1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
26 #include <linux/iomap.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 struct writeback_control *wbc);
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60 inline void touch_buffer(struct buffer_head *bh)
62 trace_block_touch_buffer(bh);
63 mark_page_accessed(bh->b_page);
65 EXPORT_SYMBOL(touch_buffer);
67 void __lock_buffer(struct buffer_head *bh)
69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 EXPORT_SYMBOL(__lock_buffer);
73 void unlock_buffer(struct buffer_head *bh)
75 clear_bit_unlock(BH_Lock, &bh->b_state);
76 smp_mb__after_atomic();
77 wake_up_bit(&bh->b_state, BH_Lock);
79 EXPORT_SYMBOL(unlock_buffer);
82 * Returns if the page has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the PageDirty information is stale. If
84 * any of the pages are locked, it is assumed they are locked for IO.
86 void buffer_check_dirty_writeback(struct page *page,
87 bool *dirty, bool *writeback)
89 struct buffer_head *head, *bh;
93 BUG_ON(!PageLocked(page));
95 if (!page_has_buffers(page))
98 if (PageWriteback(page))
101 head = page_buffers(page);
104 if (buffer_locked(bh))
107 if (buffer_dirty(bh))
110 bh = bh->b_this_page;
111 } while (bh != head);
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
120 void __wait_on_buffer(struct buffer_head * bh)
122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 EXPORT_SYMBOL(__wait_on_buffer);
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 if (!test_bit(BH_Quiet, &bh->b_state))
129 printk_ratelimited(KERN_ERR
130 "Buffer I/O error on dev %pg, logical block %llu%s\n",
131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
135 * End-of-IO handler helper function which does not touch the bh after
137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138 * a race there is benign: unlock_buffer() only use the bh's address for
139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
145 set_buffer_uptodate(bh);
147 /* This happens, due to failed read-ahead attempts. */
148 clear_buffer_uptodate(bh);
154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
155 * unlock the buffer. This is what ll_rw_block uses too.
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 __end_buffer_read_notouch(bh, uptodate);
162 EXPORT_SYMBOL(end_buffer_read_sync);
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
167 set_buffer_uptodate(bh);
169 buffer_io_error(bh, ", lost sync page write");
170 mark_buffer_write_io_error(bh);
171 clear_buffer_uptodate(bh);
176 EXPORT_SYMBOL(end_buffer_write_sync);
179 * Various filesystems appear to want __find_get_block to be non-blocking.
180 * But it's the page lock which protects the buffers. To get around this,
181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
184 * Hack idea: for the blockdev mapping, private_lock contention
185 * may be quite high. This code could TryLock the page, and if that
186 * succeeds, there is no need to take private_lock.
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 struct inode *bd_inode = bdev->bd_inode;
192 struct address_space *bd_mapping = bd_inode->i_mapping;
193 struct buffer_head *ret = NULL;
195 struct buffer_head *bh;
196 struct buffer_head *head;
199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
206 spin_lock(&bd_mapping->private_lock);
207 if (!page_has_buffers(page))
209 head = page_buffers(page);
212 if (!buffer_mapped(bh))
214 else if (bh->b_blocknr == block) {
219 bh = bh->b_this_page;
220 } while (bh != head);
222 /* we might be here because some of the buffers on this page are
223 * not mapped. This is due to various races between
224 * file io on the block device and getblk. It gets dealt with
225 * elsewhere, don't buffer_error if we had some unmapped buffers
227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 if (all_mapped && __ratelimit(&last_warned)) {
229 printk("__find_get_block_slow() failed. block=%llu, "
230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 "device %pg blocksize: %d\n",
232 (unsigned long long)block,
233 (unsigned long long)bh->b_blocknr,
234 bh->b_state, bh->b_size, bdev,
235 1 << bd_inode->i_blkbits);
238 spin_unlock(&bd_mapping->private_lock);
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
247 struct buffer_head *first;
248 struct buffer_head *tmp;
250 int page_uptodate = 1;
252 BUG_ON(!buffer_async_read(bh));
256 set_buffer_uptodate(bh);
258 clear_buffer_uptodate(bh);
259 buffer_io_error(bh, ", async page read");
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
268 first = page_buffers(page);
269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 clear_buffer_async_read(bh);
274 if (!buffer_uptodate(tmp))
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
280 tmp = tmp->b_this_page;
282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
285 * If none of the buffers had errors and they are all
286 * uptodate then we can set the page uptodate.
288 if (page_uptodate && !PageError(page))
289 SetPageUptodate(page);
294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
298 struct decrypt_bh_ctx {
299 struct work_struct work;
300 struct buffer_head *bh;
303 static void decrypt_bh(struct work_struct *work)
305 struct decrypt_bh_ctx *ctx =
306 container_of(work, struct decrypt_bh_ctx, work);
307 struct buffer_head *bh = ctx->bh;
310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
312 end_buffer_async_read(bh, err == 0);
317 * I/O completion handler for block_read_full_page() - pages
318 * which come unlocked at the end of I/O.
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
322 /* Decrypt if needed */
324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
328 INIT_WORK(&ctx->work, decrypt_bh);
330 fscrypt_enqueue_decrypt_work(&ctx->work);
335 end_buffer_async_read(bh, uptodate);
339 * Completion handler for block_write_full_page() - pages which are unlocked
340 * during I/O, and which have PageWriteback cleared upon I/O completion.
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
345 struct buffer_head *first;
346 struct buffer_head *tmp;
349 BUG_ON(!buffer_async_write(bh));
353 set_buffer_uptodate(bh);
355 buffer_io_error(bh, ", lost async page write");
356 mark_buffer_write_io_error(bh);
357 clear_buffer_uptodate(bh);
361 first = page_buffers(page);
362 spin_lock_irqsave(&first->b_uptodate_lock, flags);
364 clear_buffer_async_write(bh);
366 tmp = bh->b_this_page;
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
372 tmp = tmp->b_this_page;
374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375 end_page_writeback(page);
379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
382 EXPORT_SYMBOL(end_buffer_async_write);
385 * If a page's buffers are under async readin (end_buffer_async_read
386 * completion) then there is a possibility that another thread of
387 * control could lock one of the buffers after it has completed
388 * but while some of the other buffers have not completed. This
389 * locked buffer would confuse end_buffer_async_read() into not unlocking
390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
391 * that this buffer is not under async I/O.
393 * The page comes unlocked when it has no locked buffer_async buffers
396 * PageLocked prevents anyone starting new async I/O reads any of
399 * PageWriteback is used to prevent simultaneous writeout of the same
402 * PageLocked prevents anyone from starting writeback of a page which is
403 * under read I/O (PageWriteback is only ever set against a locked page).
405 static void mark_buffer_async_read(struct buffer_head *bh)
407 bh->b_end_io = end_buffer_async_read_io;
408 set_buffer_async_read(bh);
411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412 bh_end_io_t *handler)
414 bh->b_end_io = handler;
415 set_buffer_async_write(bh);
418 void mark_buffer_async_write(struct buffer_head *bh)
420 mark_buffer_async_write_endio(bh, end_buffer_async_write);
422 EXPORT_SYMBOL(mark_buffer_async_write);
426 * fs/buffer.c contains helper functions for buffer-backed address space's
427 * fsync functions. A common requirement for buffer-based filesystems is
428 * that certain data from the backing blockdev needs to be written out for
429 * a successful fsync(). For example, ext2 indirect blocks need to be
430 * written back and waited upon before fsync() returns.
432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434 * management of a list of dependent buffers at ->i_mapping->private_list.
436 * Locking is a little subtle: try_to_free_buffers() will remove buffers
437 * from their controlling inode's queue when they are being freed. But
438 * try_to_free_buffers() will be operating against the *blockdev* mapping
439 * at the time, not against the S_ISREG file which depends on those buffers.
440 * So the locking for private_list is via the private_lock in the address_space
441 * which backs the buffers. Which is different from the address_space
442 * against which the buffers are listed. So for a particular address_space,
443 * mapping->private_lock does *not* protect mapping->private_list! In fact,
444 * mapping->private_list will always be protected by the backing blockdev's
447 * Which introduces a requirement: all buffers on an address_space's
448 * ->private_list must be from the same address_space: the blockdev's.
450 * address_spaces which do not place buffers at ->private_list via these
451 * utility functions are free to use private_lock and private_list for
452 * whatever they want. The only requirement is that list_empty(private_list)
453 * be true at clear_inode() time.
455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
456 * filesystems should do that. invalidate_inode_buffers() should just go
457 * BUG_ON(!list_empty).
459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
460 * take an address_space, not an inode. And it should be called
461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465 * list if it is already on a list. Because if the buffer is on a list,
466 * it *must* already be on the right one. If not, the filesystem is being
467 * silly. This will save a ton of locking. But first we have to ensure
468 * that buffers are taken *off* the old inode's list when they are freed
469 * (presumably in truncate). That requires careful auditing of all
470 * filesystems (do it inside bforget()). It could also be done by bringing
475 * The buffer's backing address_space's private_lock must be held
477 static void __remove_assoc_queue(struct buffer_head *bh)
479 list_del_init(&bh->b_assoc_buffers);
480 WARN_ON(!bh->b_assoc_map);
481 bh->b_assoc_map = NULL;
484 int inode_has_buffers(struct inode *inode)
486 return !list_empty(&inode->i_data.private_list);
490 * osync is designed to support O_SYNC io. It waits synchronously for
491 * all already-submitted IO to complete, but does not queue any new
492 * writes to the disk.
494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495 * you dirty the buffers, and then use osync_inode_buffers to wait for
496 * completion. Any other dirty buffers which are not yet queued for
497 * write will not be flushed to disk by the osync.
