Bluetooth: IPSP Connect/Disconnect apis
[profile/mobile/platform/kernel/linux-3.10-sc7730.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59         trace_block_touch_buffer(bh);
60         mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63
64 static int sleep_on_buffer(void *word)
65 {
66         io_schedule();
67         return 0;
68 }
69
70 void __lock_buffer(struct buffer_head *bh)
71 {
72         wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
73                                                         TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void unlock_buffer(struct buffer_head *bh)
78 {
79         clear_bit_unlock(BH_Lock, &bh->b_state);
80         smp_mb__after_clear_bit();
81         wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 EXPORT_SYMBOL(unlock_buffer);
84
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92         wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
93 }
94 EXPORT_SYMBOL(__wait_on_buffer);
95
96 static void
97 __clear_page_buffers(struct page *page)
98 {
99         ClearPagePrivate(page);
100         set_page_private(page, 0);
101         page_cache_release(page);
102 }
103
104
105 static int quiet_error(struct buffer_head *bh)
106 {
107         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
108                 return 0;
109         return 1;
110 }
111
112
113 static void buffer_io_error(struct buffer_head *bh)
114 {
115         char b[BDEVNAME_SIZE];
116         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
117                         bdevname(bh->b_bdev, b),
118                         (unsigned long long)bh->b_blocknr);
119 }
120
121 /*
122  * End-of-IO handler helper function which does not touch the bh after
123  * unlocking it.
124  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
125  * a race there is benign: unlock_buffer() only use the bh's address for
126  * hashing after unlocking the buffer, so it doesn't actually touch the bh
127  * itself.
128  */
129 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
130 {
131         if (uptodate) {
132                 set_buffer_uptodate(bh);
133         } else {
134                 /* This happens, due to failed READA attempts. */
135                 clear_buffer_uptodate(bh);
136         }
137         unlock_buffer(bh);
138 }
139
140 /*
141  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
142  * unlock the buffer. This is what ll_rw_block uses too.
143  */
144 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
145 {
146         __end_buffer_read_notouch(bh, uptodate);
147         put_bh(bh);
148 }
149 EXPORT_SYMBOL(end_buffer_read_sync);
150
151 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
152 {
153         char b[BDEVNAME_SIZE];
154
155         if (uptodate) {
156                 set_buffer_uptodate(bh);
157         } else {
158                 if (!quiet_error(bh)) {
159                         buffer_io_error(bh);
160                         printk(KERN_WARNING "lost page write due to "
161                                         "I/O error on %s\n",
162                                        bdevname(bh->b_bdev, b));
163                 }
164                 set_buffer_write_io_error(bh);
165                 clear_buffer_uptodate(bh);
166         }
167         unlock_buffer(bh);
168         put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_write_sync);
171
172 /*
173  * Various filesystems appear to want __find_get_block to be non-blocking.
174  * But it's the page lock which protects the buffers.  To get around this,
175  * we get exclusion from try_to_free_buffers with the blockdev mapping's
176  * private_lock.
177  *
178  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
179  * may be quite high.  This code could TryLock the page, and if that
180  * succeeds, there is no need to take private_lock. (But if
181  * private_lock is contended then so is mapping->tree_lock).
182  */
183 static struct buffer_head *
184 __find_get_block_slow(struct block_device *bdev, sector_t block)
185 {
186         struct inode *bd_inode = bdev->bd_inode;
187         struct address_space *bd_mapping = bd_inode->i_mapping;
188         struct buffer_head *ret = NULL;
189         pgoff_t index;
190         struct buffer_head *bh;
191         struct buffer_head *head;
192         struct page *page;
193         int all_mapped = 1;
194
195         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
196         page = find_get_page(bd_mapping, index);
197         if (!page)
198                 goto out;
199
200         spin_lock(&bd_mapping->private_lock);
201         if (!page_has_buffers(page))
202                 goto out_unlock;
203         head = page_buffers(page);
204         bh = head;
205         do {
206                 if (!buffer_mapped(bh))
207                         all_mapped = 0;
208                 else if (bh->b_blocknr == block) {
209                         ret = bh;
210                         get_bh(bh);
211                         goto out_unlock;
212                 }
213                 bh = bh->b_this_page;
214         } while (bh != head);
215
216         /* we might be here because some of the buffers on this page are
217          * not mapped.  This is due to various races between
218          * file io on the block device and getblk.  It gets dealt with
219          * elsewhere, don't buffer_error if we had some unmapped buffers
220          */
221         if (all_mapped) {
222                 char b[BDEVNAME_SIZE];
223
224                 printk("__find_get_block_slow() failed. "
225                         "block=%llu, b_blocknr=%llu\n",
226                         (unsigned long long)block,
227                         (unsigned long long)bh->b_blocknr);
228                 printk("b_state=0x%08lx, b_size=%zu\n",
229                         bh->b_state, bh->b_size);
230                 printk("device %s blocksize: %d\n", bdevname(bdev, b),
231                         1 << bd_inode->i_blkbits);
232         }
233 out_unlock:
234         spin_unlock(&bd_mapping->private_lock);
235         page_cache_release(page);
236 out:
237         return ret;
238 }
239
240 /*
241  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
242  */
243 static void free_more_memory(void)
244 {
245         struct zone *zone;
246         int nid;
247
248         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
249         yield();
250
251         for_each_online_node(nid) {
252                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
253                                                 gfp_zone(GFP_NOFS), NULL,
254                                                 &zone);
255                 if (zone)
256                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
257                                                 GFP_NOFS, NULL);
258         }
259 }
260
261 /*
262  * I/O completion handler for block_read_full_page() - pages
263  * which come unlocked at the end of I/O.
264  */
265 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
266 {
267         unsigned long flags;
268         struct buffer_head *first;
269         struct buffer_head *tmp;
270         struct page *page;
271         int page_uptodate = 1;
272
273         BUG_ON(!buffer_async_read(bh));
274
275         page = bh->b_page;
276         if (uptodate) {
277                 set_buffer_uptodate(bh);
278         } else {
279                 clear_buffer_uptodate(bh);
280                 if (!quiet_error(bh))
281                         buffer_io_error(bh);
282                 SetPageError(page);
283         }
284
285         /*
286          * Be _very_ careful from here on. Bad things can happen if
287          * two buffer heads end IO at almost the same time and both
288          * decide that the page is now completely done.
289          */
290         first = page_buffers(page);
291         local_irq_save(flags);
292         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
293         clear_buffer_async_read(bh);
294         unlock_buffer(bh);
295         tmp = bh;
296         do {
297                 if (!buffer_uptodate(tmp))
298                         page_uptodate = 0;
299                 if (buffer_async_read(tmp)) {
300                         BUG_ON(!buffer_locked(tmp));
301                         goto still_busy;
302                 }
303                 tmp = tmp->b_this_page;
304         } while (tmp != bh);
305         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
306         local_irq_restore(flags);
307
308         /*
309          * If none of the buffers had errors and they are all
310          * uptodate then we can set the page uptodate.
311          */
312         if (page_uptodate && !PageError(page))
313                 SetPageUptodate(page);
314         unlock_page(page);
315         return;
316
317 still_busy:
318         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
319         local_irq_restore(flags);
320         return;
321 }
322
323 /*
324  * Completion handler for block_write_full_page() - pages which are unlocked
325  * during I/O, and which have PageWriteback cleared upon I/O completion.
326  */
327 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
328 {
329         char b[BDEVNAME_SIZE];
330         unsigned long flags;
331         struct buffer_head *first;
332         struct buffer_head *tmp;
333         struct page *page;
334
335         BUG_ON(!buffer_async_write(bh));
336
337         page = bh->b_page;
338         if (uptodate) {
339                 set_buffer_uptodate(bh);
340         } else {
341                 if (!quiet_error(bh)) {
342                         buffer_io_error(bh);
343                         printk(KERN_WARNING "lost page write due to "
344                                         "I/O error on %s\n",
345                                bdevname(bh->b_bdev, b));
346                 }
347                 set_bit(AS_EIO, &page->mapping->flags);
348                 set_buffer_write_io_error(bh);
349                 clear_buffer_uptodate(bh);
350                 SetPageError(page);
351         }
352
353         first = page_buffers(page);
354         local_irq_save(flags);
355         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
356
357         clear_buffer_async_write(bh);
358         unlock_buffer(bh);
359         tmp = bh->b_this_page;
360         while (tmp != bh) {
361                 if (buffer_async_write(tmp)) {
362                         BUG_ON(!buffer_locked(tmp));
363                         goto still_busy;
364                 }
365                 tmp = tmp->b_this_page;
366         }
367         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
368         local_irq_restore(flags);
369         end_page_writeback(page);
370         return;
371
372 still_busy:
373         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374         local_irq_restore(flags);
375         return;
376 }
377 EXPORT_SYMBOL(end_buffer_async_write);
378
379 /*
380  * If a page's buffers are under async readin (end_buffer_async_read
381  * completion) then there is a possibility that another thread of
382  * control could lock one of the buffers after it has completed
383  * but while some of the other buffers have not completed.  This
384  * locked buffer would confuse end_buffer_async_read() into not unlocking
385  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
386  * that this buffer is not under async I/O.
387  *
388  * The page comes unlocked when it has no locked buffer_async buffers
389  * left.
390  *
391  * PageLocked prevents anyone starting new async I/O reads any of
392  * the buffers.
393  *
394  * PageWriteback is used to prevent simultaneous writeout of the same
395  * page.
396  *
397  * PageLocked prevents anyone from starting writeback of a page which is
398  * under read I/O (PageWriteback is only ever set against a locked page).
399  */
400 static void mark_buffer_async_read(struct buffer_head *bh)
401 {
402         bh->b_end_io = end_buffer_async_read;
403         set_buffer_async_read(bh);
404 }
405
406 static void mark_buffer_async_write_endio(struct buffer_head *bh,
407                                           bh_end_io_t *handler)
408 {
409         bh->b_end_io = handler;
410         set_buffer_async_write(bh);
411 }
412
413 void mark_buffer_async_write(struct buffer_head *bh)
414 {
415         mark_buffer_async_write_endio(bh, end_buffer_async_write);
416 }
417 EXPORT_SYMBOL(mark_buffer_async_write);
418
419
420 /*
421  * fs/buffer.c contains helper functions for buffer-backed address space's
422  * fsync functions.  A common requirement for buffer-based filesystems is
423  * that certain data from the backing blockdev needs to be written out for
424  * a successful fsync().  For example, ext2 indirect blocks need to be
425  * written back and waited upon before fsync() returns.
426  *
427  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
428  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
429  * management of a list of dependent buffers at ->i_mapping->private_list.
430  *
431  * Locking is a little subtle: try_to_free_buffers() will remove buffers
432  * from their controlling inode's queue when they are being freed.  But
433  * try_to_free_buffers() will be operating against the *blockdev* mapping
434  * at the time, not against the S_ISREG file which depends on those buffers.
435  * So the locking for private_list is via the private_lock in the address_space
436  * which backs the buffers.  Which is different from the address_space 
437  * against which the buffers are listed.  So for a particular address_space,
438  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
439  * mapping->private_list will always be protected by the backing blockdev's
440  * ->private_lock.
441  *
442  * Which introduces a requirement: all buffers on an address_space's
443  * ->private_list must be from the same address_space: the blockdev's.
444  *
445  * address_spaces which do not place buffers at ->private_list via these
446  * utility functions are free to use private_lock and private_list for
447  * whatever they want.  The only requirement is that list_empty(private_list)
448  * be true at clear_inode() time.
449  *
450  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
451  * filesystems should do that.  invalidate_inode_buffers() should just go
452  * BUG_ON(!list_empty).
453  *
454  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
455  * take an address_space, not an inode.  And it should be called
456  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
457  * queued up.
458  *
459  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
460  * list if it is already on a list.  Because if the buffer is on a list,
461  * it *must* already be on the right one.  If not, the filesystem is being
462  * silly.  This will save a ton of locking.  But first we have to ensure
463  * that buffers are taken *off* the old inode's list when they are freed
464  * (presumably in truncate).  That requires careful auditing of all
465  * filesystems (do it inside bforget()).  It could also be done by bringing
466  * b_inode back.
467  */
468
469 /*
470  * The buffer's backing address_space's private_lock must be held
471  */
472 static void __remove_assoc_queue(struct buffer_head *bh)
473 {
474         list_del_init(&bh->b_assoc_buffers);
475         WARN_ON(!bh->b_assoc_map);
476         if (buffer_write_io_error(bh))
477                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
478         bh->b_assoc_map = NULL;
479 }
480
481 int inode_has_buffers(struct inode *inode)
482 {
483         return !list_empty(&inode->i_data.private_list);
484 }
485
486 /*
487  * osync is designed to support O_SYNC io.  It waits synchronously for
488  * all already-submitted IO to complete, but does not queue any new
489  * writes to the disk.
490  *
491  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
492  * you dirty the buffers, and then use osync_inode_buffers to wait for
493  * completion.  Any other dirty buffers which are not yet queued for
494  * write will not be flushed to disk by the osync.
