Merge branch 'bcache-for-upstream' of git://evilpiepirate.org/~kent/linux-bcache...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59         trace_block_touch_buffer(bh);
60         mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63
64 static int sleep_on_buffer(void *word)
65 {
66         io_schedule();
67         return 0;
68 }
69
70 void __lock_buffer(struct buffer_head *bh)
71 {
72         wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
73                                                         TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void unlock_buffer(struct buffer_head *bh)
78 {
79         clear_bit_unlock(BH_Lock, &bh->b_state);
80         smp_mb__after_clear_bit();
81         wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 EXPORT_SYMBOL(unlock_buffer);
84
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92         wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
93 }
94 EXPORT_SYMBOL(__wait_on_buffer);
95
96 static void
97 __clear_page_buffers(struct page *page)
98 {
99         ClearPagePrivate(page);
100         set_page_private(page, 0);
101         page_cache_release(page);
102 }
103
104
105 static int quiet_error(struct buffer_head *bh)
106 {
107         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
108                 return 0;
109         return 1;
110 }
111
112
113 static void buffer_io_error(struct buffer_head *bh)
114 {
115         char b[BDEVNAME_SIZE];
116         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
117                         bdevname(bh->b_bdev, b),
118                         (unsigned long long)bh->b_blocknr);
119 }
120
121 /*
122  * End-of-IO handler helper function which does not touch the bh after
123  * unlocking it.
124  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
125  * a race there is benign: unlock_buffer() only use the bh's address for
126  * hashing after unlocking the buffer, so it doesn't actually touch the bh
127  * itself.
128  */
129 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
130 {
131         if (uptodate) {
132                 set_buffer_uptodate(bh);
133         } else {
134                 /* This happens, due to failed READA attempts. */
135                 clear_buffer_uptodate(bh);
136         }
137         unlock_buffer(bh);
138 }
139
140 /*
141  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
142  * unlock the buffer. This is what ll_rw_block uses too.
143  */
144 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
145 {
146         __end_buffer_read_notouch(bh, uptodate);
147         put_bh(bh);
148 }
149 EXPORT_SYMBOL(end_buffer_read_sync);
150
151 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
152 {
153         char b[BDEVNAME_SIZE];
154
155         if (uptodate) {
156                 set_buffer_uptodate(bh);
157         } else {
158                 if (!quiet_error(bh)) {
159                         buffer_io_error(bh);
160                         printk(KERN_WARNING "lost page write due to "
161                                         "I/O error on %s\n",
162                                        bdevname(bh->b_bdev, b));
163                 }
164                 set_buffer_write_io_error(bh);
165                 clear_buffer_uptodate(bh);
166         }
167         unlock_buffer(bh);
168         put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_write_sync);
171
172 /*
173  * Various filesystems appear to want __find_get_block to be non-blocking.
174  * But it's the page lock which protects the buffers.  To get around this,
175  * we get exclusion from try_to_free_buffers with the blockdev mapping's
176  * private_lock.
177  *
178  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
179  * may be quite high.  This code could TryLock the page, and if that
180  * succeeds, there is no need to take private_lock. (But if
181  * private_lock is contended then so is mapping->tree_lock).
182  */
183 static struct buffer_head *
184 __find_get_block_slow(struct block_device *bdev, sector_t block)
185 {
186         struct inode *bd_inode = bdev->bd_inode;
187         struct address_space *bd_mapping = bd_inode->i_mapping;
188         struct buffer_head *ret = NULL;
189         pgoff_t index;
190         struct buffer_head *bh;
191         struct buffer_head *head;
192         struct page *page;
193         int all_mapped = 1;
194
195         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
196         page = find_get_page(bd_mapping, index);
197         if (!page)
198                 goto out;
199
200         spin_lock(&bd_mapping->private_lock);
201         if (!page_has_buffers(page))
202                 goto out_unlock;
203         head = page_buffers(page);
204         bh = head;
205         do {
206                 if (!buffer_mapped(bh))
207                         all_mapped = 0;
208                 else if (bh->b_blocknr == block) {
209                         ret = bh;
210                         get_bh(bh);
211                         goto out_unlock;
212                 }
213                 bh = bh->b_this_page;
214         } while (bh != head);
215
216         /* we might be here because some of the buffers on this page are
217          * not mapped.  This is due to various races between
218          * file io on the block device and getblk.  It gets dealt with
219          * elsewhere, don't buffer_error if we had some unmapped buffers
220          */
221         if (all_mapped) {
222                 char b[BDEVNAME_SIZE];
223
224                 printk("__find_get_block_slow() failed. "
225                         "block=%llu, b_blocknr=%llu\n",
226                         (unsigned long long)block,
227                         (unsigned long long)bh->b_blocknr);
228                 printk("b_state=0x%08lx, b_size=%zu\n",
229                         bh->b_state, bh->b_size);
230                 printk("device %s blocksize: %d\n", bdevname(bdev, b),
231                         1 << bd_inode->i_blkbits);
232         }
233 out_unlock:
234         spin_unlock(&bd_mapping->private_lock);
235         page_cache_release(page);
236 out:
237         return ret;
238 }
239
240 /*
241  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
242  */
243 static void free_more_memory(void)
244 {
245         struct zone *zone;
246         int nid;
247
248         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
249         yield();
250
251         for_each_online_node(nid) {
252                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
253                                                 gfp_zone(GFP_NOFS), NULL,
254                                                 &zone);
255                 if (zone)
256                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
257                                                 GFP_NOFS, NULL);
258         }
259 }
260
261 /*
262  * I/O completion handler for block_read_full_page() - pages
263  * which come unlocked at the end of I/O.
264  */
265 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
266 {
267         unsigned long flags;
268         struct buffer_head *first;
269         struct buffer_head *tmp;
270         struct page *page;
271         int page_uptodate = 1;
272
273         BUG_ON(!buffer_async_read(bh));
274
275         page = bh->b_page;
276         if (uptodate) {
277                 set_buffer_uptodate(bh);
278         } else {
279                 clear_buffer_uptodate(bh);
280                 if (!quiet_error(bh))
281                         buffer_io_error(bh);
282                 SetPageError(page);
283         }
284
285         /*
286          * Be _very_ careful from here on. Bad things can happen if
287          * two buffer heads end IO at almost the same time and both
288          * decide that the page is now completely done.
289          */
290         first = page_buffers(page);
291         local_irq_save(flags);
292         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
293         clear_buffer_async_read(bh);
294         unlock_buffer(bh);
295         tmp = bh;
296         do {
297                 if (!buffer_uptodate(tmp))
298                         page_uptodate = 0;
299                 if (buffer_async_read(tmp)) {
300                         BUG_ON(!buffer_locked(tmp));
301                         goto still_busy;
302                 }
303                 tmp = tmp->b_this_page;
304         } while (tmp != bh);
305         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
306         local_irq_restore(flags);
307
308         /*
309          * If none of the buffers had errors and they are all
310          * uptodate then we can set the page uptodate.
311          */
312         if (page_uptodate && !PageError(page))
313                 SetPageUptodate(page);
314         unlock_page(page);
315         return;
316
317 still_busy:
318         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
319         local_irq_restore(flags);
320         return;
321 }
322
323 /*
324  * Completion handler for block_write_full_page() - pages which are unlocked
325  * during I/O, and which have PageWriteback cleared upon I/O completion.
326  */
327 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
328 {
329         char b[BDEVNAME_SIZE];
330         unsigned long flags;
331         struct buffer_head *first;
332         struct buffer_head *tmp;
333         struct page *page;
334
335         BUG_ON(!buffer_async_write(bh));
336
337         page = bh->b_page;
338         if (uptodate) {
339                 set_buffer_uptodate(bh);
340         } else {
341                 if (!quiet_error(bh)) {
342                         buffer_io_error(bh);
343                         printk(KERN_WARNING "lost page write due to "
344                                         "I/O error on %s\n",
345                                bdevname(bh->b_bdev, b));
346                 }
347                 set_bit(AS_EIO, &page->mapping->flags);
348                 set_buffer_write_io_error(bh);
349                 clear_buffer_uptodate(bh);
350                 SetPageError(page);
351         }
352
353         first = page_buffers(page);
354         local_irq_save(flags);
355         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
356
357         clear_buffer_async_write(bh);
358         unlock_buffer(bh);
359         tmp = bh->b_this_page;
360         while (tmp != bh) {
361                 if (buffer_async_write(tmp)) {
362                         BUG_ON(!buffer_locked(tmp));
363                         goto still_busy;
364                 }
365                 tmp = tmp->b_this_page;
366         }
367         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
368         local_irq_restore(flags);
369         end_page_writeback(page);
370         return;
371
372 still_busy:
373         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374         local_irq_restore(flags);
375         return;
376 }
377 EXPORT_SYMBOL(end_buffer_async_write);
378
379 /*
380  * If a page's buffers are under async readin (end_buffer_async_read
381  * completion) then there is a possibility that another thread of
382  * control could lock one of the buffers after it has completed
383  * but while some of the other buffers have not completed.  This
384  * locked buffer would confuse end_buffer_async_read() into not unlocking
385  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
386  * that this buffer is not under async I/O.
387  *
388  * The page comes unlocked when it has no locked buffer_async buffers
389  * left.
390  *
391  * PageLocked prevents anyone starting new async I/O reads any of
392  * the buffers.
393  *
394  * PageWriteback is used to prevent simultaneous writeout of the same
395  * page.
396  *
397  * PageLocked prevents anyone from starting writeback of a page which is
398  * under read I/O (PageWriteback is only ever set against a locked page).
399  */
400 static void mark_buffer_async_read(struct buffer_head *bh)
401 {
402         bh->b_end_io = end_buffer_async_read;
403         set_buffer_async_read(bh);
404 }
405
406 static void mark_buffer_async_write_endio(struct buffer_head *bh,
407                                           bh_end_io_t *handler)
408 {
409         bh->b_end_io = handler;
410         set_buffer_async_write(bh);
411 }
412
413 void mark_buffer_async_write(struct buffer_head *bh)
414 {
415         mark_buffer_async_write_endio(bh, end_buffer_async_write);
416 }
417 EXPORT_SYMBOL(mark_buffer_async_write);
418
419
420 /*
421  * fs/buffer.c contains helper functions for buffer-backed address space's
422  * fsync functions.  A common requirement for buffer-based filesystems is
423  * that certain data from the backing blockdev needs to be written out for
424  * a successful fsync().  For example, ext2 indirect blocks need to be
425  * written back and waited upon before fsync() returns.
426  *
427  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
428  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
429  * management of a list of dependent buffers at ->i_mapping->private_list.
430  *
431  * Locking is a little subtle: try_to_free_buffers() will remove buffers
432  * from their controlling inode's queue when they are being freed.  But
433  * try_to_free_buffers() will be operating against the *blockdev* mapping
434  * at the time, not against the S_ISREG file which depends on those buffers.
435  * So the locking for private_list is via the private_lock in the address_space
436  * which backs the buffers.  Which is different from the address_space 
437  * against which the buffers are listed.  So for a particular address_space,
438  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
439  * mapping->private_list will always be protected by the backing blockdev's
440  * ->private_lock.
441  *
442  * Which introduces a requirement: all buffers on an address_space's
443  * ->private_list must be from the same address_space: the blockdev's.
444  *
445  * address_spaces which do not place buffers at ->private_list via these
446  * utility functions are free to use private_lock and private_list for
447  * whatever they want.  The only requirement is that list_empty(private_list)
448  * be true at clear_inode() time.
449  *
450  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
451  * filesystems should do that.  invalidate_inode_buffers() should just go
452  * BUG_ON(!list_empty).
453  *
454  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
455  * take an address_space, not an inode.  And it should be called
456  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
457  * queued up.
458  *
459  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
460  * list if it is already on a list.  Because if the buffer is on a list,
461  * it *must* already be on the right one.  If not, the filesystem is being
462  * silly.  This will save a ton of locking.  But first we have to ensure
463  * that buffers are taken *off* the old inode's list when they are freed
464  * (presumably in truncate).  That requires careful auditing of all
465  * filesystems (do it inside bforget()).  It could also be done by bringing
466  * b_inode back.
467  */
468
469 /*
470  * The buffer's backing address_space's private_lock must be held
471  */
472 static void __remove_assoc_queue(struct buffer_head *bh)
473 {
474         list_del_init(&bh->b_assoc_buffers);
475         WARN_ON(!bh->b_assoc_map);
476         if (buffer_write_io_error(bh))
477                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
478         bh->b_assoc_map = NULL;
479 }
480
481 int inode_has_buffers(struct inode *inode)
482 {
483         return !list_empty(&inode->i_data.private_list);
484 }
485
486 /*
487  * osync is designed to support O_SYNC io.  It waits synchronously for
488  * all already-submitted IO to complete, but does not queue any new
489  * writes to the disk.
490  *
491  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
492  * you dirty the buffers, and then use osync_inode_buffers to wait for
493  * completion.  Any other dirty buffers which are not yet queued for
494  * write will not be flushed to disk by the osync.
