Merge branch 'timers/core' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59         trace_block_touch_buffer(bh);
60         mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63
64 static int sleep_on_buffer(void *word)
65 {
66         io_schedule();
67         return 0;
68 }
69
70 void __lock_buffer(struct buffer_head *bh)
71 {
72         wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
73                                                         TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void unlock_buffer(struct buffer_head *bh)
78 {
79         clear_bit_unlock(BH_Lock, &bh->b_state);
80         smp_mb__after_clear_bit();
81         wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 EXPORT_SYMBOL(unlock_buffer);
84
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92         wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
93 }
94 EXPORT_SYMBOL(__wait_on_buffer);
95
96 static void
97 __clear_page_buffers(struct page *page)
98 {
99         ClearPagePrivate(page);
100         set_page_private(page, 0);
101         page_cache_release(page);
102 }
103
104
105 static int quiet_error(struct buffer_head *bh)
106 {
107         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
108                 return 0;
109         return 1;
110 }
111
112
113 static void buffer_io_error(struct buffer_head *bh)
114 {
115         char b[BDEVNAME_SIZE];
116         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
117                         bdevname(bh->b_bdev, b),
118                         (unsigned long long)bh->b_blocknr);
119 }
120
121 /*
122  * End-of-IO handler helper function which does not touch the bh after
123  * unlocking it.
124  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
125  * a race there is benign: unlock_buffer() only use the bh's address for
126  * hashing after unlocking the buffer, so it doesn't actually touch the bh
127  * itself.
128  */
129 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
130 {
131         if (uptodate) {
132                 set_buffer_uptodate(bh);
133         } else {
134                 /* This happens, due to failed READA attempts. */
135                 clear_buffer_uptodate(bh);
136         }
137         unlock_buffer(bh);
138 }
139
140 /*
141  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
142  * unlock the buffer. This is what ll_rw_block uses too.
143  */
144 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
145 {
146         __end_buffer_read_notouch(bh, uptodate);
147         put_bh(bh);
148 }
149 EXPORT_SYMBOL(end_buffer_read_sync);
150
151 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
152 {
153         char b[BDEVNAME_SIZE];
154
155         if (uptodate) {
156                 set_buffer_uptodate(bh);
157         } else {
158                 if (!quiet_error(bh)) {
159                         buffer_io_error(bh);
160                         printk(KERN_WARNING "lost page write due to "
161                                         "I/O error on %s\n",
162                                        bdevname(bh->b_bdev, b));
163                 }
164                 set_buffer_write_io_error(bh);
165                 clear_buffer_uptodate(bh);
166         }
167         unlock_buffer(bh);
168         put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_write_sync);
171
172 /*
173  * Various filesystems appear to want __find_get_block to be non-blocking.
174  * But it's the page lock which protects the buffers.  To get around this,
175  * we get exclusion from try_to_free_buffers with the blockdev mapping's
176  * private_lock.
177  *
178  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
179  * may be quite high.  This code could TryLock the page, and if that
180  * succeeds, there is no need to take private_lock. (But if
181  * private_lock is contended then so is mapping->tree_lock).
182  */
183 static struct buffer_head *
184 __find_get_block_slow(struct block_device *bdev, sector_t block)
185 {
186         struct inode *bd_inode = bdev->bd_inode;
187         struct address_space *bd_mapping = bd_inode->i_mapping;
188         struct buffer_head *ret = NULL;
189         pgoff_t index;
190         struct buffer_head *bh;
191         struct buffer_head *head;
192         struct page *page;
193         int all_mapped = 1;
194
195         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
196         page = find_get_page(bd_mapping, index);
197         if (!page)
198                 goto out;
199
200         spin_lock(&bd_mapping->private_lock);
201         if (!page_has_buffers(page))
202                 goto out_unlock;
203         head = page_buffers(page);
204         bh = head;
205         do {
206                 if (!buffer_mapped(bh))
207                         all_mapped = 0;
208                 else if (bh->b_blocknr == block) {
209                         ret = bh;
210                         get_bh(bh);
211                         goto out_unlock;
212                 }
213                 bh = bh->b_this_page;
214         } while (bh != head);
215
216         /* we might be here because some of the buffers on this page are
217          * not mapped.  This is due to various races between
218          * file io on the block device and getblk.  It gets dealt with
219          * elsewhere, don't buffer_error if we had some unmapped buffers
220          */
221         if (all_mapped) {
222                 char b[BDEVNAME_SIZE];
223
224                 printk("__find_get_block_slow() failed. "
225                         "block=%llu, b_blocknr=%llu\n",
226                         (unsigned long long)block,
227                         (unsigned long long)bh->b_blocknr);
228                 printk("b_state=0x%08lx, b_size=%zu\n",
229                         bh->b_state, bh->b_size);
230                 printk("device %s blocksize: %d\n", bdevname(bdev, b),
231                         1 << bd_inode->i_blkbits);
232         }
233 out_unlock:
234         spin_unlock(&bd_mapping->private_lock);
235         page_cache_release(page);
236 out:
237         return ret;
238 }
239
240 /*
241  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
242  */
243 static void free_more_memory(void)
244 {
245         struct zone *zone;
246         int nid;
247
248         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
249         yield();
250
251         for_each_online_node(nid) {
252                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
253                                                 gfp_zone(GFP_NOFS), NULL,
254                                                 &zone);
255                 if (zone)
256                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
257                                                 GFP_NOFS, NULL);
258         }
259 }
260
261 /*
262  * I/O completion handler for block_read_full_page() - pages
263  * which come unlocked at the end of I/O.
264  */
265 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
266 {
267         unsigned long flags;
268         struct buffer_head *first;
269         struct buffer_head *tmp;
270         struct page *page;
271         int page_uptodate = 1;
272
273         BUG_ON(!buffer_async_read(bh));
274
275         page = bh->b_page;
276         if (uptodate) {
277                 set_buffer_uptodate(bh);
278         } else {
279                 clear_buffer_uptodate(bh);
280                 if (!quiet_error(bh))
281                         buffer_io_error(bh);
282                 SetPageError(page);
283         }
284
285         /*
286          * Be _very_ careful from here on. Bad things can happen if
287          * two buffer heads end IO at almost the same time and both
288          * decide that the page is now completely done.
289          */
290         first = page_buffers(page);
291         local_irq_save(flags);
292         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
293         clear_buffer_async_read(bh);
294         unlock_buffer(bh);
295         tmp = bh;
296         do {
297                 if (!buffer_uptodate(tmp))
298                         page_uptodate = 0;
299                 if (buffer_async_read(tmp)) {
300                         BUG_ON(!buffer_locked(tmp));
301                         goto still_busy;
302                 }
303                 tmp = tmp->b_this_page;
304         } while (tmp != bh);
305         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
306         local_irq_restore(flags);
307
308         /*
309          * If none of the buffers had errors and they are all
310          * uptodate then we can set the page uptodate.
311          */
312         if (page_uptodate && !PageError(page))
313                 SetPageUptodate(page);
314         unlock_page(page);
315         return;
316
317 still_busy:
318         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
319         local_irq_restore(flags);
320         return;
321 }
322
323 /*
324  * Completion handler for block_write_full_page() - pages which are unlocked
325  * during I/O, and which have PageWriteback cleared upon I/O completion.
326  */
327 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
328 {
329         char b[BDEVNAME_SIZE];
330         unsigned long flags;
331         struct buffer_head *first;
332         struct buffer_head *tmp;
333         struct page *page;
334
335         BUG_ON(!buffer_async_write(bh));
336
337         page = bh->b_page;
338         if (uptodate) {
339                 set_buffer_uptodate(bh);
340         } else {
341                 if (!quiet_error(bh)) {
342                         buffer_io_error(bh);
343                         printk(KERN_WARNING "lost page write due to "
344                                         "I/O error on %s\n",
345                                bdevname(bh->b_bdev, b));
346                 }
347                 set_bit(AS_EIO, &page->mapping->flags);
348                 set_buffer_write_io_error(bh);
349                 clear_buffer_uptodate(bh);
350                 SetPageError(page);
351         }
352
353         first = page_buffers(page);
354         local_irq_save(flags);
355         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
356
357         clear_buffer_async_write(bh);
358         unlock_buffer(bh);
359         tmp = bh->b_this_page;
360         while (tmp != bh) {
361                 if (buffer_async_write(tmp)) {
362                         BUG_ON(!buffer_locked(tmp));
363                         goto still_busy;
364                 }
365                 tmp = tmp->b_this_page;
366         }
367         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
368         local_irq_restore(flags);
369         end_page_writeback(page);
370         return;
371
372 still_busy:
373         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374         local_irq_restore(flags);
375         return;
376 }
377 EXPORT_SYMBOL(end_buffer_async_write);
378
379 /*
380  * If a page's buffers are under async readin (end_buffer_async_read
381  * completion) then there is a possibility that another thread of
382  * control could lock one of the buffers after it has completed
383  * but while some of the other buffers have not completed.  This
384  * locked buffer would confuse end_buffer_async_read() into not unlocking
385  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
386  * that this buffer is not under async I/O.
387  *
388  * The page comes unlocked when it has no locked buffer_async buffers
389  * left.
390  *
391  * PageLocked prevents anyone starting new async I/O reads any of
392  * the buffers.
393  *
394  * PageWriteback is used to prevent simultaneous writeout of the same
395  * page.
396  *
397  * PageLocked prevents anyone from starting writeback of a page which is
398  * under read I/O (PageWriteback is only ever set against a locked page).
399  */
400 static void mark_buffer_async_read(struct buffer_head *bh)
401 {
402         bh->b_end_io = end_buffer_async_read;
403         set_buffer_async_read(bh);
404 }
405
406 static void mark_buffer_async_write_endio(struct buffer_head *bh,
407                                           bh_end_io_t *handler)
408 {
409         bh->b_end_io = handler;
410         set_buffer_async_write(bh);
411 }
412
413 void mark_buffer_async_write(struct buffer_head *bh)
414 {
415         mark_buffer_async_write_endio(bh, end_buffer_async_write);
416 }
417 EXPORT_SYMBOL(mark_buffer_async_write);
418
419
420 /*
421  * fs/buffer.c contains helper functions for buffer-backed address space's
422  * fsync functions.  A common requirement for buffer-based filesystems is
423  * that certain data from the backing blockdev needs to be written out for
424  * a successful fsync().  For example, ext2 indirect blocks need to be
425  * written back and waited upon before fsync() returns.
426  *
427  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
428  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
429  * management of a list of dependent buffers at ->i_mapping->private_list.
430  *
431  * Locking is a little subtle: try_to_free_buffers() will remove buffers
432  * from their controlling inode's queue when they are being freed.  But
433  * try_to_free_buffers() will be operating against the *blockdev* mapping
434  * at the time, not against the S_ISREG file which depends on those buffers.
435  * So the locking for private_list is via the private_lock in the address_space
436  * which backs the buffers.  Which is different from the address_space 
437  * against which the buffers are listed.  So for a particular address_space,
438  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
439  * mapping->private_list will always be protected by the backing blockdev's
440  * ->private_lock.
441  *
442  * Which introduces a requirement: all buffers on an address_space's
443  * ->private_list must be from the same address_space: the blockdev's.
444  *
445  * address_spaces which do not place buffers at ->private_list via these
446  * utility functions are free to use private_lock and private_list for
447  * whatever they want.  The only requirement is that list_empty(private_list)
448  * be true at clear_inode() time.
449  *
450  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
451  * filesystems should do that.  invalidate_inode_buffers() should just go
452  * BUG_ON(!list_empty).
453  *
454  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
455  * take an address_space, not an inode.  And it should be called
456  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
457  * queued up.
458  *
459  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
460  * list if it is already on a list.  Because if the buffer is on a list,
461  * it *must* already be on the right one.  If not, the filesystem is being
462  * silly.  This will save a ton of locking.  But first we have to ensure
463  * that buffers are taken *off* the old inode's list when they are freed
464  * (presumably in truncate).  That requires careful auditing of all
465  * filesystems (do it inside bforget()).  It could also be done by bringing
466  * b_inode back.
467  */
468
469 /*
470  * The buffer's backing address_space's private_lock must be held
471  */
472 static void __remove_assoc_queue(struct buffer_head *bh)
473 {
474         list_del_init(&bh->b_assoc_buffers);
475         WARN_ON(!bh->b_assoc_map);
476         if (buffer_write_io_error(bh))
477                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
478         bh->b_assoc_map = NULL;
479 }
480
481 int inode_has_buffers(struct inode *inode)
482 {
483         return !list_empty(&inode->i_data.private_list);
484 }
485
486 /*
487  * osync is designed to support O_SYNC io.  It waits synchronously for
488  * all already-submitted IO to complete, but does not queue any new
489  * writes to the disk.
490  *
491  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
492  * you dirty the buffers, and then use osync_inode_buffers to wait for
493  * completion.  Any other dirty buffers which are not yet queued for
494  * write will not be flushed to disk by the osync.