495  */
496 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
497 {
498         struct buffer_head *bh;
499         struct list_head *p;
500         int err = 0;
501
502         spin_lock(lock);
503 repeat:
504         list_for_each_prev(p, list) {
505                 bh = BH_ENTRY(p);
506                 if (buffer_locked(bh)) {
507                         get_bh(bh);
508                         spin_unlock(lock);
509                         wait_on_buffer(bh);
510                         if (!buffer_uptodate(bh))
511                                 err = -EIO;
512                         brelse(bh);
513                         spin_lock(lock);
514                         goto repeat;
515                 }
516         }
517         spin_unlock(lock);
518         return err;
519 }
520
521 static void do_thaw_one(struct super_block *sb, void *unused)
522 {
523         char b[BDEVNAME_SIZE];
524         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
525                 printk(KERN_WARNING "Emergency Thaw on %s\n",
526                        bdevname(sb->s_bdev, b));
527 }
528
529 static void do_thaw_all(struct work_struct *work)
530 {
531         iterate_supers(do_thaw_one, NULL);
532         kfree(work);
533         printk(KERN_WARNING "Emergency Thaw complete\n");
534 }
535
536 /**
537  * emergency_thaw_all -- forcibly thaw every frozen filesystem
538  *
539  * Used for emergency unfreeze of all filesystems via SysRq
540  */
541 void emergency_thaw_all(void)
542 {
543         struct work_struct *work;
544
545         work = kmalloc(sizeof(*work), GFP_ATOMIC);
546         if (work) {
547                 INIT_WORK(work, do_thaw_all);
548                 schedule_work(work);
549         }
550 }
551
552 /**
553  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
554  * @mapping: the mapping which wants those buffers written
555  *
556  * Starts I/O against the buffers at mapping->private_list, and waits upon
557  * that I/O.
558  *
559  * Basically, this is a convenience function for fsync().
560  * @mapping is a file or directory which needs those buffers to be written for
561  * a successful fsync().
562  */
563 int sync_mapping_buffers(struct address_space *mapping)
564 {
565         struct address_space *buffer_mapping = mapping->private_data;
566
567         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
568                 return 0;
569
570         return fsync_buffers_list(&buffer_mapping->private_lock,
571                                         &mapping->private_list);
572 }
573 EXPORT_SYMBOL(sync_mapping_buffers);
574
575 /*
576  * Called when we've recently written block `bblock', and it is known that
577  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
578  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
579  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
580  */
581 void write_boundary_block(struct block_device *bdev,
582                         sector_t bblock, unsigned blocksize)
583 {
584         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
585         if (bh) {
586                 if (buffer_dirty(bh))
587                         ll_rw_block(WRITE, 1, &bh);
588                 put_bh(bh);
589         }
590 }
591
592 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
593 {
594         struct address_space *mapping = inode->i_mapping;
595         struct address_space *buffer_mapping = bh->b_page->mapping;
596
597         mark_buffer_dirty(bh);
598         if (!mapping->private_data) {
599                 mapping->private_data = buffer_mapping;
600         } else {
601                 BUG_ON(mapping->private_data != buffer_mapping);
602         }
603         if (!bh->b_assoc_map) {
604                 spin_lock(&buffer_mapping->private_lock);
605                 list_move_tail(&bh->b_assoc_buffers,
606                                 &mapping->private_list);
607                 bh->b_assoc_map = mapping;
608                 spin_unlock(&buffer_mapping->private_lock);
609         }
610 }
611 EXPORT_SYMBOL(mark_buffer_dirty_inode);
612
613 /*
614  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
615  * dirty.
616  *
617  * If warn is true, then emit a warning if the page is not uptodate and has
618  * not been truncated.
619  */
620 static void __set_page_dirty(struct page *page,
621                 struct address_space *mapping, int warn)
622 {
623         unsigned long flags;
624
625         spin_lock_irqsave(&mapping->tree_lock, flags);
626         if (page->mapping) {    /* Race with truncate? */
627                 WARN_ON_ONCE(warn && !PageUptodate(page));
628                 account_page_dirtied(page, mapping);
629                 radix_tree_tag_set(&mapping->page_tree,
630                                 page_index(page), PAGECACHE_TAG_DIRTY);
631         }
632         spin_unlock_irqrestore(&mapping->tree_lock, flags);
633         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
634 }
635
636 /*
637  * Add a page to the dirty page list.
638  *
639  * It is a sad fact of life that this function is called from several places
640  * deeply under spinlocking.  It may not sleep.
641  *
642  * If the page has buffers, the uptodate buffers are set dirty, to preserve
643  * dirty-state coherency between the page and the buffers.  It the page does
644  * not have buffers then when they are later attached they will all be set
645  * dirty.
646  *
647  * The buffers are dirtied before the page is dirtied.  There's a small race
648  * window in which a writepage caller may see the page cleanness but not the
649  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
650  * before the buffers, a concurrent writepage caller could clear the page dirty
651  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
652  * page on the dirty page list.
653  *
654  * We use private_lock to lock against try_to_free_buffers while using the
655  * page's buffer list.  Also use this to protect against clean buffers being
656  * added to the page after it was set dirty.
657  *
658  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
659  * address_space though.
660  */
661 int __set_page_dirty_buffers(struct page *page)
662 {
663         int newly_dirty;
664         struct address_space *mapping = page_mapping(page);
665
666         if (unlikely(!mapping))
667                 return !TestSetPageDirty(page);
668
669         spin_lock(&mapping->private_lock);
670         if (page_has_buffers(page)) {
671                 struct buffer_head *head = page_buffers(page);
672                 struct buffer_head *bh = head;
673
674                 do {
675                         set_buffer_dirty(bh);
676                         bh = bh->b_this_page;
677                 } while (bh != head);
678         }
679         newly_dirty = !TestSetPageDirty(page);
680         spin_unlock(&mapping->private_lock);
681
682         if (newly_dirty)
683                 __set_page_dirty(page, mapping, 1);
684         return newly_dirty;
685 }
686 EXPORT_SYMBOL(__set_page_dirty_buffers);
687
688 /*
689  * Write out and wait upon a list of buffers.
690  *
691  * We have conflicting pressures: we want to make sure that all
692  * initially dirty buffers get waited on, but that any subsequently
693  * dirtied buffers don't.  After all, we don't want fsync to last
694  * forever if somebody is actively writing to the file.
695  *
696  * Do this in two main stages: first we copy dirty buffers to a
697  * temporary inode list, queueing the writes as we go.  Then we clean
698  * up, waiting for those writes to complete.
699  * 
700  * During this second stage, any subsequent updates to the file may end
701  * up refiling the buffer on the original inode's dirty list again, so
702  * there is a chance we will end up with a buffer queued for write but
703  * not yet completed on that list.  So, as a final cleanup we go through
704  * the osync code to catch these locked, dirty buffers without requeuing
705  * any newly dirty buffers for write.
706  */
707 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
708 {
709         struct buffer_head *bh;
710         struct list_head tmp;
711         struct address_space *mapping;
712         int err = 0, err2;
713         struct blk_plug plug;
714
715         INIT_LIST_HEAD(&tmp);
716         blk_start_plug(&plug);
717
718         spin_lock(lock);
719         while (!list_empty(list)) {
720                 bh = BH_ENTRY(list->next);
721                 mapping = bh->b_assoc_map;
722                 __remove_assoc_queue(bh);
723                 /* Avoid race with mark_buffer_dirty_inode() which does
724                  * a lockless check and we rely on seeing the dirty bit */
725                 smp_mb();
726                 if (buffer_dirty(bh) || buffer_locked(bh)) {
727                         list_add(&bh->b_assoc_buffers, &tmp);
728                         bh->b_assoc_map = mapping;
729                         if (buffer_dirty(bh)) {
730                                 get_bh(bh);
731                                 spin_unlock(lock);
732                                 /*
733                                  * Ensure any pending I/O completes so that
734                                  * write_dirty_buffer() actually writes the
735                                  * current contents - it is a noop if I/O is
736                                  * still in flight on potentially older
737                                  * contents.
738                                  */
739                                 write_dirty_buffer(bh, WRITE_SYNC);
740
741                                 /*
742                                  * Kick off IO for the previous mapping. Note
743                                  * that we will not run the very last mapping,
744                                  * wait_on_buffer() will do that for us
745                                  * through sync_buffer().
746                                  */
747                                 brelse(bh);
748                                 spin_lock(lock);
749                         }
750                 }
751         }
752
753         spin_unlock(lock);
754         blk_finish_plug(&plug);
755         spin_lock(lock);
756
757         while (!list_empty(&tmp)) {
758                 bh = BH_ENTRY(tmp.prev);
759                 get_bh(bh);
760                 mapping = bh->b_assoc_map;
761                 __remove_assoc_queue(bh);
762                 /* Avoid race with mark_buffer_dirty_inode() which does
763                  * a lockless check and we rely on seeing the dirty bit */
764                 smp_mb();
765                 if (buffer_dirty(bh)) {
766                         list_add(&bh->b_assoc_buffers,
767                                  &mapping->private_list);
768                         bh->b_assoc_map = mapping;
769                 }
770                 spin_unlock(lock);
771                 wait_on_buffer(bh);
772                 if (!buffer_uptodate(bh))
773                         err = -EIO;
774                 brelse(bh);
775                 spin_lock(lock);
776         }
777         
778         spin_unlock(lock);
779         err2 = osync_buffers_list(lock, list);
780         if (err)
781                 return err;
782         else
783                 return err2;
784 }
785
786 /*
787  * Invalidate any and all dirty buffers on a given inode.  We are
788  * probably unmounting the fs, but that doesn't mean we have already
789  * done a sync().  Just drop the buffers from the inode list.
790  *
791  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
792  * assumes that all the buffers are against the blockdev.  Not true
793  * for reiserfs.
794  */
795 void invalidate_inode_buffers(struct inode *inode)
796 {
797         if (inode_has_buffers(inode)) {
798                 struct address_space *mapping = &inode->i_data;
799                 struct list_head *list = &mapping->private_list;
800                 struct address_space *buffer_mapping = mapping->private_data;
801
802                 spin_lock(&buffer_mapping->private_lock);
803                 while (!list_empty(list))
804                         __remove_assoc_queue(BH_ENTRY(list->next));
805                 spin_unlock(&buffer_mapping->private_lock);
806         }
807 }
808 EXPORT_SYMBOL(invalidate_inode_buffers);
809
810 /*
811  * Remove any clean buffers from the inode's buffer list.  This is called
812  * when we're trying to free the inode itself.  Those buffers can pin it.
813  *
814  * Returns true if all buffers were removed.
815  */
816 int remove_inode_buffers(struct inode *inode)
817 {
818         int ret = 1;
819
820         if (inode_has_buffers(inode)) {
821                 struct address_space *mapping = &inode->i_data;
822                 struct list_head *list = &mapping->private_list;
823                 struct address_space *buffer_mapping = mapping->private_data;
824
825                 spin_lock(&buffer_mapping->private_lock);
826                 while (!list_empty(list)) {
827                         struct buffer_head *bh = BH_ENTRY(list->next);
828                         if (buffer_dirty(bh)) {
829                                 ret = 0;
830                                 break;
831                         }
832                         __remove_assoc_queue(bh);
833                 }
834                 spin_unlock(&buffer_mapping->private_lock);
835         }
836         return ret;
837 }
838
839 /*
840  * Create the appropriate buffers when given a page for data area and
841  * the size of each buffer.. Use the bh->b_this_page linked list to
842  * follow the buffers created.  Return NULL if unable to create more
843  * buffers.
844  *
845  * The retry flag is used to differentiate async IO (paging, swapping)
846  * which may not fail from ordinary buffer allocations.
847  */
848 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
849                 int retry)
850 {
851         struct buffer_head *bh, *head;
852         long offset;
853
854 try_again:
855         head = NULL;
856         offset = PAGE_SIZE;
857         while ((offset -= size) >= 0) {
858                 bh = alloc_buffer_head(GFP_NOFS);
859                 if (!bh)
860                         goto no_grow;
861
862                 bh->b_this_page = head;
863                 bh->b_blocknr = -1;
864                 head = bh;
865
866                 bh->b_size = size;
867
868                 /* Link the buffer to its page */
869                 set_bh_page(bh, page, offset);
870         }
871         return head;
872 /*
873  * In case anything failed, we just free everything we got.
874  */
875 no_grow:
876         if (head) {
877                 do {
878                         bh = head;
879                         head = head->b_this_page;
880                         free_buffer_head(bh);
881                 } while (head);
882         }
883
884         /*
885          * Return failure for non-async IO requests.  Async IO requests
886          * are not allowed to fail, so we have to wait until buffer heads
887          * become available.  But we don't want tasks sleeping with 
888          * partially complete buffers, so all were released above.
889          */
890         if (!retry)
891                 return NULL;
892
893         /* We're _really_ low on memory. Now we just
894          * wait for old buffer heads to become free due to
895          * finishing IO.  Since this is an async request and
896          * the reserve list is empty, we're sure there are 
897          * async buffer heads in use.
898          */
899         free_more_memory();
900         goto try_again;
901 }
902 EXPORT_SYMBOL_GPL(alloc_page_buffers);
903
904 static inline void
905 link_dev_buffers(struct page *page, struct buffer_head *head)
906 {
907         struct buffer_head *bh, *tail;
908
909         bh = head;
910         do {
911                 tail = bh;
912                 bh = bh->b_this_page;
913         } while (bh);
914         tail->b_this_page = head;
915         attach_page_buffers(page, head);
916 }
917
918 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
919 {
920         sector_t retval = ~((sector_t)0);
921         loff_t sz = i_size_read(bdev->bd_inode);
922
923         if (sz) {
924                 unsigned int sizebits = blksize_bits(size);
925                 retval = (sz >> sizebits);
926         }
927         return retval;
928 }
929
930 /*
931  * Initialise the state of a blockdev page's buffers.