495  */
496 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
497 {
498         struct buffer_head *bh;
499         struct list_head *p;
500         int err = 0;
501
502         spin_lock(lock);
503 repeat:
504         list_for_each_prev(p, list) {
505                 bh = BH_ENTRY(p);
506                 if (buffer_locked(bh)) {
507                         get_bh(bh);
508                         spin_unlock(lock);
509                         wait_on_buffer(bh);
510                         if (!buffer_uptodate(bh))
511                                 err = -EIO;
512                         brelse(bh);
513                         spin_lock(lock);
514                         goto repeat;
515                 }
516         }
517         spin_unlock(lock);
518         return err;
519 }
520
521 static void do_thaw_one(struct super_block *sb, void *unused)
522 {
523         char b[BDEVNAME_SIZE];
524         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
525                 printk(KERN_WARNING "Emergency Thaw on %s\n",
526                        bdevname(sb->s_bdev, b));
527 }
528
529 static void do_thaw_all(struct work_struct *work)
530 {
531         iterate_supers(do_thaw_one, NULL);
532         kfree(work);
533         printk(KERN_WARNING "Emergency Thaw complete\n");
534 }
535
536 /**
537  * emergency_thaw_all -- forcibly thaw every frozen filesystem
538  *
539  * Used for emergency unfreeze of all filesystems via SysRq
540  */
541 void emergency_thaw_all(void)
542 {
543         struct work_struct *work;
544
545         work = kmalloc(sizeof(*work), GFP_ATOMIC);
546         if (work) {
547                 INIT_WORK(work, do_thaw_all);
548                 schedule_work(work);
549         }
550 }
551
552 /**
553  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
554  * @mapping: the mapping which wants those buffers written
555  *
556  * Starts I/O against the buffers at mapping->private_list, and waits upon
557  * that I/O.
558  *
559  * Basically, this is a convenience function for fsync().
560  * @mapping is a file or directory which needs those buffers to be written for
561  * a successful fsync().
562  */
563 int sync_mapping_buffers(struct address_space *mapping)
564 {
565         struct address_space *buffer_mapping = mapping->private_data;
566
567         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
568                 return 0;
569
570         return fsync_buffers_list(&buffer_mapping->private_lock,
571                                         &mapping->private_list);
572 }
573 EXPORT_SYMBOL(sync_mapping_buffers);
574
575 /*
576  * Called when we've recently written block `bblock', and it is known that
577  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
578  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
579  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
580  */
581 void write_boundary_block(struct block_device *bdev,
582                         sector_t bblock, unsigned blocksize)
583 {
584         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
585         if (bh) {
586                 if (buffer_dirty(bh))
587                         ll_rw_block(WRITE, 1, &bh);
588                 put_bh(bh);
589         }
590 }
591
592 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
593 {
594         struct address_space *mapping = inode->i_mapping;
595         struct address_space *buffer_mapping = bh->b_page->mapping;
596
597         mark_buffer_dirty(bh);
598         if (!mapping->private_data) {
599                 mapping->private_data = buffer_mapping;
600         } else {
601                 BUG_ON(mapping->private_data != buffer_mapping);
602         }
603         if (!bh->b_assoc_map) {
604                 spin_lock(&buffer_mapping->private_lock);
605                 list_move_tail(&bh->b_assoc_buffers,
606                                 &mapping->private_list);
607                 bh->b_assoc_map = mapping;
608                 spin_unlock(&buffer_mapping->private_lock);
609         }
610 }
611 EXPORT_SYMBOL(mark_buffer_dirty_inode);
612
613 /*
614  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
615  * dirty.
616  *
617  * If warn is true, then emit a warning if the page is not uptodate and has
618  * not been truncated.
619  */
620 static void __set_page_dirty(struct page *page,
621                 struct address_space *mapping, int warn)
622 {
623         spin_lock_irq(&mapping->tree_lock);
624         if (page->mapping) {    /* Race with truncate? */
625                 WARN_ON_ONCE(warn && !PageUptodate(page));
626                 account_page_dirtied(page, mapping);
627                 radix_tree_tag_set(&mapping->page_tree,
628                                 page_index(page), PAGECACHE_TAG_DIRTY);
629         }
630         spin_unlock_irq(&mapping->tree_lock);
631         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
632 }
633
634 /*
635  * Add a page to the dirty page list.
636  *
637  * It is a sad fact of life that this function is called from several places
638  * deeply under spinlocking.  It may not sleep.
639  *
640  * If the page has buffers, the uptodate buffers are set dirty, to preserve
641  * dirty-state coherency between the page and the buffers.  It the page does
642  * not have buffers then when they are later attached they will all be set
643  * dirty.
644  *
645  * The buffers are dirtied before the page is dirtied.  There's a small race
646  * window in which a writepage caller may see the page cleanness but not the
647  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
648  * before the buffers, a concurrent writepage caller could clear the page dirty
649  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
650  * page on the dirty page list.
651  *
652  * We use private_lock to lock against try_to_free_buffers while using the
653  * page's buffer list.  Also use this to protect against clean buffers being
654  * added to the page after it was set dirty.
655  *
656  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
657  * address_space though.
658  */
659 int __set_page_dirty_buffers(struct page *page)
660 {
661         int newly_dirty;
662         struct address_space *mapping = page_mapping(page);
663
664         if (unlikely(!mapping))
665                 return !TestSetPageDirty(page);
666
667         spin_lock(&mapping->private_lock);
668         if (page_has_buffers(page)) {
669                 struct buffer_head *head = page_buffers(page);
670                 struct buffer_head *bh = head;
671
672                 do {
673                         set_buffer_dirty(bh);
674                         bh = bh->b_this_page;
675                 } while (bh != head);
676         }
677         newly_dirty = !TestSetPageDirty(page);
678         spin_unlock(&mapping->private_lock);
679
680         if (newly_dirty)
681                 __set_page_dirty(page, mapping, 1);
682         return newly_dirty;
683 }
684 EXPORT_SYMBOL(__set_page_dirty_buffers);
685
686 /*
687  * Write out and wait upon a list of buffers.
688  *
689  * We have conflicting pressures: we want to make sure that all
690  * initially dirty buffers get waited on, but that any subsequently
691  * dirtied buffers don't.  After all, we don't want fsync to last
692  * forever if somebody is actively writing to the file.
693  *
694  * Do this in two main stages: first we copy dirty buffers to a
695  * temporary inode list, queueing the writes as we go.  Then we clean
696  * up, waiting for those writes to complete.
697  * 
698  * During this second stage, any subsequent updates to the file may end
699  * up refiling the buffer on the original inode's dirty list again, so
700  * there is a chance we will end up with a buffer queued for write but
701  * not yet completed on that list.  So, as a final cleanup we go through
702  * the osync code to catch these locked, dirty buffers without requeuing
703  * any newly dirty buffers for write.
704  */
705 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
706 {
707         struct buffer_head *bh;
708         struct list_head tmp;
709         struct address_space *mapping;
710         int err = 0, err2;
711         struct blk_plug plug;
712
713         INIT_LIST_HEAD(&tmp);
714         blk_start_plug(&plug);
715
716         spin_lock(lock);
717         while (!list_empty(list)) {
718                 bh = BH_ENTRY(list->next);
719                 mapping = bh->b_assoc_map;
720                 __remove_assoc_queue(bh);
721                 /* Avoid race with mark_buffer_dirty_inode() which does
722                  * a lockless check and we rely on seeing the dirty bit */
723                 smp_mb();
724                 if (buffer_dirty(bh) || buffer_locked(bh)) {
725                         list_add(&bh->b_assoc_buffers, &tmp);
726                         bh->b_assoc_map = mapping;
727                         if (buffer_dirty(bh)) {
728                                 get_bh(bh);
729                                 spin_unlock(lock);
730                                 /*
731                                  * Ensure any pending I/O completes so that
732                                  * write_dirty_buffer() actually writes the
733                                  * current contents - it is a noop if I/O is
734                                  * still in flight on potentially older
735                                  * contents.
736                                  */
737                                 write_dirty_buffer(bh, WRITE_SYNC);
738
739                                 /*
740                                  * Kick off IO for the previous mapping. Note
741                                  * that we will not run the very last mapping,
742                                  * wait_on_buffer() will do that for us
743                                  * through sync_buffer().
744                                  */
745                                 brelse(bh);
746                                 spin_lock(lock);
747                         }
748                 }
749         }
750
751         spin_unlock(lock);
752         blk_finish_plug(&plug);
753         spin_lock(lock);
754
755         while (!list_empty(&tmp)) {
756                 bh = BH_ENTRY(tmp.prev);
757                 get_bh(bh);
758                 mapping = bh->b_assoc_map;
759                 __remove_assoc_queue(bh);
760                 /* Avoid race with mark_buffer_dirty_inode() which does
761                  * a lockless check and we rely on seeing the dirty bit */
762                 smp_mb();
763                 if (buffer_dirty(bh)) {
764                         list_add(&bh->b_assoc_buffers,
765                                  &mapping->private_list);
766                         bh->b_assoc_map = mapping;
767                 }
768                 spin_unlock(lock);
769                 wait_on_buffer(bh);
770                 if (!buffer_uptodate(bh))
771                         err = -EIO;
772                 brelse(bh);
773                 spin_lock(lock);
774         }
775         
776         spin_unlock(lock);
777         err2 = osync_buffers_list(lock, list);
778         if (err)
779                 return err;
780         else
781                 return err2;
782 }
783
784 /*
785  * Invalidate any and all dirty buffers on a given inode.  We are
786  * probably unmounting the fs, but that doesn't mean we have already
787  * done a sync().  Just drop the buffers from the inode list.
788  *
789  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
790  * assumes that all the buffers are against the blockdev.  Not true
791  * for reiserfs.
792  */
793 void invalidate_inode_buffers(struct inode *inode)
794 {
795         if (inode_has_buffers(inode)) {
796                 struct address_space *mapping = &inode->i_data;
797                 struct list_head *list = &mapping->private_list;
798                 struct address_space *buffer_mapping = mapping->private_data;
799
800                 spin_lock(&buffer_mapping->private_lock);
801                 while (!list_empty(list))
802                         __remove_assoc_queue(BH_ENTRY(list->next));
803                 spin_unlock(&buffer_mapping->private_lock);
804         }
805 }
806 EXPORT_SYMBOL(invalidate_inode_buffers);
807
808 /*
809  * Remove any clean buffers from the inode's buffer list.  This is called
810  * when we're trying to free the inode itself.  Those buffers can pin it.
811  *
812  * Returns true if all buffers were removed.
813  */
814 int remove_inode_buffers(struct inode *inode)
815 {
816         int ret = 1;
817
818         if (inode_has_buffers(inode)) {
819                 struct address_space *mapping = &inode->i_data;
820                 struct list_head *list = &mapping->private_list;
821                 struct address_space *buffer_mapping = mapping->private_data;
822
823                 spin_lock(&buffer_mapping->private_lock);
824                 while (!list_empty(list)) {
825                         struct buffer_head *bh = BH_ENTRY(list->next);
826                         if (buffer_dirty(bh)) {
827                                 ret = 0;
828                                 break;
829                         }
830                         __remove_assoc_queue(bh);
831                 }
832                 spin_unlock(&buffer_mapping->private_lock);
833         }
834         return ret;
835 }
836
837 /*
838  * Create the appropriate buffers when given a page for data area and
839  * the size of each buffer.. Use the bh->b_this_page linked list to
840  * follow the buffers created.  Return NULL if unable to create more
841  * buffers.
842  *
843  * The retry flag is used to differentiate async IO (paging, swapping)
844  * which may not fail from ordinary buffer allocations.
845  */
846 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
847                 int retry)
848 {
849         struct buffer_head *bh, *head;
850         long offset;
851
852 try_again:
853         head = NULL;
854         offset = PAGE_SIZE;
855         while ((offset -= size) >= 0) {
856                 bh = alloc_buffer_head(GFP_NOFS);
857                 if (!bh)
858                         goto no_grow;
859
860                 bh->b_this_page = head;
861                 bh->b_blocknr = -1;
862                 head = bh;
863
864                 bh->b_size = size;
865
866                 /* Link the buffer to its page */
867                 set_bh_page(bh, page, offset);
868         }
869         return head;
870 /*
871  * In case anything failed, we just free everything we got.
872  */
873 no_grow:
874         if (head) {
875                 do {
876                         bh = head;
877                         head = head->b_this_page;
878                         free_buffer_head(bh);
879                 } while (head);
880         }
881
882         /*
883          * Return failure for non-async IO requests.  Async IO requests
884          * are not allowed to fail, so we have to wait until buffer heads
885          * become available.  But we don't want tasks sleeping with 
886          * partially complete buffers, so all were released above.
887          */
888         if (!retry)
889                 return NULL;
890
891         /* We're _really_ low on memory. Now we just
892          * wait for old buffer heads to become free due to
893          * finishing IO.  Since this is an async request and
894          * the reserve list is empty, we're sure there are 
895          * async buffer heads in use.
