4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/cleancache.h>
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53 bh->b_end_io = handler;
54 bh->b_private = private;
56 EXPORT_SYMBOL(init_buffer);
58 static int sleep_on_buffer(void *word)
64 void __lock_buffer(struct buffer_head *bh)
66 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
67 TASK_UNINTERRUPTIBLE);
69 EXPORT_SYMBOL(__lock_buffer);
71 void unlock_buffer(struct buffer_head *bh)
73 clear_bit_unlock(BH_Lock, &bh->b_state);
74 smp_mb__after_clear_bit();
75 wake_up_bit(&bh->b_state, BH_Lock);
77 EXPORT_SYMBOL(unlock_buffer);
80 * Block until a buffer comes unlocked. This doesn't stop it
81 * from becoming locked again - you have to lock it yourself
82 * if you want to preserve its state.
84 void __wait_on_buffer(struct buffer_head * bh)
86 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
88 EXPORT_SYMBOL(__wait_on_buffer);
91 __clear_page_buffers(struct page *page)
93 ClearPagePrivate(page);
94 set_page_private(page, 0);
95 page_cache_release(page);
99 static int quiet_error(struct buffer_head *bh)
101 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
107 static void buffer_io_error(struct buffer_head *bh)
109 char b[BDEVNAME_SIZE];
110 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
111 bdevname(bh->b_bdev, b),
112 (unsigned long long)bh->b_blocknr);
116 * End-of-IO handler helper function which does not touch the bh after
118 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
119 * a race there is benign: unlock_buffer() only use the bh's address for
120 * hashing after unlocking the buffer, so it doesn't actually touch the bh
123 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
126 set_buffer_uptodate(bh);
128 /* This happens, due to failed READA attempts. */
129 clear_buffer_uptodate(bh);
135 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
136 * unlock the buffer. This is what ll_rw_block uses too.
138 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
140 __end_buffer_read_notouch(bh, uptodate);
143 EXPORT_SYMBOL(end_buffer_read_sync);
145 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
147 char b[BDEVNAME_SIZE];
150 set_buffer_uptodate(bh);
152 if (!quiet_error(bh)) {
154 printk(KERN_WARNING "lost page write due to "
156 bdevname(bh->b_bdev, b));
158 set_buffer_write_io_error(bh);
159 clear_buffer_uptodate(bh);
164 EXPORT_SYMBOL(end_buffer_write_sync);
167 * Various filesystems appear to want __find_get_block to be non-blocking.
168 * But it's the page lock which protects the buffers. To get around this,
169 * we get exclusion from try_to_free_buffers with the blockdev mapping's
172 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
173 * may be quite high. This code could TryLock the page, and if that
174 * succeeds, there is no need to take private_lock. (But if
175 * private_lock is contended then so is mapping->tree_lock).
177 static struct buffer_head *
178 __find_get_block_slow(struct block_device *bdev, sector_t block)
180 struct inode *bd_inode = bdev->bd_inode;
181 struct address_space *bd_mapping = bd_inode->i_mapping;
182 struct buffer_head *ret = NULL;
184 struct buffer_head *bh;
185 struct buffer_head *head;
189 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
190 page = find_get_page(bd_mapping, index);
194 spin_lock(&bd_mapping->private_lock);
195 if (!page_has_buffers(page))
197 head = page_buffers(page);
200 if (!buffer_mapped(bh))
202 else if (bh->b_blocknr == block) {
207 bh = bh->b_this_page;
208 } while (bh != head);
210 /* we might be here because some of the buffers on this page are
211 * not mapped. This is due to various races between
212 * file io on the block device and getblk. It gets dealt with
213 * elsewhere, don't buffer_error if we had some unmapped buffers
216 char b[BDEVNAME_SIZE];
218 printk("__find_get_block_slow() failed. "
219 "block=%llu, b_blocknr=%llu\n",
220 (unsigned long long)block,
221 (unsigned long long)bh->b_blocknr);
222 printk("b_state=0x%08lx, b_size=%zu\n",
223 bh->b_state, bh->b_size);
224 printk("device %s blocksize: %d\n", bdevname(bdev, b),
225 1 << bd_inode->i_blkbits);
228 spin_unlock(&bd_mapping->private_lock);
229 page_cache_release(page);
234 /* If invalidate_buffers() will trash dirty buffers, it means some kind
235 of fs corruption is going on. Trashing dirty data always imply losing
236 information that was supposed to be just stored on the physical layer
239 Thus invalidate_buffers in general usage is not allwowed to trash
240 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
241 be preserved. These buffers are simply skipped.
243 We also skip buffers which are still in use. For example this can
244 happen if a userspace program is reading the block device.
246 NOTE: In the case where the user removed a removable-media-disk even if
247 there's still dirty data not synced on disk (due a bug in the device driver
248 or due an error of the user), by not destroying the dirty buffers we could
249 generate corruption also on the next media inserted, thus a parameter is
250 necessary to handle this case in the most safe way possible (trying
251 to not corrupt also the new disk inserted with the data belonging to
252 the old now corrupted disk). Also for the ramdisk the natural thing
253 to do in order to release the ramdisk memory is to destroy dirty buffers.
255 These are two special cases. Normal usage imply the device driver
256 to issue a sync on the device (without waiting I/O completion) and
257 then an invalidate_buffers call that doesn't trash dirty buffers.
259 For handling cache coherency with the blkdev pagecache the 'update' case
260 is been introduced. It is needed to re-read from disk any pinned
261 buffer. NOTE: re-reading from disk is destructive so we can do it only
262 when we assume nobody is changing the buffercache under our I/O and when
263 we think the disk contains more recent information than the buffercache.
264 The update == 1 pass marks the buffers we need to update, the update == 2
265 pass does the actual I/O. */
266 void invalidate_bdev(struct block_device *bdev)
268 struct address_space *mapping = bdev->bd_inode->i_mapping;
270 if (mapping->nrpages == 0)
273 invalidate_bh_lrus();
274 lru_add_drain_all(); /* make sure all lru add caches are flushed */
275 invalidate_mapping_pages(mapping, 0, -1);
276 /* 99% of the time, we don't need to flush the cleancache on the bdev.
277 * But, for the strange corners, lets be cautious
279 cleancache_flush_inode(mapping);
281 EXPORT_SYMBOL(invalidate_bdev);
284 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
286 static void free_more_memory(void)
291 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
294 for_each_online_node(nid) {
295 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296 gfp_zone(GFP_NOFS), NULL,
299 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
305 * I/O completion handler for block_read_full_page() - pages
306 * which come unlocked at the end of I/O.
308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
311 struct buffer_head *first;
312 struct buffer_head *tmp;
314 int page_uptodate = 1;
316 BUG_ON(!buffer_async_read(bh));
320 set_buffer_uptodate(bh);
322 clear_buffer_uptodate(bh);
323 if (!quiet_error(bh))
329 * Be _very_ careful from here on. Bad things can happen if
330 * two buffer heads end IO at almost the same time and both
331 * decide that the page is now completely done.
333 first = page_buffers(page);
334 local_irq_save(flags);
335 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336 clear_buffer_async_read(bh);
340 if (!buffer_uptodate(tmp))
342 if (buffer_async_read(tmp)) {
343 BUG_ON(!buffer_locked(tmp));
346 tmp = tmp->b_this_page;
348 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349 local_irq_restore(flags);
352 * If none of the buffers had errors and they are all
353 * uptodate then we can set the page uptodate.
355 if (page_uptodate && !PageError(page))
356 SetPageUptodate(page);
361 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362 local_irq_restore(flags);
367 * Completion handler for block_write_full_page() - pages which are unlocked
368 * during I/O, and which have PageWriteback cleared upon I/O completion.
370 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
372 char b[BDEVNAME_SIZE];
374 struct buffer_head *first;
375 struct buffer_head *tmp;
378 BUG_ON(!buffer_async_write(bh));
382 set_buffer_uptodate(bh);
384 if (!quiet_error(bh)) {
386 printk(KERN_WARNING "lost page write due to "
388 bdevname(bh->b_bdev, b));
390 set_bit(AS_EIO, &page->mapping->flags);
391 set_buffer_write_io_error(bh);
392 clear_buffer_uptodate(bh);
396 first = page_buffers(page);
397 local_irq_save(flags);
398 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
400 clear_buffer_async_write(bh);
402 tmp = bh->b_this_page;
404 if (buffer_async_write(tmp)) {
405 BUG_ON(!buffer_locked(tmp));
408 tmp = tmp->b_this_page;
410 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411 local_irq_restore(flags);
412 end_page_writeback(page);
416 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417 local_irq_restore(flags);
420 EXPORT_SYMBOL(end_buffer_async_write);
423 * If a page's buffers are under async readin (end_buffer_async_read
424 * completion) then there is a possibility that another thread of
425 * control could lock one of the buffers after it has completed
426 * but while some of the other buffers have not completed. This
427 * locked buffer would confuse end_buffer_async_read() into not unlocking
428 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
429 * that this buffer is not under async I/O.
431 * The page comes unlocked when it has no locked buffer_async buffers
434 * PageLocked prevents anyone starting new async I/O reads any of
437 * PageWriteback is used to prevent simultaneous writeout of the same
440 * PageLocked prevents anyone from starting writeback of a page which is
441 * under read I/O (PageWriteback is only ever set against a locked page).
443 static void mark_buffer_async_read(struct buffer_head *bh)
445 bh->b_end_io = end_buffer_async_read;
446 set_buffer_async_read(bh);
449 static void mark_buffer_async_write_endio(struct buffer_head *bh,
450 bh_end_io_t *handler)
452 bh->b_end_io = handler;
453 set_buffer_async_write(bh);
456 void mark_buffer_async_write(struct buffer_head *bh)
458 mark_buffer_async_write_endio(bh, end_buffer_async_write);
460 EXPORT_SYMBOL(mark_buffer_async_write);
464 * fs/buffer.c contains helper functions for buffer-backed address space's
465 * fsync functions. A common requirement for buffer-based filesystems is
466 * that certain data from the backing blockdev needs to be written out for
467 * a successful fsync(). For example, ext2 indirect blocks need to be
468 * written back and waited upon before fsync() returns.
