ec0aca8ba6bfdc79022563007207c5a70d23bd37
[platform/upstream/kernel-adaptation-pc.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 static int sleep_on_buffer(void *word)
58 {
59         io_schedule();
60         return 0;
61 }
62
63 void __lock_buffer(struct buffer_head *bh)
64 {
65         wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
66                                                         TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69
70 void unlock_buffer(struct buffer_head *bh)
71 {
72         clear_bit_unlock(BH_Lock, &bh->b_state);
73         smp_mb__after_clear_bit();
74         wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77
78 /*
79  * Block until a buffer comes unlocked.  This doesn't stop it
80  * from becoming locked again - you have to lock it yourself
81  * if you want to preserve its state.
82  */
83 void __wait_on_buffer(struct buffer_head * bh)
84 {
85         wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
86 }
87 EXPORT_SYMBOL(__wait_on_buffer);
88
89 static void
90 __clear_page_buffers(struct page *page)
91 {
92         ClearPagePrivate(page);
93         set_page_private(page, 0);
94         page_cache_release(page);
95 }
96
97
98 static int quiet_error(struct buffer_head *bh)
99 {
100         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
101                 return 0;
102         return 1;
103 }
104
105
106 static void buffer_io_error(struct buffer_head *bh)
107 {
108         char b[BDEVNAME_SIZE];
109         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
110                         bdevname(bh->b_bdev, b),
111                         (unsigned long long)bh->b_blocknr);
112 }
113
114 /*
115  * End-of-IO handler helper function which does not touch the bh after
116  * unlocking it.
117  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
118  * a race there is benign: unlock_buffer() only use the bh's address for
119  * hashing after unlocking the buffer, so it doesn't actually touch the bh
120  * itself.
121  */
122 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
123 {
124         if (uptodate) {
125                 set_buffer_uptodate(bh);
126         } else {
127                 /* This happens, due to failed READA attempts. */
128                 clear_buffer_uptodate(bh);
129         }
130         unlock_buffer(bh);
131 }
132
133 /*
134  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
135  * unlock the buffer. This is what ll_rw_block uses too.
136  */
137 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
138 {
139         __end_buffer_read_notouch(bh, uptodate);
140         put_bh(bh);
141 }
142 EXPORT_SYMBOL(end_buffer_read_sync);
143
144 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
145 {
146         char b[BDEVNAME_SIZE];
147
148         if (uptodate) {
149                 set_buffer_uptodate(bh);
150         } else {
151                 if (!quiet_error(bh)) {
152                         buffer_io_error(bh);
153                         printk(KERN_WARNING "lost page write due to "
154                                         "I/O error on %s\n",
155                                        bdevname(bh->b_bdev, b));
156                 }
157                 set_buffer_write_io_error(bh);
158                 clear_buffer_uptodate(bh);
159         }
160         unlock_buffer(bh);
161         put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_write_sync);
164
165 /*
166  * Various filesystems appear to want __find_get_block to be non-blocking.
167  * But it's the page lock which protects the buffers.  To get around this,
168  * we get exclusion from try_to_free_buffers with the blockdev mapping's
169  * private_lock.
170  *
171  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
172  * may be quite high.  This code could TryLock the page, and if that
173  * succeeds, there is no need to take private_lock. (But if
174  * private_lock is contended then so is mapping->tree_lock).
175  */
176 static struct buffer_head *
177 __find_get_block_slow(struct block_device *bdev, sector_t block)
178 {
179         struct inode *bd_inode = bdev->bd_inode;
180         struct address_space *bd_mapping = bd_inode->i_mapping;
181         struct buffer_head *ret = NULL;
182         pgoff_t index;
183         struct buffer_head *bh;
184         struct buffer_head *head;
185         struct page *page;
186         int all_mapped = 1;
187
188         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
189         page = find_get_page(bd_mapping, index);
190         if (!page)
191                 goto out;
192
193         spin_lock(&bd_mapping->private_lock);
194         if (!page_has_buffers(page))
195                 goto out_unlock;
196         head = page_buffers(page);
197         bh = head;
198         do {
199                 if (!buffer_mapped(bh))
200                         all_mapped = 0;
201                 else if (bh->b_blocknr == block) {
202                         ret = bh;
203                         get_bh(bh);
204                         goto out_unlock;
205                 }
206                 bh = bh->b_this_page;
207         } while (bh != head);
208
209         /* we might be here because some of the buffers on this page are
210          * not mapped.  This is due to various races between
211          * file io on the block device and getblk.  It gets dealt with
212          * elsewhere, don't buffer_error if we had some unmapped buffers
213          */
214         if (all_mapped) {
215                 char b[BDEVNAME_SIZE];
216
217                 printk("__find_get_block_slow() failed. "
218                         "block=%llu, b_blocknr=%llu\n",
219                         (unsigned long long)block,
220                         (unsigned long long)bh->b_blocknr);
221                 printk("b_state=0x%08lx, b_size=%zu\n",
222                         bh->b_state, bh->b_size);
223                 printk("device %s blocksize: %d\n", bdevname(bdev, b),
224                         1 << bd_inode->i_blkbits);
225         }
226 out_unlock:
227         spin_unlock(&bd_mapping->private_lock);
228         page_cache_release(page);
229 out:
230         return ret;
231 }
232
233 /*
234  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
235  */
236 static void free_more_memory(void)
237 {
238         struct zone *zone;
239         int nid;
240
241         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
242         yield();
243
244         for_each_online_node(nid) {
245                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
246                                                 gfp_zone(GFP_NOFS), NULL,
247                                                 &zone);
248                 if (zone)
249                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
250                                                 GFP_NOFS, NULL);
251         }
252 }
253
254 /*
255  * I/O completion handler for block_read_full_page() - pages
256  * which come unlocked at the end of I/O.
257  */
258 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
259 {
260         unsigned long flags;
261         struct buffer_head *first;
262         struct buffer_head *tmp;
263         struct page *page;
264         int page_uptodate = 1;
265
266         BUG_ON(!buffer_async_read(bh));
267
268         page = bh->b_page;
269         if (uptodate) {
270                 set_buffer_uptodate(bh);
271         } else {
272                 clear_buffer_uptodate(bh);
273                 if (!quiet_error(bh))
274                         buffer_io_error(bh);
275                 SetPageError(page);
276         }
277
278         /*
279          * Be _very_ careful from here on. Bad things can happen if
280          * two buffer heads end IO at almost the same time and both
281          * decide that the page is now completely done.
282          */
283         first = page_buffers(page);
284         local_irq_save(flags);
285         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
286         clear_buffer_async_read(bh);
287         unlock_buffer(bh);
288         tmp = bh;
289         do {
290                 if (!buffer_uptodate(tmp))
291                         page_uptodate = 0;
292                 if (buffer_async_read(tmp)) {
293                         BUG_ON(!buffer_locked(tmp));
294                         goto still_busy;
295                 }
296                 tmp = tmp->b_this_page;
297         } while (tmp != bh);
298         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
299         local_irq_restore(flags);
300
301         /*
302          * If none of the buffers had errors and they are all
303          * uptodate then we can set the page uptodate.
304          */
305         if (page_uptodate && !PageError(page))
306                 SetPageUptodate(page);
307         unlock_page(page);
308         return;
309
310 still_busy:
311         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
312         local_irq_restore(flags);
313         return;
314 }
315
316 /*
317  * Completion handler for block_write_full_page() - pages which are unlocked
318  * during I/O, and which have PageWriteback cleared upon I/O completion.
319  */
320 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
321 {
322         char b[BDEVNAME_SIZE];
323         unsigned long flags;
324         struct buffer_head *first;
325         struct buffer_head *tmp;
326         struct page *page;
327
328         BUG_ON(!buffer_async_write(bh));
329
330         page = bh->b_page;
331         if (uptodate) {
332                 set_buffer_uptodate(bh);
333         } else {
334                 if (!quiet_error(bh)) {
335                         buffer_io_error(bh);
336                         printk(KERN_WARNING "lost page write due to "
337                                         "I/O error on %s\n",
338                                bdevname(bh->b_bdev, b));
339                 }
340                 set_bit(AS_EIO, &page->mapping->flags);
341                 set_buffer_write_io_error(bh);
342                 clear_buffer_uptodate(bh);
343                 SetPageError(page);
344         }
345
346         first = page_buffers(page);
347         local_irq_save(flags);
348         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
349
350         clear_buffer_async_write(bh);
351         unlock_buffer(bh);
352         tmp = bh->b_this_page;
353         while (tmp != bh) {
354                 if (buffer_async_write(tmp)) {
355                         BUG_ON(!buffer_locked(tmp));
356                         goto still_busy;
357                 }
358                 tmp = tmp->b_this_page;
359         }
360         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
361         local_irq_restore(flags);
362         end_page_writeback(page);
363         return;
364
365 still_busy:
366         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
367         local_irq_restore(flags);
368         return;
369 }
370 EXPORT_SYMBOL(end_buffer_async_write);
371
372 /*
373  * If a page's buffers are under async readin (end_buffer_async_read
374  * completion) then there is a possibility that another thread of
375  * control could lock one of the buffers after it has completed
376  * but while some of the other buffers have not completed.  This
377  * locked buffer would confuse end_buffer_async_read() into not unlocking
378  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
379  * that this buffer is not under async I/O.
380  *
381  * The page comes unlocked when it has no locked buffer_async buffers
382  * left.
383  *
384  * PageLocked prevents anyone starting new async I/O reads any of
385  * the buffers.
386  *
387  * PageWriteback is used to prevent simultaneous writeout of the same
388  * page.
389  *
390  * PageLocked prevents anyone from starting writeback of a page which is
391  * under read I/O (PageWriteback is only ever set against a locked page).
392  */
393 static void mark_buffer_async_read(struct buffer_head *bh)
394 {
395         bh->b_end_io = end_buffer_async_read;
396         set_buffer_async_read(bh);
397 }
398
399 static void mark_buffer_async_write_endio(struct buffer_head *bh,
400                                           bh_end_io_t *handler)
401 {
402         bh->b_end_io = handler;
403         set_buffer_async_write(bh);
404 }
405
406 void mark_buffer_async_write(struct buffer_head *bh)
407 {
408         mark_buffer_async_write_endio(bh, end_buffer_async_write);
409 }
410 EXPORT_SYMBOL(mark_buffer_async_write);
411
412
413 /*
414  * fs/buffer.c contains helper functions for buffer-backed address space's
415  * fsync functions.  A common requirement for buffer-based filesystems is
416  * that certain data from the backing blockdev needs to be written out for
417  * a successful fsync().  For example, ext2 indirect blocks need to be
418  * written back and waited upon before fsync() returns.
419  *
420  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
421  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
422  * management of a list of dependent buffers at ->i_mapping->private_list.
423  *
424  * Locking is a little subtle: try_to_free_buffers() will remove buffers
425  * from their controlling inode's queue when they are being freed.  But
426  * try_to_free_buffers() will be operating against the *blockdev* mapping
427  * at the time, not against the S_ISREG file which depends on those buffers.
428  * So the locking for private_list is via the private_lock in the address_space
429  * which backs the buffers.  Which is different from the address_space 
430  * against which the buffers are listed.  So for a particular address_space,
431  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
432  * mapping->private_list will always be protected by the backing blockdev's
433  * ->private_lock.
434  *
435  * Which introduces a requirement: all buffers on an address_space's
436  * ->private_list must be from the same address_space: the blockdev's.
437  *
438  * address_spaces which do not place buffers at ->private_list via these
439  * utility functions are free to use private_lock and private_list for
440  * whatever they want.  The only requirement is that list_empty(private_list)
441  * be true at clear_inode() time.
442  *
443  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
444  * filesystems should do that.  invalidate_inode_buffers() should just go
445  * BUG_ON(!list_empty).
446  *
447  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
448  * take an address_space, not an inode.  And it should be called
449  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
450  * queued up.
451  *
452  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
453  * list if it is already on a list.  Because if the buffer is on a list,
454  * it *must* already be on the right one.  If not, the filesystem is being
455  * silly.  This will save a ton of locking.  But first we have to ensure
456  * that buffers are taken *off* the old inode's list when they are freed
457  * (presumably in truncate).  That requires careful auditing of all
458  * filesystems (do it inside bforget()).  It could also be done by bringing
459  * b_inode back.
460  */
461
462 /*
463  * The buffer's backing address_space's private_lock must be held
464  */
465 static void __remove_assoc_queue(struct buffer_head *bh)
466 {
467         list_del_init(&bh->b_assoc_buffers);
468         WARN_ON(!bh->b_assoc_map);
469         if (buffer_write_io_error(bh))
470                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
471         bh->b_assoc_map = NULL;
472 }
473
474 int inode_has_buffers(struct inode *inode)
475 {
476         return !list_empty(&inode->i_data.private_list);
477 }
478
479 /*
480  * osync is designed to support O_SYNC io.  It waits synchronously for
481  * all already-submitted IO to complete, but does not queue any new
482  * writes to the disk.
483  *
484  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
485  * you dirty the buffers, and then use osync_inode_buffers to wait for
486  * completion.  Any other dirty buffers which are not yet queued for
487  * write will not be flushed to disk by the osync.