896          */
897         free_more_memory();
898         goto try_again;
899 }
900 EXPORT_SYMBOL_GPL(alloc_page_buffers);
901
902 static inline void
903 link_dev_buffers(struct page *page, struct buffer_head *head)
904 {
905         struct buffer_head *bh, *tail;
906
907         bh = head;
908         do {
909                 tail = bh;
910                 bh = bh->b_this_page;
911         } while (bh);
912         tail->b_this_page = head;
913         attach_page_buffers(page, head);
914 }
915
916 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
917 {
918         sector_t retval = ~((sector_t)0);
919         loff_t sz = i_size_read(bdev->bd_inode);
920
921         if (sz) {
922                 unsigned int sizebits = blksize_bits(size);
923                 retval = (sz >> sizebits);
924         }
925         return retval;
926 }
927
928 /*
929  * Initialise the state of a blockdev page's buffers.
930  */ 
931 static sector_t
932 init_page_buffers(struct page *page, struct block_device *bdev,
933                         sector_t block, int size)
934 {
935         struct buffer_head *head = page_buffers(page);
936         struct buffer_head *bh = head;
937         int uptodate = PageUptodate(page);
938         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
939
940         do {
941                 if (!buffer_mapped(bh)) {
942                         init_buffer(bh, NULL, NULL);
943                         bh->b_bdev = bdev;
944                         bh->b_blocknr = block;
945                         if (uptodate)
946                                 set_buffer_uptodate(bh);
947                         if (block < end_block)
948                                 set_buffer_mapped(bh);
949                 }
950                 block++;
951                 bh = bh->b_this_page;
952         } while (bh != head);
953
954         /*
955          * Caller needs to validate requested block against end of device.
956          */
957         return end_block;
958 }
959
960 /*
961  * Create the page-cache page that contains the requested block.
962  *
963  * This is used purely for blockdev mappings.
964  */
965 static int
966 grow_dev_page(struct block_device *bdev, sector_t block,
967                 pgoff_t index, int size, int sizebits)
968 {
969         struct inode *inode = bdev->bd_inode;
970         struct page *page;
971         struct buffer_head *bh;
972         sector_t end_block;
973         int ret = 0;            /* Will call free_more_memory() */
974
975         page = find_or_create_page(inode->i_mapping, index,
976                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
977         if (!page)
978                 return ret;
979
980         BUG_ON(!PageLocked(page));
981
982         if (page_has_buffers(page)) {
983                 bh = page_buffers(page);
984                 if (bh->b_size == size) {
985                         end_block = init_page_buffers(page, bdev,
986                                                 index << sizebits, size);
987                         goto done;
988                 }
989                 if (!try_to_free_buffers(page))
990                         goto failed;
991         }
992
993         /*
994          * Allocate some buffers for this page
995          */
996         bh = alloc_page_buffers(page, size, 0);
997         if (!bh)
998                 goto failed;
999
1000         /*
1001          * Link the page to the buffers and initialise them.  Take the
1002          * lock to be atomic wrt __find_get_block(), which does not
1003          * run under the page lock.
1004          */
1005         spin_lock(&inode->i_mapping->private_lock);
1006         link_dev_buffers(page, bh);
1007         end_block = init_page_buffers(page, bdev, index << sizebits, size);
1008         spin_unlock(&inode->i_mapping->private_lock);
1009 done:
1010         ret = (block < end_block) ? 1 : -ENXIO;
1011 failed:
1012         unlock_page(page);
1013         page_cache_release(page);
1014         return ret;
1015 }
1016
1017 /*
1018  * Create buffers for the specified block device block's page.  If
1019  * that page was dirty, the buffers are set dirty also.
1020  */
1021 static int
1022 grow_buffers(struct block_device *bdev, sector_t block, int size)
1023 {
1024         pgoff_t index;
1025         int sizebits;
1026
1027         sizebits = -1;
1028         do {
1029                 sizebits++;
1030         } while ((size << sizebits) < PAGE_SIZE);
1031
1032         index = block >> sizebits;
1033
1034         /*
1035          * Check for a block which wants to lie outside our maximum possible
1036          * pagecache index.  (this comparison is done using sector_t types).
1037          */
1038         if (unlikely(index != block >> sizebits)) {
1039                 char b[BDEVNAME_SIZE];
1040
1041                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1042                         "device %s\n",
1043                         __func__, (unsigned long long)block,
1044                         bdevname(bdev, b));
1045                 return -EIO;
1046         }
1047
1048         /* Create a page with the proper size buffers.. */
1049         return grow_dev_page(bdev, block, index, size, sizebits);
1050 }
1051
1052 static struct buffer_head *
1053 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1054 {
1055         /* Size must be multiple of hard sectorsize */
1056         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1057                         (size < 512 || size > PAGE_SIZE))) {
1058                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1059                                         size);
1060                 printk(KERN_ERR "logical block size: %d\n",
1061                                         bdev_logical_block_size(bdev));
1062
1063                 dump_stack();
1064                 return NULL;
1065         }
1066
1067         for (;;) {
1068                 struct buffer_head *bh;
1069                 int ret;
1070
1071                 bh = __find_get_block(bdev, block, size);
1072                 if (bh)
1073                         return bh;
1074
1075                 ret = grow_buffers(bdev, block, size);
1076                 if (ret < 0)
1077                         return NULL;
1078                 if (ret == 0)
1079                         free_more_memory();
1080         }
1081 }
1082
1083 /*
1084  * The relationship between dirty buffers and dirty pages:
1085  *
1086  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1087  * the page is tagged dirty in its radix tree.
1088  *
1089  * At all times, the dirtiness of the buffers represents the dirtiness of
1090  * subsections of the page.  If the page has buffers, the page dirty bit is
1091  * merely a hint about the true dirty state.
1092  *
1093  * When a page is set dirty in its entirety, all its buffers are marked dirty
1094  * (if the page has buffers).
1095  *
1096  * When a buffer is marked dirty, its page is dirtied, but the page's other
1097  * buffers are not.
1098  *
1099  * Also.  When blockdev buffers are explicitly read with bread(), they
1100  * individually become uptodate.  But their backing page remains not
1101  * uptodate - even if all of its buffers are uptodate.  A subsequent
1102  * block_read_full_page() against that page will discover all the uptodate
1103  * buffers, will set the page uptodate and will perform no I/O.
1104  */
1105
1106 /**
1107  * mark_buffer_dirty - mark a buffer_head as needing writeout
1108  * @bh: the buffer_head to mark dirty
1109  *
1110  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1111  * backing page dirty, then tag the page as dirty in its address_space's radix
1112  * tree and then attach the address_space's inode to its superblock's dirty
1113  * inode list.
1114  *
1115  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1116  * mapping->tree_lock and mapping->host->i_lock.
1117  */
1118 void mark_buffer_dirty(struct buffer_head *bh)
1119 {
1120         WARN_ON_ONCE(!buffer_uptodate(bh));
1121
1122         trace_block_dirty_buffer(bh);
1123
1124         /*
1125          * Very *carefully* optimize the it-is-already-dirty case.
1126          *
1127          * Don't let the final "is it dirty" escape to before we
1128          * perhaps modified the buffer.
1129          */
1130         if (buffer_dirty(bh)) {
1131                 smp_mb();
1132                 if (buffer_dirty(bh))
1133                         return;
1134         }
1135
1136         if (!test_set_buffer_dirty(bh)) {
1137                 struct page *page = bh->b_page;
1138                 if (!TestSetPageDirty(page)) {
1139                         struct address_space *mapping = page_mapping(page);
1140                         if (mapping)
1141                                 __set_page_dirty(page, mapping, 0);
1142                 }
1143         }
1144 }
1145 EXPORT_SYMBOL(mark_buffer_dirty);
1146
1147 /*
1148  * Decrement a buffer_head's reference count.  If all buffers against a page
1149  * have zero reference count, are clean and unlocked, and if the page is clean
1150  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1151  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1152  * a page but it ends up not being freed, and buffers may later be reattached).
1153  */
1154 void __brelse(struct buffer_head * buf)
1155 {
1156         if (atomic_read(&buf->b_count)) {
1157                 put_bh(buf);
1158                 return;
1159         }
1160         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1161 }
1162 EXPORT_SYMBOL(__brelse);
1163
1164 /*
1165  * bforget() is like brelse(), except it discards any
1166  * potentially dirty data.
1167  */
1168 void __bforget(struct buffer_head *bh)
1169 {
1170         clear_buffer_dirty(bh);
1171         if (bh->b_assoc_map) {
1172                 struct address_space *buffer_mapping = bh->b_page->mapping;
1173
1174                 spin_lock(&buffer_mapping->private_lock);
1175                 list_del_init(&bh->b_assoc_buffers);
1176                 bh->b_assoc_map = NULL;
1177                 spin_unlock(&buffer_mapping->private_lock);
1178         }
1179         __brelse(bh);
1180 }
1181 EXPORT_SYMBOL(__bforget);
1182
1183 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1184 {
1185         lock_buffer(bh);
1186         if (buffer_uptodate(bh)) {
1187                 unlock_buffer(bh);
1188                 return bh;
1189         } else {
1190                 get_bh(bh);
1191                 bh->b_end_io = end_buffer_read_sync;
1192                 submit_bh(READ, bh);
1193                 wait_on_buffer(bh);
1194                 if (buffer_uptodate(bh))
1195                         return bh;
1196         }
1197         brelse(bh);
1198         return NULL;
1199 }
1200
1201 /*
1202  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1203  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1204  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1205  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1206  * CPU's LRUs at the same time.
1207  *
1208  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1209  * sb_find_get_block().
1210  *
1211  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1212  * a local interrupt disable for that.
1213  */
1214
1215 #define BH_LRU_SIZE     8
1216
1217 struct bh_lru {
1218         struct buffer_head *bhs[BH_LRU_SIZE];
1219 };
1220
1221 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1222
1223 #ifdef CONFIG_SMP
1224 #define bh_lru_lock()   local_irq_disable()
1225 #define bh_lru_unlock() local_irq_enable()
1226 #else
1227 #define bh_lru_lock()   preempt_disable()
1228 #define bh_lru_unlock() preempt_enable()
1229 #endif
1230
1231 static inline void check_irqs_on(void)
1232 {
1233 #ifdef irqs_disabled
1234         BUG_ON(irqs_disabled());
1235 #endif
1236 }
1237
1238 /*
1239  * The LRU management algorithm is dopey-but-simple.  Sorry.
1240  */
1241 static void bh_lru_install(struct buffer_head *bh)
1242 {
1243         struct buffer_head *evictee = NULL;
1244
1245         check_irqs_on();
1246         bh_lru_lock();
1247         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1248                 struct buffer_head *bhs[BH_LRU_SIZE];
1249                 int in;
1250                 int out = 0;
1251
1252                 get_bh(bh);
1253                 bhs[out++] = bh;
1254                 for (in = 0; in < BH_LRU_SIZE; in++) {
1255                         struct buffer_head *bh2 =
1256                                 __this_cpu_read(bh_lrus.bhs[in]);
1257
1258                         if (bh2 == bh) {
1259                                 __brelse(bh2);
1260                         } else {
1261                                 if (out >= BH_LRU_SIZE) {
1262                                         BUG_ON(evictee != NULL);
1263                                         evictee = bh2;
1264                                 } else {
1265                                         bhs[out++] = bh2;
1266                                 }
1267                         }
1268                 }
1269                 while (out < BH_LRU_SIZE)
1270                         bhs[out++] = NULL;
1271                 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1272         }
1273         bh_lru_unlock();
1274
1275         if (evictee)
1276                 __brelse(evictee);
1277 }
1278
1279 /*
1280  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1281  */
1282 static struct buffer_head *
1283 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1284 {
1285         struct buffer_head *ret = NULL;
1286         unsigned int i;
1287
1288         check_irqs_on();
1289         bh_lru_lock();
1290         for (i = 0; i < BH_LRU_SIZE; i++) {
1291                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1292
1293                 if (bh && bh->b_bdev == bdev &&
1294                                 bh->b_blocknr == block && bh->b_size == size) {
1295                         if (i) {
1296                                 while (i) {
1297                                         __this_cpu_write(bh_lrus.bhs[i],
1298                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1299                                         i--;
1300                                 }
1301                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1302                         }
1303                         get_bh(bh);
1304                         ret = bh;
1305                         break;
1306                 }
1307         }
1308         bh_lru_unlock();
1309         return ret;
1310 }
1311
1312 /*
1313  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1314  * it in the LRU and mark it as accessed.  If it is not present then return
1315  * NULL
1316  */
1317 struct buffer_head *
1318 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1319 {
1320         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1321
1322         if (bh == NULL) {
1323                 bh = __find_get_block_slow(bdev, block);
1324                 if (bh)
1325                         bh_lru_install(bh);
1326         }
1327         if (bh)
1328                 touch_buffer(bh);
1329         return bh;
1330 }
1331 EXPORT_SYMBOL(__find_get_block);
1332
1333 /*
1334  * __getblk will locate (and, if necessary, create) the buffer_head
1335  * which corresponds to the passed block_device, block and size. The
1336  * returned buffer has its reference count incremented.
1337  *
1338  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1339  * attempt is failing.  FIXME, perhaps?
1340  */
1341 struct buffer_head *
1342 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1343 {
1344         struct buffer_head *bh = __find_get_block(bdev, block, size);
1345
1346         might_sleep();
1347         if (bh == NULL)
1348                 bh = __getblk_slow(bdev, block, size);
1349         return bh;
1350 }
1351 EXPORT_SYMBOL(__getblk);
1352
1353 /*
1354  * Do async read-ahead on a buffer..
