alloc_buffer_head(gfp);
874 bh->b_this_page = head;
880 /* Link the buffer to its folio */
881 folio_set_bh(bh, folio, offset);
884 set_active_memcg(old_memcg);
887 * In case anything failed, we just free everything we got.
893 head = head->b_this_page;
894 free_buffer_head(bh);
900 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
902 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
905 return folio_alloc_buffers(page_folio(page), size, retry);
907 EXPORT_SYMBOL_GPL(alloc_page_buffers);
910 link_dev_buffers(struct page *page, struct buffer_head *head)
912 struct buffer_head *bh, *tail;
917 bh = bh->b_this_page;
919 tail->b_this_page = head;
920 attach_page_private(page, head);
923 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
925 sector_t retval = ~((sector_t)0);
926 loff_t sz = bdev_nr_bytes(bdev);
929 unsigned int sizebits = blksize_bits(size);
930 retval = (sz >> sizebits);
936 * Initialise the state of a blockdev page's buffers.
939 init_page_buffers(struct page *page, struct block_device *bdev,
940 sector_t block, int size)
942 struct buffer_head *head = page_buffers(page);
943 struct buffer_head *bh = head;
944 int uptodate = PageUptodate(page);
945 sector_t end_block = blkdev_max_block(bdev, size);
948 if (!buffer_mapped(bh)) {
950 bh->b_private = NULL;
952 bh->b_blocknr = block;
954 set_buffer_uptodate(bh);
955 if (block < end_block)
956 set_buffer_mapped(bh);
959 bh = bh->b_this_page;
960 } while (bh != head);
963 * Caller needs to validate requested block against end of device.
969 * Create the page-cache page that contains the requested block.
971 * This is used purely for blockdev mappings.
974 grow_dev_page(struct block_device *bdev, sector_t block,
975 pgoff_t index, int size, int sizebits, gfp_t gfp)
977 struct inode *inode = bdev->bd_inode;
979 struct buffer_head *bh;
984 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
987 * XXX: __getblk_slow() can not really deal with failure and
988 * will endlessly loop on improvised global reclaim. Prefer
989 * looping in the allocator rather than here, at least that
990 * code knows what it's doing.
992 gfp_mask |= __GFP_NOFAIL;
994 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
996 BUG_ON(!PageLocked(page));
998 if (page_has_buffers(page)) {
999 bh = page_buffers(page);
1000 if (bh->b_size == size) {
1001 end_block = init_page_buffers(page, bdev,
1002 (sector_t)index << sizebits,
1006 if (!try_to_free_buffers(page_folio(page)))
1011 * Allocate some buffers for this page
1013 bh = alloc_page_buffers(page, size, true);
1016 * Link the page to the buffers and initialise them. Take the
1017 * lock to be atomic wrt __find_get_block(), which does not
1018 * run under the page lock.
1020 spin_lock(&inode->i_mapping->private_lock);
1021 link_dev_buffers(page, bh);
1022 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1024 spin_unlock(&inode->i_mapping->private_lock);
1026 ret = (block < end_block) ? 1 : -ENXIO;
1034 * Create buffers for the specified block device block's page. If
1035 * that page was dirty, the buffers are set dirty also.
1038 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1043 sizebits = PAGE_SHIFT - __ffs(size);
1044 index = block >> sizebits;
1047 * Check for a block which wants to lie outside our maximum possible
1048 * pagecache index. (this comparison is done using sector_t types).
1050 if (unlikely(index != block >> sizebits)) {
1051 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1053 __func__, (unsigned long long)block,
1058 /* Create a page with the proper size buffers.. */
1059 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1062 static struct buffer_head *
1063 __getblk_slow(struct block_device *bdev, sector_t block,
1064 unsigned size, gfp_t gfp)
1066 /* Size must be multiple of hard sectorsize */
1067 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1068 (size < 512 || size > PAGE_SIZE))) {
1069 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1071 printk(KERN_ERR "logical block size: %d\n",
1072 bdev_logical_block_size(bdev));
1079 struct buffer_head *bh;
1082 bh = __find_get_block(bdev, block, size);
1086 ret = grow_buffers(bdev, block, size, gfp);
1093 * The relationship between dirty buffers and dirty pages:
1095 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1096 * the page is tagged dirty in the page cache.
1098 * At all times, the dirtiness of the buffers represents the dirtiness of
1099 * subsections of the page. If the page has buffers, the page dirty bit is
1100 * merely a hint about the true dirty state.
1102 * When a page is set dirty in its entirety, all its buffers are marked dirty
1103 * (if the page has buffers).
1105 * When a buffer is marked dirty, its page is dirtied, but the page's other
1108 * Also. When blockdev buffers are explicitly read with bread(), they
1109 * individually become uptodate. But their backing page remains not
1110 * uptodate - even if all of its buffers are uptodate. A subsequent
1111 * block_read_full_folio() against that folio will discover all the uptodate
1112 * buffers, will set the folio uptodate and will perform no I/O.
1116 * mark_buffer_dirty - mark a buffer_head as needing writeout
1117 * @bh: the buffer_head to mark dirty
1119 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1120 * its backing page dirty, then tag the page as dirty in the page cache
1121 * and then attach the address_space's inode to its superblock's dirty
1124 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->private_lock,
1125 * i_pages lock and mapping->host->i_lock.
1127 void mark_buffer_dirty(struct buffer_head *bh)
1129 WARN_ON_ONCE(!buffer_uptodate(bh));
1131 trace_block_dirty_buffer(bh);
1134 * Very *carefully* optimize the it-is-already-dirty case.
1136 * Don't let the final "is it dirty" escape to before we
1137 * perhaps modified the buffer.
1139 if (buffer_dirty(bh)) {
1141 if (buffer_dirty(bh))
1145 if (!test_set_buffer_dirty(bh)) {
1146 struct folio *folio = bh->b_folio;
1147 struct address_space *mapping = NULL;
1149 folio_memcg_lock(folio);
1150 if (!folio_test_set_dirty(folio)) {
1151 mapping = folio->mapping;
1153 __folio_mark_dirty(folio, mapping, 0);
1155 folio_memcg_unlock(folio);
1157 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1160 EXPORT_SYMBOL(mark_buffer_dirty);
1162 void mark_buffer_write_io_error(struct buffer_head *bh)
1164 struct super_block *sb;
1166 set_buffer_write_io_error(bh);
1167 /* FIXME: do we need to set this in both places? */
1168 if (bh->b_folio && bh->b_folio->mapping)
1169 mapping_set_error(bh->b_folio->mapping, -EIO);
1170 if (bh->b_assoc_map)
1171 mapping_set_error(bh->b_assoc_map, -EIO);
1173 sb = READ_ONCE(bh->b_bdev->bd_super);
1175 errseq_set(&sb->s_wb_err, -EIO);
1178 EXPORT_SYMBOL(mark_buffer_write_io_error);
1181 * Decrement a buffer_head's reference count. If all buffers against a page
1182 * have zero reference count, are clean and unlocked, and if the page is clean
1183 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1184 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1185 * a page but it ends up not being freed, and buffers may later be reattached).