470 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472 * management of a list of dependent buffers at ->i_mapping->private_list.
474 * Locking is a little subtle: try_to_free_buffers() will remove buffers
475 * from their controlling inode's queue when they are being freed. But
476 * try_to_free_buffers() will be operating against the *blockdev* mapping
477 * at the time, not against the S_ISREG file which depends on those buffers.
478 * So the locking for private_list is via the private_lock in the address_space
479 * which backs the buffers. Which is different from the address_space
480 * against which the buffers are listed. So for a particular address_space,
481 * mapping->private_lock does *not* protect mapping->private_list! In fact,
482 * mapping->private_list will always be protected by the backing blockdev's
485 * Which introduces a requirement: all buffers on an address_space's
486 * ->private_list must be from the same address_space: the blockdev's.
488 * address_spaces which do not place buffers at ->private_list via these
489 * utility functions are free to use private_lock and private_list for
490 * whatever they want. The only requirement is that list_empty(private_list)
491 * be true at clear_inode() time.
493 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
494 * filesystems should do that. invalidate_inode_buffers() should just go
495 * BUG_ON(!list_empty).
497 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
498 * take an address_space, not an inode. And it should be called
499 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
502 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503 * list if it is already on a list. Because if the buffer is on a list,
504 * it *must* already be on the right one. If not, the filesystem is being
505 * silly. This will save a ton of locking. But first we have to ensure
506 * that buffers are taken *off* the old inode's list when they are freed
507 * (presumably in truncate). That requires careful auditing of all
508 * filesystems (do it inside bforget()). It could also be done by bringing
513 * The buffer's backing address_space's private_lock must be held
515 static void __remove_assoc_queue(struct buffer_head *bh)
517 list_del_init(&bh->b_assoc_buffers);
518 WARN_ON(!bh->b_assoc_map);
519 if (buffer_write_io_error(bh))
520 set_bit(AS_EIO, &bh->b_assoc_map->flags);
521 bh->b_assoc_map = NULL;
524 int inode_has_buffers(struct inode *inode)
526 return !list_empty(&inode->i_data.private_list);
530 * osync is designed to support O_SYNC io. It waits synchronously for
531 * all already-submitted IO to complete, but does not queue any new
532 * writes to the disk.
534 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535 * you dirty the buffers, and then use osync_inode_buffers to wait for
536 * completion. Any other dirty buffers which are not yet queued for
537 * write will not be flushed to disk by the osync.
539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
541 struct buffer_head *bh;
547 list_for_each_prev(p, list) {
549 if (buffer_locked(bh)) {
553 if (!buffer_uptodate(bh))
564 static void do_thaw_one(struct super_block *sb, void *unused)
566 char b[BDEVNAME_SIZE];
567 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568 printk(KERN_WARNING "Emergency Thaw on %s\n",
569 bdevname(sb->s_bdev, b));
572 static void do_thaw_all(struct work_struct *work)
574 iterate_supers(do_thaw_one, NULL);
576 printk(KERN_WARNING "Emergency Thaw complete\n");
580 * emergency_thaw_all -- forcibly thaw every frozen filesystem
582 * Used for emergency unfreeze of all filesystems via SysRq
584 void emergency_thaw_all(void)
586 struct work_struct *work;
588 work = kmalloc(sizeof(*work), GFP_ATOMIC);
590 INIT_WORK(work, do_thaw_all);
596 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
597 * @mapping: the mapping which wants those buffers written
599 * Starts I/O against the buffers at mapping->private_list, and waits upon
602 * Basically, this is a convenience function for fsync().
603 * @mapping is a file or directory which needs those buffers to be written for
604 * a successful fsync().
606 int sync_mapping_buffers(struct address_space *mapping)
608 struct address_space *buffer_mapping = mapping->assoc_mapping;
610 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
613 return fsync_buffers_list(&buffer_mapping->private_lock,
614 &mapping->private_list);
616 EXPORT_SYMBOL(sync_mapping_buffers);
619 * Called when we've recently written block `bblock', and it is known that
620 * `bblock' was for a buffer_boundary() buffer. This means that the block at
621 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
622 * dirty, schedule it for IO. So that indirects merge nicely with their data.
624 void write_boundary_block(struct block_device *bdev,
625 sector_t bblock, unsigned blocksize)
627 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
629 if (buffer_dirty(bh))
630 ll_rw_block(WRITE, 1, &bh);
635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
637 struct address_space *mapping = inode->i_mapping;
638 struct address_space *buffer_mapping = bh->b_page->mapping;
640 mark_buffer_dirty(bh);
641 if (!mapping->assoc_mapping) {
642 mapping->assoc_mapping = buffer_mapping;
644 BUG_ON(mapping->assoc_mapping != buffer_mapping);
646 if (!bh->b_assoc_map) {
647 spin_lock(&buffer_mapping->private_lock);
648 list_move_tail(&bh->b_assoc_buffers,
649 &mapping->private_list);
650 bh->b_assoc_map = mapping;
651 spin_unlock(&buffer_mapping->private_lock);
654 EXPORT_SYMBOL(mark_buffer_dirty_inode);
657 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
660 * If warn is true, then emit a warning if the page is not uptodate and has
661 * not been truncated.
663 static void __set_page_dirty(struct page *page,
664 struct address_space *mapping, int warn)
666 spin_lock_irq(&mapping->tree_lock);
667 if (page->mapping) { /* Race with truncate? */
668 WARN_ON_ONCE(warn && !PageUptodate(page));
669 account_page_dirtied(page, mapping);
670 radix_tree_tag_set(&mapping->page_tree,
671 page_index(page), PAGECACHE_TAG_DIRTY);
673 spin_unlock_irq(&mapping->tree_lock);
674 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
678 * Add a page to the dirty page list.
680 * It is a sad fact of life that this function is called from several places
681 * deeply under spinlocking. It may not sleep.
683 * If the page has buffers, the uptodate buffers are set dirty, to preserve
684 * dirty-state coherency between the page and the buffers. It the page does
685 * not have buffers then when they are later attached they will all be set
688 * The buffers are dirtied before the page is dirtied. There's a small race
689 * window in which a writepage caller may see the page cleanness but not the
690 * buffer dirtiness. That's fine. If this code were to set the page dirty
691 * before the buffers, a concurrent writepage caller could clear the page dirty
692 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693 * page on the dirty page list.
695 * We use private_lock to lock against try_to_free_buffers while using the
696 * page's buffer list. Also use this to protect against clean buffers being
697 * added to the page after it was set dirty.
699 * FIXME: may need to call ->reservepage here as well. That's rather up to the
700 * address_space though.
702 int __set_page_dirty_buffers(struct page *page)
705 struct address_space *mapping = page_mapping(page);
707 if (unlikely(!mapping))
708 return !TestSetPageDirty(page);
710 spin_lock(&mapping->private_lock);
711 if (page_has_buffers(page)) {
712 struct buffer_head *head = page_buffers(page);
713 struct buffer_head *bh = head;
716 set_buffer_dirty(bh);
717 bh = bh->b_this_page;
718 } while (bh != head);
720 newly_dirty = !TestSetPageDirty(page);
721 spin_unlock(&mapping->private_lock);
724 __set_page_dirty(page, mapping, 1);
727 EXPORT_SYMBOL(__set_page_dirty_buffers);
730 * Write out and wait upon a list of buffers.
732 * We have conflicting pressures: we want to make sure that all
733 * initially dirty buffers get waited on, but that any subsequently
734 * dirtied buffers don't. After all, we don't want fsync to last
735 * forever if somebody is actively writing to the file.
737 * Do this in two main stages: first we copy dirty buffers to a
738 * temporary inode list, queueing the writes as we go. Then we clean
739 * up, waiting for those writes to complete.
741 * During this second stage, any subsequent updates to the file may end
742 * up refiling the buffer on the original inode's dirty list again, so
743 * there is a chance we will end up with a buffer queued for write but
744 * not yet completed on that list. So, as a final cleanup we go through
745 * the osync code to catch these locked, dirty buffers without requeuing
746 * any newly dirty buffers for write.
748 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
750 struct buffer_head *bh;
751 struct list_head tmp;
752 struct address_space *mapping;
754 struct blk_plug plug;
756 INIT_LIST_HEAD(&tmp);
757 blk_start_plug(&plug);
760 while (!list_empty(list)) {
761 bh = BH_ENTRY(list->next);
762 mapping = bh->b_assoc_map;
763 __remove_assoc_queue(bh);
764 /* Avoid race with mark_buffer_dirty_inode() which does
765 * a lockless check and we rely on seeing the dirty bit */
767 if (buffer_dirty(bh) || buffer_locked(bh)) {
768 list_add(&bh->b_assoc_buffers, &tmp);
769 bh->b_assoc_map = mapping;
770 if (buffer_dirty(bh)) {
774 * Ensure any pending I/O completes so that
775 * write_dirty_buffer() actually writes the
776 * current contents - it is a noop if I/O is
777 * still in flight on potentially older
780 write_dirty_buffer(bh, WRITE_SYNC);
783 * Kick off IO for the previous mapping. Note
784 * that we will not run the very last mapping,
785 * wait_on_buffer() will do that for us
786 * through sync_buffer().