1355  */
1356 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1357 {
1358         struct buffer_head *bh = __getblk(bdev, block, size);
1359         if (likely(bh)) {
1360                 ll_rw_block(READA, 1, &bh);
1361                 brelse(bh);
1362         }
1363 }
1364 EXPORT_SYMBOL(__breadahead);
1365
1366 /**
1367  *  __bread() - reads a specified block and returns the bh
1368  *  @bdev: the block_device to read from
1369  *  @block: number of block
1370  *  @size: size (in bytes) to read
1371  * 
1372  *  Reads a specified block, and returns buffer head that contains it.
1373  *  It returns NULL if the block was unreadable.
1374  */
1375 struct buffer_head *
1376 __bread(struct block_device *bdev, sector_t block, unsigned size)
1377 {
1378         struct buffer_head *bh = __getblk(bdev, block, size);
1379
1380         if (likely(bh) && !buffer_uptodate(bh))
1381                 bh = __bread_slow(bh);
1382         return bh;
1383 }
1384 EXPORT_SYMBOL(__bread);
1385
1386 /*
1387  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1388  * This doesn't race because it runs in each cpu either in irq
1389  * or with preempt disabled.
1390  */
1391 static void invalidate_bh_lru(void *arg)
1392 {
1393         struct bh_lru *b = &get_cpu_var(bh_lrus);
1394         int i;
1395
1396         for (i = 0; i < BH_LRU_SIZE; i++) {
1397                 brelse(b->bhs[i]);
1398                 b->bhs[i] = NULL;
1399         }
1400         put_cpu_var(bh_lrus);
1401 }
1402
1403 static bool has_bh_in_lru(int cpu, void *dummy)
1404 {
1405         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1406         int i;
1407         
1408         for (i = 0; i < BH_LRU_SIZE; i++) {
1409                 if (b->bhs[i])
1410                         return 1;
1411         }
1412
1413         return 0;
1414 }
1415
1416 void invalidate_bh_lrus(void)
1417 {
1418         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1419 }
1420 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1421
1422 void set_bh_page(struct buffer_head *bh,
1423                 struct page *page, unsigned long offset)
1424 {
1425         bh->b_page = page;
1426         BUG_ON(offset >= PAGE_SIZE);
1427         if (PageHighMem(page))
1428                 /*
1429                  * This catches illegal uses and preserves the offset:
1430                  */
1431                 bh->b_data = (char *)(0 + offset);
1432         else
1433                 bh->b_data = page_address(page) + offset;
1434 }
1435 EXPORT_SYMBOL(set_bh_page);
1436
1437 /*
1438  * Called when truncating a buffer on a page completely.
1439  */
1440 static void discard_buffer(struct buffer_head * bh)
1441 {
1442         lock_buffer(bh);
1443         clear_buffer_dirty(bh);
1444         bh->b_bdev = NULL;
1445         clear_buffer_mapped(bh);
1446         clear_buffer_req(bh);
1447         clear_buffer_new(bh);
1448         clear_buffer_delay(bh);
1449         clear_buffer_unwritten(bh);
1450         unlock_buffer(bh);
1451 }
1452
1453 /**
1454  * block_invalidatepage - invalidate part or all of a buffer-backed page
1455  *
1456  * @page: the page which is affected
1457  * @offset: the index of the truncation point
1458  *
1459  * block_invalidatepage() is called when all or part of the page has become
1460  * invalidated by a truncate operation.
1461  *
1462  * block_invalidatepage() does not have to release all buffers, but it must
1463  * ensure that no dirty buffer is left outside @offset and that no I/O
1464  * is underway against any of the blocks which are outside the truncation
1465  * point.  Because the caller is about to free (and possibly reuse) those
1466  * blocks on-disk.
1467  */
1468 void block_invalidatepage(struct page *page, unsigned long offset)
1469 {
1470         struct buffer_head *head, *bh, *next;
1471         unsigned int curr_off = 0;
1472
1473         BUG_ON(!PageLocked(page));
1474         if (!page_has_buffers(page))
1475                 goto out;
1476
1477         head = page_buffers(page);
1478         bh = head;
1479         do {
1480                 unsigned int next_off = curr_off + bh->b_size;
1481                 next = bh->b_this_page;
1482
1483                 /*
1484                  * is this block fully invalidated?
1485                  */
1486                 if (offset <= curr_off)
1487                         discard_buffer(bh);
1488                 curr_off = next_off;
1489                 bh = next;
1490         } while (bh != head);
1491
1492         /*
1493          * We release buffers only if the entire page is being invalidated.
1494          * The get_block cached value has been unconditionally invalidated,
1495          * so real IO is not possible anymore.
1496          */
1497         if (offset == 0)
1498                 try_to_release_page(page, 0);
1499 out:
1500         return;
1501 }
1502 EXPORT_SYMBOL(block_invalidatepage);
1503
1504 /*
1505  * We attach and possibly dirty the buffers atomically wrt
1506  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1507  * is already excluded via the page lock.
1508  */
1509 void create_empty_buffers(struct page *page,
1510                         unsigned long blocksize, unsigned long b_state)
1511 {
1512         struct buffer_head *bh, *head, *tail;
1513
1514         head = alloc_page_buffers(page, blocksize, 1);
1515         bh = head;
1516         do {
1517                 bh->b_state |= b_state;
1518                 tail = bh;
1519                 bh = bh->b_this_page;
1520         } while (bh);
1521         tail->b_this_page = head;
1522
1523         spin_lock(&page->mapping->private_lock);
1524         if (PageUptodate(page) || PageDirty(page)) {
1525                 bh = head;
1526                 do {
1527                         if (PageDirty(page))
1528                                 set_buffer_dirty(bh);
1529                         if (PageUptodate(page))
1530                                 set_buffer_uptodate(bh);
1531                         bh = bh->b_this_page;
1532                 } while (bh != head);
1533         }
1534         attach_page_buffers(page, head);
1535         spin_unlock(&page->mapping->private_lock);
1536 }
1537 EXPORT_SYMBOL(create_empty_buffers);
1538
1539 /*
1540  * We are taking a block for data and we don't want any output from any
1541  * buffer-cache aliases starting from return from that function and
1542  * until the moment when something will explicitly mark the buffer
1543  * dirty (hopefully that will not happen until we will free that block ;-)
1544  * We don't even need to mark it not-uptodate - nobody can expect
1545  * anything from a newly allocated buffer anyway. We used to used
1546  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1547  * don't want to mark the alias unmapped, for example - it would confuse
1548  * anyone who might pick it with bread() afterwards...
1549  *
1550  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1551  * be writeout I/O going on against recently-freed buffers.  We don't
1552  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1553  * only if we really need to.  That happens here.
1554  */
1555 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1556 {
1557         struct buffer_head *old_bh;
1558
1559         might_sleep();
1560
1561         old_bh = __find_get_block_slow(bdev, block);
1562         if (old_bh) {
1563                 clear_buffer_dirty(old_bh);
1564                 wait_on_buffer(old_bh);
1565                 clear_buffer_req(old_bh);
1566                 __brelse(old_bh);
1567         }
1568 }
1569 EXPORT_SYMBOL(unmap_underlying_metadata);
1570
1571 /*
1572  * Size is a power-of-two in the range 512..PAGE_SIZE,
1573  * and the case we care about most is PAGE_SIZE.
1574  *
1575  * So this *could* possibly be written with those
1576  * constraints in mind (relevant mostly if some
1577  * architecture has a slow bit-scan instruction)
1578  */
1579 static inline int block_size_bits(unsigned int blocksize)
1580 {
1581         return ilog2(blocksize);
1582 }
1583
1584 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1585 {
1586         BUG_ON(!PageLocked(page));
1587
1588         if (!page_has_buffers(page))
1589                 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1590         return page_buffers(page);
1591 }
1592
1593 /*
1594  * NOTE! All mapped/uptodate combinations are valid:
1595  *
1596  *      Mapped  Uptodate        Meaning
1597  *
1598  *      No      No              "unknown" - must do get_block()
1599  *      No      Yes             "hole" - zero-filled
1600  *      Yes     No              "allocated" - allocated on disk, not read in
1601  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1602  *
1603  * "Dirty" is valid only with the last case (mapped+uptodate).
1604  */
1605
1606 /*
1607  * While block_write_full_page is writing back the dirty buffers under
1608  * the page lock, whoever dirtied the buffers may decide to clean them
1609  * again at any time.  We handle that by only looking at the buffer
1610  * state inside lock_buffer().
1611  *
1612  * If block_write_full_page() is called for regular writeback
1613  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1614  * locked buffer.   This only can happen if someone has written the buffer
1615  * directly, with submit_bh().  At the address_space level PageWriteback
1616  * prevents this contention from occurring.
1617  *
1618  * If block_write_full_page() is called with wbc->sync_mode ==
1619  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1620  * causes the writes to be flagged as synchronous writes.
1621  */
1622 static int __block_write_full_page(struct inode *inode, struct page *page,
1623                         get_block_t *get_block, struct writeback_control *wbc,
1624                         bh_end_io_t *handler)
1625 {
1626         int err;
1627         sector_t block;
1628         sector_t last_block;
1629         struct buffer_head *bh, *head;
1630         unsigned int blocksize, bbits;
1631         int nr_underway = 0;
1632         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1633                         WRITE_SYNC : WRITE);
1634
1635         head = create_page_buffers(page, inode,
1636                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1637
1638         /*
1639          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1640          * here, and the (potentially unmapped) buffers may become dirty at
1641          * any time.  If a buffer becomes dirty here after we've inspected it
1642          * then we just miss that fact, and the page stays dirty.
1643          *
1644          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1645          * handle that here by just cleaning them.
1646          */
1647
1648         bh = head;
1649         blocksize = bh->b_size;
1650         bbits = block_size_bits(blocksize);
1651
1652         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1653         last_block = (i_size_read(inode) - 1) >> bbits;
1654
1655         /*
1656          * Get all the dirty buffers mapped to disk addresses and
1657          * handle any aliases from the underlying blockdev's mapping.
1658          */
1659         do {
1660                 if (block > last_block) {
1661                         /*
1662                          * mapped buffers outside i_size will occur, because
1663                          * this page can be outside i_size when there is a
1664                          * truncate in progress.
1665                          */
1666                         /*
1667                          * The buffer was zeroed by block_write_full_page()
1668                          */
1669                         clear_buffer_dirty(bh);
1670                         set_buffer_uptodate(bh);
1671                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1672                            buffer_dirty(bh)) {
1673                         WARN_ON(bh->b_size != blocksize);
1674                         err = get_block(inode, block, bh, 1);
1675                         if (err)
1676                                 goto recover;
1677                         clear_buffer_delay(bh);
1678                         if (buffer_new(bh)) {
1679                                 /* blockdev mappings never come here */
1680                                 clear_buffer_new(bh);
1681                                 unmap_underlying_metadata(bh->b_bdev,
1682                                                         bh->b_blocknr);
1683                         }
1684                 }
1685                 bh = bh->b_this_page;
1686                 block++;
1687         } while (bh != head);
1688
1689         do {
1690                 if (!buffer_mapped(bh))
1691                         continue;
1692                 /*
1693                  * If it's a fully non-blocking write attempt and we cannot
1694                  * lock the buffer then redirty the page.  Note that this can
1695                  * potentially cause a busy-wait loop from writeback threads
1696                  * and kswapd activity, but those code paths have their own
1697                  * higher-level throttling.
1698                  */
1699                 if (wbc->sync_mode != WB_SYNC_NONE) {
1700                         lock_buffer(bh);
1701                 } else if (!trylock_buffer(bh)) {
1702                         redirty_page_for_writepage(wbc, page);
1703                         continue;
1704                 }
1705                 if (test_clear_buffer_dirty(bh)) {
1706                         mark_buffer_async_write_endio(bh, handler);
1707                 } else {
1708                         unlock_buffer(bh);
1709                 }
1710         } while ((bh = bh->b_this_page) != head);
1711
1712         /*
1713          * The page and its buffers are protected by PageWriteback(), so we can
1714          * drop the bh refcounts early.
1715          */
1716         BUG_ON(PageWriteback(page));
1717         set_page_writeback(page);
1718
1719         do {
1720                 struct buffer_head *next = bh->b_this_page;
1721                 if (buffer_async_write(bh)) {
1722                         submit_bh(write_op, bh);
1723                         nr_underway++;
1724                 }
1725                 bh = next;
1726         } while (bh != head);
1727         unlock_page(page);
1728
1729         err = 0;
1730 done:
1731         if (nr_underway == 0) {
1732                 /*
1733                  * The page was marked dirty, but the buffers were
1734                  * clean.  Someone wrote them back by hand with
1735                  * ll_rw_block/submit_bh.  A rare case.
1736                  */
1737                 end_page_writeback(page);
1738
1739                 /*
1740                  * The page and buffer_heads can be released at any time from
1741                  * here on.
1742                  */
1743         }
1744         return err;
1745
1746 recover:
1747         /*
1748          * ENOSPC, or some other error.  We may already have added some
1749          * blocks to the file, so we need to write these out to avoid
1750          * exposing stale data.