1187 void __brelse(struct buffer_head * buf)
1189 if (atomic_read(&buf->b_count)) {
1193 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1195 EXPORT_SYMBOL(__brelse);
1198 * bforget() is like brelse(), except it discards any
1199 * potentially dirty data.
1201 void __bforget(struct buffer_head *bh)
1203 clear_buffer_dirty(bh);
1204 if (bh->b_assoc_map) {
1205 struct address_space *buffer_mapping = bh->b_folio->mapping;
1207 spin_lock(&buffer_mapping->private_lock);
1208 list_del_init(&bh->b_assoc_buffers);
1209 bh->b_assoc_map = NULL;
1210 spin_unlock(&buffer_mapping->private_lock);
1214 EXPORT_SYMBOL(__bforget);
1216 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1219 if (buffer_uptodate(bh)) {
1224 bh->b_end_io = end_buffer_read_sync;
1225 submit_bh(REQ_OP_READ, bh);
1227 if (buffer_uptodate(bh))
1235 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1236 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1237 * refcount elevated by one when they're in an LRU. A buffer can only appear
1238 * once in a particular CPU's LRU. A single buffer can be present in multiple
1239 * CPU's LRUs at the same time.
1241 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1242 * sb_find_get_block().
1244 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1245 * a local interrupt disable for that.
1248 #define BH_LRU_SIZE 16
1251 struct buffer_head *bhs[BH_LRU_SIZE];
1254 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1257 #define bh_lru_lock() local_irq_disable()
1258 #define bh_lru_unlock() local_irq_enable()
1260 #define bh_lru_lock() preempt_disable()
1261 #define bh_lru_unlock() preempt_enable()
1264 static inline void check_irqs_on(void)
1266 #ifdef irqs_disabled
1267 BUG_ON(irqs_disabled());
1272 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1273 * inserted at the front, and the buffer_head at the back if any is evicted.
1274 * Or, if already in the LRU it is moved to the front.
1276 static void bh_lru_install(struct buffer_head *bh)
1278 struct buffer_head *evictee = bh;
1286 * the refcount of buffer_head in bh_lru prevents dropping the
1287 * attached page(i.e., try_to_free_buffers) so it could cause
1288 * failing page migration.
1289 * Skip putting upcoming bh into bh_lru until migration is done.
1291 if (lru_cache_disabled()) {
1296 b = this_cpu_ptr(&bh_lrus);
1297 for (i = 0; i < BH_LRU_SIZE; i++) {
1298 swap(evictee, b->bhs[i]);
1299 if (evictee == bh) {
1311 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1313 static struct buffer_head *
1314 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1316 struct buffer_head *ret = NULL;
1321 for (i = 0; i < BH_LRU_SIZE; i++) {
1322 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1324 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1325 bh->b_size == size) {
1328 __this_cpu_write(bh_lrus.bhs[i],
1329 __this_cpu_read(bh_lrus.bhs[i - 1]));
1332 __this_cpu_write(bh_lrus.bhs[0], bh);
1344 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1345 * it in the LRU and mark it as accessed. If it is not present then return
1348 struct buffer_head *
1349 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1351 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1354 /* __find_get_block_slow will mark the page accessed */
1355 bh = __find_get_block_slow(bdev, block);
1363 EXPORT_SYMBOL(__find_get_block);
1366 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1367 * which corresponds to the passed block_device, block and size. The
1368 * returned buffer has its reference count incremented.
1370 * __getblk_gfp() will lock up the machine if grow_dev_page's
1371 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1373 struct buffer_head *
1374 __getblk_gfp(struct block_device *bdev, sector_t block,
1375 unsigned size, gfp_t gfp)
1377 struct buffer_head *bh = __find_get_block(bdev, block, size);
1381 bh = __getblk_slow(bdev, block, size, gfp);
1384 EXPORT_SYMBOL(__getblk_gfp);
1387 * Do async read-ahead on a buffer..
1389 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1391 struct buffer_head *bh = __getblk(bdev, block, size);
1393 bh_readahead(bh, REQ_RAHEAD);
1397 EXPORT_SYMBOL(__breadahead);
1400 * __bread_gfp() - reads a specified block and returns the bh
1401 * @bdev: the block_device to read from
1402 * @block: number of block
1403 * @size: size (in bytes) to read
1404 * @gfp: page allocation flag
1406 * Reads a specified block, and returns buffer head that contains it.
1407 * The page cache can be allocated from non-movable area
1408 * not to prevent page migration if you set gfp to zero.
1409 * It returns NULL if the block was unreadable.
1411 struct buffer_head *
1412 __bread_gfp(struct block_device *bdev, sector_t block,
1413 unsigned size, gfp_t gfp)
1415 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1417 if (likely(bh) && !buffer_uptodate(bh))
1418 bh = __bread_slow(bh);
1421 EXPORT_SYMBOL(__bread_gfp);
1423 static void __invalidate_bh_lrus(struct bh_lru *b)
1427 for (i = 0; i < BH_LRU_SIZE; i++) {
1433 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1434 * This doesn't race because it runs in each cpu either in irq
1435 * or with preempt disabled.
1437 static void invalidate_bh_lru(void *arg)
1439 struct bh_lru *b = &get_cpu_var(bh_lrus);
1441 __invalidate_bh_lrus(b);
1442 put_cpu_var(bh_lrus);
1445 bool has_bh_in_lru(int cpu, void *dummy)
1447 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1450 for (i = 0; i < BH_LRU_SIZE; i++) {
1458 void invalidate_bh_lrus(void)
1460 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1462 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1465 * It's called from workqueue context so we need a bh_lru_lock to close
1466 * the race with preemption/irq.