795 blk_finish_plug(&plug);
798 while (!list_empty(&tmp)) {
799 bh = BH_ENTRY(tmp.prev);
801 mapping = bh->b_assoc_map;
802 __remove_assoc_queue(bh);
803 /* Avoid race with mark_buffer_dirty_inode() which does
804 * a lockless check and we rely on seeing the dirty bit */
806 if (buffer_dirty(bh)) {
807 list_add(&bh->b_assoc_buffers,
808 &mapping->private_list);
809 bh->b_assoc_map = mapping;
813 if (!buffer_uptodate(bh))
820 err2 = osync_buffers_list(lock, list);
828 * Invalidate any and all dirty buffers on a given inode. We are
829 * probably unmounting the fs, but that doesn't mean we have already
830 * done a sync(). Just drop the buffers from the inode list.
832 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
833 * assumes that all the buffers are against the blockdev. Not true
836 void invalidate_inode_buffers(struct inode *inode)
838 if (inode_has_buffers(inode)) {
839 struct address_space *mapping = &inode->i_data;
840 struct list_head *list = &mapping->private_list;
841 struct address_space *buffer_mapping = mapping->assoc_mapping;
843 spin_lock(&buffer_mapping->private_lock);
844 while (!list_empty(list))
845 __remove_assoc_queue(BH_ENTRY(list->next));
846 spin_unlock(&buffer_mapping->private_lock);
849 EXPORT_SYMBOL(invalidate_inode_buffers);
852 * Remove any clean buffers from the inode's buffer list. This is called
853 * when we're trying to free the inode itself. Those buffers can pin it.
855 * Returns true if all buffers were removed.
857 int remove_inode_buffers(struct inode *inode)
861 if (inode_has_buffers(inode)) {
862 struct address_space *mapping = &inode->i_data;
863 struct list_head *list = &mapping->private_list;
864 struct address_space *buffer_mapping = mapping->assoc_mapping;
866 spin_lock(&buffer_mapping->private_lock);
867 while (!list_empty(list)) {
868 struct buffer_head *bh = BH_ENTRY(list->next);
869 if (buffer_dirty(bh)) {
873 __remove_assoc_queue(bh);
875 spin_unlock(&buffer_mapping->private_lock);
881 * Create the appropriate buffers when given a page for data area and
882 * the size of each buffer.. Use the bh->b_this_page linked list to
883 * follow the buffers created. Return NULL if unable to create more
886 * The retry flag is used to differentiate async IO (paging, swapping)
887 * which may not fail from ordinary buffer allocations.
889 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
892 struct buffer_head *bh, *head;
898 while ((offset -= size) >= 0) {
899 bh = alloc_buffer_head(GFP_NOFS);
904 bh->b_this_page = head;
909 atomic_set(&bh->b_count, 0);
912 /* Link the buffer to its page */
913 set_bh_page(bh, page, offset);
915 init_buffer(bh, NULL, NULL);
919 * In case anything failed, we just free everything we got.
925 head = head->b_this_page;
926 free_buffer_head(bh);
931 * Return failure for non-async IO requests. Async IO requests
932 * are not allowed to fail, so we have to wait until buffer heads
933 * become available. But we don't want tasks sleeping with
934 * partially complete buffers, so all were released above.
939 /* We're _really_ low on memory. Now we just
940 * wait for old buffer heads to become free due to
941 * finishing IO. Since this is an async request and
942 * the reserve list is empty, we're sure there are
943 * async buffer heads in use.
948 EXPORT_SYMBOL_GPL(alloc_page_buffers);
951 link_dev_buffers(struct page *page, struct buffer_head *head)
953 struct buffer_head *bh, *tail;
958 bh = bh->b_this_page;
960 tail->b_this_page = head;
961 attach_page_buffers(page, head);
965 * Initialise the state of a blockdev page's buffers.
968 init_page_buffers(struct page *page, struct block_device *bdev,
969 sector_t block, int size)
971 struct buffer_head *head = page_buffers(page);
972 struct buffer_head *bh = head;
973 int uptodate = PageUptodate(page);
976 if (!buffer_mapped(bh)) {
977 init_buffer(bh, NULL, NULL);
979 bh->b_blocknr = block;
981 set_buffer_uptodate(bh);
982 set_buffer_mapped(bh);
985 bh = bh->b_this_page;
986 } while (bh != head);
990 * Create the page-cache page that contains the requested block.
992 * This is user purely for blockdev mappings.
995 grow_dev_page(struct block_device *bdev, sector_t block,
996 pgoff_t index, int size)
998 struct inode *inode = bdev->bd_inode;
1000 struct buffer_head *bh;
1002 page = find_or_create_page(inode->i_mapping, index,
1003 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1007 BUG_ON(!PageLocked(page));
1009 if (page_has_buffers(page)) {
1010 bh = page_buffers(page);
1011 if (bh->b_size == size) {
1012 init_page_buffers(page, bdev, block, size);
1015 if (!try_to_free_buffers(page))
1020 * Allocate some buffers for this page
1022 bh = alloc_page_buffers(page, size, 0);
1027 * Link the page to the buffers and initialise them. Take the
1028 * lock to be atomic wrt __find_get_block(), which does not
1029 * run under the page lock.
1031 spin_lock(&inode->i_mapping->private_lock);
1032 link_dev_buffers(page, bh);
1033 init_page_buffers(page, bdev, block, size);
1034 spin_unlock(&inode->i_mapping->private_lock);
1040 page_cache_release(page);
1045 * Create buffers for the specified block device block's page. If
1046 * that page was dirty, the buffers are set dirty also.
1049 grow_buffers(struct block_device *bdev, sector_t block, int size)
1058 } while ((size << sizebits) < PAGE_SIZE);
1060 index = block >> sizebits;
1063 * Check for a block which wants to lie outside our maximum possible
1064 * pagecache index. (this comparison is done using sector_t types).
1066 if (unlikely(index != block >> sizebits)) {
1067 char b[BDEVNAME_SIZE];
1069 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1071 __func__, (unsigned long long)block,
1075 block = index << sizebits;
1076 /* Create a page with the proper size buffers.. */
1077 page = grow_dev_page(bdev, block, index, size);
1081 page_cache_release(page);
1085 static struct buffer_head *
1086 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1088 /* Size must be multiple of hard sectorsize */
1089 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1090 (size < 512 || size > PAGE_SIZE))) {
1091 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1093 printk(KERN_ERR "logical block size: %d\n",
1094 bdev_logical_block_size(bdev));
1101 struct buffer_head * bh;
1104 bh = __find_get_block(bdev, block, size);
1108 ret = grow_buffers(bdev, block, size);
1117 * The relationship between dirty buffers and dirty pages:
1119 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1120 * the page is tagged dirty in its radix tree.
1122 * At all times, the dirtiness of the buffers represents the dirtiness of
1123 * subsections of the page. If the page has buffers, the page dirty bit is
1124 * merely a hint about the true dirty state.
1126 * When a page is set dirty in its entirety, all its buffers are marked dirty
1127 * (if the page has buffers).
1129 * When a buffer is marked dirty, its page is dirtied, but the page's other
1132 * Also. When blockdev buffers are explicitly read with bread(), they
1133 * individually become uptodate. But their backing page remains not
1134 * uptodate - even if all of its buffers are uptodate. A subsequent
1135 * block_read_full_page() against that page will discover all the uptodate
1136 * buffers, will set the page uptodate and will perform no I/O.
1140 * mark_buffer_dirty - mark a buffer_head as needing writeout
1141 * @bh: the buffer_head to mark dirty
1143 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1144 * backing page dirty, then tag the page as dirty in its address_space's radix
1145 * tree and then attach the address_space's inode to its superblock's dirty
1148 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1149 * mapping->tree_lock and mapping->host->i_lock.
1151 void mark_buffer_dirty(struct buffer_head *bh)
1153 WARN_ON_ONCE(!buffer_uptodate(bh));
1156 * Very *carefully* optimize the it-is-already-dirty case.
1158 * Don't let the final "is it dirty" escape to before we
1159 * perhaps modified the buffer.
1161 if (buffer_dirty(bh)) {
1163 if (buffer_dirty(bh))
1167 if (!test_set_buffer_dirty(bh)) {
1168 struct page *page = bh->b_page;
1169 if (!TestSetPageDirty(page)) {
1170 struct address_space *mapping = page_mapping(page);
1172 __set_page_dirty(page, mapping, 0);
1176 EXPORT_SYMBOL(mark_buffer_dirty);
1179 * Decrement a buffer_head's reference count. If all buffers against a page
1180 * have zero reference count, are clean and unlocked, and if the page is clean
1181 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1182 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1183 * a page but it ends up not being freed, and buffers may later be reattached).
1185 void __brelse(struct buffer_head * buf)
1187 if (atomic_read(&buf->b_count)) {
1191 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1193 EXPORT_SYMBOL(__brelse);
1196 * bforget() is like brelse(), except it discards any
1197 * potentially dirty data.
1199 void __bforget(struct buffer_head *bh)
1201 clear_buffer_dirty(bh);
1202 if (bh->b_assoc_map) {
1203 struct address_space *buffer_mapping = bh->b_page->mapping;
1205 spin_lock(&buffer_mapping->private_lock);
1206 list_del_init(&bh->b_assoc_buffers);
1207 bh->b_assoc_map = NULL;
1208 spin_unlock(&buffer_mapping->private_lock);
1212 EXPORT_SYMBOL(__bforget);
1214 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1217 if (buffer_uptodate(bh)) {
1222 bh->b_end_io = end_buffer_read_sync;
1223 submit_bh(READ, bh);
1225 if (buffer_uptodate(bh))
1233 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1234 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1235 * refcount elevated by one when they're in an LRU. A buffer can only appear
1236 * once in a particular CPU's LRU. A single buffer can be present in multiple
1237 * CPU's LRUs at the same time.
1239 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1240 * sb_find_get_block().
1242 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1243 * a local interrupt disable for that.