495  */
496 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
497 {
498         struct buffer_head *bh;
499         struct list_head *p;
500         int err = 0;
501
502         spin_lock(lock);
503 repeat:
504         list_for_each_prev(p, list) {
505                 bh = BH_ENTRY(p);
506                 if (buffer_locked(bh)) {
507                         get_bh(bh);
508                         spin_unlock(lock);
509                         wait_on_buffer(bh);
510                         if (!buffer_uptodate(bh))
511                                 err = -EIO;
512                         brelse(bh);
513                         spin_lock(lock);
514                         goto repeat;
515                 }
516         }
517         spin_unlock(lock);
518         return err;
519 }
520
521 static void do_thaw_one(struct super_block *sb, void *unused)
522 {
523         char b[BDEVNAME_SIZE];
524         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
525                 printk(KERN_WARNING "Emergency Thaw on %s\n",
526                        bdevname(sb->s_bdev, b));
527 }
528
529 static void do_thaw_all(struct work_struct *work)
530 {
531         iterate_supers(do_thaw_one, NULL);
532         kfree(work);
533         printk(KERN_WARNING "Emergency Thaw complete\n");
534 }
535
536 /**
537  * emergency_thaw_all -- forcibly thaw every frozen filesystem
538  *
539  * Used for emergency unfreeze of all filesystems via SysRq
540  */
541 void emergency_thaw_all(void)
542 {
543         struct work_struct *work;
544
545         work = kmalloc(sizeof(*work), GFP_ATOMIC);
546         if (work) {
547                 INIT_WORK(work, do_thaw_all);
548                 schedule_work(work);
549         }
550 }
551
552 /**
553  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
554  * @mapping: the mapping which wants those buffers written
555  *
556  * Starts I/O against the buffers at mapping->private_list, and waits upon
557  * that I/O.
558  *
559  * Basically, this is a convenience function for fsync().
560  * @mapping is a file or directory which needs those buffers to be written for
561  * a successful fsync().
562  */
563 int sync_mapping_buffers(struct address_space *mapping)
564 {
565         struct address_space *buffer_mapping = mapping->private_data;
566
567         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
568                 return 0;
569
570         return fsync_buffers_list(&buffer_mapping->private_lock,
571                                         &mapping->private_list);
572 }
573 EXPORT_SYMBOL(sync_mapping_buffers);
574
575 /*
576  * Called when we've recently written block `bblock', and it is known that
577  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
578  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
579  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
580  */
581 void write_boundary_block(struct block_device *bdev,
582                         sector_t bblock, unsigned blocksize)
583 {
584         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
585         if (bh) {
586                 if (buffer_dirty(bh))
587                         ll_rw_block(WRITE, 1, &bh);
588                 put_bh(bh);
589         }
590 }
591
592 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
593 {
594         struct address_space *mapping = inode->i_mapping;
595         struct address_space *buffer_mapping = bh->b_page->mapping;
596
597         mark_buffer_dirty(bh);
598         if (!mapping->private_data) {
599                 mapping->private_data = buffer_mapping;
600         } else {
601                 BUG_ON(mapping->private_data != buffer_mapping);
602         }
603         if (!bh->b_assoc_map) {
604                 spin_lock(&buffer_mapping->private_lock);
605                 list_move_tail(&bh->b_assoc_buffers,
606                                 &mapping->private_list);
607                 bh->b_assoc_map = mapping;
608                 spin_unlock(&buffer_mapping->private_lock);
609         }
610 }
611 EXPORT_SYMBOL(mark_buffer_dirty_inode);
612
613 /*
614  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
615  * dirty.
616  *
617  * If warn is true, then emit a warning if the page is not uptodate and has
618  * not been truncated.
619  */
620 static void __set_page_dirty(struct page *page,
621                 struct address_space *mapping, int warn)
622 {
623         spin_lock_irq(&mapping->tree_lock);
624         if (page->mapping) {    /* Race with truncate? */
625                 WARN_ON_ONCE(warn && !PageUptodate(page));
626                 account_page_dirtied(page, mapping);
627                 radix_tree_tag_set(&mapping->page_tree,
628                                 page_index(page), PAGECACHE_TAG_DIRTY);
629         }
630         spin_unlock_irq(&mapping->tree_lock);
631         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
632 }
633
634 /*
635  * Add a page to the dirty page list.
636  *
637  * It is a sad fact of life that this function is called from several places
638  * deeply under spinlocking.  It may not sleep.
639  *
640  * If the page has buffers, the uptodate buffers are set dirty, to preserve
641  * dirty-state coherency between the page and the buffers.  It the page does
642  * not have buffers then when they are later attached they will all be set
643  * dirty.
644  *
645  * The buffers are dirtied before the page is dirtied.  There's a small race
646  * window in which a writepage caller may see the page cleanness but not the
647  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
648  * before the buffers, a concurrent writepage caller could clear the page dirty
649  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
650  * page on the dirty page list.
651  *
652  * We use private_lock to lock against try_to_free_buffers while using the
653  * page's buffer list.  Also use this to protect against clean buffers being
654  * added to the page after it was set dirty.
655  *
656  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
657  * address_space though.
658  */
659 int __set_page_dirty_buffers(struct page *page)
660 {
661         int newly_dirty;
662         struct address_space *mapping = page_mapping(page);
663
664         if (unlikely(!mapping))
665                 return !TestSetPageDirty(page);
666
667         spin_lock(&mapping->private_lock);
668         if (page_has_buffers(page)) {
669                 struct buffer_head *head = page_buffers(page);
670                 struct buffer_head *bh = head;
671
672                 do {
673                         set_buffer_dirty(bh);
674                         bh = bh->b_this_page;
675                 } while (bh != head);
676         }
677         newly_dirty = !TestSetPageDirty(page);
678         spin_unlock(&mapping->private_lock);
679
680         if (newly_dirty)
681                 __set_page_dirty(page, mapping, 1);
682         return newly_dirty;
683 }
684 EXPORT_SYMBOL(__set_page_dirty_buffers);
685
686 /*
687  * Write out and wait upon a list of buffers.
688  *
689  * We have conflicting pressures: we want to make sure that all
690  * initially dirty buffers get waited on, but that any subsequently
691  * dirtied buffers don't.  After all, we don't want fsync to last
692  * forever if somebody is actively writing to the file.
693  *
694  * Do this in two main stages: first we copy dirty buffers to a
695  * temporary inode list, queueing the writes as we go.  Then we clean
696  * up, waiting for those writes to complete.
697  * 
698  * During this second stage, any subsequent updates to the file may end
699  * up refiling the buffer on the original inode's dirty list again, so
700  * there is a chance we will end up with a buffer queued for write but
701  * not yet completed on that list.  So, as a final cleanup we go through
702  * the osync code to catch these locked, dirty buffers without requeuing
703  * any newly dirty buffers for write.
704  */
705 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
706 {
707         struct buffer_head *bh;
708         struct list_head tmp;
709         struct address_space *mapping;
710         int err = 0, err2;
711         struct blk_plug plug;
712
713         INIT_LIST_HEAD(&tmp);
714         blk_start_plug(&plug);
715
716         spin_lock(lock);
717         while (!list_empty(list)) {
718                 bh = BH_ENTRY(list->next);
719                 mapping = bh->b_assoc_map;
720                 __remove_assoc_queue(bh);
721                 /* Avoid race with mark_buffer_dirty_inode() which does
722                  * a lockless check and we rely on seeing the dirty bit */
723                 smp_mb();
724                 if (buffer_dirty(bh) || buffer_locked(bh)) {
725                         list_add(&bh->b_assoc_buffers, &tmp);
726                         bh->b_assoc_map = mapping;
727                         if (buffer_dirty(bh)) {
728                                 get_bh(bh);
729                                 spin_unlock(lock);
730                                 /*
731                                  * Ensure any pending I/O completes so that
732                                  * write_dirty_buffer() actually writes the
733                                  * current contents - it is a noop if I/O is
734                                  * still in flight on potentially older
735                                  * contents.
736                                  */
737                                 write_dirty_buffer(bh, WRITE_SYNC);
738
739                                 /*
740                                  * Kick off IO for the previous mapping. Note
741                                  * that we will not run the very last mapping,
742                                  * wait_on_buffer() will do that for us
743                                  * through sync_buffer().
744                                  */
745                                 brelse(bh);
746                                 spin_lock(lock);
747                         }
748                 }
749         }
750
751         spin_unlock(lock);
752         blk_finish_plug(&plug);
753         spin_lock(lock);
754
755         while (!list_empty(&tmp)) {
756                 bh = BH_ENTRY(tmp.prev);
757                 get_bh(bh);
758                 mapping = bh->b_assoc_map;
759                 __remove_assoc_queue(bh);
760                 /* Avoid race with mark_buffer_dirty_inode() which does
761                  * a lockless check and we rely on seeing the dirty bit */
762                 smp_mb();
763                 if (buffer_dirty(bh)) {
764                         list_add(&bh->b_assoc_buffers,
765                                  &mapping->private_list);
766                         bh->b_assoc_map = mapping;
767                 }
768                 spin_unlock(lock);
769                 wait_on_buffer(bh);
770                 if (!buffer_uptodate(bh))
771                         err = -EIO;
772                 brelse(bh);
773                 spin_lock(lock);
774         }
775         
776         spin_unlock(lock);
777         err2 = osync_buffers_list(lock, list);
778         if (err)
779                 return err;
780         else
781                 return err2;
782 }
783
784 /*
785  * Invalidate any and all dirty buffers on a given inode.  We are
786  * probably unmounting the fs, but that doesn't mean we have already
787  * done a sync().  Just drop the buffers from the inode list.
788  *
789  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
790  * assumes that all the buffers are against the blockdev.  Not true
791  * for reiserfs.
792  */
793 void invalidate_inode_buffers(struct inode *inode)
794 {
795         if (inode_has_buffers(inode)) {
796                 struct address_space *mapping = &inode->i_data;
797                 struct list_head *list = &mapping->private_list;
798                 struct address_space *buffer_mapping = mapping->private_data;
799
800                 spin_lock(&buffer_mapping->private_lock);
801                 while (!list_empty(list))
802                         __remove_assoc_queue(BH_ENTRY(list->next));
803                 spin_unlock(&buffer_mapping->private_lock);
804         }
805 }
806 EXPORT_SYMBOL(invalidate_inode_buffers);
807
808 /*
809  * Remove any clean buffers from the inode's buffer list.  This is called
810  * when we're trying to free the inode itself.  Those buffers can pin it.
811  *
812  * Returns true if all buffers were removed.
813  */
814 int remove_inode_buffers(struct inode *inode)
815 {
816         int ret = 1;
817
818         if (inode_has_buffers(inode)) {
819                 struct address_space *mapping = &inode->i_data;
820                 struct list_head *list = &mapping->private_list;
821                 struct address_space *buffer_mapping = mapping->private_data;
822
823                 spin_lock(&buffer_mapping->private_lock);
824                 while (!list_empty(list)) {
825                         struct buffer_head *bh = BH_ENTRY(list->next);
826                         if (buffer_dirty(bh)) {
827                                 ret = 0;
828                                 break;
829                         }
830                         __remove_assoc_queue(bh);
831                 }
832                 spin_unlock(&buffer_mapping->private_lock);
833         }
834         return ret;
835 }
836
837 /*
838  * Create the appropriate buffers when given a page for data area and
839  * the size of each buffer.. Use the bh->b_this_page linked list to
840  * follow the buffers created.  Return NULL if unable to create more
841  * buffers.
842  *
843  * The retry flag is used to differentiate async IO (paging, swapping)
844  * which may not fail from ordinary buffer allocations.
845  */
846 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
847                 int retry)
848 {
849         struct buffer_head *bh, *head;
850         long offset;
851
852 try_again:
853         head = NULL;
854         offset = PAGE_SIZE;
855         while ((offset -= size) >= 0) {
856                 bh = alloc_buffer_head(GFP_NOFS);
857                 if (!bh)
858                         goto no_grow;
859
860                 bh->b_this_page = head;
861                 bh->b_blocknr = -1;
862                 head = bh;
863
864                 bh->b_size = size;
865
866                 /* Link the buffer to its page */
867                 set_bh_page(bh, page, offset);
868         }
869         return head;
870 /*
871  * In case anything failed, we just free everything we got.
872  */
873 no_grow:
874         if (head) {
875                 do {
876                         bh = head;
877                         head = head->b_this_page;
878                         free_buffer_head(bh);
879                 } while (head);
880         }
881
882         /*
883          * Return failure for non-async IO requests.  Async IO requests
884          * are not allowed to fail, so we have to wait until buffer heads
885          * become available.  But we don't want tasks sleeping with 
886          * partially complete buffers, so all were released above.
887          */
888         if (!retry)
889                 return NULL;
890
891         /* We're _really_ low on memory. Now we just
892          * wait for old buffer heads to become free due to
893          * finishing IO.  Since this is an async request and
894          * the reserve list is empty, we're sure there are 
895          * async buffer heads in use.
896          */
897         free_more_memory();
898         goto try_again;
899 }
900 EXPORT_SYMBOL_GPL(alloc_page_buffers);
901
902 static inline void
903 link_dev_buffers(struct page *page, struct buffer_head *head)
904 {
905         struct buffer_head *bh, *tail;
906
907         bh = head;
908         do {
909                 tail = bh;
910                 bh = bh->b_this_page;
911         } while (bh);
912         tail->b_this_page = head;
913         attach_page_buffers(page, head);
914 }
915
916 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
917 {
918         sector_t retval = ~((sector_t)0);
919         loff_t sz = i_size_read(bdev->bd_inode);
920
921         if (sz) {
922                 unsigned int sizebits = blksize_bits(size);
923                 retval = (sz >> sizebits);
924         }
925         return retval;
926 }
927
928 /*
929  * Initialise the state of a blockdev page's buffers.