499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
501 struct buffer_head *bh;
507 list_for_each_prev(p, list) {
509 if (buffer_locked(bh)) {
513 if (!buffer_uptodate(bh))
524 void emergency_thaw_bdev(struct super_block *sb)
526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532 * @mapping: the mapping which wants those buffers written
534 * Starts I/O against the buffers at mapping->private_list, and waits upon
537 * Basically, this is a convenience function for fsync().
538 * @mapping is a file or directory which needs those buffers to be written for
539 * a successful fsync().
541 int sync_mapping_buffers(struct address_space *mapping)
543 struct address_space *buffer_mapping = mapping->private_data;
545 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
548 return fsync_buffers_list(&buffer_mapping->private_lock,
549 &mapping->private_list);
551 EXPORT_SYMBOL(sync_mapping_buffers);
554 * Called when we've recently written block `bblock', and it is known that
555 * `bblock' was for a buffer_boundary() buffer. This means that the block at
556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
557 * dirty, schedule it for IO. So that indirects merge nicely with their data.
559 void write_boundary_block(struct block_device *bdev,
560 sector_t bblock, unsigned blocksize)
562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
564 if (buffer_dirty(bh))
565 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
572 struct address_space *mapping = inode->i_mapping;
573 struct address_space *buffer_mapping = bh->b_page->mapping;
575 mark_buffer_dirty(bh);
576 if (!mapping->private_data) {
577 mapping->private_data = buffer_mapping;
579 BUG_ON(mapping->private_data != buffer_mapping);
581 if (!bh->b_assoc_map) {
582 spin_lock(&buffer_mapping->private_lock);
583 list_move_tail(&bh->b_assoc_buffers,
584 &mapping->private_list);
585 bh->b_assoc_map = mapping;
586 spin_unlock(&buffer_mapping->private_lock);
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
592 * Add a page to the dirty page list.
594 * It is a sad fact of life that this function is called from several places
595 * deeply under spinlocking. It may not sleep.
597 * If the page has buffers, the uptodate buffers are set dirty, to preserve
598 * dirty-state coherency between the page and the buffers. It the page does
599 * not have buffers then when they are later attached they will all be set
602 * The buffers are dirtied before the page is dirtied. There's a small race
603 * window in which a writepage caller may see the page cleanness but not the
604 * buffer dirtiness. That's fine. If this code were to set the page dirty
605 * before the buffers, a concurrent writepage caller could clear the page dirty
606 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
607 * page on the dirty page list.
609 * We use private_lock to lock against try_to_free_buffers while using the
610 * page's buffer list. Also use this to protect against clean buffers being
611 * added to the page after it was set dirty.
613 * FIXME: may need to call ->reservepage here as well. That's rather up to the
614 * address_space though.
616 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
618 struct buffer_head *head;
621 spin_lock(&mapping->private_lock);
622 head = folio_buffers(folio);
624 struct buffer_head *bh = head;
627 set_buffer_dirty(bh);
628 bh = bh->b_this_page;
629 } while (bh != head);
632 * Lock out page's memcg migration to keep PageDirty
633 * synchronized with per-memcg dirty page counters.
635 folio_memcg_lock(folio);
636 newly_dirty = !folio_test_set_dirty(folio);
637 spin_unlock(&mapping->private_lock);
640 __folio_mark_dirty(folio, mapping, 1);
642 folio_memcg_unlock(folio);
645 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
649 EXPORT_SYMBOL(block_dirty_folio);
652 * Write out and wait upon a list of buffers.
654 * We have conflicting pressures: we want to make sure that all
655 * initially dirty buffers get waited on, but that any subsequently
656 * dirtied buffers don't. After all, we don't want fsync to last
657 * forever if somebody is actively writing to the file.
659 * Do this in two main stages: first we copy dirty buffers to a
660 * temporary inode list, queueing the writes as we go. Then we clean
661 * up, waiting for those writes to complete.
663 * During this second stage, any subsequent updates to the file may end
664 * up refiling the buffer on the original inode's dirty list again, so
665 * there is a chance we will end up with a buffer queued for write but
666 * not yet completed on that list. So, as a final cleanup we go through
667 * the osync code to catch these locked, dirty buffers without requeuing
668 * any newly dirty buffers for write.
670 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
672 struct buffer_head *bh;
673 struct list_head tmp;
674 struct address_space *mapping;
676 struct blk_plug plug;
678 INIT_LIST_HEAD(&tmp);
679 blk_start_plug(&plug);
682 while (!list_empty(list)) {
683 bh = BH_ENTRY(list->next);
684 mapping = bh->b_assoc_map;
685 __remove_assoc_queue(bh);
686 /* Avoid race with mark_buffer_dirty_inode() which does
687 * a lockless check and we rely on seeing the dirty bit */
689 if (buffer_dirty(bh) || buffer_locked(bh)) {
690 list_add(&bh->b_assoc_buffers, &tmp);
691 bh->b_assoc_map = mapping;
692 if (buffer_dirty(bh)) {
696 * Ensure any pending I/O completes so that
697 * write_dirty_buffer() actually writes the
698 * current contents - it is a noop if I/O is
699 * still in flight on potentially older
702 write_dirty_buffer(bh, REQ_SYNC);
705 * Kick off IO for the previous mapping. Note
706 * that we will not run the very last mapping,
707 * wait_on_buffer() will do that for us
708 * through sync_buffer().
717 blk_finish_plug(&plug);
720 while (!list_empty(&tmp)) {
721 bh = BH_ENTRY(tmp.prev);
723 mapping = bh->b_assoc_map;
724 __remove_assoc_queue(bh);
725 /* Avoid race with mark_buffer_dirty_inode() which does
726 * a lockless check and we rely on seeing the dirty bit */
728 if (buffer_dirty(bh)) {
729 list_add(&bh->b_assoc_buffers,
730 &mapping->private_list);
731 bh->b_assoc_map = mapping;
735 if (!buffer_uptodate(bh))
742 err2 = osync_buffers_list(lock, list);
750 * Invalidate any and all dirty buffers on a given inode. We are
751 * probably unmounting the fs, but that doesn't mean we have already
752 * done a sync(). Just drop the buffers from the inode list.
754 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
755 * assumes that all the buffers are against the blockdev. Not true
758 void invalidate_inode_buffers(struct inode *inode)
760 if (inode_has_buffers(inode)) {
761 struct address_space *mapping = &inode->i_data;
762 struct list_head *list = &mapping->private_list;
763 struct address_space *buffer_mapping = mapping->private_data;
765 spin_lock(&buffer_mapping->private_lock);
766 while (!list_empty(list))
767 __remove_assoc_queue(BH_ENTRY(list->next));
768 spin_unlock(&buffer_mapping->private_lock);
771 EXPORT_SYMBOL(invalidate_inode_buffers);
774 * Remove any clean buffers from the inode's buffer list. This is called
775 * when we're trying to free the inode itself. Those buffers can pin it.
777 * Returns true if all buffers were removed.
779 int remove_inode_buffers(struct inode *inode)
783 if (inode_has_buffers(inode)) {
784 struct address_space *mapping = &inode->i_data;
785 struct list_head *list = &mapping->private_list;
786 struct address_space *buffer_mapping = mapping->private_data;
788 spin_lock(&buffer_mapping->private_lock);
789 while (!list_empty(list)) {
790 struct buffer_head *bh = BH_ENTRY(list->next);
791 if (buffer_dirty(bh)) {
795 __remove_assoc_queue(bh);
797 spin_unlock(&buffer_mapping->private_lock);
803 * Create the appropriate buffers when given a page for data area and
804 * the size of each buffer.. Use the bh->b_this_page linked list to
805 * follow the buffers created. Return NULL if unable to create more
808 * The retry flag is used to differentiate async IO (paging, swapping)
809 * which may not fail from ordinary buffer allocations.
811 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
814 struct buffer_head *bh, *head;
815 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
817 struct mem_cgroup *memcg, *old_memcg;
822 /* The page lock pins the memcg */
823 memcg = page_memcg(page);
824 old_memcg = set_active_memcg(memcg);
828 while ((offset -= size) >= 0) {
829 bh = alloc_buffer_head(gfp);
833 bh->b_this_page = head;
839 /* Link the buffer to its page */
840 set_bh_page(bh, page, offset);
843 set_active_memcg(old_memcg);
846 * In case anything failed, we just free everything we got.
852 head = head->b_this_page;
853 free_buffer_head(bh);
859 EXPORT_SYMBOL_GPL(alloc_page_buffers);
862 link_dev_buffers(struct page *page, struct buffer_head *head)
864 struct buffer_head *bh, *tail;
869 bh = bh->b_this_page;
871 tail->b_this_page = head;
872 attach_page_private(page, head);
875 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
877 sector_t retval = ~((sector_t)0);
878 loff_t sz = bdev_nr_bytes(bdev);
881 unsigned int sizebits = blksize_bits(size);
882 retval = (sz >> sizebits);
888 * Initialise the state of a blockdev page's buffers.
891 init_page_buffers(struct page *page, struct block_device *bdev,
892 sector_t block, int size)
894 struct buffer_head *head = page_buffers(page);
895 struct buffer_head *bh = head;
896 int uptodate = PageUptodate(page);
897 sector_t end_block = blkdev_max_block(bdev, size);
900 if (!buffer_mapped(bh)) {
902 bh->b_private = NULL;
904 bh->b_blocknr = block;
906 set_buffer_uptodate(bh);
907 if (block < end_block)
908 set_buffer_mapped(bh);
911 bh = bh->b_this_page;
912 } while (bh != head);
915 * Caller needs to validate requested block against end of device.