1468 void invalidate_bh_lrus_cpu(void)
1473 b = this_cpu_ptr(&bh_lrus);
1474 __invalidate_bh_lrus(b);
1478 void set_bh_page(struct buffer_head *bh,
1479 struct page *page, unsigned long offset)
1482 BUG_ON(offset >= PAGE_SIZE);
1483 if (PageHighMem(page))
1485 * This catches illegal uses and preserves the offset:
1487 bh->b_data = (char *)(0 + offset);
1489 bh->b_data = page_address(page) + offset;
1491 EXPORT_SYMBOL(set_bh_page);
1493 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1494 unsigned long offset)
1496 bh->b_folio = folio;
1497 BUG_ON(offset >= folio_size(folio));
1498 if (folio_test_highmem(folio))
1500 * This catches illegal uses and preserves the offset:
1502 bh->b_data = (char *)(0 + offset);
1504 bh->b_data = folio_address(folio) + offset;
1506 EXPORT_SYMBOL(folio_set_bh);
1509 * Called when truncating a buffer on a page completely.
1512 /* Bits that are cleared during an invalidate */
1513 #define BUFFER_FLAGS_DISCARD \
1514 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1515 1 << BH_Delay | 1 << BH_Unwritten)
1517 static void discard_buffer(struct buffer_head * bh)
1519 unsigned long b_state;
1522 clear_buffer_dirty(bh);
1524 b_state = READ_ONCE(bh->b_state);
1526 } while (!try_cmpxchg(&bh->b_state, &b_state,
1527 b_state & ~BUFFER_FLAGS_DISCARD));
1532 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1533 * @folio: The folio which is affected.
1534 * @offset: start of the range to invalidate
1535 * @length: length of the range to invalidate
1537 * block_invalidate_folio() is called when all or part of the folio has been
1538 * invalidated by a truncate operation.
1540 * block_invalidate_folio() does not have to release all buffers, but it must
1541 * ensure that no dirty buffer is left outside @offset and that no I/O
1542 * is underway against any of the blocks which are outside the truncation
1543 * point. Because the caller is about to free (and possibly reuse) those
1546 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1548 struct buffer_head *head, *bh, *next;
1549 size_t curr_off = 0;
1550 size_t stop = length + offset;
1552 BUG_ON(!folio_test_locked(folio));
1555 * Check for overflow
1557 BUG_ON(stop > folio_size(folio) || stop < length);
1559 head = folio_buffers(folio);
1565 size_t next_off = curr_off + bh->b_size;
1566 next = bh->b_this_page;
1569 * Are we still fully in range ?
1571 if (next_off > stop)
1575 * is this block fully invalidated?
1577 if (offset <= curr_off)
1579 curr_off = next_off;
1581 } while (bh != head);
1584 * We release buffers only if the entire folio is being invalidated.
1585 * The get_block cached value has been unconditionally invalidated,
1586 * so real IO is not possible anymore.
1588 if (length == folio_size(folio))
1589 filemap_release_folio(folio, 0);
1593 EXPORT_SYMBOL(block_invalidate_folio);
1596 * We attach and possibly dirty the buffers atomically wrt
1597 * block_dirty_folio() via private_lock. try_to_free_buffers
1598 * is already excluded via the folio lock.
1600 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize,
1601 unsigned long b_state)
1603 struct buffer_head *bh, *head, *tail;
1605 head = folio_alloc_buffers(folio, blocksize, true);
1608 bh->b_state |= b_state;
1610 bh = bh->b_this_page;
1612 tail->b_this_page = head;
1614 spin_lock(&folio->mapping->private_lock);
1615 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1618 if (folio_test_dirty(folio))
1619 set_buffer_dirty(bh);
1620 if (folio_test_uptodate(folio))
1621 set_buffer_uptodate(bh);
1622 bh = bh->b_this_page;
1623 } while (bh != head);
1625 folio_attach_private(folio, head);
1626 spin_unlock(&folio->mapping->private_lock);
1628 EXPORT_SYMBOL(folio_create_empty_buffers);
1630 void create_empty_buffers(struct page *page,
1631 unsigned long blocksize, unsigned long b_state)
1633 folio_create_empty_buffers(page_folio(page), blocksize, b_state);
1635 EXPORT_SYMBOL(create_empty_buffers);
1638 * clean_bdev_aliases: clean a range of buffers in block device
1639 * @bdev: Block device to clean buffers in
1640 * @block: Start of a range of blocks to clean
1641 * @len: Number of blocks to clean
1643 * We are taking a range of blocks for data and we don't want writeback of any
1644 * buffer-cache aliases starting from return from this function and until the
1645 * moment when something will explicitly mark the buffer dirty (hopefully that
1646 * will not happen until we will free that block ;-) We don't even need to mark
1647 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1648 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1649 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1650 * would confuse anyone who might pick it with bread() afterwards...
1652 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1653 * writeout I/O going on against recently-freed buffers. We don't wait on that
1654 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1655 * need to. That happens here.
1657 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1659 struct inode *bd_inode = bdev->bd_inode;
1660 struct address_space *bd_mapping = bd_inode->i_mapping;
1661 struct folio_batch fbatch;
1662 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1665 struct buffer_head *bh;
1666 struct buffer_head *head;
1668 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1669 folio_batch_init(&fbatch);
1670 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1671 count = folio_batch_count(&fbatch);
1672 for (i = 0; i < count; i++) {
1673 struct folio *folio = fbatch.folios[i];
1675 if (!folio_buffers(folio))
1678 * We use folio lock instead of bd_mapping->private_lock
1679 * to pin buffers here since we can afford to sleep and
1680 * it scales better than a global spinlock lock.
1683 /* Recheck when the folio is locked which pins bhs */
1684 head = folio_buffers(folio);
1689 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1691 if (bh->b_blocknr >= block + len)
1693 clear_buffer_dirty(bh);
1695 clear_buffer_req(bh);
1697 bh = bh->b_this_page;
1698 } while (bh != head);
1700 folio_unlock(folio);
1702 folio_batch_release(&fbatch);
1704 /* End of range already reached? */
1705 if (index > end || !index)
1709 EXPORT_SYMBOL(clean_bdev_aliases);
1712 * Size is a power-of-two in the range 512..PAGE_SIZE,
1713 * and the case we care about most is PAGE_SIZE.
1715 * So this *could* possibly be written with those
1716 * constraints in mind (relevant mostly if some
1717 * architecture has a slow bit-scan instruction)
1719 static inline int block_size_bits(unsigned int blocksize)
1721 return ilog2(blocksize);
1724 static struct buffer_head *folio_create_buffers(struct folio *folio,
1725 struct inode *inode,
1726 unsigned int b_state)
1728 BUG_ON(!folio_test_locked(folio));
1730 if (!folio_buffers(folio))
1731 folio_create_empty_buffers(folio,
1732 1 << READ_ONCE(inode->i_blkbits),
1734 return folio_buffers(folio);
1738 * NOTE! All mapped/uptodate combinations are valid:
1740 * Mapped Uptodate Meaning
1742 * No No "unknown" - must do get_block()
1743 * No Yes "hole" - zero-filled
1744 * Yes No "allocated" - allocated on disk, not read in
1745 * Yes Yes "valid" - allocated and up-to-date in memory.