930  */ 
931 static sector_t
932 init_page_buffers(struct page *page, struct block_device *bdev,
933                         sector_t block, int size)
934 {
935         struct buffer_head *head = page_buffers(page);
936         struct buffer_head *bh = head;
937         int uptodate = PageUptodate(page);
938         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
939
940         do {
941                 if (!buffer_mapped(bh)) {
942                         init_buffer(bh, NULL, NULL);
943                         bh->b_bdev = bdev;
944                         bh->b_blocknr = block;
945                         if (uptodate)
946                                 set_buffer_uptodate(bh);
947                         if (block < end_block)
948                                 set_buffer_mapped(bh);
949                 }
950                 block++;
951                 bh = bh->b_this_page;
952         } while (bh != head);
953
954         /*
955          * Caller needs to validate requested block against end of device.
956          */
957         return end_block;
958 }
959
960 /*
961  * Create the page-cache page that contains the requested block.
962  *
963  * This is used purely for blockdev mappings.
964  */
965 static int
966 grow_dev_page(struct block_device *bdev, sector_t block,
967                 pgoff_t index, int size, int sizebits)
968 {
969         struct inode *inode = bdev->bd_inode;
970         struct page *page;
971         struct buffer_head *bh;
972         sector_t end_block;
973         int ret = 0;            /* Will call free_more_memory() */
974
975         page = find_or_create_page(inode->i_mapping, index,
976                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
977         if (!page)
978                 return ret;
979
980         BUG_ON(!PageLocked(page));
981
982         if (page_has_buffers(page)) {
983                 bh = page_buffers(page);
984                 if (bh->b_size == size) {
985                         end_block = init_page_buffers(page, bdev,
986                                                 index << sizebits, size);
987                         goto done;
988                 }
989                 if (!try_to_free_buffers(page))
990                         goto failed;
991         }
992
993         /*
994          * Allocate some buffers for this page
995          */
996         bh = alloc_page_buffers(page, size, 0);
997         if (!bh)
998                 goto failed;
999
1000         /*
1001          * Link the page to the buffers and initialise them.  Take the
1002          * lock to be atomic wrt __find_get_block(), which does not
1003          * run under the page lock.
1004          */
1005         spin_lock(&inode->i_mapping->private_lock);
1006         link_dev_buffers(page, bh);
1007         end_block = init_page_buffers(page, bdev, index << sizebits, size);
1008         spin_unlock(&inode->i_mapping->private_lock);
1009 done:
1010         ret = (block < end_block) ? 1 : -ENXIO;
1011 failed:
1012         unlock_page(page);
1013         page_cache_release(page);
1014         return ret;
1015 }
1016
1017 /*
1018  * Create buffers for the specified block device block's page.  If
1019  * that page was dirty, the buffers are set dirty also.
1020  */
1021 static int
1022 grow_buffers(struct block_device *bdev, sector_t block, int size)
1023 {
1024         pgoff_t index;
1025         int sizebits;
1026
1027         sizebits = -1;
1028         do {
1029                 sizebits++;
1030         } while ((size << sizebits) < PAGE_SIZE);
1031
1032         index = block >> sizebits;
1033
1034         /*
1035          * Check for a block which wants to lie outside our maximum possible
1036          * pagecache index.  (this comparison is done using sector_t types).
1037          */
1038         if (unlikely(index != block >> sizebits)) {
1039                 char b[BDEVNAME_SIZE];
1040
1041                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1042                         "device %s\n",
1043                         __func__, (unsigned long long)block,
1044                         bdevname(bdev, b));
1045                 return -EIO;
1046         }
1047
1048         /* Create a page with the proper size buffers.. */
1049         return grow_dev_page(bdev, block, index, size, sizebits);
1050 }
1051
1052 static struct buffer_head *
1053 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1054 {
1055         /* Size must be multiple of hard sectorsize */
1056         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1057                         (size < 512 || size > PAGE_SIZE))) {
1058                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1059                                         size);
1060                 printk(KERN_ERR "logical block size: %d\n",
1061                                         bdev_logical_block_size(bdev));
1062
1063                 dump_stack();
1064                 return NULL;
1065         }
1066
1067         for (;;) {
1068                 struct buffer_head *bh;
1069                 int ret;
1070
1071                 bh = __find_get_block(bdev, block, size);
1072                 if (bh)
1073                         return bh;
1074
1075                 ret = grow_buffers(bdev, block, size);
1076                 if (ret < 0)
1077                         return NULL;
1078                 if (ret == 0)
1079                         free_more_memory();
1080         }
1081 }
1082
1083 /*
1084  * The relationship between dirty buffers and dirty pages:
1085  *
1086  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1087  * the page is tagged dirty in its radix tree.
1088  *
1089  * At all times, the dirtiness of the buffers represents the dirtiness of
1090  * subsections of the page.  If the page has buffers, the page dirty bit is
1091  * merely a hint about the true dirty state.
1092  *
1093  * When a page is set dirty in its entirety, all its buffers are marked dirty
1094  * (if the page has buffers).
1095  *
1096  * When a buffer is marked dirty, its page is dirtied, but the page's other
1097  * buffers are not.
1098  *
1099  * Also.  When blockdev buffers are explicitly read with bread(), they
1100  * individually become uptodate.  But their backing page remains not
1101  * uptodate - even if all of its buffers are uptodate.  A subsequent
1102  * block_read_full_page() against that page will discover all the uptodate
1103  * buffers, will set the page uptodate and will perform no I/O.
1104  */
1105
1106 /**
1107  * mark_buffer_dirty - mark a buffer_head as needing writeout
1108  * @bh: the buffer_head to mark dirty
1109  *
1110  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1111  * backing page dirty, then tag the page as dirty in its address_space's radix
1112  * tree and then attach the address_space's inode to its superblock's dirty
1113  * inode list.
1114  *
1115  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1116  * mapping->tree_lock and mapping->host->i_lock.
1117  */
1118 void mark_buffer_dirty(struct buffer_head *bh)
1119 {
1120         WARN_ON_ONCE(!buffer_uptodate(bh));
1121
1122         trace_block_dirty_buffer(bh);
1123
1124         /*
1125          * Very *carefully* optimize the it-is-already-dirty case.
1126          *
1127          * Don't let the final "is it dirty" escape to before we
1128          * perhaps modified the buffer.
1129          */
1130         if (buffer_dirty(bh)) {
1131                 smp_mb();
1132                 if (buffer_dirty(bh))
1133                         return;
1134         }
1135
1136         if (!test_set_buffer_dirty(bh)) {
1137                 struct page *page = bh->b_page;
1138                 if (!TestSetPageDirty(page)) {
1139                         struct address_space *mapping = page_mapping(page);
1140                         if (mapping)
1141                                 __set_page_dirty(page, mapping, 0);
1142                 }
1143         }
1144 }
1145 EXPORT_SYMBOL(mark_buffer_dirty);
1146
1147 /*
1148  * Decrement a buffer_head's reference count.  If all buffers against a page
1149  * have zero reference count, are clean and unlocked, and if the page is clean
1150  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1151  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1152  * a page but it ends up not being freed, and buffers may later be reattached).
1153  */
1154 void __brelse(struct buffer_head * buf)
1155 {
1156         if (atomic_read(&buf->b_count)) {
1157                 put_bh(buf);
1158                 return;
1159         }
1160         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1161 }
1162 EXPORT_SYMBOL(__brelse);
1163
1164 /*
1165  * bforget() is like brelse(), except it discards any
1166  * potentially dirty data.
1167  */
1168 void __bforget(struct buffer_head *bh)
1169 {
1170         clear_buffer_dirty(bh);
1171         if (bh->b_assoc_map) {
1172                 struct address_space *buffer_mapping = bh->b_page->mapping;
1173
1174                 spin_lock(&buffer_mapping->private_lock);
1175                 list_del_init(&bh->b_assoc_buffers);
1176                 bh->b_assoc_map = NULL;
1177                 spin_unlock(&buffer_mapping->private_lock);
1178         }
1179         __brelse(bh);
1180 }
1181 EXPORT_SYMBOL(__bforget);
1182
1183 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1184 {
1185         lock_buffer(bh);
1186         if (buffer_uptodate(bh)) {
1187                 unlock_buffer(bh);
1188                 return bh;
1189         } else {
1190                 get_bh(bh);
1191                 bh->b_end_io = end_buffer_read_sync;
1192                 submit_bh(READ, bh);
1193                 wait_on_buffer(bh);
1194                 if (buffer_uptodate(bh))
1195                         return bh;
1196         }
1197         brelse(bh);
1198         return NULL;
1199 }
1200
1201 /*
1202  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1203  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1204  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1205  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1206  * CPU's LRUs at the same time.
1207  *
1208  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1209  * sb_find_get_block().
1210  *
1211  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1212  * a local interrupt disable for that.
1213  */
1214
1215 #define BH_LRU_SIZE     8
1216
1217 struct bh_lru {
1218         struct buffer_head *bhs[BH_LRU_SIZE];
1219 };
1220
1221 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1222
1223 #ifdef CONFIG_SMP
1224 #define bh_lru_lock()   local_irq_disable()
1225 #define bh_lru_unlock() local_irq_enable()
1226 #else
1227 #define bh_lru_lock()   preempt_disable()
1228 #define bh_lru_unlock() preempt_enable()
1229 #endif
1230
1231 static inline void check_irqs_on(void)
1232 {
1233 #ifdef irqs_disabled
1234         BUG_ON(irqs_disabled());
1235 #endif
1236 }
1237
1238 /*
1239  * The LRU management algorithm is dopey-but-simple.  Sorry.
1240  */
1241 static void bh_lru_install(struct buffer_head *bh)
1242 {
1243         struct buffer_head *evictee = NULL;
1244
1245         check_irqs_on();
1246         bh_lru_lock();
1247         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1248                 struct buffer_head *bhs[BH_LRU_SIZE];
1249                 int in;
1250                 int out = 0;
1251
1252                 get_bh(bh);
1253                 bhs[out++] = bh;
1254                 for (in = 0; in < BH_LRU_SIZE; in++) {
1255                         struct buffer_head *bh2 =
1256                                 __this_cpu_read(bh_lrus.bhs[in]);
1257
1258                         if (bh2 == bh) {
1259                                 __brelse(bh2);
1260                         } else {
1261                                 if (out >= BH_LRU_SIZE) {
1262                                         BUG_ON(evictee != NULL);
1263                                         evictee = bh2;
1264                                 } else {
1265                                         bhs[out++] = bh2;
1266                                 }
1267                         }
1268                 }
1269                 while (out < BH_LRU_SIZE)
1270                         bhs[out++] = NULL;
1271                 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1272         }
1273         bh_lru_unlock();
1274
1275         if (evictee)
1276                 __brelse(evictee);
1277 }
1278
1279 /*
1280  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1281  */
1282 static struct buffer_head *
1283 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1284 {
1285         struct buffer_head *ret = NULL;
1286         unsigned int i;
1287
1288         check_irqs_on();
1289         bh_lru_lock();
1290         for (i = 0; i < BH_LRU_SIZE; i++) {
1291                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1292
1293                 if (bh && bh->b_bdev == bdev &&
1294                                 bh->b_blocknr == block && bh->b_size == size) {
1295                         if (i) {
1296                                 while (i) {
1297                                         __this_cpu_write(bh_lrus.bhs[i],
1298                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1299                                         i--;
1300                                 }
1301                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1302                         }
1303                         get_bh(bh);
1304                         ret = bh;
1305                         break;
1306                 }
1307         }
1308         bh_lru_unlock();
1309         return ret;
1310 }
1311
1312 /*
1313  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1314  * it in the LRU and mark it as accessed.  If it is not present then return
1315  * NULL
1316  */
1317 struct buffer_head *
1318 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1319 {
1320         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1321
1322         if (bh == NULL) {
1323                 bh = __find_get_block_slow(bdev, block);
1324                 if (bh)
1325                         bh_lru_install(bh);
1326         }
1327         if (bh)
1328                 touch_buffer(bh);
1329         return bh;
1330 }
1331 EXPORT_SYMBOL(__find_get_block);
1332
1333 /*
1334  * __getblk will locate (and, if necessary, create) the buffer_head
1335  * which corresponds to the passed block_device, block and size. The
1336  * returned buffer has its reference count incremented.
1337  *
1338  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1339  * attempt is failing.  FIXME, perhaps?
1340  */
1341 struct buffer_head *
1342 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1343 {
1344         struct buffer_head *bh = __find_get_block(bdev, block, size);
1345
1346         might_sleep();
1347         if (bh == NULL)
1348                 bh = __getblk_slow(bdev, block, size);
1349         return bh;
1350 }
1351 EXPORT_SYMBOL(__getblk);
1352
1353 /*
1354  * Do async read-ahead on a buffer..