921 * Create the page-cache page that contains the requested block.
923 * This is used purely for blockdev mappings.
926 grow_dev_page(struct block_device *bdev, sector_t block,
927 pgoff_t index, int size, int sizebits, gfp_t gfp)
929 struct inode *inode = bdev->bd_inode;
931 struct buffer_head *bh;
936 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
939 * XXX: __getblk_slow() can not really deal with failure and
940 * will endlessly loop on improvised global reclaim. Prefer
941 * looping in the allocator rather than here, at least that
942 * code knows what it's doing.
944 gfp_mask |= __GFP_NOFAIL;
946 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
948 BUG_ON(!PageLocked(page));
950 if (page_has_buffers(page)) {
951 bh = page_buffers(page);
952 if (bh->b_size == size) {
953 end_block = init_page_buffers(page, bdev,
954 (sector_t)index << sizebits,
958 if (!try_to_free_buffers(page))
963 * Allocate some buffers for this page
965 bh = alloc_page_buffers(page, size, true);
968 * Link the page to the buffers and initialise them. Take the
969 * lock to be atomic wrt __find_get_block(), which does not
970 * run under the page lock.
972 spin_lock(&inode->i_mapping->private_lock);
973 link_dev_buffers(page, bh);
974 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
976 spin_unlock(&inode->i_mapping->private_lock);
978 ret = (block < end_block) ? 1 : -ENXIO;
986 * Create buffers for the specified block device block's page. If
987 * that page was dirty, the buffers are set dirty also.
990 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
995 sizebits = PAGE_SHIFT - __ffs(size);
996 index = block >> sizebits;
999 * Check for a block which wants to lie outside our maximum possible
1000 * pagecache index. (this comparison is done using sector_t types).
1002 if (unlikely(index != block >> sizebits)) {
1003 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1005 __func__, (unsigned long long)block,
1010 /* Create a page with the proper size buffers.. */
1011 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1014 static struct buffer_head *
1015 __getblk_slow(struct block_device *bdev, sector_t block,
1016 unsigned size, gfp_t gfp)
1018 /* Size must be multiple of hard sectorsize */
1019 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1020 (size < 512 || size > PAGE_SIZE))) {
1021 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1023 printk(KERN_ERR "logical block size: %d\n",
1024 bdev_logical_block_size(bdev));
1031 struct buffer_head *bh;
1034 bh = __find_get_block(bdev, block, size);
1038 ret = grow_buffers(bdev, block, size, gfp);
1045 * The relationship between dirty buffers and dirty pages:
1047 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1048 * the page is tagged dirty in the page cache.
1050 * At all times, the dirtiness of the buffers represents the dirtiness of
1051 * subsections of the page. If the page has buffers, the page dirty bit is
1052 * merely a hint about the true dirty state.
1054 * When a page is set dirty in its entirety, all its buffers are marked dirty
1055 * (if the page has buffers).
1057 * When a buffer is marked dirty, its page is dirtied, but the page's other
1060 * Also. When blockdev buffers are explicitly read with bread(), they
1061 * individually become uptodate. But their backing page remains not
1062 * uptodate - even if all of its buffers are uptodate. A subsequent
1063 * block_read_full_page() against that page will discover all the uptodate
1064 * buffers, will set the page uptodate and will perform no I/O.
1068 * mark_buffer_dirty - mark a buffer_head as needing writeout
1069 * @bh: the buffer_head to mark dirty
1071 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1072 * its backing page dirty, then tag the page as dirty in the page cache
1073 * and then attach the address_space's inode to its superblock's dirty
1076 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1077 * i_pages lock and mapping->host->i_lock.
1079 void mark_buffer_dirty(struct buffer_head *bh)
1081 WARN_ON_ONCE(!buffer_uptodate(bh));
1083 trace_block_dirty_buffer(bh);
1086 * Very *carefully* optimize the it-is-already-dirty case.
1088 * Don't let the final "is it dirty" escape to before we
1089 * perhaps modified the buffer.
1091 if (buffer_dirty(bh)) {
1093 if (buffer_dirty(bh))
1097 if (!test_set_buffer_dirty(bh)) {
1098 struct page *page = bh->b_page;
1099 struct address_space *mapping = NULL;
1101 lock_page_memcg(page);
1102 if (!TestSetPageDirty(page)) {
1103 mapping = page_mapping(page);
1105 __set_page_dirty(page, mapping, 0);
1107 unlock_page_memcg(page);
1109 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1112 EXPORT_SYMBOL(mark_buffer_dirty);
1114 void mark_buffer_write_io_error(struct buffer_head *bh)
1116 struct super_block *sb;
1118 set_buffer_write_io_error(bh);
1119 /* FIXME: do we need to set this in both places? */
1120 if (bh->b_page && bh->b_page->mapping)
1121 mapping_set_error(bh->b_page->mapping, -EIO);
1122 if (bh->b_assoc_map)
1123 mapping_set_error(bh->b_assoc_map, -EIO);
1125 sb = READ_ONCE(bh->b_bdev->bd_super);
1127 errseq_set(&sb->s_wb_err, -EIO);
1130 EXPORT_SYMBOL(mark_buffer_write_io_error);
1133 * Decrement a buffer_head's reference count. If all buffers against a page
1134 * have zero reference count, are clean and unlocked, and if the page is clean
1135 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1136 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1137 * a page but it ends up not being freed, and buffers may later be reattached).
1139 void __brelse(struct buffer_head * buf)
1141 if (atomic_read(&buf->b_count)) {
1145 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1147 EXPORT_SYMBOL(__brelse);
1150 * bforget() is like brelse(), except it discards any
1151 * potentially dirty data.
1153 void __bforget(struct buffer_head *bh)
1155 clear_buffer_dirty(bh);
1156 if (bh->b_assoc_map) {
1157 struct address_space *buffer_mapping = bh->b_page->mapping;
1159 spin_lock(&buffer_mapping->private_lock);
1160 list_del_init(&bh->b_assoc_buffers);
1161 bh->b_assoc_map = NULL;
1162 spin_unlock(&buffer_mapping->private_lock);
1166 EXPORT_SYMBOL(__bforget);
1168 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1171 if (buffer_uptodate(bh)) {
1176 bh->b_end_io = end_buffer_read_sync;
1177 submit_bh(REQ_OP_READ, 0, bh);
1179 if (buffer_uptodate(bh))
1187 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1188 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1189 * refcount elevated by one when they're in an LRU. A buffer can only appear
1190 * once in a particular CPU's LRU. A single buffer can be present in multiple
1191 * CPU's LRUs at the same time.
1193 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1194 * sb_find_get_block().
1196 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1197 * a local interrupt disable for that.
1200 #define BH_LRU_SIZE 16
1203 struct buffer_head *bhs[BH_LRU_SIZE];
1206 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1209 #define bh_lru_lock() local_irq_disable()
1210 #define bh_lru_unlock() local_irq_enable()
1212 #define bh_lru_lock() preempt_disable()
1213 #define bh_lru_unlock() preempt_enable()
1216 static inline void check_irqs_on(void)
1218 #ifdef irqs_disabled
1219 BUG_ON(irqs_disabled());
1224 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1225 * inserted at the front, and the buffer_head at the back if any is evicted.
1226 * Or, if already in the LRU it is moved to the front.
1228 static void bh_lru_install(struct buffer_head *bh)
1230 struct buffer_head *evictee = bh;
1238 * the refcount of buffer_head in bh_lru prevents dropping the
1239 * attached page(i.e., try_to_free_buffers) so it could cause
1240 * failing page migration.
1241 * Skip putting upcoming bh into bh_lru until migration is done.
1243 if (lru_cache_disabled()) {
1248 b = this_cpu_ptr(&bh_lrus);
1249 for (i = 0; i < BH_LRU_SIZE; i++) {
1250 swap(evictee, b->bhs[i]);
1251 if (evictee == bh) {
1263 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1265 static struct buffer_head *
1266 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1268 struct buffer_head *ret = NULL;
1273 for (i = 0; i < BH_LRU_SIZE; i++) {
1274 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1276 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1277 bh->b_size == size) {
1280 __this_cpu_write(bh_lrus.bhs[i],
1281 __this_cpu_read(bh_lrus.bhs[i - 1]));
1284 __this_cpu_write(bh_lrus.bhs[0], bh);
1296 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1297 * it in the LRU and mark it as accessed. If it is not present then return
1300 struct buffer_head *
1301 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1303 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1306 /* __find_get_block_slow will mark the page accessed */
1307 bh = __find_get_block_slow(bdev, block);
1315 EXPORT_SYMBOL(__find_get_block);
1318 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1319 * which corresponds to the passed block_device, block and size. The
1320 * returned buffer has its reference count incremented.
1322 * __getblk_gfp() will lock up the machine if grow_dev_page's
1323 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1325 struct buffer_head *
1326 __getblk_gfp(struct block_device *bdev, sector_t block,
1327 unsigned size, gfp_t gfp)
1329 struct buffer_head *bh = __find_get_block(bdev, block, size);
1333 bh = __getblk_slow(bdev, block, size, gfp);
1336 EXPORT_SYMBOL(__getblk_gfp);
1339 * Do async read-ahead on a buffer..
1341 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1343 struct buffer_head *bh = __getblk(bdev, block, size);
1345 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1349 EXPORT_SYMBOL(__breadahead);
1351 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1354 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1356 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1360 EXPORT_SYMBOL(__breadahead_gfp);
1363 * __bread_gfp() - reads a specified block and returns the bh
1364 * @bdev: the block_device to read from
1365 * @block: number of block
1366 * @size: size (in bytes) to read
1367 * @gfp: page allocation flag
1369 * Reads a specified block, and returns buffer head that contains it.
