Merge tag 'fs_for_v6.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack...
[platform/kernel/linux-starfive.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52
53 #include "internal.h"
54
55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
57                           struct writeback_control *wbc);
58
59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63         trace_block_touch_buffer(bh);
64         folio_mark_accessed(bh->b_folio);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67
68 void __lock_buffer(struct buffer_head *bh)
69 {
70         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73
74 void unlock_buffer(struct buffer_head *bh)
75 {
76         clear_bit_unlock(BH_Lock, &bh->b_state);
77         smp_mb__after_atomic();
78         wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81
82 /*
83  * Returns if the folio has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the folio_test_dirty information is stale. If
85  * any of the buffers are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct folio *folio,
88                                      bool *dirty, bool *writeback)
89 {
90         struct buffer_head *head, *bh;
91         *dirty = false;
92         *writeback = false;
93
94         BUG_ON(!folio_test_locked(folio));
95
96         head = folio_buffers(folio);
97         if (!head)
98                 return;
99
100         if (folio_test_writeback(folio))
101                 *writeback = true;
102
103         bh = head;
104         do {
105                 if (buffer_locked(bh))
106                         *writeback = true;
107
108                 if (buffer_dirty(bh))
109                         *dirty = true;
110
111                 bh = bh->b_this_page;
112         } while (bh != head);
113 }
114
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128         if (!test_bit(BH_Quiet, &bh->b_state))
129                 printk_ratelimited(KERN_ERR
130                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
131                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144         if (uptodate) {
145                 set_buffer_uptodate(bh);
146         } else {
147                 /* This happens, due to failed read-ahead attempts. */
148                 clear_buffer_uptodate(bh);
149         }
150         unlock_buffer(bh);
151 }
152
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159         __end_buffer_read_notouch(bh, uptodate);
160         put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166         if (uptodate) {
167                 set_buffer_uptodate(bh);
168         } else {
169                 buffer_io_error(bh, ", lost sync page write");
170                 mark_buffer_write_io_error(bh);
171                 clear_buffer_uptodate(bh);
172         }
173         unlock_buffer(bh);
174         put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191         struct inode *bd_inode = bdev->bd_inode;
192         struct address_space *bd_mapping = bd_inode->i_mapping;
193         struct buffer_head *ret = NULL;
194         pgoff_t index;
195         struct buffer_head *bh;
196         struct buffer_head *head;
197         struct folio *folio;
198         int all_mapped = 1;
199         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202         folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
203         if (IS_ERR(folio))
204                 goto out;
205
206         spin_lock(&bd_mapping->private_lock);
207         head = folio_buffers(folio);
208         if (!head)
209                 goto out_unlock;
210         bh = head;
211         do {
212                 if (!buffer_mapped(bh))
213                         all_mapped = 0;
214                 else if (bh->b_blocknr == block) {
215                         ret = bh;
216                         get_bh(bh);
217                         goto out_unlock;
218                 }
219                 bh = bh->b_this_page;
220         } while (bh != head);
221
222         /* we might be here because some of the buffers on this page are
223          * not mapped.  This is due to various races between
224          * file io on the block device and getblk.  It gets dealt with
225          * elsewhere, don't buffer_error if we had some unmapped buffers
226          */
227         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228         if (all_mapped && __ratelimit(&last_warned)) {
229                 printk("__find_get_block_slow() failed. block=%llu, "
230                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231                        "device %pg blocksize: %d\n",
232                        (unsigned long long)block,
233                        (unsigned long long)bh->b_blocknr,
234                        bh->b_state, bh->b_size, bdev,
235                        1 << bd_inode->i_blkbits);
236         }
237 out_unlock:
238         spin_unlock(&bd_mapping->private_lock);
239         folio_put(folio);
240 out:
241         return ret;
242 }
243
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246         unsigned long flags;
247         struct buffer_head *first;
248         struct buffer_head *tmp;
249         struct folio *folio;
250         int folio_uptodate = 1;
251
252         BUG_ON(!buffer_async_read(bh));
253
254         folio = bh->b_folio;
255         if (uptodate) {
256                 set_buffer_uptodate(bh);
257         } else {
258                 clear_buffer_uptodate(bh);
259                 buffer_io_error(bh, ", async page read");
260                 folio_set_error(folio);
261         }
262
263         /*
264          * Be _very_ careful from here on. Bad things can happen if
265          * two buffer heads end IO at almost the same time and both
266          * decide that the page is now completely done.
267          */
268         first = folio_buffers(folio);
269         spin_lock_irqsave(&first->b_uptodate_lock, flags);
270         clear_buffer_async_read(bh);
271         unlock_buffer(bh);
272         tmp = bh;
273         do {
274                 if (!buffer_uptodate(tmp))
275                         folio_uptodate = 0;
276                 if (buffer_async_read(tmp)) {
277                         BUG_ON(!buffer_locked(tmp));
278                         goto still_busy;
279                 }
280                 tmp = tmp->b_this_page;
281         } while (tmp != bh);
282         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284         /*
285          * If all of the buffers are uptodate then we can set the page
286          * uptodate.
287          */
288         if (folio_uptodate)
289                 folio_mark_uptodate(folio);
290         folio_unlock(folio);
291         return;
292
293 still_busy:
294         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295         return;
296 }
297
298 struct postprocess_bh_ctx {
299         struct work_struct work;
300         struct buffer_head *bh;
301 };
302
303 static void verify_bh(struct work_struct *work)
304 {
305         struct postprocess_bh_ctx *ctx =
306                 container_of(work, struct postprocess_bh_ctx, work);
307         struct buffer_head *bh = ctx->bh;
308         bool valid;
309
310         valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
311         end_buffer_async_read(bh, valid);
312         kfree(ctx);
313 }
314
315 static bool need_fsverity(struct buffer_head *bh)
316 {
317         struct folio *folio = bh->b_folio;
318         struct inode *inode = folio->mapping->host;
319
320         return fsverity_active(inode) &&
321                 /* needed by ext4 */
322                 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
323 }
324
325 static void decrypt_bh(struct work_struct *work)
326 {
327         struct postprocess_bh_ctx *ctx =
328                 container_of(work, struct postprocess_bh_ctx, work);
329         struct buffer_head *bh = ctx->bh;
330         int err;
331
332         err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
333                                                bh_offset(bh));
334         if (err == 0 && need_fsverity(bh)) {
335                 /*
336                  * We use different work queues for decryption and for verity
337                  * because verity may require reading metadata pages that need
338                  * decryption, and we shouldn't recurse to the same workqueue.
339                  */
340                 INIT_WORK(&ctx->work, verify_bh);
341                 fsverity_enqueue_verify_work(&ctx->work);
342                 return;
343         }
344         end_buffer_async_read(bh, err == 0);
345         kfree(ctx);
346 }
347
348 /*
349  * I/O completion handler for block_read_full_folio() - pages
350  * which come unlocked at the end of I/O.
351  */
352 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
353 {
354         struct inode *inode = bh->b_folio->mapping->host;
355         bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
356         bool verify = need_fsverity(bh);
357
358         /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
359         if (uptodate && (decrypt || verify)) {
360                 struct postprocess_bh_ctx *ctx =
361                         kmalloc(sizeof(*ctx), GFP_ATOMIC);
362
363                 if (ctx) {
364                         ctx->bh = bh;
365                         if (decrypt) {
366                                 INIT_WORK(&ctx->work, decrypt_bh);
367                                 fscrypt_enqueue_decrypt_work(&ctx->work);
368                         } else {
369                                 INIT_WORK(&ctx->work, verify_bh);
370                                 fsverity_enqueue_verify_work(&ctx->work);
371                         }
372                         return;
373                 }
374                 uptodate = 0;
375         }
376         end_buffer_async_read(bh, uptodate);
377 }
378
379 /*
380  * Completion handler for block_write_full_page() - pages which are unlocked
381  * during I/O, and which have PageWriteback cleared upon I/O completion.
382  */
383 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
384 {
385         unsigned long flags;
386         struct buffer_head *first;
387         struct buffer_head *tmp;
388         struct folio *folio;
389
390         BUG_ON(!buffer_async_write(bh));
391
392         folio = bh->b_folio;
393         if (uptodate) {
394                 set_buffer_uptodate(bh);
395         } else {
396                 buffer_io_error(bh, ", lost async page write");
397                 mark_buffer_write_io_error(bh);
398                 clear_buffer_uptodate(bh);
399                 folio_set_error(folio);
400         }
401
402         first = folio_buffers(folio);
403         spin_lock_irqsave(&first->b_uptodate_lock, flags);
404
405         clear_buffer_async_write(bh);
406         unlock_buffer(bh);
407         tmp = bh->b_this_page;
408         while (tmp != bh) {
409                 if (buffer_async_write(tmp)) {
410                         BUG_ON(!buffer_locked(tmp));
411                         goto still_busy;
412                 }
413                 tmp = tmp->b_this_page;
414         }
415         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416         folio_end_writeback(folio);
417         return;
418
419 still_busy:
420         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
421         return;
422 }
423 EXPORT_SYMBOL(end_buffer_async_write);
424
425 /*
426  * If a page's buffers are under async readin (end_buffer_async_read
427  * completion) then there is a possibility that another thread of
428  * control could lock one of the buffers after it has completed
429  * but while some of the other buffers have not completed.  This
430  * locked buffer would confuse end_buffer_async_read() into not unlocking
431  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
432  * that this buffer is not under async I/O.
433  *
434  * The page comes unlocked when it has no locked buffer_async buffers
435  * left.
436  *
437  * PageLocked prevents anyone starting new async I/O reads any of
438  * the buffers.
439  *
440  * PageWriteback is used to prevent simultaneous writeout of the same
441  * page.
442  *
443  * PageLocked prevents anyone from starting writeback of a page which is
444  * under read I/O (PageWriteback is only ever set against a locked page).
445  */
446 static void mark_buffer_async_read(struct buffer_head *bh)
447 {
448         bh->b_end_io = end_buffer_async_read_io;
449         set_buffer_async_read(bh);
450 }
451
452 static void mark_buffer_async_write_endio(struct buffer_head *bh,
453                                           bh_end_io_t *handler)
454 {
455         bh->b_end_io = handler;
456         set_buffer_async_write(bh);
457 }
458
459 void mark_buffer_async_write(struct buffer_head *bh)
460 {
461         mark_buffer_async_write_endio(bh, end_buffer_async_write);
462 }
463 EXPORT_SYMBOL(mark_buffer_async_write);
464
465
466 /*
467  * fs/buffer.c contains helper functions for buffer-backed address space's
468  * fsync functions.  A common requirement for buffer-based filesystems is
469  * that certain data from the backing blockdev needs to be written out for
470  * a successful fsync().  For example, ext2 indirect blocks need to be
471  * written back and waited upon before fsync() returns.
472  *
473  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
474  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
475  * management of a list of dependent buffers at ->i_mapping->private_list.
476  *
477  * Locking is a little subtle: try_to_free_buffers() will remove buffers
478  * from their controlling inode's queue when they are being freed.  But
479  * try_to_free_buffers() will be operating against the *blockdev* mapping
480  * at the time, not against the S_ISREG file which depends on those buffers.
481  * So the locking for private_list is via the private_lock in the address_space
482  * which backs the buffers.  Which is different from the address_space 
483  * against which the buffers are listed.  So for a particular address_space,
484  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
485  * mapping->private_list will always be protected by the backing blockdev's
486  * ->private_lock.
487  *
488  * Which introduces a requirement: all buffers on an address_space's
489  * ->private_list must be from the same address_space: the blockdev's.
490  *
491  * address_spaces which do not place buffers at ->private_list via these
492  * utility functions are free to use private_lock and private_list for
493  * whatever they want.  The only requirement is that list_empty(private_list)
494  * be true at clear_inode() time.
495  *
496  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
497  * filesystems should do that.  invalidate_inode_buffers() should just go
498  * BUG_ON(!list_empty).
499  *
500  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
501  * take an address_space, not an inode.  And it should be called
502  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
503  * queued up.
504  *
505  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
506  * list if it is already on a list.  Because if the buffer is on a list,
507  * it *must* already be on the right one.  If not, the filesystem is being
508  * silly.  This will save a ton of locking.  But first we have to ensure
509  * that buffers are taken *off* the old inode's list when they are freed
510  * (presumably in truncate).  That requires careful auditing of all
511  * filesystems (do it inside bforget()).  It could also be done by bringing
512  * b_inode back.
