Merge tag 'memblock-v6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt...
[platform/kernel/linux-starfive.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
56                           struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62         trace_block_touch_buffer(bh);
63         mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75         clear_bit_unlock(BH_Lock, &bh->b_state);
76         smp_mb__after_atomic();
77         wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82  * Returns if the folio has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the folio_test_dirty information is stale. If
84  * any of the buffers are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct folio *folio,
87                                      bool *dirty, bool *writeback)
88 {
89         struct buffer_head *head, *bh;
90         *dirty = false;
91         *writeback = false;
92
93         BUG_ON(!folio_test_locked(folio));
94
95         head = folio_buffers(folio);
96         if (!head)
97                 return;
98
99         if (folio_test_writeback(folio))
100                 *writeback = true;
101
102         bh = head;
103         do {
104                 if (buffer_locked(bh))
105                         *writeback = true;
106
107                 if (buffer_dirty(bh))
108                         *dirty = true;
109
110                 bh = bh->b_this_page;
111         } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128         if (!test_bit(BH_Quiet, &bh->b_state))
129                 printk_ratelimited(KERN_ERR
130                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
131                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144         if (uptodate) {
145                 set_buffer_uptodate(bh);
146         } else {
147                 /* This happens, due to failed read-ahead attempts. */
148                 clear_buffer_uptodate(bh);
149         }
150         unlock_buffer(bh);
151 }
152
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159         __end_buffer_read_notouch(bh, uptodate);
160         put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166         if (uptodate) {
167                 set_buffer_uptodate(bh);
168         } else {
169                 buffer_io_error(bh, ", lost sync page write");
170                 mark_buffer_write_io_error(bh);
171                 clear_buffer_uptodate(bh);
172         }
173         unlock_buffer(bh);
174         put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191         struct inode *bd_inode = bdev->bd_inode;
192         struct address_space *bd_mapping = bd_inode->i_mapping;
193         struct buffer_head *ret = NULL;
194         pgoff_t index;
195         struct buffer_head *bh;
196         struct buffer_head *head;
197         struct page *page;
198         int all_mapped = 1;
199         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203         if (!page)
204                 goto out;
205
206         spin_lock(&bd_mapping->private_lock);
207         if (!page_has_buffers(page))
208                 goto out_unlock;
209         head = page_buffers(page);
210         bh = head;
211         do {
212                 if (!buffer_mapped(bh))
213                         all_mapped = 0;
214                 else if (bh->b_blocknr == block) {
215                         ret = bh;
216                         get_bh(bh);
217                         goto out_unlock;
218                 }
219                 bh = bh->b_this_page;
220         } while (bh != head);
221
222         /* we might be here because some of the buffers on this page are
223          * not mapped.  This is due to various races between
224          * file io on the block device and getblk.  It gets dealt with
225          * elsewhere, don't buffer_error if we had some unmapped buffers
226          */
227         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228         if (all_mapped && __ratelimit(&last_warned)) {
229                 printk("__find_get_block_slow() failed. block=%llu, "
230                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231                        "device %pg blocksize: %d\n",
232                        (unsigned long long)block,
233                        (unsigned long long)bh->b_blocknr,
234                        bh->b_state, bh->b_size, bdev,
235                        1 << bd_inode->i_blkbits);
236         }
237 out_unlock:
238         spin_unlock(&bd_mapping->private_lock);
239         put_page(page);
240 out:
241         return ret;
242 }
243
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246         unsigned long flags;
247         struct buffer_head *first;
248         struct buffer_head *tmp;
249         struct page *page;
250         int page_uptodate = 1;
251
252         BUG_ON(!buffer_async_read(bh));
253
254         page = bh->b_page;
255         if (uptodate) {
256                 set_buffer_uptodate(bh);
257         } else {
258                 clear_buffer_uptodate(bh);
259                 buffer_io_error(bh, ", async page read");
260                 SetPageError(page);
261         }
262
263         /*
264          * Be _very_ careful from here on. Bad things can happen if
265          * two buffer heads end IO at almost the same time and both
266          * decide that the page is now completely done.