932  */ 
933 static sector_t
934 init_page_buffers(struct page *page, struct block_device *bdev,
935                         sector_t block, int size)
936 {
937         struct buffer_head *head = page_buffers(page);
938         struct buffer_head *bh = head;
939         int uptodate = PageUptodate(page);
940         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
941
942         do {
943                 if (!buffer_mapped(bh)) {
944                         init_buffer(bh, NULL, NULL);
945                         bh->b_bdev = bdev;
946                         bh->b_blocknr = block;
947                         if (uptodate)
948                                 set_buffer_uptodate(bh);
949                         if (block < end_block)
950                                 set_buffer_mapped(bh);
951                 }
952                 block++;
953                 bh = bh->b_this_page;
954         } while (bh != head);
955
956         /*
957          * Caller needs to validate requested block against end of device.
958          */
959         return end_block;
960 }
961
962 /*
963  * Create the page-cache page that contains the requested block.
964  *
965  * This is used purely for blockdev mappings.
966  */
967 static int
968 grow_dev_page(struct block_device *bdev, sector_t block,
969                 pgoff_t index, int size, int sizebits)
970 {
971         struct inode *inode = bdev->bd_inode;
972         struct page *page;
973         struct buffer_head *bh;
974         sector_t end_block;
975         int ret = 0;            /* Will call free_more_memory() */
976
977         page = find_or_create_page(inode->i_mapping, index,
978                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
979         if (!page)
980                 return ret;
981
982         BUG_ON(!PageLocked(page));
983
984         if (page_has_buffers(page)) {
985                 bh = page_buffers(page);
986                 if (bh->b_size == size) {
987                         end_block = init_page_buffers(page, bdev,
988                                                 (sector_t)index << sizebits,
989                                                 size);
990                         goto done;
991                 }
992                 if (!try_to_free_buffers(page))
993                         goto failed;
994         }
995
996         /*
997          * Allocate some buffers for this page
998          */
999         bh = alloc_page_buffers(page, size, 0);
1000         if (!bh)
1001                 goto failed;
1002
1003         /*
1004          * Link the page to the buffers and initialise them.  Take the
1005          * lock to be atomic wrt __find_get_block(), which does not
1006          * run under the page lock.
1007          */
1008         spin_lock(&inode->i_mapping->private_lock);
1009         link_dev_buffers(page, bh);
1010         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1011                         size);
1012         spin_unlock(&inode->i_mapping->private_lock);
1013 done:
1014         ret = (block < end_block) ? 1 : -ENXIO;
1015 failed:
1016         unlock_page(page);
1017         page_cache_release(page);
1018         return ret;
1019 }
1020
1021 /*
1022  * Create buffers for the specified block device block's page.  If
1023  * that page was dirty, the buffers are set dirty also.
1024  */
1025 static int
1026 grow_buffers(struct block_device *bdev, sector_t block, int size)
1027 {
1028         pgoff_t index;
1029         int sizebits;
1030
1031         sizebits = -1;
1032         do {
1033                 sizebits++;
1034         } while ((size << sizebits) < PAGE_SIZE);
1035
1036         index = block >> sizebits;
1037
1038         /*
1039          * Check for a block which wants to lie outside our maximum possible
1040          * pagecache index.  (this comparison is done using sector_t types).
1041          */
1042         if (unlikely(index != block >> sizebits)) {
1043                 char b[BDEVNAME_SIZE];
1044
1045                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1046                         "device %s\n",
1047                         __func__, (unsigned long long)block,
1048                         bdevname(bdev, b));
1049                 return -EIO;
1050         }
1051
1052         /* Create a page with the proper size buffers.. */
1053         return grow_dev_page(bdev, block, index, size, sizebits);
1054 }
1055
1056 static struct buffer_head *
1057 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1058 {
1059         /* Size must be multiple of hard sectorsize */
1060         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1061                         (size < 512 || size > PAGE_SIZE))) {
1062                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1063                                         size);
1064                 printk(KERN_ERR "logical block size: %d\n",
1065                                         bdev_logical_block_size(bdev));
1066
1067                 dump_stack();
1068                 return NULL;
1069         }
1070
1071         for (;;) {
1072                 struct buffer_head *bh;
1073                 int ret;
1074
1075                 bh = __find_get_block(bdev, block, size);
1076                 if (bh)
1077                         return bh;
1078
1079                 ret = grow_buffers(bdev, block, size);
1080                 if (ret < 0)
1081                         return NULL;
1082                 if (ret == 0)
1083                         free_more_memory();
1084         }
1085 }
1086
1087 /*
1088  * The relationship between dirty buffers and dirty pages:
1089  *
1090  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1091  * the page is tagged dirty in its radix tree.
1092  *
1093  * At all times, the dirtiness of the buffers represents the dirtiness of
1094  * subsections of the page.  If the page has buffers, the page dirty bit is
1095  * merely a hint about the true dirty state.
1096  *
1097  * When a page is set dirty in its entirety, all its buffers are marked dirty
1098  * (if the page has buffers).
1099  *
1100  * When a buffer is marked dirty, its page is dirtied, but the page's other
1101  * buffers are not.
1102  *
1103  * Also.  When blockdev buffers are explicitly read with bread(), they
1104  * individually become uptodate.  But their backing page remains not
1105  * uptodate - even if all of its buffers are uptodate.  A subsequent
1106  * block_read_full_page() against that page will discover all the uptodate
1107  * buffers, will set the page uptodate and will perform no I/O.
1108  */
1109
1110 /**
1111  * mark_buffer_dirty - mark a buffer_head as needing writeout
1112  * @bh: the buffer_head to mark dirty
1113  *
1114  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1115  * backing page dirty, then tag the page as dirty in its address_space's radix
1116  * tree and then attach the address_space's inode to its superblock's dirty
1117  * inode list.
1118  *
1119  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1120  * mapping->tree_lock and mapping->host->i_lock.
1121  */
1122 void mark_buffer_dirty(struct buffer_head *bh)
1123 {
1124         WARN_ON_ONCE(!buffer_uptodate(bh));
1125
1126         trace_block_dirty_buffer(bh);
1127
1128         /*
1129          * Very *carefully* optimize the it-is-already-dirty case.
1130          *
1131          * Don't let the final "is it dirty" escape to before we
1132          * perhaps modified the buffer.
1133          */
1134         if (buffer_dirty(bh)) {
1135                 smp_mb();
1136                 if (buffer_dirty(bh))
1137                         return;
1138         }
1139
1140         if (!test_set_buffer_dirty(bh)) {
1141                 struct page *page = bh->b_page;
1142                 if (!TestSetPageDirty(page)) {
1143                         struct address_space *mapping = page_mapping(page);
1144                         if (mapping)
1145                                 __set_page_dirty(page, mapping, 0);
1146                 }
1147         }
1148 }
1149 EXPORT_SYMBOL(mark_buffer_dirty);
1150
1151 /*
1152  * Decrement a buffer_head's reference count.  If all buffers against a page
1153  * have zero reference count, are clean and unlocked, and if the page is clean
1154  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1155  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1156  * a page but it ends up not being freed, and buffers may later be reattached).
1157  */
1158 void __brelse(struct buffer_head * buf)
1159 {
1160         if (atomic_read(&buf->b_count)) {
1161                 put_bh(buf);
1162                 return;
1163         }
1164         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1165 }
1166 EXPORT_SYMBOL(__brelse);
1167
1168 /*
1169  * bforget() is like brelse(), except it discards any
1170  * potentially dirty data.
1171  */
1172 void __bforget(struct buffer_head *bh)
1173 {
1174         clear_buffer_dirty(bh);
1175         if (bh->b_assoc_map) {
1176                 struct address_space *buffer_mapping = bh->b_page->mapping;
1177
1178                 spin_lock(&buffer_mapping->private_lock);
1179                 list_del_init(&bh->b_assoc_buffers);
1180                 bh->b_assoc_map = NULL;
1181                 spin_unlock(&buffer_mapping->private_lock);
1182         }
1183         __brelse(bh);
1184 }
1185 EXPORT_SYMBOL(__bforget);
1186
1187 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1188 {
1189         lock_buffer(bh);
1190         if (buffer_uptodate(bh)) {
1191                 unlock_buffer(bh);
1192                 return bh;
1193         } else {
1194                 get_bh(bh);
1195                 bh->b_end_io = end_buffer_read_sync;
1196                 submit_bh(READ, bh);
1197                 wait_on_buffer(bh);
1198                 if (buffer_uptodate(bh))
1199                         return bh;
1200         }
1201         brelse(bh);
1202         return NULL;
1203 }
1204
1205 /*
1206  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1207  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1208  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1209  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1210  * CPU's LRUs at the same time.
1211  *
1212  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1213  * sb_find_get_block().
1214  *
1215  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1216  * a local interrupt disable for that.
1217  */
1218
1219 #define BH_LRU_SIZE     8
1220
1221 struct bh_lru {
1222         struct buffer_head *bhs[BH_LRU_SIZE];
1223 };
1224
1225 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1226
1227 #ifdef CONFIG_SMP
1228 #define bh_lru_lock()   local_irq_disable()
1229 #define bh_lru_unlock() local_irq_enable()
1230 #else
1231 #define bh_lru_lock()   preempt_disable()
1232 #define bh_lru_unlock() preempt_enable()
1233 #endif
1234
1235 static inline void check_irqs_on(void)
1236 {
1237 #ifdef irqs_disabled
1238         BUG_ON(irqs_disabled());
1239 #endif
1240 }
1241
1242 /*
1243  * The LRU management algorithm is dopey-but-simple.  Sorry.
1244  */
1245 static void bh_lru_install(struct buffer_head *bh)
1246 {
1247         struct buffer_head *evictee = NULL;
1248
1249         check_irqs_on();
1250         bh_lru_lock();
1251         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1252                 struct buffer_head *bhs[BH_LRU_SIZE];
1253                 int in;
1254                 int out = 0;
1255
1256                 get_bh(bh);
1257                 bhs[out++] = bh;
1258                 for (in = 0; in < BH_LRU_SIZE; in++) {
1259                         struct buffer_head *bh2 =
1260                                 __this_cpu_read(bh_lrus.bhs[in]);
1261
1262                         if (bh2 == bh) {
1263                                 __brelse(bh2);
1264                         } else {
1265                                 if (out >= BH_LRU_SIZE) {
1266                                         BUG_ON(evictee != NULL);
1267                                         evictee = bh2;
1268                                 } else {
1269                                         bhs[out++] = bh2;
1270                                 }
1271                         }
1272                 }
1273                 while (out < BH_LRU_SIZE)
1274                         bhs[out++] = NULL;
1275                 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1276         }
1277         bh_lru_unlock();
1278
1279         if (evictee)
1280                 __brelse(evictee);
1281 }
1282
1283 /*
1284  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1285  */
1286 static struct buffer_head *
1287 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1288 {
1289         struct buffer_head *ret = NULL;
1290         unsigned int i;
1291
1292         check_irqs_on();
1293         bh_lru_lock();
1294         for (i = 0; i < BH_LRU_SIZE; i++) {
1295                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1296
1297                 if (bh && bh->b_bdev == bdev &&
1298                                 bh->b_blocknr == block && bh->b_size == size) {
1299                         if (i) {
1300                                 while (i) {
1301                                         __this_cpu_write(bh_lrus.bhs[i],
1302                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1303                                         i--;
1304                                 }
1305                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1306                         }
1307                         get_bh(bh);
1308                         ret = bh;
1309                         break;
1310                 }
1311         }
1312         bh_lru_unlock();
1313         return ret;
1314 }
1315
1316 /*
1317  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1318  * it in the LRU and mark it as accessed.  If it is not present then return
1319  * NULL
1320  */
1321 struct buffer_head *
1322 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1323 {
1324         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1325
1326         if (bh == NULL) {
1327                 bh = __find_get_block_slow(bdev, block);
1328                 if (bh)
1329                         bh_lru_install(bh);
1330         }
1331         if (bh)
1332                 touch_buffer(bh);
1333         return bh;
1334 }
1335 EXPORT_SYMBOL(__find_get_block);
1336
1337 /*
1338  * __getblk will locate (and, if necessary, create) the buffer_head
1339  * which corresponds to the passed block_device, block and size. The
1340  * returned buffer has its reference count incremented.
1341  *
1342  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1343  * attempt is failing.  FIXME, perhaps?
1344  */
1345 struct buffer_head *
1346 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1347 {
1348         struct buffer_head *bh = __find_get_block(bdev, block, size);
1349
1350         might_sleep();
1351         if (bh == NULL)
1352                 bh = __getblk_slow(bdev, block, size);
1353         return bh;
1354 }
1355 EXPORT_SYMBOL(__getblk);
1356
1357 /*
1358  * Do async read-ahead on a buffer..
1359  */
1360 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1361 {
1362         struct buffer_head *bh = __getblk(bdev, block, size);
1363         if (likely(bh)) {
1364                 ll_rw_block(READA, 1, &bh);
1365                 brelse(bh);
1366         }
1367 }
1368 EXPORT_SYMBOL(__breadahead);
1369
1370 /**
1371  *  __bread() - reads a specified block and returns the bh
1372  *  @bdev: the block_device to read from
1373  *  @block: number of block
1374  *  @size: size (in bytes) to read
1375  * 
1376  *  Reads a specified block, and returns buffer head that contains it.