1370 * The page cache can be allocated from non-movable area
1371 * not to prevent page migration if you set gfp to zero.
1372 * It returns NULL if the block was unreadable.
1374 struct buffer_head *
1375 __bread_gfp(struct block_device *bdev, sector_t block,
1376 unsigned size, gfp_t gfp)
1378 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1380 if (likely(bh) && !buffer_uptodate(bh))
1381 bh = __bread_slow(bh);
1384 EXPORT_SYMBOL(__bread_gfp);
1386 static void __invalidate_bh_lrus(struct bh_lru *b)
1390 for (i = 0; i < BH_LRU_SIZE; i++) {
1396 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1397 * This doesn't race because it runs in each cpu either in irq
1398 * or with preempt disabled.
1400 static void invalidate_bh_lru(void *arg)
1402 struct bh_lru *b = &get_cpu_var(bh_lrus);
1404 __invalidate_bh_lrus(b);
1405 put_cpu_var(bh_lrus);
1408 bool has_bh_in_lru(int cpu, void *dummy)
1410 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1413 for (i = 0; i < BH_LRU_SIZE; i++) {
1421 void invalidate_bh_lrus(void)
1423 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1425 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1428 * It's called from workqueue context so we need a bh_lru_lock to close
1429 * the race with preemption/irq.
1431 void invalidate_bh_lrus_cpu(void)
1436 b = this_cpu_ptr(&bh_lrus);
1437 __invalidate_bh_lrus(b);
1441 void set_bh_page(struct buffer_head *bh,
1442 struct page *page, unsigned long offset)
1445 BUG_ON(offset >= PAGE_SIZE);
1446 if (PageHighMem(page))
1448 * This catches illegal uses and preserves the offset:
1450 bh->b_data = (char *)(0 + offset);
1452 bh->b_data = page_address(page) + offset;
1454 EXPORT_SYMBOL(set_bh_page);
1457 * Called when truncating a buffer on a page completely.
1460 /* Bits that are cleared during an invalidate */
1461 #define BUFFER_FLAGS_DISCARD \
1462 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1463 1 << BH_Delay | 1 << BH_Unwritten)
1465 static void discard_buffer(struct buffer_head * bh)
1467 unsigned long b_state, b_state_old;
1470 clear_buffer_dirty(bh);
1472 b_state = bh->b_state;
1474 b_state_old = cmpxchg(&bh->b_state, b_state,
1475 (b_state & ~BUFFER_FLAGS_DISCARD));
1476 if (b_state_old == b_state)
1478 b_state = b_state_old;
1484 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1485 * @folio: The folio which is affected.
1486 * @offset: start of the range to invalidate
1487 * @length: length of the range to invalidate
1489 * block_invalidate_folio() is called when all or part of the folio has been
1490 * invalidated by a truncate operation.
1492 * block_invalidate_folio() does not have to release all buffers, but it must
1493 * ensure that no dirty buffer is left outside @offset and that no I/O
1494 * is underway against any of the blocks which are outside the truncation
1495 * point. Because the caller is about to free (and possibly reuse) those
1498 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1500 struct buffer_head *head, *bh, *next;
1501 size_t curr_off = 0;
1502 size_t stop = length + offset;
1504 BUG_ON(!folio_test_locked(folio));
1507 * Check for overflow
1509 BUG_ON(stop > folio_size(folio) || stop < length);
1511 head = folio_buffers(folio);
1517 size_t next_off = curr_off + bh->b_size;
1518 next = bh->b_this_page;
1521 * Are we still fully in range ?
1523 if (next_off > stop)
1527 * is this block fully invalidated?
1529 if (offset <= curr_off)
1531 curr_off = next_off;
1533 } while (bh != head);
1536 * We release buffers only if the entire folio is being invalidated.
1537 * The get_block cached value has been unconditionally invalidated,
1538 * so real IO is not possible anymore.
1540 if (length == folio_size(folio))
1541 filemap_release_folio(folio, 0);
1545 EXPORT_SYMBOL(block_invalidate_folio);
1549 * We attach and possibly dirty the buffers atomically wrt
1550 * block_dirty_folio() via private_lock. try_to_free_buffers
1551 * is already excluded via the page lock.
1553 void create_empty_buffers(struct page *page,
1554 unsigned long blocksize, unsigned long b_state)
1556 struct buffer_head *bh, *head, *tail;
1558 head = alloc_page_buffers(page, blocksize, true);
1561 bh->b_state |= b_state;
1563 bh = bh->b_this_page;
1565 tail->b_this_page = head;
1567 spin_lock(&page->mapping->private_lock);
1568 if (PageUptodate(page) || PageDirty(page)) {
1571 if (PageDirty(page))
1572 set_buffer_dirty(bh);
1573 if (PageUptodate(page))
1574 set_buffer_uptodate(bh);
1575 bh = bh->b_this_page;
1576 } while (bh != head);
1578 attach_page_private(page, head);
1579 spin_unlock(&page->mapping->private_lock);
1581 EXPORT_SYMBOL(create_empty_buffers);
1584 * clean_bdev_aliases: clean a range of buffers in block device
1585 * @bdev: Block device to clean buffers in
1586 * @block: Start of a range of blocks to clean
1587 * @len: Number of blocks to clean
1589 * We are taking a range of blocks for data and we don't want writeback of any
1590 * buffer-cache aliases starting from return from this function and until the
1591 * moment when something will explicitly mark the buffer dirty (hopefully that
1592 * will not happen until we will free that block ;-) We don't even need to mark
1593 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1594 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1595 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1596 * would confuse anyone who might pick it with bread() afterwards...
1598 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1599 * writeout I/O going on against recently-freed buffers. We don't wait on that
1600 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1601 * need to. That happens here.
1603 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1605 struct inode *bd_inode = bdev->bd_inode;
1606 struct address_space *bd_mapping = bd_inode->i_mapping;
1607 struct pagevec pvec;
1608 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1611 struct buffer_head *bh;
1612 struct buffer_head *head;
1614 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1615 pagevec_init(&pvec);
1616 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1617 count = pagevec_count(&pvec);
1618 for (i = 0; i < count; i++) {
1619 struct page *page = pvec.pages[i];
1621 if (!page_has_buffers(page))
1624 * We use page lock instead of bd_mapping->private_lock
1625 * to pin buffers here since we can afford to sleep and
1626 * it scales better than a global spinlock lock.
1629 /* Recheck when the page is locked which pins bhs */
1630 if (!page_has_buffers(page))
1632 head = page_buffers(page);
1635 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1637 if (bh->b_blocknr >= block + len)
1639 clear_buffer_dirty(bh);
1641 clear_buffer_req(bh);
1643 bh = bh->b_this_page;
1644 } while (bh != head);
1648 pagevec_release(&pvec);
1650 /* End of range already reached? */
1651 if (index > end || !index)
1655 EXPORT_SYMBOL(clean_bdev_aliases);
1658 * Size is a power-of-two in the range 512..PAGE_SIZE,
1659 * and the case we care about most is PAGE_SIZE.
1661 * So this *could* possibly be written with those
1662 * constraints in mind (relevant mostly if some
1663 * architecture has a slow bit-scan instruction)
1665 static inline int block_size_bits(unsigned int blocksize)
1667 return ilog2(blocksize);
1670 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1672 BUG_ON(!PageLocked(page));
1674 if (!page_has_buffers(page))
1675 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1677 return page_buffers(page);
1681 * NOTE! All mapped/uptodate combinations are valid:
1683 * Mapped Uptodate Meaning
1685 * No No "unknown" - must do get_block()
1686 * No Yes "hole" - zero-filled
1687 * Yes No "allocated" - allocated on disk, not read in
1688 * Yes Yes "valid" - allocated and up-to-date in memory.
1690 * "Dirty" is valid only with the last case (mapped+uptodate).
1694 * While block_write_full_page is writing back the dirty buffers under
1695 * the page lock, whoever dirtied the buffers may decide to clean them
1696 * again at any time. We handle that by only looking at the buffer
1697 * state inside lock_buffer().
1699 * If block_write_full_page() is called for regular writeback
1700 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1701 * locked buffer. This only can happen if someone has written the buffer
1702 * directly, with submit_bh(). At the address_space level PageWriteback
1703 * prevents this contention from occurring.
1705 * If block_write_full_page() is called with wbc->sync_mode ==
1706 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1707 * causes the writes to be flagged as synchronous writes.
1709 int __block_write_full_page(struct inode *inode, struct page *page,
1710 get_block_t *get_block, struct writeback_control *wbc,
1711 bh_end_io_t *handler)
1715 sector_t last_block;
1716 struct buffer_head *bh, *head;
1717 unsigned int blocksize, bbits;
1718 int nr_underway = 0;
1719 int write_flags = wbc_to_write_flags(wbc);
1721 head = create_page_buffers(page, inode,
1722 (1 << BH_Dirty)|(1 << BH_Uptodate));
1725 * Be very careful. We have no exclusion from block_dirty_folio
1726 * here, and the (potentially unmapped) buffers may become dirty at
1727 * any time. If a buffer becomes dirty here after we've inspected it
1728 * then we just miss that fact, and the page stays dirty.
1730 * Buffers outside i_size may be dirtied by block_dirty_folio;
1731 * handle that here by just cleaning them.
1735 blocksize = bh->b_size;
1736 bbits = block_size_bits(blocksize);
1738 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1739 last_block = (i_size_read(inode) - 1) >> bbits;
1742 * Get all the dirty buffers mapped to disk addresses and
1743 * handle any aliases from the underlying blockdev's mapping.