1355  */
1356 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1357 {
1358         struct buffer_head *bh = __getblk(bdev, block, size);
1359         if (likely(bh)) {
1360                 ll_rw_block(READA, 1, &bh);
1361                 brelse(bh);
1362         }
1363 }
1364 EXPORT_SYMBOL(__breadahead);
1365
1366 /**
1367  *  __bread() - reads a specified block and returns the bh
1368  *  @bdev: the block_device to read from
1369  *  @block: number of block
1370  *  @size: size (in bytes) to read
1371  * 
1372  *  Reads a specified block, and returns buffer head that contains it.
1373  *  It returns NULL if the block was unreadable.
1374  */
1375 struct buffer_head *
1376 __bread(struct block_device *bdev, sector_t block, unsigned size)
1377 {
1378         struct buffer_head *bh = __getblk(bdev, block, size);
1379
1380         if (likely(bh) && !buffer_uptodate(bh))
1381                 bh = __bread_slow(bh);
1382         return bh;
1383 }
1384 EXPORT_SYMBOL(__bread);
1385
1386 /*
1387  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1388  * This doesn't race because it runs in each cpu either in irq
1389  * or with preempt disabled.
1390  */
1391 static void invalidate_bh_lru(void *arg)
1392 {
1393         struct bh_lru *b = &get_cpu_var(bh_lrus);
1394         int i;
1395
1396         for (i = 0; i < BH_LRU_SIZE; i++) {
1397                 brelse(b->bhs[i]);
1398                 b->bhs[i] = NULL;
1399         }
1400         put_cpu_var(bh_lrus);
1401 }
1402
1403 static bool has_bh_in_lru(int cpu, void *dummy)
1404 {
1405         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1406         int i;
1407         
1408         for (i = 0; i < BH_LRU_SIZE; i++) {
1409                 if (b->bhs[i])
1410                         return 1;
1411         }
1412
1413         return 0;
1414 }
1415
1416 void invalidate_bh_lrus(void)
1417 {
1418         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1419 }
1420 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1421
1422 void set_bh_page(struct buffer_head *bh,
1423                 struct page *page, unsigned long offset)
1424 {
1425         bh->b_page = page;
1426         BUG_ON(offset >= PAGE_SIZE);
1427         if (PageHighMem(page))
1428                 /*
1429                  * This catches illegal uses and preserves the offset:
1430                  */
1431                 bh->b_data = (char *)(0 + offset);
1432         else
1433                 bh->b_data = page_address(page) + offset;
1434 }
1435 EXPORT_SYMBOL(set_bh_page);
1436
1437 /*
1438  * Called when truncating a buffer on a page completely.
1439  */
1440 static void discard_buffer(struct buffer_head * bh)
1441 {
1442         lock_buffer(bh);
1443         clear_buffer_dirty(bh);
1444         bh->b_bdev = NULL;
1445         clear_buffer_mapped(bh);
1446         clear_buffer_req(bh);
1447         clear_buffer_new(bh);
1448         clear_buffer_delay(bh);
1449         clear_buffer_unwritten(bh);
1450         unlock_buffer(bh);
1451 }
1452
1453 /**
1454  * block_invalidatepage - invalidate part or all of a buffer-backed page
1455  *
1456  * @page: the page which is affected
1457  * @offset: start of the range to invalidate
1458  * @length: length of the range to invalidate
1459  *
1460  * block_invalidatepage() is called when all or part of the page has become
1461  * invalidated by a truncate operation.
1462  *
1463  * block_invalidatepage() does not have to release all buffers, but it must
1464  * ensure that no dirty buffer is left outside @offset and that no I/O
1465  * is underway against any of the blocks which are outside the truncation
1466  * point.  Because the caller is about to free (and possibly reuse) those
1467  * blocks on-disk.
1468  */
1469 void block_invalidatepage(struct page *page, unsigned int offset,
1470                           unsigned int length)
1471 {
1472         struct buffer_head *head, *bh, *next;
1473         unsigned int curr_off = 0;
1474         unsigned int stop = length + offset;
1475
1476         BUG_ON(!PageLocked(page));
1477         if (!page_has_buffers(page))
1478                 goto out;
1479
1480         /*
1481          * Check for overflow
1482          */
1483         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1484
1485         head = page_buffers(page);
1486         bh = head;
1487         do {
1488                 unsigned int next_off = curr_off + bh->b_size;
1489                 next = bh->b_this_page;
1490
1491                 /*
1492                  * Are we still fully in range ?
1493                  */
1494                 if (next_off > stop)
1495                         goto out;
1496
1497                 /*
1498                  * is this block fully invalidated?
1499                  */
1500                 if (offset <= curr_off)
1501                         discard_buffer(bh);
1502                 curr_off = next_off;
1503                 bh = next;
1504         } while (bh != head);
1505
1506         /*
1507          * We release buffers only if the entire page is being invalidated.
1508          * The get_block cached value has been unconditionally invalidated,
1509          * so real IO is not possible anymore.
1510          */
1511         if (offset == 0)
1512                 try_to_release_page(page, 0);
1513 out:
1514         return;
1515 }
1516 EXPORT_SYMBOL(block_invalidatepage);
1517
1518
1519 /*
1520  * We attach and possibly dirty the buffers atomically wrt
1521  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1522  * is already excluded via the page lock.
1523  */
1524 void create_empty_buffers(struct page *page,
1525                         unsigned long blocksize, unsigned long b_state)
1526 {
1527         struct buffer_head *bh, *head, *tail;
1528
1529         head = alloc_page_buffers(page, blocksize, 1);
1530         bh = head;
1531         do {
1532                 bh->b_state |= b_state;
1533                 tail = bh;
1534                 bh = bh->b_this_page;
1535         } while (bh);
1536         tail->b_this_page = head;
1537
1538         spin_lock(&page->mapping->private_lock);
1539         if (PageUptodate(page) || PageDirty(page)) {
1540                 bh = head;
1541                 do {
1542                         if (PageDirty(page))
1543                                 set_buffer_dirty(bh);
1544                         if (PageUptodate(page))
1545                                 set_buffer_uptodate(bh);
1546                         bh = bh->b_this_page;
1547                 } while (bh != head);
1548         }
1549         attach_page_buffers(page, head);
1550         spin_unlock(&page->mapping->private_lock);
1551 }
1552 EXPORT_SYMBOL(create_empty_buffers);
1553
1554 /*
1555  * We are taking a block for data and we don't want any output from any
1556  * buffer-cache aliases starting from return from that function and
1557  * until the moment when something will explicitly mark the buffer
1558  * dirty (hopefully that will not happen until we will free that block ;-)
1559  * We don't even need to mark it not-uptodate - nobody can expect
1560  * anything from a newly allocated buffer anyway. We used to used
1561  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1562  * don't want to mark the alias unmapped, for example - it would confuse
1563  * anyone who might pick it with bread() afterwards...
1564  *
1565  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1566  * be writeout I/O going on against recently-freed buffers.  We don't
1567  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1568  * only if we really need to.  That happens here.
1569  */
1570 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1571 {
1572         struct buffer_head *old_bh;
1573
1574         might_sleep();
1575
1576         old_bh = __find_get_block_slow(bdev, block);
1577         if (old_bh) {
1578                 clear_buffer_dirty(old_bh);
1579                 wait_on_buffer(old_bh);
1580                 clear_buffer_req(old_bh);
1581                 __brelse(old_bh);
1582         }
1583 }
1584 EXPORT_SYMBOL(unmap_underlying_metadata);
1585
1586 /*
1587  * Size is a power-of-two in the range 512..PAGE_SIZE,
1588  * and the case we care about most is PAGE_SIZE.
1589  *
1590  * So this *could* possibly be written with those
1591  * constraints in mind (relevant mostly if some
1592  * architecture has a slow bit-scan instruction)
1593  */
1594 static inline int block_size_bits(unsigned int blocksize)
1595 {
1596         return ilog2(blocksize);
1597 }
1598
1599 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1600 {
1601         BUG_ON(!PageLocked(page));
1602
1603         if (!page_has_buffers(page))
1604                 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1605         return page_buffers(page);
1606 }
1607
1608 /*
1609  * NOTE! All mapped/uptodate combinations are valid:
1610  *
1611  *      Mapped  Uptodate        Meaning
1612  *
1613  *      No      No              "unknown" - must do get_block()
1614  *      No      Yes             "hole" - zero-filled
1615  *      Yes     No              "allocated" - allocated on disk, not read in
1616  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1617  *
1618  * "Dirty" is valid only with the last case (mapped+uptodate).
1619  */
1620
1621 /*
1622  * While block_write_full_page is writing back the dirty buffers under
1623  * the page lock, whoever dirtied the buffers may decide to clean them
1624  * again at any time.  We handle that by only looking at the buffer
1625  * state inside lock_buffer().
1626  *
1627  * If block_write_full_page() is called for regular writeback
1628  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1629  * locked buffer.   This only can happen if someone has written the buffer
1630  * directly, with submit_bh().  At the address_space level PageWriteback
1631  * prevents this contention from occurring.
1632  *
1633  * If block_write_full_page() is called with wbc->sync_mode ==
1634  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1635  * causes the writes to be flagged as synchronous writes.
1636  */
1637 static int __block_write_full_page(struct inode *inode, struct page *page,
1638                         get_block_t *get_block, struct writeback_control *wbc,
1639                         bh_end_io_t *handler)
1640 {
1641         int err;
1642         sector_t block;
1643         sector_t last_block;
1644         struct buffer_head *bh, *head;
1645         unsigned int blocksize, bbits;
1646         int nr_underway = 0;
1647         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1648                         WRITE_SYNC : WRITE);
1649
1650         head = create_page_buffers(page, inode,
1651                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1652
1653         /*
1654          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1655          * here, and the (potentially unmapped) buffers may become dirty at
1656          * any time.  If a buffer becomes dirty here after we've inspected it
1657          * then we just miss that fact, and the page stays dirty.
1658          *
1659          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1660          * handle that here by just cleaning them.
1661          */
1662
1663         bh = head;
1664         blocksize = bh->b_size;
1665         bbits = block_size_bits(blocksize);
1666
1667         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1668         last_block = (i_size_read(inode) - 1) >> bbits;
1669
1670         /*
1671          * Get all the dirty buffers mapped to disk addresses and
1672          * handle any aliases from the underlying blockdev's mapping.
1673          */
1674         do {
1675                 if (block > last_block) {
1676                         /*
1677                          * mapped buffers outside i_size will occur, because
1678                          * this page can be outside i_size when there is a
1679                          * truncate in progress.
1680                          */
1681                         /*
1682                          * The buffer was zeroed by block_write_full_page()
1683                          */
1684                         clear_buffer_dirty(bh);
1685                         set_buffer_uptodate(bh);
1686                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1687                            buffer_dirty(bh)) {
1688                         WARN_ON(bh->b_size != blocksize);
1689                         err = get_block(inode, block, bh, 1);
1690                         if (err)
1691                                 goto recover;
1692                         clear_buffer_delay(bh);
1693                         if (buffer_new(bh)) {
1694                                 /* blockdev mappings never come here */
1695                                 clear_buffer_new(bh);
1696                                 unmap_underlying_metadata(bh->b_bdev,
1697                                                         bh->b_blocknr);
1698                         }
1699                 }
1700                 bh = bh->b_this_page;
1701                 block++;
1702         } while (bh != head);
1703
1704         do {
1705                 if (!buffer_mapped(bh))
1706                         continue;
1707                 /*
1708                  * If it's a fully non-blocking write attempt and we cannot
1709                  * lock the buffer then redirty the page.  Note that this can
1710                  * potentially cause a busy-wait loop from writeback threads
1711                  * and kswapd activity, but those code paths have their own
1712                  * higher-level throttling.
1713                  */
1714                 if (wbc->sync_mode != WB_SYNC_NONE) {
1715                         lock_buffer(bh);
1716                 } else if (!trylock_buffer(bh)) {
1717                         redirty_page_for_writepage(wbc, page);
1718                         continue;
1719                 }
1720                 if (test_clear_buffer_dirty(bh)) {
1721                         mark_buffer_async_write_endio(bh, handler);
1722                 } else {
1723                         unlock_buffer(bh);
1724                 }
1725         } while ((bh = bh->b_this_page) != head);
1726
1727         /*
1728          * The page and its buffers are protected by PageWriteback(), so we can
1729          * drop the bh refcounts early.
1730          */
1731         BUG_ON(PageWriteback(page));
1732         set_page_writeback(page);
1733
1734         do {
1735                 struct buffer_head *next = bh->b_this_page;
1736                 if (buffer_async_write(bh)) {
1737                         submit_bh(write_op, bh);
1738                         nr_underway++;
1739                 }
1740                 bh = next;
1741         } while (bh != head);
1742         unlock_page(page);
1743
1744         err = 0;
1745 done:
1746         if (nr_underway == 0) {
1747                 /*
1748                  * The page was marked dirty, but the buffers were
1749                  * clean.  Someone wrote them back by hand with
1750                  * ll_rw_block/submit_bh.  A rare case.
1751                  */
1752                 end_page_writeback(page);
1753
1754                 /*
1755                  * The page and buffer_heads can be released at any time from
1756                  * here on.
1757                  */
1758         }
1759         return err;
1760
1761 recover:
1762         /*
1763          * ENOSPC, or some other error.  We may already have added some
1764          * blocks to the file, so we need to write these out to avoid
1765          * exposing stale data.