1246 #define BH_LRU_SIZE 8
1249 struct buffer_head *bhs[BH_LRU_SIZE];
1252 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1255 #define bh_lru_lock() local_irq_disable()
1256 #define bh_lru_unlock() local_irq_enable()
1258 #define bh_lru_lock() preempt_disable()
1259 #define bh_lru_unlock() preempt_enable()
1262 static inline void check_irqs_on(void)
1264 #ifdef irqs_disabled
1265 BUG_ON(irqs_disabled());
1270 * The LRU management algorithm is dopey-but-simple. Sorry.
1272 static void bh_lru_install(struct buffer_head *bh)
1274 struct buffer_head *evictee = NULL;
1278 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1279 struct buffer_head *bhs[BH_LRU_SIZE];
1285 for (in = 0; in < BH_LRU_SIZE; in++) {
1286 struct buffer_head *bh2 =
1287 __this_cpu_read(bh_lrus.bhs[in]);
1292 if (out >= BH_LRU_SIZE) {
1293 BUG_ON(evictee != NULL);
1300 while (out < BH_LRU_SIZE)
1302 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1311 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1313 static struct buffer_head *
1314 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1316 struct buffer_head *ret = NULL;
1321 for (i = 0; i < BH_LRU_SIZE; i++) {
1322 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1324 if (bh && bh->b_bdev == bdev &&
1325 bh->b_blocknr == block && bh->b_size == size) {
1328 __this_cpu_write(bh_lrus.bhs[i],
1329 __this_cpu_read(bh_lrus.bhs[i - 1]));
1332 __this_cpu_write(bh_lrus.bhs[0], bh);
1344 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1345 * it in the LRU and mark it as accessed. If it is not present then return
1348 struct buffer_head *
1349 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1351 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1354 bh = __find_get_block_slow(bdev, block);
1362 EXPORT_SYMBOL(__find_get_block);
1365 * __getblk will locate (and, if necessary, create) the buffer_head
1366 * which corresponds to the passed block_device, block and size. The
1367 * returned buffer has its reference count incremented.
1369 * __getblk() cannot fail - it just keeps trying. If you pass it an
1370 * illegal block number, __getblk() will happily return a buffer_head
1371 * which represents the non-existent block. Very weird.
1373 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1374 * attempt is failing. FIXME, perhaps?
1376 struct buffer_head *
1377 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1379 struct buffer_head *bh = __find_get_block(bdev, block, size);
1383 bh = __getblk_slow(bdev, block, size);
1386 EXPORT_SYMBOL(__getblk);
1389 * Do async read-ahead on a buffer..
1391 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1393 struct buffer_head *bh = __getblk(bdev, block, size);
1395 ll_rw_block(READA, 1, &bh);
1399 EXPORT_SYMBOL(__breadahead);
1402 * __bread() - reads a specified block and returns the bh
1403 * @bdev: the block_device to read from
1404 * @block: number of block
1405 * @size: size (in bytes) to read
1407 * Reads a specified block, and returns buffer head that contains it.
1408 * It returns NULL if the block was unreadable.
1410 struct buffer_head *
1411 __bread(struct block_device *bdev, sector_t block, unsigned size)
1413 struct buffer_head *bh = __getblk(bdev, block, size);
1415 if (likely(bh) && !buffer_uptodate(bh))
1416 bh = __bread_slow(bh);
1419 EXPORT_SYMBOL(__bread);
1422 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1423 * This doesn't race because it runs in each cpu either in irq
1424 * or with preempt disabled.
1426 static void invalidate_bh_lru(void *arg)
1428 struct bh_lru *b = &get_cpu_var(bh_lrus);
1431 for (i = 0; i < BH_LRU_SIZE; i++) {
1435 put_cpu_var(bh_lrus);
1438 void invalidate_bh_lrus(void)
1440 on_each_cpu(invalidate_bh_lru, NULL, 1);
1442 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1444 void set_bh_page(struct buffer_head *bh,
1445 struct page *page, unsigned long offset)
1448 BUG_ON(offset >= PAGE_SIZE);
1449 if (PageHighMem(page))
1451 * This catches illegal uses and preserves the offset:
1453 bh->b_data = (char *)(0 + offset);
1455 bh->b_data = page_address(page) + offset;
1457 EXPORT_SYMBOL(set_bh_page);
1460 * Called when truncating a buffer on a page completely.
1462 static void discard_buffer(struct buffer_head * bh)
1465 clear_buffer_dirty(bh);
1467 clear_buffer_mapped(bh);
1468 clear_buffer_req(bh);
1469 clear_buffer_new(bh);
1470 clear_buffer_delay(bh);
1471 clear_buffer_unwritten(bh);
1476 * block_invalidatepage - invalidate part or all of a buffer-backed page
1478 * @page: the page which is affected
1479 * @offset: the index of the truncation point
1481 * block_invalidatepage() is called when all or part of the page has become
1482 * invalidated by a truncate operation.
1484 * block_invalidatepage() does not have to release all buffers, but it must
1485 * ensure that no dirty buffer is left outside @offset and that no I/O
1486 * is underway against any of the blocks which are outside the truncation
1487 * point. Because the caller is about to free (and possibly reuse) those
1490 void block_invalidatepage(struct page *page, unsigned long offset)
1492 struct buffer_head *head, *bh, *next;
1493 unsigned int curr_off = 0;
1495 BUG_ON(!PageLocked(page));
1496 if (!page_has_buffers(page))
1499 head = page_buffers(page);
1502 unsigned int next_off = curr_off + bh->b_size;
1503 next = bh->b_this_page;
1506 * is this block fully invalidated?
1508 if (offset <= curr_off)
1510 curr_off = next_off;
1512 } while (bh != head);
1515 * We release buffers only if the entire page is being invalidated.
1516 * The get_block cached value has been unconditionally invalidated,
1517 * so real IO is not possible anymore.
1520 try_to_release_page(page, 0);
1524 EXPORT_SYMBOL(block_invalidatepage);
1527 * We attach and possibly dirty the buffers atomically wrt
1528 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1529 * is already excluded via the page lock.
1531 void create_empty_buffers(struct page *page,
1532 unsigned long blocksize, unsigned long b_state)
1534 struct buffer_head *bh, *head, *tail;
1536 head = alloc_page_buffers(page, blocksize, 1);
1539 bh->b_state |= b_state;
1541 bh = bh->b_this_page;
1543 tail->b_this_page = head;
1545 spin_lock(&page->mapping->private_lock);
1546 if (PageUptodate(page) || PageDirty(page)) {
1549 if (PageDirty(page))
1550 set_buffer_dirty(bh);
1551 if (PageUptodate(page))
1552 set_buffer_uptodate(bh);
1553 bh = bh->b_this_page;
1554 } while (bh != head);
1556 attach_page_buffers(page, head);
1557 spin_unlock(&page->mapping->private_lock);
1559 EXPORT_SYMBOL(create_empty_buffers);
1562 * We are taking a block for data and we don't want any output from any
1563 * buffer-cache aliases starting from return from that function and
1564 * until the moment when something will explicitly mark the buffer
1565 * dirty (hopefully that will not happen until we will free that block ;-)
1566 * We don't even need to mark it not-uptodate - nobody can expect
1567 * anything from a newly allocated buffer anyway. We used to used
1568 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1569 * don't want to mark the alias unmapped, for example - it would confuse
1570 * anyone who might pick it with bread() afterwards...
1572 * Also.. Note that bforget() doesn't lock the buffer. So there can
1573 * be writeout I/O going on against recently-freed buffers. We don't
1574 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1575 * only if we really need to. That happens here.
1577 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1579 struct buffer_head *old_bh;
1583 old_bh = __find_get_block_slow(bdev, block);
1585 clear_buffer_dirty(old_bh);
1586 wait_on_buffer(old_bh);
1587 clear_buffer_req(old_bh);
1591 EXPORT_SYMBOL(unmap_underlying_metadata);
1594 * NOTE! All mapped/uptodate combinations are valid:
1596 * Mapped Uptodate Meaning
1598 * No No "unknown" - must do get_block()
1599 * No Yes "hole" - zero-filled
1600 * Yes No "allocated" - allocated on disk, not read in
1601 * Yes Yes "valid" - allocated and up-to-date in memory.
1603 * "Dirty" is valid only with the last case (mapped+uptodate).
1607 * While block_write_full_page is writing back the dirty buffers under
1608 * the page lock, whoever dirtied the buffers may decide to clean them
1609 * again at any time. We handle that by only looking at the buffer
1610 * state inside lock_buffer().
1612 * If block_write_full_page() is called for regular writeback
1613 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1614 * locked buffer. This only can happen if someone has written the buffer
1615 * directly, with submit_bh(). At the address_space level PageWriteback
1616 * prevents this contention from occurring.
1618 * If block_write_full_page() is called with wbc->sync_mode ==
1619 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1620 * causes the writes to be flagged as synchronous writes.
1622 static int __block_write_full_page(struct inode *inode, struct page *page,
1623 get_block_t *get_block, struct writeback_control *wbc,
1624 bh_end_io_t *handler)
1628 sector_t last_block;
1629 struct buffer_head *bh, *head;
1630 const unsigned blocksize = 1 << inode->i_blkbits;
1631 int nr_underway = 0;
1632 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1633 WRITE_SYNC : WRITE);
1635 BUG_ON(!PageLocked(page));
1637 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1639 if (!page_has_buffers(page)) {
1640 create_empty_buffers(page, blocksize,
1641 (1 << BH_Dirty)|(1 << BH_Uptodate));
1645 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1646 * here, and the (potentially unmapped) buffers may become dirty at
1647 * any time. If a buffer becomes dirty here after we've inspected it
1648 * then we just miss that fact, and the page stays dirty.
1650 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1651 * handle that here by just cleaning them.
1654 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1655 head = page_buffers(page);
1659 * Get all the dirty buffers mapped to disk addresses and
1660 * handle any aliases from the underlying blockdev's mapping.