267          */
268         first = page_buffers(page);
269         spin_lock_irqsave(&first->b_uptodate_lock, flags);
270         clear_buffer_async_read(bh);
271         unlock_buffer(bh);
272         tmp = bh;
273         do {
274                 if (!buffer_uptodate(tmp))
275                         page_uptodate = 0;
276                 if (buffer_async_read(tmp)) {
277                         BUG_ON(!buffer_locked(tmp));
278                         goto still_busy;
279                 }
280                 tmp = tmp->b_this_page;
281         } while (tmp != bh);
282         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284         /*
285          * If all of the buffers are uptodate then we can set the page
286          * uptodate.
287          */
288         if (page_uptodate)
289                 SetPageUptodate(page);
290         unlock_page(page);
291         return;
292
293 still_busy:
294         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295         return;
296 }
297
298 struct decrypt_bh_ctx {
299         struct work_struct work;
300         struct buffer_head *bh;
301 };
302
303 static void decrypt_bh(struct work_struct *work)
304 {
305         struct decrypt_bh_ctx *ctx =
306                 container_of(work, struct decrypt_bh_ctx, work);
307         struct buffer_head *bh = ctx->bh;
308         int err;
309
310         err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311                                                bh_offset(bh));
312         end_buffer_async_read(bh, err == 0);
313         kfree(ctx);
314 }
315
316 /*
317  * I/O completion handler for block_read_full_folio() - pages
318  * which come unlocked at the end of I/O.
319  */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322         /* Decrypt if needed */
323         if (uptodate &&
324             fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325                 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326
327                 if (ctx) {
328                         INIT_WORK(&ctx->work, decrypt_bh);
329                         ctx->bh = bh;
330                         fscrypt_enqueue_decrypt_work(&ctx->work);
331                         return;
332                 }
333                 uptodate = 0;
334         }
335         end_buffer_async_read(bh, uptodate);
336 }
337
338 /*
339  * Completion handler for block_write_full_page() - pages which are unlocked
340  * during I/O, and which have PageWriteback cleared upon I/O completion.
341  */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344         unsigned long flags;
345         struct buffer_head *first;
346         struct buffer_head *tmp;
347         struct page *page;
348
349         BUG_ON(!buffer_async_write(bh));
350
351         page = bh->b_page;
352         if (uptodate) {
353                 set_buffer_uptodate(bh);
354         } else {
355                 buffer_io_error(bh, ", lost async page write");
356                 mark_buffer_write_io_error(bh);
357                 clear_buffer_uptodate(bh);
358                 SetPageError(page);
359         }
360
361         first = page_buffers(page);
362         spin_lock_irqsave(&first->b_uptodate_lock, flags);
363
364         clear_buffer_async_write(bh);
365         unlock_buffer(bh);
366         tmp = bh->b_this_page;
367         while (tmp != bh) {
368                 if (buffer_async_write(tmp)) {
369                         BUG_ON(!buffer_locked(tmp));
370                         goto still_busy;
371                 }
372                 tmp = tmp->b_this_page;
373         }
374         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375         end_page_writeback(page);
376         return;
377
378 still_busy:
379         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380         return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383
384 /*
385  * If a page's buffers are under async readin (end_buffer_async_read
386  * completion) then there is a possibility that another thread of
387  * control could lock one of the buffers after it has completed
388  * but while some of the other buffers have not completed.  This
389  * locked buffer would confuse end_buffer_async_read() into not unlocking
390  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
391  * that this buffer is not under async I/O.
392  *
393  * The page comes unlocked when it has no locked buffer_async buffers
394  * left.
395  *
396  * PageLocked prevents anyone starting new async I/O reads any of
397  * the buffers.
398  *
399  * PageWriteback is used to prevent simultaneous writeout of the same
400  * page.
401  *
402  * PageLocked prevents anyone from starting writeback of a page which is
403  * under read I/O (PageWriteback is only ever set against a locked page).
404  */
405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407         bh->b_end_io = end_buffer_async_read_io;
408         set_buffer_async_read(bh);
409 }
410
411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412                                           bh_end_io_t *handler)
413 {
414         bh->b_end_io = handler;
415         set_buffer_async_write(bh);
416 }
417
418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420         mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL(mark_buffer_async_write);
423
424
425 /*
426  * fs/buffer.c contains helper functions for buffer-backed address space's
427  * fsync functions.  A common requirement for buffer-based filesystems is
428  * that certain data from the backing blockdev needs to be written out for
429  * a successful fsync().  For example, ext2 indirect blocks need to be
430  * written back and waited upon before fsync() returns.