1377  *  It returns NULL if the block was unreadable.
1378  */
1379 struct buffer_head *
1380 __bread(struct block_device *bdev, sector_t block, unsigned size)
1381 {
1382         struct buffer_head *bh = __getblk(bdev, block, size);
1383
1384         if (likely(bh) && !buffer_uptodate(bh))
1385                 bh = __bread_slow(bh);
1386         return bh;
1387 }
1388 EXPORT_SYMBOL(__bread);
1389
1390 /*
1391  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1392  * This doesn't race because it runs in each cpu either in irq
1393  * or with preempt disabled.
1394  */
1395 static void invalidate_bh_lru(void *arg)
1396 {
1397         struct bh_lru *b = &get_cpu_var(bh_lrus);
1398         int i;
1399
1400         for (i = 0; i < BH_LRU_SIZE; i++) {
1401                 brelse(b->bhs[i]);
1402                 b->bhs[i] = NULL;
1403         }
1404         put_cpu_var(bh_lrus);
1405 }
1406
1407 static bool has_bh_in_lru(int cpu, void *dummy)
1408 {
1409         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1410         int i;
1411         
1412         for (i = 0; i < BH_LRU_SIZE; i++) {
1413                 if (b->bhs[i])
1414                         return 1;
1415         }
1416
1417         return 0;
1418 }
1419
1420 static void __evict_bh_lru(void *arg)
1421 {
1422         struct bh_lru *b = &get_cpu_var(bh_lrus);
1423         struct buffer_head *bh = arg;
1424         int i;
1425
1426         for (i = 0; i < BH_LRU_SIZE; i++) {
1427                 if (b->bhs[i] == bh) {
1428                         brelse(b->bhs[i]);
1429                         b->bhs[i] = NULL;
1430                         goto out;
1431                 }
1432         }
1433 out:
1434         put_cpu_var(bh_lrus);
1435 }
1436
1437 static bool bh_exists_in_lru(int cpu, void *arg)
1438 {
1439         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1440         struct buffer_head *bh = arg;
1441         int i;
1442
1443         for (i = 0; i < BH_LRU_SIZE; i++) {
1444                 if (b->bhs[i] == bh)
1445                         return 1;
1446         }
1447
1448         return 0;
1449
1450 }
1451 void invalidate_bh_lrus(void)
1452 {
1453         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1454 }
1455 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1456
1457 void evict_bh_lrus(struct buffer_head *bh)
1458 {
1459         on_each_cpu_cond(bh_exists_in_lru, __evict_bh_lru, bh, 1, GFP_ATOMIC);
1460 }
1461 EXPORT_SYMBOL_GPL(evict_bh_lrus);
1462
1463 void set_bh_page(struct buffer_head *bh,
1464                 struct page *page, unsigned long offset)
1465 {
1466         bh->b_page = page;
1467         BUG_ON(offset >= PAGE_SIZE);
1468         if (PageHighMem(page))
1469                 /*
1470                  * This catches illegal uses and preserves the offset:
1471                  */
1472                 bh->b_data = (char *)(0 + offset);
1473         else
1474                 bh->b_data = page_address(page) + offset;
1475 }
1476 EXPORT_SYMBOL(set_bh_page);
1477
1478 /*
1479  * Called when truncating a buffer on a page completely.
1480  */
1481 static void discard_buffer(struct buffer_head * bh)
1482 {
1483         lock_buffer(bh);
1484         clear_buffer_dirty(bh);
1485         bh->b_bdev = NULL;
1486         clear_buffer_mapped(bh);
1487         clear_buffer_req(bh);
1488         clear_buffer_new(bh);
1489         clear_buffer_delay(bh);
1490         clear_buffer_unwritten(bh);
1491         unlock_buffer(bh);
1492 }
1493
1494 /**
1495  * block_invalidatepage - invalidate part or all of a buffer-backed page
1496  *
1497  * @page: the page which is affected
1498  * @offset: the index of the truncation point
1499  *
1500  * block_invalidatepage() is called when all or part of the page has become
1501  * invalidated by a truncate operation.
1502  *
1503  * block_invalidatepage() does not have to release all buffers, but it must
1504  * ensure that no dirty buffer is left outside @offset and that no I/O
1505  * is underway against any of the blocks which are outside the truncation
1506  * point.  Because the caller is about to free (and possibly reuse) those
1507  * blocks on-disk.
1508  */
1509 void block_invalidatepage(struct page *page, unsigned long offset)
1510 {
1511         struct buffer_head *head, *bh, *next;
1512         unsigned int curr_off = 0;
1513
1514         BUG_ON(!PageLocked(page));
1515         if (!page_has_buffers(page))
1516                 goto out;
1517
1518         head = page_buffers(page);
1519         bh = head;
1520         do {
1521                 unsigned int next_off = curr_off + bh->b_size;
1522                 next = bh->b_this_page;
1523
1524                 /*
1525                  * is this block fully invalidated?
1526                  */
1527                 if (offset <= curr_off)
1528                         discard_buffer(bh);
1529                 curr_off = next_off;
1530                 bh = next;
1531         } while (bh != head);
1532
1533         /*
1534          * We release buffers only if the entire page is being invalidated.
1535          * The get_block cached value has been unconditionally invalidated,
1536          * so real IO is not possible anymore.
1537          */
1538         if (offset == 0)
1539                 try_to_release_page(page, 0);
1540 out:
1541         return;
1542 }
1543 EXPORT_SYMBOL(block_invalidatepage);
1544
1545 /*
1546  * We attach and possibly dirty the buffers atomically wrt
1547  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1548  * is already excluded via the page lock.
1549  */
1550 void create_empty_buffers(struct page *page,
1551                         unsigned long blocksize, unsigned long b_state)
1552 {
1553         struct buffer_head *bh, *head, *tail;
1554
1555         head = alloc_page_buffers(page, blocksize, 1);
1556         bh = head;
1557         do {
1558                 bh->b_state |= b_state;
1559                 tail = bh;
1560                 bh = bh->b_this_page;
1561         } while (bh);
1562         tail->b_this_page = head;
1563
1564         spin_lock(&page->mapping->private_lock);
1565         if (PageUptodate(page) || PageDirty(page)) {
1566                 bh = head;
1567                 do {
1568                         if (PageDirty(page))
1569                                 set_buffer_dirty(bh);
1570                         if (PageUptodate(page))
1571                                 set_buffer_uptodate(bh);
1572                         bh = bh->b_this_page;
1573                 } while (bh != head);
1574         }
1575         attach_page_buffers(page, head);
1576         spin_unlock(&page->mapping->private_lock);
1577 }
1578 EXPORT_SYMBOL(create_empty_buffers);
1579
1580 /*
1581  * We are taking a block for data and we don't want any output from any
1582  * buffer-cache aliases starting from return from that function and
1583  * until the moment when something will explicitly mark the buffer
1584  * dirty (hopefully that will not happen until we will free that block ;-)
1585  * We don't even need to mark it not-uptodate - nobody can expect
1586  * anything from a newly allocated buffer anyway. We used to used
1587  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1588  * don't want to mark the alias unmapped, for example - it would confuse
1589  * anyone who might pick it with bread() afterwards...
1590  *
1591  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1592  * be writeout I/O going on against recently-freed buffers.  We don't
1593  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1594  * only if we really need to.  That happens here.
1595  */
1596 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1597 {
1598         struct buffer_head *old_bh;
1599
1600         might_sleep();
1601
1602         old_bh = __find_get_block_slow(bdev, block);
1603         if (old_bh) {
1604                 clear_buffer_dirty(old_bh);
1605                 wait_on_buffer(old_bh);
1606                 clear_buffer_req(old_bh);
1607                 __brelse(old_bh);
1608         }
1609 }
1610 EXPORT_SYMBOL(unmap_underlying_metadata);
1611
1612 /*
1613  * Size is a power-of-two in the range 512..PAGE_SIZE,
1614  * and the case we care about most is PAGE_SIZE.
1615  *
1616  * So this *could* possibly be written with those
1617  * constraints in mind (relevant mostly if some
1618  * architecture has a slow bit-scan instruction)
1619  */
1620 static inline int block_size_bits(unsigned int blocksize)
1621 {
1622         return ilog2(blocksize);
1623 }
1624
1625 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1626 {
1627         BUG_ON(!PageLocked(page));
1628
1629         if (!page_has_buffers(page))
1630                 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1631         return page_buffers(page);
1632 }
1633
1634 /*
1635  * NOTE! All mapped/uptodate combinations are valid:
1636  *
1637  *      Mapped  Uptodate        Meaning
1638  *
1639  *      No      No              "unknown" - must do get_block()
1640  *      No      Yes             "hole" - zero-filled
1641  *      Yes     No              "allocated" - allocated on disk, not read in
1642  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1643  *
1644  * "Dirty" is valid only with the last case (mapped+uptodate).
1645  */
1646
1647 /*
1648  * While block_write_full_page is writing back the dirty buffers under
1649  * the page lock, whoever dirtied the buffers may decide to clean them
1650  * again at any time.  We handle that by only looking at the buffer
1651  * state inside lock_buffer().
1652  *
1653  * If block_write_full_page() is called for regular writeback
1654  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1655  * locked buffer.   This only can happen if someone has written the buffer
1656  * directly, with submit_bh().  At the address_space level PageWriteback
1657  * prevents this contention from occurring.
1658  *
1659  * If block_write_full_page() is called with wbc->sync_mode ==
1660  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1661  * causes the writes to be flagged as synchronous writes.
1662  */
1663 static int __block_write_full_page(struct inode *inode, struct page *page,
1664                         get_block_t *get_block, struct writeback_control *wbc,
1665                         bh_end_io_t *handler)
1666 {
1667         int err;
1668         sector_t block;
1669         sector_t last_block;
1670         struct buffer_head *bh, *head;
1671         unsigned int blocksize, bbits;
1672         int nr_underway = 0;
1673         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1674                         WRITE_SYNC : WRITE);
1675
1676         head = create_page_buffers(page, inode,
1677                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1678
1679         /*
1680          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1681          * here, and the (potentially unmapped) buffers may become dirty at
1682          * any time.  If a buffer becomes dirty here after we've inspected it
1683          * then we just miss that fact, and the page stays dirty.
1684          *
1685          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1686          * handle that here by just cleaning them.
1687          */
1688
1689         bh = head;
1690         blocksize = bh->b_size;
1691         bbits = block_size_bits(blocksize);
1692
1693         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1694         last_block = (i_size_read(inode) - 1) >> bbits;
1695
1696         /*
1697          * Get all the dirty buffers mapped to disk addresses and
1698          * handle any aliases from the underlying blockdev's mapping.
1699          */
1700         do {
1701                 if (block > last_block) {
1702                         /*
1703                          * mapped buffers outside i_size will occur, because
1704                          * this page can be outside i_size when there is a
1705                          * truncate in progress.
1706                          */
1707                         /*
1708                          * The buffer was zeroed by block_write_full_page()
1709                          */
1710                         clear_buffer_dirty(bh);
1711                         set_buffer_uptodate(bh);
1712                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1713                            buffer_dirty(bh)) {
1714                         WARN_ON(bh->b_size != blocksize);
1715                         err = get_block(inode, block, bh, 1);
1716                         if (err)
1717                                 goto recover;
1718                         clear_buffer_delay(bh);
1719                         if (buffer_new(bh)) {
1720                                 /* blockdev mappings never come here */
1721                                 clear_buffer_new(bh);
1722                                 unmap_underlying_metadata(bh->b_bdev,
1723                                                         bh->b_blocknr);
1724                         }
1725                 }
1726                 bh = bh->b_this_page;
1727                 block++;
1728         } while (bh != head);
1729
1730         do {
1731                 if (!buffer_mapped(bh))
1732                         continue;
1733                 /*
1734                  * If it's a fully non-blocking write attempt and we cannot
1735                  * lock the buffer then redirty the page.  Note that this can
1736                  * potentially cause a busy-wait loop from writeback threads
1737                  * and kswapd activity, but those code paths have their own
1738                  * higher-level throttling.
1739                  */
1740                 if (wbc->sync_mode != WB_SYNC_NONE) {
1741                         lock_buffer(bh);
1742                 } else if (!trylock_buffer(bh)) {
1743                         redirty_page_for_writepage(wbc, page);
1744                         continue;
1745                 }
1746                 if (test_clear_buffer_dirty(bh)) {
1747                         mark_buffer_async_write_endio(bh, handler);
1748                 } else {
1749                         unlock_buffer(bh);
1750                 }
1751         } while ((bh = bh->b_this_page) != head);
1752
1753         /*
1754          * The page and its buffers are protected by PageWriteback(), so we can
1755          * drop the bh refcounts early.
1756          */
1757         BUG_ON(PageWriteback(page));
1758         set_page_writeback(page);
1759
1760         do {
1761                 struct buffer_head *next = bh->b_this_page;
1762                 if (buffer_async_write(bh)) {
1763                         submit_bh(write_op, bh);
1764                         nr_underway++;
1765                 }
1766                 bh = next;
1767         } while (bh != head);
1768         unlock_page(page);
1769
1770         err = 0;
1771 done:
1772         if (nr_underway == 0) {
1773                 /*
1774                  * The page was marked dirty, but the buffers were
1775                  * clean.  Someone wrote them back by hand with
1776                  * ll_rw_block/submit_bh.  A rare case.
