Merge tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache
[platform/kernel/linux-starfive.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56                          enum rw_hint hint, struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62         trace_block_touch_buffer(bh);
63         mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75         clear_bit_unlock(BH_Lock, &bh->b_state);
76         smp_mb__after_atomic();
77         wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87                                      bool *dirty, bool *writeback)
88 {
89         struct buffer_head *head, *bh;
90         *dirty = false;
91         *writeback = false;
92
93         BUG_ON(!PageLocked(page));
94
95         if (!page_has_buffers(page))
96                 return;
97
98         if (PageWriteback(page))
99                 *writeback = true;
100
101         head = page_buffers(page);
102         bh = head;
103         do {
104                 if (buffer_locked(bh))
105                         *writeback = true;
106
107                 if (buffer_dirty(bh))
108                         *dirty = true;
109
110                 bh = bh->b_this_page;
111         } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128         if (!test_bit(BH_Quiet, &bh->b_state))
129                 printk_ratelimited(KERN_ERR
130                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
131                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144         if (uptodate) {
145                 set_buffer_uptodate(bh);
146         } else {
147                 /* This happens, due to failed read-ahead attempts. */
148                 clear_buffer_uptodate(bh);
149         }
150         unlock_buffer(bh);
151 }
152
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer. This is what ll_rw_block uses too.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159         __end_buffer_read_notouch(bh, uptodate);
160         put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166         if (uptodate) {
167                 set_buffer_uptodate(bh);
168         } else {
169                 buffer_io_error(bh, ", lost sync page write");
170                 mark_buffer_write_io_error(bh);
171                 clear_buffer_uptodate(bh);
172         }
173         unlock_buffer(bh);
174         put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191         struct inode *bd_inode = bdev->bd_inode;
192         struct address_space *bd_mapping = bd_inode->i_mapping;
193         struct buffer_head *ret = NULL;
194         pgoff_t index;
195         struct buffer_head *bh;
196         struct buffer_head *head;
197         struct page *page;
198         int all_mapped = 1;
199         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203         if (!page)
204                 goto out;
205
206         spin_lock(&bd_mapping->private_lock);
207         if (!page_has_buffers(page))
208                 goto out_unlock;
209         head = page_buffers(page);
210         bh = head;
211         do {
212                 if (!buffer_mapped(bh))
213                         all_mapped = 0;
214                 else if (bh->b_blocknr == block) {
215                         ret = bh;
216                         get_bh(bh);
217                         goto out_unlock;
218                 }
219                 bh = bh->b_this_page;
220         } while (bh != head);
221
222         /* we might be here because some of the buffers on this page are
223          * not mapped.  This is due to various races between
224          * file io on the block device and getblk.  It gets dealt with
225          * elsewhere, don't buffer_error if we had some unmapped buffers
226          */
227         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228         if (all_mapped && __ratelimit(&last_warned)) {
229                 printk("__find_get_block_slow() failed. block=%llu, "
230                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231                        "device %pg blocksize: %d\n",
232                        (unsigned long long)block,
233                        (unsigned long long)bh->b_blocknr,
234                        bh->b_state, bh->b_size, bdev,
235                        1 << bd_inode->i_blkbits);
236         }
237 out_unlock:
238         spin_unlock(&bd_mapping->private_lock);
239         put_page(page);
240 out:
241         return ret;
242 }
243
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246         unsigned long flags;
247         struct buffer_head *first;
248         struct buffer_head *tmp;
249         struct page *page;
250         int page_uptodate = 1;
251
252         BUG_ON(!buffer_async_read(bh));
253
254         page = bh->b_page;
255         if (uptodate) {
256                 set_buffer_uptodate(bh);
257         } else {
258                 clear_buffer_uptodate(bh);
259                 buffer_io_error(bh, ", async page read");
260                 SetPageError(page);
261         }
262
263         /*
264          * Be _very_ careful from here on. Bad things can happen if
265          * two buffer heads end IO at almost the same time and both
266          * decide that the page is now completely done.
267          */
268         first = page_buffers(page);
269         spin_lock_irqsave(&first->b_uptodate_lock, flags);
270         clear_buffer_async_read(bh);
271         unlock_buffer(bh);
272         tmp = bh;
273         do {
274                 if (!buffer_uptodate(tmp))
275                         page_uptodate = 0;
276                 if (buffer_async_read(tmp)) {
277                         BUG_ON(!buffer_locked(tmp));
278                         goto still_busy;
279                 }
280                 tmp = tmp->b_this_page;
281         } while (tmp != bh);
282         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284         /*
285          * If none of the buffers had errors and they are all
286          * uptodate then we can set the page uptodate.
287          */
288         if (page_uptodate && !PageError(page))
289                 SetPageUptodate(page);
290         unlock_page(page);
291         return;
292
293 still_busy:
294         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295         return;
296 }
297
298 struct decrypt_bh_ctx {
299         struct work_struct work;
300         struct buffer_head *bh;
301 };
302
303 static void decrypt_bh(struct work_struct *work)
304 {
305         struct decrypt_bh_ctx *ctx =
306                 container_of(work, struct decrypt_bh_ctx, work);
307         struct buffer_head *bh = ctx->bh;
308         int err;
309
310         err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311                                                bh_offset(bh));
312         end_buffer_async_read(bh, err == 0);
313         kfree(ctx);
314 }
315
316 /*
317  * I/O completion handler for block_read_full_page() - pages
318  * which come unlocked at the end of I/O.
319  */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322         /* Decrypt if needed */
323         if (uptodate &&
324             fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325                 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326
327                 if (ctx) {
328                         INIT_WORK(&ctx->work, decrypt_bh);
329                         ctx->bh = bh;
330                         fscrypt_enqueue_decrypt_work(&ctx->work);
331                         return;
332                 }
333                 uptodate = 0;
334         }
335         end_buffer_async_read(bh, uptodate);
336 }
337
338 /*
339  * Completion handler for block_write_full_page() - pages which are unlocked
340  * during I/O, and which have PageWriteback cleared upon I/O completion.
341  */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344         unsigned long flags;
345         struct buffer_head *first;
346         struct buffer_head *tmp;
347         struct page *page;
348
349         BUG_ON(!buffer_async_write(bh));
350
351         page = bh->b_page;
352         if (uptodate) {
353                 set_buffer_uptodate(bh);
354         } else {
355                 buffer_io_error(bh, ", lost async page write");
356                 mark_buffer_write_io_error(bh);
357                 clear_buffer_uptodate(bh);
358                 SetPageError(page);
359         }
360
361         first = page_buffers(page);
362         spin_lock_irqsave(&first->b_uptodate_lock, flags);
363
364         clear_buffer_async_write(bh);
365         unlock_buffer(bh);
366         tmp = bh->b_this_page;
367         while (tmp != bh) {
368                 if (buffer_async_write(tmp)) {
369                         BUG_ON(!buffer_locked(tmp));
370                         goto still_busy;
371                 }
372                 tmp = tmp->b_this_page;
373         }
374         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375         end_page_writeback(page);
376         return;
377
378 still_busy:
379         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380         return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383
384 /*
385  * If a page's buffers are under async readin (end_buffer_async_read
386  * completion) then there is a possibility that another thread of
387  * control could lock one of the buffers after it has completed
388  * but while some of the other buffers have not completed.  This
389  * locked buffer would confuse end_buffer_async_read() into not unlocking
390  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
391  * that this buffer is not under async I/O.
392  *
393  * The page comes unlocked when it has no locked buffer_async buffers
394  * left.
395  *
396  * PageLocked prevents anyone starting new async I/O reads any of
397  * the buffers.
398  *
399  * PageWriteback is used to prevent simultaneous writeout of the same
400  * page.
401  *
402  * PageLocked prevents anyone from starting writeback of a page which is
403  * under read I/O (PageWriteback is only ever set against a locked page).
404  */
405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407         bh->b_end_io = end_buffer_async_read_io;
408         set_buffer_async_read(bh);
409 }
410
411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412                                           bh_end_io_t *handler)
413 {
414         bh->b_end_io = handler;
415         set_buffer_async_write(bh);
416 }
417
418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420         mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL(mark_buffer_async_write);
423
424
425 /*
426  * fs/buffer.c contains helper functions for buffer-backed address space's
427  * fsync functions.  A common requirement for buffer-based filesystems is
428  * that certain data from the backing blockdev needs to be written out for
429  * a successful fsync().  For example, ext2 indirect blocks need to be
430  * written back and waited upon before fsync() returns.
431  *
432  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434  * management of a list of dependent buffers at ->i_mapping->private_list.
435  *
436  * Locking is a little subtle: try_to_free_buffers() will remove buffers
437  * from their controlling inode's queue when they are being freed.  But
438  * try_to_free_buffers() will be operating against the *blockdev* mapping
439  * at the time, not against the S_ISREG file which depends on those buffers.
440  * So the locking for private_list is via the private_lock in the address_space
441  * which backs the buffers.  Which is different from the address_space 
442  * against which the buffers are listed.  So for a particular address_space,
443  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
444  * mapping->private_list will always be protected by the backing blockdev's
445  * ->private_lock.
446  *
447  * Which introduces a requirement: all buffers on an address_space's
448  * ->private_list must be from the same address_space: the blockdev's.
449  *
450  * address_spaces which do not place buffers at ->private_list via these
451  * utility functions are free to use private_lock and private_list for
452  * whatever they want.  The only requirement is that list_empty(private_list)
453  * be true at clear_inode() time.
454  *
455  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
456  * filesystems should do that.  invalidate_inode_buffers() should just go
457  * BUG_ON(!list_empty).
458  *
459  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
460  * take an address_space, not an inode.  And it should be called
461  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462  * queued up.
463  *
464  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465  * list if it is already on a list.  Because if the buffer is on a list,
466  * it *must* already be on the right one.  If not, the filesystem is being
467  * silly.  This will save a ton of locking.  But first we have to ensure
468  * that buffers are taken *off* the old inode's list when they are freed
469  * (presumably in truncate).  That requires careful auditing of all
470  * filesystems (do it inside bforget()).  It could also be done by bringing
471  * b_inode back.
472  */
473
474 /*
475  * The buffer's backing address_space's private_lock must be held
476  */
477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479         list_del_init(&bh->b_assoc_buffers);
480         WARN_ON(!bh->b_assoc_map);
481         bh->b_assoc_map = NULL;
482 }
483
484 int inode_has_buffers(struct inode *inode)
485 {
486         return !list_empty(&inode->i_data.private_list);
487 }
488
489 /*
490  * osync is designed to support O_SYNC io.  It waits synchronously for
491  * all already-submitted IO to complete, but does not queue any new
492  * writes to the disk.
493  *
494  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495  * you dirty the buffers, and then use osync_inode_buffers to wait for
496  * completion.  Any other dirty buffers which are not yet queued for
497  * write will not be flushed to disk by the osync.
498  */
499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501         struct buffer_head *bh;
502         struct list_head *p;
503         int err = 0;
504
505         spin_lock(lock);
506 repeat:
507         list_for_each_prev(p, list) {
508                 bh = BH_ENTRY(p);
509                 if (buffer_locked(bh)) {
510                         get_bh(bh);
511                         spin_unlock(lock);
512                         wait_on_buffer(bh);
513                         if (!buffer_uptodate(bh))
514                                 err = -EIO;
515                         brelse(bh);
516                         spin_lock(lock);
517                         goto repeat;
518                 }
519         }
520         spin_unlock(lock);
521         return err;
522 }
523
524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526         while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529
530 /**
531  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532  * @mapping: the mapping which wants those buffers written
533  *
534  * Starts I/O against the buffers at mapping->private_list, and waits upon
535  * that I/O.
536  *
537  * Basically, this is a convenience function for fsync().
538  * @mapping is a file or directory which needs those buffers to be written for
539  * a successful fsync().
540  */
541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543         struct address_space *buffer_mapping = mapping->private_data;
544
545         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546                 return 0;
547
548         return fsync_buffers_list(&buffer_mapping->private_lock,
549                                         &mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552
553 /*
554  * Called when we've recently written block `bblock', and it is known that
555  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
556  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
557  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
558  */
559 void write_boundary_block(struct block_device *bdev,
560                         sector_t bblock, unsigned blocksize)
561 {
562         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563         if (bh) {
564                 if (buffer_dirty(bh))
565                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566                 put_bh(bh);
567         }
568 }
569
570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572         struct address_space *mapping = inode->i_mapping;
573         struct address_space *buffer_mapping = bh->b_page->mapping;
574
575         mark_buffer_dirty(bh);
576         if (!mapping->private_data) {
577                 mapping->private_data = buffer_mapping;
578         } else {
579                 BUG_ON(mapping->private_data != buffer_mapping);
580         }
581         if (!bh->b_assoc_map) {
582                 spin_lock(&buffer_mapping->private_lock);
583                 list_move_tail(&bh->b_assoc_buffers,
584                                 &mapping->private_list);
585                 bh->b_assoc_map = mapping;
586                 spin_unlock(&buffer_mapping->private_lock);
587         }
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590
591 /*
592  * Add a page to the dirty page list.