1663 if (block > last_block) {
1665 * mapped buffers outside i_size will occur, because
1666 * this page can be outside i_size when there is a
1667 * truncate in progress.
1670 * The buffer was zeroed by block_write_full_page()
1672 clear_buffer_dirty(bh);
1673 set_buffer_uptodate(bh);
1674 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1676 WARN_ON(bh->b_size != blocksize);
1677 err = get_block(inode, block, bh, 1);
1680 clear_buffer_delay(bh);
1681 if (buffer_new(bh)) {
1682 /* blockdev mappings never come here */
1683 clear_buffer_new(bh);
1684 unmap_underlying_metadata(bh->b_bdev,
1688 bh = bh->b_this_page;
1690 } while (bh != head);
1693 if (!buffer_mapped(bh))
1696 * If it's a fully non-blocking write attempt and we cannot
1697 * lock the buffer then redirty the page. Note that this can
1698 * potentially cause a busy-wait loop from writeback threads
1699 * and kswapd activity, but those code paths have their own
1700 * higher-level throttling.
1702 if (wbc->sync_mode != WB_SYNC_NONE) {
1704 } else if (!trylock_buffer(bh)) {
1705 redirty_page_for_writepage(wbc, page);
1708 if (test_clear_buffer_dirty(bh)) {
1709 mark_buffer_async_write_endio(bh, handler);
1713 } while ((bh = bh->b_this_page) != head);
1716 * The page and its buffers are protected by PageWriteback(), so we can
1717 * drop the bh refcounts early.
1719 BUG_ON(PageWriteback(page));
1720 set_page_writeback(page);
1723 struct buffer_head *next = bh->b_this_page;
1724 if (buffer_async_write(bh)) {
1725 submit_bh(write_op, bh);
1729 } while (bh != head);
1734 if (nr_underway == 0) {
1736 * The page was marked dirty, but the buffers were
1737 * clean. Someone wrote them back by hand with
1738 * ll_rw_block/submit_bh. A rare case.
1740 end_page_writeback(page);
1743 * The page and buffer_heads can be released at any time from
1751 * ENOSPC, or some other error. We may already have added some
1752 * blocks to the file, so we need to write these out to avoid
1753 * exposing stale data.
1754 * The page is currently locked and not marked for writeback
1757 /* Recovery: lock and submit the mapped buffers */
1759 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1760 !buffer_delay(bh)) {
1762 mark_buffer_async_write_endio(bh, handler);
1765 * The buffer may have been set dirty during
1766 * attachment to a dirty page.
1768 clear_buffer_dirty(bh);
1770 } while ((bh = bh->b_this_page) != head);
1772 BUG_ON(PageWriteback(page));
1773 mapping_set_error(page->mapping, err);
1774 set_page_writeback(page);
1776 struct buffer_head *next = bh->b_this_page;
1777 if (buffer_async_write(bh)) {
1778 clear_buffer_dirty(bh);
1779 submit_bh(write_op, bh);
1783 } while (bh != head);
1789 * If a page has any new buffers, zero them out here, and mark them uptodate
1790 * and dirty so they'll be written out (in order to prevent uninitialised
1791 * block data from leaking). And clear the new bit.
1793 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1795 unsigned int block_start, block_end;
1796 struct buffer_head *head, *bh;
1798 BUG_ON(!PageLocked(page));
1799 if (!page_has_buffers(page))
1802 bh = head = page_buffers(page);
1805 block_end = block_start + bh->b_size;
1807 if (buffer_new(bh)) {
1808 if (block_end > from && block_start < to) {
1809 if (!PageUptodate(page)) {
1810 unsigned start, size;
1812 start = max(from, block_start);
1813 size = min(to, block_end) - start;
1815 zero_user(page, start, size);
1816 set_buffer_uptodate(bh);
1819 clear_buffer_new(bh);
1820 mark_buffer_dirty(bh);
1824 block_start = block_end;
1825 bh = bh->b_this_page;
1826 } while (bh != head);
1828 EXPORT_SYMBOL(page_zero_new_buffers);
1830 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1831 get_block_t *get_block)
1833 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1834 unsigned to = from + len;
1835 struct inode *inode = page->mapping->host;
1836 unsigned block_start, block_end;
1839 unsigned blocksize, bbits;
1840 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1842 BUG_ON(!PageLocked(page));
1843 BUG_ON(from > PAGE_CACHE_SIZE);
1844 BUG_ON(to > PAGE_CACHE_SIZE);
1847 blocksize = 1 << inode->i_blkbits;
1848 if (!page_has_buffers(page))
1849 create_empty_buffers(page, blocksize, 0);
1850 head = page_buffers(page);
1852 bbits = inode->i_blkbits;
1853 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1855 for(bh = head, block_start = 0; bh != head || !block_start;
1856 block++, block_start=block_end, bh = bh->b_this_page) {
1857 block_end = block_start + blocksize;
1858 if (block_end <= from || block_start >= to) {
1859 if (PageUptodate(page)) {
1860 if (!buffer_uptodate(bh))
1861 set_buffer_uptodate(bh);
1866 clear_buffer_new(bh);
1867 if (!buffer_mapped(bh)) {
1868 WARN_ON(bh->b_size != blocksize);
1869 err = get_block(inode, block, bh, 1);
1872 if (buffer_new(bh)) {
1873 unmap_underlying_metadata(bh->b_bdev,
1875 if (PageUptodate(page)) {
1876 clear_buffer_new(bh);
1877 set_buffer_uptodate(bh);
1878 mark_buffer_dirty(bh);
1881 if (block_end > to || block_start < from)
1882 zero_user_segments(page,
1888 if (PageUptodate(page)) {
1889 if (!buffer_uptodate(bh))
1890 set_buffer_uptodate(bh);
1893 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1894 !buffer_unwritten(bh) &&
1895 (block_start < from || block_end > to)) {
1896 ll_rw_block(READ, 1, &bh);
1901 * If we issued read requests - let them complete.
1903 while(wait_bh > wait) {
1904 wait_on_buffer(*--wait_bh);
1905 if (!buffer_uptodate(*wait_bh))
1909 page_zero_new_buffers(page, from, to);
1912 EXPORT_SYMBOL(__block_write_begin);
1914 static int __block_commit_write(struct inode *inode, struct page *page,
1915 unsigned from, unsigned to)
1917 unsigned block_start, block_end;
1920 struct buffer_head *bh, *head;
1922 blocksize = 1 << inode->i_blkbits;
1924 for(bh = head = page_buffers(page), block_start = 0;
1925 bh != head || !block_start;
1926 block_start=block_end, bh = bh->b_this_page) {
1927 block_end = block_start + blocksize;
1928 if (block_end <= from || block_start >= to) {
1929 if (!buffer_uptodate(bh))
1932 set_buffer_uptodate(bh);
1933 mark_buffer_dirty(bh);
1935 clear_buffer_new(bh);
1939 * If this is a partial write which happened to make all buffers
1940 * uptodate then we can optimize away a bogus readpage() for
1941 * the next read(). Here we 'discover' whether the page went
1942 * uptodate as a result of this (potentially partial) write.
1945 SetPageUptodate(page);
1950 * block_write_begin takes care of the basic task of block allocation and
1951 * bringing partial write blocks uptodate first.
1953 * The filesystem needs to handle block truncation upon failure.
1955 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1956 unsigned flags, struct page **pagep, get_block_t *get_block)
1958 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1962 page = grab_cache_page_write_begin(mapping, index, flags);
1966 status = __block_write_begin(page, pos, len, get_block);
1967 if (unlikely(status)) {
1969 page_cache_release(page);
1976 EXPORT_SYMBOL(block_write_begin);
1978 int block_write_end(struct file *file, struct address_space *mapping,
1979 loff_t pos, unsigned len, unsigned copied,
1980 struct page *page, void *fsdata)
1982 struct inode *inode = mapping->host;
1985 start = pos & (PAGE_CACHE_SIZE - 1);
1987 if (unlikely(copied < len)) {
1989 * The buffers that were written will now be uptodate, so we
1990 * don't have to worry about a readpage reading them and
1991 * overwriting a partial write. However if we have encountered
1992 * a short write and only partially written into a buffer, it
1993 * will not be marked uptodate, so a readpage might come in and
1994 * destroy our partial write.
1996 * Do the simplest thing, and just treat any short write to a
1997 * non uptodate page as a zero-length write, and force the
1998 * caller to redo the whole thing.
2000 if (!PageUptodate(page))
2003 page_zero_new_buffers(page, start+copied, start+len);
2005 flush_dcache_page(page);
2007 /* This could be a short (even 0-length) commit */
2008 __block_commit_write(inode, page, start, start+copied);
2012 EXPORT_SYMBOL(block_write_end);
2014 int generic_write_end(struct file *file, struct address_space *mapping,
2015 loff_t pos, unsigned len, unsigned copied,
2016 struct page *page, void *fsdata)
2018 struct inode *inode = mapping->host;
2019 int i_size_changed = 0;
2021 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2024 * No need to use i_size_read() here, the i_size
2025 * cannot change under us because we hold i_mutex.
2027 * But it's important to update i_size while still holding page lock:
2028 * page writeout could otherwise come in and zero beyond i_size.
2030 if (pos+copied > inode->i_size) {
2031 i_size_write(inode, pos+copied);
2036 page_cache_release(page);
2039 * Don't mark the inode dirty under page lock. First, it unnecessarily
2040 * makes the holding time of page lock longer. Second, it forces lock
2041 * ordering of page lock and transaction start for journaling
2045 mark_inode_dirty(inode);
2049 EXPORT_SYMBOL(generic_write_end);
2052 * block_is_partially_uptodate checks whether buffers within a page are
2055 * Returns true if all buffers which correspond to a file portion
2056 * we want to read are uptodate.