488  */
489 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
490 {
491         struct buffer_head *bh;
492         struct list_head *p;
493         int err = 0;
494
495         spin_lock(lock);
496 repeat:
497         list_for_each_prev(p, list) {
498                 bh = BH_ENTRY(p);
499                 if (buffer_locked(bh)) {
500                         get_bh(bh);
501                         spin_unlock(lock);
502                         wait_on_buffer(bh);
503                         if (!buffer_uptodate(bh))
504                                 err = -EIO;
505                         brelse(bh);
506                         spin_lock(lock);
507                         goto repeat;
508                 }
509         }
510         spin_unlock(lock);
511         return err;
512 }
513
514 static void do_thaw_one(struct super_block *sb, void *unused)
515 {
516         char b[BDEVNAME_SIZE];
517         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
518                 printk(KERN_WARNING "Emergency Thaw on %s\n",
519                        bdevname(sb->s_bdev, b));
520 }
521
522 static void do_thaw_all(struct work_struct *work)
523 {
524         iterate_supers(do_thaw_one, NULL);
525         kfree(work);
526         printk(KERN_WARNING "Emergency Thaw complete\n");
527 }
528
529 /**
530  * emergency_thaw_all -- forcibly thaw every frozen filesystem
531  *
532  * Used for emergency unfreeze of all filesystems via SysRq
533  */
534 void emergency_thaw_all(void)
535 {
536         struct work_struct *work;
537
538         work = kmalloc(sizeof(*work), GFP_ATOMIC);
539         if (work) {
540                 INIT_WORK(work, do_thaw_all);
541                 schedule_work(work);
542         }
543 }
544
545 /**
546  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
547  * @mapping: the mapping which wants those buffers written
548  *
549  * Starts I/O against the buffers at mapping->private_list, and waits upon
550  * that I/O.
551  *
552  * Basically, this is a convenience function for fsync().
553  * @mapping is a file or directory which needs those buffers to be written for
554  * a successful fsync().
555  */
556 int sync_mapping_buffers(struct address_space *mapping)
557 {
558         struct address_space *buffer_mapping = mapping->assoc_mapping;
559
560         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
561                 return 0;
562
563         return fsync_buffers_list(&buffer_mapping->private_lock,
564                                         &mapping->private_list);
565 }
566 EXPORT_SYMBOL(sync_mapping_buffers);
567
568 /*
569  * Called when we've recently written block `bblock', and it is known that
570  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
571  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
572  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
573  */
574 void write_boundary_block(struct block_device *bdev,
575                         sector_t bblock, unsigned blocksize)
576 {
577         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
578         if (bh) {
579                 if (buffer_dirty(bh))
580                         ll_rw_block(WRITE, 1, &bh);
581                 put_bh(bh);
582         }
583 }
584
585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
586 {
587         struct address_space *mapping = inode->i_mapping;
588         struct address_space *buffer_mapping = bh->b_page->mapping;
589
590         mark_buffer_dirty(bh);
591         if (!mapping->assoc_mapping) {
592                 mapping->assoc_mapping = buffer_mapping;
593         } else {
594                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
595         }
596         if (!bh->b_assoc_map) {
597                 spin_lock(&buffer_mapping->private_lock);
598                 list_move_tail(&bh->b_assoc_buffers,
599                                 &mapping->private_list);
600                 bh->b_assoc_map = mapping;
601                 spin_unlock(&buffer_mapping->private_lock);
602         }
603 }
604 EXPORT_SYMBOL(mark_buffer_dirty_inode);
605
606 /*
607  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
608  * dirty.
609  *
610  * If warn is true, then emit a warning if the page is not uptodate and has
611  * not been truncated.
612  */
613 static void __set_page_dirty(struct page *page,
614                 struct address_space *mapping, int warn)
615 {
616         spin_lock_irq(&mapping->tree_lock);
617         if (page->mapping) {    /* Race with truncate? */
618                 WARN_ON_ONCE(warn && !PageUptodate(page));
619                 account_page_dirtied(page, mapping);
620                 radix_tree_tag_set(&mapping->page_tree,
621                                 page_index(page), PAGECACHE_TAG_DIRTY);
622         }
623         spin_unlock_irq(&mapping->tree_lock);
624         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
625 }
626
627 /*
628  * Add a page to the dirty page list.
629  *
630  * It is a sad fact of life that this function is called from several places
631  * deeply under spinlocking.  It may not sleep.
632  *
633  * If the page has buffers, the uptodate buffers are set dirty, to preserve
634  * dirty-state coherency between the page and the buffers.  It the page does
635  * not have buffers then when they are later attached they will all be set
636  * dirty.
637  *
638  * The buffers are dirtied before the page is dirtied.  There's a small race
639  * window in which a writepage caller may see the page cleanness but not the
640  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
641  * before the buffers, a concurrent writepage caller could clear the page dirty
642  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
643  * page on the dirty page list.
644  *
645  * We use private_lock to lock against try_to_free_buffers while using the
646  * page's buffer list.  Also use this to protect against clean buffers being
647  * added to the page after it was set dirty.
648  *
649  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
650  * address_space though.
651  */
652 int __set_page_dirty_buffers(struct page *page)
653 {
654         int newly_dirty;
655         struct address_space *mapping = page_mapping(page);
656
657         if (unlikely(!mapping))
658                 return !TestSetPageDirty(page);
659
660         spin_lock(&mapping->private_lock);
661         if (page_has_buffers(page)) {
662                 struct buffer_head *head = page_buffers(page);
663                 struct buffer_head *bh = head;
664
665                 do {
666                         set_buffer_dirty(bh);
667                         bh = bh->b_this_page;
668                 } while (bh != head);
669         }
670         newly_dirty = !TestSetPageDirty(page);
671         spin_unlock(&mapping->private_lock);
672
673         if (newly_dirty)
674                 __set_page_dirty(page, mapping, 1);
675         return newly_dirty;
676 }
677 EXPORT_SYMBOL(__set_page_dirty_buffers);
678
679 /*
680  * Write out and wait upon a list of buffers.
681  *
682  * We have conflicting pressures: we want to make sure that all
683  * initially dirty buffers get waited on, but that any subsequently
684  * dirtied buffers don't.  After all, we don't want fsync to last
685  * forever if somebody is actively writing to the file.
686  *
687  * Do this in two main stages: first we copy dirty buffers to a
688  * temporary inode list, queueing the writes as we go.  Then we clean
689  * up, waiting for those writes to complete.
690  * 
691  * During this second stage, any subsequent updates to the file may end
692  * up refiling the buffer on the original inode's dirty list again, so
693  * there is a chance we will end up with a buffer queued for write but
694  * not yet completed on that list.  So, as a final cleanup we go through
695  * the osync code to catch these locked, dirty buffers without requeuing
696  * any newly dirty buffers for write.
697  */
698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 {
700         struct buffer_head *bh;
701         struct list_head tmp;
702         struct address_space *mapping;
703         int err = 0, err2;
704         struct blk_plug plug;
705
706         INIT_LIST_HEAD(&tmp);
707         blk_start_plug(&plug);
708
709         spin_lock(lock);
710         while (!list_empty(list)) {
711                 bh = BH_ENTRY(list->next);
712                 mapping = bh->b_assoc_map;
713                 __remove_assoc_queue(bh);
714                 /* Avoid race with mark_buffer_dirty_inode() which does
715                  * a lockless check and we rely on seeing the dirty bit */
716                 smp_mb();
717                 if (buffer_dirty(bh) || buffer_locked(bh)) {
718                         list_add(&bh->b_assoc_buffers, &tmp);
719                         bh->b_assoc_map = mapping;
720                         if (buffer_dirty(bh)) {
721                                 get_bh(bh);
722                                 spin_unlock(lock);
723                                 /*
724                                  * Ensure any pending I/O completes so that
725                                  * write_dirty_buffer() actually writes the
726                                  * current contents - it is a noop if I/O is
727                                  * still in flight on potentially older
728                                  * contents.
729                                  */
730                                 write_dirty_buffer(bh, WRITE_SYNC);
731
732                                 /*
733                                  * Kick off IO for the previous mapping. Note
734                                  * that we will not run the very last mapping,
735                                  * wait_on_buffer() will do that for us
736                                  * through sync_buffer().
737                                  */
738                                 brelse(bh);
739                                 spin_lock(lock);
740                         }
741                 }
742         }
743
744         spin_unlock(lock);
745         blk_finish_plug(&plug);
746         spin_lock(lock);
747
748         while (!list_empty(&tmp)) {
749                 bh = BH_ENTRY(tmp.prev);
750                 get_bh(bh);
751                 mapping = bh->b_assoc_map;
752                 __remove_assoc_queue(bh);
753                 /* Avoid race with mark_buffer_dirty_inode() which does
754                  * a lockless check and we rely on seeing the dirty bit */
755                 smp_mb();
756                 if (buffer_dirty(bh)) {
757                         list_add(&bh->b_assoc_buffers,
758                                  &mapping->private_list);
759                         bh->b_assoc_map = mapping;
760                 }
761                 spin_unlock(lock);
762                 wait_on_buffer(bh);
763                 if (!buffer_uptodate(bh))
764                         err = -EIO;
765                 brelse(bh);
766                 spin_lock(lock);
767         }
768         
769         spin_unlock(lock);
770         err2 = osync_buffers_list(lock, list);
771         if (err)
772                 return err;
773         else
774                 return err2;
775 }
776
777 /*
778  * Invalidate any and all dirty buffers on a given inode.  We are
779  * probably unmounting the fs, but that doesn't mean we have already
780  * done a sync().  Just drop the buffers from the inode list.
781  *
782  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
783  * assumes that all the buffers are against the blockdev.  Not true
784  * for reiserfs.
785  */
786 void invalidate_inode_buffers(struct inode *inode)
787 {
788         if (inode_has_buffers(inode)) {
789                 struct address_space *mapping = &inode->i_data;
790                 struct list_head *list = &mapping->private_list;
791                 struct address_space *buffer_mapping = mapping->assoc_mapping;
792
793                 spin_lock(&buffer_mapping->private_lock);
794                 while (!list_empty(list))
795                         __remove_assoc_queue(BH_ENTRY(list->next));
796                 spin_unlock(&buffer_mapping->private_lock);
797         }
798 }
799 EXPORT_SYMBOL(invalidate_inode_buffers);
800
801 /*
802  * Remove any clean buffers from the inode's buffer list.  This is called
803  * when we're trying to free the inode itself.  Those buffers can pin it.
804  *
805  * Returns true if all buffers were removed.
806  */
807 int remove_inode_buffers(struct inode *inode)
808 {
809         int ret = 1;
810
811         if (inode_has_buffers(inode)) {
812                 struct address_space *mapping = &inode->i_data;
813                 struct list_head *list = &mapping->private_list;
814                 struct address_space *buffer_mapping = mapping->assoc_mapping;
815
816                 spin_lock(&buffer_mapping->private_lock);
817                 while (!list_empty(list)) {
818                         struct buffer_head *bh = BH_ENTRY(list->next);
819                         if (buffer_dirty(bh)) {
820                                 ret = 0;
821                                 break;
822                         }
823                         __remove_assoc_queue(bh);
824                 }
825                 spin_unlock(&buffer_mapping->private_lock);
826         }
827         return ret;
828 }
829
830 /*
831  * Create the appropriate buffers when given a page for data area and
832  * the size of each buffer.. Use the bh->b_this_page linked list to
833  * follow the buffers created.  Return NULL if unable to create more
834  * buffers.
835  *
836  * The retry flag is used to differentiate async IO (paging, swapping)
837  * which may not fail from ordinary buffer allocations.
838  */
839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840                 int retry)
841 {
842         struct buffer_head *bh, *head;
843         long offset;
844
845 try_again:
846         head = NULL;
847         offset = PAGE_SIZE;
848         while ((offset -= size) >= 0) {
849                 bh = alloc_buffer_head(GFP_NOFS);
850                 if (!bh)
851                         goto no_grow;
852
853                 bh->b_bdev = NULL;
854                 bh->b_this_page = head;
855                 bh->b_blocknr = -1;
856                 head = bh;
857
858                 bh->b_state = 0;
859                 atomic_set(&bh->b_count, 0);
860                 bh->b_size = size;
861
862                 /* Link the buffer to its page */
863                 set_bh_page(bh, page, offset);
864
865                 init_buffer(bh, NULL, NULL);
866         }
867         return head;
868 /*
869  * In case anything failed, we just free everything we got.
870  */
871 no_grow:
872         if (head) {
873                 do {
874                         bh = head;
875                         head = head->b_this_page;
876                         free_buffer_head(bh);
877                 } while (head);
878         }
879
880         /*
881          * Return failure for non-async IO requests.  Async IO requests
882          * are not allowed to fail, so we have to wait until buffer heads
883          * become available.  But we don't want tasks sleeping with 
884          * partially complete buffers, so all were released above.
885          */
886         if (!retry)
887                 return NULL;
888
889         /* We're _really_ low on memory. Now we just
890          * wait for old buffer heads to become free due to
891          * finishing IO.  Since this is an async request and
892          * the reserve list is empty, we're sure there are 
893          * async buffer heads in use.