1777                  */
1778                 end_page_writeback(page);
1779
1780                 /*
1781                  * The page and buffer_heads can be released at any time from
1782                  * here on.
1783                  */
1784         }
1785         return err;
1786
1787 recover:
1788         /*
1789          * ENOSPC, or some other error.  We may already have added some
1790          * blocks to the file, so we need to write these out to avoid
1791          * exposing stale data.
1792          * The page is currently locked and not marked for writeback
1793          */
1794         bh = head;
1795         /* Recovery: lock and submit the mapped buffers */
1796         do {
1797                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1798                     !buffer_delay(bh)) {
1799                         lock_buffer(bh);
1800                         mark_buffer_async_write_endio(bh, handler);
1801                 } else {
1802                         /*
1803                          * The buffer may have been set dirty during
1804                          * attachment to a dirty page.
1805                          */
1806                         clear_buffer_dirty(bh);
1807                 }
1808         } while ((bh = bh->b_this_page) != head);
1809         SetPageError(page);
1810         BUG_ON(PageWriteback(page));
1811         mapping_set_error(page->mapping, err);
1812         set_page_writeback(page);
1813         do {
1814                 struct buffer_head *next = bh->b_this_page;
1815                 if (buffer_async_write(bh)) {
1816                         clear_buffer_dirty(bh);
1817                         submit_bh(write_op, bh);
1818                         nr_underway++;
1819                 }
1820                 bh = next;
1821         } while (bh != head);
1822         unlock_page(page);
1823         goto done;
1824 }
1825
1826 /*
1827  * If a page has any new buffers, zero them out here, and mark them uptodate
1828  * and dirty so they'll be written out (in order to prevent uninitialised
1829  * block data from leaking). And clear the new bit.
1830  */
1831 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1832 {
1833         unsigned int block_start, block_end;
1834         struct buffer_head *head, *bh;
1835
1836         BUG_ON(!PageLocked(page));
1837         if (!page_has_buffers(page))
1838                 return;
1839
1840         bh = head = page_buffers(page);
1841         block_start = 0;
1842         do {
1843                 block_end = block_start + bh->b_size;
1844
1845                 if (buffer_new(bh)) {
1846                         if (block_end > from && block_start < to) {
1847                                 if (!PageUptodate(page)) {
1848                                         unsigned start, size;
1849
1850                                         start = max(from, block_start);
1851                                         size = min(to, block_end) - start;
1852
1853                                         zero_user(page, start, size);
1854                                         set_buffer_uptodate(bh);
1855                                 }
1856
1857                                 clear_buffer_new(bh);
1858                                 mark_buffer_dirty(bh);
1859                         }
1860                 }
1861
1862                 block_start = block_end;
1863                 bh = bh->b_this_page;
1864         } while (bh != head);
1865 }
1866 EXPORT_SYMBOL(page_zero_new_buffers);
1867
1868 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1869                 get_block_t *get_block)
1870 {
1871         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1872         unsigned to = from + len;
1873         struct inode *inode = page->mapping->host;
1874         unsigned block_start, block_end;
1875         sector_t block;
1876         int err = 0;
1877         unsigned blocksize, bbits;
1878         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1879
1880         BUG_ON(!PageLocked(page));
1881         BUG_ON(from > PAGE_CACHE_SIZE);
1882         BUG_ON(to > PAGE_CACHE_SIZE);
1883         BUG_ON(from > to);
1884
1885         head = create_page_buffers(page, inode, 0);
1886         blocksize = head->b_size;
1887         bbits = block_size_bits(blocksize);
1888
1889         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1890
1891         for(bh = head, block_start = 0; bh != head || !block_start;
1892             block++, block_start=block_end, bh = bh->b_this_page) {
1893                 block_end = block_start + blocksize;
1894                 if (block_end <= from || block_start >= to) {
1895                         if (PageUptodate(page)) {
1896                                 if (!buffer_uptodate(bh))
1897                                         set_buffer_uptodate(bh);
1898                         }
1899                         continue;
1900                 }
1901                 if (buffer_new(bh))
1902                         clear_buffer_new(bh);
1903                 if (!buffer_mapped(bh)) {
1904                         WARN_ON(bh->b_size != blocksize);
1905                         err = get_block(inode, block, bh, 1);
1906                         if (err)
1907                                 break;
1908                         if (buffer_new(bh)) {
1909                                 unmap_underlying_metadata(bh->b_bdev,
1910                                                         bh->b_blocknr);
1911                                 if (PageUptodate(page)) {
1912                                         clear_buffer_new(bh);
1913                                         set_buffer_uptodate(bh);
1914                                         mark_buffer_dirty(bh);
1915                                         continue;
1916                                 }
1917                                 if (block_end > to || block_start < from)
1918                                         zero_user_segments(page,
1919                                                 to, block_end,
1920                                                 block_start, from);
1921                                 continue;
1922                         }
1923                 }
1924                 if (PageUptodate(page)) {
1925                         if (!buffer_uptodate(bh))
1926                                 set_buffer_uptodate(bh);
1927                         continue; 
1928                 }
1929                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1930                     !buffer_unwritten(bh) &&
1931                      (block_start < from || block_end > to)) {
1932                         ll_rw_block(READ, 1, &bh);
1933                         *wait_bh++=bh;
1934                 }
1935         }
1936         /*
1937          * If we issued read requests - let them complete.
1938          */
1939         while(wait_bh > wait) {
1940                 wait_on_buffer(*--wait_bh);
1941                 if (!buffer_uptodate(*wait_bh))
1942                         err = -EIO;
1943         }
1944         if (unlikely(err))
1945                 page_zero_new_buffers(page, from, to);
1946         return err;
1947 }
1948 EXPORT_SYMBOL(__block_write_begin);
1949
1950 static int __block_commit_write(struct inode *inode, struct page *page,
1951                 unsigned from, unsigned to)
1952 {
1953         unsigned block_start, block_end;
1954         int partial = 0;
1955         unsigned blocksize;
1956         struct buffer_head *bh, *head;
1957
1958         bh = head = page_buffers(page);
1959         blocksize = bh->b_size;
1960
1961         block_start = 0;
1962         do {
1963                 block_end = block_start + blocksize;
1964                 if (block_end <= from || block_start >= to) {
1965                         if (!buffer_uptodate(bh))
1966                                 partial = 1;
1967                 } else {
1968                         set_buffer_uptodate(bh);
1969                         mark_buffer_dirty(bh);
1970                 }
1971                 clear_buffer_new(bh);
1972
1973                 block_start = block_end;
1974                 bh = bh->b_this_page;
1975         } while (bh != head);
1976
1977         /*
1978          * If this is a partial write which happened to make all buffers
1979          * uptodate then we can optimize away a bogus readpage() for
1980          * the next read(). Here we 'discover' whether the page went
1981          * uptodate as a result of this (potentially partial) write.
1982          */
1983         if (!partial)
1984                 SetPageUptodate(page);
1985         return 0;
1986 }
1987
1988 /*
1989  * block_write_begin takes care of the basic task of block allocation and
1990  * bringing partial write blocks uptodate first.
1991  *
1992  * The filesystem needs to handle block truncation upon failure.
1993  */
1994 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1995                 unsigned flags, struct page **pagep, get_block_t *get_block)
1996 {
1997         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1998         struct page *page;
1999         int status;
2000
2001         page = grab_cache_page_write_begin(mapping, index, flags);
2002         if (!page)
2003                 return -ENOMEM;
2004
2005         status = __block_write_begin(page, pos, len, get_block);
2006         if (unlikely(status)) {
2007                 unlock_page(page);
2008                 page_cache_release(page);
2009                 page = NULL;
2010         }
2011
2012         *pagep = page;
2013         return status;
2014 }
2015 EXPORT_SYMBOL(block_write_begin);
2016
2017 int block_write_end(struct file *file, struct address_space *mapping,
2018                         loff_t pos, unsigned len, unsigned copied,
2019                         struct page *page, void *fsdata)
2020 {
2021         struct inode *inode = mapping->host;
2022         unsigned start;
2023
2024         start = pos & (PAGE_CACHE_SIZE - 1);
2025
2026         if (unlikely(copied < len)) {
2027                 /*
2028                  * The buffers that were written will now be uptodate, so we
2029                  * don't have to worry about a readpage reading them and
2030                  * overwriting a partial write. However if we have encountered
2031                  * a short write and only partially written into a buffer, it
2032                  * will not be marked uptodate, so a readpage might come in and
2033                  * destroy our partial write.
2034                  *
2035                  * Do the simplest thing, and just treat any short write to a
2036                  * non uptodate page as a zero-length write, and force the
2037                  * caller to redo the whole thing.
2038                  */
2039                 if (!PageUptodate(page))
2040                         copied = 0;
2041
2042                 page_zero_new_buffers(page, start+copied, start+len);
2043         }
2044         flush_dcache_page(page);
2045
2046         /* This could be a short (even 0-length) commit */
2047         __block_commit_write(inode, page, start, start+copied);
2048
2049         return copied;
2050 }
2051 EXPORT_SYMBOL(block_write_end);
2052
2053 int generic_write_end(struct file *file, struct address_space *mapping,
2054                         loff_t pos, unsigned len, unsigned copied,
2055                         struct page *page, void *fsdata)
2056 {
2057         struct inode *inode = mapping->host;
2058         loff_t old_size = inode->i_size;
2059         int i_size_changed = 0;
2060
2061         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2062
2063         /*
2064          * No need to use i_size_read() here, the i_size
2065          * cannot change under us because we hold i_mutex.
2066          *
2067          * But it's important to update i_size while still holding page lock:
2068          * page writeout could otherwise come in and zero beyond i_size.
2069          */
2070         if (pos+copied > inode->i_size) {
2071                 i_size_write(inode, pos+copied);
2072                 i_size_changed = 1;
2073         }
2074
2075         unlock_page(page);
2076         page_cache_release(page);
2077
2078         if (old_size < pos)
2079                 pagecache_isize_extended(inode, old_size, pos);
2080         /*
2081          * Don't mark the inode dirty under page lock. First, it unnecessarily
2082          * makes the holding time of page lock longer. Second, it forces lock
2083          * ordering of page lock and transaction start for journaling
2084          * filesystems.
2085          */
2086         if (i_size_changed)
2087                 mark_inode_dirty(inode);
2088
2089         return copied;
2090 }
2091 EXPORT_SYMBOL(generic_write_end);
2092
2093 /*
2094  * block_is_partially_uptodate checks whether buffers within a page are
2095  * uptodate or not.
2096  *
2097  * Returns true if all buffers which correspond to a file portion
2098  * we want to read are uptodate.
2099  */
2100 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2101                                         unsigned long from)
2102 {
2103         unsigned block_start, block_end, blocksize;
2104         unsigned to;
2105         struct buffer_head *bh, *head;
2106         int ret = 1;
2107
2108         if (!page_has_buffers(page))
2109                 return 0;
2110
2111         head = page_buffers(page);
2112         blocksize = head->b_size;
2113         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2114         to = from + to;
2115         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2116                 return 0;
2117
2118         bh = head;
2119         block_start = 0;
2120         do {
2121                 block_end = block_start + blocksize;
2122                 if (block_end > from && block_start < to) {
2123                         if (!buffer_uptodate(bh)) {
2124                                 ret = 0;
2125                                 break;
2126                         }
2127                         if (block_end >= to)
2128                                 break;
2129                 }
2130                 block_start = block_end;
2131                 bh = bh->b_this_page;
2132         } while (bh != head);
2133
2134         return ret;
2135 }
2136 EXPORT_SYMBOL(block_is_partially_uptodate);
2137
2138 /*
2139  * Generic "read page" function for block devices that have the normal
2140  * get_block functionality. This is most of the block device filesystems.
2141  * Reads the page asynchronously --- the unlock_buffer() and
2142  * set/clear_buffer_uptodate() functions propagate buffer state into the
2143  * page struct once IO has completed.
2144  */
2145 int block_read_full_page(struct page *page, get_block_t *get_block)
2146 {
2147         struct inode *inode = page->mapping->host;
2148         sector_t iblock, lblock;
2149         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2150         unsigned int blocksize, bbits;
2151         int nr, i;
2152         int fully_mapped = 1;
2153
2154         head = create_page_buffers(page, inode, 0);
2155         blocksize = head->b_size;
2156         bbits = block_size_bits(blocksize);
2157
2158         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2159         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2160         bh = head;
2161         nr = 0;
2162         i = 0;
2163
2164         do {
2165                 if (buffer_uptodate(bh))
2166                         continue;
2167
2168                 if (!buffer_mapped(bh)) {
2169                         int err = 0;
2170
2171                         fully_mapped = 0;
2172                         if (iblock < lblock) {
2173                                 WARN_ON(bh->b_size != blocksize);
2174                                 err = get_block(inode, iblock, bh, 0);
2175                                 if (err)
2176                                         SetPageError(page);
2177                         }
2178                         if (!buffer_mapped(bh)) {
2179                                 zero_user(page, i * blocksize, blocksize);
2180                                 if (!err)
2181                                         set_buffer_uptodate(bh);
2182                                 continue;
2183                         }
2184                         /*
2185                          * get_block() might have updated the buffer
2186                          * synchronously
2187                          */
2188                         if (buffer_uptodate(bh))
2189                                 continue;
2190                 }
2191                 arr[nr++] = bh;
2192         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2193
2194         if (fully_mapped)
2195                 SetPageMappedToDisk(page);
2196
2197         if (!nr) {
2198                 /*
2199                  * All buffers are uptodate - we can set the page uptodate
2200                  * as well. But not if get_block() returned an error.