1747 * "Dirty" is valid only with the last case (mapped+uptodate).
1751 * While block_write_full_page is writing back the dirty buffers under
1752 * the page lock, whoever dirtied the buffers may decide to clean them
1753 * again at any time. We handle that by only looking at the buffer
1754 * state inside lock_buffer().
1756 * If block_write_full_page() is called for regular writeback
1757 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1758 * locked buffer. This only can happen if someone has written the buffer
1759 * directly, with submit_bh(). At the address_space level PageWriteback
1760 * prevents this contention from occurring.
1762 * If block_write_full_page() is called with wbc->sync_mode ==
1763 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1764 * causes the writes to be flagged as synchronous writes.
1766 int __block_write_full_page(struct inode *inode, struct page *page,
1767 get_block_t *get_block, struct writeback_control *wbc,
1768 bh_end_io_t *handler)
1772 sector_t last_block;
1773 struct buffer_head *bh, *head;
1774 unsigned int blocksize, bbits;
1775 int nr_underway = 0;
1776 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1778 head = folio_create_buffers(page_folio(page), inode,
1779 (1 << BH_Dirty) | (1 << BH_Uptodate));
1782 * Be very careful. We have no exclusion from block_dirty_folio
1783 * here, and the (potentially unmapped) buffers may become dirty at
1784 * any time. If a buffer becomes dirty here after we've inspected it
1785 * then we just miss that fact, and the page stays dirty.
1787 * Buffers outside i_size may be dirtied by block_dirty_folio;
1788 * handle that here by just cleaning them.
1792 blocksize = bh->b_size;
1793 bbits = block_size_bits(blocksize);
1795 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1796 last_block = (i_size_read(inode) - 1) >> bbits;
1799 * Get all the dirty buffers mapped to disk addresses and
1800 * handle any aliases from the underlying blockdev's mapping.
1803 if (block > last_block) {
1805 * mapped buffers outside i_size will occur, because
1806 * this page can be outside i_size when there is a
1807 * truncate in progress.
1810 * The buffer was zeroed by block_write_full_page()
1812 clear_buffer_dirty(bh);
1813 set_buffer_uptodate(bh);
1814 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1816 WARN_ON(bh->b_size != blocksize);
1817 err = get_block(inode, block, bh, 1);
1820 clear_buffer_delay(bh);
1821 if (buffer_new(bh)) {
1822 /* blockdev mappings never come here */
1823 clear_buffer_new(bh);
1824 clean_bdev_bh_alias(bh);
1827 bh = bh->b_this_page;
1829 } while (bh != head);
1832 if (!buffer_mapped(bh))
1835 * If it's a fully non-blocking write attempt and we cannot
1836 * lock the buffer then redirty the page. Note that this can
1837 * potentially cause a busy-wait loop from writeback threads
1838 * and kswapd activity, but those code paths have their own
1839 * higher-level throttling.
1841 if (wbc->sync_mode != WB_SYNC_NONE) {
1843 } else if (!trylock_buffer(bh)) {
1844 redirty_page_for_writepage(wbc, page);
1847 if (test_clear_buffer_dirty(bh)) {
1848 mark_buffer_async_write_endio(bh, handler);
1852 } while ((bh = bh->b_this_page) != head);
1855 * The page and its buffers are protected by PageWriteback(), so we can
1856 * drop the bh refcounts early.
1858 BUG_ON(PageWriteback(page));
1859 set_page_writeback(page);
1862 struct buffer_head *next = bh->b_this_page;
1863 if (buffer_async_write(bh)) {
1864 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1868 } while (bh != head);
1873 if (nr_underway == 0) {
1875 * The page was marked dirty, but the buffers were
1876 * clean. Someone wrote them back by hand with
1877 * write_dirty_buffer/submit_bh. A rare case.
1879 end_page_writeback(page);
1882 * The page and buffer_heads can be released at any time from
1890 * ENOSPC, or some other error. We may already have added some
1891 * blocks to the file, so we need to write these out to avoid
1892 * exposing stale data.
1893 * The page is currently locked and not marked for writeback
1896 /* Recovery: lock and submit the mapped buffers */
1898 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1899 !buffer_delay(bh)) {
1901 mark_buffer_async_write_endio(bh, handler);
1904 * The buffer may have been set dirty during
1905 * attachment to a dirty page.
1907 clear_buffer_dirty(bh);
1909 } while ((bh = bh->b_this_page) != head);
1911 BUG_ON(PageWriteback(page));
1912 mapping_set_error(page->mapping, err);
1913 set_page_writeback(page);
1915 struct buffer_head *next = bh->b_this_page;
1916 if (buffer_async_write(bh)) {
1917 clear_buffer_dirty(bh);
1918 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1922 } while (bh != head);
1926 EXPORT_SYMBOL(__block_write_full_page);
1929 * If a page has any new buffers, zero them out here, and mark them uptodate
1930 * and dirty so they'll be written out (in order to prevent uninitialised
1931 * block data from leaking). And clear the new bit.
1933 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1935 unsigned int block_start, block_end;
1936 struct buffer_head *head, *bh;
1938 BUG_ON(!PageLocked(page));
1939 if (!page_has_buffers(page))
1942 bh = head = page_buffers(page);
1945 block_end = block_start + bh->b_size;
1947 if (buffer_new(bh)) {
1948 if (block_end > from && block_start < to) {
1949 if (!PageUptodate(page)) {
1950 unsigned start, size;
1952 start = max(from, block_start);
1953 size = min(to, block_end) - start;
1955 zero_user(page, start, size);
1956 set_buffer_uptodate(bh);
1959 clear_buffer_new(bh);
1960 mark_buffer_dirty(bh);
1964 block_start = block_end;
1965 bh = bh->b_this_page;
1966 } while (bh != head);
1968 EXPORT_SYMBOL(page_zero_new_buffers);
1971 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1972 const struct iomap *iomap)
1974 loff_t offset = block << inode->i_blkbits;
1976 bh->b_bdev = iomap->bdev;
1979 * Block points to offset in file we need to map, iomap contains
1980 * the offset at which the map starts. If the map ends before the
1981 * current block, then do not map the buffer and let the caller
1984 BUG_ON(offset >= iomap->offset + iomap->length);
1986 switch (iomap->type) {
1989 * If the buffer is not up to date or beyond the current EOF,
1990 * we need to mark it as new to ensure sub-block zeroing is
1991 * executed if necessary.