894          */
895         free_more_memory();
896         goto try_again;
897 }
898 EXPORT_SYMBOL_GPL(alloc_page_buffers);
899
900 static inline void
901 link_dev_buffers(struct page *page, struct buffer_head *head)
902 {
903         struct buffer_head *bh, *tail;
904
905         bh = head;
906         do {
907                 tail = bh;
908                 bh = bh->b_this_page;
909         } while (bh);
910         tail->b_this_page = head;
911         attach_page_buffers(page, head);
912 }
913
914 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
915 {
916         sector_t retval = ~((sector_t)0);
917         loff_t sz = i_size_read(bdev->bd_inode);
918
919         if (sz) {
920                 unsigned int sizebits = blksize_bits(size);
921                 retval = (sz >> sizebits);
922         }
923         return retval;
924 }
925
926 /*
927  * Initialise the state of a blockdev page's buffers.
928  */ 
929 static sector_t
930 init_page_buffers(struct page *page, struct block_device *bdev,
931                         sector_t block, int size)
932 {
933         struct buffer_head *head = page_buffers(page);
934         struct buffer_head *bh = head;
935         int uptodate = PageUptodate(page);
936         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
937
938         do {
939                 if (!buffer_mapped(bh)) {
940                         init_buffer(bh, NULL, NULL);
941                         bh->b_bdev = bdev;
942                         bh->b_blocknr = block;
943                         if (uptodate)
944                                 set_buffer_uptodate(bh);
945                         if (block < end_block)
946                                 set_buffer_mapped(bh);
947                 }
948                 block++;
949                 bh = bh->b_this_page;
950         } while (bh != head);
951
952         /*
953          * Caller needs to validate requested block against end of device.
954          */
955         return end_block;
956 }
957
958 /*
959  * Create the page-cache page that contains the requested block.
960  *
961  * This is used purely for blockdev mappings.
962  */
963 static int
964 grow_dev_page(struct block_device *bdev, sector_t block,
965                 pgoff_t index, int size, int sizebits)
966 {
967         struct inode *inode = bdev->bd_inode;
968         struct page *page;
969         struct buffer_head *bh;
970         sector_t end_block;
971         int ret = 0;            /* Will call free_more_memory() */
972
973         page = find_or_create_page(inode->i_mapping, index,
974                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
975         if (!page)
976                 return ret;
977
978         BUG_ON(!PageLocked(page));
979
980         if (page_has_buffers(page)) {
981                 bh = page_buffers(page);
982                 if (bh->b_size == size) {
983                         end_block = init_page_buffers(page, bdev,
984                                                 index << sizebits, size);
985                         goto done;
986                 }
987                 if (!try_to_free_buffers(page))
988                         goto failed;
989         }
990
991         /*
992          * Allocate some buffers for this page
993          */
994         bh = alloc_page_buffers(page, size, 0);
995         if (!bh)
996                 goto failed;
997
998         /*
999          * Link the page to the buffers and initialise them.  Take the
1000          * lock to be atomic wrt __find_get_block(), which does not
1001          * run under the page lock.
1002          */
1003         spin_lock(&inode->i_mapping->private_lock);
1004         link_dev_buffers(page, bh);
1005         end_block = init_page_buffers(page, bdev, index << sizebits, size);
1006         spin_unlock(&inode->i_mapping->private_lock);
1007 done:
1008         ret = (block < end_block) ? 1 : -ENXIO;
1009 failed:
1010         unlock_page(page);
1011         page_cache_release(page);
1012         return ret;
1013 }
1014
1015 /*
1016  * Create buffers for the specified block device block's page.  If
1017  * that page was dirty, the buffers are set dirty also.
1018  */
1019 static int
1020 grow_buffers(struct block_device *bdev, sector_t block, int size)
1021 {
1022         pgoff_t index;
1023         int sizebits;
1024
1025         sizebits = -1;
1026         do {
1027                 sizebits++;
1028         } while ((size << sizebits) < PAGE_SIZE);
1029
1030         index = block >> sizebits;
1031
1032         /*
1033          * Check for a block which wants to lie outside our maximum possible
1034          * pagecache index.  (this comparison is done using sector_t types).
1035          */
1036         if (unlikely(index != block >> sizebits)) {
1037                 char b[BDEVNAME_SIZE];
1038
1039                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1040                         "device %s\n",
1041                         __func__, (unsigned long long)block,
1042                         bdevname(bdev, b));
1043                 return -EIO;
1044         }
1045
1046         /* Create a page with the proper size buffers.. */
1047         return grow_dev_page(bdev, block, index, size, sizebits);
1048 }
1049
1050 static struct buffer_head *
1051 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1052 {
1053         /* Size must be multiple of hard sectorsize */
1054         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1055                         (size < 512 || size > PAGE_SIZE))) {
1056                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1057                                         size);
1058                 printk(KERN_ERR "logical block size: %d\n",
1059                                         bdev_logical_block_size(bdev));
1060
1061                 dump_stack();
1062                 return NULL;
1063         }
1064
1065         for (;;) {
1066                 struct buffer_head *bh;
1067                 int ret;
1068
1069                 bh = __find_get_block(bdev, block, size);
1070                 if (bh)
1071                         return bh;
1072
1073                 ret = grow_buffers(bdev, block, size);
1074                 if (ret < 0)
1075                         return NULL;
1076                 if (ret == 0)
1077                         free_more_memory();
1078         }
1079 }
1080
1081 /*
1082  * The relationship between dirty buffers and dirty pages:
1083  *
1084  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1085  * the page is tagged dirty in its radix tree.
1086  *
1087  * At all times, the dirtiness of the buffers represents the dirtiness of
1088  * subsections of the page.  If the page has buffers, the page dirty bit is
1089  * merely a hint about the true dirty state.
1090  *
1091  * When a page is set dirty in its entirety, all its buffers are marked dirty
1092  * (if the page has buffers).
1093  *
1094  * When a buffer is marked dirty, its page is dirtied, but the page's other
1095  * buffers are not.
1096  *
1097  * Also.  When blockdev buffers are explicitly read with bread(), they
1098  * individually become uptodate.  But their backing page remains not
1099  * uptodate - even if all of its buffers are uptodate.  A subsequent
1100  * block_read_full_page() against that page will discover all the uptodate
1101  * buffers, will set the page uptodate and will perform no I/O.
1102  */
1103
1104 /**
1105  * mark_buffer_dirty - mark a buffer_head as needing writeout
1106  * @bh: the buffer_head to mark dirty
1107  *
1108  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1109  * backing page dirty, then tag the page as dirty in its address_space's radix
1110  * tree and then attach the address_space's inode to its superblock's dirty
1111  * inode list.
1112  *
1113  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1114  * mapping->tree_lock and mapping->host->i_lock.
1115  */
1116 void mark_buffer_dirty(struct buffer_head *bh)
1117 {
1118         WARN_ON_ONCE(!buffer_uptodate(bh));
1119
1120         /*
1121          * Very *carefully* optimize the it-is-already-dirty case.
1122          *
1123          * Don't let the final "is it dirty" escape to before we
1124          * perhaps modified the buffer.
1125          */
1126         if (buffer_dirty(bh)) {
1127                 smp_mb();
1128                 if (buffer_dirty(bh))
1129                         return;
1130         }
1131
1132         if (!test_set_buffer_dirty(bh)) {
1133                 struct page *page = bh->b_page;
1134                 if (!TestSetPageDirty(page)) {
1135                         struct address_space *mapping = page_mapping(page);
1136                         if (mapping)
1137                                 __set_page_dirty(page, mapping, 0);
1138                 }
1139         }
1140 }
1141 EXPORT_SYMBOL(mark_buffer_dirty);
1142
1143 /*
1144  * Decrement a buffer_head's reference count.  If all buffers against a page
1145  * have zero reference count, are clean and unlocked, and if the page is clean
1146  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1147  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1148  * a page but it ends up not being freed, and buffers may later be reattached).
1149  */
1150 void __brelse(struct buffer_head * buf)
1151 {
1152         if (atomic_read(&buf->b_count)) {
1153                 put_bh(buf);
1154                 return;
1155         }
1156         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1157 }
1158 EXPORT_SYMBOL(__brelse);
1159
1160 /*
1161  * bforget() is like brelse(), except it discards any
1162  * potentially dirty data.
1163  */
1164 void __bforget(struct buffer_head *bh)
1165 {
1166         clear_buffer_dirty(bh);
1167         if (bh->b_assoc_map) {
1168                 struct address_space *buffer_mapping = bh->b_page->mapping;
1169
1170                 spin_lock(&buffer_mapping->private_lock);
1171                 list_del_init(&bh->b_assoc_buffers);
1172                 bh->b_assoc_map = NULL;
1173                 spin_unlock(&buffer_mapping->private_lock);
1174         }
1175         __brelse(bh);
1176 }
1177 EXPORT_SYMBOL(__bforget);
1178
1179 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1180 {
1181         lock_buffer(bh);
1182         if (buffer_uptodate(bh)) {
1183                 unlock_buffer(bh);
1184                 return bh;
1185         } else {
1186                 get_bh(bh);
1187                 bh->b_end_io = end_buffer_read_sync;
1188                 submit_bh(READ, bh);
1189                 wait_on_buffer(bh);
1190                 if (buffer_uptodate(bh))
1191                         return bh;
1192         }
1193         brelse(bh);
1194         return NULL;
1195 }
1196
1197 /*
1198  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1199  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1200  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1201  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1202  * CPU's LRUs at the same time.
1203  *
1204  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1205  * sb_find_get_block().
1206  *
1207  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1208  * a local interrupt disable for that.
1209  */
1210
1211 #define BH_LRU_SIZE     8
1212
1213 struct bh_lru {
1214         struct buffer_head *bhs[BH_LRU_SIZE];
1215 };
1216
1217 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1218
1219 #ifdef CONFIG_SMP
1220 #define bh_lru_lock()   local_irq_disable()
1221 #define bh_lru_unlock() local_irq_enable()
1222 #else
1223 #define bh_lru_lock()   preempt_disable()
1224 #define bh_lru_unlock() preempt_enable()
1225 #endif
1226
1227 static inline void check_irqs_on(void)
1228 {
1229 #ifdef irqs_disabled
1230         BUG_ON(irqs_disabled());
1231 #endif
1232 }
1233
1234 /*
1235  * The LRU management algorithm is dopey-but-simple.  Sorry.
1236  */
1237 static void bh_lru_install(struct buffer_head *bh)
1238 {
1239         struct buffer_head *evictee = NULL;
1240
1241         check_irqs_on();
1242         bh_lru_lock();
1243         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1244                 struct buffer_head *bhs[BH_LRU_SIZE];
1245                 int in;
1246                 int out = 0;
1247
1248                 get_bh(bh);
1249                 bhs[out++] = bh;
1250                 for (in = 0; in < BH_LRU_SIZE; in++) {
1251                         struct buffer_head *bh2 =
1252                                 __this_cpu_read(bh_lrus.bhs[in]);
1253
1254                         if (bh2 == bh) {
1255                                 __brelse(bh2);
1256                         } else {
1257                                 if (out >= BH_LRU_SIZE) {
1258                                         BUG_ON(evictee != NULL);
1259                                         evictee = bh2;
1260                                 } else {
1261                                         bhs[out++] = bh2;
1262                                 }
1263                         }
1264                 }
1265                 while (out < BH_LRU_SIZE)
1266                         bhs[out++] = NULL;
1267                 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1268         }
1269         bh_lru_unlock();
1270
1271         if (evictee)
1272                 __brelse(evictee);
1273 }
1274
1275 /*
1276  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1277  */
1278 static struct buffer_head *
1279 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1280 {
1281         struct buffer_head *ret = NULL;
1282         unsigned int i;
1283
1284         check_irqs_on();
1285         bh_lru_lock();
1286         for (i = 0; i < BH_LRU_SIZE; i++) {
1287                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1288
1289                 if (bh && bh->b_bdev == bdev &&
1290                                 bh->b_blocknr == block && bh->b_size == size) {
1291                         if (i) {
1292                                 while (i) {
1293                                         __this_cpu_write(bh_lrus.bhs[i],
1294                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1295                                         i--;
1296                                 }
1297                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1298                         }
1299                         get_bh(bh);
1300                         ret = bh;
1301                         break;
1302                 }
1303         }
1304         bh_lru_unlock();
1305         return ret;
1306 }
1307
1308 /*
1309  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1310  * it in the LRU and mark it as accessed.  If it is not present then return
1311  * NULL
1312  */
1313 struct buffer_head *
1314 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1315 {
1316         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1317
1318         if (bh == NULL) {
1319                 bh = __find_get_block_slow(bdev, block);
1320                 if (bh)
1321                         bh_lru_install(bh);
1322         }
1323         if (bh)
1324                 touch_buffer(bh);
1325         return bh;
1326 }
1327 EXPORT_SYMBOL(__find_get_block);
1328
1329 /*
1330  * __getblk will locate (and, if necessary, create) the buffer_head
1331  * which corresponds to the passed block_device, block and size. The
1332  * returned buffer has its reference count incremented.
1333  *
1334  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1335  * attempt is failing.  FIXME, perhaps?