2058 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2061 struct inode *inode = page->mapping->host;
2062 unsigned block_start, block_end, blocksize;
2064 struct buffer_head *bh, *head;
2067 if (!page_has_buffers(page))
2070 blocksize = 1 << inode->i_blkbits;
2071 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2073 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2076 head = page_buffers(page);
2080 block_end = block_start + blocksize;
2081 if (block_end > from && block_start < to) {
2082 if (!buffer_uptodate(bh)) {
2086 if (block_end >= to)
2089 block_start = block_end;
2090 bh = bh->b_this_page;
2091 } while (bh != head);
2095 EXPORT_SYMBOL(block_is_partially_uptodate);
2098 * Generic "read page" function for block devices that have the normal
2099 * get_block functionality. This is most of the block device filesystems.
2100 * Reads the page asynchronously --- the unlock_buffer() and
2101 * set/clear_buffer_uptodate() functions propagate buffer state into the
2102 * page struct once IO has completed.
2104 int block_read_full_page(struct page *page, get_block_t *get_block)
2106 struct inode *inode = page->mapping->host;
2107 sector_t iblock, lblock;
2108 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2109 unsigned int blocksize;
2111 int fully_mapped = 1;
2113 BUG_ON(!PageLocked(page));
2114 blocksize = 1 << inode->i_blkbits;
2115 if (!page_has_buffers(page))
2116 create_empty_buffers(page, blocksize, 0);
2117 head = page_buffers(page);
2119 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2120 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2126 if (buffer_uptodate(bh))
2129 if (!buffer_mapped(bh)) {
2133 if (iblock < lblock) {
2134 WARN_ON(bh->b_size != blocksize);
2135 err = get_block(inode, iblock, bh, 0);
2139 if (!buffer_mapped(bh)) {
2140 zero_user(page, i * blocksize, blocksize);
2142 set_buffer_uptodate(bh);
2146 * get_block() might have updated the buffer
2149 if (buffer_uptodate(bh))
2153 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2156 SetPageMappedToDisk(page);
2160 * All buffers are uptodate - we can set the page uptodate
2161 * as well. But not if get_block() returned an error.
2163 if (!PageError(page))
2164 SetPageUptodate(page);
2169 /* Stage two: lock the buffers */
2170 for (i = 0; i < nr; i++) {
2173 mark_buffer_async_read(bh);
2177 * Stage 3: start the IO. Check for uptodateness
2178 * inside the buffer lock in case another process reading
2179 * the underlying blockdev brought it uptodate (the sct fix).
2181 for (i = 0; i < nr; i++) {
2183 if (buffer_uptodate(bh))
2184 end_buffer_async_read(bh, 1);
2186 submit_bh(READ, bh);
2190 EXPORT_SYMBOL(block_read_full_page);
2192 /* utility function for filesystems that need to do work on expanding
2193 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2194 * deal with the hole.
2196 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2198 struct address_space *mapping = inode->i_mapping;
2203 err = inode_newsize_ok(inode, size);
2207 err = pagecache_write_begin(NULL, mapping, size, 0,
2208 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2213 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2219 EXPORT_SYMBOL(generic_cont_expand_simple);
2221 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2222 loff_t pos, loff_t *bytes)
2224 struct inode *inode = mapping->host;
2225 unsigned blocksize = 1 << inode->i_blkbits;
2228 pgoff_t index, curidx;
2230 unsigned zerofrom, offset, len;
2233 index = pos >> PAGE_CACHE_SHIFT;
2234 offset = pos & ~PAGE_CACHE_MASK;
2236 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2237 zerofrom = curpos & ~PAGE_CACHE_MASK;
2238 if (zerofrom & (blocksize-1)) {
2239 *bytes |= (blocksize-1);
2242 len = PAGE_CACHE_SIZE - zerofrom;
2244 err = pagecache_write_begin(file, mapping, curpos, len,
2245 AOP_FLAG_UNINTERRUPTIBLE,
2249 zero_user(page, zerofrom, len);
2250 err = pagecache_write_end(file, mapping, curpos, len, len,
2257 balance_dirty_pages_ratelimited(mapping);
2260 /* page covers the boundary, find the boundary offset */
2261 if (index == curidx) {
2262 zerofrom = curpos & ~PAGE_CACHE_MASK;
2263 /* if we will expand the thing last block will be filled */
2264 if (offset <= zerofrom) {
2267 if (zerofrom & (blocksize-1)) {
2268 *bytes |= (blocksize-1);
2271 len = offset - zerofrom;
2273 err = pagecache_write_begin(file, mapping, curpos, len,
2274 AOP_FLAG_UNINTERRUPTIBLE,
2278 zero_user(page, zerofrom, len);
2279 err = pagecache_write_end(file, mapping, curpos, len, len,
2291 * For moronic filesystems that do not allow holes in file.
2292 * We may have to extend the file.
2294 int cont_write_begin(struct file *file, struct address_space *mapping,
2295 loff_t pos, unsigned len, unsigned flags,
2296 struct page **pagep, void **fsdata,
2297 get_block_t *get_block, loff_t *bytes)
2299 struct inode *inode = mapping->host;
2300 unsigned blocksize = 1 << inode->i_blkbits;
2304 err = cont_expand_zero(file, mapping, pos, bytes);
2308 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2309 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2310 *bytes |= (blocksize-1);
2314 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2316 EXPORT_SYMBOL(cont_write_begin);
2318 int block_commit_write(struct page *page, unsigned from, unsigned to)
2320 struct inode *inode = page->mapping->host;
2321 __block_commit_write(inode,page,from,to);
2324 EXPORT_SYMBOL(block_commit_write);
2327 * block_page_mkwrite() is not allowed to change the file size as it gets
2328 * called from a page fault handler when a page is first dirtied. Hence we must
2329 * be careful to check for EOF conditions here. We set the page up correctly
2330 * for a written page which means we get ENOSPC checking when writing into
2331 * holes and correct delalloc and unwritten extent mapping on filesystems that
2332 * support these features.
2334 * We are not allowed to take the i_mutex here so we have to play games to
2335 * protect against truncate races as the page could now be beyond EOF. Because
2336 * truncate writes the inode size before removing pages, once we have the
2337 * page lock we can determine safely if the page is beyond EOF. If it is not
2338 * beyond EOF, then the page is guaranteed safe against truncation until we
2341 * Direct callers of this function should call vfs_check_frozen() so that page
2342 * fault does not busyloop until the fs is thawed.
2344 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2345 get_block_t get_block)
2347 struct page *page = vmf->page;
2348 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2354 size = i_size_read(inode);
2355 if ((page->mapping != inode->i_mapping) ||
2356 (page_offset(page) > size)) {
2357 /* We overload EFAULT to mean page got truncated */
2362 /* page is wholly or partially inside EOF */
2363 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2364 end = size & ~PAGE_CACHE_MASK;
2366 end = PAGE_CACHE_SIZE;
2368 ret = __block_write_begin(page, 0, end, get_block);
2370 ret = block_commit_write(page, 0, end);
2372 if (unlikely(ret < 0))
2375 * Freezing in progress? We check after the page is marked dirty and
2376 * with page lock held so if the test here fails, we are sure freezing
2377 * code will wait during syncing until the page fault is done - at that
2378 * point page will be dirty and unlocked so freezing code will write it
2379 * and writeprotect it again.
2381 set_page_dirty(page);
2382 if (inode->i_sb->s_frozen != SB_UNFROZEN) {
2386 wait_on_page_writeback(page);
2392 EXPORT_SYMBOL(__block_page_mkwrite);
2394 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2395 get_block_t get_block)
2398 struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2401 * This check is racy but catches the common case. The check in
2402 * __block_page_mkwrite() is reliable.
2404 vfs_check_frozen(sb, SB_FREEZE_WRITE);
2405 ret = __block_page_mkwrite(vma, vmf, get_block);
2406 return block_page_mkwrite_return(ret);
2408 EXPORT_SYMBOL(block_page_mkwrite);
2411 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2412 * immediately, while under the page lock. So it needs a special end_io
2413 * handler which does not touch the bh after unlocking it.
2415 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2417 __end_buffer_read_notouch(bh, uptodate);
2421 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2422 * the page (converting it to circular linked list and taking care of page
2425 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2427 struct buffer_head *bh;
2429 BUG_ON(!PageLocked(page));
2431 spin_lock(&page->mapping->private_lock);
2434 if (PageDirty(page))
2435 set_buffer_dirty(bh);
2436 if (!bh->b_this_page)
2437 bh->b_this_page = head;
2438 bh = bh->b_this_page;
2439 } while (bh != head);
2440 attach_page_buffers(page, head);
2441 spin_unlock(&page->mapping->private_lock);
2445 * On entry, the page is fully not uptodate.
2446 * On exit the page is fully uptodate in the areas outside (from,to)
2447 * The filesystem needs to handle block truncation upon failure.
2449 int nobh_write_begin(struct address_space *mapping,
2450 loff_t pos, unsigned len, unsigned flags,
2451 struct page **pagep, void **fsdata,
2452 get_block_t *get_block)
2454 struct inode *inode = mapping->host;
2455 const unsigned blkbits = inode->i_blkbits;
2456 const unsigned blocksize = 1 << blkbits;
2457 struct buffer_head *head, *bh;
2461 unsigned block_in_page;
2462 unsigned block_start, block_end;
2463 sector_t block_in_file;
2466 int is_mapped_to_disk = 1;
2468 index = pos >> PAGE_CACHE_SHIFT;
2469 from = pos & (PAGE_CACHE_SIZE - 1);
2472 page = grab_cache_page_write_begin(mapping, index, flags);
2478 if (page_has_buffers(page)) {
2479 ret = __block_write_begin(page, pos, len, get_block);
2485 if (PageMappedToDisk(page))
2489 * Allocate buffers so that we can keep track of state, and potentially
2490 * attach them to the page if an error occurs. In the common case of
2491 * no error, they will just be freed again without ever being attached
2492 * to the page (which is all OK, because we're under the page lock).