1746 if (block > last_block) {
1748 * mapped buffers outside i_size will occur, because
1749 * this page can be outside i_size when there is a
1750 * truncate in progress.
1753 * The buffer was zeroed by block_write_full_page()
1755 clear_buffer_dirty(bh);
1756 set_buffer_uptodate(bh);
1757 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1759 WARN_ON(bh->b_size != blocksize);
1760 err = get_block(inode, block, bh, 1);
1763 clear_buffer_delay(bh);
1764 if (buffer_new(bh)) {
1765 /* blockdev mappings never come here */
1766 clear_buffer_new(bh);
1767 clean_bdev_bh_alias(bh);
1770 bh = bh->b_this_page;
1772 } while (bh != head);
1775 if (!buffer_mapped(bh))
1778 * If it's a fully non-blocking write attempt and we cannot
1779 * lock the buffer then redirty the page. Note that this can
1780 * potentially cause a busy-wait loop from writeback threads
1781 * and kswapd activity, but those code paths have their own
1782 * higher-level throttling.
1784 if (wbc->sync_mode != WB_SYNC_NONE) {
1786 } else if (!trylock_buffer(bh)) {
1787 redirty_page_for_writepage(wbc, page);
1790 if (test_clear_buffer_dirty(bh)) {
1791 mark_buffer_async_write_endio(bh, handler);
1795 } while ((bh = bh->b_this_page) != head);
1798 * The page and its buffers are protected by PageWriteback(), so we can
1799 * drop the bh refcounts early.
1801 BUG_ON(PageWriteback(page));
1802 set_page_writeback(page);
1805 struct buffer_head *next = bh->b_this_page;
1806 if (buffer_async_write(bh)) {
1807 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, wbc);
1811 } while (bh != head);
1816 if (nr_underway == 0) {
1818 * The page was marked dirty, but the buffers were
1819 * clean. Someone wrote them back by hand with
1820 * ll_rw_block/submit_bh. A rare case.
1822 end_page_writeback(page);
1825 * The page and buffer_heads can be released at any time from
1833 * ENOSPC, or some other error. We may already have added some
1834 * blocks to the file, so we need to write these out to avoid
1835 * exposing stale data.
1836 * The page is currently locked and not marked for writeback
1839 /* Recovery: lock and submit the mapped buffers */
1841 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1842 !buffer_delay(bh)) {
1844 mark_buffer_async_write_endio(bh, handler);
1847 * The buffer may have been set dirty during
1848 * attachment to a dirty page.
1850 clear_buffer_dirty(bh);
1852 } while ((bh = bh->b_this_page) != head);
1854 BUG_ON(PageWriteback(page));
1855 mapping_set_error(page->mapping, err);
1856 set_page_writeback(page);
1858 struct buffer_head *next = bh->b_this_page;
1859 if (buffer_async_write(bh)) {
1860 clear_buffer_dirty(bh);
1861 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, wbc);
1865 } while (bh != head);
1869 EXPORT_SYMBOL(__block_write_full_page);
1872 * If a page has any new buffers, zero them out here, and mark them uptodate
1873 * and dirty so they'll be written out (in order to prevent uninitialised
1874 * block data from leaking). And clear the new bit.
1876 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1878 unsigned int block_start, block_end;
1879 struct buffer_head *head, *bh;
1881 BUG_ON(!PageLocked(page));
1882 if (!page_has_buffers(page))
1885 bh = head = page_buffers(page);
1888 block_end = block_start + bh->b_size;
1890 if (buffer_new(bh)) {
1891 if (block_end > from && block_start < to) {
1892 if (!PageUptodate(page)) {
1893 unsigned start, size;
1895 start = max(from, block_start);
1896 size = min(to, block_end) - start;
1898 zero_user(page, start, size);
1899 set_buffer_uptodate(bh);
1902 clear_buffer_new(bh);
1903 mark_buffer_dirty(bh);
1907 block_start = block_end;
1908 bh = bh->b_this_page;
1909 } while (bh != head);
1911 EXPORT_SYMBOL(page_zero_new_buffers);
1914 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1915 const struct iomap *iomap)
1917 loff_t offset = block << inode->i_blkbits;
1919 bh->b_bdev = iomap->bdev;
1922 * Block points to offset in file we need to map, iomap contains
1923 * the offset at which the map starts. If the map ends before the
1924 * current block, then do not map the buffer and let the caller
1927 BUG_ON(offset >= iomap->offset + iomap->length);
1929 switch (iomap->type) {
1932 * If the buffer is not up to date or beyond the current EOF,
1933 * we need to mark it as new to ensure sub-block zeroing is
1934 * executed if necessary.
1936 if (!buffer_uptodate(bh) ||
1937 (offset >= i_size_read(inode)))
1940 case IOMAP_DELALLOC:
1941 if (!buffer_uptodate(bh) ||
1942 (offset >= i_size_read(inode)))
1944 set_buffer_uptodate(bh);
1945 set_buffer_mapped(bh);
1946 set_buffer_delay(bh);
1948 case IOMAP_UNWRITTEN:
1950 * For unwritten regions, we always need to ensure that regions
1951 * in the block we are not writing to are zeroed. Mark the
1952 * buffer as new to ensure this.
1955 set_buffer_unwritten(bh);
1958 if ((iomap->flags & IOMAP_F_NEW) ||
1959 offset >= i_size_read(inode))
1961 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1963 set_buffer_mapped(bh);
1968 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
1969 get_block_t *get_block, const struct iomap *iomap)
1971 unsigned from = pos & (PAGE_SIZE - 1);
1972 unsigned to = from + len;
1973 struct inode *inode = folio->mapping->host;
1974 unsigned block_start, block_end;
1977 unsigned blocksize, bbits;
1978 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1980 BUG_ON(!folio_test_locked(folio));
1981 BUG_ON(from > PAGE_SIZE);
1982 BUG_ON(to > PAGE_SIZE);
1985 head = create_page_buffers(&folio->page, inode, 0);
1986 blocksize = head->b_size;
1987 bbits = block_size_bits(blocksize);
1989 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1991 for(bh = head, block_start = 0; bh != head || !block_start;
1992 block++, block_start=block_end, bh = bh->b_this_page) {
1993 block_end = block_start + blocksize;
1994 if (block_end <= from || block_start >= to) {
1995 if (folio_test_uptodate(folio)) {
1996 if (!buffer_uptodate(bh))
1997 set_buffer_uptodate(bh);
2002 clear_buffer_new(bh);
2003 if (!buffer_mapped(bh)) {
2004 WARN_ON(bh->b_size != blocksize);
2006 err = get_block(inode, block, bh, 1);
2010 iomap_to_bh(inode, block, bh, iomap);
2013 if (buffer_new(bh)) {
2014 clean_bdev_bh_alias(bh);
2015 if (folio_test_uptodate(folio)) {
2016 clear_buffer_new(bh);
2017 set_buffer_uptodate(bh);
2018 mark_buffer_dirty(bh);
2021 if (block_end > to || block_start < from)
2022 folio_zero_segments(folio,
2028 if (folio_test_uptodate(folio)) {
2029 if (!buffer_uptodate(bh))
2030 set_buffer_uptodate(bh);
2033 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2034 !buffer_unwritten(bh) &&
2035 (block_start < from || block_end > to)) {
2036 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2041 * If we issued read requests - let them complete.
2043 while(wait_bh > wait) {
2044 wait_on_buffer(*--wait_bh);
2045 if (!buffer_uptodate(*wait_bh))
2049 page_zero_new_buffers(&folio->page, from, to);
2053 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2054 get_block_t *get_block)
2056 return __block_write_begin_int(page_folio(page), pos, len, get_block,
2059 EXPORT_SYMBOL(__block_write_begin);
2061 static int __block_commit_write(struct inode *inode, struct page *page,
2062 unsigned from, unsigned to)
2064 unsigned block_start, block_end;
2067 struct buffer_head *bh, *head;
2069 bh = head = page_buffers(page);
2070 blocksize = bh->b_size;
2074 block_end = block_start + blocksize;
2075 if (block_end <= from || block_start >= to) {
2076 if (!buffer_uptodate(bh))
2079 set_buffer_uptodate(bh);
2080 mark_buffer_dirty(bh);
2083 clear_buffer_new(bh);
2085 block_start = block_end;
2086 bh = bh->b_this_page;
2087 } while (bh != head);
2090 * If this is a partial write which happened to make all buffers
2091 * uptodate then we can optimize away a bogus readpage() for
2092 * the next read(). Here we 'discover' whether the page went
2093 * uptodate as a result of this (potentially partial) write.
2096 SetPageUptodate(page);
2101 * block_write_begin takes care of the basic task of block allocation and
2102 * bringing partial write blocks uptodate first.
2104 * The filesystem needs to handle block truncation upon failure.
2106 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2107 unsigned flags, struct page **pagep, get_block_t *get_block)
2109 pgoff_t index = pos >> PAGE_SHIFT;
2113 page = grab_cache_page_write_begin(mapping, index, flags);
2117 status = __block_write_begin(page, pos, len, get_block);
2118 if (unlikely(status)) {
2127 EXPORT_SYMBOL(block_write_begin);
2129 int block_write_end(struct file *file, struct address_space *mapping,
2130 loff_t pos, unsigned len, unsigned copied,
2131 struct page *page, void *fsdata)
2133 struct inode *inode = mapping->host;
2136 start = pos & (PAGE_SIZE - 1);
2138 if (unlikely(copied < len)) {
2140 * The buffers that were written will now be uptodate, so we
2141 * don't have to worry about a readpage reading them and
2142 * overwriting a partial write. However if we have encountered
2143 * a short write and only partially written into a buffer, it
2144 * will not be marked uptodate, so a readpage might come in and
2145 * destroy our partial write.