1336  */
1337 struct buffer_head *
1338 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1339 {
1340         struct buffer_head *bh = __find_get_block(bdev, block, size);
1341
1342         might_sleep();
1343         if (bh == NULL)
1344                 bh = __getblk_slow(bdev, block, size);
1345         return bh;
1346 }
1347 EXPORT_SYMBOL(__getblk);
1348
1349 /*
1350  * Do async read-ahead on a buffer..
1351  */
1352 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1353 {
1354         struct buffer_head *bh = __getblk(bdev, block, size);
1355         if (likely(bh)) {
1356                 ll_rw_block(READA, 1, &bh);
1357                 brelse(bh);
1358         }
1359 }
1360 EXPORT_SYMBOL(__breadahead);
1361
1362 /**
1363  *  __bread() - reads a specified block and returns the bh
1364  *  @bdev: the block_device to read from
1365  *  @block: number of block
1366  *  @size: size (in bytes) to read
1367  * 
1368  *  Reads a specified block, and returns buffer head that contains it.
1369  *  It returns NULL if the block was unreadable.
1370  */
1371 struct buffer_head *
1372 __bread(struct block_device *bdev, sector_t block, unsigned size)
1373 {
1374         struct buffer_head *bh = __getblk(bdev, block, size);
1375
1376         if (likely(bh) && !buffer_uptodate(bh))
1377                 bh = __bread_slow(bh);
1378         return bh;
1379 }
1380 EXPORT_SYMBOL(__bread);
1381
1382 /*
1383  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1384  * This doesn't race because it runs in each cpu either in irq
1385  * or with preempt disabled.
1386  */
1387 static void invalidate_bh_lru(void *arg)
1388 {
1389         struct bh_lru *b = &get_cpu_var(bh_lrus);
1390         int i;
1391
1392         for (i = 0; i < BH_LRU_SIZE; i++) {
1393                 brelse(b->bhs[i]);
1394                 b->bhs[i] = NULL;
1395         }
1396         put_cpu_var(bh_lrus);
1397 }
1398
1399 static bool has_bh_in_lru(int cpu, void *dummy)
1400 {
1401         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1402         int i;
1403         
1404         for (i = 0; i < BH_LRU_SIZE; i++) {
1405                 if (b->bhs[i])
1406                         return 1;
1407         }
1408
1409         return 0;
1410 }
1411
1412 void invalidate_bh_lrus(void)
1413 {
1414         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1415 }
1416 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1417
1418 void set_bh_page(struct buffer_head *bh,
1419                 struct page *page, unsigned long offset)
1420 {
1421         bh->b_page = page;
1422         BUG_ON(offset >= PAGE_SIZE);
1423         if (PageHighMem(page))
1424                 /*
1425                  * This catches illegal uses and preserves the offset:
1426                  */
1427                 bh->b_data = (char *)(0 + offset);
1428         else
1429                 bh->b_data = page_address(page) + offset;
1430 }
1431 EXPORT_SYMBOL(set_bh_page);
1432
1433 /*
1434  * Called when truncating a buffer on a page completely.
1435  */
1436 static void discard_buffer(struct buffer_head * bh)
1437 {
1438         lock_buffer(bh);
1439         clear_buffer_dirty(bh);
1440         bh->b_bdev = NULL;
1441         clear_buffer_mapped(bh);
1442         clear_buffer_req(bh);
1443         clear_buffer_new(bh);
1444         clear_buffer_delay(bh);
1445         clear_buffer_unwritten(bh);
1446         unlock_buffer(bh);
1447 }
1448
1449 /**
1450  * block_invalidatepage - invalidate part or all of a buffer-backed page
1451  *
1452  * @page: the page which is affected
1453  * @offset: the index of the truncation point
1454  *
1455  * block_invalidatepage() is called when all or part of the page has become
1456  * invalidated by a truncate operation.
1457  *
1458  * block_invalidatepage() does not have to release all buffers, but it must
1459  * ensure that no dirty buffer is left outside @offset and that no I/O
1460  * is underway against any of the blocks which are outside the truncation
1461  * point.  Because the caller is about to free (and possibly reuse) those
1462  * blocks on-disk.
1463  */
1464 void block_invalidatepage(struct page *page, unsigned long offset)
1465 {
1466         struct buffer_head *head, *bh, *next;
1467         unsigned int curr_off = 0;
1468
1469         BUG_ON(!PageLocked(page));
1470         if (!page_has_buffers(page))
1471                 goto out;
1472
1473         head = page_buffers(page);
1474         bh = head;
1475         do {
1476                 unsigned int next_off = curr_off + bh->b_size;
1477                 next = bh->b_this_page;
1478
1479                 /*
1480                  * is this block fully invalidated?
1481                  */
1482                 if (offset <= curr_off)
1483                         discard_buffer(bh);
1484                 curr_off = next_off;
1485                 bh = next;
1486         } while (bh != head);
1487
1488         /*
1489          * We release buffers only if the entire page is being invalidated.
1490          * The get_block cached value has been unconditionally invalidated,
1491          * so real IO is not possible anymore.
1492          */
1493         if (offset == 0)
1494                 try_to_release_page(page, 0);
1495 out:
1496         return;
1497 }
1498 EXPORT_SYMBOL(block_invalidatepage);
1499
1500 /*
1501  * We attach and possibly dirty the buffers atomically wrt
1502  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1503  * is already excluded via the page lock.
1504  */
1505 void create_empty_buffers(struct page *page,
1506                         unsigned long blocksize, unsigned long b_state)
1507 {
1508         struct buffer_head *bh, *head, *tail;
1509
1510         head = alloc_page_buffers(page, blocksize, 1);
1511         bh = head;
1512         do {
1513                 bh->b_state |= b_state;
1514                 tail = bh;
1515                 bh = bh->b_this_page;
1516         } while (bh);
1517         tail->b_this_page = head;
1518
1519         spin_lock(&page->mapping->private_lock);
1520         if (PageUptodate(page) || PageDirty(page)) {
1521                 bh = head;
1522                 do {
1523                         if (PageDirty(page))
1524                                 set_buffer_dirty(bh);
1525                         if (PageUptodate(page))
1526                                 set_buffer_uptodate(bh);
1527                         bh = bh->b_this_page;
1528                 } while (bh != head);
1529         }
1530         attach_page_buffers(page, head);
1531         spin_unlock(&page->mapping->private_lock);
1532 }
1533 EXPORT_SYMBOL(create_empty_buffers);
1534
1535 /*
1536  * We are taking a block for data and we don't want any output from any
1537  * buffer-cache aliases starting from return from that function and
1538  * until the moment when something will explicitly mark the buffer
1539  * dirty (hopefully that will not happen until we will free that block ;-)
1540  * We don't even need to mark it not-uptodate - nobody can expect
1541  * anything from a newly allocated buffer anyway. We used to used
1542  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1543  * don't want to mark the alias unmapped, for example - it would confuse
1544  * anyone who might pick it with bread() afterwards...
1545  *
1546  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1547  * be writeout I/O going on against recently-freed buffers.  We don't
1548  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1549  * only if we really need to.  That happens here.
1550  */
1551 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1552 {
1553         struct buffer_head *old_bh;
1554
1555         might_sleep();
1556
1557         old_bh = __find_get_block_slow(bdev, block);
1558         if (old_bh) {
1559                 clear_buffer_dirty(old_bh);
1560                 wait_on_buffer(old_bh);
1561                 clear_buffer_req(old_bh);
1562                 __brelse(old_bh);
1563         }
1564 }
1565 EXPORT_SYMBOL(unmap_underlying_metadata);
1566
1567 /*
1568  * Size is a power-of-two in the range 512..PAGE_SIZE,
1569  * and the case we care about most is PAGE_SIZE.
1570  *
1571  * So this *could* possibly be written with those
1572  * constraints in mind (relevant mostly if some
1573  * architecture has a slow bit-scan instruction)
1574  */
1575 static inline int block_size_bits(unsigned int blocksize)
1576 {
1577         return ilog2(blocksize);
1578 }
1579
1580 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1581 {
1582         BUG_ON(!PageLocked(page));
1583
1584         if (!page_has_buffers(page))
1585                 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1586         return page_buffers(page);
1587 }
1588
1589 /*
1590  * NOTE! All mapped/uptodate combinations are valid:
1591  *
1592  *      Mapped  Uptodate        Meaning
1593  *
1594  *      No      No              "unknown" - must do get_block()
1595  *      No      Yes             "hole" - zero-filled
1596  *      Yes     No              "allocated" - allocated on disk, not read in
1597  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1598  *
1599  * "Dirty" is valid only with the last case (mapped+uptodate).
1600  */
1601
1602 /*
1603  * While block_write_full_page is writing back the dirty buffers under
1604  * the page lock, whoever dirtied the buffers may decide to clean them
1605  * again at any time.  We handle that by only looking at the buffer
1606  * state inside lock_buffer().
1607  *
1608  * If block_write_full_page() is called for regular writeback
1609  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1610  * locked buffer.   This only can happen if someone has written the buffer
1611  * directly, with submit_bh().  At the address_space level PageWriteback
1612  * prevents this contention from occurring.
1613  *
1614  * If block_write_full_page() is called with wbc->sync_mode ==
1615  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1616  * causes the writes to be flagged as synchronous writes.
1617  */
1618 static int __block_write_full_page(struct inode *inode, struct page *page,
1619                         get_block_t *get_block, struct writeback_control *wbc,
1620                         bh_end_io_t *handler)
1621 {
1622         int err;
1623         sector_t block;
1624         sector_t last_block;
1625         struct buffer_head *bh, *head;
1626         unsigned int blocksize, bbits;
1627         int nr_underway = 0;
1628         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1629                         WRITE_SYNC : WRITE);
1630
1631         head = create_page_buffers(page, inode,
1632                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1633
1634         /*
1635          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1636          * here, and the (potentially unmapped) buffers may become dirty at
1637          * any time.  If a buffer becomes dirty here after we've inspected it
1638          * then we just miss that fact, and the page stays dirty.
1639          *
1640          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1641          * handle that here by just cleaning them.
1642          */
1643
1644         bh = head;
1645         blocksize = bh->b_size;
1646         bbits = block_size_bits(blocksize);
1647
1648         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1649         last_block = (i_size_read(inode) - 1) >> bbits;
1650
1651         /*
1652          * Get all the dirty buffers mapped to disk addresses and
1653          * handle any aliases from the underlying blockdev's mapping.
1654          */
1655         do {
1656                 if (block > last_block) {
1657                         /*
1658                          * mapped buffers outside i_size will occur, because
1659                          * this page can be outside i_size when there is a
1660                          * truncate in progress.
1661                          */
1662                         /*
1663                          * The buffer was zeroed by block_write_full_page()
1664                          */
1665                         clear_buffer_dirty(bh);
1666                         set_buffer_uptodate(bh);
1667                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1668                            buffer_dirty(bh)) {
1669                         WARN_ON(bh->b_size != blocksize);
1670                         err = get_block(inode, block, bh, 1);
1671                         if (err)
1672                                 goto recover;
1673                         clear_buffer_delay(bh);
1674                         if (buffer_new(bh)) {
1675                                 /* blockdev mappings never come here */
1676                                 clear_buffer_new(bh);
1677                                 unmap_underlying_metadata(bh->b_bdev,
1678                                                         bh->b_blocknr);
1679                         }
1680                 }
1681                 bh = bh->b_this_page;
1682                 block++;
1683         } while (bh != head);
1684
1685         do {
1686                 if (!buffer_mapped(bh))
1687                         continue;
1688                 /*
1689                  * If it's a fully non-blocking write attempt and we cannot
1690                  * lock the buffer then redirty the page.  Note that this can
1691                  * potentially cause a busy-wait loop from writeback threads
1692                  * and kswapd activity, but those code paths have their own
1693                  * higher-level throttling.
1694                  */
1695                 if (wbc->sync_mode != WB_SYNC_NONE) {
1696                         lock_buffer(bh);
1697                 } else if (!trylock_buffer(bh)) {
1698                         redirty_page_for_writepage(wbc, page);
1699                         continue;
1700                 }
1701                 if (test_clear_buffer_dirty(bh)) {
1702                         mark_buffer_async_write_endio(bh, handler);
1703                 } else {
1704                         unlock_buffer(bh);
1705                 }
1706         } while ((bh = bh->b_this_page) != head);
1707
1708         /*
1709          * The page and its buffers are protected by PageWriteback(), so we can
1710          * drop the bh refcounts early.
1711          */
1712         BUG_ON(PageWriteback(page));
1713         set_page_writeback(page);
1714
1715         do {
1716                 struct buffer_head *next = bh->b_this_page;
1717                 if (buffer_async_write(bh)) {
1718                         submit_bh(write_op, bh);
1719                         nr_underway++;
1720                 }
1721                 bh = next;
1722         } while (bh != head);
1723         unlock_page(page);
1724
1725         err = 0;
1726 done:
1727         if (nr_underway == 0) {
1728                 /*
1729                  * The page was marked dirty, but the buffers were
1730                  * clean.  Someone wrote them back by hand with
1731                  * ll_rw_block/submit_bh.  A rare case.