2494 * Be careful: the buffer linked list is a NULL terminated one, rather
2495 * than the circular one we're used to.
2497 head = alloc_page_buffers(page, blocksize, 0);
2503 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2506 * We loop across all blocks in the page, whether or not they are
2507 * part of the affected region. This is so we can discover if the
2508 * page is fully mapped-to-disk.
2510 for (block_start = 0, block_in_page = 0, bh = head;
2511 block_start < PAGE_CACHE_SIZE;
2512 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2515 block_end = block_start + blocksize;
2518 if (block_start >= to)
2520 ret = get_block(inode, block_in_file + block_in_page,
2524 if (!buffer_mapped(bh))
2525 is_mapped_to_disk = 0;
2527 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2528 if (PageUptodate(page)) {
2529 set_buffer_uptodate(bh);
2532 if (buffer_new(bh) || !buffer_mapped(bh)) {
2533 zero_user_segments(page, block_start, from,
2537 if (buffer_uptodate(bh))
2538 continue; /* reiserfs does this */
2539 if (block_start < from || block_end > to) {
2541 bh->b_end_io = end_buffer_read_nobh;
2542 submit_bh(READ, bh);
2549 * The page is locked, so these buffers are protected from
2550 * any VM or truncate activity. Hence we don't need to care
2551 * for the buffer_head refcounts.
2553 for (bh = head; bh; bh = bh->b_this_page) {
2555 if (!buffer_uptodate(bh))
2562 if (is_mapped_to_disk)
2563 SetPageMappedToDisk(page);
2565 *fsdata = head; /* to be released by nobh_write_end */
2572 * Error recovery is a bit difficult. We need to zero out blocks that
2573 * were newly allocated, and dirty them to ensure they get written out.
2574 * Buffers need to be attached to the page at this point, otherwise
2575 * the handling of potential IO errors during writeout would be hard
2576 * (could try doing synchronous writeout, but what if that fails too?)
2578 attach_nobh_buffers(page, head);
2579 page_zero_new_buffers(page, from, to);
2583 page_cache_release(page);
2588 EXPORT_SYMBOL(nobh_write_begin);
2590 int nobh_write_end(struct file *file, struct address_space *mapping,
2591 loff_t pos, unsigned len, unsigned copied,
2592 struct page *page, void *fsdata)
2594 struct inode *inode = page->mapping->host;
2595 struct buffer_head *head = fsdata;
2596 struct buffer_head *bh;
2597 BUG_ON(fsdata != NULL && page_has_buffers(page));
2599 if (unlikely(copied < len) && head)
2600 attach_nobh_buffers(page, head);
2601 if (page_has_buffers(page))
2602 return generic_write_end(file, mapping, pos, len,
2603 copied, page, fsdata);
2605 SetPageUptodate(page);
2606 set_page_dirty(page);
2607 if (pos+copied > inode->i_size) {
2608 i_size_write(inode, pos+copied);
2609 mark_inode_dirty(inode);
2613 page_cache_release(page);
2617 head = head->b_this_page;
2618 free_buffer_head(bh);
2623 EXPORT_SYMBOL(nobh_write_end);
2626 * nobh_writepage() - based on block_full_write_page() except
2627 * that it tries to operate without attaching bufferheads to
2630 int nobh_writepage(struct page *page, get_block_t *get_block,
2631 struct writeback_control *wbc)
2633 struct inode * const inode = page->mapping->host;
2634 loff_t i_size = i_size_read(inode);
2635 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2639 /* Is the page fully inside i_size? */
2640 if (page->index < end_index)
2643 /* Is the page fully outside i_size? (truncate in progress) */
2644 offset = i_size & (PAGE_CACHE_SIZE-1);
2645 if (page->index >= end_index+1 || !offset) {
2647 * The page may have dirty, unmapped buffers. For example,
2648 * they may have been added in ext3_writepage(). Make them
2649 * freeable here, so the page does not leak.
2652 /* Not really sure about this - do we need this ? */
2653 if (page->mapping->a_ops->invalidatepage)
2654 page->mapping->a_ops->invalidatepage(page, offset);
2657 return 0; /* don't care */
2661 * The page straddles i_size. It must be zeroed out on each and every
2662 * writepage invocation because it may be mmapped. "A file is mapped
2663 * in multiples of the page size. For a file that is not a multiple of
2664 * the page size, the remaining memory is zeroed when mapped, and
2665 * writes to that region are not written out to the file."
2667 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2669 ret = mpage_writepage(page, get_block, wbc);
2671 ret = __block_write_full_page(inode, page, get_block, wbc,
2672 end_buffer_async_write);
2675 EXPORT_SYMBOL(nobh_writepage);
2677 int nobh_truncate_page(struct address_space *mapping,
2678 loff_t from, get_block_t *get_block)
2680 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2681 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2684 unsigned length, pos;
2685 struct inode *inode = mapping->host;
2687 struct buffer_head map_bh;
2690 blocksize = 1 << inode->i_blkbits;
2691 length = offset & (blocksize - 1);
2693 /* Block boundary? Nothing to do */
2697 length = blocksize - length;
2698 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2700 page = grab_cache_page(mapping, index);
2705 if (page_has_buffers(page)) {
2708 page_cache_release(page);
2709 return block_truncate_page(mapping, from, get_block);
2712 /* Find the buffer that contains "offset" */
2714 while (offset >= pos) {
2719 map_bh.b_size = blocksize;
2721 err = get_block(inode, iblock, &map_bh, 0);
2724 /* unmapped? It's a hole - nothing to do */
2725 if (!buffer_mapped(&map_bh))
2728 /* Ok, it's mapped. Make sure it's up-to-date */
2729 if (!PageUptodate(page)) {
2730 err = mapping->a_ops->readpage(NULL, page);
2732 page_cache_release(page);
2736 if (!PageUptodate(page)) {
2740 if (page_has_buffers(page))
2743 zero_user(page, offset, length);
2744 set_page_dirty(page);
2749 page_cache_release(page);
2753 EXPORT_SYMBOL(nobh_truncate_page);
2755 int block_truncate_page(struct address_space *mapping,
2756 loff_t from, get_block_t *get_block)
2758 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2759 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2762 unsigned length, pos;
2763 struct inode *inode = mapping->host;
2765 struct buffer_head *bh;
2768 blocksize = 1 << inode->i_blkbits;
2769 length = offset & (blocksize - 1);
2771 /* Block boundary? Nothing to do */
2775 length = blocksize - length;
2776 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2778 page = grab_cache_page(mapping, index);
2783 if (!page_has_buffers(page))
2784 create_empty_buffers(page, blocksize, 0);
2786 /* Find the buffer that contains "offset" */
2787 bh = page_buffers(page);
2789 while (offset >= pos) {
2790 bh = bh->b_this_page;
2796 if (!buffer_mapped(bh)) {
2797 WARN_ON(bh->b_size != blocksize);
2798 err = get_block(inode, iblock, bh, 0);
2801 /* unmapped? It's a hole - nothing to do */
2802 if (!buffer_mapped(bh))
2806 /* Ok, it's mapped. Make sure it's up-to-date */
2807 if (PageUptodate(page))
2808 set_buffer_uptodate(bh);
2810 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2812 ll_rw_block(READ, 1, &bh);
2814 /* Uhhuh. Read error. Complain and punt. */
2815 if (!buffer_uptodate(bh))
2819 zero_user(page, offset, length);
2820 mark_buffer_dirty(bh);
2825 page_cache_release(page);
2829 EXPORT_SYMBOL(block_truncate_page);
2832 * The generic ->writepage function for buffer-backed address_spaces
2833 * this form passes in the end_io handler used to finish the IO.
2835 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2836 struct writeback_control *wbc, bh_end_io_t *handler)
2838 struct inode * const inode = page->mapping->host;
2839 loff_t i_size = i_size_read(inode);
2840 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2843 /* Is the page fully inside i_size? */
2844 if (page->index < end_index)
2845 return __block_write_full_page(inode, page, get_block, wbc,
2848 /* Is the page fully outside i_size? (truncate in progress) */
2849 offset = i_size & (PAGE_CACHE_SIZE-1);
2850 if (page->index >= end_index+1 || !offset) {
2852 * The page may have dirty, unmapped buffers. For example,
2853 * they may have been added in ext3_writepage(). Make them
2854 * freeable here, so the page does not leak.
2856 do_invalidatepage(page, 0);
2858 return 0; /* don't care */
2862 * The page straddles i_size. It must be zeroed out on each and every
2863 * writepage invocation because it may be mmapped. "A file is mapped
2864 * in multiples of the page size. For a file that is not a multiple of
2865 * the page size, the remaining memory is zeroed when mapped, and
2866 * writes to that region are not written out to the file."