593  *
594  * It is a sad fact of life that this function is called from several places
595  * deeply under spinlocking.  It may not sleep.
596  *
597  * If the page has buffers, the uptodate buffers are set dirty, to preserve
598  * dirty-state coherency between the page and the buffers.  It the page does
599  * not have buffers then when they are later attached they will all be set
600  * dirty.
601  *
602  * The buffers are dirtied before the page is dirtied.  There's a small race
603  * window in which a writepage caller may see the page cleanness but not the
604  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
605  * before the buffers, a concurrent writepage caller could clear the page dirty
606  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
607  * page on the dirty page list.
608  *
609  * We use private_lock to lock against try_to_free_buffers while using the
610  * page's buffer list.  Also use this to protect against clean buffers being
611  * added to the page after it was set dirty.
612  *
613  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
614  * address_space though.
615  */
616 int __set_page_dirty_buffers(struct page *page)
617 {
618         int newly_dirty;
619         struct address_space *mapping = page_mapping(page);
620
621         if (unlikely(!mapping))
622                 return !TestSetPageDirty(page);
623
624         spin_lock(&mapping->private_lock);
625         if (page_has_buffers(page)) {
626                 struct buffer_head *head = page_buffers(page);
627                 struct buffer_head *bh = head;
628
629                 do {
630                         set_buffer_dirty(bh);
631                         bh = bh->b_this_page;
632                 } while (bh != head);
633         }
634         /*
635          * Lock out page's memcg migration to keep PageDirty
636          * synchronized with per-memcg dirty page counters.
637          */
638         lock_page_memcg(page);
639         newly_dirty = !TestSetPageDirty(page);
640         spin_unlock(&mapping->private_lock);
641
642         if (newly_dirty)
643                 __set_page_dirty(page, mapping, 1);
644
645         unlock_page_memcg(page);
646
647         if (newly_dirty)
648                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
649
650         return newly_dirty;
651 }
652 EXPORT_SYMBOL(__set_page_dirty_buffers);
653
654 /*
655  * Write out and wait upon a list of buffers.
656  *
657  * We have conflicting pressures: we want to make sure that all
658  * initially dirty buffers get waited on, but that any subsequently
659  * dirtied buffers don't.  After all, we don't want fsync to last
660  * forever if somebody is actively writing to the file.
661  *
662  * Do this in two main stages: first we copy dirty buffers to a
663  * temporary inode list, queueing the writes as we go.  Then we clean
664  * up, waiting for those writes to complete.
665  * 
666  * During this second stage, any subsequent updates to the file may end
667  * up refiling the buffer on the original inode's dirty list again, so
668  * there is a chance we will end up with a buffer queued for write but
669  * not yet completed on that list.  So, as a final cleanup we go through
670  * the osync code to catch these locked, dirty buffers without requeuing
671  * any newly dirty buffers for write.
672  */
673 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
674 {
675         struct buffer_head *bh;
676         struct list_head tmp;
677         struct address_space *mapping;
678         int err = 0, err2;
679         struct blk_plug plug;
680
681         INIT_LIST_HEAD(&tmp);
682         blk_start_plug(&plug);
683
684         spin_lock(lock);
685         while (!list_empty(list)) {
686                 bh = BH_ENTRY(list->next);
687                 mapping = bh->b_assoc_map;
688                 __remove_assoc_queue(bh);
689                 /* Avoid race with mark_buffer_dirty_inode() which does
690                  * a lockless check and we rely on seeing the dirty bit */
691                 smp_mb();
692                 if (buffer_dirty(bh) || buffer_locked(bh)) {
693                         list_add(&bh->b_assoc_buffers, &tmp);
694                         bh->b_assoc_map = mapping;
695                         if (buffer_dirty(bh)) {
696                                 get_bh(bh);
697                                 spin_unlock(lock);
698                                 /*
699                                  * Ensure any pending I/O completes so that
700                                  * write_dirty_buffer() actually writes the
701                                  * current contents - it is a noop if I/O is
702                                  * still in flight on potentially older
703                                  * contents.
704                                  */
705                                 write_dirty_buffer(bh, REQ_SYNC);
706
707                                 /*
708                                  * Kick off IO for the previous mapping. Note
709                                  * that we will not run the very last mapping,
710                                  * wait_on_buffer() will do that for us
711                                  * through sync_buffer().
712                                  */
713                                 brelse(bh);
714                                 spin_lock(lock);
715                         }
716                 }
717         }
718
719         spin_unlock(lock);
720         blk_finish_plug(&plug);
721         spin_lock(lock);
722
723         while (!list_empty(&tmp)) {
724                 bh = BH_ENTRY(tmp.prev);
725                 get_bh(bh);
726                 mapping = bh->b_assoc_map;
727                 __remove_assoc_queue(bh);
728                 /* Avoid race with mark_buffer_dirty_inode() which does
729                  * a lockless check and we rely on seeing the dirty bit */
730                 smp_mb();
731                 if (buffer_dirty(bh)) {
732                         list_add(&bh->b_assoc_buffers,
733                                  &mapping->private_list);
734                         bh->b_assoc_map = mapping;
735                 }
736                 spin_unlock(lock);
737                 wait_on_buffer(bh);
738                 if (!buffer_uptodate(bh))
739                         err = -EIO;
740                 brelse(bh);
741                 spin_lock(lock);
742         }
743         
744         spin_unlock(lock);
745         err2 = osync_buffers_list(lock, list);
746         if (err)
747                 return err;
748         else
749                 return err2;
750 }
751
752 /*
753  * Invalidate any and all dirty buffers on a given inode.  We are
754  * probably unmounting the fs, but that doesn't mean we have already
755  * done a sync().  Just drop the buffers from the inode list.
756  *
757  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
758  * assumes that all the buffers are against the blockdev.  Not true
759  * for reiserfs.
760  */
761 void invalidate_inode_buffers(struct inode *inode)
762 {
763         if (inode_has_buffers(inode)) {
764                 struct address_space *mapping = &inode->i_data;
765                 struct list_head *list = &mapping->private_list;
766                 struct address_space *buffer_mapping = mapping->private_data;
767
768                 spin_lock(&buffer_mapping->private_lock);
769                 while (!list_empty(list))
770                         __remove_assoc_queue(BH_ENTRY(list->next));
771                 spin_unlock(&buffer_mapping->private_lock);
772         }
773 }
774 EXPORT_SYMBOL(invalidate_inode_buffers);
775
776 /*
777  * Remove any clean buffers from the inode's buffer list.  This is called
778  * when we're trying to free the inode itself.  Those buffers can pin it.
779  *
780  * Returns true if all buffers were removed.
781  */
782 int remove_inode_buffers(struct inode *inode)
783 {
784         int ret = 1;
785
786         if (inode_has_buffers(inode)) {
787                 struct address_space *mapping = &inode->i_data;
788                 struct list_head *list = &mapping->private_list;
789                 struct address_space *buffer_mapping = mapping->private_data;
790
791                 spin_lock(&buffer_mapping->private_lock);
792                 while (!list_empty(list)) {
793                         struct buffer_head *bh = BH_ENTRY(list->next);
794                         if (buffer_dirty(bh)) {
795                                 ret = 0;
796                                 break;
797                         }
798                         __remove_assoc_queue(bh);
799                 }
800                 spin_unlock(&buffer_mapping->private_lock);
801         }
802         return ret;
803 }
804
805 /*
806  * Create the appropriate buffers when given a page for data area and
807  * the size of each buffer.. Use the bh->b_this_page linked list to
808  * follow the buffers created.  Return NULL if unable to create more
809  * buffers.
810  *
811  * The retry flag is used to differentiate async IO (paging, swapping)
812  * which may not fail from ordinary buffer allocations.
813  */
814 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
815                 bool retry)
816 {
817         struct buffer_head *bh, *head;
818         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
819         long offset;
820         struct mem_cgroup *memcg, *old_memcg;
821
822         if (retry)
823                 gfp |= __GFP_NOFAIL;
824
825         /* The page lock pins the memcg */
826         memcg = page_memcg(page);
827         old_memcg = set_active_memcg(memcg);
828
829         head = NULL;
830         offset = PAGE_SIZE;
831         while ((offset -= size) >= 0) {
832                 bh = alloc_buffer_head(gfp);
833                 if (!bh)
834                         goto no_grow;
835
836                 bh->b_this_page = head;
837                 bh->b_blocknr = -1;
838                 head = bh;
839
840                 bh->b_size = size;
841
842                 /* Link the buffer to its page */
843                 set_bh_page(bh, page, offset);
844         }
845 out:
846         set_active_memcg(old_memcg);
847         return head;
848 /*
849  * In case anything failed, we just free everything we got.
850  */
851 no_grow:
852         if (head) {
853                 do {
854                         bh = head;
855                         head = head->b_this_page;
856                         free_buffer_head(bh);
857                 } while (head);
858         }
859
860         goto out;
861 }
862 EXPORT_SYMBOL_GPL(alloc_page_buffers);
863
864 static inline void
865 link_dev_buffers(struct page *page, struct buffer_head *head)
866 {
867         struct buffer_head *bh, *tail;
868
869         bh = head;
870         do {
871                 tail = bh;
872                 bh = bh->b_this_page;
873         } while (bh);
874         tail->b_this_page = head;
875         attach_page_private(page, head);
876 }
877
878 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
879 {
880         sector_t retval = ~((sector_t)0);
881         loff_t sz = bdev_nr_bytes(bdev);
882
883         if (sz) {
884                 unsigned int sizebits = blksize_bits(size);
885                 retval = (sz >> sizebits);
886         }
887         return retval;
888 }
889
890 /*
891  * Initialise the state of a blockdev page's buffers.
892  */ 
893 static sector_t
894 init_page_buffers(struct page *page, struct block_device *bdev,
895                         sector_t block, int size)
896 {
897         struct buffer_head *head = page_buffers(page);
898         struct buffer_head *bh = head;
899         int uptodate = PageUptodate(page);
900         sector_t end_block = blkdev_max_block(bdev, size);
901
902         do {
903                 if (!buffer_mapped(bh)) {
904                         bh->b_end_io = NULL;
905                         bh->b_private = NULL;
906                         bh->b_bdev = bdev;
907                         bh->b_blocknr = block;
908                         if (uptodate)
909                                 set_buffer_uptodate(bh);
910                         if (block < end_block)
911                                 set_buffer_mapped(bh);
912                 }
913                 block++;
914                 bh = bh->b_this_page;
915         } while (bh != head);
916
917         /*
918          * Caller needs to validate requested block against end of device.
919          */
920         return end_block;
921 }
922
923 /*
924  * Create the page-cache page that contains the requested block.
925  *
926  * This is used purely for blockdev mappings.
927  */
928 static int
929 grow_dev_page(struct block_device *bdev, sector_t block,
930               pgoff_t index, int size, int sizebits, gfp_t gfp)
931 {
932         struct inode *inode = bdev->bd_inode;
933         struct page *page;
934         struct buffer_head *bh;
935         sector_t end_block;
936         int ret = 0;
937         gfp_t gfp_mask;
938
939         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
940
941         /*
942          * XXX: __getblk_slow() can not really deal with failure and
943          * will endlessly loop on improvised global reclaim.  Prefer
944          * looping in the allocator rather than here, at least that
945          * code knows what it's doing.
946          */
947         gfp_mask |= __GFP_NOFAIL;
948
949         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
950
951         BUG_ON(!PageLocked(page));
952
953         if (page_has_buffers(page)) {
954                 bh = page_buffers(page);
955                 if (bh->b_size == size) {
956                         end_block = init_page_buffers(page, bdev,
957                                                 (sector_t)index << sizebits,
958                                                 size);
959                         goto done;
960                 }
961                 if (!try_to_free_buffers(page))
962                         goto failed;
963         }
964
965         /*
966          * Allocate some buffers for this page
967          */
968         bh = alloc_page_buffers(page, size, true);
969
970         /*
971          * Link the page to the buffers and initialise them.  Take the
972          * lock to be atomic wrt __find_get_block(), which does not
973          * run under the page lock.
974          */
975         spin_lock(&inode->i_mapping->private_lock);
976         link_dev_buffers(page, bh);
977         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
978                         size);
979         spin_unlock(&inode->i_mapping->private_lock);
980 done:
981         ret = (block < end_block) ? 1 : -ENXIO;
982 failed:
983         unlock_page(page);
984         put_page(page);
985         return ret;
986 }
987
988 /*
989  * Create buffers for the specified block device block's page.  If
990  * that page was dirty, the buffers are set dirty also.
991  */
992 static int
993 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
994 {
995         pgoff_t index;
996         int sizebits;
997
998         sizebits = PAGE_SHIFT - __ffs(size);
999         index = block >> sizebits;
1000
1001         /*
1002          * Check for a block which wants to lie outside our maximum possible
1003          * pagecache index.  (this comparison is done using sector_t types).