1732                  */
1733                 end_page_writeback(page);
1734
1735                 /*
1736                  * The page and buffer_heads can be released at any time from
1737                  * here on.
1738                  */
1739         }
1740         return err;
1741
1742 recover:
1743         /*
1744          * ENOSPC, or some other error.  We may already have added some
1745          * blocks to the file, so we need to write these out to avoid
1746          * exposing stale data.
1747          * The page is currently locked and not marked for writeback
1748          */
1749         bh = head;
1750         /* Recovery: lock and submit the mapped buffers */
1751         do {
1752                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1753                     !buffer_delay(bh)) {
1754                         lock_buffer(bh);
1755                         mark_buffer_async_write_endio(bh, handler);
1756                 } else {
1757                         /*
1758                          * The buffer may have been set dirty during
1759                          * attachment to a dirty page.
1760                          */
1761                         clear_buffer_dirty(bh);
1762                 }
1763         } while ((bh = bh->b_this_page) != head);
1764         SetPageError(page);
1765         BUG_ON(PageWriteback(page));
1766         mapping_set_error(page->mapping, err);
1767         set_page_writeback(page);
1768         do {
1769                 struct buffer_head *next = bh->b_this_page;
1770                 if (buffer_async_write(bh)) {
1771                         clear_buffer_dirty(bh);
1772                         submit_bh(write_op, bh);
1773                         nr_underway++;
1774                 }
1775                 bh = next;
1776         } while (bh != head);
1777         unlock_page(page);
1778         goto done;
1779 }
1780
1781 /*
1782  * If a page has any new buffers, zero them out here, and mark them uptodate
1783  * and dirty so they'll be written out (in order to prevent uninitialised
1784  * block data from leaking). And clear the new bit.
1785  */
1786 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1787 {
1788         unsigned int block_start, block_end;
1789         struct buffer_head *head, *bh;
1790
1791         BUG_ON(!PageLocked(page));
1792         if (!page_has_buffers(page))
1793                 return;
1794
1795         bh = head = page_buffers(page);
1796         block_start = 0;
1797         do {
1798                 block_end = block_start + bh->b_size;
1799
1800                 if (buffer_new(bh)) {
1801                         if (block_end > from && block_start < to) {
1802                                 if (!PageUptodate(page)) {
1803                                         unsigned start, size;
1804
1805                                         start = max(from, block_start);
1806                                         size = min(to, block_end) - start;
1807
1808                                         zero_user(page, start, size);
1809                                         set_buffer_uptodate(bh);
1810                                 }
1811
1812                                 clear_buffer_new(bh);
1813                                 mark_buffer_dirty(bh);
1814                         }
1815                 }
1816
1817                 block_start = block_end;
1818                 bh = bh->b_this_page;
1819         } while (bh != head);
1820 }
1821 EXPORT_SYMBOL(page_zero_new_buffers);
1822
1823 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1824                 get_block_t *get_block)
1825 {
1826         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1827         unsigned to = from + len;
1828         struct inode *inode = page->mapping->host;
1829         unsigned block_start, block_end;
1830         sector_t block;
1831         int err = 0;
1832         unsigned blocksize, bbits;
1833         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1834
1835         BUG_ON(!PageLocked(page));
1836         BUG_ON(from > PAGE_CACHE_SIZE);
1837         BUG_ON(to > PAGE_CACHE_SIZE);
1838         BUG_ON(from > to);
1839
1840         head = create_page_buffers(page, inode, 0);
1841         blocksize = head->b_size;
1842         bbits = block_size_bits(blocksize);
1843
1844         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1845
1846         for(bh = head, block_start = 0; bh != head || !block_start;
1847             block++, block_start=block_end, bh = bh->b_this_page) {
1848                 block_end = block_start + blocksize;
1849                 if (block_end <= from || block_start >= to) {
1850                         if (PageUptodate(page)) {
1851                                 if (!buffer_uptodate(bh))
1852                                         set_buffer_uptodate(bh);
1853                         }
1854                         continue;
1855                 }
1856                 if (buffer_new(bh))
1857                         clear_buffer_new(bh);
1858                 if (!buffer_mapped(bh)) {
1859                         WARN_ON(bh->b_size != blocksize);
1860                         err = get_block(inode, block, bh, 1);
1861                         if (err)
1862                                 break;
1863                         if (buffer_new(bh)) {
1864                                 unmap_underlying_metadata(bh->b_bdev,
1865                                                         bh->b_blocknr);
1866                                 if (PageUptodate(page)) {
1867                                         clear_buffer_new(bh);
1868                                         set_buffer_uptodate(bh);
1869                                         mark_buffer_dirty(bh);
1870                                         continue;
1871                                 }
1872                                 if (block_end > to || block_start < from)
1873                                         zero_user_segments(page,
1874                                                 to, block_end,
1875                                                 block_start, from);
1876                                 continue;
1877                         }
1878                 }
1879                 if (PageUptodate(page)) {
1880                         if (!buffer_uptodate(bh))
1881                                 set_buffer_uptodate(bh);
1882                         continue; 
1883                 }
1884                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1885                     !buffer_unwritten(bh) &&
1886                      (block_start < from || block_end > to)) {
1887                         ll_rw_block(READ, 1, &bh);
1888                         *wait_bh++=bh;
1889                 }
1890         }
1891         /*
1892          * If we issued read requests - let them complete.
1893          */
1894         while(wait_bh > wait) {
1895                 wait_on_buffer(*--wait_bh);
1896                 if (!buffer_uptodate(*wait_bh))
1897                         err = -EIO;
1898         }
1899         if (unlikely(err))
1900                 page_zero_new_buffers(page, from, to);
1901         return err;
1902 }
1903 EXPORT_SYMBOL(__block_write_begin);
1904
1905 static int __block_commit_write(struct inode *inode, struct page *page,
1906                 unsigned from, unsigned to)
1907 {
1908         unsigned block_start, block_end;
1909         int partial = 0;
1910         unsigned blocksize;
1911         struct buffer_head *bh, *head;
1912
1913         bh = head = page_buffers(page);
1914         blocksize = bh->b_size;
1915
1916         block_start = 0;
1917         do {
1918                 block_end = block_start + blocksize;
1919                 if (block_end <= from || block_start >= to) {
1920                         if (!buffer_uptodate(bh))
1921                                 partial = 1;
1922                 } else {
1923                         set_buffer_uptodate(bh);
1924                         mark_buffer_dirty(bh);
1925                 }
1926                 clear_buffer_new(bh);
1927
1928                 block_start = block_end;
1929                 bh = bh->b_this_page;
1930         } while (bh != head);
1931
1932         /*
1933          * If this is a partial write which happened to make all buffers
1934          * uptodate then we can optimize away a bogus readpage() for
1935          * the next read(). Here we 'discover' whether the page went
1936          * uptodate as a result of this (potentially partial) write.
1937          */
1938         if (!partial)
1939                 SetPageUptodate(page);
1940         return 0;
1941 }
1942
1943 /*
1944  * block_write_begin takes care of the basic task of block allocation and
1945  * bringing partial write blocks uptodate first.
1946  *
1947  * The filesystem needs to handle block truncation upon failure.
1948  */
1949 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1950                 unsigned flags, struct page **pagep, get_block_t *get_block)
1951 {
1952         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1953         struct page *page;
1954         int status;
1955
1956         page = grab_cache_page_write_begin(mapping, index, flags);
1957         if (!page)
1958                 return -ENOMEM;
1959
1960         status = __block_write_begin(page, pos, len, get_block);
1961         if (unlikely(status)) {
1962                 unlock_page(page);
1963                 page_cache_release(page);
1964                 page = NULL;
1965         }
1966
1967         *pagep = page;
1968         return status;
1969 }
1970 EXPORT_SYMBOL(block_write_begin);
1971
1972 int block_write_end(struct file *file, struct address_space *mapping,
1973                         loff_t pos, unsigned len, unsigned copied,
1974                         struct page *page, void *fsdata)
1975 {
1976         struct inode *inode = mapping->host;
1977         unsigned start;
1978
1979         start = pos & (PAGE_CACHE_SIZE - 1);
1980
1981         if (unlikely(copied < len)) {
1982                 /*
1983                  * The buffers that were written will now be uptodate, so we
1984                  * don't have to worry about a readpage reading them and
1985                  * overwriting a partial write. However if we have encountered
1986                  * a short write and only partially written into a buffer, it
1987                  * will not be marked uptodate, so a readpage might come in and
1988                  * destroy our partial write.
1989                  *
1990                  * Do the simplest thing, and just treat any short write to a
1991                  * non uptodate page as a zero-length write, and force the
1992                  * caller to redo the whole thing.
1993                  */
1994                 if (!PageUptodate(page))
1995                         copied = 0;
1996
1997                 page_zero_new_buffers(page, start+copied, start+len);
1998         }
1999         flush_dcache_page(page);
2000
2001         /* This could be a short (even 0-length) commit */
2002         __block_commit_write(inode, page, start, start+copied);
2003
2004         return copied;
2005 }
2006 EXPORT_SYMBOL(block_write_end);
2007
2008 int generic_write_end(struct file *file, struct address_space *mapping,
2009                         loff_t pos, unsigned len, unsigned copied,
2010                         struct page *page, void *fsdata)
2011 {
2012         struct inode *inode = mapping->host;
2013         int i_size_changed = 0;
2014
2015         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2016
2017         /*
2018          * No need to use i_size_read() here, the i_size
2019          * cannot change under us because we hold i_mutex.
2020          *
2021          * But it's important to update i_size while still holding page lock:
2022          * page writeout could otherwise come in and zero beyond i_size.
2023          */
2024         if (pos+copied > inode->i_size) {
2025                 i_size_write(inode, pos+copied);
2026                 i_size_changed = 1;
2027         }
2028
2029         unlock_page(page);
2030         page_cache_release(page);
2031
2032         /*
2033          * Don't mark the inode dirty under page lock. First, it unnecessarily
2034          * makes the holding time of page lock longer. Second, it forces lock
2035          * ordering of page lock and transaction start for journaling
2036          * filesystems.
2037          */
2038         if (i_size_changed)
2039                 mark_inode_dirty(inode);
2040
2041         return copied;
2042 }
2043 EXPORT_SYMBOL(generic_write_end);
2044
2045 /*
2046  * block_is_partially_uptodate checks whether buffers within a page are
2047  * uptodate or not.
2048  *
2049  * Returns true if all buffers which correspond to a file portion
2050  * we want to read are uptodate.
2051  */
2052 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2053                                         unsigned long from)
2054 {
2055         unsigned block_start, block_end, blocksize;
2056         unsigned to;
2057         struct buffer_head *bh, *head;
2058         int ret = 1;
2059
2060         if (!page_has_buffers(page))
2061                 return 0;
2062
2063         head = page_buffers(page);
2064         blocksize = head->b_size;
2065         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2066         to = from + to;
2067         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2068                 return 0;
2069
2070         bh = head;
2071         block_start = 0;
2072         do {
2073                 block_end = block_start + blocksize;
2074                 if (block_end > from && block_start < to) {
2075                         if (!buffer_uptodate(bh)) {
2076                                 ret = 0;
2077                                 break;
2078                         }
2079                         if (block_end >= to)
2080                                 break;
2081                 }
2082                 block_start = block_end;
2083                 bh = bh->b_this_page;
2084         } while (bh != head);
2085
2086         return ret;
2087 }
2088 EXPORT_SYMBOL(block_is_partially_uptodate);
2089
2090 /*
2091  * Generic "read page" function for block devices that have the normal
2092  * get_block functionality. This is most of the block device filesystems.
2093  * Reads the page asynchronously --- the unlock_buffer() and
2094  * set/clear_buffer_uptodate() functions propagate buffer state into the
2095  * page struct once IO has completed.
2096  */
2097 int block_read_full_page(struct page *page, get_block_t *get_block)
2098 {
2099         struct inode *inode = page->mapping->host;
2100         sector_t iblock, lblock;
2101         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2102         unsigned int blocksize, bbits;
2103         int nr, i;
2104         int fully_mapped = 1;
2105
2106         head = create_page_buffers(page, inode, 0);
2107         blocksize = head->b_size;
2108         bbits = block_size_bits(blocksize);
2109
2110         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2111         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2112         bh = head;
2113         nr = 0;
2114         i = 0;
2115
2116         do {
2117                 if (buffer_uptodate(bh))
2118                         continue;
2119
2120                 if (!buffer_mapped(bh)) {
2121                         int err = 0;
2122
2123                         fully_mapped = 0;
2124                         if (iblock < lblock) {
2125                                 WARN_ON(bh->b_size != blocksize);
2126                                 err = get_block(inode, iblock, bh, 0);
2127                                 if (err)
2128                                         SetPageError(page);
2129                         }
2130                         if (!buffer_mapped(bh)) {
2131                                 zero_user(page, i * blocksize, blocksize);
2132                                 if (!err)
2133                                         set_buffer_uptodate(bh);
2134                                 continue;
2135                         }
2136                         /*
2137                          * get_block() might have updated the buffer
2138                          * synchronously
2139                          */
2140                         if (buffer_uptodate(bh))
2141                                 continue;
2142                 }
2143                 arr[nr++] = bh;
2144         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2145
2146         if (fully_mapped)
2147                 SetPageMappedToDisk(page);
2148
2149         if (!nr) {
2150                 /*
2151                  * All buffers are uptodate - we can set the page uptodate
2152                  * as well. But not if get_block() returned an error.