513  */
514
515 /*
516  * The buffer's backing address_space's private_lock must be held
517  */
518 static void __remove_assoc_queue(struct buffer_head *bh)
519 {
520         list_del_init(&bh->b_assoc_buffers);
521         WARN_ON(!bh->b_assoc_map);
522         bh->b_assoc_map = NULL;
523 }
524
525 int inode_has_buffers(struct inode *inode)
526 {
527         return !list_empty(&inode->i_data.private_list);
528 }
529
530 /*
531  * osync is designed to support O_SYNC io.  It waits synchronously for
532  * all already-submitted IO to complete, but does not queue any new
533  * writes to the disk.
534  *
535  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
536  * as you dirty the buffers, and then use osync_inode_buffers to wait for
537  * completion.  Any other dirty buffers which are not yet queued for
538  * write will not be flushed to disk by the osync.
539  */
540 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
541 {
542         struct buffer_head *bh;
543         struct list_head *p;
544         int err = 0;
545
546         spin_lock(lock);
547 repeat:
548         list_for_each_prev(p, list) {
549                 bh = BH_ENTRY(p);
550                 if (buffer_locked(bh)) {
551                         get_bh(bh);
552                         spin_unlock(lock);
553                         wait_on_buffer(bh);
554                         if (!buffer_uptodate(bh))
555                                 err = -EIO;
556                         brelse(bh);
557                         spin_lock(lock);
558                         goto repeat;
559                 }
560         }
561         spin_unlock(lock);
562         return err;
563 }
564
565 void emergency_thaw_bdev(struct super_block *sb)
566 {
567         while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
568                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
569 }
570
571 /**
572  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
573  * @mapping: the mapping which wants those buffers written
574  *
575  * Starts I/O against the buffers at mapping->private_list, and waits upon
576  * that I/O.
577  *
578  * Basically, this is a convenience function for fsync().
579  * @mapping is a file or directory which needs those buffers to be written for
580  * a successful fsync().
581  */
582 int sync_mapping_buffers(struct address_space *mapping)
583 {
584         struct address_space *buffer_mapping = mapping->private_data;
585
586         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
587                 return 0;
588
589         return fsync_buffers_list(&buffer_mapping->private_lock,
590                                         &mapping->private_list);
591 }
592 EXPORT_SYMBOL(sync_mapping_buffers);
593
594 /**
595  * generic_buffers_fsync_noflush - generic buffer fsync implementation
596  * for simple filesystems with no inode lock
597  *
598  * @file:       file to synchronize
599  * @start:      start offset in bytes
600  * @end:        end offset in bytes (inclusive)
601  * @datasync:   only synchronize essential metadata if true
602  *
603  * This is a generic implementation of the fsync method for simple
604  * filesystems which track all non-inode metadata in the buffers list
605  * hanging off the address_space structure.
606  */
607 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
608                                   bool datasync)
609 {
610         struct inode *inode = file->f_mapping->host;
611         int err;
612         int ret;
613
614         err = file_write_and_wait_range(file, start, end);
615         if (err)
616                 return err;
617
618         ret = sync_mapping_buffers(inode->i_mapping);
619         if (!(inode->i_state & I_DIRTY_ALL))
620                 goto out;
621         if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
622                 goto out;
623
624         err = sync_inode_metadata(inode, 1);
625         if (ret == 0)
626                 ret = err;
627
628 out:
629         /* check and advance again to catch errors after syncing out buffers */
630         err = file_check_and_advance_wb_err(file);
631         if (ret == 0)
632                 ret = err;
633         return ret;
634 }
635 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
636
637 /**
638  * generic_buffers_fsync - generic buffer fsync implementation
639  * for simple filesystems with no inode lock
640  *
641  * @file:       file to synchronize
642  * @start:      start offset in bytes
643  * @end:        end offset in bytes (inclusive)
644  * @datasync:   only synchronize essential metadata if true
645  *
646  * This is a generic implementation of the fsync method for simple
647  * filesystems which track all non-inode metadata in the buffers list
648  * hanging off the address_space structure. This also makes sure that
649  * a device cache flush operation is called at the end.
650  */
651 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
652                           bool datasync)
653 {
654         struct inode *inode = file->f_mapping->host;
655         int ret;
656
657         ret = generic_buffers_fsync_noflush(file, start, end, datasync);
658         if (!ret)
659                 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
660         return ret;
661 }
662 EXPORT_SYMBOL(generic_buffers_fsync);
663
664 /*
665  * Called when we've recently written block `bblock', and it is known that
666  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
667  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
668  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
669  */
670 void write_boundary_block(struct block_device *bdev,
671                         sector_t bblock, unsigned blocksize)
672 {
673         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
674         if (bh) {
675                 if (buffer_dirty(bh))
676                         write_dirty_buffer(bh, 0);
677                 put_bh(bh);
678         }
679 }
680
681 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
682 {
683         struct address_space *mapping = inode->i_mapping;
684         struct address_space *buffer_mapping = bh->b_folio->mapping;
685
686         mark_buffer_dirty(bh);
687         if (!mapping->private_data) {
688                 mapping->private_data = buffer_mapping;
689         } else {
690                 BUG_ON(mapping->private_data != buffer_mapping);
691         }
692         if (!bh->b_assoc_map) {
693                 spin_lock(&buffer_mapping->private_lock);
694                 list_move_tail(&bh->b_assoc_buffers,
695                                 &mapping->private_list);
696                 bh->b_assoc_map = mapping;
697                 spin_unlock(&buffer_mapping->private_lock);
698         }
699 }
700 EXPORT_SYMBOL(mark_buffer_dirty_inode);
701
702 /*
703  * Add a page to the dirty page list.
704  *
705  * It is a sad fact of life that this function is called from several places
706  * deeply under spinlocking.  It may not sleep.
707  *
708  * If the page has buffers, the uptodate buffers are set dirty, to preserve
709  * dirty-state coherency between the page and the buffers.  It the page does
710  * not have buffers then when they are later attached they will all be set
711  * dirty.
712  *
713  * The buffers are dirtied before the page is dirtied.  There's a small race
714  * window in which a writepage caller may see the page cleanness but not the
715  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
716  * before the buffers, a concurrent writepage caller could clear the page dirty
717  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
718  * page on the dirty page list.
719  *
720  * We use private_lock to lock against try_to_free_buffers while using the
721  * page's buffer list.  Also use this to protect against clean buffers being
722  * added to the page after it was set dirty.
723  *
724  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
725  * address_space though.
726  */
727 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
728 {
729         struct buffer_head *head;
730         bool newly_dirty;
731
732         spin_lock(&mapping->private_lock);
733         head = folio_buffers(folio);
734         if (head) {
735                 struct buffer_head *bh = head;
736
737                 do {
738                         set_buffer_dirty(bh);
739                         bh = bh->b_this_page;
740                 } while (bh != head);
741         }
742         /*
743          * Lock out page's memcg migration to keep PageDirty
744          * synchronized with per-memcg dirty page counters.
745          */
746         folio_memcg_lock(folio);
747         newly_dirty = !folio_test_set_dirty(folio);
748         spin_unlock(&mapping->private_lock);
749
750         if (newly_dirty)
751                 __folio_mark_dirty(folio, mapping, 1);
752
753         folio_memcg_unlock(folio);
754
755         if (newly_dirty)
756                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
757
758         return newly_dirty;
759 }
760 EXPORT_SYMBOL(block_dirty_folio);
761
762 /*
763  * Write out and wait upon a list of buffers.
764  *
765  * We have conflicting pressures: we want to make sure that all
766  * initially dirty buffers get waited on, but that any subsequently
767  * dirtied buffers don't.  After all, we don't want fsync to last
768  * forever if somebody is actively writing to the file.
769  *
770  * Do this in two main stages: first we copy dirty buffers to a
771  * temporary inode list, queueing the writes as we go.  Then we clean
772  * up, waiting for those writes to complete.
773  * 
774  * During this second stage, any subsequent updates to the file may end
775  * up refiling the buffer on the original inode's dirty list again, so
776  * there is a chance we will end up with a buffer queued for write but
777  * not yet completed on that list.  So, as a final cleanup we go through
778  * the osync code to catch these locked, dirty buffers without requeuing
779  * any newly dirty buffers for write.
780  */
781 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
782 {
783         struct buffer_head *bh;
784         struct list_head tmp;
785         struct address_space *mapping;
786         int err = 0, err2;
787         struct blk_plug plug;
788
789         INIT_LIST_HEAD(&tmp);
790         blk_start_plug(&plug);
791
792         spin_lock(lock);
793         while (!list_empty(list)) {
794                 bh = BH_ENTRY(list->next);
795                 mapping = bh->b_assoc_map;
796                 __remove_assoc_queue(bh);
797                 /* Avoid race with mark_buffer_dirty_inode() which does
798                  * a lockless check and we rely on seeing the dirty bit */
799                 smp_mb();
800                 if (buffer_dirty(bh) || buffer_locked(bh)) {
801                         list_add(&bh->b_assoc_buffers, &tmp);
802                         bh->b_assoc_map = mapping;
803                         if (buffer_dirty(bh)) {
804                                 get_bh(bh);
805                                 spin_unlock(lock);
806                                 /*
807                                  * Ensure any pending I/O completes so that
808                                  * write_dirty_buffer() actually writes the
809                                  * current contents - it is a noop if I/O is
810                                  * still in flight on potentially older
811                                  * contents.
812                                  */
813                                 write_dirty_buffer(bh, REQ_SYNC);
814
815                                 /*
816                                  * Kick off IO for the previous mapping. Note
817                                  * that we will not run the very last mapping,
818                                  * wait_on_buffer() will do that for us
819                                  * through sync_buffer().
820                                  */
821                                 brelse(bh);
822                                 spin_lock(lock);
823                         }
824                 }
825         }
826
827         spin_unlock(lock);
828         blk_finish_plug(&plug);
829         spin_lock(lock);
830
831         while (!list_empty(&tmp)) {
832                 bh = BH_ENTRY(tmp.prev);
833                 get_bh(bh);
834                 mapping = bh->b_assoc_map;
835                 __remove_assoc_queue(bh);
836                 /* Avoid race with mark_buffer_dirty_inode() which does
837                  * a lockless check and we rely on seeing the dirty bit */
838                 smp_mb();
839                 if (buffer_dirty(bh)) {
840                         list_add(&bh->b_assoc_buffers,
841                                  &mapping->private_list);
842                         bh->b_assoc_map = mapping;
843                 }
844                 spin_unlock(lock);
845                 wait_on_buffer(bh);
846                 if (!buffer_uptodate(bh))
847                         err = -EIO;
848                 brelse(bh);
849                 spin_lock(lock);
850         }
851         
852         spin_unlock(lock);
853         err2 = osync_buffers_list(lock, list);
854         if (err)
855                 return err;
856         else
857                 return err2;
858 }
859
860 /*
861  * Invalidate any and all dirty buffers on a given inode.  We are
862  * probably unmounting the fs, but that doesn't mean we have already
863  * done a sync().  Just drop the buffers from the inode list.
864  *
865  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
866  * assumes that all the buffers are against the blockdev.  Not true
867  * for reiserfs.
868  */
869 void invalidate_inode_buffers(struct inode *inode)
870 {
871         if (inode_has_buffers(inode)) {
872                 struct address_space *mapping = &inode->i_data;
873                 struct list_head *list = &mapping->private_list;
874                 struct address_space *buffer_mapping = mapping->private_data;
875
876                 spin_lock(&buffer_mapping->private_lock);
877                 while (!list_empty(list))
878                         __remove_assoc_queue(BH_ENTRY(list->next));
879                 spin_unlock(&buffer_mapping->private_lock);
880         }
881 }
882 EXPORT_SYMBOL(invalidate_inode_buffers);
883
884 /*
885  * Remove any clean buffers from the inode's buffer list.  This is called
886  * when we're trying to free the inode itself.  Those buffers can pin it.
887  *
888  * Returns true if all buffers were removed.