1004          */
1005         if (unlikely(index != block >> sizebits)) {
1006                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1007                         "device %pg\n",
1008                         __func__, (unsigned long long)block,
1009                         bdev);
1010                 return -EIO;
1011         }
1012
1013         /* Create a page with the proper size buffers.. */
1014         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1015 }
1016
1017 static struct buffer_head *
1018 __getblk_slow(struct block_device *bdev, sector_t block,
1019              unsigned size, gfp_t gfp)
1020 {
1021         /* Size must be multiple of hard sectorsize */
1022         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1023                         (size < 512 || size > PAGE_SIZE))) {
1024                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1025                                         size);
1026                 printk(KERN_ERR "logical block size: %d\n",
1027                                         bdev_logical_block_size(bdev));
1028
1029                 dump_stack();
1030                 return NULL;
1031         }
1032
1033         for (;;) {
1034                 struct buffer_head *bh;
1035                 int ret;
1036
1037                 bh = __find_get_block(bdev, block, size);
1038                 if (bh)
1039                         return bh;
1040
1041                 ret = grow_buffers(bdev, block, size, gfp);
1042                 if (ret < 0)
1043                         return NULL;
1044         }
1045 }
1046
1047 /*
1048  * The relationship between dirty buffers and dirty pages:
1049  *
1050  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1051  * the page is tagged dirty in the page cache.
1052  *
1053  * At all times, the dirtiness of the buffers represents the dirtiness of
1054  * subsections of the page.  If the page has buffers, the page dirty bit is
1055  * merely a hint about the true dirty state.
1056  *
1057  * When a page is set dirty in its entirety, all its buffers are marked dirty
1058  * (if the page has buffers).
1059  *
1060  * When a buffer is marked dirty, its page is dirtied, but the page's other
1061  * buffers are not.
1062  *
1063  * Also.  When blockdev buffers are explicitly read with bread(), they
1064  * individually become uptodate.  But their backing page remains not
1065  * uptodate - even if all of its buffers are uptodate.  A subsequent
1066  * block_read_full_page() against that page will discover all the uptodate
1067  * buffers, will set the page uptodate and will perform no I/O.
1068  */
1069
1070 /**
1071  * mark_buffer_dirty - mark a buffer_head as needing writeout
1072  * @bh: the buffer_head to mark dirty
1073  *
1074  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1075  * its backing page dirty, then tag the page as dirty in the page cache
1076  * and then attach the address_space's inode to its superblock's dirty
1077  * inode list.
1078  *
1079  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1080  * i_pages lock and mapping->host->i_lock.
1081  */
1082 void mark_buffer_dirty(struct buffer_head *bh)
1083 {
1084         WARN_ON_ONCE(!buffer_uptodate(bh));
1085
1086         trace_block_dirty_buffer(bh);
1087
1088         /*
1089          * Very *carefully* optimize the it-is-already-dirty case.
1090          *
1091          * Don't let the final "is it dirty" escape to before we
1092          * perhaps modified the buffer.
1093          */
1094         if (buffer_dirty(bh)) {
1095                 smp_mb();
1096                 if (buffer_dirty(bh))
1097                         return;
1098         }
1099
1100         if (!test_set_buffer_dirty(bh)) {
1101                 struct page *page = bh->b_page;
1102                 struct address_space *mapping = NULL;
1103
1104                 lock_page_memcg(page);
1105                 if (!TestSetPageDirty(page)) {
1106                         mapping = page_mapping(page);
1107                         if (mapping)
1108                                 __set_page_dirty(page, mapping, 0);
1109                 }
1110                 unlock_page_memcg(page);
1111                 if (mapping)
1112                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1113         }
1114 }
1115 EXPORT_SYMBOL(mark_buffer_dirty);
1116
1117 void mark_buffer_write_io_error(struct buffer_head *bh)
1118 {
1119         struct super_block *sb;
1120
1121         set_buffer_write_io_error(bh);
1122         /* FIXME: do we need to set this in both places? */
1123         if (bh->b_page && bh->b_page->mapping)
1124                 mapping_set_error(bh->b_page->mapping, -EIO);
1125         if (bh->b_assoc_map)
1126                 mapping_set_error(bh->b_assoc_map, -EIO);
1127         rcu_read_lock();
1128         sb = READ_ONCE(bh->b_bdev->bd_super);
1129         if (sb)
1130                 errseq_set(&sb->s_wb_err, -EIO);
1131         rcu_read_unlock();
1132 }
1133 EXPORT_SYMBOL(mark_buffer_write_io_error);
1134
1135 /*
1136  * Decrement a buffer_head's reference count.  If all buffers against a page
1137  * have zero reference count, are clean and unlocked, and if the page is clean
1138  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1139  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1140  * a page but it ends up not being freed, and buffers may later be reattached).
1141  */
1142 void __brelse(struct buffer_head * buf)
1143 {
1144         if (atomic_read(&buf->b_count)) {
1145                 put_bh(buf);
1146                 return;
1147         }
1148         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1149 }
1150 EXPORT_SYMBOL(__brelse);
1151
1152 /*
1153  * bforget() is like brelse(), except it discards any
1154  * potentially dirty data.
1155  */
1156 void __bforget(struct buffer_head *bh)
1157 {
1158         clear_buffer_dirty(bh);
1159         if (bh->b_assoc_map) {
1160                 struct address_space *buffer_mapping = bh->b_page->mapping;
1161
1162                 spin_lock(&buffer_mapping->private_lock);
1163                 list_del_init(&bh->b_assoc_buffers);
1164                 bh->b_assoc_map = NULL;
1165                 spin_unlock(&buffer_mapping->private_lock);
1166         }
1167         __brelse(bh);
1168 }
1169 EXPORT_SYMBOL(__bforget);
1170
1171 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1172 {
1173         lock_buffer(bh);
1174         if (buffer_uptodate(bh)) {
1175                 unlock_buffer(bh);
1176                 return bh;
1177         } else {
1178                 get_bh(bh);
1179                 bh->b_end_io = end_buffer_read_sync;
1180                 submit_bh(REQ_OP_READ, 0, bh);
1181                 wait_on_buffer(bh);
1182                 if (buffer_uptodate(bh))
1183                         return bh;
1184         }
1185         brelse(bh);
1186         return NULL;
1187 }
1188
1189 /*
1190  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1191  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1192  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1193  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1194  * CPU's LRUs at the same time.
1195  *
1196  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1197  * sb_find_get_block().
1198  *
1199  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1200  * a local interrupt disable for that.
1201  */
1202
1203 #define BH_LRU_SIZE     16
1204
1205 struct bh_lru {
1206         struct buffer_head *bhs[BH_LRU_SIZE];
1207 };
1208
1209 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1210
1211 #ifdef CONFIG_SMP
1212 #define bh_lru_lock()   local_irq_disable()
1213 #define bh_lru_unlock() local_irq_enable()
1214 #else
1215 #define bh_lru_lock()   preempt_disable()
1216 #define bh_lru_unlock() preempt_enable()
1217 #endif
1218
1219 static inline void check_irqs_on(void)
1220 {
1221 #ifdef irqs_disabled
1222         BUG_ON(irqs_disabled());
1223 #endif
1224 }
1225
1226 /*
1227  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1228  * inserted at the front, and the buffer_head at the back if any is evicted.
1229  * Or, if already in the LRU it is moved to the front.
1230  */
1231 static void bh_lru_install(struct buffer_head *bh)
1232 {
1233         struct buffer_head *evictee = bh;
1234         struct bh_lru *b;
1235         int i;
1236
1237         check_irqs_on();
1238         bh_lru_lock();
1239
1240         /*
1241          * the refcount of buffer_head in bh_lru prevents dropping the
1242          * attached page(i.e., try_to_free_buffers) so it could cause
1243          * failing page migration.
1244          * Skip putting upcoming bh into bh_lru until migration is done.
1245          */
1246         if (lru_cache_disabled()) {
1247                 bh_lru_unlock();
1248                 return;
1249         }
1250
1251         b = this_cpu_ptr(&bh_lrus);
1252         for (i = 0; i < BH_LRU_SIZE; i++) {
1253                 swap(evictee, b->bhs[i]);
1254                 if (evictee == bh) {
1255                         bh_lru_unlock();
1256                         return;
1257                 }
1258         }
1259
1260         get_bh(bh);
1261         bh_lru_unlock();
1262         brelse(evictee);
1263 }
1264
1265 /*
1266  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1267  */
1268 static struct buffer_head *
1269 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1270 {
1271         struct buffer_head *ret = NULL;
1272         unsigned int i;
1273
1274         check_irqs_on();
1275         bh_lru_lock();
1276         for (i = 0; i < BH_LRU_SIZE; i++) {
1277                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1278
1279                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1280                     bh->b_size == size) {
1281                         if (i) {
1282                                 while (i) {
1283                                         __this_cpu_write(bh_lrus.bhs[i],
1284                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1285                                         i--;
1286                                 }
1287                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1288                         }
1289                         get_bh(bh);
1290                         ret = bh;
1291                         break;
1292                 }
1293         }
1294         bh_lru_unlock();
1295         return ret;
1296 }
1297
1298 /*
1299  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1300  * it in the LRU and mark it as accessed.  If it is not present then return
1301  * NULL
1302  */
1303 struct buffer_head *
1304 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1305 {
1306         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1307
1308         if (bh == NULL) {
1309                 /* __find_get_block_slow will mark the page accessed */
1310                 bh = __find_get_block_slow(bdev, block);
1311                 if (bh)
1312                         bh_lru_install(bh);
1313         } else
1314                 touch_buffer(bh);
1315
1316         return bh;
1317 }
1318 EXPORT_SYMBOL(__find_get_block);
1319
1320 /*
1321  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1322  * which corresponds to the passed block_device, block and size. The
1323  * returned buffer has its reference count incremented.
1324  *
1325  * __getblk_gfp() will lock up the machine if grow_dev_page's
1326  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1327  */
1328 struct buffer_head *
1329 __getblk_gfp(struct block_device *bdev, sector_t block,
1330              unsigned size, gfp_t gfp)
1331 {
1332         struct buffer_head *bh = __find_get_block(bdev, block, size);
1333
1334         might_sleep();
1335         if (bh == NULL)
1336                 bh = __getblk_slow(bdev, block, size, gfp);
1337         return bh;
1338 }
1339 EXPORT_SYMBOL(__getblk_gfp);
1340
1341 /*
1342  * Do async read-ahead on a buffer..
1343  */
1344 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1345 {
1346         struct buffer_head *bh = __getblk(bdev, block, size);
1347         if (likely(bh)) {
1348                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1349                 brelse(bh);
1350         }
1351 }
1352 EXPORT_SYMBOL(__breadahead);
1353
1354 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1355                       gfp_t gfp)
1356 {
1357         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1358         if (likely(bh)) {
1359                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1360                 brelse(bh);
1361         }
1362 }
1363 EXPORT_SYMBOL(__breadahead_gfp);
1364
1365 /**
1366  *  __bread_gfp() - reads a specified block and returns the bh
1367  *  @bdev: the block_device to read from
1368  *  @block: number of block
1369  *  @size: size (in bytes) to read
1370  *  @gfp: page allocation flag
1371  *
1372  *  Reads a specified block, and returns buffer head that contains it.
1373  *  The page cache can be allocated from non-movable area
1374  *  not to prevent page migration if you set gfp to zero.
1375  *  It returns NULL if the block was unreadable.
1376  */
1377 struct buffer_head *
1378 __bread_gfp(struct block_device *bdev, sector_t block,
1379                    unsigned size, gfp_t gfp)
1380 {
1381         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1382
1383         if (likely(bh) && !buffer_uptodate(bh))
1384                 bh = __bread_slow(bh);
1385         return bh;
1386 }
1387 EXPORT_SYMBOL(__bread_gfp);
1388
1389 static void __invalidate_bh_lrus(struct bh_lru *b)
1390 {
1391         int i;
1392
1393         for (i = 0; i < BH_LRU_SIZE; i++) {
1394                 brelse(b->bhs[i]);
1395                 b->bhs[i] = NULL;
1396         }
1397 }
1398 /*
1399  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1400  * This doesn't race because it runs in each cpu either in irq
1401  * or with preempt disabled.
1402  */
1403 static void invalidate_bh_lru(void *arg)
1404 {
1405         struct bh_lru *b = &get_cpu_var(bh_lrus);
1406
1407         __invalidate_bh_lrus(b);
1408         put_cpu_var(bh_lrus);
1409 }
1410
1411 bool has_bh_in_lru(int cpu, void *dummy)
1412 {
1413         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1414         int i;
1415         
1416         for (i = 0; i < BH_LRU_SIZE; i++) {
1417                 if (b->bhs[i])
1418                         return true;
1419         }
1420
1421         return false;
1422 }
1423
1424 void invalidate_bh_lrus(void)
1425 {
1426         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1427 }
1428 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1429
1430 /*
1431  * It's called from workqueue context so we need a bh_lru_lock to close
1432  * the race with preemption/irq.