1751          * The page is currently locked and not marked for writeback
1752          */
1753         bh = head;
1754         /* Recovery: lock and submit the mapped buffers */
1755         do {
1756                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1757                     !buffer_delay(bh)) {
1758                         lock_buffer(bh);
1759                         mark_buffer_async_write_endio(bh, handler);
1760                 } else {
1761                         /*
1762                          * The buffer may have been set dirty during
1763                          * attachment to a dirty page.
1764                          */
1765                         clear_buffer_dirty(bh);
1766                 }
1767         } while ((bh = bh->b_this_page) != head);
1768         SetPageError(page);
1769         BUG_ON(PageWriteback(page));
1770         mapping_set_error(page->mapping, err);
1771         set_page_writeback(page);
1772         do {
1773                 struct buffer_head *next = bh->b_this_page;
1774                 if (buffer_async_write(bh)) {
1775                         clear_buffer_dirty(bh);
1776                         submit_bh(write_op, bh);
1777                         nr_underway++;
1778                 }
1779                 bh = next;
1780         } while (bh != head);
1781         unlock_page(page);
1782         goto done;
1783 }
1784
1785 /*
1786  * If a page has any new buffers, zero them out here, and mark them uptodate
1787  * and dirty so they'll be written out (in order to prevent uninitialised
1788  * block data from leaking). And clear the new bit.
1789  */
1790 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1791 {
1792         unsigned int block_start, block_end;
1793         struct buffer_head *head, *bh;
1794
1795         BUG_ON(!PageLocked(page));
1796         if (!page_has_buffers(page))
1797                 return;
1798
1799         bh = head = page_buffers(page);
1800         block_start = 0;
1801         do {
1802                 block_end = block_start + bh->b_size;
1803
1804                 if (buffer_new(bh)) {
1805                         if (block_end > from && block_start < to) {
1806                                 if (!PageUptodate(page)) {
1807                                         unsigned start, size;
1808
1809                                         start = max(from, block_start);
1810                                         size = min(to, block_end) - start;
1811
1812                                         zero_user(page, start, size);
1813                                         set_buffer_uptodate(bh);
1814                                 }
1815
1816                                 clear_buffer_new(bh);
1817                                 mark_buffer_dirty(bh);
1818                         }
1819                 }
1820
1821                 block_start = block_end;
1822                 bh = bh->b_this_page;
1823         } while (bh != head);
1824 }
1825 EXPORT_SYMBOL(page_zero_new_buffers);
1826
1827 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1828                 get_block_t *get_block)
1829 {
1830         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1831         unsigned to = from + len;
1832         struct inode *inode = page->mapping->host;
1833         unsigned block_start, block_end;
1834         sector_t block;
1835         int err = 0;
1836         unsigned blocksize, bbits;
1837         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1838
1839         BUG_ON(!PageLocked(page));
1840         BUG_ON(from > PAGE_CACHE_SIZE);
1841         BUG_ON(to > PAGE_CACHE_SIZE);
1842         BUG_ON(from > to);
1843
1844         head = create_page_buffers(page, inode, 0);
1845         blocksize = head->b_size;
1846         bbits = block_size_bits(blocksize);
1847
1848         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1849
1850         for(bh = head, block_start = 0; bh != head || !block_start;
1851             block++, block_start=block_end, bh = bh->b_this_page) {
1852                 block_end = block_start + blocksize;
1853                 if (block_end <= from || block_start >= to) {
1854                         if (PageUptodate(page)) {
1855                                 if (!buffer_uptodate(bh))
1856                                         set_buffer_uptodate(bh);
1857                         }
1858                         continue;
1859                 }
1860                 if (buffer_new(bh))
1861                         clear_buffer_new(bh);
1862                 if (!buffer_mapped(bh)) {
1863                         WARN_ON(bh->b_size != blocksize);
1864                         err = get_block(inode, block, bh, 1);
1865                         if (err)
1866                                 break;
1867                         if (buffer_new(bh)) {
1868                                 unmap_underlying_metadata(bh->b_bdev,
1869                                                         bh->b_blocknr);
1870                                 if (PageUptodate(page)) {
1871                                         clear_buffer_new(bh);
1872                                         set_buffer_uptodate(bh);
1873                                         mark_buffer_dirty(bh);
1874                                         continue;
1875                                 }
1876                                 if (block_end > to || block_start < from)
1877                                         zero_user_segments(page,
1878                                                 to, block_end,
1879                                                 block_start, from);
1880                                 continue;
1881                         }
1882                 }
1883                 if (PageUptodate(page)) {
1884                         if (!buffer_uptodate(bh))
1885                                 set_buffer_uptodate(bh);
1886                         continue; 
1887                 }
1888                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1889                     !buffer_unwritten(bh) &&
1890                      (block_start < from || block_end > to)) {
1891                         ll_rw_block(READ, 1, &bh);
1892                         *wait_bh++=bh;
1893                 }
1894         }
1895         /*
1896          * If we issued read requests - let them complete.
1897          */
1898         while(wait_bh > wait) {
1899                 wait_on_buffer(*--wait_bh);
1900                 if (!buffer_uptodate(*wait_bh))
1901                         err = -EIO;
1902         }
1903         if (unlikely(err))
1904                 page_zero_new_buffers(page, from, to);
1905         return err;
1906 }
1907 EXPORT_SYMBOL(__block_write_begin);
1908
1909 static int __block_commit_write(struct inode *inode, struct page *page,
1910                 unsigned from, unsigned to)
1911 {
1912         unsigned block_start, block_end;
1913         int partial = 0;
1914         unsigned blocksize;
1915         struct buffer_head *bh, *head;
1916
1917         bh = head = page_buffers(page);
1918         blocksize = bh->b_size;
1919
1920         block_start = 0;
1921         do {
1922                 block_end = block_start + blocksize;
1923                 if (block_end <= from || block_start >= to) {
1924                         if (!buffer_uptodate(bh))
1925                                 partial = 1;
1926                 } else {
1927                         set_buffer_uptodate(bh);
1928                         mark_buffer_dirty(bh);
1929                 }
1930                 clear_buffer_new(bh);
1931
1932                 block_start = block_end;
1933                 bh = bh->b_this_page;
1934         } while (bh != head);
1935
1936         /*
1937          * If this is a partial write which happened to make all buffers
1938          * uptodate then we can optimize away a bogus readpage() for
1939          * the next read(). Here we 'discover' whether the page went
1940          * uptodate as a result of this (potentially partial) write.
1941          */
1942         if (!partial)
1943                 SetPageUptodate(page);
1944         return 0;
1945 }
1946
1947 /*
1948  * block_write_begin takes care of the basic task of block allocation and
1949  * bringing partial write blocks uptodate first.
1950  *
1951  * The filesystem needs to handle block truncation upon failure.
1952  */
1953 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1954                 unsigned flags, struct page **pagep, get_block_t *get_block)
1955 {
1956         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1957         struct page *page;
1958         int status;
1959
1960         page = grab_cache_page_write_begin(mapping, index, flags);
1961         if (!page)
1962                 return -ENOMEM;
1963
1964         status = __block_write_begin(page, pos, len, get_block);
1965         if (unlikely(status)) {
1966                 unlock_page(page);
1967                 page_cache_release(page);
1968                 page = NULL;
1969         }
1970
1971         *pagep = page;
1972         return status;
1973 }
1974 EXPORT_SYMBOL(block_write_begin);
1975
1976 int block_write_end(struct file *file, struct address_space *mapping,
1977                         loff_t pos, unsigned len, unsigned copied,
1978                         struct page *page, void *fsdata)
1979 {
1980         struct inode *inode = mapping->host;
1981         unsigned start;
1982
1983         start = pos & (PAGE_CACHE_SIZE - 1);
1984
1985         if (unlikely(copied < len)) {
1986                 /*
1987                  * The buffers that were written will now be uptodate, so we
1988                  * don't have to worry about a readpage reading them and
1989                  * overwriting a partial write. However if we have encountered
1990                  * a short write and only partially written into a buffer, it
1991                  * will not be marked uptodate, so a readpage might come in and
1992                  * destroy our partial write.
1993                  *
1994                  * Do the simplest thing, and just treat any short write to a
1995                  * non uptodate page as a zero-length write, and force the
1996                  * caller to redo the whole thing.
1997                  */
1998                 if (!PageUptodate(page))
1999                         copied = 0;
2000
2001                 page_zero_new_buffers(page, start+copied, start+len);
2002         }
2003         flush_dcache_page(page);
2004
2005         /* This could be a short (even 0-length) commit */
2006         __block_commit_write(inode, page, start, start+copied);
2007
2008         return copied;
2009 }
2010 EXPORT_SYMBOL(block_write_end);
2011
2012 int generic_write_end(struct file *file, struct address_space *mapping,
2013                         loff_t pos, unsigned len, unsigned copied,
2014                         struct page *page, void *fsdata)
2015 {
2016         struct inode *inode = mapping->host;
2017         int i_size_changed = 0;
2018
2019         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2020
2021         /*
2022          * No need to use i_size_read() here, the i_size
2023          * cannot change under us because we hold i_mutex.
2024          *
2025          * But it's important to update i_size while still holding page lock:
2026          * page writeout could otherwise come in and zero beyond i_size.
2027          */
2028         if (pos+copied > inode->i_size) {
2029                 i_size_write(inode, pos+copied);
2030                 i_size_changed = 1;
2031         }
2032
2033         unlock_page(page);
2034         page_cache_release(page);
2035
2036         /*
2037          * Don't mark the inode dirty under page lock. First, it unnecessarily
2038          * makes the holding time of page lock longer. Second, it forces lock
2039          * ordering of page lock and transaction start for journaling
2040          * filesystems.
2041          */
2042         if (i_size_changed)
2043                 mark_inode_dirty(inode);
2044
2045         return copied;
2046 }
2047 EXPORT_SYMBOL(generic_write_end);
2048
2049 /*
2050  * block_is_partially_uptodate checks whether buffers within a page are
2051  * uptodate or not.
2052  *
2053  * Returns true if all buffers which correspond to a file portion
2054  * we want to read are uptodate.
2055  */
2056 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2057                                         unsigned long from)
2058 {
2059         unsigned block_start, block_end, blocksize;
2060         unsigned to;
2061         struct buffer_head *bh, *head;
2062         int ret = 1;
2063
2064         if (!page_has_buffers(page))
2065                 return 0;
2066
2067         head = page_buffers(page);
2068         blocksize = head->b_size;
2069         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2070         to = from + to;
2071         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2072                 return 0;
2073
2074         bh = head;
2075         block_start = 0;
2076         do {
2077                 block_end = block_start + blocksize;
2078                 if (block_end > from && block_start < to) {
2079                         if (!buffer_uptodate(bh)) {
2080                                 ret = 0;
2081                                 break;
2082                         }
2083                         if (block_end >= to)
2084                                 break;
2085                 }
2086                 block_start = block_end;
2087                 bh = bh->b_this_page;
2088         } while (bh != head);
2089
2090         return ret;
2091 }
2092 EXPORT_SYMBOL(block_is_partially_uptodate);
2093
2094 /*
2095  * Generic "read page" function for block devices that have the normal
2096  * get_block functionality. This is most of the block device filesystems.
2097  * Reads the page asynchronously --- the unlock_buffer() and
2098  * set/clear_buffer_uptodate() functions propagate buffer state into the
2099  * page struct once IO has completed.
2100  */
2101 int block_read_full_page(struct page *page, get_block_t *get_block)
2102 {
2103         struct inode *inode = page->mapping->host;
2104         sector_t iblock, lblock;
2105         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2106         unsigned int blocksize, bbits;
2107         int nr, i;
2108         int fully_mapped = 1;
2109
2110         head = create_page_buffers(page, inode, 0);
2111         blocksize = head->b_size;
2112         bbits = block_size_bits(blocksize);
2113
2114         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2115         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2116         bh = head;
2117         nr = 0;
2118         i = 0;
2119
2120         do {
2121                 if (buffer_uptodate(bh))
2122                         continue;
2123
2124                 if (!buffer_mapped(bh)) {
2125                         int err = 0;
2126
2127                         fully_mapped = 0;
2128                         if (iblock < lblock) {
2129                                 WARN_ON(bh->b_size != blocksize);
2130                                 err = get_block(inode, iblock, bh, 0);
2131                                 if (err)
2132                                         SetPageError(page);
2133                         }
2134                         if (!buffer_mapped(bh)) {
2135                                 zero_user(page, i * blocksize, blocksize);
2136                                 if (!err)
2137                                         set_buffer_uptodate(bh);
2138                                 continue;
2139                         }
2140                         /*
2141                          * get_block() might have updated the buffer
2142                          * synchronously
2143                          */
2144                         if (buffer_uptodate(bh))
2145                                 continue;
2146                 }
2147                 arr[nr++] = bh;
2148         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2149
2150         if (fully_mapped)
2151                 SetPageMappedToDisk(page);
2152
2153         if (!nr) {
2154                 /*
2155                  * All buffers are uptodate - we can set the page uptodate
2156                  * as well. But not if get_block() returned an error.