431  *
432  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434  * management of a list of dependent buffers at ->i_mapping->private_list.
435  *
436  * Locking is a little subtle: try_to_free_buffers() will remove buffers
437  * from their controlling inode's queue when they are being freed.  But
438  * try_to_free_buffers() will be operating against the *blockdev* mapping
439  * at the time, not against the S_ISREG file which depends on those buffers.
440  * So the locking for private_list is via the private_lock in the address_space
441  * which backs the buffers.  Which is different from the address_space 
442  * against which the buffers are listed.  So for a particular address_space,
443  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
444  * mapping->private_list will always be protected by the backing blockdev's
445  * ->private_lock.
446  *
447  * Which introduces a requirement: all buffers on an address_space's
448  * ->private_list must be from the same address_space: the blockdev's.
449  *
450  * address_spaces which do not place buffers at ->private_list via these
451  * utility functions are free to use private_lock and private_list for
452  * whatever they want.  The only requirement is that list_empty(private_list)
453  * be true at clear_inode() time.
454  *
455  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
456  * filesystems should do that.  invalidate_inode_buffers() should just go
457  * BUG_ON(!list_empty).
458  *
459  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
460  * take an address_space, not an inode.  And it should be called
461  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462  * queued up.
463  *
464  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465  * list if it is already on a list.  Because if the buffer is on a list,
466  * it *must* already be on the right one.  If not, the filesystem is being
467  * silly.  This will save a ton of locking.  But first we have to ensure
468  * that buffers are taken *off* the old inode's list when they are freed
469  * (presumably in truncate).  That requires careful auditing of all
470  * filesystems (do it inside bforget()).  It could also be done by bringing
471  * b_inode back.
472  */
473
474 /*
475  * The buffer's backing address_space's private_lock must be held
476  */
477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479         list_del_init(&bh->b_assoc_buffers);
480         WARN_ON(!bh->b_assoc_map);
481         bh->b_assoc_map = NULL;
482 }
483
484 int inode_has_buffers(struct inode *inode)
485 {
486         return !list_empty(&inode->i_data.private_list);
487 }
488
489 /*
490  * osync is designed to support O_SYNC io.  It waits synchronously for
491  * all already-submitted IO to complete, but does not queue any new
492  * writes to the disk.
493  *
494  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
495  * as you dirty the buffers, and then use osync_inode_buffers to wait for
496  * completion.  Any other dirty buffers which are not yet queued for
497  * write will not be flushed to disk by the osync.
498  */
499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501         struct buffer_head *bh;
502         struct list_head *p;
503         int err = 0;
504
505         spin_lock(lock);
506 repeat:
507         list_for_each_prev(p, list) {
508                 bh = BH_ENTRY(p);
509                 if (buffer_locked(bh)) {
510                         get_bh(bh);
511                         spin_unlock(lock);
512                         wait_on_buffer(bh);
513                         if (!buffer_uptodate(bh))
514                                 err = -EIO;
515                         brelse(bh);
516                         spin_lock(lock);
517                         goto repeat;
518                 }
519         }
520         spin_unlock(lock);
521         return err;
522 }
523
524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526         while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529
530 /**
531  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532  * @mapping: the mapping which wants those buffers written
533  *
534  * Starts I/O against the buffers at mapping->private_list, and waits upon
535  * that I/O.
536  *
537  * Basically, this is a convenience function for fsync().
538  * @mapping is a file or directory which needs those buffers to be written for
539  * a successful fsync().