1433  */
1434 void invalidate_bh_lrus_cpu(void)
1435 {
1436         struct bh_lru *b;
1437
1438         bh_lru_lock();
1439         b = this_cpu_ptr(&bh_lrus);
1440         __invalidate_bh_lrus(b);
1441         bh_lru_unlock();
1442 }
1443
1444 void set_bh_page(struct buffer_head *bh,
1445                 struct page *page, unsigned long offset)
1446 {
1447         bh->b_page = page;
1448         BUG_ON(offset >= PAGE_SIZE);
1449         if (PageHighMem(page))
1450                 /*
1451                  * This catches illegal uses and preserves the offset:
1452                  */
1453                 bh->b_data = (char *)(0 + offset);
1454         else
1455                 bh->b_data = page_address(page) + offset;
1456 }
1457 EXPORT_SYMBOL(set_bh_page);
1458
1459 /*
1460  * Called when truncating a buffer on a page completely.
1461  */
1462
1463 /* Bits that are cleared during an invalidate */
1464 #define BUFFER_FLAGS_DISCARD \
1465         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1466          1 << BH_Delay | 1 << BH_Unwritten)
1467
1468 static void discard_buffer(struct buffer_head * bh)
1469 {
1470         unsigned long b_state, b_state_old;
1471
1472         lock_buffer(bh);
1473         clear_buffer_dirty(bh);
1474         bh->b_bdev = NULL;
1475         b_state = bh->b_state;
1476         for (;;) {
1477                 b_state_old = cmpxchg(&bh->b_state, b_state,
1478                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1479                 if (b_state_old == b_state)
1480                         break;
1481                 b_state = b_state_old;
1482         }
1483         unlock_buffer(bh);
1484 }
1485
1486 /**
1487  * block_invalidatepage - invalidate part or all of a buffer-backed page
1488  *
1489  * @page: the page which is affected
1490  * @offset: start of the range to invalidate
1491  * @length: length of the range to invalidate
1492  *
1493  * block_invalidatepage() is called when all or part of the page has become
1494  * invalidated by a truncate operation.
1495  *
1496  * block_invalidatepage() does not have to release all buffers, but it must
1497  * ensure that no dirty buffer is left outside @offset and that no I/O
1498  * is underway against any of the blocks which are outside the truncation
1499  * point.  Because the caller is about to free (and possibly reuse) those
1500  * blocks on-disk.
1501  */
1502 void block_invalidatepage(struct page *page, unsigned int offset,
1503                           unsigned int length)
1504 {
1505         struct buffer_head *head, *bh, *next;
1506         unsigned int curr_off = 0;
1507         unsigned int stop = length + offset;
1508
1509         BUG_ON(!PageLocked(page));
1510         if (!page_has_buffers(page))
1511                 goto out;
1512
1513         /*
1514          * Check for overflow
1515          */
1516         BUG_ON(stop > PAGE_SIZE || stop < length);
1517
1518         head = page_buffers(page);
1519         bh = head;
1520         do {
1521                 unsigned int next_off = curr_off + bh->b_size;
1522                 next = bh->b_this_page;
1523
1524                 /*
1525                  * Are we still fully in range ?
1526                  */
1527                 if (next_off > stop)
1528                         goto out;
1529
1530                 /*
1531                  * is this block fully invalidated?
1532                  */
1533                 if (offset <= curr_off)
1534                         discard_buffer(bh);
1535                 curr_off = next_off;
1536                 bh = next;
1537         } while (bh != head);
1538
1539         /*
1540          * We release buffers only if the entire page is being invalidated.
1541          * The get_block cached value has been unconditionally invalidated,
1542          * so real IO is not possible anymore.
1543          */
1544         if (length == PAGE_SIZE)
1545                 try_to_release_page(page, 0);
1546 out:
1547         return;
1548 }
1549 EXPORT_SYMBOL(block_invalidatepage);
1550
1551
1552 /*
1553  * We attach and possibly dirty the buffers atomically wrt
1554  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1555  * is already excluded via the page lock.
1556  */
1557 void create_empty_buffers(struct page *page,
1558                         unsigned long blocksize, unsigned long b_state)
1559 {
1560         struct buffer_head *bh, *head, *tail;
1561
1562         head = alloc_page_buffers(page, blocksize, true);
1563         bh = head;
1564         do {
1565                 bh->b_state |= b_state;
1566                 tail = bh;
1567                 bh = bh->b_this_page;
1568         } while (bh);
1569         tail->b_this_page = head;
1570
1571         spin_lock(&page->mapping->private_lock);
1572         if (PageUptodate(page) || PageDirty(page)) {
1573                 bh = head;
1574                 do {
1575                         if (PageDirty(page))
1576                                 set_buffer_dirty(bh);
1577                         if (PageUptodate(page))
1578                                 set_buffer_uptodate(bh);
1579                         bh = bh->b_this_page;
1580                 } while (bh != head);
1581         }
1582         attach_page_private(page, head);
1583         spin_unlock(&page->mapping->private_lock);
1584 }
1585 EXPORT_SYMBOL(create_empty_buffers);
1586
1587 /**
1588  * clean_bdev_aliases: clean a range of buffers in block device
1589  * @bdev: Block device to clean buffers in
1590  * @block: Start of a range of blocks to clean
1591  * @len: Number of blocks to clean
1592  *
1593  * We are taking a range of blocks for data and we don't want writeback of any
1594  * buffer-cache aliases starting from return from this function and until the
1595  * moment when something will explicitly mark the buffer dirty (hopefully that
1596  * will not happen until we will free that block ;-) We don't even need to mark
1597  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1598  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1599  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1600  * would confuse anyone who might pick it with bread() afterwards...
1601  *
1602  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1603  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1604  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1605  * need to.  That happens here.
1606  */
1607 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1608 {
1609         struct inode *bd_inode = bdev->bd_inode;
1610         struct address_space *bd_mapping = bd_inode->i_mapping;
1611         struct pagevec pvec;
1612         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1613         pgoff_t end;
1614         int i, count;
1615         struct buffer_head *bh;
1616         struct buffer_head *head;
1617
1618         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1619         pagevec_init(&pvec);
1620         while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1621                 count = pagevec_count(&pvec);
1622                 for (i = 0; i < count; i++) {
1623                         struct page *page = pvec.pages[i];
1624
1625                         if (!page_has_buffers(page))
1626                                 continue;
1627                         /*
1628                          * We use page lock instead of bd_mapping->private_lock
1629                          * to pin buffers here since we can afford to sleep and
1630                          * it scales better than a global spinlock lock.
1631                          */
1632                         lock_page(page);
1633                         /* Recheck when the page is locked which pins bhs */
1634                         if (!page_has_buffers(page))
1635                                 goto unlock_page;
1636                         head = page_buffers(page);
1637                         bh = head;
1638                         do {
1639                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1640                                         goto next;
1641                                 if (bh->b_blocknr >= block + len)
1642                                         break;
1643                                 clear_buffer_dirty(bh);
1644                                 wait_on_buffer(bh);
1645                                 clear_buffer_req(bh);
1646 next:
1647                                 bh = bh->b_this_page;
1648                         } while (bh != head);
1649 unlock_page:
1650                         unlock_page(page);
1651                 }
1652                 pagevec_release(&pvec);
1653                 cond_resched();
1654                 /* End of range already reached? */
1655                 if (index > end || !index)
1656                         break;
1657         }
1658 }
1659 EXPORT_SYMBOL(clean_bdev_aliases);
1660
1661 /*
1662  * Size is a power-of-two in the range 512..PAGE_SIZE,
1663  * and the case we care about most is PAGE_SIZE.
1664  *
1665  * So this *could* possibly be written with those
1666  * constraints in mind (relevant mostly if some
1667  * architecture has a slow bit-scan instruction)
1668  */
1669 static inline int block_size_bits(unsigned int blocksize)
1670 {
1671         return ilog2(blocksize);
1672 }
1673
1674 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1675 {
1676         BUG_ON(!PageLocked(page));
1677
1678         if (!page_has_buffers(page))
1679                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1680                                      b_state);
1681         return page_buffers(page);
1682 }
1683
1684 /*
1685  * NOTE! All mapped/uptodate combinations are valid:
1686  *
1687  *      Mapped  Uptodate        Meaning
1688  *
1689  *      No      No              "unknown" - must do get_block()
1690  *      No      Yes             "hole" - zero-filled
1691  *      Yes     No              "allocated" - allocated on disk, not read in
1692  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1693  *
1694  * "Dirty" is valid only with the last case (mapped+uptodate).
1695  */
1696
1697 /*
1698  * While block_write_full_page is writing back the dirty buffers under
1699  * the page lock, whoever dirtied the buffers may decide to clean them
1700  * again at any time.  We handle that by only looking at the buffer
1701  * state inside lock_buffer().
1702  *
1703  * If block_write_full_page() is called for regular writeback
1704  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1705  * locked buffer.   This only can happen if someone has written the buffer
1706  * directly, with submit_bh().  At the address_space level PageWriteback
1707  * prevents this contention from occurring.
1708  *
1709  * If block_write_full_page() is called with wbc->sync_mode ==
1710  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1711  * causes the writes to be flagged as synchronous writes.
1712  */
1713 int __block_write_full_page(struct inode *inode, struct page *page,
1714                         get_block_t *get_block, struct writeback_control *wbc,
1715                         bh_end_io_t *handler)
1716 {
1717         int err;
1718         sector_t block;
1719         sector_t last_block;
1720         struct buffer_head *bh, *head;
1721         unsigned int blocksize, bbits;
1722         int nr_underway = 0;
1723         int write_flags = wbc_to_write_flags(wbc);
1724
1725         head = create_page_buffers(page, inode,
1726                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1727
1728         /*
1729          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1730          * here, and the (potentially unmapped) buffers may become dirty at
1731          * any time.  If a buffer becomes dirty here after we've inspected it
1732          * then we just miss that fact, and the page stays dirty.
1733          *
1734          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1735          * handle that here by just cleaning them.
1736          */
1737
1738         bh = head;
1739         blocksize = bh->b_size;
1740         bbits = block_size_bits(blocksize);
1741
1742         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1743         last_block = (i_size_read(inode) - 1) >> bbits;
1744
1745         /*
1746          * Get all the dirty buffers mapped to disk addresses and
1747          * handle any aliases from the underlying blockdev's mapping.
1748          */
1749         do {
1750                 if (block > last_block) {
1751                         /*
1752                          * mapped buffers outside i_size will occur, because
1753                          * this page can be outside i_size when there is a
1754                          * truncate in progress.
1755                          */
1756                         /*
1757                          * The buffer was zeroed by block_write_full_page()
1758                          */
1759                         clear_buffer_dirty(bh);
1760                         set_buffer_uptodate(bh);
1761                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1762                            buffer_dirty(bh)) {
1763                         WARN_ON(bh->b_size != blocksize);
1764                         err = get_block(inode, block, bh, 1);
1765                         if (err)
1766                                 goto recover;
1767                         clear_buffer_delay(bh);
1768                         if (buffer_new(bh)) {
1769                                 /* blockdev mappings never come here */
1770                                 clear_buffer_new(bh);
1771                                 clean_bdev_bh_alias(bh);
1772                         }
1773                 }
1774                 bh = bh->b_this_page;
1775                 block++;
1776         } while (bh != head);
1777
1778         do {
1779                 if (!buffer_mapped(bh))
1780                         continue;
1781                 /*
1782                  * If it's a fully non-blocking write attempt and we cannot
1783                  * lock the buffer then redirty the page.  Note that this can
1784                  * potentially cause a busy-wait loop from writeback threads
1785                  * and kswapd activity, but those code paths have their own
1786                  * higher-level throttling.
1787                  */
1788                 if (wbc->sync_mode != WB_SYNC_NONE) {
1789                         lock_buffer(bh);
1790                 } else if (!trylock_buffer(bh)) {
1791                         redirty_page_for_writepage(wbc, page);
1792                         continue;
1793                 }
1794                 if (test_clear_buffer_dirty(bh)) {
1795                         mark_buffer_async_write_endio(bh, handler);
1796                 } else {
1797                         unlock_buffer(bh);
1798                 }
1799         } while ((bh = bh->b_this_page) != head);
1800
1801         /*
1802          * The page and its buffers are protected by PageWriteback(), so we can
1803          * drop the bh refcounts early.
1804          */
1805         BUG_ON(PageWriteback(page));
1806         set_page_writeback(page);
1807
1808         do {
1809                 struct buffer_head *next = bh->b_this_page;
1810                 if (buffer_async_write(bh)) {
1811                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1812                                         inode->i_write_hint, wbc);
1813                         nr_underway++;
1814                 }
1815                 bh = next;
1816         } while (bh != head);
1817         unlock_page(page);
1818
1819         err = 0;
1820 done:
1821         if (nr_underway == 0) {
1822                 /*
1823                  * The page was marked dirty, but the buffers were
1824                  * clean.  Someone wrote them back by hand with
1825                  * ll_rw_block/submit_bh.  A rare case.