1766          * The page is currently locked and not marked for writeback
1767          */
1768         bh = head;
1769         /* Recovery: lock and submit the mapped buffers */
1770         do {
1771                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1772                     !buffer_delay(bh)) {
1773                         lock_buffer(bh);
1774                         mark_buffer_async_write_endio(bh, handler);
1775                 } else {
1776                         /*
1777                          * The buffer may have been set dirty during
1778                          * attachment to a dirty page.
1779                          */
1780                         clear_buffer_dirty(bh);
1781                 }
1782         } while ((bh = bh->b_this_page) != head);
1783         SetPageError(page);
1784         BUG_ON(PageWriteback(page));
1785         mapping_set_error(page->mapping, err);
1786         set_page_writeback(page);
1787         do {
1788                 struct buffer_head *next = bh->b_this_page;
1789                 if (buffer_async_write(bh)) {
1790                         clear_buffer_dirty(bh);
1791                         submit_bh(write_op, bh);
1792                         nr_underway++;
1793                 }
1794                 bh = next;
1795         } while (bh != head);
1796         unlock_page(page);
1797         goto done;
1798 }
1799
1800 /*
1801  * If a page has any new buffers, zero them out here, and mark them uptodate
1802  * and dirty so they'll be written out (in order to prevent uninitialised
1803  * block data from leaking). And clear the new bit.
1804  */
1805 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1806 {
1807         unsigned int block_start, block_end;
1808         struct buffer_head *head, *bh;
1809
1810         BUG_ON(!PageLocked(page));
1811         if (!page_has_buffers(page))
1812                 return;
1813
1814         bh = head = page_buffers(page);
1815         block_start = 0;
1816         do {
1817                 block_end = block_start + bh->b_size;
1818
1819                 if (buffer_new(bh)) {
1820                         if (block_end > from && block_start < to) {
1821                                 if (!PageUptodate(page)) {
1822                                         unsigned start, size;
1823
1824                                         start = max(from, block_start);
1825                                         size = min(to, block_end) - start;
1826
1827                                         zero_user(page, start, size);
1828                                         set_buffer_uptodate(bh);
1829                                 }
1830
1831                                 clear_buffer_new(bh);
1832                                 mark_buffer_dirty(bh);
1833                         }
1834                 }
1835
1836                 block_start = block_end;
1837                 bh = bh->b_this_page;
1838         } while (bh != head);
1839 }
1840 EXPORT_SYMBOL(page_zero_new_buffers);
1841
1842 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1843                 get_block_t *get_block)
1844 {
1845         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1846         unsigned to = from + len;
1847         struct inode *inode = page->mapping->host;
1848         unsigned block_start, block_end;
1849         sector_t block;
1850         int err = 0;
1851         unsigned blocksize, bbits;
1852         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1853
1854         BUG_ON(!PageLocked(page));
1855         BUG_ON(from > PAGE_CACHE_SIZE);
1856         BUG_ON(to > PAGE_CACHE_SIZE);
1857         BUG_ON(from > to);
1858
1859         head = create_page_buffers(page, inode, 0);
1860         blocksize = head->b_size;
1861         bbits = block_size_bits(blocksize);
1862
1863         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1864
1865         for(bh = head, block_start = 0; bh != head || !block_start;
1866             block++, block_start=block_end, bh = bh->b_this_page) {
1867                 block_end = block_start + blocksize;
1868                 if (block_end <= from || block_start >= to) {
1869                         if (PageUptodate(page)) {
1870                                 if (!buffer_uptodate(bh))
1871                                         set_buffer_uptodate(bh);
1872                         }
1873                         continue;
1874                 }
1875                 if (buffer_new(bh))
1876                         clear_buffer_new(bh);
1877                 if (!buffer_mapped(bh)) {
1878                         WARN_ON(bh->b_size != blocksize);
1879                         err = get_block(inode, block, bh, 1);
1880                         if (err)
1881                                 break;
1882                         if (buffer_new(bh)) {
1883                                 unmap_underlying_metadata(bh->b_bdev,
1884                                                         bh->b_blocknr);
1885                                 if (PageUptodate(page)) {
1886                                         clear_buffer_new(bh);
1887                                         set_buffer_uptodate(bh);
1888                                         mark_buffer_dirty(bh);
1889                                         continue;
1890                                 }
1891                                 if (block_end > to || block_start < from)
1892                                         zero_user_segments(page,
1893                                                 to, block_end,
1894                                                 block_start, from);
1895                                 continue;
1896                         }
1897                 }
1898                 if (PageUptodate(page)) {
1899                         if (!buffer_uptodate(bh))
1900                                 set_buffer_uptodate(bh);
1901                         continue; 
1902                 }
1903                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1904                     !buffer_unwritten(bh) &&
1905                      (block_start < from || block_end > to)) {
1906                         ll_rw_block(READ, 1, &bh);
1907                         *wait_bh++=bh;
1908                 }
1909         }
1910         /*
1911          * If we issued read requests - let them complete.
1912          */
1913         while(wait_bh > wait) {
1914                 wait_on_buffer(*--wait_bh);
1915                 if (!buffer_uptodate(*wait_bh))
1916                         err = -EIO;
1917         }
1918         if (unlikely(err))
1919                 page_zero_new_buffers(page, from, to);
1920         return err;
1921 }
1922 EXPORT_SYMBOL(__block_write_begin);
1923
1924 static int __block_commit_write(struct inode *inode, struct page *page,
1925                 unsigned from, unsigned to)
1926 {
1927         unsigned block_start, block_end;
1928         int partial = 0;
1929         unsigned blocksize;
1930         struct buffer_head *bh, *head;
1931
1932         bh = head = page_buffers(page);
1933         blocksize = bh->b_size;
1934
1935         block_start = 0;
1936         do {
1937                 block_end = block_start + blocksize;
1938                 if (block_end <= from || block_start >= to) {
1939                         if (!buffer_uptodate(bh))
1940                                 partial = 1;
1941                 } else {
1942                         set_buffer_uptodate(bh);
1943                         mark_buffer_dirty(bh);
1944                 }
1945                 clear_buffer_new(bh);
1946
1947                 block_start = block_end;
1948                 bh = bh->b_this_page;
1949         } while (bh != head);
1950
1951         /*
1952          * If this is a partial write which happened to make all buffers
1953          * uptodate then we can optimize away a bogus readpage() for
1954          * the next read(). Here we 'discover' whether the page went
1955          * uptodate as a result of this (potentially partial) write.
1956          */
1957         if (!partial)
1958                 SetPageUptodate(page);
1959         return 0;
1960 }
1961
1962 /*
1963  * block_write_begin takes care of the basic task of block allocation and
1964  * bringing partial write blocks uptodate first.
1965  *
1966  * The filesystem needs to handle block truncation upon failure.
1967  */
1968 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1969                 unsigned flags, struct page **pagep, get_block_t *get_block)
1970 {
1971         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1972         struct page *page;
1973         int status;
1974
1975         page = grab_cache_page_write_begin(mapping, index, flags);
1976         if (!page)
1977                 return -ENOMEM;
1978
1979         status = __block_write_begin(page, pos, len, get_block);
1980         if (unlikely(status)) {
1981                 unlock_page(page);
1982                 page_cache_release(page);
1983                 page = NULL;
1984         }
1985
1986         *pagep = page;
1987         return status;
1988 }
1989 EXPORT_SYMBOL(block_write_begin);
1990
1991 int block_write_end(struct file *file, struct address_space *mapping,
1992                         loff_t pos, unsigned len, unsigned copied,
1993                         struct page *page, void *fsdata)
1994 {
1995         struct inode *inode = mapping->host;
1996         unsigned start;
1997
1998         start = pos & (PAGE_CACHE_SIZE - 1);
1999
2000         if (unlikely(copied < len)) {
2001                 /*
2002                  * The buffers that were written will now be uptodate, so we
2003                  * don't have to worry about a readpage reading them and
2004                  * overwriting a partial write. However if we have encountered
2005                  * a short write and only partially written into a buffer, it
2006                  * will not be marked uptodate, so a readpage might come in and
2007                  * destroy our partial write.
2008                  *
2009                  * Do the simplest thing, and just treat any short write to a
2010                  * non uptodate page as a zero-length write, and force the
2011                  * caller to redo the whole thing.
2012                  */
2013                 if (!PageUptodate(page))
2014                         copied = 0;
2015
2016                 page_zero_new_buffers(page, start+copied, start+len);
2017         }
2018         flush_dcache_page(page);
2019
2020         /* This could be a short (even 0-length) commit */
2021         __block_commit_write(inode, page, start, start+copied);
2022
2023         return copied;
2024 }
2025 EXPORT_SYMBOL(block_write_end);
2026
2027 int generic_write_end(struct file *file, struct address_space *mapping,
2028                         loff_t pos, unsigned len, unsigned copied,
2029                         struct page *page, void *fsdata)
2030 {
2031         struct inode *inode = mapping->host;
2032         int i_size_changed = 0;
2033
2034         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2035
2036         /*
2037          * No need to use i_size_read() here, the i_size
2038          * cannot change under us because we hold i_mutex.
2039          *
2040          * But it's important to update i_size while still holding page lock:
2041          * page writeout could otherwise come in and zero beyond i_size.
2042          */
2043         if (pos+copied > inode->i_size) {
2044                 i_size_write(inode, pos+copied);
2045                 i_size_changed = 1;
2046         }
2047
2048         unlock_page(page);
2049         page_cache_release(page);
2050
2051         /*
2052          * Don't mark the inode dirty under page lock. First, it unnecessarily
2053          * makes the holding time of page lock longer. Second, it forces lock
2054          * ordering of page lock and transaction start for journaling
2055          * filesystems.
2056          */
2057         if (i_size_changed)
2058                 mark_inode_dirty(inode);
2059
2060         return copied;
2061 }
2062 EXPORT_SYMBOL(generic_write_end);
2063
2064 /*
2065  * block_is_partially_uptodate checks whether buffers within a page are
2066  * uptodate or not.
2067  *
2068  * Returns true if all buffers which correspond to a file portion
2069  * we want to read are uptodate.
2070  */
2071 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2072                                         unsigned long from)
2073 {
2074         unsigned block_start, block_end, blocksize;
2075         unsigned to;
2076         struct buffer_head *bh, *head;
2077         int ret = 1;
2078
2079         if (!page_has_buffers(page))
2080                 return 0;
2081
2082         head = page_buffers(page);
2083         blocksize = head->b_size;
2084         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2085         to = from + to;
2086         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2087                 return 0;
2088
2089         bh = head;
2090         block_start = 0;
2091         do {
2092                 block_end = block_start + blocksize;
2093                 if (block_end > from && block_start < to) {
2094                         if (!buffer_uptodate(bh)) {
2095                                 ret = 0;
2096                                 break;
2097                         }
2098                         if (block_end >= to)
2099                                 break;
2100                 }
2101                 block_start = block_end;
2102                 bh = bh->b_this_page;
2103         } while (bh != head);
2104
2105         return ret;
2106 }
2107 EXPORT_SYMBOL(block_is_partially_uptodate);
2108
2109 /*
2110  * Generic "read page" function for block devices that have the normal
2111  * get_block functionality. This is most of the block device filesystems.
2112  * Reads the page asynchronously --- the unlock_buffer() and
2113  * set/clear_buffer_uptodate() functions propagate buffer state into the
2114  * page struct once IO has completed.
2115  */
2116 int block_read_full_page(struct page *page, get_block_t *get_block)
2117 {
2118         struct inode *inode = page->mapping->host;
2119         sector_t iblock, lblock;
2120         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2121         unsigned int blocksize, bbits;
2122         int nr, i;
2123         int fully_mapped = 1;
2124
2125         head = create_page_buffers(page, inode, 0);
2126         blocksize = head->b_size;
2127         bbits = block_size_bits(blocksize);
2128
2129         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2130         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2131         bh = head;
2132         nr = 0;
2133         i = 0;
2134
2135         do {
2136                 if (buffer_uptodate(bh))
2137                         continue;
2138
2139                 if (!buffer_mapped(bh)) {
2140                         int err = 0;
2141
2142                         fully_mapped = 0;
2143                         if (iblock < lblock) {
2144                                 WARN_ON(bh->b_size != blocksize);
2145                                 err = get_block(inode, iblock, bh, 0);
2146                                 if (err)
2147                                         SetPageError(page);
2148                         }
2149                         if (!buffer_mapped(bh)) {
2150                                 zero_user(page, i * blocksize, blocksize);
2151                                 if (!err)
2152                                         set_buffer_uptodate(bh);
2153                                 continue;
2154                         }
2155                         /*
2156                          * get_block() might have updated the buffer
2157                          * synchronously
2158                          */
2159                         if (buffer_uptodate(bh))
2160                                 continue;
2161                 }
2162                 arr[nr++] = bh;
2163         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2164
2165         if (fully_mapped)
2166                 SetPageMappedToDisk(page);
2167
2168         if (!nr) {
2169                 /*
2170                  * All buffers are uptodate - we can set the page uptodate
2171                  * as well. But not if get_block() returned an error.