1993 if (!buffer_uptodate(bh) ||
1994 (offset >= i_size_read(inode)))
1997 case IOMAP_DELALLOC:
1998 if (!buffer_uptodate(bh) ||
1999 (offset >= i_size_read(inode)))
2001 set_buffer_uptodate(bh);
2002 set_buffer_mapped(bh);
2003 set_buffer_delay(bh);
2005 case IOMAP_UNWRITTEN:
2007 * For unwritten regions, we always need to ensure that regions
2008 * in the block we are not writing to are zeroed. Mark the
2009 * buffer as new to ensure this.
2012 set_buffer_unwritten(bh);
2015 if ((iomap->flags & IOMAP_F_NEW) ||
2016 offset >= i_size_read(inode))
2018 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2020 set_buffer_mapped(bh);
2025 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2026 get_block_t *get_block, const struct iomap *iomap)
2028 unsigned from = pos & (PAGE_SIZE - 1);
2029 unsigned to = from + len;
2030 struct inode *inode = folio->mapping->host;
2031 unsigned block_start, block_end;
2034 unsigned blocksize, bbits;
2035 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2037 BUG_ON(!folio_test_locked(folio));
2038 BUG_ON(from > PAGE_SIZE);
2039 BUG_ON(to > PAGE_SIZE);
2042 head = folio_create_buffers(folio, inode, 0);
2043 blocksize = head->b_size;
2044 bbits = block_size_bits(blocksize);
2046 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2048 for(bh = head, block_start = 0; bh != head || !block_start;
2049 block++, block_start=block_end, bh = bh->b_this_page) {
2050 block_end = block_start + blocksize;
2051 if (block_end <= from || block_start >= to) {
2052 if (folio_test_uptodate(folio)) {
2053 if (!buffer_uptodate(bh))
2054 set_buffer_uptodate(bh);
2059 clear_buffer_new(bh);
2060 if (!buffer_mapped(bh)) {
2061 WARN_ON(bh->b_size != blocksize);
2063 err = get_block(inode, block, bh, 1);
2067 iomap_to_bh(inode, block, bh, iomap);
2070 if (buffer_new(bh)) {
2071 clean_bdev_bh_alias(bh);
2072 if (folio_test_uptodate(folio)) {
2073 clear_buffer_new(bh);
2074 set_buffer_uptodate(bh);
2075 mark_buffer_dirty(bh);
2078 if (block_end > to || block_start < from)
2079 folio_zero_segments(folio,
2085 if (folio_test_uptodate(folio)) {
2086 if (!buffer_uptodate(bh))
2087 set_buffer_uptodate(bh);
2090 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2091 !buffer_unwritten(bh) &&
2092 (block_start < from || block_end > to)) {
2093 bh_read_nowait(bh, 0);
2098 * If we issued read requests - let them complete.
2100 while(wait_bh > wait) {
2101 wait_on_buffer(*--wait_bh);
2102 if (!buffer_uptodate(*wait_bh))
2106 page_zero_new_buffers(&folio->page, from, to);
2110 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2111 get_block_t *get_block)
2113 return __block_write_begin_int(page_folio(page), pos, len, get_block,
2116 EXPORT_SYMBOL(__block_write_begin);
2118 static int __block_commit_write(struct inode *inode, struct page *page,
2119 unsigned from, unsigned to)
2121 unsigned block_start, block_end;
2124 struct buffer_head *bh, *head;
2126 bh = head = page_buffers(page);
2127 blocksize = bh->b_size;
2131 block_end = block_start + blocksize;
2132 if (block_end <= from || block_start >= to) {
2133 if (!buffer_uptodate(bh))
2136 set_buffer_uptodate(bh);
2137 mark_buffer_dirty(bh);
2140 clear_buffer_new(bh);
2142 block_start = block_end;
2143 bh = bh->b_this_page;
2144 } while (bh != head);
2147 * If this is a partial write which happened to make all buffers
2148 * uptodate then we can optimize away a bogus read_folio() for
2149 * the next read(). Here we 'discover' whether the page went
2150 * uptodate as a result of this (potentially partial) write.
2153 SetPageUptodate(page);
2158 * block_write_begin takes care of the basic task of block allocation and
2159 * bringing partial write blocks uptodate first.
2161 * The filesystem needs to handle block truncation upon failure.
2163 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2164 struct page **pagep, get_block_t *get_block)
2166 pgoff_t index = pos >> PAGE_SHIFT;
2170 page = grab_cache_page_write_begin(mapping, index);
2174 status = __block_write_begin(page, pos, len, get_block);
2175 if (unlikely(status)) {
2184 EXPORT_SYMBOL(block_write_begin);
2186 int block_write_end(struct file *file, struct address_space *mapping,
2187 loff_t pos, unsigned len, unsigned copied,
2188 struct page *page, void *fsdata)
2190 struct inode *inode = mapping->host;
2193 start = pos & (PAGE_SIZE - 1);
2195 if (unlikely(copied < len)) {
2197 * The buffers that were written will now be uptodate, so
2198 * we don't have to worry about a read_folio reading them
2199 * and overwriting a partial write. However if we have
2200 * encountered a short write and only partially written
2201 * into a buffer, it will not be marked uptodate, so a
2202 * read_folio might come in and destroy our partial write.
2204 * Do the simplest thing, and just treat any short write to a
2205 * non uptodate page as a zero-length write, and force the
2206 * caller to redo the whole thing.
2208 if (!PageUptodate(page))
2211 page_zero_new_buffers(page, start+copied, start+len);
2213 flush_dcache_page(page);
2215 /* This could be a short (even 0-length) commit */
2216 __block_commit_write(inode, page, start, start+copied);
2220 EXPORT_SYMBOL(block_write_end);
2222 int generic_write_end(struct file *file, struct address_space *mapping,
2223 loff_t pos, unsigned len, unsigned copied,
2224 struct page *page, void *fsdata)
2226 struct inode *inode = mapping->host;
2227 loff_t old_size = inode->i_size;
2228 bool i_size_changed = false;
2230 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2233 * No need to use i_size_read() here, the i_size cannot change under us
2234 * because we hold i_rwsem.
2236 * But it's important to update i_size while still holding page lock:
2237 * page writeout could otherwise come in and zero beyond i_size.
2239 if (pos + copied > inode->i_size) {
2240 i_size_write(inode, pos + copied);
2241 i_size_changed = true;
2248 pagecache_isize_extended(inode, old_size, pos);
2250 * Don't mark the inode dirty under page lock. First, it unnecessarily
2251 * makes the holding time of page lock longer. Second, it forces lock
2252 * ordering of page lock and transaction start for journaling
2256 mark_inode_dirty(inode);
2259 EXPORT_SYMBOL(generic_write_end);
2262 * block_is_partially_uptodate checks whether buffers within a folio are
2265 * Returns true if all buffers which correspond to the specified part
2266 * of the folio are uptodate.