1826                  */
1827                 end_page_writeback(page);
1828
1829                 /*
1830                  * The page and buffer_heads can be released at any time from
1831                  * here on.
1832                  */
1833         }
1834         return err;
1835
1836 recover:
1837         /*
1838          * ENOSPC, or some other error.  We may already have added some
1839          * blocks to the file, so we need to write these out to avoid
1840          * exposing stale data.
1841          * The page is currently locked and not marked for writeback
1842          */
1843         bh = head;
1844         /* Recovery: lock and submit the mapped buffers */
1845         do {
1846                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1847                     !buffer_delay(bh)) {
1848                         lock_buffer(bh);
1849                         mark_buffer_async_write_endio(bh, handler);
1850                 } else {
1851                         /*
1852                          * The buffer may have been set dirty during
1853                          * attachment to a dirty page.
1854                          */
1855                         clear_buffer_dirty(bh);
1856                 }
1857         } while ((bh = bh->b_this_page) != head);
1858         SetPageError(page);
1859         BUG_ON(PageWriteback(page));
1860         mapping_set_error(page->mapping, err);
1861         set_page_writeback(page);
1862         do {
1863                 struct buffer_head *next = bh->b_this_page;
1864                 if (buffer_async_write(bh)) {
1865                         clear_buffer_dirty(bh);
1866                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1867                                         inode->i_write_hint, wbc);
1868                         nr_underway++;
1869                 }
1870                 bh = next;
1871         } while (bh != head);
1872         unlock_page(page);
1873         goto done;
1874 }
1875 EXPORT_SYMBOL(__block_write_full_page);
1876
1877 /*
1878  * If a page has any new buffers, zero them out here, and mark them uptodate
1879  * and dirty so they'll be written out (in order to prevent uninitialised
1880  * block data from leaking). And clear the new bit.
1881  */
1882 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1883 {
1884         unsigned int block_start, block_end;
1885         struct buffer_head *head, *bh;
1886
1887         BUG_ON(!PageLocked(page));
1888         if (!page_has_buffers(page))
1889                 return;
1890
1891         bh = head = page_buffers(page);
1892         block_start = 0;
1893         do {
1894                 block_end = block_start + bh->b_size;
1895
1896                 if (buffer_new(bh)) {
1897                         if (block_end > from && block_start < to) {
1898                                 if (!PageUptodate(page)) {
1899                                         unsigned start, size;
1900
1901                                         start = max(from, block_start);
1902                                         size = min(to, block_end) - start;
1903
1904                                         zero_user(page, start, size);
1905                                         set_buffer_uptodate(bh);
1906                                 }
1907
1908                                 clear_buffer_new(bh);
1909                                 mark_buffer_dirty(bh);
1910                         }
1911                 }
1912
1913                 block_start = block_end;
1914                 bh = bh->b_this_page;
1915         } while (bh != head);
1916 }
1917 EXPORT_SYMBOL(page_zero_new_buffers);
1918
1919 static void
1920 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1921                 const struct iomap *iomap)
1922 {
1923         loff_t offset = block << inode->i_blkbits;
1924
1925         bh->b_bdev = iomap->bdev;
1926
1927         /*
1928          * Block points to offset in file we need to map, iomap contains
1929          * the offset at which the map starts. If the map ends before the
1930          * current block, then do not map the buffer and let the caller
1931          * handle it.
1932          */
1933         BUG_ON(offset >= iomap->offset + iomap->length);
1934
1935         switch (iomap->type) {
1936         case IOMAP_HOLE:
1937                 /*
1938                  * If the buffer is not up to date or beyond the current EOF,
1939                  * we need to mark it as new to ensure sub-block zeroing is
1940                  * executed if necessary.
1941                  */
1942                 if (!buffer_uptodate(bh) ||
1943                     (offset >= i_size_read(inode)))
1944                         set_buffer_new(bh);
1945                 break;
1946         case IOMAP_DELALLOC:
1947                 if (!buffer_uptodate(bh) ||
1948                     (offset >= i_size_read(inode)))
1949                         set_buffer_new(bh);
1950                 set_buffer_uptodate(bh);
1951                 set_buffer_mapped(bh);
1952                 set_buffer_delay(bh);
1953                 break;
1954         case IOMAP_UNWRITTEN:
1955                 /*
1956                  * For unwritten regions, we always need to ensure that regions
1957                  * in the block we are not writing to are zeroed. Mark the
1958                  * buffer as new to ensure this.
1959                  */
1960                 set_buffer_new(bh);
1961                 set_buffer_unwritten(bh);
1962                 fallthrough;
1963         case IOMAP_MAPPED:
1964                 if ((iomap->flags & IOMAP_F_NEW) ||
1965                     offset >= i_size_read(inode))
1966                         set_buffer_new(bh);
1967                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1968                                 inode->i_blkbits;
1969                 set_buffer_mapped(bh);
1970                 break;
1971         }
1972 }
1973
1974 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
1975                 get_block_t *get_block, const struct iomap *iomap)
1976 {
1977         unsigned from = pos & (PAGE_SIZE - 1);
1978         unsigned to = from + len;
1979         struct inode *inode = folio->mapping->host;
1980         unsigned block_start, block_end;
1981         sector_t block;
1982         int err = 0;
1983         unsigned blocksize, bbits;
1984         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1985
1986         BUG_ON(!folio_test_locked(folio));
1987         BUG_ON(from > PAGE_SIZE);
1988         BUG_ON(to > PAGE_SIZE);
1989         BUG_ON(from > to);
1990
1991         head = create_page_buffers(&folio->page, inode, 0);
1992         blocksize = head->b_size;
1993         bbits = block_size_bits(blocksize);
1994
1995         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1996
1997         for(bh = head, block_start = 0; bh != head || !block_start;
1998             block++, block_start=block_end, bh = bh->b_this_page) {
1999                 block_end = block_start + blocksize;
2000                 if (block_end <= from || block_start >= to) {
2001                         if (folio_test_uptodate(folio)) {
2002                                 if (!buffer_uptodate(bh))
2003                                         set_buffer_uptodate(bh);
2004                         }
2005                         continue;
2006                 }
2007                 if (buffer_new(bh))
2008                         clear_buffer_new(bh);
2009                 if (!buffer_mapped(bh)) {
2010                         WARN_ON(bh->b_size != blocksize);
2011                         if (get_block) {
2012                                 err = get_block(inode, block, bh, 1);
2013                                 if (err)
2014                                         break;
2015                         } else {
2016                                 iomap_to_bh(inode, block, bh, iomap);
2017                         }
2018
2019                         if (buffer_new(bh)) {
2020                                 clean_bdev_bh_alias(bh);
2021                                 if (folio_test_uptodate(folio)) {
2022                                         clear_buffer_new(bh);
2023                                         set_buffer_uptodate(bh);
2024                                         mark_buffer_dirty(bh);
2025                                         continue;
2026                                 }
2027                                 if (block_end > to || block_start < from)
2028                                         folio_zero_segments(folio,
2029                                                 to, block_end,
2030                                                 block_start, from);
2031                                 continue;
2032                         }
2033                 }
2034                 if (folio_test_uptodate(folio)) {
2035                         if (!buffer_uptodate(bh))
2036                                 set_buffer_uptodate(bh);
2037                         continue; 
2038                 }
2039                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2040                     !buffer_unwritten(bh) &&
2041                      (block_start < from || block_end > to)) {
2042                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2043                         *wait_bh++=bh;
2044                 }
2045         }
2046         /*
2047          * If we issued read requests - let them complete.
2048          */
2049         while(wait_bh > wait) {
2050                 wait_on_buffer(*--wait_bh);
2051                 if (!buffer_uptodate(*wait_bh))
2052                         err = -EIO;
2053         }
2054         if (unlikely(err))
2055                 page_zero_new_buffers(&folio->page, from, to);
2056         return err;
2057 }
2058
2059 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2060                 get_block_t *get_block)
2061 {
2062         return __block_write_begin_int(page_folio(page), pos, len, get_block,
2063                                        NULL);
2064 }
2065 EXPORT_SYMBOL(__block_write_begin);
2066
2067 static int __block_commit_write(struct inode *inode, struct page *page,
2068                 unsigned from, unsigned to)
2069 {
2070         unsigned block_start, block_end;
2071         int partial = 0;
2072         unsigned blocksize;
2073         struct buffer_head *bh, *head;
2074
2075         bh = head = page_buffers(page);
2076         blocksize = bh->b_size;
2077
2078         block_start = 0;
2079         do {
2080                 block_end = block_start + blocksize;
2081                 if (block_end <= from || block_start >= to) {
2082                         if (!buffer_uptodate(bh))
2083                                 partial = 1;
2084                 } else {
2085                         set_buffer_uptodate(bh);
2086                         mark_buffer_dirty(bh);
2087                 }
2088                 if (buffer_new(bh))
2089                         clear_buffer_new(bh);
2090
2091                 block_start = block_end;
2092                 bh = bh->b_this_page;
2093         } while (bh != head);
2094
2095         /*
2096          * If this is a partial write which happened to make all buffers
2097          * uptodate then we can optimize away a bogus readpage() for
2098          * the next read(). Here we 'discover' whether the page went
2099          * uptodate as a result of this (potentially partial) write.
2100          */
2101         if (!partial)
2102                 SetPageUptodate(page);
2103         return 0;
2104 }
2105
2106 /*
2107  * block_write_begin takes care of the basic task of block allocation and
2108  * bringing partial write blocks uptodate first.
2109  *
2110  * The filesystem needs to handle block truncation upon failure.
2111  */
2112 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2113                 unsigned flags, struct page **pagep, get_block_t *get_block)
2114 {
2115         pgoff_t index = pos >> PAGE_SHIFT;
2116         struct page *page;
2117         int status;
2118
2119         page = grab_cache_page_write_begin(mapping, index, flags);
2120         if (!page)
2121                 return -ENOMEM;
2122
2123         status = __block_write_begin(page, pos, len, get_block);
2124         if (unlikely(status)) {
2125                 unlock_page(page);
2126                 put_page(page);
2127                 page = NULL;
2128         }
2129
2130         *pagep = page;
2131         return status;
2132 }
2133 EXPORT_SYMBOL(block_write_begin);
2134
2135 int block_write_end(struct file *file, struct address_space *mapping,
2136                         loff_t pos, unsigned len, unsigned copied,
2137                         struct page *page, void *fsdata)
2138 {
2139         struct inode *inode = mapping->host;
2140         unsigned start;
2141
2142         start = pos & (PAGE_SIZE - 1);
2143
2144         if (unlikely(copied < len)) {
2145                 /*
2146                  * The buffers that were written will now be uptodate, so we
2147                  * don't have to worry about a readpage reading them and
2148                  * overwriting a partial write. However if we have encountered
2149                  * a short write and only partially written into a buffer, it
2150                  * will not be marked uptodate, so a readpage might come in and
2151                  * destroy our partial write.
2152                  *
2153                  * Do the simplest thing, and just treat any short write to a
2154                  * non uptodate page as a zero-length write, and force the
2155                  * caller to redo the whole thing.
2156                  */
2157                 if (!PageUptodate(page))
2158                         copied = 0;
2159
2160                 page_zero_new_buffers(page, start+copied, start+len);
2161         }
2162         flush_dcache_page(page);
2163
2164         /* This could be a short (even 0-length) commit */
2165         __block_commit_write(inode, page, start, start+copied);
2166
2167         return copied;
2168 }
2169 EXPORT_SYMBOL(block_write_end);
2170
2171 int generic_write_end(struct file *file, struct address_space *mapping,
2172                         loff_t pos, unsigned len, unsigned copied,
2173                         struct page *page, void *fsdata)
2174 {
2175         struct inode *inode = mapping->host;
2176         loff_t old_size = inode->i_size;
2177         bool i_size_changed = false;
2178
2179         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2180
2181         /*
2182          * No need to use i_size_read() here, the i_size cannot change under us
2183          * because we hold i_rwsem.
2184          *
2185          * But it's important to update i_size while still holding page lock:
2186          * page writeout could otherwise come in and zero beyond i_size.
2187          */
2188         if (pos + copied > inode->i_size) {
2189                 i_size_write(inode, pos + copied);
2190                 i_size_changed = true;
2191         }
2192
2193         unlock_page(page);
2194         put_page(page);
2195
2196         if (old_size < pos)
2197                 pagecache_isize_extended(inode, old_size, pos);
2198         /*
2199          * Don't mark the inode dirty under page lock. First, it unnecessarily
2200          * makes the holding time of page lock longer. Second, it forces lock
2201          * ordering of page lock and transaction start for journaling
2202          * filesystems.
2203          */
2204         if (i_size_changed)
2205                 mark_inode_dirty(inode);
2206         return copied;
2207 }
2208 EXPORT_SYMBOL(generic_write_end);
2209
2210 /*
2211  * block_is_partially_uptodate checks whether buffers within a page are
2212  * uptodate or not.