2157                  */
2158                 if (!PageError(page))
2159                         SetPageUptodate(page);
2160                 unlock_page(page);
2161                 return 0;
2162         }
2163
2164         /* Stage two: lock the buffers */
2165         for (i = 0; i < nr; i++) {
2166                 bh = arr[i];
2167                 lock_buffer(bh);
2168                 mark_buffer_async_read(bh);
2169         }
2170
2171         /*
2172          * Stage 3: start the IO.  Check for uptodateness
2173          * inside the buffer lock in case another process reading
2174          * the underlying blockdev brought it uptodate (the sct fix).
2175          */
2176         for (i = 0; i < nr; i++) {
2177                 bh = arr[i];
2178                 if (buffer_uptodate(bh))
2179                         end_buffer_async_read(bh, 1);
2180                 else
2181                         submit_bh(READ, bh);
2182         }
2183         return 0;
2184 }
2185 EXPORT_SYMBOL(block_read_full_page);
2186
2187 /* utility function for filesystems that need to do work on expanding
2188  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2189  * deal with the hole.  
2190  */
2191 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2192 {
2193         struct address_space *mapping = inode->i_mapping;
2194         struct page *page;
2195         void *fsdata;
2196         int err;
2197
2198         err = inode_newsize_ok(inode, size);
2199         if (err)
2200                 goto out;
2201
2202         err = pagecache_write_begin(NULL, mapping, size, 0,
2203                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2204                                 &page, &fsdata);
2205         if (err)
2206                 goto out;
2207
2208         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2209         BUG_ON(err > 0);
2210
2211 out:
2212         return err;
2213 }
2214 EXPORT_SYMBOL(generic_cont_expand_simple);
2215
2216 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2217                             loff_t pos, loff_t *bytes)
2218 {
2219         struct inode *inode = mapping->host;
2220         unsigned blocksize = 1 << inode->i_blkbits;
2221         struct page *page;
2222         void *fsdata;
2223         pgoff_t index, curidx;
2224         loff_t curpos;
2225         unsigned zerofrom, offset, len;
2226         int err = 0;
2227
2228         index = pos >> PAGE_CACHE_SHIFT;
2229         offset = pos & ~PAGE_CACHE_MASK;
2230
2231         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2232                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2233                 if (zerofrom & (blocksize-1)) {
2234                         *bytes |= (blocksize-1);
2235                         (*bytes)++;
2236                 }
2237                 len = PAGE_CACHE_SIZE - zerofrom;
2238
2239                 err = pagecache_write_begin(file, mapping, curpos, len,
2240                                                 AOP_FLAG_UNINTERRUPTIBLE,
2241                                                 &page, &fsdata);
2242                 if (err)
2243                         goto out;
2244                 zero_user(page, zerofrom, len);
2245                 err = pagecache_write_end(file, mapping, curpos, len, len,
2246                                                 page, fsdata);
2247                 if (err < 0)
2248                         goto out;
2249                 BUG_ON(err != len);
2250                 err = 0;
2251
2252                 balance_dirty_pages_ratelimited(mapping);
2253         }
2254
2255         /* page covers the boundary, find the boundary offset */
2256         if (index == curidx) {
2257                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2258                 /* if we will expand the thing last block will be filled */
2259                 if (offset <= zerofrom) {
2260                         goto out;
2261                 }
2262                 if (zerofrom & (blocksize-1)) {
2263                         *bytes |= (blocksize-1);
2264                         (*bytes)++;
2265                 }
2266                 len = offset - zerofrom;
2267
2268                 err = pagecache_write_begin(file, mapping, curpos, len,
2269                                                 AOP_FLAG_UNINTERRUPTIBLE,
2270                                                 &page, &fsdata);
2271                 if (err)
2272                         goto out;
2273                 zero_user(page, zerofrom, len);
2274                 err = pagecache_write_end(file, mapping, curpos, len, len,
2275                                                 page, fsdata);
2276                 if (err < 0)
2277                         goto out;
2278                 BUG_ON(err != len);
2279                 err = 0;
2280         }
2281 out:
2282         return err;
2283 }
2284
2285 /*
2286  * For moronic filesystems that do not allow holes in file.
2287  * We may have to extend the file.
2288  */
2289 int cont_write_begin(struct file *file, struct address_space *mapping,
2290                         loff_t pos, unsigned len, unsigned flags,
2291                         struct page **pagep, void **fsdata,
2292                         get_block_t *get_block, loff_t *bytes)
2293 {
2294         struct inode *inode = mapping->host;
2295         unsigned blocksize = 1 << inode->i_blkbits;
2296         unsigned zerofrom;
2297         int err;
2298
2299         err = cont_expand_zero(file, mapping, pos, bytes);
2300         if (err)
2301                 return err;
2302
2303         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2304         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2305                 *bytes |= (blocksize-1);
2306                 (*bytes)++;
2307         }
2308
2309         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2310 }
2311 EXPORT_SYMBOL(cont_write_begin);
2312
2313 int block_commit_write(struct page *page, unsigned from, unsigned to)
2314 {
2315         struct inode *inode = page->mapping->host;
2316         __block_commit_write(inode,page,from,to);
2317         return 0;
2318 }
2319 EXPORT_SYMBOL(block_commit_write);
2320
2321 /*
2322  * block_page_mkwrite() is not allowed to change the file size as it gets
2323  * called from a page fault handler when a page is first dirtied. Hence we must
2324  * be careful to check for EOF conditions here. We set the page up correctly
2325  * for a written page which means we get ENOSPC checking when writing into
2326  * holes and correct delalloc and unwritten extent mapping on filesystems that
2327  * support these features.
2328  *
2329  * We are not allowed to take the i_mutex here so we have to play games to
2330  * protect against truncate races as the page could now be beyond EOF.  Because
2331  * truncate writes the inode size before removing pages, once we have the
2332  * page lock we can determine safely if the page is beyond EOF. If it is not
2333  * beyond EOF, then the page is guaranteed safe against truncation until we
2334  * unlock the page.
2335  *
2336  * Direct callers of this function should protect against filesystem freezing
2337  * using sb_start_write() - sb_end_write() functions.
2338  */
2339 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2340                          get_block_t get_block)
2341 {
2342         struct page *page = vmf->page;
2343         struct inode *inode = file_inode(vma->vm_file);
2344         unsigned long end;
2345         loff_t size;
2346         int ret;
2347
2348         lock_page(page);
2349         size = i_size_read(inode);
2350         if ((page->mapping != inode->i_mapping) ||
2351             (page_offset(page) > size)) {
2352                 /* We overload EFAULT to mean page got truncated */
2353                 ret = -EFAULT;
2354                 goto out_unlock;
2355         }
2356
2357         /* page is wholly or partially inside EOF */
2358         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2359                 end = size & ~PAGE_CACHE_MASK;
2360         else
2361                 end = PAGE_CACHE_SIZE;
2362
2363         ret = __block_write_begin(page, 0, end, get_block);
2364         if (!ret)
2365                 ret = block_commit_write(page, 0, end);
2366
2367         if (unlikely(ret < 0))
2368                 goto out_unlock;
2369         set_page_dirty(page);
2370         wait_for_stable_page(page);
2371         return 0;
2372 out_unlock:
2373         unlock_page(page);
2374         return ret;
2375 }
2376 EXPORT_SYMBOL(__block_page_mkwrite);
2377
2378 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2379                    get_block_t get_block)
2380 {
2381         int ret;
2382         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2383
2384         sb_start_pagefault(sb);
2385
2386         /*
2387          * Update file times before taking page lock. We may end up failing the
2388          * fault so this update may be superfluous but who really cares...
2389          */
2390         file_update_time(vma->vm_file);
2391
2392         ret = __block_page_mkwrite(vma, vmf, get_block);
2393         sb_end_pagefault(sb);
2394         return block_page_mkwrite_return(ret);
2395 }
2396 EXPORT_SYMBOL(block_page_mkwrite);
2397
2398 /*
2399  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2400  * immediately, while under the page lock.  So it needs a special end_io
2401  * handler which does not touch the bh after unlocking it.
2402  */
2403 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2404 {
2405         __end_buffer_read_notouch(bh, uptodate);
2406 }
2407
2408 /*
2409  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2410  * the page (converting it to circular linked list and taking care of page
2411  * dirty races).
2412  */
2413 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2414 {
2415         struct buffer_head *bh;
2416
2417         BUG_ON(!PageLocked(page));
2418
2419         spin_lock(&page->mapping->private_lock);
2420         bh = head;
2421         do {
2422                 if (PageDirty(page))
2423                         set_buffer_dirty(bh);
2424                 if (!bh->b_this_page)
2425                         bh->b_this_page = head;
2426                 bh = bh->b_this_page;
2427         } while (bh != head);
2428         attach_page_buffers(page, head);
2429         spin_unlock(&page->mapping->private_lock);
2430 }
2431
2432 /*
2433  * On entry, the page is fully not uptodate.
2434  * On exit the page is fully uptodate in the areas outside (from,to)
2435  * The filesystem needs to handle block truncation upon failure.
2436  */
2437 int nobh_write_begin(struct address_space *mapping,
2438                         loff_t pos, unsigned len, unsigned flags,
2439                         struct page **pagep, void **fsdata,
2440                         get_block_t *get_block)
2441 {
2442         struct inode *inode = mapping->host;
2443         const unsigned blkbits = inode->i_blkbits;
2444         const unsigned blocksize = 1 << blkbits;
2445         struct buffer_head *head, *bh;
2446         struct page *page;
2447         pgoff_t index;
2448         unsigned from, to;
2449         unsigned block_in_page;
2450         unsigned block_start, block_end;
2451         sector_t block_in_file;
2452         int nr_reads = 0;
2453         int ret = 0;
2454         int is_mapped_to_disk = 1;
2455
2456         index = pos >> PAGE_CACHE_SHIFT;
2457         from = pos & (PAGE_CACHE_SIZE - 1);
2458         to = from + len;
2459
2460         page = grab_cache_page_write_begin(mapping, index, flags);
2461         if (!page)
2462                 return -ENOMEM;
2463         *pagep = page;
2464         *fsdata = NULL;
2465
2466         if (page_has_buffers(page)) {
2467                 ret = __block_write_begin(page, pos, len, get_block);
2468                 if (unlikely(ret))
2469                         goto out_release;
2470                 return ret;
2471         }
2472
2473         if (PageMappedToDisk(page))
2474                 return 0;
2475
2476         /*
2477          * Allocate buffers so that we can keep track of state, and potentially
2478          * attach them to the page if an error occurs. In the common case of
2479          * no error, they will just be freed again without ever being attached
2480          * to the page (which is all OK, because we're under the page lock).
2481          *
2482          * Be careful: the buffer linked list is a NULL terminated one, rather
2483          * than the circular one we're used to.
2484          */
2485         head = alloc_page_buffers(page, blocksize, 0);
2486         if (!head) {
2487                 ret = -ENOMEM;
2488                 goto out_release;
2489         }
2490
2491         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2492
2493         /*
2494          * We loop across all blocks in the page, whether or not they are
2495          * part of the affected region.  This is so we can discover if the
2496          * page is fully mapped-to-disk.
2497          */
2498         for (block_start = 0, block_in_page = 0, bh = head;
2499                   block_start < PAGE_CACHE_SIZE;
2500                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2501                 int create;
2502
2503                 block_end = block_start + blocksize;
2504                 bh->b_state = 0;
2505                 create = 1;
2506                 if (block_start >= to)
2507                         create = 0;
2508                 ret = get_block(inode, block_in_file + block_in_page,
2509                                         bh, create);
2510                 if (ret)
2511                         goto failed;
2512                 if (!buffer_mapped(bh))
2513                         is_mapped_to_disk = 0;
2514                 if (buffer_new(bh))
2515                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2516                 if (PageUptodate(page)) {
2517                         set_buffer_uptodate(bh);
2518                         continue;
2519                 }
2520                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2521                         zero_user_segments(page, block_start, from,
2522                                                         to, block_end);
2523                         continue;
2524                 }
2525                 if (buffer_uptodate(bh))
2526                         continue;       /* reiserfs does this */
2527                 if (block_start < from || block_end > to) {
2528                         lock_buffer(bh);
2529                         bh->b_end_io = end_buffer_read_nobh;
2530                         submit_bh(READ, bh);
2531                         nr_reads++;
2532                 }
2533         }
2534
2535         if (nr_reads) {
2536                 /*
2537                  * The page is locked, so these buffers are protected from
2538                  * any VM or truncate activity.  Hence we don't need to care
2539                  * for the buffer_head refcounts.
2540                  */
2541                 for (bh = head; bh; bh = bh->b_this_page) {
2542                         wait_on_buffer(bh);
2543                         if (!buffer_uptodate(bh))
2544                                 ret = -EIO;
2545                 }
2546                 if (ret)
2547                         goto failed;
2548         }
2549
2550         if (is_mapped_to_disk)
2551                 SetPageMappedToDisk(page);
2552
2553         *fsdata = head; /* to be released by nobh_write_end */
2554
2555         return 0;
2556
2557 failed:
2558         BUG_ON(!ret);
2559         /*
2560          * Error recovery is a bit difficult. We need to zero out blocks that
2561          * were newly allocated, and dirty them to ensure they get written out.
2562          * Buffers need to be attached to the page at this point, otherwise
2563          * the handling of potential IO errors during writeout would be hard
2564          * (could try doing synchronous writeout, but what if that fails too?)