889  */
890 int remove_inode_buffers(struct inode *inode)
891 {
892         int ret = 1;
893
894         if (inode_has_buffers(inode)) {
895                 struct address_space *mapping = &inode->i_data;
896                 struct list_head *list = &mapping->private_list;
897                 struct address_space *buffer_mapping = mapping->private_data;
898
899                 spin_lock(&buffer_mapping->private_lock);
900                 while (!list_empty(list)) {
901                         struct buffer_head *bh = BH_ENTRY(list->next);
902                         if (buffer_dirty(bh)) {
903                                 ret = 0;
904                                 break;
905                         }
906                         __remove_assoc_queue(bh);
907                 }
908                 spin_unlock(&buffer_mapping->private_lock);
909         }
910         return ret;
911 }
912
913 /*
914  * Create the appropriate buffers when given a folio for data area and
915  * the size of each buffer.. Use the bh->b_this_page linked list to
916  * follow the buffers created.  Return NULL if unable to create more
917  * buffers.
918  *
919  * The retry flag is used to differentiate async IO (paging, swapping)
920  * which may not fail from ordinary buffer allocations.
921  */
922 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
923                                         bool retry)
924 {
925         struct buffer_head *bh, *head;
926         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
927         long offset;
928         struct mem_cgroup *memcg, *old_memcg;
929
930         if (retry)
931                 gfp |= __GFP_NOFAIL;
932
933         /* The folio lock pins the memcg */
934         memcg = folio_memcg(folio);
935         old_memcg = set_active_memcg(memcg);
936
937         head = NULL;
938         offset = folio_size(folio);
939         while ((offset -= size) >= 0) {
940                 bh = alloc_buffer_head(gfp);
941                 if (!bh)
942                         goto no_grow;
943
944                 bh->b_this_page = head;
945                 bh->b_blocknr = -1;
946                 head = bh;
947
948                 bh->b_size = size;
949
950                 /* Link the buffer to its folio */
951                 folio_set_bh(bh, folio, offset);
952         }
953 out:
954         set_active_memcg(old_memcg);
955         return head;
956 /*
957  * In case anything failed, we just free everything we got.
958  */
959 no_grow:
960         if (head) {
961                 do {
962                         bh = head;
963                         head = head->b_this_page;
964                         free_buffer_head(bh);
965                 } while (head);
966         }
967
968         goto out;
969 }
970 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
971
972 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
973                                        bool retry)
974 {
975         return folio_alloc_buffers(page_folio(page), size, retry);
976 }
977 EXPORT_SYMBOL_GPL(alloc_page_buffers);
978
979 static inline void link_dev_buffers(struct folio *folio,
980                 struct buffer_head *head)
981 {
982         struct buffer_head *bh, *tail;
983
984         bh = head;
985         do {
986                 tail = bh;
987                 bh = bh->b_this_page;
988         } while (bh);
989         tail->b_this_page = head;
990         folio_attach_private(folio, head);
991 }
992
993 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
994 {
995         sector_t retval = ~((sector_t)0);
996         loff_t sz = bdev_nr_bytes(bdev);
997
998         if (sz) {
999                 unsigned int sizebits = blksize_bits(size);
1000                 retval = (sz >> sizebits);
1001         }
1002         return retval;
1003 }
1004
1005 /*
1006  * Initialise the state of a blockdev folio's buffers.
1007  */ 
1008 static sector_t folio_init_buffers(struct folio *folio,
1009                 struct block_device *bdev, sector_t block, int size)
1010 {
1011         struct buffer_head *head = folio_buffers(folio);
1012         struct buffer_head *bh = head;
1013         bool uptodate = folio_test_uptodate(folio);
1014         sector_t end_block = blkdev_max_block(bdev, size);
1015
1016         do {
1017                 if (!buffer_mapped(bh)) {
1018                         bh->b_end_io = NULL;
1019                         bh->b_private = NULL;
1020                         bh->b_bdev = bdev;
1021                         bh->b_blocknr = block;
1022                         if (uptodate)
1023                                 set_buffer_uptodate(bh);
1024                         if (block < end_block)
1025                                 set_buffer_mapped(bh);
1026                 }
1027                 block++;
1028                 bh = bh->b_this_page;
1029         } while (bh != head);
1030
1031         /*
1032          * Caller needs to validate requested block against end of device.
1033          */
1034         return end_block;
1035 }
1036
1037 /*
1038  * Create the page-cache page that contains the requested block.
1039  *
1040  * This is used purely for blockdev mappings.
1041  */
1042 static int
1043 grow_dev_page(struct block_device *bdev, sector_t block,
1044               pgoff_t index, int size, int sizebits, gfp_t gfp)
1045 {
1046         struct inode *inode = bdev->bd_inode;
1047         struct folio *folio;
1048         struct buffer_head *bh;
1049         sector_t end_block;
1050         int ret = 0;
1051         gfp_t gfp_mask;
1052
1053         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
1054
1055         /*
1056          * XXX: __getblk_slow() can not really deal with failure and
1057          * will endlessly loop on improvised global reclaim.  Prefer
1058          * looping in the allocator rather than here, at least that
1059          * code knows what it's doing.
1060          */
1061         gfp_mask |= __GFP_NOFAIL;
1062
1063         folio = __filemap_get_folio(inode->i_mapping, index,
1064                         FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp_mask);
1065
1066         bh = folio_buffers(folio);
1067         if (bh) {
1068                 if (bh->b_size == size) {
1069                         end_block = folio_init_buffers(folio, bdev,
1070                                         (sector_t)index << sizebits, size);
1071                         goto done;
1072                 }
1073                 if (!try_to_free_buffers(folio))
1074                         goto failed;
1075         }
1076
1077         bh = folio_alloc_buffers(folio, size, true);
1078
1079         /*
1080          * Link the folio to the buffers and initialise them.  Take the
1081          * lock to be atomic wrt __find_get_block(), which does not
1082          * run under the folio lock.
1083          */
1084         spin_lock(&inode->i_mapping->private_lock);
1085         link_dev_buffers(folio, bh);
1086         end_block = folio_init_buffers(folio, bdev,
1087                         (sector_t)index << sizebits, size);
1088         spin_unlock(&inode->i_mapping->private_lock);
1089 done:
1090         ret = (block < end_block) ? 1 : -ENXIO;
1091 failed:
1092         folio_unlock(folio);
1093         folio_put(folio);
1094         return ret;
1095 }
1096
1097 /*
1098  * Create buffers for the specified block device block's page.  If
1099  * that page was dirty, the buffers are set dirty also.
1100  */
1101 static int
1102 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1103 {
1104         pgoff_t index;
1105         int sizebits;
1106
1107         sizebits = PAGE_SHIFT - __ffs(size);
1108         index = block >> sizebits;
1109
1110         /*
1111          * Check for a block which wants to lie outside our maximum possible
1112          * pagecache index.  (this comparison is done using sector_t types).
1113          */
1114         if (unlikely(index != block >> sizebits)) {
1115                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1116                         "device %pg\n",
1117                         __func__, (unsigned long long)block,
1118                         bdev);
1119                 return -EIO;
1120         }
1121
1122         /* Create a page with the proper size buffers.. */
1123         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1124 }
1125
1126 static struct buffer_head *
1127 __getblk_slow(struct block_device *bdev, sector_t block,
1128              unsigned size, gfp_t gfp)
1129 {
1130         /* Size must be multiple of hard sectorsize */
1131         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1132                         (size < 512 || size > PAGE_SIZE))) {
1133                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1134                                         size);
1135                 printk(KERN_ERR "logical block size: %d\n",
1136                                         bdev_logical_block_size(bdev));
1137
1138                 dump_stack();
1139                 return NULL;
1140         }
1141
1142         for (;;) {
1143                 struct buffer_head *bh;
1144                 int ret;
1145
1146                 bh = __find_get_block(bdev, block, size);
1147                 if (bh)
1148                         return bh;
1149
1150                 ret = grow_buffers(bdev, block, size, gfp);
1151                 if (ret < 0)
1152                         return NULL;
1153         }
1154 }
1155
1156 /*
1157  * The relationship between dirty buffers and dirty pages:
1158  *
1159  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1160  * the page is tagged dirty in the page cache.
1161  *
1162  * At all times, the dirtiness of the buffers represents the dirtiness of
1163  * subsections of the page.  If the page has buffers, the page dirty bit is
1164  * merely a hint about the true dirty state.
1165  *
1166  * When a page is set dirty in its entirety, all its buffers are marked dirty
1167  * (if the page has buffers).
1168  *
1169  * When a buffer is marked dirty, its page is dirtied, but the page's other
1170  * buffers are not.
1171  *
1172  * Also.  When blockdev buffers are explicitly read with bread(), they
1173  * individually become uptodate.  But their backing page remains not
1174  * uptodate - even if all of its buffers are uptodate.  A subsequent
1175  * block_read_full_folio() against that folio will discover all the uptodate
1176  * buffers, will set the folio uptodate and will perform no I/O.
1177  */
1178
1179 /**
1180  * mark_buffer_dirty - mark a buffer_head as needing writeout
1181  * @bh: the buffer_head to mark dirty
1182  *
1183  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1184  * its backing page dirty, then tag the page as dirty in the page cache
1185  * and then attach the address_space's inode to its superblock's dirty
1186  * inode list.
1187  *
1188  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->private_lock,
1189  * i_pages lock and mapping->host->i_lock.
1190  */
1191 void mark_buffer_dirty(struct buffer_head *bh)
1192 {
1193         WARN_ON_ONCE(!buffer_uptodate(bh));
1194
1195         trace_block_dirty_buffer(bh);
1196
1197         /*
1198          * Very *carefully* optimize the it-is-already-dirty case.
1199          *
1200          * Don't let the final "is it dirty" escape to before we
1201          * perhaps modified the buffer.
1202          */
1203         if (buffer_dirty(bh)) {
1204                 smp_mb();
1205                 if (buffer_dirty(bh))
1206                         return;
1207         }
1208
1209         if (!test_set_buffer_dirty(bh)) {
1210                 struct folio *folio = bh->b_folio;
1211                 struct address_space *mapping = NULL;
1212
1213                 folio_memcg_lock(folio);
1214                 if (!folio_test_set_dirty(folio)) {
1215                         mapping = folio->mapping;
1216                         if (mapping)
1217                                 __folio_mark_dirty(folio, mapping, 0);
1218                 }
1219                 folio_memcg_unlock(folio);
1220                 if (mapping)
1221                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1222         }
1223 }
1224 EXPORT_SYMBOL(mark_buffer_dirty);
1225
1226 void mark_buffer_write_io_error(struct buffer_head *bh)
1227 {
1228         struct super_block *sb;
1229
1230         set_buffer_write_io_error(bh);
1231         /* FIXME: do we need to set this in both places? */
1232         if (bh->b_folio && bh->b_folio->mapping)
1233                 mapping_set_error(bh->b_folio->mapping, -EIO);
1234         if (bh->b_assoc_map)
1235                 mapping_set_error(bh->b_assoc_map, -EIO);
1236         rcu_read_lock();
1237         sb = READ_ONCE(bh->b_bdev->bd_super);
1238         if (sb)
1239                 errseq_set(&sb->s_wb_err, -EIO);
1240         rcu_read_unlock();
1241 }
1242 EXPORT_SYMBOL(mark_buffer_write_io_error);
1243
1244 /*
1245  * Decrement a buffer_head's reference count.  If all buffers against a page
1246  * have zero reference count, are clean and unlocked, and if the page is clean
1247  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1248  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1249  * a page but it ends up not being freed, and buffers may later be reattached).
1250  */
1251 void __brelse(struct buffer_head * buf)
1252 {
1253         if (atomic_read(&buf->b_count)) {
1254                 put_bh(buf);
1255                 return;
1256         }
1257         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1258 }
1259 EXPORT_SYMBOL(__brelse);
1260
1261 /*
1262  * bforget() is like brelse(), except it discards any
1263  * potentially dirty data.