2213  *
2214  * Returns true if all buffers which correspond to a file portion
2215  * we want to read are uptodate.
2216  */
2217 int block_is_partially_uptodate(struct page *page, unsigned long from,
2218                                         unsigned long count)
2219 {
2220         unsigned block_start, block_end, blocksize;
2221         unsigned to;
2222         struct buffer_head *bh, *head;
2223         int ret = 1;
2224
2225         if (!page_has_buffers(page))
2226                 return 0;
2227
2228         head = page_buffers(page);
2229         blocksize = head->b_size;
2230         to = min_t(unsigned, PAGE_SIZE - from, count);
2231         to = from + to;
2232         if (from < blocksize && to > PAGE_SIZE - blocksize)
2233                 return 0;
2234
2235         bh = head;
2236         block_start = 0;
2237         do {
2238                 block_end = block_start + blocksize;
2239                 if (block_end > from && block_start < to) {
2240                         if (!buffer_uptodate(bh)) {
2241                                 ret = 0;
2242                                 break;
2243                         }
2244                         if (block_end >= to)
2245                                 break;
2246                 }
2247                 block_start = block_end;
2248                 bh = bh->b_this_page;
2249         } while (bh != head);
2250
2251         return ret;
2252 }
2253 EXPORT_SYMBOL(block_is_partially_uptodate);
2254
2255 /*
2256  * Generic "read page" function for block devices that have the normal
2257  * get_block functionality. This is most of the block device filesystems.
2258  * Reads the page asynchronously --- the unlock_buffer() and
2259  * set/clear_buffer_uptodate() functions propagate buffer state into the
2260  * page struct once IO has completed.
2261  */
2262 int block_read_full_page(struct page *page, get_block_t *get_block)
2263 {
2264         struct inode *inode = page->mapping->host;
2265         sector_t iblock, lblock;
2266         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2267         unsigned int blocksize, bbits;
2268         int nr, i;
2269         int fully_mapped = 1;
2270
2271         head = create_page_buffers(page, inode, 0);
2272         blocksize = head->b_size;
2273         bbits = block_size_bits(blocksize);
2274
2275         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2276         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2277         bh = head;
2278         nr = 0;
2279         i = 0;
2280
2281         do {
2282                 if (buffer_uptodate(bh))
2283                         continue;
2284
2285                 if (!buffer_mapped(bh)) {
2286                         int err = 0;
2287
2288                         fully_mapped = 0;
2289                         if (iblock < lblock) {
2290                                 WARN_ON(bh->b_size != blocksize);
2291                                 err = get_block(inode, iblock, bh, 0);
2292                                 if (err)
2293                                         SetPageError(page);
2294                         }
2295                         if (!buffer_mapped(bh)) {
2296                                 zero_user(page, i * blocksize, blocksize);
2297                                 if (!err)
2298                                         set_buffer_uptodate(bh);
2299                                 continue;
2300                         }
2301                         /*
2302                          * get_block() might have updated the buffer
2303                          * synchronously
2304                          */
2305                         if (buffer_uptodate(bh))
2306                                 continue;
2307                 }
2308                 arr[nr++] = bh;
2309         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2310
2311         if (fully_mapped)
2312                 SetPageMappedToDisk(page);
2313
2314         if (!nr) {
2315                 /*
2316                  * All buffers are uptodate - we can set the page uptodate
2317                  * as well. But not if get_block() returned an error.
2318                  */
2319                 if (!PageError(page))
2320                         SetPageUptodate(page);
2321                 unlock_page(page);
2322                 return 0;
2323         }
2324
2325         /* Stage two: lock the buffers */
2326         for (i = 0; i < nr; i++) {
2327                 bh = arr[i];
2328                 lock_buffer(bh);
2329                 mark_buffer_async_read(bh);
2330         }
2331
2332         /*
2333          * Stage 3: start the IO.  Check for uptodateness
2334          * inside the buffer lock in case another process reading
2335          * the underlying blockdev brought it uptodate (the sct fix).
2336          */
2337         for (i = 0; i < nr; i++) {
2338                 bh = arr[i];
2339                 if (buffer_uptodate(bh))
2340                         end_buffer_async_read(bh, 1);
2341                 else
2342                         submit_bh(REQ_OP_READ, 0, bh);
2343         }
2344         return 0;
2345 }
2346 EXPORT_SYMBOL(block_read_full_page);
2347
2348 /* utility function for filesystems that need to do work on expanding
2349  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2350  * deal with the hole.  
2351  */
2352 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2353 {
2354         struct address_space *mapping = inode->i_mapping;
2355         struct page *page;
2356         void *fsdata;
2357         int err;
2358
2359         err = inode_newsize_ok(inode, size);
2360         if (err)
2361                 goto out;
2362
2363         err = pagecache_write_begin(NULL, mapping, size, 0,
2364                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2365         if (err)
2366                 goto out;
2367
2368         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2369         BUG_ON(err > 0);
2370
2371 out:
2372         return err;
2373 }
2374 EXPORT_SYMBOL(generic_cont_expand_simple);
2375
2376 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2377                             loff_t pos, loff_t *bytes)
2378 {
2379         struct inode *inode = mapping->host;
2380         unsigned int blocksize = i_blocksize(inode);
2381         struct page *page;
2382         void *fsdata;
2383         pgoff_t index, curidx;
2384         loff_t curpos;
2385         unsigned zerofrom, offset, len;
2386         int err = 0;
2387
2388         index = pos >> PAGE_SHIFT;
2389         offset = pos & ~PAGE_MASK;
2390
2391         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2392                 zerofrom = curpos & ~PAGE_MASK;
2393                 if (zerofrom & (blocksize-1)) {
2394                         *bytes |= (blocksize-1);
2395                         (*bytes)++;
2396                 }
2397                 len = PAGE_SIZE - zerofrom;
2398
2399                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2400                                             &page, &fsdata);
2401                 if (err)
2402                         goto out;
2403                 zero_user(page, zerofrom, len);
2404                 err = pagecache_write_end(file, mapping, curpos, len, len,
2405                                                 page, fsdata);
2406                 if (err < 0)
2407                         goto out;
2408                 BUG_ON(err != len);
2409                 err = 0;
2410
2411                 balance_dirty_pages_ratelimited(mapping);
2412
2413                 if (fatal_signal_pending(current)) {
2414                         err = -EINTR;
2415                         goto out;
2416                 }
2417         }
2418
2419         /* page covers the boundary, find the boundary offset */
2420         if (index == curidx) {
2421                 zerofrom = curpos & ~PAGE_MASK;
2422                 /* if we will expand the thing last block will be filled */
2423                 if (offset <= zerofrom) {
2424                         goto out;
2425                 }
2426                 if (zerofrom & (blocksize-1)) {
2427                         *bytes |= (blocksize-1);
2428                         (*bytes)++;
2429                 }
2430                 len = offset - zerofrom;
2431
2432                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2433                                             &page, &fsdata);
2434                 if (err)
2435                         goto out;
2436                 zero_user(page, zerofrom, len);
2437                 err = pagecache_write_end(file, mapping, curpos, len, len,
2438                                                 page, fsdata);
2439                 if (err < 0)
2440                         goto out;
2441                 BUG_ON(err != len);
2442                 err = 0;
2443         }
2444 out:
2445         return err;
2446 }
2447
2448 /*
2449  * For moronic filesystems that do not allow holes in file.
2450  * We may have to extend the file.
2451  */
2452 int cont_write_begin(struct file *file, struct address_space *mapping,
2453                         loff_t pos, unsigned len, unsigned flags,
2454                         struct page **pagep, void **fsdata,
2455                         get_block_t *get_block, loff_t *bytes)
2456 {
2457         struct inode *inode = mapping->host;
2458         unsigned int blocksize = i_blocksize(inode);
2459         unsigned int zerofrom;
2460         int err;
2461
2462         err = cont_expand_zero(file, mapping, pos, bytes);
2463         if (err)
2464                 return err;
2465
2466         zerofrom = *bytes & ~PAGE_MASK;
2467         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2468                 *bytes |= (blocksize-1);
2469                 (*bytes)++;
2470         }
2471
2472         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2473 }
2474 EXPORT_SYMBOL(cont_write_begin);
2475
2476 int block_commit_write(struct page *page, unsigned from, unsigned to)
2477 {
2478         struct inode *inode = page->mapping->host;
2479         __block_commit_write(inode,page,from,to);
2480         return 0;
2481 }
2482 EXPORT_SYMBOL(block_commit_write);
2483
2484 /*
2485  * block_page_mkwrite() is not allowed to change the file size as it gets
2486  * called from a page fault handler when a page is first dirtied. Hence we must
2487  * be careful to check for EOF conditions here. We set the page up correctly
2488  * for a written page which means we get ENOSPC checking when writing into
2489  * holes and correct delalloc and unwritten extent mapping on filesystems that
2490  * support these features.
2491  *
2492  * We are not allowed to take the i_mutex here so we have to play games to
2493  * protect against truncate races as the page could now be beyond EOF.  Because
2494  * truncate writes the inode size before removing pages, once we have the
2495  * page lock we can determine safely if the page is beyond EOF. If it is not
2496  * beyond EOF, then the page is guaranteed safe against truncation until we
2497  * unlock the page.
2498  *
2499  * Direct callers of this function should protect against filesystem freezing
2500  * using sb_start_pagefault() - sb_end_pagefault() functions.
2501  */
2502 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2503                          get_block_t get_block)
2504 {
2505         struct page *page = vmf->page;
2506         struct inode *inode = file_inode(vma->vm_file);
2507         unsigned long end;
2508         loff_t size;
2509         int ret;
2510
2511         lock_page(page);
2512         size = i_size_read(inode);
2513         if ((page->mapping != inode->i_mapping) ||
2514             (page_offset(page) > size)) {
2515                 /* We overload EFAULT to mean page got truncated */
2516                 ret = -EFAULT;
2517                 goto out_unlock;
2518         }
2519
2520         /* page is wholly or partially inside EOF */
2521         if (((page->index + 1) << PAGE_SHIFT) > size)
2522                 end = size & ~PAGE_MASK;
2523         else
2524                 end = PAGE_SIZE;
2525
2526         ret = __block_write_begin(page, 0, end, get_block);
2527         if (!ret)
2528                 ret = block_commit_write(page, 0, end);
2529
2530         if (unlikely(ret < 0))
2531                 goto out_unlock;
2532         set_page_dirty(page);
2533         wait_for_stable_page(page);
2534         return 0;
2535 out_unlock:
2536         unlock_page(page);
2537         return ret;
2538 }
2539 EXPORT_SYMBOL(block_page_mkwrite);
2540
2541 /*
2542  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2543  * immediately, while under the page lock.  So it needs a special end_io
2544  * handler which does not touch the bh after unlocking it.
2545  */
2546 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2547 {
2548         __end_buffer_read_notouch(bh, uptodate);
2549 }
2550
2551 /*
2552  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2553  * the page (converting it to circular linked list and taking care of page
2554  * dirty races).
2555  */
2556 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2557 {
2558         struct buffer_head *bh;
2559
2560         BUG_ON(!PageLocked(page));
2561
2562         spin_lock(&page->mapping->private_lock);
2563         bh = head;
2564         do {
2565                 if (PageDirty(page))
2566                         set_buffer_dirty(bh);
2567                 if (!bh->b_this_page)
2568                         bh->b_this_page = head;
2569                 bh = bh->b_this_page;
2570         } while (bh != head);
2571         attach_page_private(page, head);
2572         spin_unlock(&page->mapping->private_lock);
2573 }
2574
2575 /*
2576  * On entry, the page is fully not uptodate.
2577  * On exit the page is fully uptodate in the areas outside (from,to)
2578  * The filesystem needs to handle block truncation upon failure.
2579  */
2580 int nobh_write_begin(struct address_space *mapping,
2581                         loff_t pos, unsigned len, unsigned flags,
2582                         struct page **pagep, void **fsdata,
2583                         get_block_t *get_block)
2584 {
2585         struct inode *inode = mapping->host;
2586         const unsigned blkbits = inode->i_blkbits;
2587         const unsigned blocksize = 1 << blkbits;
2588         struct buffer_head *head, *bh;
2589         struct page *page;
2590         pgoff_t index;
2591         unsigned from, to;
2592         unsigned block_in_page;
2593         unsigned block_start, block_end;
2594         sector_t block_in_file;
2595         int nr_reads = 0;
2596         int ret = 0;
2597         int is_mapped_to_disk = 1;
2598
2599         index = pos >> PAGE_SHIFT;
2600         from = pos & (PAGE_SIZE - 1);
2601         to = from + len;
2602
2603         page = grab_cache_page_write_begin(mapping, index, flags);
2604         if (!page)
2605                 return -ENOMEM;
2606         *pagep = page;
2607         *fsdata = NULL;
2608
2609         if (page_has_buffers(page)) {
2610                 ret = __block_write_begin(page, pos, len, get_block);
2611                 if (unlikely(ret))
2612                         goto out_release;
2613                 return ret;
2614         }
2615
2616         if (PageMappedToDisk(page))
2617                 return 0;
2618
2619         /*
2620          * Allocate buffers so that we can keep track of state, and potentially
2621          * attach them to the page if an error occurs. In the common case of
2622          * no error, they will just be freed again without ever being attached
2623          * to the page (which is all OK, because we're under the page lock).