2268 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2270 unsigned block_start, block_end, blocksize;
2272 struct buffer_head *bh, *head;
2275 head = folio_buffers(folio);
2278 blocksize = head->b_size;
2279 to = min_t(unsigned, folio_size(folio) - from, count);
2281 if (from < blocksize && to > folio_size(folio) - blocksize)
2287 block_end = block_start + blocksize;
2288 if (block_end > from && block_start < to) {
2289 if (!buffer_uptodate(bh)) {
2293 if (block_end >= to)
2296 block_start = block_end;
2297 bh = bh->b_this_page;
2298 } while (bh != head);
2302 EXPORT_SYMBOL(block_is_partially_uptodate);
2305 * Generic "read_folio" function for block devices that have the normal
2306 * get_block functionality. This is most of the block device filesystems.
2307 * Reads the folio asynchronously --- the unlock_buffer() and
2308 * set/clear_buffer_uptodate() functions propagate buffer state into the
2309 * folio once IO has completed.
2311 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2313 struct inode *inode = folio->mapping->host;
2314 sector_t iblock, lblock;
2315 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2316 unsigned int blocksize, bbits;
2318 int fully_mapped = 1;
2319 bool page_error = false;
2320 loff_t limit = i_size_read(inode);
2322 /* This is needed for ext4. */
2323 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2324 limit = inode->i_sb->s_maxbytes;
2326 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2328 head = folio_create_buffers(folio, inode, 0);
2329 blocksize = head->b_size;
2330 bbits = block_size_bits(blocksize);
2332 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2333 lblock = (limit+blocksize-1) >> bbits;
2339 if (buffer_uptodate(bh))
2342 if (!buffer_mapped(bh)) {
2346 if (iblock < lblock) {
2347 WARN_ON(bh->b_size != blocksize);
2348 err = get_block(inode, iblock, bh, 0);
2350 folio_set_error(folio);
2354 if (!buffer_mapped(bh)) {
2355 folio_zero_range(folio, i * blocksize,
2358 set_buffer_uptodate(bh);
2362 * get_block() might have updated the buffer
2365 if (buffer_uptodate(bh))
2369 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2372 folio_set_mappedtodisk(folio);
2376 * All buffers are uptodate - we can set the folio uptodate
2377 * as well. But not if get_block() returned an error.
2380 folio_mark_uptodate(folio);
2381 folio_unlock(folio);
2385 /* Stage two: lock the buffers */
2386 for (i = 0; i < nr; i++) {
2389 mark_buffer_async_read(bh);
2393 * Stage 3: start the IO. Check for uptodateness
2394 * inside the buffer lock in case another process reading
2395 * the underlying blockdev brought it uptodate (the sct fix).
2397 for (i = 0; i < nr; i++) {
2399 if (buffer_uptodate(bh))
2400 end_buffer_async_read(bh, 1);
2402 submit_bh(REQ_OP_READ, bh);
2406 EXPORT_SYMBOL(block_read_full_folio);
2408 /* utility function for filesystems that need to do work on expanding
2409 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2410 * deal with the hole.
2412 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2414 struct address_space *mapping = inode->i_mapping;
2415 const struct address_space_operations *aops = mapping->a_ops;
2417 void *fsdata = NULL;
2420 err = inode_newsize_ok(inode, size);
2424 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2428 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2434 EXPORT_SYMBOL(generic_cont_expand_simple);
2436 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2437 loff_t pos, loff_t *bytes)
2439 struct inode *inode = mapping->host;
2440 const struct address_space_operations *aops = mapping->a_ops;
2441 unsigned int blocksize = i_blocksize(inode);
2443 void *fsdata = NULL;
2444 pgoff_t index, curidx;
2446 unsigned zerofrom, offset, len;
2449 index = pos >> PAGE_SHIFT;
2450 offset = pos & ~PAGE_MASK;
2452 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2453 zerofrom = curpos & ~PAGE_MASK;
2454 if (zerofrom & (blocksize-1)) {
2455 *bytes |= (blocksize-1);
2458 len = PAGE_SIZE - zerofrom;
2460 err = aops->write_begin(file, mapping, curpos, len,
2464 zero_user(page, zerofrom, len);
2465 err = aops->write_end(file, mapping, curpos, len, len,
2472 balance_dirty_pages_ratelimited(mapping);
2474 if (fatal_signal_pending(current)) {
2480 /* page covers the boundary, find the boundary offset */
2481 if (index == curidx) {
2482 zerofrom = curpos & ~PAGE_MASK;
2483 /* if we will expand the thing last block will be filled */
2484 if (offset <= zerofrom) {
2487 if (zerofrom & (blocksize-1)) {
2488 *bytes |= (blocksize-1);
2491 len = offset - zerofrom;
2493 err = aops->write_begin(file, mapping, curpos, len,
2497 zero_user(page, zerofrom, len);
2498 err = aops->write_end(file, mapping, curpos, len, len,
2510 * For moronic filesystems that do not allow holes in file.
2511 * We may have to extend the file.
2513 int cont_write_begin(struct file *file, struct address_space *mapping,
2514 loff_t pos, unsigned len,
2515 struct page **pagep, void **fsdata,
2516 get_block_t *get_block, loff_t *bytes)
2518 struct inode *inode = mapping->host;
2519 unsigned int blocksize = i_blocksize(inode);
2520 unsigned int zerofrom;
2523 err = cont_expand_zero(file, mapping, pos, bytes);
2527 zerofrom = *bytes & ~PAGE_MASK;
2528 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2529 *bytes |= (blocksize-1);
2533 return block_write_begin(mapping, pos, len, pagep, get_block);
2535 EXPORT_SYMBOL(cont_write_begin);
2537 int block_commit_write(struct page *page, unsigned from, unsigned to)
2539 struct inode *inode = page->mapping->host;
2540 __block_commit_write(inode,page,from,to);
2543 EXPORT_SYMBOL(block_commit_write);
2546 * block_page_mkwrite() is not allowed to change the file size as it gets
2547 * called from a page fault handler when a page is first dirtied. Hence we must
2548 * be careful to check for EOF conditions here. We set the page up correctly
2549 * for a written page which means we get ENOSPC checking when writing into
2550 * holes and correct delalloc and unwritten extent mapping on filesystems that
2551 * support these features.