2201                  */
2202                 if (!PageError(page))
2203                         SetPageUptodate(page);
2204                 unlock_page(page);
2205                 return 0;
2206         }
2207
2208         /* Stage two: lock the buffers */
2209         for (i = 0; i < nr; i++) {
2210                 bh = arr[i];
2211                 lock_buffer(bh);
2212                 mark_buffer_async_read(bh);
2213         }
2214
2215         /*
2216          * Stage 3: start the IO.  Check for uptodateness
2217          * inside the buffer lock in case another process reading
2218          * the underlying blockdev brought it uptodate (the sct fix).
2219          */
2220         for (i = 0; i < nr; i++) {
2221                 bh = arr[i];
2222                 if (buffer_uptodate(bh))
2223                         end_buffer_async_read(bh, 1);
2224                 else
2225                         submit_bh(READ, bh);
2226         }
2227         return 0;
2228 }
2229 EXPORT_SYMBOL(block_read_full_page);
2230
2231 /* utility function for filesystems that need to do work on expanding
2232  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2233  * deal with the hole.  
2234  */
2235 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2236 {
2237         struct address_space *mapping = inode->i_mapping;
2238         struct page *page;
2239         void *fsdata;
2240         int err;
2241
2242         err = inode_newsize_ok(inode, size);
2243         if (err)
2244                 goto out;
2245
2246         err = pagecache_write_begin(NULL, mapping, size, 0,
2247                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2248                                 &page, &fsdata);
2249         if (err)
2250                 goto out;
2251
2252         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2253         BUG_ON(err > 0);
2254
2255 out:
2256         return err;
2257 }
2258 EXPORT_SYMBOL(generic_cont_expand_simple);
2259
2260 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2261                             loff_t pos, loff_t *bytes)
2262 {
2263         struct inode *inode = mapping->host;
2264         unsigned blocksize = 1 << inode->i_blkbits;
2265         struct page *page;
2266         void *fsdata;
2267         pgoff_t index, curidx;
2268         loff_t curpos;
2269         unsigned zerofrom, offset, len;
2270         int err = 0;
2271
2272         index = pos >> PAGE_CACHE_SHIFT;
2273         offset = pos & ~PAGE_CACHE_MASK;
2274
2275         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2276                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2277                 if (zerofrom & (blocksize-1)) {
2278                         *bytes |= (blocksize-1);
2279                         (*bytes)++;
2280                 }
2281                 len = PAGE_CACHE_SIZE - zerofrom;
2282
2283                 err = pagecache_write_begin(file, mapping, curpos, len,
2284                                                 AOP_FLAG_UNINTERRUPTIBLE,
2285                                                 &page, &fsdata);
2286                 if (err)
2287                         goto out;
2288                 zero_user(page, zerofrom, len);
2289                 err = pagecache_write_end(file, mapping, curpos, len, len,
2290                                                 page, fsdata);
2291                 if (err < 0)
2292                         goto out;
2293                 BUG_ON(err != len);
2294                 err = 0;
2295
2296                 balance_dirty_pages_ratelimited(mapping);
2297
2298                 if (unlikely(fatal_signal_pending(current))) {
2299                         err = -EINTR;
2300                         goto out;
2301                 }
2302         }
2303
2304         /* page covers the boundary, find the boundary offset */
2305         if (index == curidx) {
2306                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2307                 /* if we will expand the thing last block will be filled */
2308                 if (offset <= zerofrom) {
2309                         goto out;
2310                 }
2311                 if (zerofrom & (blocksize-1)) {
2312                         *bytes |= (blocksize-1);
2313                         (*bytes)++;
2314                 }
2315                 len = offset - zerofrom;
2316
2317                 err = pagecache_write_begin(file, mapping, curpos, len,
2318                                                 AOP_FLAG_UNINTERRUPTIBLE,
2319                                                 &page, &fsdata);
2320                 if (err)
2321                         goto out;
2322                 zero_user(page, zerofrom, len);
2323                 err = pagecache_write_end(file, mapping, curpos, len, len,
2324                                                 page, fsdata);
2325                 if (err < 0)
2326                         goto out;
2327                 BUG_ON(err != len);
2328                 err = 0;
2329         }
2330 out:
2331         return err;
2332 }
2333
2334 /*
2335  * For moronic filesystems that do not allow holes in file.
2336  * We may have to extend the file.
2337  */
2338 int cont_write_begin(struct file *file, struct address_space *mapping,
2339                         loff_t pos, unsigned len, unsigned flags,
2340                         struct page **pagep, void **fsdata,
2341                         get_block_t *get_block, loff_t *bytes)
2342 {
2343         struct inode *inode = mapping->host;
2344         unsigned blocksize = 1 << inode->i_blkbits;
2345         unsigned zerofrom;
2346         int err;
2347
2348         err = cont_expand_zero(file, mapping, pos, bytes);
2349         if (err)
2350                 return err;
2351
2352         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2353         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2354                 *bytes |= (blocksize-1);
2355                 (*bytes)++;
2356         }
2357
2358         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2359 }
2360 EXPORT_SYMBOL(cont_write_begin);
2361
2362 int block_commit_write(struct page *page, unsigned from, unsigned to)
2363 {
2364         struct inode *inode = page->mapping->host;
2365         __block_commit_write(inode,page,from,to);
2366         return 0;
2367 }
2368 EXPORT_SYMBOL(block_commit_write);
2369
2370 /*
2371  * block_page_mkwrite() is not allowed to change the file size as it gets
2372  * called from a page fault handler when a page is first dirtied. Hence we must
2373  * be careful to check for EOF conditions here. We set the page up correctly
2374  * for a written page which means we get ENOSPC checking when writing into
2375  * holes and correct delalloc and unwritten extent mapping on filesystems that
2376  * support these features.
2377  *
2378  * We are not allowed to take the i_mutex here so we have to play games to
2379  * protect against truncate races as the page could now be beyond EOF.  Because
2380  * truncate writes the inode size before removing pages, once we have the
2381  * page lock we can determine safely if the page is beyond EOF. If it is not
2382  * beyond EOF, then the page is guaranteed safe against truncation until we
2383  * unlock the page.
2384  *
2385  * Direct callers of this function should protect against filesystem freezing
2386  * using sb_start_write() - sb_end_write() functions.
2387  */
2388 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2389                          get_block_t get_block)
2390 {
2391         struct page *page = vmf->page;
2392         struct inode *inode = file_inode(vma->vm_file);
2393         unsigned long end;
2394         loff_t size;
2395         int ret;
2396
2397         lock_page(page);
2398         size = i_size_read(inode);
2399         if ((page->mapping != inode->i_mapping) ||
2400             (page_offset(page) > size)) {
2401                 /* We overload EFAULT to mean page got truncated */
2402                 ret = -EFAULT;
2403                 goto out_unlock;
2404         }
2405
2406         /* page is wholly or partially inside EOF */
2407         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2408                 end = size & ~PAGE_CACHE_MASK;
2409         else
2410                 end = PAGE_CACHE_SIZE;
2411
2412         ret = __block_write_begin(page, 0, end, get_block);
2413         if (!ret)
2414                 ret = block_commit_write(page, 0, end);
2415
2416         if (unlikely(ret < 0))
2417                 goto out_unlock;
2418         set_page_dirty(page);
2419         wait_for_stable_page(page);
2420         return 0;
2421 out_unlock:
2422         unlock_page(page);
2423         return ret;
2424 }
2425 EXPORT_SYMBOL(__block_page_mkwrite);
2426
2427 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2428                    get_block_t get_block)
2429 {
2430         int ret;
2431         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2432
2433         sb_start_pagefault(sb);
2434
2435         /*
2436          * Update file times before taking page lock. We may end up failing the
2437          * fault so this update may be superfluous but who really cares...
2438          */
2439         file_update_time(vma->vm_file);
2440
2441         ret = __block_page_mkwrite(vma, vmf, get_block);
2442         sb_end_pagefault(sb);
2443         return block_page_mkwrite_return(ret);
2444 }
2445 EXPORT_SYMBOL(block_page_mkwrite);
2446
2447 /*
2448  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2449  * immediately, while under the page lock.  So it needs a special end_io
2450  * handler which does not touch the bh after unlocking it.
2451  */
2452 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2453 {
2454         __end_buffer_read_notouch(bh, uptodate);
2455 }
2456
2457 /*
2458  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2459  * the page (converting it to circular linked list and taking care of page
2460  * dirty races).
2461  */
2462 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2463 {
2464         struct buffer_head *bh;
2465
2466         BUG_ON(!PageLocked(page));
2467
2468         spin_lock(&page->mapping->private_lock);
2469         bh = head;
2470         do {
2471                 if (PageDirty(page))
2472                         set_buffer_dirty(bh);
2473                 if (!bh->b_this_page)
2474                         bh->b_this_page = head;
2475                 bh = bh->b_this_page;
2476         } while (bh != head);
2477         attach_page_buffers(page, head);
2478         spin_unlock(&page->mapping->private_lock);
2479 }
2480
2481 /*
2482  * On entry, the page is fully not uptodate.
2483  * On exit the page is fully uptodate in the areas outside (from,to)
2484  * The filesystem needs to handle block truncation upon failure.
2485  */
2486 int nobh_write_begin(struct address_space *mapping,
2487                         loff_t pos, unsigned len, unsigned flags,
2488                         struct page **pagep, void **fsdata,
2489                         get_block_t *get_block)
2490 {
2491         struct inode *inode = mapping->host;
2492         const unsigned blkbits = inode->i_blkbits;
2493         const unsigned blocksize = 1 << blkbits;
2494         struct buffer_head *head, *bh;
2495         struct page *page;
2496         pgoff_t index;
2497         unsigned from, to;
2498         unsigned block_in_page;
2499         unsigned block_start, block_end;
2500         sector_t block_in_file;
2501         int nr_reads = 0;
2502         int ret = 0;
2503         int is_mapped_to_disk = 1;
2504
2505         index = pos >> PAGE_CACHE_SHIFT;
2506         from = pos & (PAGE_CACHE_SIZE - 1);
2507         to = from + len;
2508
2509         page = grab_cache_page_write_begin(mapping, index, flags);
2510         if (!page)
2511                 return -ENOMEM;
2512         *pagep = page;
2513         *fsdata = NULL;
2514
2515         if (page_has_buffers(page)) {
2516                 ret = __block_write_begin(page, pos, len, get_block);
2517                 if (unlikely(ret))
2518                         goto out_release;
2519                 return ret;
2520         }
2521
2522         if (PageMappedToDisk(page))
2523                 return 0;
2524
2525         /*
2526          * Allocate buffers so that we can keep track of state, and potentially
2527          * attach them to the page if an error occurs. In the common case of
2528          * no error, they will just be freed again without ever being attached
2529          * to the page (which is all OK, because we're under the page lock).
2530          *
2531          * Be careful: the buffer linked list is a NULL terminated one, rather
2532          * than the circular one we're used to.
2533          */
2534         head = alloc_page_buffers(page, blocksize, 0);
2535         if (!head) {
2536                 ret = -ENOMEM;
2537                 goto out_release;
2538         }
2539
2540         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2541
2542         /*
2543          * We loop across all blocks in the page, whether or not they are
2544          * part of the affected region.  This is so we can discover if the
2545          * page is fully mapped-to-disk.
2546          */
2547         for (block_start = 0, block_in_page = 0, bh = head;
2548                   block_start < PAGE_CACHE_SIZE;
2549                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2550                 int create;
2551
2552                 block_end = block_start + blocksize;
2553                 bh->b_state = 0;
2554                 create = 1;
2555                 if (block_start >= to)
2556                         create = 0;
2557                 ret = get_block(inode, block_in_file + block_in_page,
2558                                         bh, create);
2559                 if (ret)
2560                         goto failed;
2561                 if (!buffer_mapped(bh))
2562                         is_mapped_to_disk = 0;
2563                 if (buffer_new(bh))
2564                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2565                 if (PageUptodate(page)) {
2566                         set_buffer_uptodate(bh);
2567                         continue;
2568                 }
2569                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2570                         zero_user_segments(page, block_start, from,
2571                                                         to, block_end);
2572                         continue;
2573                 }
2574                 if (buffer_uptodate(bh))
2575                         continue;       /* reiserfs does this */
2576                 if (block_start < from || block_end > to) {
2577                         lock_buffer(bh);
2578                         bh->b_end_io = end_buffer_read_nobh;
2579                         submit_bh(READ, bh);
2580                         nr_reads++;
2581                 }
2582         }
2583
2584         if (nr_reads) {
2585                 /*
2586                  * The page is locked, so these buffers are protected from
2587                  * any VM or truncate activity.  Hence we don't need to care
2588                  * for the buffer_head refcounts.
2589                  */
2590                 for (bh = head; bh; bh = bh->b_this_page) {
2591                         wait_on_buffer(bh);
2592                         if (!buffer_uptodate(bh))
2593                                 ret = -EIO;
2594                 }
2595                 if (ret)
2596                         goto failed;
2597         }
2598
2599         if (is_mapped_to_disk)
2600                 SetPageMappedToDisk(page);
2601
2602         *fsdata = head; /* to be released by nobh_write_end */
2603
2604         return 0;
2605
2606 failed:
2607         BUG_ON(!ret);
2608         /*
2609          * Error recovery is a bit difficult. We need to zero out blocks that
2610          * were newly allocated, and dirty them to ensure they get written out.