2624          *
2625          * Be careful: the buffer linked list is a NULL terminated one, rather
2626          * than the circular one we're used to.
2627          */
2628         head = alloc_page_buffers(page, blocksize, false);
2629         if (!head) {
2630                 ret = -ENOMEM;
2631                 goto out_release;
2632         }
2633
2634         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2635
2636         /*
2637          * We loop across all blocks in the page, whether or not they are
2638          * part of the affected region.  This is so we can discover if the
2639          * page is fully mapped-to-disk.
2640          */
2641         for (block_start = 0, block_in_page = 0, bh = head;
2642                   block_start < PAGE_SIZE;
2643                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2644                 int create;
2645
2646                 block_end = block_start + blocksize;
2647                 bh->b_state = 0;
2648                 create = 1;
2649                 if (block_start >= to)
2650                         create = 0;
2651                 ret = get_block(inode, block_in_file + block_in_page,
2652                                         bh, create);
2653                 if (ret)
2654                         goto failed;
2655                 if (!buffer_mapped(bh))
2656                         is_mapped_to_disk = 0;
2657                 if (buffer_new(bh))
2658                         clean_bdev_bh_alias(bh);
2659                 if (PageUptodate(page)) {
2660                         set_buffer_uptodate(bh);
2661                         continue;
2662                 }
2663                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2664                         zero_user_segments(page, block_start, from,
2665                                                         to, block_end);
2666                         continue;
2667                 }
2668                 if (buffer_uptodate(bh))
2669                         continue;       /* reiserfs does this */
2670                 if (block_start < from || block_end > to) {
2671                         lock_buffer(bh);
2672                         bh->b_end_io = end_buffer_read_nobh;
2673                         submit_bh(REQ_OP_READ, 0, bh);
2674                         nr_reads++;
2675                 }
2676         }
2677
2678         if (nr_reads) {
2679                 /*
2680                  * The page is locked, so these buffers are protected from
2681                  * any VM or truncate activity.  Hence we don't need to care
2682                  * for the buffer_head refcounts.
2683                  */
2684                 for (bh = head; bh; bh = bh->b_this_page) {
2685                         wait_on_buffer(bh);
2686                         if (!buffer_uptodate(bh))
2687                                 ret = -EIO;
2688                 }
2689                 if (ret)
2690                         goto failed;
2691         }
2692
2693         if (is_mapped_to_disk)
2694                 SetPageMappedToDisk(page);
2695
2696         *fsdata = head; /* to be released by nobh_write_end */
2697
2698         return 0;
2699
2700 failed:
2701         BUG_ON(!ret);
2702         /*
2703          * Error recovery is a bit difficult. We need to zero out blocks that
2704          * were newly allocated, and dirty them to ensure they get written out.
2705          * Buffers need to be attached to the page at this point, otherwise
2706          * the handling of potential IO errors during writeout would be hard
2707          * (could try doing synchronous writeout, but what if that fails too?)
2708          */
2709         attach_nobh_buffers(page, head);
2710         page_zero_new_buffers(page, from, to);
2711
2712 out_release:
2713         unlock_page(page);
2714         put_page(page);
2715         *pagep = NULL;
2716
2717         return ret;
2718 }
2719 EXPORT_SYMBOL(nobh_write_begin);
2720
2721 int nobh_write_end(struct file *file, struct address_space *mapping,
2722                         loff_t pos, unsigned len, unsigned copied,
2723                         struct page *page, void *fsdata)
2724 {
2725         struct inode *inode = page->mapping->host;
2726         struct buffer_head *head = fsdata;
2727         struct buffer_head *bh;
2728         BUG_ON(fsdata != NULL && page_has_buffers(page));
2729
2730         if (unlikely(copied < len) && head)
2731                 attach_nobh_buffers(page, head);
2732         if (page_has_buffers(page))
2733                 return generic_write_end(file, mapping, pos, len,
2734                                         copied, page, fsdata);
2735
2736         SetPageUptodate(page);
2737         set_page_dirty(page);
2738         if (pos+copied > inode->i_size) {
2739                 i_size_write(inode, pos+copied);
2740                 mark_inode_dirty(inode);
2741         }
2742
2743         unlock_page(page);
2744         put_page(page);
2745
2746         while (head) {
2747                 bh = head;
2748                 head = head->b_this_page;
2749                 free_buffer_head(bh);
2750         }
2751
2752         return copied;
2753 }
2754 EXPORT_SYMBOL(nobh_write_end);
2755
2756 /*
2757  * nobh_writepage() - based on block_full_write_page() except
2758  * that it tries to operate without attaching bufferheads to
2759  * the page.
2760  */
2761 int nobh_writepage(struct page *page, get_block_t *get_block,
2762                         struct writeback_control *wbc)
2763 {
2764         struct inode * const inode = page->mapping->host;
2765         loff_t i_size = i_size_read(inode);
2766         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2767         unsigned offset;
2768         int ret;
2769
2770         /* Is the page fully inside i_size? */
2771         if (page->index < end_index)
2772                 goto out;
2773
2774         /* Is the page fully outside i_size? (truncate in progress) */
2775         offset = i_size & (PAGE_SIZE-1);
2776         if (page->index >= end_index+1 || !offset) {
2777                 unlock_page(page);
2778                 return 0; /* don't care */
2779         }
2780
2781         /*
2782          * The page straddles i_size.  It must be zeroed out on each and every
2783          * writepage invocation because it may be mmapped.  "A file is mapped
2784          * in multiples of the page size.  For a file that is not a multiple of
2785          * the  page size, the remaining memory is zeroed when mapped, and
2786          * writes to that region are not written out to the file."
2787          */
2788         zero_user_segment(page, offset, PAGE_SIZE);
2789 out:
2790         ret = mpage_writepage(page, get_block, wbc);
2791         if (ret == -EAGAIN)
2792                 ret = __block_write_full_page(inode, page, get_block, wbc,
2793                                               end_buffer_async_write);
2794         return ret;
2795 }
2796 EXPORT_SYMBOL(nobh_writepage);
2797
2798 int nobh_truncate_page(struct address_space *mapping,
2799                         loff_t from, get_block_t *get_block)
2800 {
2801         pgoff_t index = from >> PAGE_SHIFT;
2802         unsigned offset = from & (PAGE_SIZE-1);
2803         unsigned blocksize;
2804         sector_t iblock;
2805         unsigned length, pos;
2806         struct inode *inode = mapping->host;
2807         struct page *page;
2808         struct buffer_head map_bh;
2809         int err;
2810
2811         blocksize = i_blocksize(inode);
2812         length = offset & (blocksize - 1);
2813
2814         /* Block boundary? Nothing to do */
2815         if (!length)
2816                 return 0;
2817
2818         length = blocksize - length;
2819         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2820
2821         page = grab_cache_page(mapping, index);
2822         err = -ENOMEM;
2823         if (!page)
2824                 goto out;
2825
2826         if (page_has_buffers(page)) {
2827 has_buffers:
2828                 unlock_page(page);
2829                 put_page(page);
2830                 return block_truncate_page(mapping, from, get_block);
2831         }
2832
2833         /* Find the buffer that contains "offset" */
2834         pos = blocksize;
2835         while (offset >= pos) {
2836                 iblock++;
2837                 pos += blocksize;
2838         }
2839
2840         map_bh.b_size = blocksize;
2841         map_bh.b_state = 0;
2842         err = get_block(inode, iblock, &map_bh, 0);
2843         if (err)
2844                 goto unlock;
2845         /* unmapped? It's a hole - nothing to do */
2846         if (!buffer_mapped(&map_bh))
2847                 goto unlock;
2848
2849         /* Ok, it's mapped. Make sure it's up-to-date */
2850         if (!PageUptodate(page)) {
2851                 err = mapping->a_ops->readpage(NULL, page);
2852                 if (err) {
2853                         put_page(page);
2854                         goto out;
2855                 }
2856                 lock_page(page);
2857                 if (!PageUptodate(page)) {
2858                         err = -EIO;
2859                         goto unlock;
2860                 }
2861                 if (page_has_buffers(page))
2862                         goto has_buffers;
2863         }
2864         zero_user(page, offset, length);
2865         set_page_dirty(page);
2866         err = 0;
2867
2868 unlock:
2869         unlock_page(page);
2870         put_page(page);
2871 out:
2872         return err;
2873 }
2874 EXPORT_SYMBOL(nobh_truncate_page);
2875
2876 int block_truncate_page(struct address_space *mapping,
2877                         loff_t from, get_block_t *get_block)
2878 {
2879         pgoff_t index = from >> PAGE_SHIFT;
2880         unsigned offset = from & (PAGE_SIZE-1);
2881         unsigned blocksize;
2882         sector_t iblock;
2883         unsigned length, pos;
2884         struct inode *inode = mapping->host;
2885         struct page *page;
2886         struct buffer_head *bh;
2887         int err;
2888
2889         blocksize = i_blocksize(inode);
2890         length = offset & (blocksize - 1);
2891
2892         /* Block boundary? Nothing to do */
2893         if (!length)
2894                 return 0;
2895
2896         length = blocksize - length;
2897         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2898         
2899         page = grab_cache_page(mapping, index);
2900         err = -ENOMEM;
2901         if (!page)
2902                 goto out;
2903
2904         if (!page_has_buffers(page))
2905                 create_empty_buffers(page, blocksize, 0);
2906
2907         /* Find the buffer that contains "offset" */
2908         bh = page_buffers(page);
2909         pos = blocksize;
2910         while (offset >= pos) {
2911                 bh = bh->b_this_page;
2912                 iblock++;
2913                 pos += blocksize;
2914         }
2915
2916         err = 0;
2917         if (!buffer_mapped(bh)) {
2918                 WARN_ON(bh->b_size != blocksize);
2919                 err = get_block(inode, iblock, bh, 0);
2920                 if (err)
2921                         goto unlock;
2922                 /* unmapped? It's a hole - nothing to do */
2923                 if (!buffer_mapped(bh))
2924                         goto unlock;
2925         }
2926
2927         /* Ok, it's mapped. Make sure it's up-to-date */
2928         if (PageUptodate(page))
2929                 set_buffer_uptodate(bh);
2930
2931         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2932                 err = -EIO;
2933                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2934                 wait_on_buffer(bh);
2935                 /* Uhhuh. Read error. Complain and punt. */
2936                 if (!buffer_uptodate(bh))
2937                         goto unlock;
2938         }
2939
2940         zero_user(page, offset, length);
2941         mark_buffer_dirty(bh);
2942         err = 0;
2943
2944 unlock:
2945         unlock_page(page);
2946         put_page(page);
2947 out:
2948         return err;
2949 }
2950 EXPORT_SYMBOL(block_truncate_page);
2951
2952 /*
2953  * The generic ->writepage function for buffer-backed address_spaces
2954  */
2955 int block_write_full_page(struct page *page, get_block_t *get_block,
2956                         struct writeback_control *wbc)
2957 {
2958         struct inode * const inode = page->mapping->host;
2959         loff_t i_size = i_size_read(inode);
2960         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2961         unsigned offset;
2962
2963         /* Is the page fully inside i_size? */
2964         if (page->index < end_index)
2965                 return __block_write_full_page(inode, page, get_block, wbc,
2966                                                end_buffer_async_write);
2967
2968         /* Is the page fully outside i_size? (truncate in progress) */
2969         offset = i_size & (PAGE_SIZE-1);
2970         if (page->index >= end_index+1 || !offset) {
2971                 unlock_page(page);
2972                 return 0; /* don't care */
2973         }
2974
2975         /*
2976          * The page straddles i_size.  It must be zeroed out on each and every
2977          * writepage invocation because it may be mmapped.  "A file is mapped
2978          * in multiples of the page size.  For a file that is not a multiple of
2979          * the  page size, the remaining memory is zeroed when mapped, and
2980          * writes to that region are not written out to the file."