2153                  */
2154                 if (!PageError(page))
2155                         SetPageUptodate(page);
2156                 unlock_page(page);
2157                 return 0;
2158         }
2159
2160         /* Stage two: lock the buffers */
2161         for (i = 0; i < nr; i++) {
2162                 bh = arr[i];
2163                 lock_buffer(bh);
2164                 mark_buffer_async_read(bh);
2165         }
2166
2167         /*
2168          * Stage 3: start the IO.  Check for uptodateness
2169          * inside the buffer lock in case another process reading
2170          * the underlying blockdev brought it uptodate (the sct fix).
2171          */
2172         for (i = 0; i < nr; i++) {
2173                 bh = arr[i];
2174                 if (buffer_uptodate(bh))
2175                         end_buffer_async_read(bh, 1);
2176                 else
2177                         submit_bh(READ, bh);
2178         }
2179         return 0;
2180 }
2181 EXPORT_SYMBOL(block_read_full_page);
2182
2183 /* utility function for filesystems that need to do work on expanding
2184  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2185  * deal with the hole.  
2186  */
2187 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2188 {
2189         struct address_space *mapping = inode->i_mapping;
2190         struct page *page;
2191         void *fsdata;
2192         int err;
2193
2194         err = inode_newsize_ok(inode, size);
2195         if (err)
2196                 goto out;
2197
2198         err = pagecache_write_begin(NULL, mapping, size, 0,
2199                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2200                                 &page, &fsdata);
2201         if (err)
2202                 goto out;
2203
2204         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2205         BUG_ON(err > 0);
2206
2207 out:
2208         return err;
2209 }
2210 EXPORT_SYMBOL(generic_cont_expand_simple);
2211
2212 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2213                             loff_t pos, loff_t *bytes)
2214 {
2215         struct inode *inode = mapping->host;
2216         unsigned blocksize = 1 << inode->i_blkbits;
2217         struct page *page;
2218         void *fsdata;
2219         pgoff_t index, curidx;
2220         loff_t curpos;
2221         unsigned zerofrom, offset, len;
2222         int err = 0;
2223
2224         index = pos >> PAGE_CACHE_SHIFT;
2225         offset = pos & ~PAGE_CACHE_MASK;
2226
2227         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2228                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2229                 if (zerofrom & (blocksize-1)) {
2230                         *bytes |= (blocksize-1);
2231                         (*bytes)++;
2232                 }
2233                 len = PAGE_CACHE_SIZE - zerofrom;
2234
2235                 err = pagecache_write_begin(file, mapping, curpos, len,
2236                                                 AOP_FLAG_UNINTERRUPTIBLE,
2237                                                 &page, &fsdata);
2238                 if (err)
2239                         goto out;
2240                 zero_user(page, zerofrom, len);
2241                 err = pagecache_write_end(file, mapping, curpos, len, len,
2242                                                 page, fsdata);
2243                 if (err < 0)
2244                         goto out;
2245                 BUG_ON(err != len);
2246                 err = 0;
2247
2248                 balance_dirty_pages_ratelimited(mapping);
2249         }
2250
2251         /* page covers the boundary, find the boundary offset */
2252         if (index == curidx) {
2253                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2254                 /* if we will expand the thing last block will be filled */
2255                 if (offset <= zerofrom) {
2256                         goto out;
2257                 }
2258                 if (zerofrom & (blocksize-1)) {
2259                         *bytes |= (blocksize-1);
2260                         (*bytes)++;
2261                 }
2262                 len = offset - zerofrom;
2263
2264                 err = pagecache_write_begin(file, mapping, curpos, len,
2265                                                 AOP_FLAG_UNINTERRUPTIBLE,
2266                                                 &page, &fsdata);
2267                 if (err)
2268                         goto out;
2269                 zero_user(page, zerofrom, len);
2270                 err = pagecache_write_end(file, mapping, curpos, len, len,
2271                                                 page, fsdata);
2272                 if (err < 0)
2273                         goto out;
2274                 BUG_ON(err != len);
2275                 err = 0;
2276         }
2277 out:
2278         return err;
2279 }
2280
2281 /*
2282  * For moronic filesystems that do not allow holes in file.
2283  * We may have to extend the file.
2284  */
2285 int cont_write_begin(struct file *file, struct address_space *mapping,
2286                         loff_t pos, unsigned len, unsigned flags,
2287                         struct page **pagep, void **fsdata,
2288                         get_block_t *get_block, loff_t *bytes)
2289 {
2290         struct inode *inode = mapping->host;
2291         unsigned blocksize = 1 << inode->i_blkbits;
2292         unsigned zerofrom;
2293         int err;
2294
2295         err = cont_expand_zero(file, mapping, pos, bytes);
2296         if (err)
2297                 return err;
2298
2299         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2300         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2301                 *bytes |= (blocksize-1);
2302                 (*bytes)++;
2303         }
2304
2305         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2306 }
2307 EXPORT_SYMBOL(cont_write_begin);
2308
2309 int block_commit_write(struct page *page, unsigned from, unsigned to)
2310 {
2311         struct inode *inode = page->mapping->host;
2312         __block_commit_write(inode,page,from,to);
2313         return 0;
2314 }
2315 EXPORT_SYMBOL(block_commit_write);
2316
2317 /*
2318  * block_page_mkwrite() is not allowed to change the file size as it gets
2319  * called from a page fault handler when a page is first dirtied. Hence we must
2320  * be careful to check for EOF conditions here. We set the page up correctly
2321  * for a written page which means we get ENOSPC checking when writing into
2322  * holes and correct delalloc and unwritten extent mapping on filesystems that
2323  * support these features.
2324  *
2325  * We are not allowed to take the i_mutex here so we have to play games to
2326  * protect against truncate races as the page could now be beyond EOF.  Because
2327  * truncate writes the inode size before removing pages, once we have the
2328  * page lock we can determine safely if the page is beyond EOF. If it is not
2329  * beyond EOF, then the page is guaranteed safe against truncation until we
2330  * unlock the page.
2331  *
2332  * Direct callers of this function should protect against filesystem freezing
2333  * using sb_start_write() - sb_end_write() functions.
2334  */
2335 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2336                          get_block_t get_block)
2337 {
2338         struct page *page = vmf->page;
2339         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2340         unsigned long end;
2341         loff_t size;
2342         int ret;
2343
2344         lock_page(page);
2345         size = i_size_read(inode);
2346         if ((page->mapping != inode->i_mapping) ||
2347             (page_offset(page) > size)) {
2348                 /* We overload EFAULT to mean page got truncated */
2349                 ret = -EFAULT;
2350                 goto out_unlock;
2351         }
2352
2353         /* page is wholly or partially inside EOF */
2354         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2355                 end = size & ~PAGE_CACHE_MASK;
2356         else
2357                 end = PAGE_CACHE_SIZE;
2358
2359         ret = __block_write_begin(page, 0, end, get_block);
2360         if (!ret)
2361                 ret = block_commit_write(page, 0, end);
2362
2363         if (unlikely(ret < 0))
2364                 goto out_unlock;
2365         set_page_dirty(page);
2366         wait_on_page_writeback(page);
2367         return 0;
2368 out_unlock:
2369         unlock_page(page);
2370         return ret;
2371 }
2372 EXPORT_SYMBOL(__block_page_mkwrite);
2373
2374 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2375                    get_block_t get_block)
2376 {
2377         int ret;
2378         struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2379
2380         sb_start_pagefault(sb);
2381
2382         /*
2383          * Update file times before taking page lock. We may end up failing the
2384          * fault so this update may be superfluous but who really cares...
2385          */
2386         file_update_time(vma->vm_file);
2387
2388         ret = __block_page_mkwrite(vma, vmf, get_block);
2389         sb_end_pagefault(sb);
2390         return block_page_mkwrite_return(ret);
2391 }
2392 EXPORT_SYMBOL(block_page_mkwrite);
2393
2394 /*
2395  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2396  * immediately, while under the page lock.  So it needs a special end_io
2397  * handler which does not touch the bh after unlocking it.
2398  */
2399 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2400 {
2401         __end_buffer_read_notouch(bh, uptodate);
2402 }
2403
2404 /*
2405  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2406  * the page (converting it to circular linked list and taking care of page
2407  * dirty races).
2408  */
2409 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2410 {
2411         struct buffer_head *bh;
2412
2413         BUG_ON(!PageLocked(page));
2414
2415         spin_lock(&page->mapping->private_lock);
2416         bh = head;
2417         do {
2418                 if (PageDirty(page))
2419                         set_buffer_dirty(bh);
2420                 if (!bh->b_this_page)
2421                         bh->b_this_page = head;
2422                 bh = bh->b_this_page;
2423         } while (bh != head);
2424         attach_page_buffers(page, head);
2425         spin_unlock(&page->mapping->private_lock);
2426 }
2427
2428 /*
2429  * On entry, the page is fully not uptodate.
2430  * On exit the page is fully uptodate in the areas outside (from,to)
2431  * The filesystem needs to handle block truncation upon failure.
2432  */
2433 int nobh_write_begin(struct address_space *mapping,
2434                         loff_t pos, unsigned len, unsigned flags,
2435                         struct page **pagep, void **fsdata,
2436                         get_block_t *get_block)
2437 {
2438         struct inode *inode = mapping->host;
2439         const unsigned blkbits = inode->i_blkbits;
2440         const unsigned blocksize = 1 << blkbits;
2441         struct buffer_head *head, *bh;
2442         struct page *page;
2443         pgoff_t index;
2444         unsigned from, to;
2445         unsigned block_in_page;
2446         unsigned block_start, block_end;
2447         sector_t block_in_file;
2448         int nr_reads = 0;
2449         int ret = 0;
2450         int is_mapped_to_disk = 1;
2451
2452         index = pos >> PAGE_CACHE_SHIFT;
2453         from = pos & (PAGE_CACHE_SIZE - 1);
2454         to = from + len;
2455
2456         page = grab_cache_page_write_begin(mapping, index, flags);
2457         if (!page)
2458                 return -ENOMEM;
2459         *pagep = page;
2460         *fsdata = NULL;
2461
2462         if (page_has_buffers(page)) {
2463                 ret = __block_write_begin(page, pos, len, get_block);
2464                 if (unlikely(ret))
2465                         goto out_release;
2466                 return ret;
2467         }
2468
2469         if (PageMappedToDisk(page))
2470                 return 0;
2471
2472         /*
2473          * Allocate buffers so that we can keep track of state, and potentially
2474          * attach them to the page if an error occurs. In the common case of
2475          * no error, they will just be freed again without ever being attached
2476          * to the page (which is all OK, because we're under the page lock).
2477          *
2478          * Be careful: the buffer linked list is a NULL terminated one, rather
2479          * than the circular one we're used to.
2480          */
2481         head = alloc_page_buffers(page, blocksize, 0);
2482         if (!head) {
2483                 ret = -ENOMEM;
2484                 goto out_release;
2485         }
2486
2487         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2488
2489         /*
2490          * We loop across all blocks in the page, whether or not they are
2491          * part of the affected region.  This is so we can discover if the
2492          * page is fully mapped-to-disk.
2493          */
2494         for (block_start = 0, block_in_page = 0, bh = head;
2495                   block_start < PAGE_CACHE_SIZE;
2496                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2497                 int create;
2498
2499                 block_end = block_start + blocksize;
2500                 bh->b_state = 0;
2501                 create = 1;
2502                 if (block_start >= to)
2503                         create = 0;
2504                 ret = get_block(inode, block_in_file + block_in_page,
2505                                         bh, create);
2506                 if (ret)
2507                         goto failed;
2508                 if (!buffer_mapped(bh))
2509                         is_mapped_to_disk = 0;
2510                 if (buffer_new(bh))
2511                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2512                 if (PageUptodate(page)) {
2513                         set_buffer_uptodate(bh);
2514                         continue;
2515                 }
2516                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2517                         zero_user_segments(page, block_start, from,
2518                                                         to, block_end);
2519                         continue;
2520                 }
2521                 if (buffer_uptodate(bh))
2522                         continue;       /* reiserfs does this */
2523                 if (block_start < from || block_end > to) {
2524                         lock_buffer(bh);
2525                         bh->b_end_io = end_buffer_read_nobh;
2526                         submit_bh(READ, bh);
2527                         nr_reads++;
2528                 }
2529         }
2530
2531         if (nr_reads) {
2532                 /*
2533                  * The page is locked, so these buffers are protected from
2534                  * any VM or truncate activity.  Hence we don't need to care
2535                  * for the buffer_head refcounts.
2536                  */
2537                 for (bh = head; bh; bh = bh->b_this_page) {
2538                         wait_on_buffer(bh);
2539                         if (!buffer_uptodate(bh))
2540                                 ret = -EIO;
2541                 }
2542                 if (ret)
2543                         goto failed;
2544         }
2545
2546         if (is_mapped_to_disk)
2547                 SetPageMappedToDisk(page);
2548
2549         *fsdata = head; /* to be released by nobh_write_end */
2550
2551         return 0;
2552
2553 failed:
2554         BUG_ON(!ret);
2555         /*
2556          * Error recovery is a bit difficult. We need to zero out blocks that
2557          * were newly allocated, and dirty them to ensure they get written out.