2565          */
2566         attach_nobh_buffers(page, head);
2567         page_zero_new_buffers(page, from, to);
2568
2569 out_release:
2570         unlock_page(page);
2571         page_cache_release(page);
2572         *pagep = NULL;
2573
2574         return ret;
2575 }
2576 EXPORT_SYMBOL(nobh_write_begin);
2577
2578 int nobh_write_end(struct file *file, struct address_space *mapping,
2579                         loff_t pos, unsigned len, unsigned copied,
2580                         struct page *page, void *fsdata)
2581 {
2582         struct inode *inode = page->mapping->host;
2583         struct buffer_head *head = fsdata;
2584         struct buffer_head *bh;
2585         BUG_ON(fsdata != NULL && page_has_buffers(page));
2586
2587         if (unlikely(copied < len) && head)
2588                 attach_nobh_buffers(page, head);
2589         if (page_has_buffers(page))
2590                 return generic_write_end(file, mapping, pos, len,
2591                                         copied, page, fsdata);
2592
2593         SetPageUptodate(page);
2594         set_page_dirty(page);
2595         if (pos+copied > inode->i_size) {
2596                 i_size_write(inode, pos+copied);
2597                 mark_inode_dirty(inode);
2598         }
2599
2600         unlock_page(page);
2601         page_cache_release(page);
2602
2603         while (head) {
2604                 bh = head;
2605                 head = head->b_this_page;
2606                 free_buffer_head(bh);
2607         }
2608
2609         return copied;
2610 }
2611 EXPORT_SYMBOL(nobh_write_end);
2612
2613 /*
2614  * nobh_writepage() - based on block_full_write_page() except
2615  * that it tries to operate without attaching bufferheads to
2616  * the page.
2617  */
2618 int nobh_writepage(struct page *page, get_block_t *get_block,
2619                         struct writeback_control *wbc)
2620 {
2621         struct inode * const inode = page->mapping->host;
2622         loff_t i_size = i_size_read(inode);
2623         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2624         unsigned offset;
2625         int ret;
2626
2627         /* Is the page fully inside i_size? */
2628         if (page->index < end_index)
2629                 goto out;
2630
2631         /* Is the page fully outside i_size? (truncate in progress) */
2632         offset = i_size & (PAGE_CACHE_SIZE-1);
2633         if (page->index >= end_index+1 || !offset) {
2634                 /*
2635                  * The page may have dirty, unmapped buffers.  For example,
2636                  * they may have been added in ext3_writepage().  Make them
2637                  * freeable here, so the page does not leak.
2638                  */
2639 #if 0
2640                 /* Not really sure about this  - do we need this ? */
2641                 if (page->mapping->a_ops->invalidatepage)
2642                         page->mapping->a_ops->invalidatepage(page, offset);
2643 #endif
2644                 unlock_page(page);
2645                 return 0; /* don't care */
2646         }
2647
2648         /*
2649          * The page straddles i_size.  It must be zeroed out on each and every
2650          * writepage invocation because it may be mmapped.  "A file is mapped
2651          * in multiples of the page size.  For a file that is not a multiple of
2652          * the  page size, the remaining memory is zeroed when mapped, and
2653          * writes to that region are not written out to the file."
2654          */
2655         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2656 out:
2657         ret = mpage_writepage(page, get_block, wbc);
2658         if (ret == -EAGAIN)
2659                 ret = __block_write_full_page(inode, page, get_block, wbc,
2660                                               end_buffer_async_write);
2661         return ret;
2662 }
2663 EXPORT_SYMBOL(nobh_writepage);
2664
2665 int nobh_truncate_page(struct address_space *mapping,
2666                         loff_t from, get_block_t *get_block)
2667 {
2668         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2669         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2670         unsigned blocksize;
2671         sector_t iblock;
2672         unsigned length, pos;
2673         struct inode *inode = mapping->host;
2674         struct page *page;
2675         struct buffer_head map_bh;
2676         int err;
2677
2678         blocksize = 1 << inode->i_blkbits;
2679         length = offset & (blocksize - 1);
2680
2681         /* Block boundary? Nothing to do */
2682         if (!length)
2683                 return 0;
2684
2685         length = blocksize - length;
2686         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2687
2688         page = grab_cache_page(mapping, index);
2689         err = -ENOMEM;
2690         if (!page)
2691                 goto out;
2692
2693         if (page_has_buffers(page)) {
2694 has_buffers:
2695                 unlock_page(page);
2696                 page_cache_release(page);
2697                 return block_truncate_page(mapping, from, get_block);
2698         }
2699
2700         /* Find the buffer that contains "offset" */
2701         pos = blocksize;
2702         while (offset >= pos) {
2703                 iblock++;
2704                 pos += blocksize;
2705         }
2706
2707         map_bh.b_size = blocksize;
2708         map_bh.b_state = 0;
2709         err = get_block(inode, iblock, &map_bh, 0);
2710         if (err)
2711                 goto unlock;
2712         /* unmapped? It's a hole - nothing to do */
2713         if (!buffer_mapped(&map_bh))
2714                 goto unlock;
2715
2716         /* Ok, it's mapped. Make sure it's up-to-date */
2717         if (!PageUptodate(page)) {
2718                 err = mapping->a_ops->readpage(NULL, page);
2719                 if (err) {
2720                         page_cache_release(page);
2721                         goto out;
2722                 }
2723                 lock_page(page);
2724                 if (!PageUptodate(page)) {
2725                         err = -EIO;
2726                         goto unlock;
2727                 }
2728                 if (page_has_buffers(page))
2729                         goto has_buffers;
2730         }
2731         zero_user(page, offset, length);
2732         set_page_dirty(page);
2733         err = 0;
2734
2735 unlock:
2736         unlock_page(page);
2737         page_cache_release(page);
2738 out:
2739         return err;
2740 }
2741 EXPORT_SYMBOL(nobh_truncate_page);
2742
2743 int block_truncate_page(struct address_space *mapping,
2744                         loff_t from, get_block_t *get_block)
2745 {
2746         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2747         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2748         unsigned blocksize;
2749         sector_t iblock;
2750         unsigned length, pos;
2751         struct inode *inode = mapping->host;
2752         struct page *page;
2753         struct buffer_head *bh;
2754         int err;
2755
2756         blocksize = 1 << inode->i_blkbits;
2757         length = offset & (blocksize - 1);
2758
2759         /* Block boundary? Nothing to do */
2760         if (!length)
2761                 return 0;
2762
2763         length = blocksize - length;
2764         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2765         
2766         page = grab_cache_page(mapping, index);
2767         err = -ENOMEM;
2768         if (!page)
2769                 goto out;
2770
2771         if (!page_has_buffers(page))
2772                 create_empty_buffers(page, blocksize, 0);
2773
2774         /* Find the buffer that contains "offset" */
2775         bh = page_buffers(page);
2776         pos = blocksize;
2777         while (offset >= pos) {
2778                 bh = bh->b_this_page;
2779                 iblock++;
2780                 pos += blocksize;
2781         }
2782
2783         err = 0;
2784         if (!buffer_mapped(bh)) {
2785                 WARN_ON(bh->b_size != blocksize);
2786                 err = get_block(inode, iblock, bh, 0);
2787                 if (err)
2788                         goto unlock;
2789                 /* unmapped? It's a hole - nothing to do */
2790                 if (!buffer_mapped(bh))
2791                         goto unlock;
2792         }
2793
2794         /* Ok, it's mapped. Make sure it's up-to-date */
2795         if (PageUptodate(page))
2796                 set_buffer_uptodate(bh);
2797
2798         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2799                 err = -EIO;
2800                 ll_rw_block(READ, 1, &bh);
2801                 wait_on_buffer(bh);
2802                 /* Uhhuh. Read error. Complain and punt. */
2803                 if (!buffer_uptodate(bh))
2804                         goto unlock;
2805         }
2806
2807         zero_user(page, offset, length);
2808         mark_buffer_dirty(bh);
2809         err = 0;
2810
2811 unlock:
2812         unlock_page(page);
2813         page_cache_release(page);
2814 out:
2815         return err;
2816 }
2817 EXPORT_SYMBOL(block_truncate_page);
2818
2819 /*
2820  * The generic ->writepage function for buffer-backed address_spaces
2821  * this form passes in the end_io handler used to finish the IO.
2822  */
2823 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2824                         struct writeback_control *wbc, bh_end_io_t *handler)
2825 {
2826         struct inode * const inode = page->mapping->host;
2827         loff_t i_size = i_size_read(inode);
2828         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2829         unsigned offset;
2830
2831         /* Is the page fully inside i_size? */
2832         if (page->index < end_index)
2833                 return __block_write_full_page(inode, page, get_block, wbc,
2834                                                handler);
2835
2836         /* Is the page fully outside i_size? (truncate in progress) */
2837         offset = i_size & (PAGE_CACHE_SIZE-1);
2838         if (page->index >= end_index+1 || !offset) {
2839                 /*
2840                  * The page may have dirty, unmapped buffers.  For example,
2841                  * they may have been added in ext3_writepage().  Make them
2842                  * freeable here, so the page does not leak.
2843                  */
2844                 do_invalidatepage(page, 0);
2845                 unlock_page(page);
2846                 return 0; /* don't care */
2847         }
2848
2849         /*
2850          * The page straddles i_size.  It must be zeroed out on each and every
2851          * writepage invocation because it may be mmapped.  "A file is mapped
2852          * in multiples of the page size.  For a file that is not a multiple of
2853          * the  page size, the remaining memory is zeroed when mapped, and
2854          * writes to that region are not written out to the file."
2855          */
2856         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2857         return __block_write_full_page(inode, page, get_block, wbc, handler);
2858 }
2859 EXPORT_SYMBOL(block_write_full_page_endio);
2860
2861 /*
2862  * The generic ->writepage function for buffer-backed address_spaces
2863  */
2864 int block_write_full_page(struct page *page, get_block_t *get_block,
2865                         struct writeback_control *wbc)
2866 {
2867         return block_write_full_page_endio(page, get_block, wbc,
2868                                            end_buffer_async_write);
2869 }
2870 EXPORT_SYMBOL(block_write_full_page);
2871
2872 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2873                             get_block_t *get_block)
2874 {
2875         struct buffer_head tmp;
2876         struct inode *inode = mapping->host;
2877         tmp.b_state = 0;
2878         tmp.b_blocknr = 0;
2879         tmp.b_size = 1 << inode->i_blkbits;
2880         get_block(inode, block, &tmp, 0);
2881         return tmp.b_blocknr;
2882 }
2883 EXPORT_SYMBOL(generic_block_bmap);
2884
2885 static void end_bio_bh_io_sync(struct bio *bio, int err)
2886 {
2887         struct buffer_head *bh = bio->bi_private;
2888
2889         if (err == -EOPNOTSUPP) {
2890                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2891         }
2892
2893         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2894                 set_bit(BH_Quiet, &bh->b_state);
2895
2896         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2897         bio_put(bio);
2898 }
2899
2900 /*
2901  * This allows us to do IO even on the odd last sectors
2902  * of a device, even if the bh block size is some multiple
2903  * of the physical sector size.
2904  *
2905  * We'll just truncate the bio to the size of the device,
2906  * and clear the end of the buffer head manually.
2907  *
2908  * Truly out-of-range accesses will turn into actual IO
2909  * errors, this only handles the "we need to be able to
2910  * do IO at the final sector" case.
2911  */
2912 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2913 {
2914         sector_t maxsector;
2915         unsigned bytes;
2916
2917         maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2918         if (!maxsector)
2919                 return;
2920
2921         /*
2922          * If the *whole* IO is past the end of the device,
2923          * let it through, and the IO layer will turn it into
2924          * an EIO.