2611          * Buffers need to be attached to the page at this point, otherwise
2612          * the handling of potential IO errors during writeout would be hard
2613          * (could try doing synchronous writeout, but what if that fails too?)
2614          */
2615         attach_nobh_buffers(page, head);
2616         page_zero_new_buffers(page, from, to);
2617
2618 out_release:
2619         unlock_page(page);
2620         page_cache_release(page);
2621         *pagep = NULL;
2622
2623         return ret;
2624 }
2625 EXPORT_SYMBOL(nobh_write_begin);
2626
2627 int nobh_write_end(struct file *file, struct address_space *mapping,
2628                         loff_t pos, unsigned len, unsigned copied,
2629                         struct page *page, void *fsdata)
2630 {
2631         struct inode *inode = page->mapping->host;
2632         struct buffer_head *head = fsdata;
2633         struct buffer_head *bh;
2634         BUG_ON(fsdata != NULL && page_has_buffers(page));
2635
2636         if (unlikely(copied < len) && head)
2637                 attach_nobh_buffers(page, head);
2638         if (page_has_buffers(page))
2639                 return generic_write_end(file, mapping, pos, len,
2640                                         copied, page, fsdata);
2641
2642         SetPageUptodate(page);
2643         set_page_dirty(page);
2644         if (pos+copied > inode->i_size) {
2645                 i_size_write(inode, pos+copied);
2646                 mark_inode_dirty(inode);
2647         }
2648
2649         unlock_page(page);
2650         page_cache_release(page);
2651
2652         while (head) {
2653                 bh = head;
2654                 head = head->b_this_page;
2655                 free_buffer_head(bh);
2656         }
2657
2658         return copied;
2659 }
2660 EXPORT_SYMBOL(nobh_write_end);
2661
2662 /*
2663  * nobh_writepage() - based on block_full_write_page() except
2664  * that it tries to operate without attaching bufferheads to
2665  * the page.
2666  */
2667 int nobh_writepage(struct page *page, get_block_t *get_block,
2668                         struct writeback_control *wbc)
2669 {
2670         struct inode * const inode = page->mapping->host;
2671         loff_t i_size = i_size_read(inode);
2672         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2673         unsigned offset;
2674         int ret;
2675
2676         /* Is the page fully inside i_size? */
2677         if (page->index < end_index)
2678                 goto out;
2679
2680         /* Is the page fully outside i_size? (truncate in progress) */
2681         offset = i_size & (PAGE_CACHE_SIZE-1);
2682         if (page->index >= end_index+1 || !offset) {
2683                 /*
2684                  * The page may have dirty, unmapped buffers.  For example,
2685                  * they may have been added in ext3_writepage().  Make them
2686                  * freeable here, so the page does not leak.
2687                  */
2688 #if 0
2689                 /* Not really sure about this  - do we need this ? */
2690                 if (page->mapping->a_ops->invalidatepage)
2691                         page->mapping->a_ops->invalidatepage(page, offset);
2692 #endif
2693                 unlock_page(page);
2694                 return 0; /* don't care */
2695         }
2696
2697         /*
2698          * The page straddles i_size.  It must be zeroed out on each and every
2699          * writepage invocation because it may be mmapped.  "A file is mapped
2700          * in multiples of the page size.  For a file that is not a multiple of
2701          * the  page size, the remaining memory is zeroed when mapped, and
2702          * writes to that region are not written out to the file."
2703          */
2704         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2705 out:
2706         ret = mpage_writepage(page, get_block, wbc);
2707         if (ret == -EAGAIN)
2708                 ret = __block_write_full_page(inode, page, get_block, wbc,
2709                                               end_buffer_async_write);
2710         return ret;
2711 }
2712 EXPORT_SYMBOL(nobh_writepage);
2713
2714 int nobh_truncate_page(struct address_space *mapping,
2715                         loff_t from, get_block_t *get_block)
2716 {
2717         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2718         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2719         unsigned blocksize;
2720         sector_t iblock;
2721         unsigned length, pos;
2722         struct inode *inode = mapping->host;
2723         struct page *page;
2724         struct buffer_head map_bh;
2725         int err;
2726
2727         blocksize = 1 << inode->i_blkbits;
2728         length = offset & (blocksize - 1);
2729
2730         /* Block boundary? Nothing to do */
2731         if (!length)
2732                 return 0;
2733
2734         length = blocksize - length;
2735         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2736
2737         page = grab_cache_page(mapping, index);
2738         err = -ENOMEM;
2739         if (!page)
2740                 goto out;
2741
2742         if (page_has_buffers(page)) {
2743 has_buffers:
2744                 unlock_page(page);
2745                 page_cache_release(page);
2746                 return block_truncate_page(mapping, from, get_block);
2747         }
2748
2749         /* Find the buffer that contains "offset" */
2750         pos = blocksize;
2751         while (offset >= pos) {
2752                 iblock++;
2753                 pos += blocksize;
2754         }
2755
2756         map_bh.b_size = blocksize;
2757         map_bh.b_state = 0;
2758         err = get_block(inode, iblock, &map_bh, 0);
2759         if (err)
2760                 goto unlock;
2761         /* unmapped? It's a hole - nothing to do */
2762         if (!buffer_mapped(&map_bh))
2763                 goto unlock;
2764
2765         /* Ok, it's mapped. Make sure it's up-to-date */
2766         if (!PageUptodate(page)) {
2767                 err = mapping->a_ops->readpage(NULL, page);
2768                 if (err) {
2769                         page_cache_release(page);
2770                         goto out;
2771                 }
2772                 lock_page(page);
2773                 if (!PageUptodate(page)) {
2774                         err = -EIO;
2775                         goto unlock;
2776                 }
2777                 if (page_has_buffers(page))
2778                         goto has_buffers;
2779         }
2780         zero_user(page, offset, length);
2781         set_page_dirty(page);
2782         err = 0;
2783
2784 unlock:
2785         unlock_page(page);
2786         page_cache_release(page);
2787 out:
2788         return err;
2789 }
2790 EXPORT_SYMBOL(nobh_truncate_page);
2791
2792 int block_truncate_page(struct address_space *mapping,
2793                         loff_t from, get_block_t *get_block)
2794 {
2795         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2796         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2797         unsigned blocksize;
2798         sector_t iblock;
2799         unsigned length, pos;
2800         struct inode *inode = mapping->host;
2801         struct page *page;
2802         struct buffer_head *bh;
2803         int err;
2804
2805         blocksize = 1 << inode->i_blkbits;
2806         length = offset & (blocksize - 1);
2807
2808         /* Block boundary? Nothing to do */
2809         if (!length)
2810                 return 0;
2811
2812         length = blocksize - length;
2813         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2814         
2815         page = grab_cache_page(mapping, index);
2816         err = -ENOMEM;
2817         if (!page)
2818                 goto out;
2819
2820         if (!page_has_buffers(page))
2821                 create_empty_buffers(page, blocksize, 0);
2822
2823         /* Find the buffer that contains "offset" */
2824         bh = page_buffers(page);
2825         pos = blocksize;
2826         while (offset >= pos) {
2827                 bh = bh->b_this_page;
2828                 iblock++;
2829                 pos += blocksize;
2830         }
2831
2832         err = 0;
2833         if (!buffer_mapped(bh)) {
2834                 WARN_ON(bh->b_size != blocksize);
2835                 err = get_block(inode, iblock, bh, 0);
2836                 if (err)
2837                         goto unlock;
2838                 /* unmapped? It's a hole - nothing to do */
2839                 if (!buffer_mapped(bh))
2840                         goto unlock;
2841         }
2842
2843         /* Ok, it's mapped. Make sure it's up-to-date */
2844         if (PageUptodate(page))
2845                 set_buffer_uptodate(bh);
2846
2847         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2848                 err = -EIO;
2849                 ll_rw_block(READ, 1, &bh);
2850                 wait_on_buffer(bh);
2851                 /* Uhhuh. Read error. Complain and punt. */
2852                 if (!buffer_uptodate(bh))
2853                         goto unlock;
2854         }
2855
2856         zero_user(page, offset, length);
2857         mark_buffer_dirty(bh);
2858         err = 0;
2859
2860 unlock:
2861         unlock_page(page);
2862         page_cache_release(page);
2863 out:
2864         return err;
2865 }
2866 EXPORT_SYMBOL(block_truncate_page);
2867
2868 /*
2869  * The generic ->writepage function for buffer-backed address_spaces
2870  * this form passes in the end_io handler used to finish the IO.
2871  */
2872 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2873                         struct writeback_control *wbc, bh_end_io_t *handler)
2874 {
2875         struct inode * const inode = page->mapping->host;
2876         loff_t i_size = i_size_read(inode);
2877         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2878         unsigned offset;
2879
2880         /* Is the page fully inside i_size? */
2881         if (page->index < end_index)
2882                 return __block_write_full_page(inode, page, get_block, wbc,
2883                                                handler);
2884
2885         /* Is the page fully outside i_size? (truncate in progress) */
2886         offset = i_size & (PAGE_CACHE_SIZE-1);
2887         if (page->index >= end_index+1 || !offset) {
2888                 /*
2889                  * The page may have dirty, unmapped buffers.  For example,
2890                  * they may have been added in ext3_writepage().  Make them
2891                  * freeable here, so the page does not leak.
2892                  */
2893                 do_invalidatepage(page, 0);
2894                 unlock_page(page);
2895                 return 0; /* don't care */
2896         }
2897
2898         /*
2899          * The page straddles i_size.  It must be zeroed out on each and every
2900          * writepage invocation because it may be mmapped.  "A file is mapped
2901          * in multiples of the page size.  For a file that is not a multiple of
2902          * the  page size, the remaining memory is zeroed when mapped, and
2903          * writes to that region are not written out to the file."
2904          */
2905         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2906         return __block_write_full_page(inode, page, get_block, wbc, handler);
2907 }
2908 EXPORT_SYMBOL(block_write_full_page_endio);
2909
2910 /*
2911  * The generic ->writepage function for buffer-backed address_spaces
2912  */
2913 int block_write_full_page(struct page *page, get_block_t *get_block,
2914                         struct writeback_control *wbc)
2915 {
2916         return block_write_full_page_endio(page, get_block, wbc,
2917                                            end_buffer_async_write);
2918 }
2919 EXPORT_SYMBOL(block_write_full_page);
2920
2921 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2922                             get_block_t *get_block)
2923 {
2924         struct buffer_head tmp;
2925         struct inode *inode = mapping->host;
2926         tmp.b_state = 0;
2927         tmp.b_blocknr = 0;
2928         tmp.b_size = 1 << inode->i_blkbits;
2929         get_block(inode, block, &tmp, 0);
2930         return tmp.b_blocknr;
2931 }
2932 EXPORT_SYMBOL(generic_block_bmap);
2933
2934 static void end_bio_bh_io_sync(struct bio *bio, int err)
2935 {
2936         struct buffer_head *bh = bio->bi_private;
2937
2938         if (err == -EOPNOTSUPP) {
2939                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2940         }
2941
2942         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2943                 set_bit(BH_Quiet, &bh->b_state);
2944
2945         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2946         bio_put(bio);
2947 }
2948
2949 /*
2950  * This allows us to do IO even on the odd last sectors
2951  * of a device, even if the bh block size is some multiple
2952  * of the physical sector size.
2953  *
2954  * We'll just truncate the bio to the size of the device,
2955  * and clear the end of the buffer head manually.
2956  *
2957  * Truly out-of-range accesses will turn into actual IO
2958  * errors, this only handles the "we need to be able to
2959  * do IO at the final sector" case.
2960  */
2961 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2962 {
2963         sector_t maxsector;
2964         unsigned bytes;
2965
2966         maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2967         if (!maxsector)
2968                 return;
2969
2970         /*
2971          * If the *whole* IO is past the end of the device,
2972          * let it through, and the IO layer will turn it into
2973          * an EIO.