2868 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2869 return __block_write_full_page(inode, page, get_block, wbc, handler);
2871 EXPORT_SYMBOL(block_write_full_page_endio);
2874 * The generic ->writepage function for buffer-backed address_spaces
2876 int block_write_full_page(struct page *page, get_block_t *get_block,
2877 struct writeback_control *wbc)
2879 return block_write_full_page_endio(page, get_block, wbc,
2880 end_buffer_async_write);
2882 EXPORT_SYMBOL(block_write_full_page);
2884 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2885 get_block_t *get_block)
2887 struct buffer_head tmp;
2888 struct inode *inode = mapping->host;
2891 tmp.b_size = 1 << inode->i_blkbits;
2892 get_block(inode, block, &tmp, 0);
2893 return tmp.b_blocknr;
2895 EXPORT_SYMBOL(generic_block_bmap);
2897 static void end_bio_bh_io_sync(struct bio *bio, int err)
2899 struct buffer_head *bh = bio->bi_private;
2901 if (err == -EOPNOTSUPP) {
2902 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2905 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2906 set_bit(BH_Quiet, &bh->b_state);
2908 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2912 int submit_bh(int rw, struct buffer_head * bh)
2917 BUG_ON(!buffer_locked(bh));
2918 BUG_ON(!buffer_mapped(bh));
2919 BUG_ON(!bh->b_end_io);
2920 BUG_ON(buffer_delay(bh));
2921 BUG_ON(buffer_unwritten(bh));
2924 * Only clear out a write error when rewriting
2926 if (test_set_buffer_req(bh) && (rw & WRITE))
2927 clear_buffer_write_io_error(bh);
2930 * from here on down, it's all bio -- do the initial mapping,
2931 * submit_bio -> generic_make_request may further map this bio around
2933 bio = bio_alloc(GFP_NOIO, 1);
2935 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2936 bio->bi_bdev = bh->b_bdev;
2937 bio->bi_io_vec[0].bv_page = bh->b_page;
2938 bio->bi_io_vec[0].bv_len = bh->b_size;
2939 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2943 bio->bi_size = bh->b_size;
2945 bio->bi_end_io = end_bio_bh_io_sync;
2946 bio->bi_private = bh;
2949 submit_bio(rw, bio);
2951 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2957 EXPORT_SYMBOL(submit_bh);
2960 * ll_rw_block: low-level access to block devices (DEPRECATED)
2961 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2962 * @nr: number of &struct buffer_heads in the array
2963 * @bhs: array of pointers to &struct buffer_head
2965 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2966 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2967 * %READA option is described in the documentation for generic_make_request()
2968 * which ll_rw_block() calls.
2970 * This function drops any buffer that it cannot get a lock on (with the
2971 * BH_Lock state bit), any buffer that appears to be clean when doing a write
2972 * request, and any buffer that appears to be up-to-date when doing read
2973 * request. Further it marks as clean buffers that are processed for
2974 * writing (the buffer cache won't assume that they are actually clean
2975 * until the buffer gets unlocked).
2977 * ll_rw_block sets b_end_io to simple completion handler that marks
2978 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2981 * All of the buffers must be for the same device, and must also be a
2982 * multiple of the current approved size for the device.
2984 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2988 for (i = 0; i < nr; i++) {
2989 struct buffer_head *bh = bhs[i];
2991 if (!trylock_buffer(bh))
2994 if (test_clear_buffer_dirty(bh)) {
2995 bh->b_end_io = end_buffer_write_sync;
2997 submit_bh(WRITE, bh);
3001 if (!buffer_uptodate(bh)) {
3002 bh->b_end_io = end_buffer_read_sync;
3011 EXPORT_SYMBOL(ll_rw_block);
3013 void write_dirty_buffer(struct buffer_head *bh, int rw)
3016 if (!test_clear_buffer_dirty(bh)) {
3020 bh->b_end_io = end_buffer_write_sync;
3024 EXPORT_SYMBOL(write_dirty_buffer);
3027 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3028 * and then start new I/O and then wait upon it. The caller must have a ref on
3031 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3035 WARN_ON(atomic_read(&bh->b_count) < 1);
3037 if (test_clear_buffer_dirty(bh)) {
3039 bh->b_end_io = end_buffer_write_sync;
3040 ret = submit_bh(rw, bh);
3042 if (!ret && !buffer_uptodate(bh))
3049 EXPORT_SYMBOL(__sync_dirty_buffer);
3051 int sync_dirty_buffer(struct buffer_head *bh)
3053 return __sync_dirty_buffer(bh, WRITE_SYNC);
3055 EXPORT_SYMBOL(sync_dirty_buffer);
3058 * try_to_free_buffers() checks if all the buffers on this particular page
3059 * are unused, and releases them if so.
3061 * Exclusion against try_to_free_buffers may be obtained by either
3062 * locking the page or by holding its mapping's private_lock.
3064 * If the page is dirty but all the buffers are clean then we need to
3065 * be sure to mark the page clean as well. This is because the page
3066 * may be against a block device, and a later reattachment of buffers
3067 * to a dirty page will set *all* buffers dirty. Which would corrupt
3068 * filesystem data on the same device.
3070 * The same applies to regular filesystem pages: if all the buffers are
3071 * clean then we set the page clean and proceed. To do that, we require
3072 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3075 * try_to_free_buffers() is non-blocking.
3077 static inline int buffer_busy(struct buffer_head *bh)
3079 return atomic_read(&bh->b_count) |
3080 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3084 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3086 struct buffer_head *head = page_buffers(page);
3087 struct buffer_head *bh;
3091 if (buffer_write_io_error(bh) && page->mapping)
3092 set_bit(AS_EIO, &page->mapping->flags);
3093 if (buffer_busy(bh))
3095 bh = bh->b_this_page;
3096 } while (bh != head);
3099 struct buffer_head *next = bh->b_this_page;
3101 if (bh->b_assoc_map)
3102 __remove_assoc_queue(bh);
3104 } while (bh != head);
3105 *buffers_to_free = head;
3106 __clear_page_buffers(page);
3112 int try_to_free_buffers(struct page *page)
3114 struct address_space * const mapping = page->mapping;
3115 struct buffer_head *buffers_to_free = NULL;
3118 BUG_ON(!PageLocked(page));
3119 if (PageWriteback(page))
3122 if (mapping == NULL) { /* can this still happen? */
3123 ret = drop_buffers(page, &buffers_to_free);
3127 spin_lock(&mapping->private_lock);
3128 ret = drop_buffers(page, &buffers_to_free);
3131 * If the filesystem writes its buffers by hand (eg ext3)
3132 * then we can have clean buffers against a dirty page. We
3133 * clean the page here; otherwise the VM will never notice
3134 * that the filesystem did any IO at all.
3136 * Also, during truncate, discard_buffer will have marked all
3137 * the page's buffers clean. We discover that here and clean
3140 * private_lock must be held over this entire operation in order
3141 * to synchronise against __set_page_dirty_buffers and prevent the
3142 * dirty bit from being lost.
3145 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3146 spin_unlock(&mapping->private_lock);
3148 if (buffers_to_free) {
3149 struct buffer_head *bh = buffers_to_free;
3152 struct buffer_head *next = bh->b_this_page;
3153 free_buffer_head(bh);
3155 } while (bh != buffers_to_free);
3159 EXPORT_SYMBOL(try_to_free_buffers);
3162 * There are no bdflush tunables left. But distributions are
3163 * still running obsolete flush daemons, so we terminate them here.
3165 * Use of bdflush() is deprecated and will be removed in a future kernel.
3166 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3168 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3170 static int msg_count;
3172 if (!capable(CAP_SYS_ADMIN))
3175 if (msg_count < 5) {
3178 "warning: process `%s' used the obsolete bdflush"
3179 " system call\n", current->comm);
3180 printk(KERN_INFO "Fix your initscripts?\n");
3189 * Buffer-head allocation
3191 static struct kmem_cache *bh_cachep;
3194 * Once the number of bh's in the machine exceeds this level, we start
3195 * stripping them in writeback.
3197 static int max_buffer_heads;
3199 int buffer_heads_over_limit;
3201 struct bh_accounting {
3202 int nr; /* Number of live bh's */
3203 int ratelimit; /* Limit cacheline bouncing */
3206 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3208 static void recalc_bh_state(void)
3213 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3215 __this_cpu_write(bh_accounting.ratelimit, 0);
3216 for_each_online_cpu(i)
3217 tot += per_cpu(bh_accounting, i).nr;
3218 buffer_heads_over_limit = (tot > max_buffer_heads);
3221 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3223 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3225 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3227 __this_cpu_inc(bh_accounting.nr);
3233 EXPORT_SYMBOL(alloc_buffer_head);
3235 void free_buffer_head(struct buffer_head *bh)
3237 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3238 kmem_cache_free(bh_cachep, bh);
3240 __this_cpu_dec(bh_accounting.nr);
3244 EXPORT_SYMBOL(free_buffer_head);
3246 static void buffer_exit_cpu(int cpu)
3249 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3251 for (i = 0; i < BH_LRU_SIZE; i++) {
3255 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3256 per_cpu(bh_accounting, cpu).nr = 0;
3259 static int buffer_cpu_notify(struct notifier_block *self,
3260 unsigned long action, void *hcpu)
3262 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3263 buffer_exit_cpu((unsigned long)hcpu);
3268 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3269 * @bh: struct buffer_head
3271 * Return true if the buffer is up-to-date and false,
3272 * with the buffer locked, if not.
3274 int bh_uptodate_or_lock(struct buffer_head *bh)
3276 if (!buffer_uptodate(bh)) {
3278 if (!buffer_uptodate(bh))
3284 EXPORT_SYMBOL(bh_uptodate_or_lock);
3287 * bh_submit_read - Submit a locked buffer for reading
3288 * @bh: struct buffer_head
3290 * Returns zero on success and -EIO on error.
3292 int bh_submit_read(struct buffer_head *bh)
3294 BUG_ON(!buffer_locked(bh));
3296 if (buffer_uptodate(bh)) {
3302 bh->b_end_io = end_buffer_read_sync;
3303 submit_bh(READ, bh);
3305 if (buffer_uptodate(bh))
3309 EXPORT_SYMBOL(bh_submit_read);
3311 void __init buffer_init(void)
3315 bh_cachep = kmem_cache_create("buffer_head",
3316 sizeof(struct buffer_head), 0,
3317 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3322 * Limit the bh occupancy to 10% of ZONE_NORMAL
3324 nrpages = (nr_free_buffer_pages() * 10) / 100;
3325 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3326 hotcpu_notifier(buffer_cpu_notify, 0);