2147 * Do the simplest thing, and just treat any short write to a
2148 * non uptodate page as a zero-length write, and force the
2149 * caller to redo the whole thing.
2151 if (!PageUptodate(page))
2154 page_zero_new_buffers(page, start+copied, start+len);
2156 flush_dcache_page(page);
2158 /* This could be a short (even 0-length) commit */
2159 __block_commit_write(inode, page, start, start+copied);
2163 EXPORT_SYMBOL(block_write_end);
2165 int generic_write_end(struct file *file, struct address_space *mapping,
2166 loff_t pos, unsigned len, unsigned copied,
2167 struct page *page, void *fsdata)
2169 struct inode *inode = mapping->host;
2170 loff_t old_size = inode->i_size;
2171 bool i_size_changed = false;
2173 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2176 * No need to use i_size_read() here, the i_size cannot change under us
2177 * because we hold i_rwsem.
2179 * But it's important to update i_size while still holding page lock:
2180 * page writeout could otherwise come in and zero beyond i_size.
2182 if (pos + copied > inode->i_size) {
2183 i_size_write(inode, pos + copied);
2184 i_size_changed = true;
2191 pagecache_isize_extended(inode, old_size, pos);
2193 * Don't mark the inode dirty under page lock. First, it unnecessarily
2194 * makes the holding time of page lock longer. Second, it forces lock
2195 * ordering of page lock and transaction start for journaling
2199 mark_inode_dirty(inode);
2202 EXPORT_SYMBOL(generic_write_end);
2205 * block_is_partially_uptodate checks whether buffers within a folio are
2208 * Returns true if all buffers which correspond to the specified part
2209 * of the folio are uptodate.
2211 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2213 unsigned block_start, block_end, blocksize;
2215 struct buffer_head *bh, *head;
2218 head = folio_buffers(folio);
2221 blocksize = head->b_size;
2222 to = min_t(unsigned, folio_size(folio) - from, count);
2224 if (from < blocksize && to > folio_size(folio) - blocksize)
2230 block_end = block_start + blocksize;
2231 if (block_end > from && block_start < to) {
2232 if (!buffer_uptodate(bh)) {
2236 if (block_end >= to)
2239 block_start = block_end;
2240 bh = bh->b_this_page;
2241 } while (bh != head);
2245 EXPORT_SYMBOL(block_is_partially_uptodate);
2248 * Generic "read page" function for block devices that have the normal
2249 * get_block functionality. This is most of the block device filesystems.
2250 * Reads the page asynchronously --- the unlock_buffer() and
2251 * set/clear_buffer_uptodate() functions propagate buffer state into the
2252 * page struct once IO has completed.
2254 int block_read_full_page(struct page *page, get_block_t *get_block)
2256 struct inode *inode = page->mapping->host;
2257 sector_t iblock, lblock;
2258 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2259 unsigned int blocksize, bbits;
2261 int fully_mapped = 1;
2263 head = create_page_buffers(page, inode, 0);
2264 blocksize = head->b_size;
2265 bbits = block_size_bits(blocksize);
2267 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2268 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2274 if (buffer_uptodate(bh))
2277 if (!buffer_mapped(bh)) {
2281 if (iblock < lblock) {
2282 WARN_ON(bh->b_size != blocksize);
2283 err = get_block(inode, iblock, bh, 0);
2287 if (!buffer_mapped(bh)) {
2288 zero_user(page, i * blocksize, blocksize);
2290 set_buffer_uptodate(bh);
2294 * get_block() might have updated the buffer
2297 if (buffer_uptodate(bh))
2301 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2304 SetPageMappedToDisk(page);
2308 * All buffers are uptodate - we can set the page uptodate
2309 * as well. But not if get_block() returned an error.
2311 if (!PageError(page))
2312 SetPageUptodate(page);
2317 /* Stage two: lock the buffers */
2318 for (i = 0; i < nr; i++) {
2321 mark_buffer_async_read(bh);
2325 * Stage 3: start the IO. Check for uptodateness
2326 * inside the buffer lock in case another process reading
2327 * the underlying blockdev brought it uptodate (the sct fix).
2329 for (i = 0; i < nr; i++) {
2331 if (buffer_uptodate(bh))
2332 end_buffer_async_read(bh, 1);
2334 submit_bh(REQ_OP_READ, 0, bh);
2338 EXPORT_SYMBOL(block_read_full_page);
2340 /* utility function for filesystems that need to do work on expanding
2341 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2342 * deal with the hole.
2344 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2346 struct address_space *mapping = inode->i_mapping;
2351 err = inode_newsize_ok(inode, size);
2355 err = pagecache_write_begin(NULL, mapping, size, 0, 0, &page, &fsdata);
2359 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2365 EXPORT_SYMBOL(generic_cont_expand_simple);
2367 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2368 loff_t pos, loff_t *bytes)
2370 struct inode *inode = mapping->host;
2371 unsigned int blocksize = i_blocksize(inode);
2374 pgoff_t index, curidx;
2376 unsigned zerofrom, offset, len;
2379 index = pos >> PAGE_SHIFT;
2380 offset = pos & ~PAGE_MASK;
2382 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2383 zerofrom = curpos & ~PAGE_MASK;
2384 if (zerofrom & (blocksize-1)) {
2385 *bytes |= (blocksize-1);
2388 len = PAGE_SIZE - zerofrom;
2390 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2394 zero_user(page, zerofrom, len);
2395 err = pagecache_write_end(file, mapping, curpos, len, len,
2402 balance_dirty_pages_ratelimited(mapping);
2404 if (fatal_signal_pending(current)) {
2410 /* page covers the boundary, find the boundary offset */
2411 if (index == curidx) {
2412 zerofrom = curpos & ~PAGE_MASK;
2413 /* if we will expand the thing last block will be filled */
2414 if (offset <= zerofrom) {
2417 if (zerofrom & (blocksize-1)) {
2418 *bytes |= (blocksize-1);
2421 len = offset - zerofrom;
2423 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2427 zero_user(page, zerofrom, len);
2428 err = pagecache_write_end(file, mapping, curpos, len, len,
2440 * For moronic filesystems that do not allow holes in file.
2441 * We may have to extend the file.
2443 int cont_write_begin(struct file *file, struct address_space *mapping,
2444 loff_t pos, unsigned len, unsigned flags,
2445 struct page **pagep, void **fsdata,
2446 get_block_t *get_block, loff_t *bytes)
2448 struct inode *inode = mapping->host;
2449 unsigned int blocksize = i_blocksize(inode);
2450 unsigned int zerofrom;
2453 err = cont_expand_zero(file, mapping, pos, bytes);
2457 zerofrom = *bytes & ~PAGE_MASK;
2458 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2459 *bytes |= (blocksize-1);
2463 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2465 EXPORT_SYMBOL(cont_write_begin);
2467 int block_commit_write(struct page *page, unsigned from, unsigned to)
2469 struct inode *inode = page->mapping->host;
2470 __block_commit_write(inode,page,from,to);
2473 EXPORT_SYMBOL(block_commit_write);
2476 * block_page_mkwrite() is not allowed to change the file size as it gets
2477 * called from a page fault handler when a page is first dirtied. Hence we must
2478 * be careful to check for EOF conditions here. We set the page up correctly
2479 * for a written page which means we get ENOSPC checking when writing into
2480 * holes and correct delalloc and unwritten extent mapping on filesystems that
2481 * support these features.
2483 * We are not allowed to take the i_mutex here so we have to play games to
2484 * protect against truncate races as the page could now be beyond EOF. Because
2485 * truncate writes the inode size before removing pages, once we have the
2486 * page lock we can determine safely if the page is beyond EOF. If it is not
2487 * beyond EOF, then the page is guaranteed safe against truncation until we
2490 * Direct callers of this function should protect against filesystem freezing
2491 * using sb_start_pagefault() - sb_end_pagefault() functions.
2493 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2494 get_block_t get_block)
2496 struct page *page = vmf->page;
2497 struct inode *inode = file_inode(vma->vm_file);
2503 size = i_size_read(inode);
2504 if ((page->mapping != inode->i_mapping) ||
2505 (page_offset(page) > size)) {
2506 /* We overload EFAULT to mean page got truncated */
2511 /* page is wholly or partially inside EOF */
2512 if (((page->index + 1) << PAGE_SHIFT) > size)
2513 end = size & ~PAGE_MASK;
2517 ret = __block_write_begin(page, 0, end, get_block);
2519 ret = block_commit_write(page, 0, end);
2521 if (unlikely(ret < 0))
2523 set_page_dirty(page);
2524 wait_for_stable_page(page);
2530 EXPORT_SYMBOL(block_page_mkwrite);
2533 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2534 * immediately, while under the page lock. So it needs a special end_io
2535 * handler which does not touch the bh after unlocking it.
2537 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2539 __end_buffer_read_notouch(bh, uptodate);
2543 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2544 * the page (converting it to circular linked list and taking care of page
2547 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2549 struct buffer_head *bh;
2551 BUG_ON(!PageLocked(page));
2553 spin_lock(&page->mapping->private_lock);
2556 if (PageDirty(page))
2557 set_buffer_dirty(bh);
2558 if (!bh->b_this_page)
2559 bh->b_this_page = head;
2560 bh = bh->b_this_page;
2561 } while (bh != head);
2562 attach_page_private(page, head);
2563 spin_unlock(&page->mapping->private_lock);
2567 * On entry, the page is fully not uptodate.