1264  */
1265 void __bforget(struct buffer_head *bh)
1266 {
1267         clear_buffer_dirty(bh);
1268         if (bh->b_assoc_map) {
1269                 struct address_space *buffer_mapping = bh->b_folio->mapping;
1270
1271                 spin_lock(&buffer_mapping->private_lock);
1272                 list_del_init(&bh->b_assoc_buffers);
1273                 bh->b_assoc_map = NULL;
1274                 spin_unlock(&buffer_mapping->private_lock);
1275         }
1276         __brelse(bh);
1277 }
1278 EXPORT_SYMBOL(__bforget);
1279
1280 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1281 {
1282         lock_buffer(bh);
1283         if (buffer_uptodate(bh)) {
1284                 unlock_buffer(bh);
1285                 return bh;
1286         } else {
1287                 get_bh(bh);
1288                 bh->b_end_io = end_buffer_read_sync;
1289                 submit_bh(REQ_OP_READ, bh);
1290                 wait_on_buffer(bh);
1291                 if (buffer_uptodate(bh))
1292                         return bh;
1293         }
1294         brelse(bh);
1295         return NULL;
1296 }
1297
1298 /*
1299  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1300  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1301  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1302  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1303  * CPU's LRUs at the same time.
1304  *
1305  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1306  * sb_find_get_block().
1307  *
1308  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1309  * a local interrupt disable for that.
1310  */
1311
1312 #define BH_LRU_SIZE     16
1313
1314 struct bh_lru {
1315         struct buffer_head *bhs[BH_LRU_SIZE];
1316 };
1317
1318 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1319
1320 #ifdef CONFIG_SMP
1321 #define bh_lru_lock()   local_irq_disable()
1322 #define bh_lru_unlock() local_irq_enable()
1323 #else
1324 #define bh_lru_lock()   preempt_disable()
1325 #define bh_lru_unlock() preempt_enable()
1326 #endif
1327
1328 static inline void check_irqs_on(void)
1329 {
1330 #ifdef irqs_disabled
1331         BUG_ON(irqs_disabled());
1332 #endif
1333 }
1334
1335 /*
1336  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1337  * inserted at the front, and the buffer_head at the back if any is evicted.
1338  * Or, if already in the LRU it is moved to the front.
1339  */
1340 static void bh_lru_install(struct buffer_head *bh)
1341 {
1342         struct buffer_head *evictee = bh;
1343         struct bh_lru *b;
1344         int i;
1345
1346         check_irqs_on();
1347         bh_lru_lock();
1348
1349         /*
1350          * the refcount of buffer_head in bh_lru prevents dropping the
1351          * attached page(i.e., try_to_free_buffers) so it could cause
1352          * failing page migration.
1353          * Skip putting upcoming bh into bh_lru until migration is done.
1354          */
1355         if (lru_cache_disabled()) {
1356                 bh_lru_unlock();
1357                 return;
1358         }
1359
1360         b = this_cpu_ptr(&bh_lrus);
1361         for (i = 0; i < BH_LRU_SIZE; i++) {
1362                 swap(evictee, b->bhs[i]);
1363                 if (evictee == bh) {
1364                         bh_lru_unlock();
1365                         return;
1366                 }
1367         }
1368
1369         get_bh(bh);
1370         bh_lru_unlock();
1371         brelse(evictee);
1372 }
1373
1374 /*
1375  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1376  */
1377 static struct buffer_head *
1378 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1379 {
1380         struct buffer_head *ret = NULL;
1381         unsigned int i;
1382
1383         check_irqs_on();
1384         bh_lru_lock();
1385         for (i = 0; i < BH_LRU_SIZE; i++) {
1386                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1387
1388                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1389                     bh->b_size == size) {
1390                         if (i) {
1391                                 while (i) {
1392                                         __this_cpu_write(bh_lrus.bhs[i],
1393                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1394                                         i--;
1395                                 }
1396                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1397                         }
1398                         get_bh(bh);
1399                         ret = bh;
1400                         break;
1401                 }
1402         }
1403         bh_lru_unlock();
1404         return ret;
1405 }
1406
1407 /*
1408  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1409  * it in the LRU and mark it as accessed.  If it is not present then return
1410  * NULL
1411  */
1412 struct buffer_head *
1413 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1414 {
1415         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1416
1417         if (bh == NULL) {
1418                 /* __find_get_block_slow will mark the page accessed */
1419                 bh = __find_get_block_slow(bdev, block);
1420                 if (bh)
1421                         bh_lru_install(bh);
1422         } else
1423                 touch_buffer(bh);
1424
1425         return bh;
1426 }
1427 EXPORT_SYMBOL(__find_get_block);
1428
1429 /*
1430  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1431  * which corresponds to the passed block_device, block and size. The
1432  * returned buffer has its reference count incremented.
1433  *
1434  * __getblk_gfp() will lock up the machine if grow_dev_page's
1435  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1436  */
1437 struct buffer_head *
1438 __getblk_gfp(struct block_device *bdev, sector_t block,
1439              unsigned size, gfp_t gfp)
1440 {
1441         struct buffer_head *bh = __find_get_block(bdev, block, size);
1442
1443         might_sleep();
1444         if (bh == NULL)
1445                 bh = __getblk_slow(bdev, block, size, gfp);
1446         return bh;
1447 }
1448 EXPORT_SYMBOL(__getblk_gfp);
1449
1450 /*
1451  * Do async read-ahead on a buffer..
1452  */
1453 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1454 {
1455         struct buffer_head *bh = __getblk(bdev, block, size);
1456         if (likely(bh)) {
1457                 bh_readahead(bh, REQ_RAHEAD);
1458                 brelse(bh);
1459         }
1460 }
1461 EXPORT_SYMBOL(__breadahead);
1462
1463 /**
1464  *  __bread_gfp() - reads a specified block and returns the bh
1465  *  @bdev: the block_device to read from
1466  *  @block: number of block
1467  *  @size: size (in bytes) to read
1468  *  @gfp: page allocation flag
1469  *
1470  *  Reads a specified block, and returns buffer head that contains it.
1471  *  The page cache can be allocated from non-movable area
1472  *  not to prevent page migration if you set gfp to zero.
1473  *  It returns NULL if the block was unreadable.
1474  */
1475 struct buffer_head *
1476 __bread_gfp(struct block_device *bdev, sector_t block,
1477                    unsigned size, gfp_t gfp)
1478 {
1479         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1480
1481         if (likely(bh) && !buffer_uptodate(bh))
1482                 bh = __bread_slow(bh);
1483         return bh;
1484 }
1485 EXPORT_SYMBOL(__bread_gfp);
1486
1487 static void __invalidate_bh_lrus(struct bh_lru *b)
1488 {
1489         int i;
1490
1491         for (i = 0; i < BH_LRU_SIZE; i++) {
1492                 brelse(b->bhs[i]);
1493                 b->bhs[i] = NULL;
1494         }
1495 }
1496 /*
1497  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1498  * This doesn't race because it runs in each cpu either in irq
1499  * or with preempt disabled.
1500  */
1501 static void invalidate_bh_lru(void *arg)
1502 {
1503         struct bh_lru *b = &get_cpu_var(bh_lrus);
1504
1505         __invalidate_bh_lrus(b);
1506         put_cpu_var(bh_lrus);
1507 }
1508
1509 bool has_bh_in_lru(int cpu, void *dummy)
1510 {
1511         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1512         int i;
1513         
1514         for (i = 0; i < BH_LRU_SIZE; i++) {
1515                 if (b->bhs[i])
1516                         return true;
1517         }
1518
1519         return false;
1520 }
1521
1522 void invalidate_bh_lrus(void)
1523 {
1524         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1525 }
1526 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1527
1528 /*
1529  * It's called from workqueue context so we need a bh_lru_lock to close
1530  * the race with preemption/irq.
1531  */
1532 void invalidate_bh_lrus_cpu(void)
1533 {
1534         struct bh_lru *b;
1535
1536         bh_lru_lock();
1537         b = this_cpu_ptr(&bh_lrus);
1538         __invalidate_bh_lrus(b);
1539         bh_lru_unlock();
1540 }
1541
1542 void set_bh_page(struct buffer_head *bh,
1543                 struct page *page, unsigned long offset)
1544 {
1545         bh->b_page = page;
1546         BUG_ON(offset >= PAGE_SIZE);
1547         if (PageHighMem(page))
1548                 /*
1549                  * This catches illegal uses and preserves the offset:
1550                  */
1551                 bh->b_data = (char *)(0 + offset);
1552         else
1553                 bh->b_data = page_address(page) + offset;
1554 }
1555 EXPORT_SYMBOL(set_bh_page);
1556
1557 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1558                   unsigned long offset)
1559 {
1560         bh->b_folio = folio;
1561         BUG_ON(offset >= folio_size(folio));
1562         if (folio_test_highmem(folio))
1563                 /*
1564                  * This catches illegal uses and preserves the offset:
1565                  */
1566                 bh->b_data = (char *)(0 + offset);
1567         else
1568                 bh->b_data = folio_address(folio) + offset;
1569 }
1570 EXPORT_SYMBOL(folio_set_bh);
1571
1572 /*
1573  * Called when truncating a buffer on a page completely.
1574  */
1575
1576 /* Bits that are cleared during an invalidate */
1577 #define BUFFER_FLAGS_DISCARD \
1578         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1579          1 << BH_Delay | 1 << BH_Unwritten)
1580
1581 static void discard_buffer(struct buffer_head * bh)
1582 {
1583         unsigned long b_state;
1584
1585         lock_buffer(bh);
1586         clear_buffer_dirty(bh);
1587         bh->b_bdev = NULL;
1588         b_state = READ_ONCE(bh->b_state);
1589         do {
1590         } while (!try_cmpxchg(&bh->b_state, &b_state,
1591                               b_state & ~BUFFER_FLAGS_DISCARD));
1592         unlock_buffer(bh);
1593 }
1594
1595 /**
1596  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1597  * @folio: The folio which is affected.
1598  * @offset: start of the range to invalidate
1599  * @length: length of the range to invalidate
1600  *
1601  * block_invalidate_folio() is called when all or part of the folio has been
1602  * invalidated by a truncate operation.
1603  *
1604  * block_invalidate_folio() does not have to release all buffers, but it must
1605  * ensure that no dirty buffer is left outside @offset and that no I/O
1606  * is underway against any of the blocks which are outside the truncation
1607  * point.  Because the caller is about to free (and possibly reuse) those
1608  * blocks on-disk.
1609  */
1610 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1611 {
1612         struct buffer_head *head, *bh, *next;
1613         size_t curr_off = 0;
1614         size_t stop = length + offset;
1615
1616         BUG_ON(!folio_test_locked(folio));
1617
1618         /*
1619          * Check for overflow
1620          */
1621         BUG_ON(stop > folio_size(folio) || stop < length);
1622
1623         head = folio_buffers(folio);
1624         if (!head)
1625                 return;
1626
1627         bh = head;
1628         do {
1629                 size_t next_off = curr_off + bh->b_size;
1630                 next = bh->b_this_page;
1631
1632                 /*
1633                  * Are we still fully in range ?
1634                  */
1635                 if (next_off > stop)
1636                         goto out;
1637
1638                 /*
1639                  * is this block fully invalidated?
1640                  */
1641                 if (offset <= curr_off)
1642                         discard_buffer(bh);
1643                 curr_off = next_off;
1644                 bh = next;
1645         } while (bh != head);
1646
1647         /*
1648          * We release buffers only if the entire folio is being invalidated.
1649          * The get_block cached value has been unconditionally invalidated,
1650          * so real IO is not possible anymore.
1651          */
1652         if (length == folio_size(folio))
1653                 filemap_release_folio(folio, 0);
1654 out:
1655         return;
1656 }
1657 EXPORT_SYMBOL(block_invalidate_folio);
1658
1659 /*
1660  * We attach and possibly dirty the buffers atomically wrt
1661  * block_dirty_folio() via private_lock.  try_to_free_buffers
1662  * is already excluded via the folio lock.