2172                  */
2173                 if (!PageError(page))
2174                         SetPageUptodate(page);
2175                 unlock_page(page);
2176                 return 0;
2177         }
2178
2179         /* Stage two: lock the buffers */
2180         for (i = 0; i < nr; i++) {
2181                 bh = arr[i];
2182                 lock_buffer(bh);
2183                 mark_buffer_async_read(bh);
2184         }
2185
2186         /*
2187          * Stage 3: start the IO.  Check for uptodateness
2188          * inside the buffer lock in case another process reading
2189          * the underlying blockdev brought it uptodate (the sct fix).
2190          */
2191         for (i = 0; i < nr; i++) {
2192                 bh = arr[i];
2193                 if (buffer_uptodate(bh))
2194                         end_buffer_async_read(bh, 1);
2195                 else
2196                         submit_bh(READ, bh);
2197         }
2198         return 0;
2199 }
2200 EXPORT_SYMBOL(block_read_full_page);
2201
2202 /* utility function for filesystems that need to do work on expanding
2203  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2204  * deal with the hole.  
2205  */
2206 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2207 {
2208         struct address_space *mapping = inode->i_mapping;
2209         struct page *page;
2210         void *fsdata;
2211         int err;
2212
2213         err = inode_newsize_ok(inode, size);
2214         if (err)
2215                 goto out;
2216
2217         err = pagecache_write_begin(NULL, mapping, size, 0,
2218                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2219                                 &page, &fsdata);
2220         if (err)
2221                 goto out;
2222
2223         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2224         BUG_ON(err > 0);
2225
2226 out:
2227         return err;
2228 }
2229 EXPORT_SYMBOL(generic_cont_expand_simple);
2230
2231 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2232                             loff_t pos, loff_t *bytes)
2233 {
2234         struct inode *inode = mapping->host;
2235         unsigned blocksize = 1 << inode->i_blkbits;
2236         struct page *page;
2237         void *fsdata;
2238         pgoff_t index, curidx;
2239         loff_t curpos;
2240         unsigned zerofrom, offset, len;
2241         int err = 0;
2242
2243         index = pos >> PAGE_CACHE_SHIFT;
2244         offset = pos & ~PAGE_CACHE_MASK;
2245
2246         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2247                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2248                 if (zerofrom & (blocksize-1)) {
2249                         *bytes |= (blocksize-1);
2250                         (*bytes)++;
2251                 }
2252                 len = PAGE_CACHE_SIZE - zerofrom;
2253
2254                 err = pagecache_write_begin(file, mapping, curpos, len,
2255                                                 AOP_FLAG_UNINTERRUPTIBLE,
2256                                                 &page, &fsdata);
2257                 if (err)
2258                         goto out;
2259                 zero_user(page, zerofrom, len);
2260                 err = pagecache_write_end(file, mapping, curpos, len, len,
2261                                                 page, fsdata);
2262                 if (err < 0)
2263                         goto out;
2264                 BUG_ON(err != len);
2265                 err = 0;
2266
2267                 balance_dirty_pages_ratelimited(mapping);
2268         }
2269
2270         /* page covers the boundary, find the boundary offset */
2271         if (index == curidx) {
2272                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2273                 /* if we will expand the thing last block will be filled */
2274                 if (offset <= zerofrom) {
2275                         goto out;
2276                 }
2277                 if (zerofrom & (blocksize-1)) {
2278                         *bytes |= (blocksize-1);
2279                         (*bytes)++;
2280                 }
2281                 len = offset - zerofrom;
2282
2283                 err = pagecache_write_begin(file, mapping, curpos, len,
2284                                                 AOP_FLAG_UNINTERRUPTIBLE,
2285                                                 &page, &fsdata);
2286                 if (err)
2287                         goto out;
2288                 zero_user(page, zerofrom, len);
2289                 err = pagecache_write_end(file, mapping, curpos, len, len,
2290                                                 page, fsdata);
2291                 if (err < 0)
2292                         goto out;
2293                 BUG_ON(err != len);
2294                 err = 0;
2295         }
2296 out:
2297         return err;
2298 }
2299
2300 /*
2301  * For moronic filesystems that do not allow holes in file.
2302  * We may have to extend the file.
2303  */
2304 int cont_write_begin(struct file *file, struct address_space *mapping,
2305                         loff_t pos, unsigned len, unsigned flags,
2306                         struct page **pagep, void **fsdata,
2307                         get_block_t *get_block, loff_t *bytes)
2308 {
2309         struct inode *inode = mapping->host;
2310         unsigned blocksize = 1 << inode->i_blkbits;
2311         unsigned zerofrom;
2312         int err;
2313
2314         err = cont_expand_zero(file, mapping, pos, bytes);
2315         if (err)
2316                 return err;
2317
2318         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2319         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2320                 *bytes |= (blocksize-1);
2321                 (*bytes)++;
2322         }
2323
2324         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2325 }
2326 EXPORT_SYMBOL(cont_write_begin);
2327
2328 int block_commit_write(struct page *page, unsigned from, unsigned to)
2329 {
2330         struct inode *inode = page->mapping->host;
2331         __block_commit_write(inode,page,from,to);
2332         return 0;
2333 }
2334 EXPORT_SYMBOL(block_commit_write);
2335
2336 /*
2337  * block_page_mkwrite() is not allowed to change the file size as it gets
2338  * called from a page fault handler when a page is first dirtied. Hence we must
2339  * be careful to check for EOF conditions here. We set the page up correctly
2340  * for a written page which means we get ENOSPC checking when writing into
2341  * holes and correct delalloc and unwritten extent mapping on filesystems that
2342  * support these features.
2343  *
2344  * We are not allowed to take the i_mutex here so we have to play games to
2345  * protect against truncate races as the page could now be beyond EOF.  Because
2346  * truncate writes the inode size before removing pages, once we have the
2347  * page lock we can determine safely if the page is beyond EOF. If it is not
2348  * beyond EOF, then the page is guaranteed safe against truncation until we
2349  * unlock the page.
2350  *
2351  * Direct callers of this function should protect against filesystem freezing
2352  * using sb_start_write() - sb_end_write() functions.
2353  */
2354 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2355                          get_block_t get_block)
2356 {
2357         struct page *page = vmf->page;
2358         struct inode *inode = file_inode(vma->vm_file);
2359         unsigned long end;
2360         loff_t size;
2361         int ret;
2362
2363         lock_page(page);
2364         size = i_size_read(inode);
2365         if ((page->mapping != inode->i_mapping) ||
2366             (page_offset(page) > size)) {
2367                 /* We overload EFAULT to mean page got truncated */
2368                 ret = -EFAULT;
2369                 goto out_unlock;
2370         }
2371
2372         /* page is wholly or partially inside EOF */
2373         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2374                 end = size & ~PAGE_CACHE_MASK;
2375         else
2376                 end = PAGE_CACHE_SIZE;
2377
2378         ret = __block_write_begin(page, 0, end, get_block);
2379         if (!ret)
2380                 ret = block_commit_write(page, 0, end);
2381
2382         if (unlikely(ret < 0))
2383                 goto out_unlock;
2384         set_page_dirty(page);
2385         wait_for_stable_page(page);
2386         return 0;
2387 out_unlock:
2388         unlock_page(page);
2389         return ret;
2390 }
2391 EXPORT_SYMBOL(__block_page_mkwrite);
2392
2393 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2394                    get_block_t get_block)
2395 {
2396         int ret;
2397         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2398
2399         sb_start_pagefault(sb);
2400
2401         /*
2402          * Update file times before taking page lock. We may end up failing the
2403          * fault so this update may be superfluous but who really cares...
2404          */
2405         file_update_time(vma->vm_file);
2406
2407         ret = __block_page_mkwrite(vma, vmf, get_block);
2408         sb_end_pagefault(sb);
2409         return block_page_mkwrite_return(ret);
2410 }
2411 EXPORT_SYMBOL(block_page_mkwrite);
2412
2413 /*
2414  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2415  * immediately, while under the page lock.  So it needs a special end_io
2416  * handler which does not touch the bh after unlocking it.
2417  */
2418 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2419 {
2420         __end_buffer_read_notouch(bh, uptodate);
2421 }
2422
2423 /*
2424  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2425  * the page (converting it to circular linked list and taking care of page
2426  * dirty races).
2427  */
2428 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2429 {
2430         struct buffer_head *bh;
2431
2432         BUG_ON(!PageLocked(page));
2433
2434         spin_lock(&page->mapping->private_lock);
2435         bh = head;
2436         do {
2437                 if (PageDirty(page))
2438                         set_buffer_dirty(bh);
2439                 if (!bh->b_this_page)
2440                         bh->b_this_page = head;
2441                 bh = bh->b_this_page;
2442         } while (bh != head);
2443         attach_page_buffers(page, head);
2444         spin_unlock(&page->mapping->private_lock);
2445 }
2446
2447 /*
2448  * On entry, the page is fully not uptodate.
2449  * On exit the page is fully uptodate in the areas outside (from,to)
2450  * The filesystem needs to handle block truncation upon failure.
2451  */
2452 int nobh_write_begin(struct address_space *mapping,
2453                         loff_t pos, unsigned len, unsigned flags,
2454                         struct page **pagep, void **fsdata,
2455                         get_block_t *get_block)
2456 {
2457         struct inode *inode = mapping->host;
2458         const unsigned blkbits = inode->i_blkbits;
2459         const unsigned blocksize = 1 << blkbits;
2460         struct buffer_head *head, *bh;
2461         struct page *page;
2462         pgoff_t index;
2463         unsigned from, to;
2464         unsigned block_in_page;
2465         unsigned block_start, block_end;
2466         sector_t block_in_file;
2467         int nr_reads = 0;
2468         int ret = 0;
2469         int is_mapped_to_disk = 1;
2470
2471         index = pos >> PAGE_CACHE_SHIFT;
2472         from = pos & (PAGE_CACHE_SIZE - 1);
2473         to = from + len;
2474
2475         page = grab_cache_page_write_begin(mapping, index, flags);
2476         if (!page)
2477                 return -ENOMEM;
2478         *pagep = page;
2479         *fsdata = NULL;
2480
2481         if (page_has_buffers(page)) {
2482                 ret = __block_write_begin(page, pos, len, get_block);
2483                 if (unlikely(ret))
2484                         goto out_release;
2485                 return ret;
2486         }
2487
2488         if (PageMappedToDisk(page))
2489                 return 0;
2490
2491         /*
2492          * Allocate buffers so that we can keep track of state, and potentially
2493          * attach them to the page if an error occurs. In the common case of
2494          * no error, they will just be freed again without ever being attached
2495          * to the page (which is all OK, because we're under the page lock).
2496          *
2497          * Be careful: the buffer linked list is a NULL terminated one, rather
2498          * than the circular one we're used to.
2499          */
2500         head = alloc_page_buffers(page, blocksize, 0);
2501         if (!head) {
2502                 ret = -ENOMEM;
2503                 goto out_release;
2504         }
2505
2506         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2507
2508         /*
2509          * We loop across all blocks in the page, whether or not they are
2510          * part of the affected region.  This is so we can discover if the
2511          * page is fully mapped-to-disk.
2512          */
2513         for (block_start = 0, block_in_page = 0, bh = head;
2514                   block_start < PAGE_CACHE_SIZE;
2515                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2516                 int create;
2517
2518                 block_end = block_start + blocksize;
2519                 bh->b_state = 0;
2520                 create = 1;
2521                 if (block_start >= to)
2522                         create = 0;
2523                 ret = get_block(inode, block_in_file + block_in_page,
2524                                         bh, create);
2525                 if (ret)
2526                         goto failed;
2527                 if (!buffer_mapped(bh))
2528                         is_mapped_to_disk = 0;
2529                 if (buffer_new(bh))
2530                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2531                 if (PageUptodate(page)) {
2532                         set_buffer_uptodate(bh);
2533                         continue;
2534                 }
2535                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2536                         zero_user_segments(page, block_start, from,
2537                                                         to, block_end);
2538                         continue;
2539                 }
2540                 if (buffer_uptodate(bh))
2541                         continue;       /* reiserfs does this */
2542                 if (block_start < from || block_end > to) {
2543                         lock_buffer(bh);
2544                         bh->b_end_io = end_buffer_read_nobh;
2545                         submit_bh(READ, bh);
2546                         nr_reads++;
2547                 }
2548         }
2549
2550         if (nr_reads) {
2551                 /*
2552                  * The page is locked, so these buffers are protected from
2553                  * any VM or truncate activity.  Hence we don't need to care
2554                  * for the buffer_head refcounts.
2555                  */
2556                 for (bh = head; bh; bh = bh->b_this_page) {
2557                         wait_on_buffer(bh);
2558                         if (!buffer_uptodate(bh))
2559                                 ret = -EIO;
2560                 }
2561                 if (ret)
2562                         goto failed;
2563         }
2564
2565         if (is_mapped_to_disk)
2566                 SetPageMappedToDisk(page);
2567
2568         *fsdata = head; /* to be released by nobh_write_end */
2569
2570         return 0;
2571
2572 failed:
2573         BUG_ON(!ret);
2574         /*
2575          * Error recovery is a bit difficult. We need to zero out blocks that
2576          * were newly allocated, and dirty them to ensure they get written out.