2553 * We are not allowed to take the i_mutex here so we have to play games to
2554 * protect against truncate races as the page could now be beyond EOF. Because
2555 * truncate writes the inode size before removing pages, once we have the
2556 * page lock we can determine safely if the page is beyond EOF. If it is not
2557 * beyond EOF, then the page is guaranteed safe against truncation until we
2560 * Direct callers of this function should protect against filesystem freezing
2561 * using sb_start_pagefault() - sb_end_pagefault() functions.
2563 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2564 get_block_t get_block)
2566 struct page *page = vmf->page;
2567 struct inode *inode = file_inode(vma->vm_file);
2573 size = i_size_read(inode);
2574 if ((page->mapping != inode->i_mapping) ||
2575 (page_offset(page) > size)) {
2576 /* We overload EFAULT to mean page got truncated */
2581 /* page is wholly or partially inside EOF */
2582 if (((page->index + 1) << PAGE_SHIFT) > size)
2583 end = size & ~PAGE_MASK;
2587 ret = __block_write_begin(page, 0, end, get_block);
2589 ret = block_commit_write(page, 0, end);
2591 if (unlikely(ret < 0))
2593 set_page_dirty(page);
2594 wait_for_stable_page(page);
2600 EXPORT_SYMBOL(block_page_mkwrite);
2602 int block_truncate_page(struct address_space *mapping,
2603 loff_t from, get_block_t *get_block)
2605 pgoff_t index = from >> PAGE_SHIFT;
2606 unsigned offset = from & (PAGE_SIZE-1);
2609 unsigned length, pos;
2610 struct inode *inode = mapping->host;
2612 struct buffer_head *bh;
2615 blocksize = i_blocksize(inode);
2616 length = offset & (blocksize - 1);
2618 /* Block boundary? Nothing to do */
2622 length = blocksize - length;
2623 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2625 page = grab_cache_page(mapping, index);
2629 if (!page_has_buffers(page))
2630 create_empty_buffers(page, blocksize, 0);
2632 /* Find the buffer that contains "offset" */
2633 bh = page_buffers(page);
2635 while (offset >= pos) {
2636 bh = bh->b_this_page;
2641 if (!buffer_mapped(bh)) {
2642 WARN_ON(bh->b_size != blocksize);
2643 err = get_block(inode, iblock, bh, 0);
2646 /* unmapped? It's a hole - nothing to do */
2647 if (!buffer_mapped(bh))
2651 /* Ok, it's mapped. Make sure it's up-to-date */
2652 if (PageUptodate(page))
2653 set_buffer_uptodate(bh);
2655 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2656 err = bh_read(bh, 0);
2657 /* Uhhuh. Read error. Complain and punt. */
2662 zero_user(page, offset, length);
2663 mark_buffer_dirty(bh);
2671 EXPORT_SYMBOL(block_truncate_page);
2674 * The generic ->writepage function for buffer-backed address_spaces
2676 int block_write_full_page(struct page *page, get_block_t *get_block,
2677 struct writeback_control *wbc)
2679 struct inode * const inode = page->mapping->host;
2680 loff_t i_size = i_size_read(inode);
2681 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2684 /* Is the page fully inside i_size? */
2685 if (page->index < end_index)
2686 return __block_write_full_page(inode, page, get_block, wbc,
2687 end_buffer_async_write);
2689 /* Is the page fully outside i_size? (truncate in progress) */
2690 offset = i_size & (PAGE_SIZE-1);
2691 if (page->index >= end_index+1 || !offset) {
2693 return 0; /* don't care */
2697 * The page straddles i_size. It must be zeroed out on each and every
2698 * writepage invocation because it may be mmapped. "A file is mapped
2699 * in multiples of the page size. For a file that is not a multiple of
2700 * the page size, the remaining memory is zeroed when mapped, and
2701 * writes to that region are not written out to the file."
2703 zero_user_segment(page, offset, PAGE_SIZE);
2704 return __block_write_full_page(inode, page, get_block, wbc,
2705 end_buffer_async_write);
2707 EXPORT_SYMBOL(block_write_full_page);
2709 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2710 get_block_t *get_block)
2712 struct inode *inode = mapping->host;
2713 struct buffer_head tmp = {
2714 .b_size = i_blocksize(inode),
2717 get_block(inode, block, &tmp, 0);
2718 return tmp.b_blocknr;
2720 EXPORT_SYMBOL(generic_block_bmap);
2722 static void end_bio_bh_io_sync(struct bio *bio)
2724 struct buffer_head *bh = bio->bi_private;
2726 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2727 set_bit(BH_Quiet, &bh->b_state);
2729 bh->b_end_io(bh, !bio->bi_status);
2733 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2734 struct writeback_control *wbc)
2736 const enum req_op op = opf & REQ_OP_MASK;
2739 BUG_ON(!buffer_locked(bh));
2740 BUG_ON(!buffer_mapped(bh));
2741 BUG_ON(!bh->b_end_io);
2742 BUG_ON(buffer_delay(bh));
2743 BUG_ON(buffer_unwritten(bh));
2746 * Only clear out a write error when rewriting
2748 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2749 clear_buffer_write_io_error(bh);
2751 if (buffer_meta(bh))
2753 if (buffer_prio(bh))
2756 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2758 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2760 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2762 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2764 bio->bi_end_io = end_bio_bh_io_sync;
2765 bio->bi_private = bh;
2767 /* Take care of bh's that straddle the end of the device */
2771 wbc_init_bio(wbc, bio);
2772 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2778 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2780 submit_bh_wbc(opf, bh, NULL);
2782 EXPORT_SYMBOL(submit_bh);
2784 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2787 if (!test_clear_buffer_dirty(bh)) {
2791 bh->b_end_io = end_buffer_write_sync;
2793 submit_bh(REQ_OP_WRITE | op_flags, bh);
2795 EXPORT_SYMBOL(write_dirty_buffer);
2798 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2799 * and then start new I/O and then wait upon it. The caller must have a ref on
2802 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2804 WARN_ON(atomic_read(&bh->b_count) < 1);
2806 if (test_clear_buffer_dirty(bh)) {
2808 * The bh should be mapped, but it might not be if the
2809 * device was hot-removed. Not much we can do but fail the I/O.
2811 if (!buffer_mapped(bh)) {
2817 bh->b_end_io = end_buffer_write_sync;
2818 submit_bh(REQ_OP_WRITE | op_flags, bh);
2820 if (!buffer_uptodate(bh))
2827 EXPORT_SYMBOL(__sync_dirty_buffer);
2829 int sync_dirty_buffer(struct buffer_head *bh)
2831 return __sync_dirty_buffer(bh, REQ_SYNC);
2833 EXPORT_SYMBOL(sync_dirty_buffer);
2836 * try_to_free_buffers() checks if all the buffers on this particular folio
2837 * are unused, and releases them if so.