1663  */
1664 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize,
1665                                 unsigned long b_state)
1666 {
1667         struct buffer_head *bh, *head, *tail;
1668
1669         head = folio_alloc_buffers(folio, blocksize, true);
1670         bh = head;
1671         do {
1672                 bh->b_state |= b_state;
1673                 tail = bh;
1674                 bh = bh->b_this_page;
1675         } while (bh);
1676         tail->b_this_page = head;
1677
1678         spin_lock(&folio->mapping->private_lock);
1679         if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1680                 bh = head;
1681                 do {
1682                         if (folio_test_dirty(folio))
1683                                 set_buffer_dirty(bh);
1684                         if (folio_test_uptodate(folio))
1685                                 set_buffer_uptodate(bh);
1686                         bh = bh->b_this_page;
1687                 } while (bh != head);
1688         }
1689         folio_attach_private(folio, head);
1690         spin_unlock(&folio->mapping->private_lock);
1691 }
1692 EXPORT_SYMBOL(folio_create_empty_buffers);
1693
1694 void create_empty_buffers(struct page *page,
1695                         unsigned long blocksize, unsigned long b_state)
1696 {
1697         folio_create_empty_buffers(page_folio(page), blocksize, b_state);
1698 }
1699 EXPORT_SYMBOL(create_empty_buffers);
1700
1701 /**
1702  * clean_bdev_aliases: clean a range of buffers in block device
1703  * @bdev: Block device to clean buffers in
1704  * @block: Start of a range of blocks to clean
1705  * @len: Number of blocks to clean
1706  *
1707  * We are taking a range of blocks for data and we don't want writeback of any
1708  * buffer-cache aliases starting from return from this function and until the
1709  * moment when something will explicitly mark the buffer dirty (hopefully that
1710  * will not happen until we will free that block ;-) We don't even need to mark
1711  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1712  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1713  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1714  * would confuse anyone who might pick it with bread() afterwards...
1715  *
1716  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1717  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1718  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1719  * need to.  That happens here.
1720  */
1721 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1722 {
1723         struct inode *bd_inode = bdev->bd_inode;
1724         struct address_space *bd_mapping = bd_inode->i_mapping;
1725         struct folio_batch fbatch;
1726         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1727         pgoff_t end;
1728         int i, count;
1729         struct buffer_head *bh;
1730         struct buffer_head *head;
1731
1732         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1733         folio_batch_init(&fbatch);
1734         while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1735                 count = folio_batch_count(&fbatch);
1736                 for (i = 0; i < count; i++) {
1737                         struct folio *folio = fbatch.folios[i];
1738
1739                         if (!folio_buffers(folio))
1740                                 continue;
1741                         /*
1742                          * We use folio lock instead of bd_mapping->private_lock
1743                          * to pin buffers here since we can afford to sleep and
1744                          * it scales better than a global spinlock lock.
1745                          */
1746                         folio_lock(folio);
1747                         /* Recheck when the folio is locked which pins bhs */
1748                         head = folio_buffers(folio);
1749                         if (!head)
1750                                 goto unlock_page;
1751                         bh = head;
1752                         do {
1753                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1754                                         goto next;
1755                                 if (bh->b_blocknr >= block + len)
1756                                         break;
1757                                 clear_buffer_dirty(bh);
1758                                 wait_on_buffer(bh);
1759                                 clear_buffer_req(bh);
1760 next:
1761                                 bh = bh->b_this_page;
1762                         } while (bh != head);
1763 unlock_page:
1764                         folio_unlock(folio);
1765                 }
1766                 folio_batch_release(&fbatch);
1767                 cond_resched();
1768                 /* End of range already reached? */
1769                 if (index > end || !index)
1770                         break;
1771         }
1772 }
1773 EXPORT_SYMBOL(clean_bdev_aliases);
1774
1775 /*
1776  * Size is a power-of-two in the range 512..PAGE_SIZE,
1777  * and the case we care about most is PAGE_SIZE.
1778  *
1779  * So this *could* possibly be written with those
1780  * constraints in mind (relevant mostly if some
1781  * architecture has a slow bit-scan instruction)
1782  */
1783 static inline int block_size_bits(unsigned int blocksize)
1784 {
1785         return ilog2(blocksize);
1786 }
1787
1788 static struct buffer_head *folio_create_buffers(struct folio *folio,
1789                                                 struct inode *inode,
1790                                                 unsigned int b_state)
1791 {
1792         BUG_ON(!folio_test_locked(folio));
1793
1794         if (!folio_buffers(folio))
1795                 folio_create_empty_buffers(folio,
1796                                            1 << READ_ONCE(inode->i_blkbits),
1797                                            b_state);
1798         return folio_buffers(folio);
1799 }
1800
1801 /*
1802  * NOTE! All mapped/uptodate combinations are valid:
1803  *
1804  *      Mapped  Uptodate        Meaning
1805  *
1806  *      No      No              "unknown" - must do get_block()
1807  *      No      Yes             "hole" - zero-filled
1808  *      Yes     No              "allocated" - allocated on disk, not read in
1809  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1810  *
1811  * "Dirty" is valid only with the last case (mapped+uptodate).
1812  */
1813
1814 /*
1815  * While block_write_full_page is writing back the dirty buffers under
1816  * the page lock, whoever dirtied the buffers may decide to clean them
1817  * again at any time.  We handle that by only looking at the buffer
1818  * state inside lock_buffer().
1819  *
1820  * If block_write_full_page() is called for regular writeback
1821  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1822  * locked buffer.   This only can happen if someone has written the buffer
1823  * directly, with submit_bh().  At the address_space level PageWriteback
1824  * prevents this contention from occurring.
1825  *
1826  * If block_write_full_page() is called with wbc->sync_mode ==
1827  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1828  * causes the writes to be flagged as synchronous writes.
1829  */
1830 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1831                         get_block_t *get_block, struct writeback_control *wbc,
1832                         bh_end_io_t *handler)
1833 {
1834         int err;
1835         sector_t block;
1836         sector_t last_block;
1837         struct buffer_head *bh, *head;
1838         unsigned int blocksize, bbits;
1839         int nr_underway = 0;
1840         blk_opf_t write_flags = wbc_to_write_flags(wbc);
1841
1842         head = folio_create_buffers(folio, inode,
1843                                     (1 << BH_Dirty) | (1 << BH_Uptodate));
1844
1845         /*
1846          * Be very careful.  We have no exclusion from block_dirty_folio
1847          * here, and the (potentially unmapped) buffers may become dirty at
1848          * any time.  If a buffer becomes dirty here after we've inspected it
1849          * then we just miss that fact, and the folio stays dirty.
1850          *
1851          * Buffers outside i_size may be dirtied by block_dirty_folio;
1852          * handle that here by just cleaning them.
1853          */
1854
1855         bh = head;
1856         blocksize = bh->b_size;
1857         bbits = block_size_bits(blocksize);
1858
1859         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1860         last_block = (i_size_read(inode) - 1) >> bbits;
1861
1862         /*
1863          * Get all the dirty buffers mapped to disk addresses and
1864          * handle any aliases from the underlying blockdev's mapping.
1865          */
1866         do {
1867                 if (block > last_block) {
1868                         /*
1869                          * mapped buffers outside i_size will occur, because
1870                          * this folio can be outside i_size when there is a
1871                          * truncate in progress.
1872                          */
1873                         /*
1874                          * The buffer was zeroed by block_write_full_page()
1875                          */
1876                         clear_buffer_dirty(bh);
1877                         set_buffer_uptodate(bh);
1878                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1879                            buffer_dirty(bh)) {
1880                         WARN_ON(bh->b_size != blocksize);
1881                         err = get_block(inode, block, bh, 1);
1882                         if (err)
1883                                 goto recover;
1884                         clear_buffer_delay(bh);
1885                         if (buffer_new(bh)) {
1886                                 /* blockdev mappings never come here */
1887                                 clear_buffer_new(bh);
1888                                 clean_bdev_bh_alias(bh);
1889                         }
1890                 }
1891                 bh = bh->b_this_page;
1892                 block++;
1893         } while (bh != head);
1894
1895         do {
1896                 if (!buffer_mapped(bh))
1897                         continue;
1898                 /*
1899                  * If it's a fully non-blocking write attempt and we cannot
1900                  * lock the buffer then redirty the folio.  Note that this can
1901                  * potentially cause a busy-wait loop from writeback threads
1902                  * and kswapd activity, but those code paths have their own
1903                  * higher-level throttling.
1904                  */
1905                 if (wbc->sync_mode != WB_SYNC_NONE) {
1906                         lock_buffer(bh);
1907                 } else if (!trylock_buffer(bh)) {
1908                         folio_redirty_for_writepage(wbc, folio);
1909                         continue;
1910                 }
1911                 if (test_clear_buffer_dirty(bh)) {
1912                         mark_buffer_async_write_endio(bh, handler);
1913                 } else {
1914                         unlock_buffer(bh);
1915                 }
1916         } while ((bh = bh->b_this_page) != head);
1917
1918         /*
1919          * The folio and its buffers are protected by the writeback flag,
1920          * so we can drop the bh refcounts early.
1921          */
1922         BUG_ON(folio_test_writeback(folio));
1923         folio_start_writeback(folio);
1924
1925         do {
1926                 struct buffer_head *next = bh->b_this_page;
1927                 if (buffer_async_write(bh)) {
1928                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1929                         nr_underway++;
1930                 }
1931                 bh = next;
1932         } while (bh != head);
1933         folio_unlock(folio);
1934
1935         err = 0;
1936 done:
1937         if (nr_underway == 0) {
1938                 /*
1939                  * The folio was marked dirty, but the buffers were
1940                  * clean.  Someone wrote them back by hand with
1941                  * write_dirty_buffer/submit_bh.  A rare case.
1942                  */
1943                 folio_end_writeback(folio);
1944
1945                 /*
1946                  * The folio and buffer_heads can be released at any time from
1947                  * here on.
1948                  */
1949         }
1950         return err;
1951
1952 recover:
1953         /*
1954          * ENOSPC, or some other error.  We may already have added some
1955          * blocks to the file, so we need to write these out to avoid
1956          * exposing stale data.
1957          * The folio is currently locked and not marked for writeback
1958          */
1959         bh = head;
1960         /* Recovery: lock and submit the mapped buffers */
1961         do {
1962                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1963                     !buffer_delay(bh)) {
1964                         lock_buffer(bh);
1965                         mark_buffer_async_write_endio(bh, handler);
1966                 } else {
1967                         /*
1968                          * The buffer may have been set dirty during
1969                          * attachment to a dirty folio.
1970                          */
1971                         clear_buffer_dirty(bh);
1972                 }
1973         } while ((bh = bh->b_this_page) != head);
1974         folio_set_error(folio);
1975         BUG_ON(folio_test_writeback(folio));
1976         mapping_set_error(folio->mapping, err);
1977         folio_start_writeback(folio);
1978         do {
1979                 struct buffer_head *next = bh->b_this_page;
1980                 if (buffer_async_write(bh)) {
1981                         clear_buffer_dirty(bh);
1982                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1983                         nr_underway++;
1984                 }
1985                 bh = next;
1986         } while (bh != head);
1987         folio_unlock(folio);
1988         goto done;
1989 }
1990 EXPORT_SYMBOL(__block_write_full_folio);
1991
1992 /*
1993  * If a folio has any new buffers, zero them out here, and mark them uptodate
1994  * and dirty so they'll be written out (in order to prevent uninitialised
1995  * block data from leaking). And clear the new bit.
1996  */
1997 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1998 {
1999         size_t block_start, block_end;
2000         struct buffer_head *head, *bh;
2001
2002         BUG_ON(!folio_test_locked(folio));
2003         head = folio_buffers(folio);
2004         if (!head)
2005                 return;
2006
2007         bh = head;
2008         block_start = 0;
2009         do {
2010                 block_end = block_start + bh->b_size;
2011
2012                 if (buffer_new(bh)) {
2013                         if (block_end > from && block_start < to) {
2014                                 if (!folio_test_uptodate(folio)) {
2015                                         size_t start, xend;
2016
2017                                         start = max(from, block_start);
2018                                         xend = min(to, block_end);
2019
2020                                         folio_zero_segment(folio, start, xend);
2021                                         set_buffer_uptodate(bh);
2022                                 }
2023
2024                                 clear_buffer_new(bh);
2025                                 mark_buffer_dirty(bh);
2026                         }
2027                 }
2028
2029                 block_start = block_end;
2030                 bh = bh->b_this_page;
2031         } while (bh != head);
2032 }
2033 EXPORT_SYMBOL(folio_zero_new_buffers);
2034
2035 static void
2036 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2037                 const struct iomap *iomap)
2038 {
2039         loff_t offset = block << inode->i_blkbits;
2040
2041         bh->b_bdev = iomap->bdev;
2042
2043         /*
2044          * Block points to offset in file we need to map, iomap contains
2045          * the offset at which the map starts. If the map ends before the
2046          * current block, then do not map the buffer and let the caller
2047          * handle it.