2577          * Buffers need to be attached to the page at this point, otherwise
2578          * the handling of potential IO errors during writeout would be hard
2579          * (could try doing synchronous writeout, but what if that fails too?)
2580          */
2581         attach_nobh_buffers(page, head);
2582         page_zero_new_buffers(page, from, to);
2583
2584 out_release:
2585         unlock_page(page);
2586         page_cache_release(page);
2587         *pagep = NULL;
2588
2589         return ret;
2590 }
2591 EXPORT_SYMBOL(nobh_write_begin);
2592
2593 int nobh_write_end(struct file *file, struct address_space *mapping,
2594                         loff_t pos, unsigned len, unsigned copied,
2595                         struct page *page, void *fsdata)
2596 {
2597         struct inode *inode = page->mapping->host;
2598         struct buffer_head *head = fsdata;
2599         struct buffer_head *bh;
2600         BUG_ON(fsdata != NULL && page_has_buffers(page));
2601
2602         if (unlikely(copied < len) && head)
2603                 attach_nobh_buffers(page, head);
2604         if (page_has_buffers(page))
2605                 return generic_write_end(file, mapping, pos, len,
2606                                         copied, page, fsdata);
2607
2608         SetPageUptodate(page);
2609         set_page_dirty(page);
2610         if (pos+copied > inode->i_size) {
2611                 i_size_write(inode, pos+copied);
2612                 mark_inode_dirty(inode);
2613         }
2614
2615         unlock_page(page);
2616         page_cache_release(page);
2617
2618         while (head) {
2619                 bh = head;
2620                 head = head->b_this_page;
2621                 free_buffer_head(bh);
2622         }
2623
2624         return copied;
2625 }
2626 EXPORT_SYMBOL(nobh_write_end);
2627
2628 /*
2629  * nobh_writepage() - based on block_full_write_page() except
2630  * that it tries to operate without attaching bufferheads to
2631  * the page.
2632  */
2633 int nobh_writepage(struct page *page, get_block_t *get_block,
2634                         struct writeback_control *wbc)
2635 {
2636         struct inode * const inode = page->mapping->host;
2637         loff_t i_size = i_size_read(inode);
2638         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2639         unsigned offset;
2640         int ret;
2641
2642         /* Is the page fully inside i_size? */
2643         if (page->index < end_index)
2644                 goto out;
2645
2646         /* Is the page fully outside i_size? (truncate in progress) */
2647         offset = i_size & (PAGE_CACHE_SIZE-1);
2648         if (page->index >= end_index+1 || !offset) {
2649                 /*
2650                  * The page may have dirty, unmapped buffers.  For example,
2651                  * they may have been added in ext3_writepage().  Make them
2652                  * freeable here, so the page does not leak.
2653                  */
2654 #if 0
2655                 /* Not really sure about this  - do we need this ? */
2656                 if (page->mapping->a_ops->invalidatepage)
2657                         page->mapping->a_ops->invalidatepage(page, offset);
2658 #endif
2659                 unlock_page(page);
2660                 return 0; /* don't care */
2661         }
2662
2663         /*
2664          * The page straddles i_size.  It must be zeroed out on each and every
2665          * writepage invocation because it may be mmapped.  "A file is mapped
2666          * in multiples of the page size.  For a file that is not a multiple of
2667          * the  page size, the remaining memory is zeroed when mapped, and
2668          * writes to that region are not written out to the file."
2669          */
2670         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2671 out:
2672         ret = mpage_writepage(page, get_block, wbc);
2673         if (ret == -EAGAIN)
2674                 ret = __block_write_full_page(inode, page, get_block, wbc,
2675                                               end_buffer_async_write);
2676         return ret;
2677 }
2678 EXPORT_SYMBOL(nobh_writepage);
2679
2680 int nobh_truncate_page(struct address_space *mapping,
2681                         loff_t from, get_block_t *get_block)
2682 {
2683         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2684         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2685         unsigned blocksize;
2686         sector_t iblock;
2687         unsigned length, pos;
2688         struct inode *inode = mapping->host;
2689         struct page *page;
2690         struct buffer_head map_bh;
2691         int err;
2692
2693         blocksize = 1 << inode->i_blkbits;
2694         length = offset & (blocksize - 1);
2695
2696         /* Block boundary? Nothing to do */
2697         if (!length)
2698                 return 0;
2699
2700         length = blocksize - length;
2701         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2702
2703         page = grab_cache_page(mapping, index);
2704         err = -ENOMEM;
2705         if (!page)
2706                 goto out;
2707
2708         if (page_has_buffers(page)) {
2709 has_buffers:
2710                 unlock_page(page);
2711                 page_cache_release(page);
2712                 return block_truncate_page(mapping, from, get_block);
2713         }
2714
2715         /* Find the buffer that contains "offset" */
2716         pos = blocksize;
2717         while (offset >= pos) {
2718                 iblock++;
2719                 pos += blocksize;
2720         }
2721
2722         map_bh.b_size = blocksize;
2723         map_bh.b_state = 0;
2724         err = get_block(inode, iblock, &map_bh, 0);
2725         if (err)
2726                 goto unlock;
2727         /* unmapped? It's a hole - nothing to do */
2728         if (!buffer_mapped(&map_bh))
2729                 goto unlock;
2730
2731         /* Ok, it's mapped. Make sure it's up-to-date */
2732         if (!PageUptodate(page)) {
2733                 err = mapping->a_ops->readpage(NULL, page);
2734                 if (err) {
2735                         page_cache_release(page);
2736                         goto out;
2737                 }
2738                 lock_page(page);
2739                 if (!PageUptodate(page)) {
2740                         err = -EIO;
2741                         goto unlock;
2742                 }
2743                 if (page_has_buffers(page))
2744                         goto has_buffers;
2745         }
2746         zero_user(page, offset, length);
2747         set_page_dirty(page);
2748         err = 0;
2749
2750 unlock:
2751         unlock_page(page);
2752         page_cache_release(page);
2753 out:
2754         return err;
2755 }
2756 EXPORT_SYMBOL(nobh_truncate_page);
2757
2758 int block_truncate_page(struct address_space *mapping,
2759                         loff_t from, get_block_t *get_block)
2760 {
2761         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2762         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2763         unsigned blocksize;
2764         sector_t iblock;
2765         unsigned length, pos;
2766         struct inode *inode = mapping->host;
2767         struct page *page;
2768         struct buffer_head *bh;
2769         int err;
2770
2771         blocksize = 1 << inode->i_blkbits;
2772         length = offset & (blocksize - 1);
2773
2774         /* Block boundary? Nothing to do */
2775         if (!length)
2776                 return 0;
2777
2778         length = blocksize - length;
2779         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2780         
2781         page = grab_cache_page(mapping, index);
2782         err = -ENOMEM;
2783         if (!page)
2784                 goto out;
2785
2786         if (!page_has_buffers(page))
2787                 create_empty_buffers(page, blocksize, 0);
2788
2789         /* Find the buffer that contains "offset" */
2790         bh = page_buffers(page);
2791         pos = blocksize;
2792         while (offset >= pos) {
2793                 bh = bh->b_this_page;
2794                 iblock++;
2795                 pos += blocksize;
2796         }
2797
2798         err = 0;
2799         if (!buffer_mapped(bh)) {
2800                 WARN_ON(bh->b_size != blocksize);
2801                 err = get_block(inode, iblock, bh, 0);
2802                 if (err)
2803                         goto unlock;
2804                 /* unmapped? It's a hole - nothing to do */
2805                 if (!buffer_mapped(bh))
2806                         goto unlock;
2807         }
2808
2809         /* Ok, it's mapped. Make sure it's up-to-date */
2810         if (PageUptodate(page))
2811                 set_buffer_uptodate(bh);
2812
2813         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2814                 err = -EIO;
2815                 ll_rw_block(READ, 1, &bh);
2816                 wait_on_buffer(bh);
2817                 /* Uhhuh. Read error. Complain and punt. */
2818                 if (!buffer_uptodate(bh))
2819                         goto unlock;
2820         }
2821
2822         zero_user(page, offset, length);
2823         mark_buffer_dirty(bh);
2824         err = 0;
2825
2826 unlock:
2827         unlock_page(page);
2828         page_cache_release(page);
2829 out:
2830         return err;
2831 }
2832 EXPORT_SYMBOL(block_truncate_page);
2833
2834 /*
2835  * The generic ->writepage function for buffer-backed address_spaces
2836  * this form passes in the end_io handler used to finish the IO.
2837  */
2838 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2839                         struct writeback_control *wbc, bh_end_io_t *handler)
2840 {
2841         struct inode * const inode = page->mapping->host;
2842         loff_t i_size = i_size_read(inode);
2843         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2844         unsigned offset;
2845
2846         /* Is the page fully inside i_size? */
2847         if (page->index < end_index)
2848                 return __block_write_full_page(inode, page, get_block, wbc,
2849                                                handler);
2850
2851         /* Is the page fully outside i_size? (truncate in progress) */
2852         offset = i_size & (PAGE_CACHE_SIZE-1);
2853         if (page->index >= end_index+1 || !offset) {
2854                 /*
2855                  * The page may have dirty, unmapped buffers.  For example,
2856                  * they may have been added in ext3_writepage().  Make them
2857                  * freeable here, so the page does not leak.
2858                  */
2859                 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2860                 unlock_page(page);
2861                 return 0; /* don't care */
2862         }
2863
2864         /*
2865          * The page straddles i_size.  It must be zeroed out on each and every
2866          * writepage invocation because it may be mmapped.  "A file is mapped
2867          * in multiples of the page size.  For a file that is not a multiple of
2868          * the  page size, the remaining memory is zeroed when mapped, and
2869          * writes to that region are not written out to the file."
2870          */
2871         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2872         return __block_write_full_page(inode, page, get_block, wbc, handler);
2873 }
2874 EXPORT_SYMBOL(block_write_full_page_endio);
2875
2876 /*
2877  * The generic ->writepage function for buffer-backed address_spaces
2878  */
2879 int block_write_full_page(struct page *page, get_block_t *get_block,
2880                         struct writeback_control *wbc)
2881 {
2882         return block_write_full_page_endio(page, get_block, wbc,
2883                                            end_buffer_async_write);
2884 }
2885 EXPORT_SYMBOL(block_write_full_page);
2886
2887 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2888                             get_block_t *get_block)
2889 {
2890         struct buffer_head tmp;
2891         struct inode *inode = mapping->host;
2892         tmp.b_state = 0;
2893         tmp.b_blocknr = 0;
2894         tmp.b_size = 1 << inode->i_blkbits;
2895         get_block(inode, block, &tmp, 0);
2896         return tmp.b_blocknr;
2897 }
2898 EXPORT_SYMBOL(generic_block_bmap);
2899
2900 static void end_bio_bh_io_sync(struct bio *bio, int err)
2901 {
2902         struct buffer_head *bh = bio->bi_private;
2903
2904         if (err == -EOPNOTSUPP) {
2905                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2906         }
2907
2908         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2909                 set_bit(BH_Quiet, &bh->b_state);
2910
2911         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2912         bio_put(bio);
2913 }
2914
2915 /*
2916  * This allows us to do IO even on the odd last sectors
2917  * of a device, even if the bh block size is some multiple
2918  * of the physical sector size.
2919  *
2920  * We'll just truncate the bio to the size of the device,
2921  * and clear the end of the buffer head manually.
2922  *
2923  * Truly out-of-range accesses will turn into actual IO
2924  * errors, this only handles the "we need to be able to
2925  * do IO at the final sector" case.
2926  */
2927 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2928 {
2929         sector_t maxsector;
2930         unsigned bytes;
2931
2932         maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2933         if (!maxsector)
2934                 return;
2935
2936         /*
2937          * If the *whole* IO is past the end of the device,
2938          * let it through, and the IO layer will turn it into
2939          * an EIO.