2568 * On exit the page is fully uptodate in the areas outside (from,to)
2569 * The filesystem needs to handle block truncation upon failure.
2571 int nobh_write_begin(struct address_space *mapping,
2572 loff_t pos, unsigned len, unsigned flags,
2573 struct page **pagep, void **fsdata,
2574 get_block_t *get_block)
2576 struct inode *inode = mapping->host;
2577 const unsigned blkbits = inode->i_blkbits;
2578 const unsigned blocksize = 1 << blkbits;
2579 struct buffer_head *head, *bh;
2583 unsigned block_in_page;
2584 unsigned block_start, block_end;
2585 sector_t block_in_file;
2588 int is_mapped_to_disk = 1;
2590 index = pos >> PAGE_SHIFT;
2591 from = pos & (PAGE_SIZE - 1);
2594 page = grab_cache_page_write_begin(mapping, index, flags);
2600 if (page_has_buffers(page)) {
2601 ret = __block_write_begin(page, pos, len, get_block);
2607 if (PageMappedToDisk(page))
2611 * Allocate buffers so that we can keep track of state, and potentially
2612 * attach them to the page if an error occurs. In the common case of
2613 * no error, they will just be freed again without ever being attached
2614 * to the page (which is all OK, because we're under the page lock).
2616 * Be careful: the buffer linked list is a NULL terminated one, rather
2617 * than the circular one we're used to.
2619 head = alloc_page_buffers(page, blocksize, false);
2625 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2628 * We loop across all blocks in the page, whether or not they are
2629 * part of the affected region. This is so we can discover if the
2630 * page is fully mapped-to-disk.
2632 for (block_start = 0, block_in_page = 0, bh = head;
2633 block_start < PAGE_SIZE;
2634 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2637 block_end = block_start + blocksize;
2640 if (block_start >= to)
2642 ret = get_block(inode, block_in_file + block_in_page,
2646 if (!buffer_mapped(bh))
2647 is_mapped_to_disk = 0;
2649 clean_bdev_bh_alias(bh);
2650 if (PageUptodate(page)) {
2651 set_buffer_uptodate(bh);
2654 if (buffer_new(bh) || !buffer_mapped(bh)) {
2655 zero_user_segments(page, block_start, from,
2659 if (buffer_uptodate(bh))
2660 continue; /* reiserfs does this */
2661 if (block_start < from || block_end > to) {
2663 bh->b_end_io = end_buffer_read_nobh;
2664 submit_bh(REQ_OP_READ, 0, bh);
2671 * The page is locked, so these buffers are protected from
2672 * any VM or truncate activity. Hence we don't need to care
2673 * for the buffer_head refcounts.
2675 for (bh = head; bh; bh = bh->b_this_page) {
2677 if (!buffer_uptodate(bh))
2684 if (is_mapped_to_disk)
2685 SetPageMappedToDisk(page);
2687 *fsdata = head; /* to be released by nobh_write_end */
2694 * Error recovery is a bit difficult. We need to zero out blocks that
2695 * were newly allocated, and dirty them to ensure they get written out.
2696 * Buffers need to be attached to the page at this point, otherwise
2697 * the handling of potential IO errors during writeout would be hard
2698 * (could try doing synchronous writeout, but what if that fails too?)
2700 attach_nobh_buffers(page, head);
2701 page_zero_new_buffers(page, from, to);
2710 EXPORT_SYMBOL(nobh_write_begin);
2712 int nobh_write_end(struct file *file, struct address_space *mapping,
2713 loff_t pos, unsigned len, unsigned copied,
2714 struct page *page, void *fsdata)
2716 struct inode *inode = page->mapping->host;
2717 struct buffer_head *head = fsdata;
2718 struct buffer_head *bh;
2719 BUG_ON(fsdata != NULL && page_has_buffers(page));
2721 if (unlikely(copied < len) && head)
2722 attach_nobh_buffers(page, head);
2723 if (page_has_buffers(page))
2724 return generic_write_end(file, mapping, pos, len,
2725 copied, page, fsdata);
2727 SetPageUptodate(page);
2728 set_page_dirty(page);
2729 if (pos+copied > inode->i_size) {
2730 i_size_write(inode, pos+copied);
2731 mark_inode_dirty(inode);
2739 head = head->b_this_page;
2740 free_buffer_head(bh);
2745 EXPORT_SYMBOL(nobh_write_end);
2748 * nobh_writepage() - based on block_full_write_page() except
2749 * that it tries to operate without attaching bufferheads to
2752 int nobh_writepage(struct page *page, get_block_t *get_block,
2753 struct writeback_control *wbc)
2755 struct inode * const inode = page->mapping->host;
2756 loff_t i_size = i_size_read(inode);
2757 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2761 /* Is the page fully inside i_size? */
2762 if (page->index < end_index)
2765 /* Is the page fully outside i_size? (truncate in progress) */
2766 offset = i_size & (PAGE_SIZE-1);
2767 if (page->index >= end_index+1 || !offset) {
2769 return 0; /* don't care */
2773 * The page straddles i_size. It must be zeroed out on each and every
2774 * writepage invocation because it may be mmapped. "A file is mapped
2775 * in multiples of the page size. For a file that is not a multiple of
2776 * the page size, the remaining memory is zeroed when mapped, and
2777 * writes to that region are not written out to the file."
2779 zero_user_segment(page, offset, PAGE_SIZE);
2781 ret = mpage_writepage(page, get_block, wbc);
2783 ret = __block_write_full_page(inode, page, get_block, wbc,
2784 end_buffer_async_write);
2787 EXPORT_SYMBOL(nobh_writepage);
2789 int nobh_truncate_page(struct address_space *mapping,
2790 loff_t from, get_block_t *get_block)
2792 pgoff_t index = from >> PAGE_SHIFT;
2793 unsigned offset = from & (PAGE_SIZE-1);
2796 unsigned length, pos;
2797 struct inode *inode = mapping->host;
2799 struct buffer_head map_bh;
2802 blocksize = i_blocksize(inode);
2803 length = offset & (blocksize - 1);
2805 /* Block boundary? Nothing to do */
2809 length = blocksize - length;
2810 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2812 page = grab_cache_page(mapping, index);
2817 if (page_has_buffers(page)) {
2821 return block_truncate_page(mapping, from, get_block);
2824 /* Find the buffer that contains "offset" */
2826 while (offset >= pos) {
2831 map_bh.b_size = blocksize;
2833 err = get_block(inode, iblock, &map_bh, 0);
2836 /* unmapped? It's a hole - nothing to do */
2837 if (!buffer_mapped(&map_bh))
2840 /* Ok, it's mapped. Make sure it's up-to-date */
2841 if (!PageUptodate(page)) {
2842 err = mapping->a_ops->readpage(NULL, page);
2848 if (!PageUptodate(page)) {
2852 if (page_has_buffers(page))
2855 zero_user(page, offset, length);
2856 set_page_dirty(page);
2865 EXPORT_SYMBOL(nobh_truncate_page);
2867 int block_truncate_page(struct address_space *mapping,
2868 loff_t from, get_block_t *get_block)
2870 pgoff_t index = from >> PAGE_SHIFT;
2871 unsigned offset = from & (PAGE_SIZE-1);
2874 unsigned length, pos;
2875 struct inode *inode = mapping->host;
2877 struct buffer_head *bh;
2880 blocksize = i_blocksize(inode);
2881 length = offset & (blocksize - 1);
2883 /* Block boundary? Nothing to do */
2887 length = blocksize - length;
2888 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2890 page = grab_cache_page(mapping, index);
2895 if (!page_has_buffers(page))
2896 create_empty_buffers(page, blocksize, 0);
2898 /* Find the buffer that contains "offset" */
2899 bh = page_buffers(page);
2901 while (offset >= pos) {
2902 bh = bh->b_this_page;
2908 if (!buffer_mapped(bh)) {
2909 WARN_ON(bh->b_size != blocksize);
2910 err = get_block(inode, iblock, bh, 0);
2913 /* unmapped? It's a hole - nothing to do */
2914 if (!buffer_mapped(bh))
2918 /* Ok, it's mapped. Make sure it's up-to-date */
2919 if (PageUptodate(page))
2920 set_buffer_uptodate(bh);
2922 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2924 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2926 /* Uhhuh. Read error. Complain and punt. */
2927 if (!buffer_uptodate(bh))
2931 zero_user(page, offset, length);
2932 mark_buffer_dirty(bh);
2941 EXPORT_SYMBOL(block_truncate_page);
2944 * The generic ->writepage function for buffer-backed address_spaces
2946 int block_write_full_page(struct page *page, get_block_t *get_block,
2947 struct writeback_control *wbc)
2949 struct inode * const inode = page->mapping->host;
2950 loff_t i_size = i_size_read(inode);
2951 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2954 /* Is the page fully inside i_size? */
2955 if (page->index < end_index)
2956 return __block_write_full_page(inode, page, get_block, wbc,
2957 end_buffer_async_write);
2959 /* Is the page fully outside i_size? (truncate in progress) */
2960 offset = i_size & (PAGE_SIZE-1);
2961 if (page->index >= end_index+1 || !offset) {
2963 return 0; /* don't care */
2967 * The page straddles i_size. It must be zeroed out on each and every
2968 * writepage invocation because it may be mmapped. "A file is mapped
2969 * in multiples of the page size. For a file that is not a multiple of
2970 * the page size, the remaining memory is zeroed when mapped, and
2971 * writes to that region are not written out to the file."