2839 * Exclusion against try_to_free_buffers may be obtained by either
2840 * locking the folio or by holding its mapping's private_lock.
2842 * If the folio is dirty but all the buffers are clean then we need to
2843 * be sure to mark the folio clean as well. This is because the folio
2844 * may be against a block device, and a later reattachment of buffers
2845 * to a dirty folio will set *all* buffers dirty. Which would corrupt
2846 * filesystem data on the same device.
2848 * The same applies to regular filesystem folios: if all the buffers are
2849 * clean then we set the folio clean and proceed. To do that, we require
2850 * total exclusion from block_dirty_folio(). That is obtained with
2853 * try_to_free_buffers() is non-blocking.
2855 static inline int buffer_busy(struct buffer_head *bh)
2857 return atomic_read(&bh->b_count) |
2858 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2862 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2864 struct buffer_head *head = folio_buffers(folio);
2865 struct buffer_head *bh;
2869 if (buffer_busy(bh))
2871 bh = bh->b_this_page;
2872 } while (bh != head);
2875 struct buffer_head *next = bh->b_this_page;
2877 if (bh->b_assoc_map)
2878 __remove_assoc_queue(bh);
2880 } while (bh != head);
2881 *buffers_to_free = head;
2882 folio_detach_private(folio);
2888 bool try_to_free_buffers(struct folio *folio)
2890 struct address_space * const mapping = folio->mapping;
2891 struct buffer_head *buffers_to_free = NULL;
2894 BUG_ON(!folio_test_locked(folio));
2895 if (folio_test_writeback(folio))
2898 if (mapping == NULL) { /* can this still happen? */
2899 ret = drop_buffers(folio, &buffers_to_free);
2903 spin_lock(&mapping->private_lock);
2904 ret = drop_buffers(folio, &buffers_to_free);
2907 * If the filesystem writes its buffers by hand (eg ext3)
2908 * then we can have clean buffers against a dirty folio. We
2909 * clean the folio here; otherwise the VM will never notice
2910 * that the filesystem did any IO at all.
2912 * Also, during truncate, discard_buffer will have marked all
2913 * the folio's buffers clean. We discover that here and clean
2916 * private_lock must be held over this entire operation in order
2917 * to synchronise against block_dirty_folio and prevent the
2918 * dirty bit from being lost.
2921 folio_cancel_dirty(folio);
2922 spin_unlock(&mapping->private_lock);
2924 if (buffers_to_free) {
2925 struct buffer_head *bh = buffers_to_free;
2928 struct buffer_head *next = bh->b_this_page;
2929 free_buffer_head(bh);
2931 } while (bh != buffers_to_free);
2935 EXPORT_SYMBOL(try_to_free_buffers);
2938 * Buffer-head allocation
2940 static struct kmem_cache *bh_cachep __read_mostly;
2943 * Once the number of bh's in the machine exceeds this level, we start
2944 * stripping them in writeback.
2946 static unsigned long max_buffer_heads;
2948 int buffer_heads_over_limit;
2950 struct bh_accounting {
2951 int nr; /* Number of live bh's */
2952 int ratelimit; /* Limit cacheline bouncing */
2955 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2957 static void recalc_bh_state(void)
2962 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2964 __this_cpu_write(bh_accounting.ratelimit, 0);
2965 for_each_online_cpu(i)
2966 tot += per_cpu(bh_accounting, i).nr;
2967 buffer_heads_over_limit = (tot > max_buffer_heads);
2970 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2972 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2974 INIT_LIST_HEAD(&ret->b_assoc_buffers);
2975 spin_lock_init(&ret->b_uptodate_lock);
2977 __this_cpu_inc(bh_accounting.nr);
2983 EXPORT_SYMBOL(alloc_buffer_head);
2985 void free_buffer_head(struct buffer_head *bh)
2987 BUG_ON(!list_empty(&bh->b_assoc_buffers));
2988 kmem_cache_free(bh_cachep, bh);
2990 __this_cpu_dec(bh_accounting.nr);
2994 EXPORT_SYMBOL(free_buffer_head);
2996 static int buffer_exit_cpu_dead(unsigned int cpu)
2999 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3001 for (i = 0; i < BH_LRU_SIZE; i++) {
3005 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3006 per_cpu(bh_accounting, cpu).nr = 0;
3011 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3012 * @bh: struct buffer_head
3014 * Return true if the buffer is up-to-date and false,
3015 * with the buffer locked, if not.
3017 int bh_uptodate_or_lock(struct buffer_head *bh)
3019 if (!buffer_uptodate(bh)) {
3021 if (!buffer_uptodate(bh))
3027 EXPORT_SYMBOL(bh_uptodate_or_lock);
3030 * __bh_read - Submit read for a locked buffer
3031 * @bh: struct buffer_head
3032 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3033 * @wait: wait until reading finish
3035 * Returns zero on success or don't wait, and -EIO on error.
3037 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3041 BUG_ON(!buffer_locked(bh));
3044 bh->b_end_io = end_buffer_read_sync;
3045 submit_bh(REQ_OP_READ | op_flags, bh);
3048 if (!buffer_uptodate(bh))
3053 EXPORT_SYMBOL(__bh_read);
3056 * __bh_read_batch - Submit read for a batch of unlocked buffers
3057 * @nr: entry number of the buffer batch
3058 * @bhs: a batch of struct buffer_head
3059 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3060 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3061 * buffer that cannot lock.
3063 * Returns zero on success or don't wait, and -EIO on error.
3065 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3066 blk_opf_t op_flags, bool force_lock)
3070 for (i = 0; i < nr; i++) {
3071 struct buffer_head *bh = bhs[i];
3073 if (buffer_uptodate(bh))
3079 if (!trylock_buffer(bh))
3082 if (buffer_uptodate(bh)) {
3087 bh->b_end_io = end_buffer_read_sync;
3089 submit_bh(REQ_OP_READ | op_flags, bh);
3092 EXPORT_SYMBOL(__bh_read_batch);
3094 void __init buffer_init(void)
3096 unsigned long nrpages;
3099 bh_cachep = kmem_cache_create("buffer_head",
3100 sizeof(struct buffer_head), 0,
3101 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3106 * Limit the bh occupancy to 10% of ZONE_NORMAL
3108 nrpages = (nr_free_buffer_pages() * 10) / 100;
3109 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3110 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3111 NULL, buffer_exit_cpu_dead);