2940          */
2941         if (unlikely(bio->bi_sector >= maxsector))
2942                 return;
2943
2944         maxsector -= bio->bi_sector;
2945         bytes = bio->bi_size;
2946         if (likely((bytes >> 9) <= maxsector))
2947                 return;
2948
2949         /* Uhhuh. We've got a bh that straddles the device size! */
2950         bytes = maxsector << 9;
2951
2952         /* Truncate the bio.. */
2953         bio->bi_size = bytes;
2954         bio->bi_io_vec[0].bv_len = bytes;
2955
2956         /* ..and clear the end of the buffer for reads */
2957         if ((rw & RW_MASK) == READ) {
2958                 void *kaddr = kmap_atomic(bh->b_page);
2959                 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
2960                 kunmap_atomic(kaddr);
2961                 flush_dcache_page(bh->b_page);
2962         }
2963 }
2964
2965 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
2966 {
2967         struct bio *bio;
2968         int ret = 0;
2969
2970         BUG_ON(!buffer_locked(bh));
2971         BUG_ON(!buffer_mapped(bh));
2972         BUG_ON(!bh->b_end_io);
2973         BUG_ON(buffer_delay(bh));
2974         BUG_ON(buffer_unwritten(bh));
2975
2976         /*
2977          * Only clear out a write error when rewriting
2978          */
2979         if (test_set_buffer_req(bh) && (rw & WRITE))
2980                 clear_buffer_write_io_error(bh);
2981
2982         /*
2983          * from here on down, it's all bio -- do the initial mapping,
2984          * submit_bio -> generic_make_request may further map this bio around
2985          */
2986         bio = bio_alloc(GFP_NOIO, 1);
2987
2988         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2989         bio->bi_bdev = bh->b_bdev;
2990         bio->bi_io_vec[0].bv_page = bh->b_page;
2991         bio->bi_io_vec[0].bv_len = bh->b_size;
2992         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2993
2994         bio->bi_vcnt = 1;
2995         bio->bi_size = bh->b_size;
2996
2997         bio->bi_end_io = end_bio_bh_io_sync;
2998         bio->bi_private = bh;
2999         bio->bi_flags |= bio_flags;
3000
3001         /* Take care of bh's that straddle the end of the device */
3002         guard_bh_eod(rw, bio, bh);
3003
3004         if (buffer_meta(bh))
3005                 rw |= REQ_META;
3006         if (buffer_prio(bh))
3007                 rw |= REQ_PRIO;
3008
3009         bio_get(bio);
3010         submit_bio(rw, bio);
3011
3012         if (bio_flagged(bio, BIO_EOPNOTSUPP))
3013                 ret = -EOPNOTSUPP;
3014
3015         bio_put(bio);
3016         return ret;
3017 }
3018 EXPORT_SYMBOL_GPL(_submit_bh);
3019
3020 int submit_bh(int rw, struct buffer_head *bh)
3021 {
3022         return _submit_bh(rw, bh, 0);
3023 }
3024 EXPORT_SYMBOL(submit_bh);
3025
3026 /**
3027  * ll_rw_block: low-level access to block devices (DEPRECATED)
3028  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3029  * @nr: number of &struct buffer_heads in the array
3030  * @bhs: array of pointers to &struct buffer_head
3031  *
3032  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3033  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3034  * %READA option is described in the documentation for generic_make_request()
3035  * which ll_rw_block() calls.
3036  *
3037  * This function drops any buffer that it cannot get a lock on (with the
3038  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3039  * request, and any buffer that appears to be up-to-date when doing read
3040  * request.  Further it marks as clean buffers that are processed for
3041  * writing (the buffer cache won't assume that they are actually clean
3042  * until the buffer gets unlocked).
3043  *
3044  * ll_rw_block sets b_end_io to simple completion handler that marks
3045  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3046  * any waiters. 
3047  *
3048  * All of the buffers must be for the same device, and must also be a
3049  * multiple of the current approved size for the device.
3050  */
3051 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3052 {
3053         int i;
3054
3055         for (i = 0; i < nr; i++) {
3056                 struct buffer_head *bh = bhs[i];
3057
3058                 if (!trylock_buffer(bh))
3059                         continue;
3060                 if (rw == WRITE) {
3061                         if (test_clear_buffer_dirty(bh)) {
3062                                 bh->b_end_io = end_buffer_write_sync;
3063                                 get_bh(bh);
3064                                 submit_bh(WRITE, bh);
3065                                 continue;
3066                         }
3067                 } else {
3068                         if (!buffer_uptodate(bh)) {
3069                                 bh->b_end_io = end_buffer_read_sync;
3070                                 get_bh(bh);
3071                                 submit_bh(rw, bh);
3072                                 continue;
3073                         }
3074                 }
3075                 unlock_buffer(bh);
3076         }
3077 }
3078 EXPORT_SYMBOL(ll_rw_block);
3079
3080 void write_dirty_buffer(struct buffer_head *bh, int rw)
3081 {
3082         lock_buffer(bh);
3083         if (!test_clear_buffer_dirty(bh)) {
3084                 unlock_buffer(bh);
3085                 return;
3086         }
3087         bh->b_end_io = end_buffer_write_sync;
3088         get_bh(bh);
3089         submit_bh(rw, bh);
3090 }
3091 EXPORT_SYMBOL(write_dirty_buffer);
3092
3093 /*
3094  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3095  * and then start new I/O and then wait upon it.  The caller must have a ref on
3096  * the buffer_head.
3097  */
3098 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3099 {
3100         int ret = 0;
3101
3102         WARN_ON(atomic_read(&bh->b_count) < 1);
3103         lock_buffer(bh);
3104         if (test_clear_buffer_dirty(bh)) {
3105                 get_bh(bh);
3106                 bh->b_end_io = end_buffer_write_sync;
3107                 ret = submit_bh(rw, bh);
3108                 wait_on_buffer(bh);
3109                 if (!ret && !buffer_uptodate(bh))
3110                         ret = -EIO;
3111         } else {
3112                 unlock_buffer(bh);
3113         }
3114         return ret;
3115 }
3116 EXPORT_SYMBOL(__sync_dirty_buffer);
3117
3118 int sync_dirty_buffer(struct buffer_head *bh)
3119 {
3120         return __sync_dirty_buffer(bh, WRITE_SYNC);
3121 }
3122 EXPORT_SYMBOL(sync_dirty_buffer);
3123
3124 /*
3125  * try_to_free_buffers() checks if all the buffers on this particular page
3126  * are unused, and releases them if so.
3127  *
3128  * Exclusion against try_to_free_buffers may be obtained by either
3129  * locking the page or by holding its mapping's private_lock.
3130  *
3131  * If the page is dirty but all the buffers are clean then we need to
3132  * be sure to mark the page clean as well.  This is because the page
3133  * may be against a block device, and a later reattachment of buffers
3134  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3135  * filesystem data on the same device.
3136  *
3137  * The same applies to regular filesystem pages: if all the buffers are
3138  * clean then we set the page clean and proceed.  To do that, we require
3139  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3140  * private_lock.
3141  *
3142  * try_to_free_buffers() is non-blocking.
3143  */
3144 static inline int buffer_busy(struct buffer_head *bh)
3145 {
3146         return atomic_read(&bh->b_count) |
3147                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3148 }
3149
3150 static int
3151 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3152 {
3153         struct buffer_head *head = page_buffers(page);
3154         struct buffer_head *bh;
3155
3156         bh = head;
3157         do {
3158                 if (buffer_write_io_error(bh) && page->mapping)
3159                         set_bit(AS_EIO, &page->mapping->flags);
3160                 if (buffer_busy(bh))
3161                         goto failed;
3162                 bh = bh->b_this_page;
3163         } while (bh != head);
3164
3165         do {
3166                 struct buffer_head *next = bh->b_this_page;
3167
3168                 if (bh->b_assoc_map)
3169                         __remove_assoc_queue(bh);
3170                 bh = next;
3171         } while (bh != head);
3172         *buffers_to_free = head;
3173         __clear_page_buffers(page);
3174         return 1;
3175 failed:
3176         return 0;
3177 }
3178
3179 int try_to_free_buffers(struct page *page)
3180 {
3181         struct address_space * const mapping = page->mapping;
3182         struct buffer_head *buffers_to_free = NULL;
3183         int ret = 0;
3184
3185         BUG_ON(!PageLocked(page));
3186         if (PageWriteback(page))
3187                 return 0;
3188
3189         if (mapping == NULL) {          /* can this still happen? */
3190                 ret = drop_buffers(page, &buffers_to_free);
3191                 goto out;
3192         }
3193
3194         spin_lock(&mapping->private_lock);
3195         ret = drop_buffers(page, &buffers_to_free);
3196
3197         /*
3198          * If the filesystem writes its buffers by hand (eg ext3)
3199          * then we can have clean buffers against a dirty page.  We
3200          * clean the page here; otherwise the VM will never notice
3201          * that the filesystem did any IO at all.
3202          *
3203          * Also, during truncate, discard_buffer will have marked all
3204          * the page's buffers clean.  We discover that here and clean
3205          * the page also.
3206          *
3207          * private_lock must be held over this entire operation in order
3208          * to synchronise against __set_page_dirty_buffers and prevent the
3209          * dirty bit from being lost.
3210          */
3211         if (ret)
3212                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3213         spin_unlock(&mapping->private_lock);
3214 out:
3215         if (buffers_to_free) {
3216                 struct buffer_head *bh = buffers_to_free;
3217
3218                 do {
3219                         struct buffer_head *next = bh->b_this_page;
3220                         free_buffer_head(bh);
3221                         bh = next;
3222                 } while (bh != buffers_to_free);
3223         }
3224         return ret;
3225 }
3226 EXPORT_SYMBOL(try_to_free_buffers);
3227
3228 /*
3229  * There are no bdflush tunables left.  But distributions are
3230  * still running obsolete flush daemons, so we terminate them here.
3231  *
3232  * Use of bdflush() is deprecated and will be removed in a future kernel.
3233  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3234  */
3235 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3236 {
3237         static int msg_count;
3238
3239         if (!capable(CAP_SYS_ADMIN))
3240                 return -EPERM;
3241
3242         if (msg_count < 5) {
3243                 msg_count++;
3244                 printk(KERN_INFO
3245                         "warning: process `%s' used the obsolete bdflush"
3246                         " system call\n", current->comm);
3247                 printk(KERN_INFO "Fix your initscripts?\n");
3248         }
3249
3250         if (func == 1)
3251                 do_exit(0);
3252         return 0;
3253 }
3254
3255 /*
3256  * Buffer-head allocation
3257  */
3258 static struct kmem_cache *bh_cachep __read_mostly;
3259
3260 /*
3261  * Once the number of bh's in the machine exceeds this level, we start
3262  * stripping them in writeback.
3263  */
3264 static unsigned long max_buffer_heads;
3265
3266 int buffer_heads_over_limit;
3267
3268 struct bh_accounting {
3269         int nr;                 /* Number of live bh's */
3270         int ratelimit;          /* Limit cacheline bouncing */
3271 };
3272
3273 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3274
3275 static void recalc_bh_state(void)
3276 {
3277         int i;
3278         int tot = 0;
3279
3280         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3281                 return;
3282         __this_cpu_write(bh_accounting.ratelimit, 0);
3283         for_each_online_cpu(i)
3284                 tot += per_cpu(bh_accounting, i).nr;
3285         buffer_heads_over_limit = (tot > max_buffer_heads);
3286 }
3287
3288 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3289 {
3290         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3291         if (ret) {
3292                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3293                 preempt_disable();
3294                 __this_cpu_inc(bh_accounting.nr);
3295                 recalc_bh_state();
3296                 preempt_enable();
3297         }
3298         return ret;
3299 }
3300 EXPORT_SYMBOL(alloc_buffer_head);
3301
3302 void free_buffer_head(struct buffer_head *bh)
3303 {
3304         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3305         kmem_cache_free(bh_cachep, bh);
3306         preempt_disable();
3307         __this_cpu_dec(bh_accounting.nr);
3308         recalc_bh_state();
3309         preempt_enable();
3310 }
3311 EXPORT_SYMBOL(free_buffer_head);
3312
3313 static void buffer_exit_cpu(int cpu)
3314 {
3315         int i;
3316         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3317
3318         for (i = 0; i < BH_LRU_SIZE; i++) {
3319                 brelse(b->bhs[i]);
3320                 b->bhs[i] = NULL;
3321         }
3322         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3323         per_cpu(bh_accounting, cpu).nr = 0;
3324 }
3325
3326 static int buffer_cpu_notify(struct notifier_block *self,
3327                               unsigned long action, void *hcpu)
3328 {
3329         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3330                 buffer_exit_cpu((unsigned long)hcpu);
3331         return NOTIFY_OK;
3332 }
3333
3334 /**
3335  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3336  * @bh: struct buffer_head
3337  *
3338  * Return true if the buffer is up-to-date and false,
3339  * with the buffer locked, if not.
3340  */
3341 int bh_uptodate_or_lock(struct buffer_head *bh)
3342 {
3343         if (!buffer_uptodate(bh)) {
3344                 lock_buffer(bh);
3345                 if (!buffer_uptodate(bh))
3346                         return 0;
3347                 unlock_buffer(bh);
3348         }
3349         return 1;
3350 }
3351 EXPORT_SYMBOL(bh_uptodate_or_lock);
3352
3353 /**
3354  * bh_submit_read - Submit a locked buffer for reading
3355  * @bh: struct buffer_head
3356  *
3357  * Returns zero on success and -EIO on error.
3358  */
3359 int bh_submit_read(struct buffer_head *bh)
3360 {
3361         BUG_ON(!buffer_locked(bh));
3362
3363         if (buffer_uptodate(bh)) {
3364                 unlock_buffer(bh);
3365                 return 0;
3366         }
3367
3368         get_bh(bh);
3369         bh->b_end_io = end_buffer_read_sync;
3370         submit_bh(READ, bh);
3371         wait_on_buffer(bh);
3372         if (buffer_uptodate(bh))
3373                 return 0;
3374         return -EIO;
3375 }
3376 EXPORT_SYMBOL(bh_submit_read);
3377
3378 void __init buffer_init(void)
3379 {
3380         unsigned long nrpages;
3381
3382         bh_cachep = kmem_cache_create("buffer_head",
3383                         sizeof(struct buffer_head), 0,
3384                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3385                                 SLAB_MEM_SPREAD),
3386                                 NULL);
3387
3388         /*
3389          * Limit the bh occupancy to 10% of ZONE_NORMAL
3390          */
3391         nrpages = (nr_free_buffer_pages() * 10) / 100;
3392         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3393         hotcpu_notifier(buffer_cpu_notify, 0);
3394 }