2558          * Buffers need to be attached to the page at this point, otherwise
2559          * the handling of potential IO errors during writeout would be hard
2560          * (could try doing synchronous writeout, but what if that fails too?)
2561          */
2562         attach_nobh_buffers(page, head);
2563         page_zero_new_buffers(page, from, to);
2564
2565 out_release:
2566         unlock_page(page);
2567         page_cache_release(page);
2568         *pagep = NULL;
2569
2570         return ret;
2571 }
2572 EXPORT_SYMBOL(nobh_write_begin);
2573
2574 int nobh_write_end(struct file *file, struct address_space *mapping,
2575                         loff_t pos, unsigned len, unsigned copied,
2576                         struct page *page, void *fsdata)
2577 {
2578         struct inode *inode = page->mapping->host;
2579         struct buffer_head *head = fsdata;
2580         struct buffer_head *bh;
2581         BUG_ON(fsdata != NULL && page_has_buffers(page));
2582
2583         if (unlikely(copied < len) && head)
2584                 attach_nobh_buffers(page, head);
2585         if (page_has_buffers(page))
2586                 return generic_write_end(file, mapping, pos, len,
2587                                         copied, page, fsdata);
2588
2589         SetPageUptodate(page);
2590         set_page_dirty(page);
2591         if (pos+copied > inode->i_size) {
2592                 i_size_write(inode, pos+copied);
2593                 mark_inode_dirty(inode);
2594         }
2595
2596         unlock_page(page);
2597         page_cache_release(page);
2598
2599         while (head) {
2600                 bh = head;
2601                 head = head->b_this_page;
2602                 free_buffer_head(bh);
2603         }
2604
2605         return copied;
2606 }
2607 EXPORT_SYMBOL(nobh_write_end);
2608
2609 /*
2610  * nobh_writepage() - based on block_full_write_page() except
2611  * that it tries to operate without attaching bufferheads to
2612  * the page.
2613  */
2614 int nobh_writepage(struct page *page, get_block_t *get_block,
2615                         struct writeback_control *wbc)
2616 {
2617         struct inode * const inode = page->mapping->host;
2618         loff_t i_size = i_size_read(inode);
2619         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2620         unsigned offset;
2621         int ret;
2622
2623         /* Is the page fully inside i_size? */
2624         if (page->index < end_index)
2625                 goto out;
2626
2627         /* Is the page fully outside i_size? (truncate in progress) */
2628         offset = i_size & (PAGE_CACHE_SIZE-1);
2629         if (page->index >= end_index+1 || !offset) {
2630                 /*
2631                  * The page may have dirty, unmapped buffers.  For example,
2632                  * they may have been added in ext3_writepage().  Make them
2633                  * freeable here, so the page does not leak.
2634                  */
2635 #if 0
2636                 /* Not really sure about this  - do we need this ? */
2637                 if (page->mapping->a_ops->invalidatepage)
2638                         page->mapping->a_ops->invalidatepage(page, offset);
2639 #endif
2640                 unlock_page(page);
2641                 return 0; /* don't care */
2642         }
2643
2644         /*
2645          * The page straddles i_size.  It must be zeroed out on each and every
2646          * writepage invocation because it may be mmapped.  "A file is mapped
2647          * in multiples of the page size.  For a file that is not a multiple of
2648          * the  page size, the remaining memory is zeroed when mapped, and
2649          * writes to that region are not written out to the file."
2650          */
2651         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2652 out:
2653         ret = mpage_writepage(page, get_block, wbc);
2654         if (ret == -EAGAIN)
2655                 ret = __block_write_full_page(inode, page, get_block, wbc,
2656                                               end_buffer_async_write);
2657         return ret;
2658 }
2659 EXPORT_SYMBOL(nobh_writepage);
2660
2661 int nobh_truncate_page(struct address_space *mapping,
2662                         loff_t from, get_block_t *get_block)
2663 {
2664         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2665         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2666         unsigned blocksize;
2667         sector_t iblock;
2668         unsigned length, pos;
2669         struct inode *inode = mapping->host;
2670         struct page *page;
2671         struct buffer_head map_bh;
2672         int err;
2673
2674         blocksize = 1 << inode->i_blkbits;
2675         length = offset & (blocksize - 1);
2676
2677         /* Block boundary? Nothing to do */
2678         if (!length)
2679                 return 0;
2680
2681         length = blocksize - length;
2682         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2683
2684         page = grab_cache_page(mapping, index);
2685         err = -ENOMEM;
2686         if (!page)
2687                 goto out;
2688
2689         if (page_has_buffers(page)) {
2690 has_buffers:
2691                 unlock_page(page);
2692                 page_cache_release(page);
2693                 return block_truncate_page(mapping, from, get_block);
2694         }
2695
2696         /* Find the buffer that contains "offset" */
2697         pos = blocksize;
2698         while (offset >= pos) {
2699                 iblock++;
2700                 pos += blocksize;
2701         }
2702
2703         map_bh.b_size = blocksize;
2704         map_bh.b_state = 0;
2705         err = get_block(inode, iblock, &map_bh, 0);
2706         if (err)
2707                 goto unlock;
2708         /* unmapped? It's a hole - nothing to do */
2709         if (!buffer_mapped(&map_bh))
2710                 goto unlock;
2711
2712         /* Ok, it's mapped. Make sure it's up-to-date */
2713         if (!PageUptodate(page)) {
2714                 err = mapping->a_ops->readpage(NULL, page);
2715                 if (err) {
2716                         page_cache_release(page);
2717                         goto out;
2718                 }
2719                 lock_page(page);
2720                 if (!PageUptodate(page)) {
2721                         err = -EIO;
2722                         goto unlock;
2723                 }
2724                 if (page_has_buffers(page))
2725                         goto has_buffers;
2726         }
2727         zero_user(page, offset, length);
2728         set_page_dirty(page);
2729         err = 0;
2730
2731 unlock:
2732         unlock_page(page);
2733         page_cache_release(page);
2734 out:
2735         return err;
2736 }
2737 EXPORT_SYMBOL(nobh_truncate_page);
2738
2739 int block_truncate_page(struct address_space *mapping,
2740                         loff_t from, get_block_t *get_block)
2741 {
2742         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2743         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2744         unsigned blocksize;
2745         sector_t iblock;
2746         unsigned length, pos;
2747         struct inode *inode = mapping->host;
2748         struct page *page;
2749         struct buffer_head *bh;
2750         int err;
2751
2752         blocksize = 1 << inode->i_blkbits;
2753         length = offset & (blocksize - 1);
2754
2755         /* Block boundary? Nothing to do */
2756         if (!length)
2757                 return 0;
2758
2759         length = blocksize - length;
2760         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2761         
2762         page = grab_cache_page(mapping, index);
2763         err = -ENOMEM;
2764         if (!page)
2765                 goto out;
2766
2767         if (!page_has_buffers(page))
2768                 create_empty_buffers(page, blocksize, 0);
2769
2770         /* Find the buffer that contains "offset" */
2771         bh = page_buffers(page);
2772         pos = blocksize;
2773         while (offset >= pos) {
2774                 bh = bh->b_this_page;
2775                 iblock++;
2776                 pos += blocksize;
2777         }
2778
2779         err = 0;
2780         if (!buffer_mapped(bh)) {
2781                 WARN_ON(bh->b_size != blocksize);
2782                 err = get_block(inode, iblock, bh, 0);
2783                 if (err)
2784                         goto unlock;
2785                 /* unmapped? It's a hole - nothing to do */
2786                 if (!buffer_mapped(bh))
2787                         goto unlock;
2788         }
2789
2790         /* Ok, it's mapped. Make sure it's up-to-date */
2791         if (PageUptodate(page))
2792                 set_buffer_uptodate(bh);
2793
2794         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2795                 err = -EIO;
2796                 ll_rw_block(READ, 1, &bh);
2797                 wait_on_buffer(bh);
2798                 /* Uhhuh. Read error. Complain and punt. */
2799                 if (!buffer_uptodate(bh))
2800                         goto unlock;
2801         }
2802
2803         zero_user(page, offset, length);
2804         mark_buffer_dirty(bh);
2805         err = 0;
2806
2807 unlock:
2808         unlock_page(page);
2809         page_cache_release(page);
2810 out:
2811         return err;
2812 }
2813 EXPORT_SYMBOL(block_truncate_page);
2814
2815 /*
2816  * The generic ->writepage function for buffer-backed address_spaces
2817  * this form passes in the end_io handler used to finish the IO.
2818  */
2819 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2820                         struct writeback_control *wbc, bh_end_io_t *handler)
2821 {
2822         struct inode * const inode = page->mapping->host;
2823         loff_t i_size = i_size_read(inode);
2824         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2825         unsigned offset;
2826
2827         /* Is the page fully inside i_size? */
2828         if (page->index < end_index)
2829                 return __block_write_full_page(inode, page, get_block, wbc,
2830                                                handler);
2831
2832         /* Is the page fully outside i_size? (truncate in progress) */
2833         offset = i_size & (PAGE_CACHE_SIZE-1);
2834         if (page->index >= end_index+1 || !offset) {
2835                 /*
2836                  * The page may have dirty, unmapped buffers.  For example,
2837                  * they may have been added in ext3_writepage().  Make them
2838                  * freeable here, so the page does not leak.
2839                  */
2840                 do_invalidatepage(page, 0);
2841                 unlock_page(page);
2842                 return 0; /* don't care */
2843         }
2844
2845         /*
2846          * The page straddles i_size.  It must be zeroed out on each and every
2847          * writepage invocation because it may be mmapped.  "A file is mapped
2848          * in multiples of the page size.  For a file that is not a multiple of
2849          * the  page size, the remaining memory is zeroed when mapped, and
2850          * writes to that region are not written out to the file."
2851          */
2852         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2853         return __block_write_full_page(inode, page, get_block, wbc, handler);
2854 }
2855 EXPORT_SYMBOL(block_write_full_page_endio);
2856
2857 /*
2858  * The generic ->writepage function for buffer-backed address_spaces
2859  */
2860 int block_write_full_page(struct page *page, get_block_t *get_block,
2861                         struct writeback_control *wbc)
2862 {
2863         return block_write_full_page_endio(page, get_block, wbc,
2864                                            end_buffer_async_write);
2865 }
2866 EXPORT_SYMBOL(block_write_full_page);
2867
2868 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2869                             get_block_t *get_block)
2870 {
2871         struct buffer_head tmp;
2872         struct inode *inode = mapping->host;
2873         tmp.b_state = 0;
2874         tmp.b_blocknr = 0;
2875         tmp.b_size = 1 << inode->i_blkbits;
2876         get_block(inode, block, &tmp, 0);
2877         return tmp.b_blocknr;
2878 }
2879 EXPORT_SYMBOL(generic_block_bmap);
2880
2881 static void end_bio_bh_io_sync(struct bio *bio, int err)
2882 {
2883         struct buffer_head *bh = bio->bi_private;
2884
2885         if (err == -EOPNOTSUPP) {
2886                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2887         }
2888
2889         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2890                 set_bit(BH_Quiet, &bh->b_state);
2891
2892         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2893         bio_put(bio);
2894 }
2895
2896 /*
2897  * This allows us to do IO even on the odd last sectors
2898  * of a device, even if the bh block size is some multiple
2899  * of the physical sector size.
2900  *
2901  * We'll just truncate the bio to the size of the device,
2902  * and clear the end of the buffer head manually.
2903  *
2904  * Truly out-of-range accesses will turn into actual IO
2905  * errors, this only handles the "we need to be able to
2906  * do IO at the final sector" case.
2907  */
2908 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2909 {
2910         sector_t maxsector;
2911         unsigned bytes;
2912
2913         maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2914         if (!maxsector)
2915                 return;
2916
2917         /*
2918          * If the *whole* IO is past the end of the device,
2919          * let it through, and the IO layer will turn it into
2920          * an EIO.