2973 zero_user_segment(page, offset, PAGE_SIZE);
2974 return __block_write_full_page(inode, page, get_block, wbc,
2975 end_buffer_async_write);
2977 EXPORT_SYMBOL(block_write_full_page);
2979 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2980 get_block_t *get_block)
2982 struct inode *inode = mapping->host;
2983 struct buffer_head tmp = {
2984 .b_size = i_blocksize(inode),
2987 get_block(inode, block, &tmp, 0);
2988 return tmp.b_blocknr;
2990 EXPORT_SYMBOL(generic_block_bmap);
2992 static void end_bio_bh_io_sync(struct bio *bio)
2994 struct buffer_head *bh = bio->bi_private;
2996 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2997 set_bit(BH_Quiet, &bh->b_state);
2999 bh->b_end_io(bh, !bio->bi_status);
3003 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3004 struct writeback_control *wbc)
3008 BUG_ON(!buffer_locked(bh));
3009 BUG_ON(!buffer_mapped(bh));
3010 BUG_ON(!bh->b_end_io);
3011 BUG_ON(buffer_delay(bh));
3012 BUG_ON(buffer_unwritten(bh));
3015 * Only clear out a write error when rewriting
3017 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3018 clear_buffer_write_io_error(bh);
3020 if (buffer_meta(bh))
3021 op_flags |= REQ_META;
3022 if (buffer_prio(bh))
3023 op_flags |= REQ_PRIO;
3025 bio = bio_alloc(bh->b_bdev, 1, op | op_flags, GFP_NOIO);
3027 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3029 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3031 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3032 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3034 bio->bi_end_io = end_bio_bh_io_sync;
3035 bio->bi_private = bh;
3037 /* Take care of bh's that straddle the end of the device */
3041 wbc_init_bio(wbc, bio);
3042 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3049 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3051 return submit_bh_wbc(op, op_flags, bh, NULL);
3053 EXPORT_SYMBOL(submit_bh);
3056 * ll_rw_block: low-level access to block devices (DEPRECATED)
3057 * @op: whether to %READ or %WRITE
3058 * @op_flags: req_flag_bits
3059 * @nr: number of &struct buffer_heads in the array
3060 * @bhs: array of pointers to &struct buffer_head
3062 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3063 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3064 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3067 * This function drops any buffer that it cannot get a lock on (with the
3068 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3069 * request, and any buffer that appears to be up-to-date when doing read
3070 * request. Further it marks as clean buffers that are processed for
3071 * writing (the buffer cache won't assume that they are actually clean
3072 * until the buffer gets unlocked).
3074 * ll_rw_block sets b_end_io to simple completion handler that marks
3075 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3078 * All of the buffers must be for the same device, and must also be a
3079 * multiple of the current approved size for the device.
3081 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3085 for (i = 0; i < nr; i++) {
3086 struct buffer_head *bh = bhs[i];
3088 if (!trylock_buffer(bh))
3091 if (test_clear_buffer_dirty(bh)) {
3092 bh->b_end_io = end_buffer_write_sync;
3094 submit_bh(op, op_flags, bh);
3098 if (!buffer_uptodate(bh)) {
3099 bh->b_end_io = end_buffer_read_sync;
3101 submit_bh(op, op_flags, bh);
3108 EXPORT_SYMBOL(ll_rw_block);
3110 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3113 if (!test_clear_buffer_dirty(bh)) {
3117 bh->b_end_io = end_buffer_write_sync;
3119 submit_bh(REQ_OP_WRITE, op_flags, bh);
3121 EXPORT_SYMBOL(write_dirty_buffer);
3124 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3125 * and then start new I/O and then wait upon it. The caller must have a ref on
3128 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3132 WARN_ON(atomic_read(&bh->b_count) < 1);
3134 if (test_clear_buffer_dirty(bh)) {
3136 * The bh should be mapped, but it might not be if the
3137 * device was hot-removed. Not much we can do but fail the I/O.
3139 if (!buffer_mapped(bh)) {
3145 bh->b_end_io = end_buffer_write_sync;
3146 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3148 if (!ret && !buffer_uptodate(bh))
3155 EXPORT_SYMBOL(__sync_dirty_buffer);
3157 int sync_dirty_buffer(struct buffer_head *bh)
3159 return __sync_dirty_buffer(bh, REQ_SYNC);
3161 EXPORT_SYMBOL(sync_dirty_buffer);
3164 * try_to_free_buffers() checks if all the buffers on this particular page
3165 * are unused, and releases them if so.
3167 * Exclusion against try_to_free_buffers may be obtained by either
3168 * locking the page or by holding its mapping's private_lock.
3170 * If the page is dirty but all the buffers are clean then we need to
3171 * be sure to mark the page clean as well. This is because the page
3172 * may be against a block device, and a later reattachment of buffers
3173 * to a dirty page will set *all* buffers dirty. Which would corrupt
3174 * filesystem data on the same device.
3176 * The same applies to regular filesystem pages: if all the buffers are
3177 * clean then we set the page clean and proceed. To do that, we require
3178 * total exclusion from block_dirty_folio(). That is obtained with
3181 * try_to_free_buffers() is non-blocking.
3183 static inline int buffer_busy(struct buffer_head *bh)
3185 return atomic_read(&bh->b_count) |
3186 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3190 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3192 struct buffer_head *head = page_buffers(page);
3193 struct buffer_head *bh;
3197 if (buffer_busy(bh))
3199 bh = bh->b_this_page;
3200 } while (bh != head);
3203 struct buffer_head *next = bh->b_this_page;
3205 if (bh->b_assoc_map)
3206 __remove_assoc_queue(bh);
3208 } while (bh != head);
3209 *buffers_to_free = head;
3210 detach_page_private(page);
3216 int try_to_free_buffers(struct page *page)
3218 struct address_space * const mapping = page->mapping;
3219 struct buffer_head *buffers_to_free = NULL;
3222 BUG_ON(!PageLocked(page));
3223 if (PageWriteback(page))
3226 if (mapping == NULL) { /* can this still happen? */
3227 ret = drop_buffers(page, &buffers_to_free);
3231 spin_lock(&mapping->private_lock);
3232 ret = drop_buffers(page, &buffers_to_free);
3235 * If the filesystem writes its buffers by hand (eg ext3)
3236 * then we can have clean buffers against a dirty page. We
3237 * clean the page here; otherwise the VM will never notice
3238 * that the filesystem did any IO at all.
3240 * Also, during truncate, discard_buffer will have marked all
3241 * the page's buffers clean. We discover that here and clean
3244 * private_lock must be held over this entire operation in order
3245 * to synchronise against block_dirty_folio and prevent the
3246 * dirty bit from being lost.
3249 cancel_dirty_page(page);
3250 spin_unlock(&mapping->private_lock);
3252 if (buffers_to_free) {
3253 struct buffer_head *bh = buffers_to_free;
3256 struct buffer_head *next = bh->b_this_page;
3257 free_buffer_head(bh);
3259 } while (bh != buffers_to_free);
3263 EXPORT_SYMBOL(try_to_free_buffers);
3266 * Buffer-head allocation
3268 static struct kmem_cache *bh_cachep __read_mostly;
3271 * Once the number of bh's in the machine exceeds this level, we start
3272 * stripping them in writeback.
3274 static unsigned long max_buffer_heads;
3276 int buffer_heads_over_limit;
3278 struct bh_accounting {
3279 int nr; /* Number of live bh's */
3280 int ratelimit; /* Limit cacheline bouncing */
3283 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3285 static void recalc_bh_state(void)
3290 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3292 __this_cpu_write(bh_accounting.ratelimit, 0);
3293 for_each_online_cpu(i)
3294 tot += per_cpu(bh_accounting, i).nr;
3295 buffer_heads_over_limit = (tot > max_buffer_heads);
3298 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3300 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3302 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3303 spin_lock_init(&ret->b_uptodate_lock);
3305 __this_cpu_inc(bh_accounting.nr);
3311 EXPORT_SYMBOL(alloc_buffer_head);
3313 void free_buffer_head(struct buffer_head *bh)
3315 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3316 kmem_cache_free(bh_cachep, bh);
3318 __this_cpu_dec(bh_accounting.nr);
3322 EXPORT_SYMBOL(free_buffer_head);
3324 static int buffer_exit_cpu_dead(unsigned int cpu)
3327 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3329 for (i = 0; i < BH_LRU_SIZE; i++) {
3333 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3334 per_cpu(bh_accounting, cpu).nr = 0;
3339 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3340 * @bh: struct buffer_head
3342 * Return true if the buffer is up-to-date and false,
3343 * with the buffer locked, if not.
3345 int bh_uptodate_or_lock(struct buffer_head *bh)
3347 if (!buffer_uptodate(bh)) {
3349 if (!buffer_uptodate(bh))
3355 EXPORT_SYMBOL(bh_uptodate_or_lock);
3358 * bh_submit_read - Submit a locked buffer for reading
3359 * @bh: struct buffer_head
3361 * Returns zero on success and -EIO on error.
3363 int bh_submit_read(struct buffer_head *bh)
3365 BUG_ON(!buffer_locked(bh));
3367 if (buffer_uptodate(bh)) {
3373 bh->b_end_io = end_buffer_read_sync;
3374 submit_bh(REQ_OP_READ, 0, bh);
3376 if (buffer_uptodate(bh))
3380 EXPORT_SYMBOL(bh_submit_read);
3382 void __init buffer_init(void)
3384 unsigned long nrpages;
3387 bh_cachep = kmem_cache_create("buffer_head",
3388 sizeof(struct buffer_head), 0,
3389 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3394 * Limit the bh occupancy to 10% of ZONE_NORMAL
3396 nrpages = (nr_free_buffer_pages() * 10) / 100;
3397 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3398 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3399 NULL, buffer_exit_cpu_dead);