2048          */
2049         BUG_ON(offset >= iomap->offset + iomap->length);
2050
2051         switch (iomap->type) {
2052         case IOMAP_HOLE:
2053                 /*
2054                  * If the buffer is not up to date or beyond the current EOF,
2055                  * we need to mark it as new to ensure sub-block zeroing is
2056                  * executed if necessary.
2057                  */
2058                 if (!buffer_uptodate(bh) ||
2059                     (offset >= i_size_read(inode)))
2060                         set_buffer_new(bh);
2061                 break;
2062         case IOMAP_DELALLOC:
2063                 if (!buffer_uptodate(bh) ||
2064                     (offset >= i_size_read(inode)))
2065                         set_buffer_new(bh);
2066                 set_buffer_uptodate(bh);
2067                 set_buffer_mapped(bh);
2068                 set_buffer_delay(bh);
2069                 break;
2070         case IOMAP_UNWRITTEN:
2071                 /*
2072                  * For unwritten regions, we always need to ensure that regions
2073                  * in the block we are not writing to are zeroed. Mark the
2074                  * buffer as new to ensure this.
2075                  */
2076                 set_buffer_new(bh);
2077                 set_buffer_unwritten(bh);
2078                 fallthrough;
2079         case IOMAP_MAPPED:
2080                 if ((iomap->flags & IOMAP_F_NEW) ||
2081                     offset >= i_size_read(inode))
2082                         set_buffer_new(bh);
2083                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2084                                 inode->i_blkbits;
2085                 set_buffer_mapped(bh);
2086                 break;
2087         }
2088 }
2089
2090 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2091                 get_block_t *get_block, const struct iomap *iomap)
2092 {
2093         unsigned from = pos & (PAGE_SIZE - 1);
2094         unsigned to = from + len;
2095         struct inode *inode = folio->mapping->host;
2096         unsigned block_start, block_end;
2097         sector_t block;
2098         int err = 0;
2099         unsigned blocksize, bbits;
2100         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2101
2102         BUG_ON(!folio_test_locked(folio));
2103         BUG_ON(from > PAGE_SIZE);
2104         BUG_ON(to > PAGE_SIZE);
2105         BUG_ON(from > to);
2106
2107         head = folio_create_buffers(folio, inode, 0);
2108         blocksize = head->b_size;
2109         bbits = block_size_bits(blocksize);
2110
2111         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2112
2113         for(bh = head, block_start = 0; bh != head || !block_start;
2114             block++, block_start=block_end, bh = bh->b_this_page) {
2115                 block_end = block_start + blocksize;
2116                 if (block_end <= from || block_start >= to) {
2117                         if (folio_test_uptodate(folio)) {
2118                                 if (!buffer_uptodate(bh))
2119                                         set_buffer_uptodate(bh);
2120                         }
2121                         continue;
2122                 }
2123                 if (buffer_new(bh))
2124                         clear_buffer_new(bh);
2125                 if (!buffer_mapped(bh)) {
2126                         WARN_ON(bh->b_size != blocksize);
2127                         if (get_block) {
2128                                 err = get_block(inode, block, bh, 1);
2129                                 if (err)
2130                                         break;
2131                         } else {
2132                                 iomap_to_bh(inode, block, bh, iomap);
2133                         }
2134
2135                         if (buffer_new(bh)) {
2136                                 clean_bdev_bh_alias(bh);
2137                                 if (folio_test_uptodate(folio)) {
2138                                         clear_buffer_new(bh);
2139                                         set_buffer_uptodate(bh);
2140                                         mark_buffer_dirty(bh);
2141                                         continue;
2142                                 }
2143                                 if (block_end > to || block_start < from)
2144                                         folio_zero_segments(folio,
2145                                                 to, block_end,
2146                                                 block_start, from);
2147                                 continue;
2148                         }
2149                 }
2150                 if (folio_test_uptodate(folio)) {
2151                         if (!buffer_uptodate(bh))
2152                                 set_buffer_uptodate(bh);
2153                         continue; 
2154                 }
2155                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2156                     !buffer_unwritten(bh) &&
2157                      (block_start < from || block_end > to)) {
2158                         bh_read_nowait(bh, 0);
2159                         *wait_bh++=bh;
2160                 }
2161         }
2162         /*
2163          * If we issued read requests - let them complete.
2164          */
2165         while(wait_bh > wait) {
2166                 wait_on_buffer(*--wait_bh);
2167                 if (!buffer_uptodate(*wait_bh))
2168                         err = -EIO;
2169         }
2170         if (unlikely(err))
2171                 folio_zero_new_buffers(folio, from, to);
2172         return err;
2173 }
2174
2175 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2176                 get_block_t *get_block)
2177 {
2178         return __block_write_begin_int(page_folio(page), pos, len, get_block,
2179                                        NULL);
2180 }
2181 EXPORT_SYMBOL(__block_write_begin);
2182
2183 static int __block_commit_write(struct inode *inode, struct folio *folio,
2184                 size_t from, size_t to)
2185 {
2186         size_t block_start, block_end;
2187         bool partial = false;
2188         unsigned blocksize;
2189         struct buffer_head *bh, *head;
2190
2191         bh = head = folio_buffers(folio);
2192         blocksize = bh->b_size;
2193
2194         block_start = 0;
2195         do {
2196                 block_end = block_start + blocksize;
2197                 if (block_end <= from || block_start >= to) {
2198                         if (!buffer_uptodate(bh))
2199                                 partial = true;
2200                 } else {
2201                         set_buffer_uptodate(bh);
2202                         mark_buffer_dirty(bh);
2203                 }
2204                 if (buffer_new(bh))
2205                         clear_buffer_new(bh);
2206
2207                 block_start = block_end;
2208                 bh = bh->b_this_page;
2209         } while (bh != head);
2210
2211         /*
2212          * If this is a partial write which happened to make all buffers
2213          * uptodate then we can optimize away a bogus read_folio() for
2214          * the next read(). Here we 'discover' whether the folio went
2215          * uptodate as a result of this (potentially partial) write.
2216          */
2217         if (!partial)
2218                 folio_mark_uptodate(folio);
2219         return 0;
2220 }
2221
2222 /*
2223  * block_write_begin takes care of the basic task of block allocation and
2224  * bringing partial write blocks uptodate first.
2225  *
2226  * The filesystem needs to handle block truncation upon failure.
2227  */
2228 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2229                 struct page **pagep, get_block_t *get_block)
2230 {
2231         pgoff_t index = pos >> PAGE_SHIFT;
2232         struct page *page;
2233         int status;
2234
2235         page = grab_cache_page_write_begin(mapping, index);
2236         if (!page)
2237                 return -ENOMEM;
2238
2239         status = __block_write_begin(page, pos, len, get_block);
2240         if (unlikely(status)) {
2241                 unlock_page(page);
2242                 put_page(page);
2243                 page = NULL;
2244         }
2245
2246         *pagep = page;
2247         return status;
2248 }
2249 EXPORT_SYMBOL(block_write_begin);
2250
2251 int block_write_end(struct file *file, struct address_space *mapping,
2252                         loff_t pos, unsigned len, unsigned copied,
2253                         struct page *page, void *fsdata)
2254 {
2255         struct folio *folio = page_folio(page);
2256         struct inode *inode = mapping->host;
2257         size_t start = pos - folio_pos(folio);
2258
2259         if (unlikely(copied < len)) {
2260                 /*
2261                  * The buffers that were written will now be uptodate, so
2262                  * we don't have to worry about a read_folio reading them
2263                  * and overwriting a partial write. However if we have
2264                  * encountered a short write and only partially written
2265                  * into a buffer, it will not be marked uptodate, so a
2266                  * read_folio might come in and destroy our partial write.
2267                  *
2268                  * Do the simplest thing, and just treat any short write to a
2269                  * non uptodate folio as a zero-length write, and force the
2270                  * caller to redo the whole thing.
2271                  */
2272                 if (!folio_test_uptodate(folio))
2273                         copied = 0;
2274
2275                 folio_zero_new_buffers(folio, start+copied, start+len);
2276         }
2277         flush_dcache_folio(folio);
2278
2279         /* This could be a short (even 0-length) commit */
2280         __block_commit_write(inode, folio, start, start + copied);
2281
2282         return copied;
2283 }
2284 EXPORT_SYMBOL(block_write_end);
2285
2286 int generic_write_end(struct file *file, struct address_space *mapping,
2287                         loff_t pos, unsigned len, unsigned copied,
2288                         struct page *page, void *fsdata)
2289 {
2290         struct inode *inode = mapping->host;
2291         loff_t old_size = inode->i_size;
2292         bool i_size_changed = false;
2293
2294         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2295
2296         /*
2297          * No need to use i_size_read() here, the i_size cannot change under us
2298          * because we hold i_rwsem.
2299          *
2300          * But it's important to update i_size while still holding page lock:
2301          * page writeout could otherwise come in and zero beyond i_size.
2302          */
2303         if (pos + copied > inode->i_size) {
2304                 i_size_write(inode, pos + copied);
2305                 i_size_changed = true;
2306         }
2307
2308         unlock_page(page);
2309         put_page(page);
2310
2311         if (old_size < pos)
2312                 pagecache_isize_extended(inode, old_size, pos);
2313         /*
2314          * Don't mark the inode dirty under page lock. First, it unnecessarily
2315          * makes the holding time of page lock longer. Second, it forces lock
2316          * ordering of page lock and transaction start for journaling
2317          * filesystems.
2318          */
2319         if (i_size_changed)
2320                 mark_inode_dirty(inode);
2321         return copied;
2322 }
2323 EXPORT_SYMBOL(generic_write_end);
2324
2325 /*
2326  * block_is_partially_uptodate checks whether buffers within a folio are
2327  * uptodate or not.
2328  *
2329  * Returns true if all buffers which correspond to the specified part
2330  * of the folio are uptodate.
2331  */
2332 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2333 {
2334         unsigned block_start, block_end, blocksize;
2335         unsigned to;
2336         struct buffer_head *bh, *head;
2337         bool ret = true;
2338
2339         head = folio_buffers(folio);
2340         if (!head)
2341                 return false;
2342         blocksize = head->b_size;
2343         to = min_t(unsigned, folio_size(folio) - from, count);
2344         to = from + to;
2345         if (from < blocksize && to > folio_size(folio) - blocksize)
2346                 return false;
2347
2348         bh = head;
2349         block_start = 0;
2350         do {
2351                 block_end = block_start + blocksize;
2352                 if (block_end > from && block_start < to) {
2353                         if (!buffer_uptodate(bh)) {
2354                                 ret = false;
2355                                 break;
2356                         }
2357                         if (block_end >= to)
2358                                 break;
2359                 }
2360                 block_start = block_end;
2361                 bh = bh->b_this_page;
2362         } while (bh != head);
2363
2364         return ret;
2365 }
2366 EXPORT_SYMBOL(block_is_partially_uptodate);
2367
2368 /*
2369  * Generic "read_folio" function for block devices that have the normal
2370  * get_block functionality. This is most of the block device filesystems.
2371  * Reads the folio asynchronously --- the unlock_buffer() and
2372  * set/clear_buffer_uptodate() functions propagate buffer state into the
2373  * folio once IO has completed.
2374  */
2375 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2376 {
2377         struct inode *inode = folio->mapping->host;
2378         sector_t iblock, lblock;
2379         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2380         unsigned int blocksize, bbits;
2381         int nr, i;
2382         int fully_mapped = 1;
2383         bool page_error = false;
2384         loff_t limit = i_size_read(inode);
2385
2386         /* This is needed for ext4. */
2387         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2388                 limit = inode->i_sb->s_maxbytes;
2389
2390         VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2391
2392         head = folio_create_buffers(folio, inode, 0);
2393         blocksize = head->b_size;
2394         bbits = block_size_bits(blocksize);
2395
2396         iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2397         lblock = (limit+blocksize-1) >> bbits;
2398         bh = head;
2399         nr = 0;
2400         i = 0;
2401
2402         do {
2403                 if (buffer_uptodate(bh))
2404                         continue;
2405
2406                 if (!buffer_mapped(bh)) {
2407                         int err = 0;
2408
2409                         fully_mapped = 0;
2410                         if (iblock < lblock) {
2411                                 WARN_ON(bh->b_size != blocksize);
2412                                 err = get_block(inode, iblock, bh, 0);
2413                                 if (err) {
2414                                         folio_set_error(folio);
2415                                         page_error = true;
2416                                 }
2417                         }
2418                         if (!buffer_mapped(bh)) {
2419                                 folio_zero_range(folio, i * blocksize,
2420                                                 blocksize);
2421                                 if (!err)
2422                                         set_buffer_uptodate(bh);
2423                                 continue;
2424                         }
2425                         /*
2426                          * get_block() might have updated the buffer
2427                          * synchronously
2428                          */
2429                         if (buffer_uptodate(bh))
2430                                 continue;
2431                 }
2432                 arr[nr++] = bh;
2433         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2434
2435         if (fully_mapped)
2436                 folio_set_mappedtodisk(folio);
2437
2438         if (!nr) {
2439                 /*
2440                  * All buffers are uptodate - we can set the folio uptodate
2441                  * as well. But not if get_block() returned an error.