2921          */
2922         if (unlikely(bio->bi_sector >= maxsector))
2923                 return;
2924
2925         maxsector -= bio->bi_sector;
2926         bytes = bio->bi_size;
2927         if (likely((bytes >> 9) <= maxsector))
2928                 return;
2929
2930         /* Uhhuh. We've got a bh that straddles the device size! */
2931         bytes = maxsector << 9;
2932
2933         /* Truncate the bio.. */
2934         bio->bi_size = bytes;
2935         bio->bi_io_vec[0].bv_len = bytes;
2936
2937         /* ..and clear the end of the buffer for reads */
2938         if ((rw & RW_MASK) == READ) {
2939                 void *kaddr = kmap_atomic(bh->b_page);
2940                 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
2941                 kunmap_atomic(kaddr);
2942         }
2943 }
2944
2945 int submit_bh(int rw, struct buffer_head * bh)
2946 {
2947         struct bio *bio;
2948         int ret = 0;
2949
2950         BUG_ON(!buffer_locked(bh));
2951         BUG_ON(!buffer_mapped(bh));
2952         BUG_ON(!bh->b_end_io);
2953         BUG_ON(buffer_delay(bh));
2954         BUG_ON(buffer_unwritten(bh));
2955
2956         /*
2957          * Only clear out a write error when rewriting
2958          */
2959         if (test_set_buffer_req(bh) && (rw & WRITE))
2960                 clear_buffer_write_io_error(bh);
2961
2962         /*
2963          * from here on down, it's all bio -- do the initial mapping,
2964          * submit_bio -> generic_make_request may further map this bio around
2965          */
2966         bio = bio_alloc(GFP_NOIO, 1);
2967
2968         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2969         bio->bi_bdev = bh->b_bdev;
2970         bio->bi_io_vec[0].bv_page = bh->b_page;
2971         bio->bi_io_vec[0].bv_len = bh->b_size;
2972         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2973
2974         bio->bi_vcnt = 1;
2975         bio->bi_idx = 0;
2976         bio->bi_size = bh->b_size;
2977
2978         bio->bi_end_io = end_bio_bh_io_sync;
2979         bio->bi_private = bh;
2980
2981         /* Take care of bh's that straddle the end of the device */
2982         guard_bh_eod(rw, bio, bh);
2983
2984         bio_get(bio);
2985         submit_bio(rw, bio);
2986
2987         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2988                 ret = -EOPNOTSUPP;
2989
2990         bio_put(bio);
2991         return ret;
2992 }
2993 EXPORT_SYMBOL(submit_bh);
2994
2995 /**
2996  * ll_rw_block: low-level access to block devices (DEPRECATED)
2997  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2998  * @nr: number of &struct buffer_heads in the array
2999  * @bhs: array of pointers to &struct buffer_head
3000  *
3001  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3002  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3003  * %READA option is described in the documentation for generic_make_request()
3004  * which ll_rw_block() calls.
3005  *
3006  * This function drops any buffer that it cannot get a lock on (with the
3007  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3008  * request, and any buffer that appears to be up-to-date when doing read
3009  * request.  Further it marks as clean buffers that are processed for
3010  * writing (the buffer cache won't assume that they are actually clean
3011  * until the buffer gets unlocked).
3012  *
3013  * ll_rw_block sets b_end_io to simple completion handler that marks
3014  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3015  * any waiters. 
3016  *
3017  * All of the buffers must be for the same device, and must also be a
3018  * multiple of the current approved size for the device.
3019  */
3020 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3021 {
3022         int i;
3023
3024         for (i = 0; i < nr; i++) {
3025                 struct buffer_head *bh = bhs[i];
3026
3027                 if (!trylock_buffer(bh))
3028                         continue;
3029                 if (rw == WRITE) {
3030                         if (test_clear_buffer_dirty(bh)) {
3031                                 bh->b_end_io = end_buffer_write_sync;
3032                                 get_bh(bh);
3033                                 submit_bh(WRITE, bh);
3034                                 continue;
3035                         }
3036                 } else {
3037                         if (!buffer_uptodate(bh)) {
3038                                 bh->b_end_io = end_buffer_read_sync;
3039                                 get_bh(bh);
3040                                 submit_bh(rw, bh);
3041                                 continue;
3042                         }
3043                 }
3044                 unlock_buffer(bh);
3045         }
3046 }
3047 EXPORT_SYMBOL(ll_rw_block);
3048
3049 void write_dirty_buffer(struct buffer_head *bh, int rw)
3050 {
3051         lock_buffer(bh);
3052         if (!test_clear_buffer_dirty(bh)) {
3053                 unlock_buffer(bh);
3054                 return;
3055         }
3056         bh->b_end_io = end_buffer_write_sync;
3057         get_bh(bh);
3058         submit_bh(rw, bh);
3059 }
3060 EXPORT_SYMBOL(write_dirty_buffer);
3061
3062 /*
3063  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3064  * and then start new I/O and then wait upon it.  The caller must have a ref on
3065  * the buffer_head.
3066  */
3067 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3068 {
3069         int ret = 0;
3070
3071         WARN_ON(atomic_read(&bh->b_count) < 1);
3072         lock_buffer(bh);
3073         if (test_clear_buffer_dirty(bh)) {
3074                 get_bh(bh);
3075                 bh->b_end_io = end_buffer_write_sync;
3076                 ret = submit_bh(rw, bh);
3077                 wait_on_buffer(bh);
3078                 if (!ret && !buffer_uptodate(bh))
3079                         ret = -EIO;
3080         } else {
3081                 unlock_buffer(bh);
3082         }
3083         return ret;
3084 }
3085 EXPORT_SYMBOL(__sync_dirty_buffer);
3086
3087 int sync_dirty_buffer(struct buffer_head *bh)
3088 {
3089         return __sync_dirty_buffer(bh, WRITE_SYNC);
3090 }
3091 EXPORT_SYMBOL(sync_dirty_buffer);
3092
3093 /*
3094  * try_to_free_buffers() checks if all the buffers on this particular page
3095  * are unused, and releases them if so.
3096  *
3097  * Exclusion against try_to_free_buffers may be obtained by either
3098  * locking the page or by holding its mapping's private_lock.
3099  *
3100  * If the page is dirty but all the buffers are clean then we need to
3101  * be sure to mark the page clean as well.  This is because the page
3102  * may be against a block device, and a later reattachment of buffers
3103  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3104  * filesystem data on the same device.
3105  *
3106  * The same applies to regular filesystem pages: if all the buffers are
3107  * clean then we set the page clean and proceed.  To do that, we require
3108  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3109  * private_lock.
3110  *
3111  * try_to_free_buffers() is non-blocking.
3112  */
3113 static inline int buffer_busy(struct buffer_head *bh)
3114 {
3115         return atomic_read(&bh->b_count) |
3116                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3117 }
3118
3119 static int
3120 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3121 {
3122         struct buffer_head *head = page_buffers(page);
3123         struct buffer_head *bh;
3124
3125         bh = head;
3126         do {
3127                 if (buffer_write_io_error(bh) && page->mapping)
3128                         set_bit(AS_EIO, &page->mapping->flags);
3129                 if (buffer_busy(bh))
3130                         goto failed;
3131                 bh = bh->b_this_page;
3132         } while (bh != head);
3133
3134         do {
3135                 struct buffer_head *next = bh->b_this_page;
3136
3137                 if (bh->b_assoc_map)
3138                         __remove_assoc_queue(bh);
3139                 bh = next;
3140         } while (bh != head);
3141         *buffers_to_free = head;
3142         __clear_page_buffers(page);
3143         return 1;
3144 failed:
3145         return 0;
3146 }
3147
3148 int try_to_free_buffers(struct page *page)
3149 {
3150         struct address_space * const mapping = page->mapping;
3151         struct buffer_head *buffers_to_free = NULL;
3152         int ret = 0;
3153
3154         BUG_ON(!PageLocked(page));
3155         if (PageWriteback(page))
3156                 return 0;
3157
3158         if (mapping == NULL) {          /* can this still happen? */
3159                 ret = drop_buffers(page, &buffers_to_free);
3160                 goto out;
3161         }
3162
3163         spin_lock(&mapping->private_lock);
3164         ret = drop_buffers(page, &buffers_to_free);
3165
3166         /*
3167          * If the filesystem writes its buffers by hand (eg ext3)
3168          * then we can have clean buffers against a dirty page.  We
3169          * clean the page here; otherwise the VM will never notice
3170          * that the filesystem did any IO at all.
3171          *
3172          * Also, during truncate, discard_buffer will have marked all
3173          * the page's buffers clean.  We discover that here and clean
3174          * the page also.
3175          *
3176          * private_lock must be held over this entire operation in order
3177          * to synchronise against __set_page_dirty_buffers and prevent the
3178          * dirty bit from being lost.
3179          */
3180         if (ret)
3181                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3182         spin_unlock(&mapping->private_lock);
3183 out:
3184         if (buffers_to_free) {
3185                 struct buffer_head *bh = buffers_to_free;
3186
3187                 do {
3188                         struct buffer_head *next = bh->b_this_page;
3189                         free_buffer_head(bh);
3190                         bh = next;
3191                 } while (bh != buffers_to_free);
3192         }
3193         return ret;
3194 }
3195 EXPORT_SYMBOL(try_to_free_buffers);
3196
3197 /*
3198  * There are no bdflush tunables left.  But distributions are
3199  * still running obsolete flush daemons, so we terminate them here.
3200  *
3201  * Use of bdflush() is deprecated and will be removed in a future kernel.
3202  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3203  */
3204 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3205 {
3206         static int msg_count;
3207
3208         if (!capable(CAP_SYS_ADMIN))
3209                 return -EPERM;
3210
3211         if (msg_count < 5) {
3212                 msg_count++;
3213                 printk(KERN_INFO
3214                         "warning: process `%s' used the obsolete bdflush"
3215                         " system call\n", current->comm);
3216                 printk(KERN_INFO "Fix your initscripts?\n");
3217         }
3218
3219         if (func == 1)
3220                 do_exit(0);
3221         return 0;
3222 }
3223
3224 /*
3225  * Buffer-head allocation
3226  */
3227 static struct kmem_cache *bh_cachep __read_mostly;
3228
3229 /*
3230  * Once the number of bh's in the machine exceeds this level, we start
3231  * stripping them in writeback.
3232  */
3233 static int max_buffer_heads;
3234
3235 int buffer_heads_over_limit;
3236
3237 struct bh_accounting {
3238         int nr;                 /* Number of live bh's */
3239         int ratelimit;          /* Limit cacheline bouncing */
3240 };
3241
3242 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3243
3244 static void recalc_bh_state(void)
3245 {
3246         int i;
3247         int tot = 0;
3248
3249         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3250                 return;
3251         __this_cpu_write(bh_accounting.ratelimit, 0);
3252         for_each_online_cpu(i)
3253                 tot += per_cpu(bh_accounting, i).nr;
3254         buffer_heads_over_limit = (tot > max_buffer_heads);
3255 }
3256
3257 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3258 {
3259         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3260         if (ret) {
3261                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3262                 preempt_disable();
3263                 __this_cpu_inc(bh_accounting.nr);
3264                 recalc_bh_state();
3265                 preempt_enable();
3266         }
3267         return ret;
3268 }
3269 EXPORT_SYMBOL(alloc_buffer_head);
3270
3271 void free_buffer_head(struct buffer_head *bh)
3272 {
3273         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3274         kmem_cache_free(bh_cachep, bh);
3275         preempt_disable();
3276         __this_cpu_dec(bh_accounting.nr);
3277         recalc_bh_state();
3278         preempt_enable();
3279 }
3280 EXPORT_SYMBOL(free_buffer_head);
3281
3282 static void buffer_exit_cpu(int cpu)
3283 {
3284         int i;
3285         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3286
3287         for (i = 0; i < BH_LRU_SIZE; i++) {
3288                 brelse(b->bhs[i]);
3289                 b->bhs[i] = NULL;
3290         }
3291         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3292         per_cpu(bh_accounting, cpu).nr = 0;
3293 }
3294
3295 static int buffer_cpu_notify(struct notifier_block *self,
3296                               unsigned long action, void *hcpu)
3297 {
3298         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3299                 buffer_exit_cpu((unsigned long)hcpu);
3300         return NOTIFY_OK;
3301 }
3302
3303 /**
3304  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3305  * @bh: struct buffer_head
3306  *
3307  * Return true if the buffer is up-to-date and false,
3308  * with the buffer locked, if not.
3309  */
3310 int bh_uptodate_or_lock(struct buffer_head *bh)
3311 {
3312         if (!buffer_uptodate(bh)) {
3313                 lock_buffer(bh);
3314                 if (!buffer_uptodate(bh))
3315                         return 0;
3316                 unlock_buffer(bh);
3317         }
3318         return 1;
3319 }
3320 EXPORT_SYMBOL(bh_uptodate_or_lock);
3321
3322 /**
3323  * bh_submit_read - Submit a locked buffer for reading
3324  * @bh: struct buffer_head
3325  *
3326  * Returns zero on success and -EIO on error.
3327  */
3328 int bh_submit_read(struct buffer_head *bh)
3329 {
3330         BUG_ON(!buffer_locked(bh));
3331
3332         if (buffer_uptodate(bh)) {
3333                 unlock_buffer(bh);
3334                 return 0;
3335         }
3336
3337         get_bh(bh);
3338         bh->b_end_io = end_buffer_read_sync;
3339         submit_bh(READ, bh);
3340         wait_on_buffer(bh);
3341         if (buffer_uptodate(bh))
3342                 return 0;
3343         return -EIO;
3344 }
3345 EXPORT_SYMBOL(bh_submit_read);
3346
3347 void __init buffer_init(void)
3348 {
3349         int nrpages;
3350
3351         bh_cachep = kmem_cache_create("buffer_head",
3352                         sizeof(struct buffer_head), 0,
3353                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3354                                 SLAB_MEM_SPREAD),
3355                                 NULL);
3356
3357         /*
3358          * Limit the bh occupancy to 10% of ZONE_NORMAL
3359          */
3360         nrpages = (nr_free_buffer_pages() * 10) / 100;
3361         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3362         hotcpu_notifier(buffer_cpu_notify, 0);
3363 }