2925          */
2926         if (unlikely(bio->bi_sector >= maxsector))
2927                 return;
2928
2929         maxsector -= bio->bi_sector;
2930         bytes = bio->bi_size;
2931         if (likely((bytes >> 9) <= maxsector))
2932                 return;
2933
2934         /* Uhhuh. We've got a bh that straddles the device size! */
2935         bytes = maxsector << 9;
2936
2937         /* Truncate the bio.. */
2938         bio->bi_size = bytes;
2939         bio->bi_io_vec[0].bv_len = bytes;
2940
2941         /* ..and clear the end of the buffer for reads */
2942         if ((rw & RW_MASK) == READ) {
2943                 void *kaddr = kmap_atomic(bh->b_page);
2944                 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
2945                 kunmap_atomic(kaddr);
2946                 flush_dcache_page(bh->b_page);
2947         }
2948 }
2949
2950 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
2951 {
2952         struct bio *bio;
2953         int ret = 0;
2954
2955         BUG_ON(!buffer_locked(bh));
2956         BUG_ON(!buffer_mapped(bh));
2957         BUG_ON(!bh->b_end_io);
2958         BUG_ON(buffer_delay(bh));
2959         BUG_ON(buffer_unwritten(bh));
2960
2961         /*
2962          * Only clear out a write error when rewriting
2963          */
2964         if (test_set_buffer_req(bh) && (rw & WRITE))
2965                 clear_buffer_write_io_error(bh);
2966
2967         /*
2968          * from here on down, it's all bio -- do the initial mapping,
2969          * submit_bio -> generic_make_request may further map this bio around
2970          */
2971         bio = bio_alloc(GFP_NOIO, 1);
2972
2973         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2974         bio->bi_bdev = bh->b_bdev;
2975         bio->bi_io_vec[0].bv_page = bh->b_page;
2976         bio->bi_io_vec[0].bv_len = bh->b_size;
2977         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2978
2979         bio->bi_vcnt = 1;
2980         bio->bi_size = bh->b_size;
2981
2982         bio->bi_end_io = end_bio_bh_io_sync;
2983         bio->bi_private = bh;
2984         bio->bi_flags |= bio_flags;
2985
2986         /* Take care of bh's that straddle the end of the device */
2987         guard_bh_eod(rw, bio, bh);
2988
2989         if (buffer_meta(bh))
2990                 rw |= REQ_META;
2991         if (buffer_prio(bh))
2992                 rw |= REQ_PRIO;
2993
2994         bio_get(bio);
2995         submit_bio(rw, bio);
2996
2997         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2998                 ret = -EOPNOTSUPP;
2999
3000         bio_put(bio);
3001         return ret;
3002 }
3003 EXPORT_SYMBOL_GPL(_submit_bh);
3004
3005 int submit_bh(int rw, struct buffer_head *bh)
3006 {
3007         return _submit_bh(rw, bh, 0);
3008 }
3009 EXPORT_SYMBOL(submit_bh);
3010
3011 /**
3012  * ll_rw_block: low-level access to block devices (DEPRECATED)
3013  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3014  * @nr: number of &struct buffer_heads in the array
3015  * @bhs: array of pointers to &struct buffer_head
3016  *
3017  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3018  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3019  * %READA option is described in the documentation for generic_make_request()
3020  * which ll_rw_block() calls.
3021  *
3022  * This function drops any buffer that it cannot get a lock on (with the
3023  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3024  * request, and any buffer that appears to be up-to-date when doing read
3025  * request.  Further it marks as clean buffers that are processed for
3026  * writing (the buffer cache won't assume that they are actually clean
3027  * until the buffer gets unlocked).
3028  *
3029  * ll_rw_block sets b_end_io to simple completion handler that marks
3030  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3031  * any waiters. 
3032  *
3033  * All of the buffers must be for the same device, and must also be a
3034  * multiple of the current approved size for the device.
3035  */
3036 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3037 {
3038         int i;
3039
3040         for (i = 0; i < nr; i++) {
3041                 struct buffer_head *bh = bhs[i];
3042
3043                 if (!trylock_buffer(bh))
3044                         continue;
3045                 if (rw == WRITE) {
3046                         if (test_clear_buffer_dirty(bh)) {
3047                                 bh->b_end_io = end_buffer_write_sync;
3048                                 get_bh(bh);
3049                                 submit_bh(WRITE, bh);
3050                                 continue;
3051                         }
3052                 } else {
3053                         if (!buffer_uptodate(bh)) {
3054                                 bh->b_end_io = end_buffer_read_sync;
3055                                 get_bh(bh);
3056                                 submit_bh(rw, bh);
3057                                 continue;
3058                         }
3059                 }
3060                 unlock_buffer(bh);
3061         }
3062 }
3063 EXPORT_SYMBOL(ll_rw_block);
3064
3065 void write_dirty_buffer(struct buffer_head *bh, int rw)
3066 {
3067         lock_buffer(bh);
3068         if (!test_clear_buffer_dirty(bh)) {
3069                 unlock_buffer(bh);
3070                 return;
3071         }
3072         bh->b_end_io = end_buffer_write_sync;
3073         get_bh(bh);
3074         submit_bh(rw, bh);
3075 }
3076 EXPORT_SYMBOL(write_dirty_buffer);
3077
3078 /*
3079  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3080  * and then start new I/O and then wait upon it.  The caller must have a ref on
3081  * the buffer_head.
3082  */
3083 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3084 {
3085         int ret = 0;
3086
3087         WARN_ON(atomic_read(&bh->b_count) < 1);
3088         lock_buffer(bh);
3089         if (test_clear_buffer_dirty(bh)) {
3090                 get_bh(bh);
3091                 bh->b_end_io = end_buffer_write_sync;
3092                 ret = submit_bh(rw, bh);
3093                 wait_on_buffer(bh);
3094                 if (!ret && !buffer_uptodate(bh))
3095                         ret = -EIO;
3096         } else {
3097                 unlock_buffer(bh);
3098         }
3099         return ret;
3100 }
3101 EXPORT_SYMBOL(__sync_dirty_buffer);
3102
3103 int sync_dirty_buffer(struct buffer_head *bh)
3104 {
3105         return __sync_dirty_buffer(bh, WRITE_SYNC);
3106 }
3107 EXPORT_SYMBOL(sync_dirty_buffer);
3108
3109 /*
3110  * try_to_free_buffers() checks if all the buffers on this particular page
3111  * are unused, and releases them if so.
3112  *
3113  * Exclusion against try_to_free_buffers may be obtained by either
3114  * locking the page or by holding its mapping's private_lock.
3115  *
3116  * If the page is dirty but all the buffers are clean then we need to
3117  * be sure to mark the page clean as well.  This is because the page
3118  * may be against a block device, and a later reattachment of buffers
3119  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3120  * filesystem data on the same device.
3121  *
3122  * The same applies to regular filesystem pages: if all the buffers are
3123  * clean then we set the page clean and proceed.  To do that, we require
3124  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3125  * private_lock.
3126  *
3127  * try_to_free_buffers() is non-blocking.
3128  */
3129 static inline int buffer_busy(struct buffer_head *bh)
3130 {
3131         return atomic_read(&bh->b_count) |
3132                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3133 }
3134
3135 static int
3136 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3137 {
3138         struct buffer_head *head = page_buffers(page);
3139         struct buffer_head *bh;
3140
3141         bh = head;
3142         do {
3143                 if (buffer_write_io_error(bh) && page->mapping)
3144                         set_bit(AS_EIO, &page->mapping->flags);
3145                 if (buffer_busy(bh))
3146                         goto failed;
3147                 bh = bh->b_this_page;
3148         } while (bh != head);
3149
3150         do {
3151                 struct buffer_head *next = bh->b_this_page;
3152
3153                 if (bh->b_assoc_map)
3154                         __remove_assoc_queue(bh);
3155                 bh = next;
3156         } while (bh != head);
3157         *buffers_to_free = head;
3158         __clear_page_buffers(page);
3159         return 1;
3160 failed:
3161         return 0;
3162 }
3163
3164 int try_to_free_buffers(struct page *page)
3165 {
3166         struct address_space * const mapping = page->mapping;
3167         struct buffer_head *buffers_to_free = NULL;
3168         int ret = 0;
3169
3170         BUG_ON(!PageLocked(page));
3171         if (PageWriteback(page))
3172                 return 0;
3173
3174         if (mapping == NULL) {          /* can this still happen? */
3175                 ret = drop_buffers(page, &buffers_to_free);
3176                 goto out;
3177         }
3178
3179         spin_lock(&mapping->private_lock);
3180         ret = drop_buffers(page, &buffers_to_free);
3181
3182         /*
3183          * If the filesystem writes its buffers by hand (eg ext3)
3184          * then we can have clean buffers against a dirty page.  We
3185          * clean the page here; otherwise the VM will never notice
3186          * that the filesystem did any IO at all.
3187          *
3188          * Also, during truncate, discard_buffer will have marked all
3189          * the page's buffers clean.  We discover that here and clean
3190          * the page also.
3191          *
3192          * private_lock must be held over this entire operation in order
3193          * to synchronise against __set_page_dirty_buffers and prevent the
3194          * dirty bit from being lost.
3195          */
3196         if (ret)
3197                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3198         spin_unlock(&mapping->private_lock);
3199 out:
3200         if (buffers_to_free) {
3201                 struct buffer_head *bh = buffers_to_free;
3202
3203                 do {
3204                         struct buffer_head *next = bh->b_this_page;
3205                         free_buffer_head(bh);
3206                         bh = next;
3207                 } while (bh != buffers_to_free);
3208         }
3209         return ret;
3210 }
3211 EXPORT_SYMBOL(try_to_free_buffers);
3212
3213 /*
3214  * There are no bdflush tunables left.  But distributions are
3215  * still running obsolete flush daemons, so we terminate them here.
3216  *
3217  * Use of bdflush() is deprecated and will be removed in a future kernel.
3218  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3219  */
3220 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3221 {
3222         static int msg_count;
3223
3224         if (!capable(CAP_SYS_ADMIN))
3225                 return -EPERM;
3226
3227         if (msg_count < 5) {
3228                 msg_count++;
3229                 printk(KERN_INFO
3230                         "warning: process `%s' used the obsolete bdflush"
3231                         " system call\n", current->comm);
3232                 printk(KERN_INFO "Fix your initscripts?\n");
3233         }
3234
3235         if (func == 1)
3236                 do_exit(0);
3237         return 0;
3238 }
3239
3240 /*
3241  * Buffer-head allocation
3242  */
3243 static struct kmem_cache *bh_cachep __read_mostly;
3244
3245 /*
3246  * Once the number of bh's in the machine exceeds this level, we start
3247  * stripping them in writeback.
3248  */
3249 static unsigned long max_buffer_heads;
3250
3251 int buffer_heads_over_limit;
3252
3253 struct bh_accounting {
3254         int nr;                 /* Number of live bh's */
3255         int ratelimit;          /* Limit cacheline bouncing */
3256 };
3257
3258 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3259
3260 static void recalc_bh_state(void)
3261 {
3262         int i;
3263         int tot = 0;
3264
3265         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3266                 return;
3267         __this_cpu_write(bh_accounting.ratelimit, 0);
3268         for_each_online_cpu(i)
3269                 tot += per_cpu(bh_accounting, i).nr;
3270         buffer_heads_over_limit = (tot > max_buffer_heads);
3271 }
3272
3273 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3274 {
3275         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3276         if (ret) {
3277                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3278                 preempt_disable();
3279                 __this_cpu_inc(bh_accounting.nr);
3280                 recalc_bh_state();
3281                 preempt_enable();
3282         }
3283         return ret;
3284 }
3285 EXPORT_SYMBOL(alloc_buffer_head);
3286
3287 void free_buffer_head(struct buffer_head *bh)
3288 {
3289         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3290         kmem_cache_free(bh_cachep, bh);
3291         preempt_disable();
3292         __this_cpu_dec(bh_accounting.nr);
3293         recalc_bh_state();
3294         preempt_enable();
3295 }
3296 EXPORT_SYMBOL(free_buffer_head);
3297
3298 static void buffer_exit_cpu(int cpu)
3299 {
3300         int i;
3301         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3302
3303         for (i = 0; i < BH_LRU_SIZE; i++) {
3304                 brelse(b->bhs[i]);
3305                 b->bhs[i] = NULL;
3306         }
3307         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3308         per_cpu(bh_accounting, cpu).nr = 0;
3309 }
3310
3311 static int buffer_cpu_notify(struct notifier_block *self,
3312                               unsigned long action, void *hcpu)
3313 {
3314         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3315                 buffer_exit_cpu((unsigned long)hcpu);
3316         return NOTIFY_OK;
3317 }
3318
3319 /**
3320  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3321  * @bh: struct buffer_head
3322  *
3323  * Return true if the buffer is up-to-date and false,
3324  * with the buffer locked, if not.
3325  */
3326 int bh_uptodate_or_lock(struct buffer_head *bh)
3327 {
3328         if (!buffer_uptodate(bh)) {
3329                 lock_buffer(bh);
3330                 if (!buffer_uptodate(bh))
3331                         return 0;
3332                 unlock_buffer(bh);
3333         }
3334         return 1;
3335 }
3336 EXPORT_SYMBOL(bh_uptodate_or_lock);
3337
3338 /**
3339  * bh_submit_read - Submit a locked buffer for reading
3340  * @bh: struct buffer_head
3341  *
3342  * Returns zero on success and -EIO on error.
3343  */
3344 int bh_submit_read(struct buffer_head *bh)
3345 {
3346         BUG_ON(!buffer_locked(bh));
3347
3348         if (buffer_uptodate(bh)) {
3349                 unlock_buffer(bh);
3350                 return 0;
3351         }
3352
3353         get_bh(bh);
3354         bh->b_end_io = end_buffer_read_sync;
3355         submit_bh(READ, bh);
3356         wait_on_buffer(bh);
3357         if (buffer_uptodate(bh))
3358                 return 0;
3359         return -EIO;
3360 }
3361 EXPORT_SYMBOL(bh_submit_read);
3362
3363 void __init buffer_init(void)
3364 {
3365         unsigned long nrpages;
3366
3367         bh_cachep = kmem_cache_create("buffer_head",
3368                         sizeof(struct buffer_head), 0,
3369                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3370                                 SLAB_MEM_SPREAD),
3371                                 NULL);
3372
3373         /*
3374          * Limit the bh occupancy to 10% of ZONE_NORMAL
3375          */
3376         nrpages = (nr_free_buffer_pages() * 10) / 100;
3377         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3378         hotcpu_notifier(buffer_cpu_notify, 0);
3379 }