2442                  */
2443                 if (!page_error)
2444                         folio_mark_uptodate(folio);
2445                 folio_unlock(folio);
2446                 return 0;
2447         }
2448
2449         /* Stage two: lock the buffers */
2450         for (i = 0; i < nr; i++) {
2451                 bh = arr[i];
2452                 lock_buffer(bh);
2453                 mark_buffer_async_read(bh);
2454         }
2455
2456         /*
2457          * Stage 3: start the IO.  Check for uptodateness
2458          * inside the buffer lock in case another process reading
2459          * the underlying blockdev brought it uptodate (the sct fix).
2460          */
2461         for (i = 0; i < nr; i++) {
2462                 bh = arr[i];
2463                 if (buffer_uptodate(bh))
2464                         end_buffer_async_read(bh, 1);
2465                 else
2466                         submit_bh(REQ_OP_READ, bh);
2467         }
2468         return 0;
2469 }
2470 EXPORT_SYMBOL(block_read_full_folio);
2471
2472 /* utility function for filesystems that need to do work on expanding
2473  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2474  * deal with the hole.  
2475  */
2476 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2477 {
2478         struct address_space *mapping = inode->i_mapping;
2479         const struct address_space_operations *aops = mapping->a_ops;
2480         struct page *page;
2481         void *fsdata = NULL;
2482         int err;
2483
2484         err = inode_newsize_ok(inode, size);
2485         if (err)
2486                 goto out;
2487
2488         err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2489         if (err)
2490                 goto out;
2491
2492         err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2493         BUG_ON(err > 0);
2494
2495 out:
2496         return err;
2497 }
2498 EXPORT_SYMBOL(generic_cont_expand_simple);
2499
2500 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2501                             loff_t pos, loff_t *bytes)
2502 {
2503         struct inode *inode = mapping->host;
2504         const struct address_space_operations *aops = mapping->a_ops;
2505         unsigned int blocksize = i_blocksize(inode);
2506         struct page *page;
2507         void *fsdata = NULL;
2508         pgoff_t index, curidx;
2509         loff_t curpos;
2510         unsigned zerofrom, offset, len;
2511         int err = 0;
2512
2513         index = pos >> PAGE_SHIFT;
2514         offset = pos & ~PAGE_MASK;
2515
2516         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2517                 zerofrom = curpos & ~PAGE_MASK;
2518                 if (zerofrom & (blocksize-1)) {
2519                         *bytes |= (blocksize-1);
2520                         (*bytes)++;
2521                 }
2522                 len = PAGE_SIZE - zerofrom;
2523
2524                 err = aops->write_begin(file, mapping, curpos, len,
2525                                             &page, &fsdata);
2526                 if (err)
2527                         goto out;
2528                 zero_user(page, zerofrom, len);
2529                 err = aops->write_end(file, mapping, curpos, len, len,
2530                                                 page, fsdata);
2531                 if (err < 0)
2532                         goto out;
2533                 BUG_ON(err != len);
2534                 err = 0;
2535
2536                 balance_dirty_pages_ratelimited(mapping);
2537
2538                 if (fatal_signal_pending(current)) {
2539                         err = -EINTR;
2540                         goto out;
2541                 }
2542         }
2543
2544         /* page covers the boundary, find the boundary offset */
2545         if (index == curidx) {
2546                 zerofrom = curpos & ~PAGE_MASK;
2547                 /* if we will expand the thing last block will be filled */
2548                 if (offset <= zerofrom) {
2549                         goto out;
2550                 }
2551                 if (zerofrom & (blocksize-1)) {
2552                         *bytes |= (blocksize-1);
2553                         (*bytes)++;
2554                 }
2555                 len = offset - zerofrom;
2556
2557                 err = aops->write_begin(file, mapping, curpos, len,
2558                                             &page, &fsdata);
2559                 if (err)
2560                         goto out;
2561                 zero_user(page, zerofrom, len);
2562                 err = aops->write_end(file, mapping, curpos, len, len,
2563                                                 page, fsdata);
2564                 if (err < 0)
2565                         goto out;
2566                 BUG_ON(err != len);
2567                 err = 0;
2568         }
2569 out:
2570         return err;
2571 }
2572
2573 /*
2574  * For moronic filesystems that do not allow holes in file.
2575  * We may have to extend the file.
2576  */
2577 int cont_write_begin(struct file *file, struct address_space *mapping,
2578                         loff_t pos, unsigned len,
2579                         struct page **pagep, void **fsdata,
2580                         get_block_t *get_block, loff_t *bytes)
2581 {
2582         struct inode *inode = mapping->host;
2583         unsigned int blocksize = i_blocksize(inode);
2584         unsigned int zerofrom;
2585         int err;
2586
2587         err = cont_expand_zero(file, mapping, pos, bytes);
2588         if (err)
2589                 return err;
2590
2591         zerofrom = *bytes & ~PAGE_MASK;
2592         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2593                 *bytes |= (blocksize-1);
2594                 (*bytes)++;
2595         }
2596
2597         return block_write_begin(mapping, pos, len, pagep, get_block);
2598 }
2599 EXPORT_SYMBOL(cont_write_begin);
2600
2601 int block_commit_write(struct page *page, unsigned from, unsigned to)
2602 {
2603         struct folio *folio = page_folio(page);
2604         struct inode *inode = folio->mapping->host;
2605         __block_commit_write(inode, folio, from, to);
2606         return 0;
2607 }
2608 EXPORT_SYMBOL(block_commit_write);
2609
2610 /*
2611  * block_page_mkwrite() is not allowed to change the file size as it gets
2612  * called from a page fault handler when a page is first dirtied. Hence we must
2613  * be careful to check for EOF conditions here. We set the page up correctly
2614  * for a written page which means we get ENOSPC checking when writing into
2615  * holes and correct delalloc and unwritten extent mapping on filesystems that
2616  * support these features.
2617  *
2618  * We are not allowed to take the i_mutex here so we have to play games to
2619  * protect against truncate races as the page could now be beyond EOF.  Because
2620  * truncate writes the inode size before removing pages, once we have the
2621  * page lock we can determine safely if the page is beyond EOF. If it is not
2622  * beyond EOF, then the page is guaranteed safe against truncation until we
2623  * unlock the page.
2624  *
2625  * Direct callers of this function should protect against filesystem freezing
2626  * using sb_start_pagefault() - sb_end_pagefault() functions.
2627  */
2628 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2629                          get_block_t get_block)
2630 {
2631         struct folio *folio = page_folio(vmf->page);
2632         struct inode *inode = file_inode(vma->vm_file);
2633         unsigned long end;
2634         loff_t size;
2635         int ret;
2636
2637         folio_lock(folio);
2638         size = i_size_read(inode);
2639         if ((folio->mapping != inode->i_mapping) ||
2640             (folio_pos(folio) >= size)) {
2641                 /* We overload EFAULT to mean page got truncated */
2642                 ret = -EFAULT;
2643                 goto out_unlock;
2644         }
2645
2646         end = folio_size(folio);
2647         /* folio is wholly or partially inside EOF */
2648         if (folio_pos(folio) + end > size)
2649                 end = size - folio_pos(folio);
2650
2651         ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2652         if (!ret)
2653                 ret = __block_commit_write(inode, folio, 0, end);
2654
2655         if (unlikely(ret < 0))
2656                 goto out_unlock;
2657         folio_mark_dirty(folio);
2658         folio_wait_stable(folio);
2659         return 0;
2660 out_unlock:
2661         folio_unlock(folio);
2662         return ret;
2663 }
2664 EXPORT_SYMBOL(block_page_mkwrite);
2665
2666 int block_truncate_page(struct address_space *mapping,
2667                         loff_t from, get_block_t *get_block)
2668 {
2669         pgoff_t index = from >> PAGE_SHIFT;
2670         unsigned blocksize;
2671         sector_t iblock;
2672         size_t offset, length, pos;
2673         struct inode *inode = mapping->host;
2674         struct folio *folio;
2675         struct buffer_head *bh;
2676         int err = 0;
2677
2678         blocksize = i_blocksize(inode);
2679         length = from & (blocksize - 1);
2680
2681         /* Block boundary? Nothing to do */
2682         if (!length)
2683                 return 0;
2684
2685         length = blocksize - length;
2686         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2687         
2688         folio = filemap_grab_folio(mapping, index);
2689         if (IS_ERR(folio))
2690                 return PTR_ERR(folio);
2691
2692         bh = folio_buffers(folio);
2693         if (!bh) {
2694                 folio_create_empty_buffers(folio, blocksize, 0);
2695                 bh = folio_buffers(folio);
2696         }
2697
2698         /* Find the buffer that contains "offset" */
2699         offset = offset_in_folio(folio, from);
2700         pos = blocksize;
2701         while (offset >= pos) {
2702                 bh = bh->b_this_page;
2703                 iblock++;
2704                 pos += blocksize;
2705         }
2706
2707         if (!buffer_mapped(bh)) {
2708                 WARN_ON(bh->b_size != blocksize);
2709                 err = get_block(inode, iblock, bh, 0);
2710                 if (err)
2711                         goto unlock;
2712                 /* unmapped? It's a hole - nothing to do */
2713                 if (!buffer_mapped(bh))
2714                         goto unlock;
2715         }
2716
2717         /* Ok, it's mapped. Make sure it's up-to-date */
2718         if (folio_test_uptodate(folio))
2719                 set_buffer_uptodate(bh);
2720
2721         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2722                 err = bh_read(bh, 0);
2723                 /* Uhhuh. Read error. Complain and punt. */
2724                 if (err < 0)
2725                         goto unlock;
2726         }
2727
2728         folio_zero_range(folio, offset, length);
2729         mark_buffer_dirty(bh);
2730
2731 unlock:
2732         folio_unlock(folio);
2733         folio_put(folio);
2734
2735         return err;
2736 }
2737 EXPORT_SYMBOL(block_truncate_page);
2738
2739 /*
2740  * The generic ->writepage function for buffer-backed address_spaces
2741  */
2742 int block_write_full_page(struct page *page, get_block_t *get_block,
2743                         struct writeback_control *wbc)
2744 {
2745         struct folio *folio = page_folio(page);
2746         struct inode * const inode = folio->mapping->host;
2747         loff_t i_size = i_size_read(inode);
2748
2749         /* Is the folio fully inside i_size? */
2750         if (folio_pos(folio) + folio_size(folio) <= i_size)
2751                 return __block_write_full_folio(inode, folio, get_block, wbc,
2752                                                end_buffer_async_write);
2753
2754         /* Is the folio fully outside i_size? (truncate in progress) */
2755         if (folio_pos(folio) >= i_size) {
2756                 folio_unlock(folio);
2757                 return 0; /* don't care */
2758         }
2759
2760         /*
2761          * The folio straddles i_size.  It must be zeroed out on each and every
2762          * writepage invocation because it may be mmapped.  "A file is mapped
2763          * in multiples of the page size.  For a file that is not a multiple of
2764          * the page size, the remaining memory is zeroed when mapped, and
2765          * writes to that region are not written out to the file."