2974          */
2975         if (unlikely(bio->bi_sector >= maxsector))
2976                 return;
2977
2978         maxsector -= bio->bi_sector;
2979         bytes = bio->bi_size;
2980         if (likely((bytes >> 9) <= maxsector))
2981                 return;
2982
2983         /* Uhhuh. We've got a bh that straddles the device size! */
2984         bytes = maxsector << 9;
2985
2986         /* Truncate the bio.. */
2987         bio->bi_size = bytes;
2988         bio->bi_io_vec[0].bv_len = bytes;
2989
2990         /* ..and clear the end of the buffer for reads */
2991         if ((rw & RW_MASK) == READ) {
2992                 void *kaddr = kmap_atomic(bh->b_page);
2993                 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
2994                 kunmap_atomic(kaddr);
2995                 flush_dcache_page(bh->b_page);
2996         }
2997 }
2998
2999 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3000 {
3001         struct bio *bio;
3002         int ret = 0;
3003
3004         BUG_ON(!buffer_locked(bh));
3005         BUG_ON(!buffer_mapped(bh));
3006         BUG_ON(!bh->b_end_io);
3007         BUG_ON(buffer_delay(bh));
3008         BUG_ON(buffer_unwritten(bh));
3009
3010         /*
3011          * Only clear out a write error when rewriting
3012          */
3013         if (test_set_buffer_req(bh) && (rw & WRITE))
3014                 clear_buffer_write_io_error(bh);
3015
3016         /*
3017          * from here on down, it's all bio -- do the initial mapping,
3018          * submit_bio -> generic_make_request may further map this bio around
3019          */
3020         bio = bio_alloc(GFP_NOIO, 1);
3021
3022         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3023         bio->bi_bdev = bh->b_bdev;
3024         bio->bi_io_vec[0].bv_page = bh->b_page;
3025         bio->bi_io_vec[0].bv_len = bh->b_size;
3026         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3027
3028         bio->bi_vcnt = 1;
3029         bio->bi_size = bh->b_size;
3030
3031         bio->bi_end_io = end_bio_bh_io_sync;
3032         bio->bi_private = bh;
3033         bio->bi_flags |= bio_flags;
3034
3035         /* Take care of bh's that straddle the end of the device */
3036         guard_bh_eod(rw, bio, bh);
3037
3038         if (buffer_meta(bh))
3039                 rw |= REQ_META;
3040         if (buffer_prio(bh))
3041                 rw |= REQ_PRIO;
3042
3043         bio_get(bio);
3044         submit_bio(rw, bio);
3045
3046         if (bio_flagged(bio, BIO_EOPNOTSUPP))
3047                 ret = -EOPNOTSUPP;
3048
3049         bio_put(bio);
3050         return ret;
3051 }
3052 EXPORT_SYMBOL_GPL(_submit_bh);
3053
3054 int submit_bh(int rw, struct buffer_head *bh)
3055 {
3056         return _submit_bh(rw, bh, 0);
3057 }
3058 EXPORT_SYMBOL(submit_bh);
3059
3060 /**
3061  * ll_rw_block: low-level access to block devices (DEPRECATED)
3062  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3063  * @nr: number of &struct buffer_heads in the array
3064  * @bhs: array of pointers to &struct buffer_head
3065  *
3066  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3067  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3068  * %READA option is described in the documentation for generic_make_request()
3069  * which ll_rw_block() calls.
3070  *
3071  * This function drops any buffer that it cannot get a lock on (with the
3072  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3073  * request, and any buffer that appears to be up-to-date when doing read
3074  * request.  Further it marks as clean buffers that are processed for
3075  * writing (the buffer cache won't assume that they are actually clean
3076  * until the buffer gets unlocked).
3077  *
3078  * ll_rw_block sets b_end_io to simple completion handler that marks
3079  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3080  * any waiters. 
3081  *
3082  * All of the buffers must be for the same device, and must also be a
3083  * multiple of the current approved size for the device.
3084  */
3085 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3086 {
3087         int i;
3088
3089         for (i = 0; i < nr; i++) {
3090                 struct buffer_head *bh = bhs[i];
3091
3092                 if (!trylock_buffer(bh))
3093                         continue;
3094                 if (rw == WRITE) {
3095                         if (test_clear_buffer_dirty(bh)) {
3096                                 bh->b_end_io = end_buffer_write_sync;
3097                                 get_bh(bh);
3098                                 submit_bh(WRITE, bh);
3099                                 continue;
3100                         }
3101                 } else {
3102                         if (!buffer_uptodate(bh)) {
3103                                 bh->b_end_io = end_buffer_read_sync;
3104                                 get_bh(bh);
3105                                 submit_bh(rw, bh);
3106                                 continue;
3107                         }
3108                 }
3109                 unlock_buffer(bh);
3110         }
3111 }
3112 EXPORT_SYMBOL(ll_rw_block);
3113
3114 void write_dirty_buffer(struct buffer_head *bh, int rw)
3115 {
3116         lock_buffer(bh);
3117         if (!test_clear_buffer_dirty(bh)) {
3118                 unlock_buffer(bh);
3119                 return;
3120         }
3121         bh->b_end_io = end_buffer_write_sync;
3122         get_bh(bh);
3123         submit_bh(rw, bh);
3124 }
3125 EXPORT_SYMBOL(write_dirty_buffer);
3126
3127 /*
3128  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3129  * and then start new I/O and then wait upon it.  The caller must have a ref on
3130  * the buffer_head.
3131  */
3132 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3133 {
3134         int ret = 0;
3135
3136         WARN_ON(atomic_read(&bh->b_count) < 1);
3137         lock_buffer(bh);
3138         if (test_clear_buffer_dirty(bh)) {
3139                 get_bh(bh);
3140                 bh->b_end_io = end_buffer_write_sync;
3141                 ret = submit_bh(rw, bh);
3142                 wait_on_buffer(bh);
3143                 if (!ret && !buffer_uptodate(bh))
3144                         ret = -EIO;
3145         } else {
3146                 unlock_buffer(bh);
3147         }
3148         return ret;
3149 }
3150 EXPORT_SYMBOL(__sync_dirty_buffer);
3151
3152 int sync_dirty_buffer(struct buffer_head *bh)
3153 {
3154         return __sync_dirty_buffer(bh, WRITE_SYNC);
3155 }
3156 EXPORT_SYMBOL(sync_dirty_buffer);
3157
3158 /*
3159  * try_to_free_buffers() checks if all the buffers on this particular page
3160  * are unused, and releases them if so.
3161  *
3162  * Exclusion against try_to_free_buffers may be obtained by either
3163  * locking the page or by holding its mapping's private_lock.
3164  *
3165  * If the page is dirty but all the buffers are clean then we need to
3166  * be sure to mark the page clean as well.  This is because the page
3167  * may be against a block device, and a later reattachment of buffers
3168  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3169  * filesystem data on the same device.
3170  *
3171  * The same applies to regular filesystem pages: if all the buffers are
3172  * clean then we set the page clean and proceed.  To do that, we require
3173  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3174  * private_lock.
3175  *
3176  * try_to_free_buffers() is non-blocking.
3177  */
3178 static inline int buffer_busy(struct buffer_head *bh)
3179 {
3180         return atomic_read(&bh->b_count) |
3181                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3182 }
3183
3184 static int
3185 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3186 {
3187         struct buffer_head *head = page_buffers(page);
3188         struct buffer_head *bh;
3189
3190         bh = head;
3191         do {
3192                 if (buffer_write_io_error(bh) && page->mapping)
3193                         set_bit(AS_EIO, &page->mapping->flags);
3194                 if (buffer_busy(bh)) {
3195                         /*
3196                          * Check if the busy failure was due to an
3197                          * outstanding LRU reference
3198                          */
3199                         evict_bh_lrus(bh);
3200                         if (buffer_busy(bh))
3201                                 goto failed;
3202                 }
3203                 bh = bh->b_this_page;
3204         } while (bh != head);
3205
3206         do {
3207                 struct buffer_head *next = bh->b_this_page;
3208
3209                 if (bh->b_assoc_map)
3210                         __remove_assoc_queue(bh);
3211                 bh = next;
3212         } while (bh != head);
3213         *buffers_to_free = head;
3214         __clear_page_buffers(page);
3215         return 1;
3216 failed:
3217         return 0;
3218 }
3219
3220 int try_to_free_buffers(struct page *page)
3221 {
3222         struct address_space * const mapping = page->mapping;
3223         struct buffer_head *buffers_to_free = NULL;
3224         int ret = 0;
3225
3226         BUG_ON(!PageLocked(page));
3227         if (PageWriteback(page))
3228                 return 0;
3229
3230         if (mapping == NULL) {          /* can this still happen? */
3231                 ret = drop_buffers(page, &buffers_to_free);
3232                 goto out;
3233         }
3234
3235         spin_lock(&mapping->private_lock);
3236         ret = drop_buffers(page, &buffers_to_free);
3237
3238         /*
3239          * If the filesystem writes its buffers by hand (eg ext3)
3240          * then we can have clean buffers against a dirty page.  We
3241          * clean the page here; otherwise the VM will never notice
3242          * that the filesystem did any IO at all.
3243          *
3244          * Also, during truncate, discard_buffer will have marked all
3245          * the page's buffers clean.  We discover that here and clean
3246          * the page also.
3247          *
3248          * private_lock must be held over this entire operation in order
3249          * to synchronise against __set_page_dirty_buffers and prevent the
3250          * dirty bit from being lost.
3251          */
3252         if (ret)
3253                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3254         spin_unlock(&mapping->private_lock);
3255 out:
3256         if (buffers_to_free) {
3257                 struct buffer_head *bh = buffers_to_free;
3258
3259                 do {
3260                         struct buffer_head *next = bh->b_this_page;
3261                         free_buffer_head(bh);
3262                         bh = next;
3263                 } while (bh != buffers_to_free);
3264         }
3265         return ret;
3266 }
3267 EXPORT_SYMBOL(try_to_free_buffers);
3268
3269 /*
3270  * There are no bdflush tunables left.  But distributions are
3271  * still running obsolete flush daemons, so we terminate them here.
3272  *
3273  * Use of bdflush() is deprecated and will be removed in a future kernel.
3274  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3275  */
3276 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3277 {
3278         static int msg_count;
3279
3280         if (!capable(CAP_SYS_ADMIN))
3281                 return -EPERM;
3282
3283         if (msg_count < 5) {
3284                 msg_count++;
3285                 printk(KERN_INFO
3286                         "warning: process `%s' used the obsolete bdflush"
3287                         " system call\n", current->comm);
3288                 printk(KERN_INFO "Fix your initscripts?\n");
3289         }
3290
3291         if (func == 1)
3292                 do_exit(0);
3293         return 0;
3294 }
3295
3296 /*
3297  * Buffer-head allocation
3298  */
3299 static struct kmem_cache *bh_cachep __read_mostly;
3300
3301 /*
3302  * Once the number of bh's in the machine exceeds this level, we start
3303  * stripping them in writeback.
3304  */
3305 static unsigned long max_buffer_heads;
3306
3307 int buffer_heads_over_limit;
3308
3309 struct bh_accounting {
3310         int nr;                 /* Number of live bh's */
3311         int ratelimit;          /* Limit cacheline bouncing */
3312 };
3313
3314 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3315
3316 static void recalc_bh_state(void)
3317 {
3318         int i;
3319         int tot = 0;
3320
3321         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3322                 return;
3323         __this_cpu_write(bh_accounting.ratelimit, 0);
3324         for_each_online_cpu(i)
3325                 tot += per_cpu(bh_accounting, i).nr;
3326         buffer_heads_over_limit = (tot > max_buffer_heads);
3327 }
3328
3329 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3330 {
3331         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3332         if (ret) {
3333                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3334                 preempt_disable();
3335                 __this_cpu_inc(bh_accounting.nr);
3336                 recalc_bh_state();
3337                 preempt_enable();
3338         }
3339         return ret;
3340 }
3341 EXPORT_SYMBOL(alloc_buffer_head);
3342
3343 void free_buffer_head(struct buffer_head *bh)
3344 {
3345         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3346         kmem_cache_free(bh_cachep, bh);
3347         preempt_disable();
3348         __this_cpu_dec(bh_accounting.nr);
3349         recalc_bh_state();
3350         preempt_enable();
3351 }
3352 EXPORT_SYMBOL(free_buffer_head);
3353
3354 static void buffer_exit_cpu(int cpu)
3355 {
3356         int i;
3357         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3358
3359         for (i = 0; i < BH_LRU_SIZE; i++) {
3360                 brelse(b->bhs[i]);
3361                 b->bhs[i] = NULL;
3362         }
3363         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3364         per_cpu(bh_accounting, cpu).nr = 0;
3365 }
3366
3367 static int buffer_cpu_notify(struct notifier_block *self,
3368                               unsigned long action, void *hcpu)
3369 {
3370         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3371                 buffer_exit_cpu((unsigned long)hcpu);
3372         return NOTIFY_OK;
3373 }
3374
3375 /**
3376  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3377  * @bh: struct buffer_head
3378  *
3379  * Return true if the buffer is up-to-date and false,
3380  * with the buffer locked, if not.
3381  */
3382 int bh_uptodate_or_lock(struct buffer_head *bh)
3383 {
3384         if (!buffer_uptodate(bh)) {
3385                 lock_buffer(bh);
3386                 if (!buffer_uptodate(bh))
3387                         return 0;
3388                 unlock_buffer(bh);
3389         }
3390         return 1;
3391 }
3392 EXPORT_SYMBOL(bh_uptodate_or_lock);
3393
3394 /**
3395  * bh_submit_read - Submit a locked buffer for reading
3396  * @bh: struct buffer_head
3397  *
3398  * Returns zero on success and -EIO on error.
3399  */
3400 int bh_submit_read(struct buffer_head *bh)
3401 {
3402         BUG_ON(!buffer_locked(bh));
3403
3404         if (buffer_uptodate(bh)) {
3405                 unlock_buffer(bh);
3406                 return 0;
3407         }
3408
3409         get_bh(bh);
3410         bh->b_end_io = end_buffer_read_sync;
3411         submit_bh(READ, bh);
3412         wait_on_buffer(bh);
3413         if (buffer_uptodate(bh))
3414                 return 0;
3415         return -EIO;
3416 }
3417 EXPORT_SYMBOL(bh_submit_read);
3418
3419 void __init buffer_init(void)
3420 {
3421         unsigned long nrpages;
3422
3423         bh_cachep = kmem_cache_create("buffer_head",
3424                         sizeof(struct buffer_head), 0,
3425                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3426                                 SLAB_MEM_SPREAD),
3427                                 NULL);
3428
3429         /*
3430          * Limit the bh occupancy to 10% of ZONE_NORMAL
3431          */
3432         nrpages = (nr_free_buffer_pages() * 10) / 100;
3433         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3434         hotcpu_notifier(buffer_cpu_notify, 0);
3435 }