540  */
541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543         struct address_space *buffer_mapping = mapping->private_data;
544
545         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546                 return 0;
547
548         return fsync_buffers_list(&buffer_mapping->private_lock,
549                                         &mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552
553 /*
554  * Called when we've recently written block `bblock', and it is known that
555  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
556  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
557  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
558  */
559 void write_boundary_block(struct block_device *bdev,
560                         sector_t bblock, unsigned blocksize)
561 {
562         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563         if (bh) {
564                 if (buffer_dirty(bh))
565                         write_dirty_buffer(bh, 0);
566                 put_bh(bh);
567         }
568 }
569
570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572         struct address_space *mapping = inode->i_mapping;
573         struct address_space *buffer_mapping = bh->b_page->mapping;
574
575         mark_buffer_dirty(bh);
576         if (!mapping->private_data) {
577                 mapping->private_data = buffer_mapping;
578         } else {
579                 BUG_ON(mapping->private_data != buffer_mapping);
580         }
581         if (!bh->b_assoc_map) {
582                 spin_lock(&buffer_mapping->private_lock);
583                 list_move_tail(&bh->b_assoc_buffers,
584                                 &mapping->private_list);
585                 bh->b_assoc_map = mapping;
586                 spin_unlock(&buffer_mapping->private_lock);
587         }
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590
591 /*
592  * Add a page to the dirty page list.
593  *
594  * It is a sad fact of life that this function is called from several places
595  * deeply under spinlocking.  It may not sleep.
596  *
597  * If the page has buffers, the uptodate buffers are set dirty, to preserve
598  * dirty-state coherency between the page and the buffers.  It the page does
599  * not have buffers then when they are later attached they will all be set
600  * dirty.
601  *
602  * The buffers are dirtied before the page is dirtied.  There's a small race
603  * window in which a writepage caller may see the page cleanness but not the
604  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
605  * before the buffers, a concurrent writepage caller could clear the page dirty
606  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
607  * page on the dirty page list.
608  *
609  * We use private_lock to lock against try_to_free_buffers while using the
610  * page's buffer list.  Also use this to protect against clean buffers being
611  * added to the page after it was set dirty.
612  *
613  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
614  * address_space though.
615  */
616 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
617 {
618         struct buffer_head *head;
619         bool newly_dirty;
620
621         spin_lock(&mapping->private_lock);
622         head = folio_buffers(folio);
623         if (head) {
624                 struct buffer_head *bh = head;
625
626                 do {
627                         set_buffer_dirty(bh);
628                         bh = bh->b_this_page;
629                 } while (bh != head);
630         }
631         /*
632          * Lock out page's memcg migration to keep PageDirty
633          * synchronized with per-memcg dirty page counters.
634          */
635         folio_memcg_lock(folio);
636         newly_dirty = !folio_test_set_dirty(folio);
637         spin_unlock(&mapping->private_lock);
638
639         if (newly_dirty)
640                 __folio_mark_dirty(folio, mapping, 1);
641
642         folio_memcg_unlock(folio);
643
644         if (newly_dirty)
645                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
646
647         return newly_dirty;
648 }
649 EXPORT_SYMBOL(block_dirty_folio);
650
651 /*
652  * Write out and wait upon a list of buffers.
653  *
654  * We have conflicting pressures: we want to make sure that all
655  * initially dirty buffers get waited on, but that any subsequently
656  * dirtied buffers don't.  After all, we don't want fsync to last
657  * forever if somebody is actively writing to the file.
658  *
659  * Do this in two main stages: first we copy dirty buffers to a
660  * temporary inode list, queueing the writes as we go.  Then we clean
661  * up, waiting for those writes to complete.
662  * 
663  * During this second stage, any subsequent updates to the file may end
664  * up refiling the buffer on the original inode's dirty list again, so
665  * there is a chance we will end up with a buffer queued for write but
666  * not yet completed on that list.  So, as a final cleanup we go through
667  * the osync code to catch these locked, dirty buffers without requeuing
668  * any newly dirty buffers for write.
669  */
670 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
671 {
672         struct buffer_head *bh;
673         struct list_head tmp;
674         struct address_space *mapping;
675         int err = 0, err2;
676         struct blk_plug plug;
677
678         INIT_LIST_HEAD(&tmp);
679         blk_start_plug(&plug);
680
681         spin_lock(lock);
682         while (!list_empty(list)) {
683                 bh = BH_ENTRY(list->next);
684                 mapping = bh->b_assoc_map;
685                 __remove_assoc_queue(bh);
686                 /* Avoid race with mark_buffer_dirty_inode() which does
687                  * a lockless check and we rely on seeing the dirty bit */
688                 smp_mb();
689                 if (buffer_dirty(bh) || buffer_locked(bh)) {
690                         list_add(&bh->b_assoc_buffers, &tmp);
691                         bh->b_assoc_map = mapping;
692                         if (buffer_dirty(bh)) {
693                                 get_bh(bh);
694                                 spin_unlock(lock);
695                                 /*
696                                  * Ensure any pending I/O completes so that
697                                  * write_dirty_buffer() actually writes the
698                                  * current contents - it is a noop if I/O is
699                                  * still in flight on potentially older
700                                  * contents.