2766          */
2767         folio_zero_segment(folio, offset_in_folio(folio, i_size),
2768                         folio_size(folio));
2769         return __block_write_full_folio(inode, folio, get_block, wbc,
2770                         end_buffer_async_write);
2771 }
2772 EXPORT_SYMBOL(block_write_full_page);
2773
2774 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2775                             get_block_t *get_block)
2776 {
2777         struct inode *inode = mapping->host;
2778         struct buffer_head tmp = {
2779                 .b_size = i_blocksize(inode),
2780         };
2781
2782         get_block(inode, block, &tmp, 0);
2783         return tmp.b_blocknr;
2784 }
2785 EXPORT_SYMBOL(generic_block_bmap);
2786
2787 static void end_bio_bh_io_sync(struct bio *bio)
2788 {
2789         struct buffer_head *bh = bio->bi_private;
2790
2791         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2792                 set_bit(BH_Quiet, &bh->b_state);
2793
2794         bh->b_end_io(bh, !bio->bi_status);
2795         bio_put(bio);
2796 }
2797
2798 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2799                           struct writeback_control *wbc)
2800 {
2801         const enum req_op op = opf & REQ_OP_MASK;
2802         struct bio *bio;
2803
2804         BUG_ON(!buffer_locked(bh));
2805         BUG_ON(!buffer_mapped(bh));
2806         BUG_ON(!bh->b_end_io);
2807         BUG_ON(buffer_delay(bh));
2808         BUG_ON(buffer_unwritten(bh));
2809
2810         /*
2811          * Only clear out a write error when rewriting
2812          */
2813         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2814                 clear_buffer_write_io_error(bh);
2815
2816         if (buffer_meta(bh))
2817                 opf |= REQ_META;
2818         if (buffer_prio(bh))
2819                 opf |= REQ_PRIO;
2820
2821         bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2822
2823         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2824
2825         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2826
2827         __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2828
2829         bio->bi_end_io = end_bio_bh_io_sync;
2830         bio->bi_private = bh;
2831
2832         /* Take care of bh's that straddle the end of the device */
2833         guard_bio_eod(bio);
2834
2835         if (wbc) {
2836                 wbc_init_bio(wbc, bio);
2837                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2838         }
2839
2840         submit_bio(bio);
2841 }
2842
2843 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2844 {
2845         submit_bh_wbc(opf, bh, NULL);
2846 }
2847 EXPORT_SYMBOL(submit_bh);
2848
2849 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2850 {
2851         lock_buffer(bh);
2852         if (!test_clear_buffer_dirty(bh)) {
2853                 unlock_buffer(bh);
2854                 return;
2855         }
2856         bh->b_end_io = end_buffer_write_sync;
2857         get_bh(bh);
2858         submit_bh(REQ_OP_WRITE | op_flags, bh);
2859 }
2860 EXPORT_SYMBOL(write_dirty_buffer);
2861
2862 /*
2863  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2864  * and then start new I/O and then wait upon it.  The caller must have a ref on
2865  * the buffer_head.
2866  */
2867 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2868 {
2869         WARN_ON(atomic_read(&bh->b_count) < 1);
2870         lock_buffer(bh);
2871         if (test_clear_buffer_dirty(bh)) {
2872                 /*
2873                  * The bh should be mapped, but it might not be if the
2874                  * device was hot-removed. Not much we can do but fail the I/O.
2875                  */
2876                 if (!buffer_mapped(bh)) {
2877                         unlock_buffer(bh);
2878                         return -EIO;
2879                 }
2880
2881                 get_bh(bh);
2882                 bh->b_end_io = end_buffer_write_sync;
2883                 submit_bh(REQ_OP_WRITE | op_flags, bh);
2884                 wait_on_buffer(bh);
2885                 if (!buffer_uptodate(bh))
2886                         return -EIO;
2887         } else {
2888                 unlock_buffer(bh);
2889         }
2890         return 0;
2891 }
2892 EXPORT_SYMBOL(__sync_dirty_buffer);
2893
2894 int sync_dirty_buffer(struct buffer_head *bh)
2895 {
2896         return __sync_dirty_buffer(bh, REQ_SYNC);
2897 }
2898 EXPORT_SYMBOL(sync_dirty_buffer);
2899
2900 /*
2901  * try_to_free_buffers() checks if all the buffers on this particular folio
2902  * are unused, and releases them if so.
2903  *
2904  * Exclusion against try_to_free_buffers may be obtained by either
2905  * locking the folio or by holding its mapping's private_lock.
2906  *
2907  * If the folio is dirty but all the buffers are clean then we need to
2908  * be sure to mark the folio clean as well.  This is because the folio
2909  * may be against a block device, and a later reattachment of buffers
2910  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2911  * filesystem data on the same device.
2912  *
2913  * The same applies to regular filesystem folios: if all the buffers are
2914  * clean then we set the folio clean and proceed.  To do that, we require
2915  * total exclusion from block_dirty_folio().  That is obtained with
2916  * private_lock.
2917  *
2918  * try_to_free_buffers() is non-blocking.
2919  */
2920 static inline int buffer_busy(struct buffer_head *bh)
2921 {
2922         return atomic_read(&bh->b_count) |
2923                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2924 }
2925
2926 static bool
2927 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2928 {
2929         struct buffer_head *head = folio_buffers(folio);
2930         struct buffer_head *bh;
2931
2932         bh = head;
2933         do {
2934                 if (buffer_busy(bh))
2935                         goto failed;
2936                 bh = bh->b_this_page;
2937         } while (bh != head);
2938
2939         do {
2940                 struct buffer_head *next = bh->b_this_page;
2941
2942                 if (bh->b_assoc_map)
2943                         __remove_assoc_queue(bh);
2944                 bh = next;
2945         } while (bh != head);
2946         *buffers_to_free = head;
2947         folio_detach_private(folio);
2948         return true;
2949 failed:
2950         return false;
2951 }
2952
2953 bool try_to_free_buffers(struct folio *folio)
2954 {
2955         struct address_space * const mapping = folio->mapping;
2956         struct buffer_head *buffers_to_free = NULL;
2957         bool ret = 0;
2958
2959         BUG_ON(!folio_test_locked(folio));
2960         if (folio_test_writeback(folio))
2961                 return false;
2962
2963         if (mapping == NULL) {          /* can this still happen? */
2964                 ret = drop_buffers(folio, &buffers_to_free);
2965                 goto out;
2966         }
2967
2968         spin_lock(&mapping->private_lock);
2969         ret = drop_buffers(folio, &buffers_to_free);
2970
2971         /*
2972          * If the filesystem writes its buffers by hand (eg ext3)
2973          * then we can have clean buffers against a dirty folio.  We
2974          * clean the folio here; otherwise the VM will never notice
2975          * that the filesystem did any IO at all.
2976          *
2977          * Also, during truncate, discard_buffer will have marked all
2978          * the folio's buffers clean.  We discover that here and clean
2979          * the folio also.
2980          *
2981          * private_lock must be held over this entire operation in order
2982          * to synchronise against block_dirty_folio and prevent the
2983          * dirty bit from being lost.
2984          */
2985         if (ret)
2986                 folio_cancel_dirty(folio);
2987         spin_unlock(&mapping->private_lock);
2988 out:
2989         if (buffers_to_free) {
2990                 struct buffer_head *bh = buffers_to_free;
2991
2992                 do {
2993                         struct buffer_head *next = bh->b_this_page;
2994                         free_buffer_head(bh);
2995                         bh = next;
2996                 } while (bh != buffers_to_free);
2997         }
2998         return ret;
2999 }
3000 EXPORT_SYMBOL(try_to_free_buffers);
3001
3002 /*
3003  * Buffer-head allocation
3004  */
3005 static struct kmem_cache *bh_cachep __read_mostly;
3006
3007 /*
3008  * Once the number of bh's in the machine exceeds this level, we start
3009  * stripping them in writeback.
3010  */
3011 static unsigned long max_buffer_heads;
3012
3013 int buffer_heads_over_limit;
3014
3015 struct bh_accounting {
3016         int nr;                 /* Number of live bh's */
3017         int ratelimit;          /* Limit cacheline bouncing */
3018 };
3019
3020 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3021
3022 static void recalc_bh_state(void)
3023 {
3024         int i;
3025         int tot = 0;
3026
3027         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3028                 return;
3029         __this_cpu_write(bh_accounting.ratelimit, 0);
3030         for_each_online_cpu(i)
3031                 tot += per_cpu(bh_accounting, i).nr;
3032         buffer_heads_over_limit = (tot > max_buffer_heads);
3033 }
3034
3035 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3036 {
3037         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3038         if (ret) {
3039                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3040                 spin_lock_init(&ret->b_uptodate_lock);
3041                 preempt_disable();
3042                 __this_cpu_inc(bh_accounting.nr);
3043                 recalc_bh_state();
3044                 preempt_enable();
3045         }
3046         return ret;
3047 }
3048 EXPORT_SYMBOL(alloc_buffer_head);
3049
3050 void free_buffer_head(struct buffer_head *bh)
3051 {
3052         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3053         kmem_cache_free(bh_cachep, bh);
3054         preempt_disable();
3055         __this_cpu_dec(bh_accounting.nr);
3056         recalc_bh_state();
3057         preempt_enable();
3058 }
3059 EXPORT_SYMBOL(free_buffer_head);
3060
3061 static int buffer_exit_cpu_dead(unsigned int cpu)
3062 {
3063         int i;
3064         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3065
3066         for (i = 0; i < BH_LRU_SIZE; i++) {
3067                 brelse(b->bhs[i]);
3068                 b->bhs[i] = NULL;
3069         }
3070         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3071         per_cpu(bh_accounting, cpu).nr = 0;
3072         return 0;
3073 }
3074
3075 /**
3076  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3077  * @bh: struct buffer_head
3078  *
3079  * Return true if the buffer is up-to-date and false,
3080  * with the buffer locked, if not.
3081  */
3082 int bh_uptodate_or_lock(struct buffer_head *bh)
3083 {
3084         if (!buffer_uptodate(bh)) {
3085                 lock_buffer(bh);
3086                 if (!buffer_uptodate(bh))
3087                         return 0;
3088                 unlock_buffer(bh);
3089         }
3090         return 1;
3091 }
3092 EXPORT_SYMBOL(bh_uptodate_or_lock);
3093
3094 /**
3095  * __bh_read - Submit read for a locked buffer
3096  * @bh: struct buffer_head
3097  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3098  * @wait: wait until reading finish
3099  *
3100  * Returns zero on success or don't wait, and -EIO on error.
3101  */
3102 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3103 {
3104         int ret = 0;
3105
3106         BUG_ON(!buffer_locked(bh));
3107
3108         get_bh(bh);
3109         bh->b_end_io = end_buffer_read_sync;
3110         submit_bh(REQ_OP_READ | op_flags, bh);
3111         if (wait) {
3112                 wait_on_buffer(bh);
3113                 if (!buffer_uptodate(bh))
3114                         ret = -EIO;
3115         }
3116         return ret;
3117 }
3118 EXPORT_SYMBOL(__bh_read);
3119
3120 /**
3121  * __bh_read_batch - Submit read for a batch of unlocked buffers
3122  * @nr: entry number of the buffer batch
3123  * @bhs: a batch of struct buffer_head
3124  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3125  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3126  *              buffer that cannot lock.
3127  *
3128  * Returns zero on success or don't wait, and -EIO on error.
3129  */
3130 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3131                      blk_opf_t op_flags, bool force_lock)
3132 {
3133         int i;
3134
3135         for (i = 0; i < nr; i++) {
3136                 struct buffer_head *bh = bhs[i];
3137
3138                 if (buffer_uptodate(bh))
3139                         continue;
3140
3141                 if (force_lock)
3142                         lock_buffer(bh);
3143                 else
3144                         if (!trylock_buffer(bh))
3145                                 continue;
3146
3147                 if (buffer_uptodate(bh)) {
3148                         unlock_buffer(bh);
3149                         continue;
3150                 }
3151
3152                 bh->b_end_io = end_buffer_read_sync;
3153                 get_bh(bh);
3154                 submit_bh(REQ_OP_READ | op_flags, bh);
3155         }
3156 }
3157 EXPORT_SYMBOL(__bh_read_batch);
3158
3159 void __init buffer_init(void)
3160 {
3161         unsigned long nrpages;
3162         int ret;
3163
3164         bh_cachep = kmem_cache_create("buffer_head",
3165                         sizeof(struct buffer_head), 0,
3166                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3167                                 SLAB_MEM_SPREAD),
3168                                 NULL);
3169
3170         /*
3171          * Limit the bh occupancy to 10% of ZONE_NORMAL
3172          */
3173         nrpages = (nr_free_buffer_pages() * 10) / 100;
3174         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3175         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3176                                         NULL, buffer_exit_cpu_dead);
3177         WARN_ON(ret < 0);
3178 }