2981          */
2982         zero_user_segment(page, offset, PAGE_SIZE);
2983         return __block_write_full_page(inode, page, get_block, wbc,
2984                                                         end_buffer_async_write);
2985 }
2986 EXPORT_SYMBOL(block_write_full_page);
2987
2988 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2989                             get_block_t *get_block)
2990 {
2991         struct inode *inode = mapping->host;
2992         struct buffer_head tmp = {
2993                 .b_size = i_blocksize(inode),
2994         };
2995
2996         get_block(inode, block, &tmp, 0);
2997         return tmp.b_blocknr;
2998 }
2999 EXPORT_SYMBOL(generic_block_bmap);
3000
3001 static void end_bio_bh_io_sync(struct bio *bio)
3002 {
3003         struct buffer_head *bh = bio->bi_private;
3004
3005         if (unlikely(bio_flagged(bio, BIO_QUIET)))
3006                 set_bit(BH_Quiet, &bh->b_state);
3007
3008         bh->b_end_io(bh, !bio->bi_status);
3009         bio_put(bio);
3010 }
3011
3012 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3013                          enum rw_hint write_hint, struct writeback_control *wbc)
3014 {
3015         struct bio *bio;
3016
3017         BUG_ON(!buffer_locked(bh));
3018         BUG_ON(!buffer_mapped(bh));
3019         BUG_ON(!bh->b_end_io);
3020         BUG_ON(buffer_delay(bh));
3021         BUG_ON(buffer_unwritten(bh));
3022
3023         /*
3024          * Only clear out a write error when rewriting
3025          */
3026         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3027                 clear_buffer_write_io_error(bh);
3028
3029         if (buffer_meta(bh))
3030                 op_flags |= REQ_META;
3031         if (buffer_prio(bh))
3032                 op_flags |= REQ_PRIO;
3033
3034         bio = bio_alloc(bh->b_bdev, 1, op | op_flags, GFP_NOIO);
3035
3036         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3037
3038         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3039         bio->bi_write_hint = write_hint;
3040
3041         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3042         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3043
3044         bio->bi_end_io = end_bio_bh_io_sync;
3045         bio->bi_private = bh;
3046
3047         /* Take care of bh's that straddle the end of the device */
3048         guard_bio_eod(bio);
3049
3050         if (wbc) {
3051                 wbc_init_bio(wbc, bio);
3052                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3053         }
3054
3055         submit_bio(bio);
3056         return 0;
3057 }
3058
3059 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3060 {
3061         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3062 }
3063 EXPORT_SYMBOL(submit_bh);
3064
3065 /**
3066  * ll_rw_block: low-level access to block devices (DEPRECATED)
3067  * @op: whether to %READ or %WRITE
3068  * @op_flags: req_flag_bits
3069  * @nr: number of &struct buffer_heads in the array
3070  * @bhs: array of pointers to &struct buffer_head
3071  *
3072  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3073  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3074  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3075  * %REQ_RAHEAD.
3076  *
3077  * This function drops any buffer that it cannot get a lock on (with the
3078  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3079  * request, and any buffer that appears to be up-to-date when doing read
3080  * request.  Further it marks as clean buffers that are processed for
3081  * writing (the buffer cache won't assume that they are actually clean
3082  * until the buffer gets unlocked).
3083  *
3084  * ll_rw_block sets b_end_io to simple completion handler that marks
3085  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3086  * any waiters. 
3087  *
3088  * All of the buffers must be for the same device, and must also be a
3089  * multiple of the current approved size for the device.
3090  */
3091 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3092 {
3093         int i;
3094
3095         for (i = 0; i < nr; i++) {
3096                 struct buffer_head *bh = bhs[i];
3097
3098                 if (!trylock_buffer(bh))
3099                         continue;
3100                 if (op == WRITE) {
3101                         if (test_clear_buffer_dirty(bh)) {
3102                                 bh->b_end_io = end_buffer_write_sync;
3103                                 get_bh(bh);
3104                                 submit_bh(op, op_flags, bh);
3105                                 continue;
3106                         }
3107                 } else {
3108                         if (!buffer_uptodate(bh)) {
3109                                 bh->b_end_io = end_buffer_read_sync;
3110                                 get_bh(bh);
3111                                 submit_bh(op, op_flags, bh);
3112                                 continue;
3113                         }
3114                 }
3115                 unlock_buffer(bh);
3116         }
3117 }
3118 EXPORT_SYMBOL(ll_rw_block);
3119
3120 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3121 {
3122         lock_buffer(bh);
3123         if (!test_clear_buffer_dirty(bh)) {
3124                 unlock_buffer(bh);
3125                 return;
3126         }
3127         bh->b_end_io = end_buffer_write_sync;
3128         get_bh(bh);
3129         submit_bh(REQ_OP_WRITE, op_flags, bh);
3130 }
3131 EXPORT_SYMBOL(write_dirty_buffer);
3132
3133 /*
3134  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3135  * and then start new I/O and then wait upon it.  The caller must have a ref on
3136  * the buffer_head.
3137  */
3138 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3139 {
3140         int ret = 0;
3141
3142         WARN_ON(atomic_read(&bh->b_count) < 1);
3143         lock_buffer(bh);
3144         if (test_clear_buffer_dirty(bh)) {
3145                 /*
3146                  * The bh should be mapped, but it might not be if the
3147                  * device was hot-removed. Not much we can do but fail the I/O.
3148                  */
3149                 if (!buffer_mapped(bh)) {
3150                         unlock_buffer(bh);
3151                         return -EIO;
3152                 }
3153
3154                 get_bh(bh);
3155                 bh->b_end_io = end_buffer_write_sync;
3156                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3157                 wait_on_buffer(bh);
3158                 if (!ret && !buffer_uptodate(bh))
3159                         ret = -EIO;
3160         } else {
3161                 unlock_buffer(bh);
3162         }
3163         return ret;
3164 }
3165 EXPORT_SYMBOL(__sync_dirty_buffer);
3166
3167 int sync_dirty_buffer(struct buffer_head *bh)
3168 {
3169         return __sync_dirty_buffer(bh, REQ_SYNC);
3170 }
3171 EXPORT_SYMBOL(sync_dirty_buffer);
3172
3173 /*
3174  * try_to_free_buffers() checks if all the buffers on this particular page
3175  * are unused, and releases them if so.
3176  *
3177  * Exclusion against try_to_free_buffers may be obtained by either
3178  * locking the page or by holding its mapping's private_lock.
3179  *
3180  * If the page is dirty but all the buffers are clean then we need to
3181  * be sure to mark the page clean as well.  This is because the page
3182  * may be against a block device, and a later reattachment of buffers
3183  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3184  * filesystem data on the same device.
3185  *
3186  * The same applies to regular filesystem pages: if all the buffers are
3187  * clean then we set the page clean and proceed.  To do that, we require
3188  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3189  * private_lock.
3190  *
3191  * try_to_free_buffers() is non-blocking.
3192  */
3193 static inline int buffer_busy(struct buffer_head *bh)
3194 {
3195         return atomic_read(&bh->b_count) |
3196                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3197 }
3198
3199 static int
3200 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3201 {
3202         struct buffer_head *head = page_buffers(page);
3203         struct buffer_head *bh;
3204
3205         bh = head;
3206         do {
3207                 if (buffer_busy(bh))
3208                         goto failed;
3209                 bh = bh->b_this_page;
3210         } while (bh != head);
3211
3212         do {
3213                 struct buffer_head *next = bh->b_this_page;
3214
3215                 if (bh->b_assoc_map)
3216                         __remove_assoc_queue(bh);
3217                 bh = next;
3218         } while (bh != head);
3219         *buffers_to_free = head;
3220         detach_page_private(page);
3221         return 1;
3222 failed:
3223         return 0;
3224 }
3225
3226 int try_to_free_buffers(struct page *page)
3227 {
3228         struct address_space * const mapping = page->mapping;
3229         struct buffer_head *buffers_to_free = NULL;
3230         int ret = 0;
3231
3232         BUG_ON(!PageLocked(page));
3233         if (PageWriteback(page))
3234                 return 0;
3235
3236         if (mapping == NULL) {          /* can this still happen? */
3237                 ret = drop_buffers(page, &buffers_to_free);
3238                 goto out;
3239         }
3240
3241         spin_lock(&mapping->private_lock);
3242         ret = drop_buffers(page, &buffers_to_free);
3243
3244         /*
3245          * If the filesystem writes its buffers by hand (eg ext3)
3246          * then we can have clean buffers against a dirty page.  We
3247          * clean the page here; otherwise the VM will never notice
3248          * that the filesystem did any IO at all.
3249          *
3250          * Also, during truncate, discard_buffer will have marked all
3251          * the page's buffers clean.  We discover that here and clean
3252          * the page also.
3253          *
3254          * private_lock must be held over this entire operation in order
3255          * to synchronise against __set_page_dirty_buffers and prevent the
3256          * dirty bit from being lost.
3257          */
3258         if (ret)
3259                 cancel_dirty_page(page);
3260         spin_unlock(&mapping->private_lock);
3261 out:
3262         if (buffers_to_free) {
3263                 struct buffer_head *bh = buffers_to_free;
3264
3265                 do {
3266                         struct buffer_head *next = bh->b_this_page;
3267                         free_buffer_head(bh);
3268                         bh = next;
3269                 } while (bh != buffers_to_free);
3270         }
3271         return ret;
3272 }
3273 EXPORT_SYMBOL(try_to_free_buffers);
3274
3275 /*
3276  * Buffer-head allocation
3277  */
3278 static struct kmem_cache *bh_cachep __read_mostly;
3279
3280 /*
3281  * Once the number of bh's in the machine exceeds this level, we start
3282  * stripping them in writeback.
3283  */
3284 static unsigned long max_buffer_heads;
3285
3286 int buffer_heads_over_limit;
3287
3288 struct bh_accounting {
3289         int nr;                 /* Number of live bh's */
3290         int ratelimit;          /* Limit cacheline bouncing */
3291 };
3292
3293 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3294
3295 static void recalc_bh_state(void)
3296 {
3297         int i;
3298         int tot = 0;
3299
3300         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3301                 return;
3302         __this_cpu_write(bh_accounting.ratelimit, 0);
3303         for_each_online_cpu(i)
3304                 tot += per_cpu(bh_accounting, i).nr;
3305         buffer_heads_over_limit = (tot > max_buffer_heads);
3306 }
3307
3308 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3309 {
3310         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3311         if (ret) {
3312                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3313                 spin_lock_init(&ret->b_uptodate_lock);
3314                 preempt_disable();
3315                 __this_cpu_inc(bh_accounting.nr);
3316                 recalc_bh_state();
3317                 preempt_enable();
3318         }
3319         return ret;
3320 }
3321 EXPORT_SYMBOL(alloc_buffer_head);
3322
3323 void free_buffer_head(struct buffer_head *bh)
3324 {
3325         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3326         kmem_cache_free(bh_cachep, bh);
3327         preempt_disable();
3328         __this_cpu_dec(bh_accounting.nr);
3329         recalc_bh_state();
3330         preempt_enable();
3331 }
3332 EXPORT_SYMBOL(free_buffer_head);
3333
3334 static int buffer_exit_cpu_dead(unsigned int cpu)
3335 {
3336         int i;
3337         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3338
3339         for (i = 0; i < BH_LRU_SIZE; i++) {
3340                 brelse(b->bhs[i]);
3341                 b->bhs[i] = NULL;
3342         }
3343         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3344         per_cpu(bh_accounting, cpu).nr = 0;
3345         return 0;
3346 }
3347
3348 /**
3349  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3350  * @bh: struct buffer_head
3351  *
3352  * Return true if the buffer is up-to-date and false,
3353  * with the buffer locked, if not.
3354  */
3355 int bh_uptodate_or_lock(struct buffer_head *bh)
3356 {
3357         if (!buffer_uptodate(bh)) {
3358                 lock_buffer(bh);
3359                 if (!buffer_uptodate(bh))
3360                         return 0;
3361                 unlock_buffer(bh);
3362         }
3363         return 1;
3364 }
3365 EXPORT_SYMBOL(bh_uptodate_or_lock);
3366
3367 /**
3368  * bh_submit_read - Submit a locked buffer for reading
3369  * @bh: struct buffer_head
3370  *
3371  * Returns zero on success and -EIO on error.
3372  */
3373 int bh_submit_read(struct buffer_head *bh)
3374 {
3375         BUG_ON(!buffer_locked(bh));
3376
3377         if (buffer_uptodate(bh)) {
3378                 unlock_buffer(bh);
3379                 return 0;
3380         }
3381
3382         get_bh(bh);
3383         bh->b_end_io = end_buffer_read_sync;
3384         submit_bh(REQ_OP_READ, 0, bh);
3385         wait_on_buffer(bh);
3386         if (buffer_uptodate(bh))
3387                 return 0;
3388         return -EIO;
3389 }
3390 EXPORT_SYMBOL(bh_submit_read);
3391
3392 void __init buffer_init(void)
3393 {
3394         unsigned long nrpages;
3395         int ret;
3396
3397         bh_cachep = kmem_cache_create("buffer_head",
3398                         sizeof(struct buffer_head), 0,
3399                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3400                                 SLAB_MEM_SPREAD),
3401                                 NULL);
3402
3403         /*
3404          * Limit the bh occupancy to 10% of ZONE_NORMAL
3405          */
3406         nrpages = (nr_free_buffer_pages() * 10) / 100;
3407         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3408         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3409                                         NULL, buffer_exit_cpu_dead);
3410         WARN_ON(ret < 0);
3411 }