701                                  */
702                                 write_dirty_buffer(bh, REQ_SYNC);
703
704                                 /*
705                                  * Kick off IO for the previous mapping. Note
706                                  * that we will not run the very last mapping,
707                                  * wait_on_buffer() will do that for us
708                                  * through sync_buffer().
709                                  */
710                                 brelse(bh);
711                                 spin_lock(lock);
712                         }
713                 }
714         }
715
716         spin_unlock(lock);
717         blk_finish_plug(&plug);
718         spin_lock(lock);
719
720         while (!list_empty(&tmp)) {
721                 bh = BH_ENTRY(tmp.prev);
722                 get_bh(bh);
723                 mapping = bh->b_assoc_map;
724                 __remove_assoc_queue(bh);
725                 /* Avoid race with mark_buffer_dirty_inode() which does
726                  * a lockless check and we rely on seeing the dirty bit */
727                 smp_mb();
728                 if (buffer_dirty(bh)) {
729                         list_add(&bh->b_assoc_buffers,
730                                  &mapping->private_list);
731                         bh->b_assoc_map = mapping;
732                 }
733                 spin_unlock(lock);
734                 wait_on_buffer(bh);
735                 if (!buffer_uptodate(bh))
736                         err = -EIO;
737                 brelse(bh);
738                 spin_lock(lock);
739         }
740         
741         spin_unlock(lock);
742         err2 = osync_buffers_list(lock, list);
743         if (err)
744                 return err;
745         else
746                 return err2;
747 }
748
749 /*
750  * Invalidate any and all dirty buffers on a given inode.  We are
751  * probably unmounting the fs, but that doesn't mean we have already
752  * done a sync().  Just drop the buffers from the inode list.
753  *
754  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
755  * assumes that all the buffers are against the blockdev.  Not true
756  * for reiserfs.
757  */
758 void invalidate_inode_buffers(struct inode *inode)
759 {
760         if (inode_has_buffers(inode)) {
761                 struct address_space *mapping = &inode->i_data;
762                 struct list_head *list = &mapping->private_list;
763                 struct address_space *buffer_mapping = mapping->private_data;
764
765                 spin_lock(&buffer_mapping->private_lock);
766                 while (!list_empty(list))
767                         __remove_assoc_queue(BH_ENTRY(list->next));
768                 spin_unlock(&buffer_mapping->private_lock);
769         }
770 }
771 EXPORT_SYMBOL(invalidate_inode_buffers);
772
773 /*
774  * Remove any clean buffers from the inode's buffer list.  This is called
775  * when we're trying to free the inode itself.  Those buffers can pin it.
776  *
777  * Returns true if all buffers were removed.
778  */
779 int remove_inode_buffers(struct inode *inode)
780 {
781         int ret = 1;
782
783         if (inode_has_buffers(inode)) {
784                 struct address_space *mapping = &inode->i_data;
785                 struct list_head *list = &mapping->private_list;
786                 struct address_space *buffer_mapping = mapping->private_data;
787
788                 spin_lock(&buffer_mapping->private_lock);
789                 while (!list_empty(list)) {
790                         struct buffer_head *bh = BH_ENTRY(list->next);
791                         if (buffer_dirty(bh)) {
792                                 ret = 0;
793                                 break;
794                         }
795                         __remove_assoc_queue(bh);
796                 }
797                 spin_unlock(&buffer_mapping->private_lock);
798         }
799         return ret;
800 }
801
802 /*
803  * Create the appropriate buffers when given a page for data area and
804  * the size of each buffer.. Use the bh->b_this_page linked list to
805  * follow the buffers created.  Return NULL if unable to create more
806  * buffers.
807  *
808  * The retry flag is used to differentiate async IO (paging, swapping)
809  * which may not fail from ordinary buffer allocations.
810  */
811 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
812                 bool retry)
813 {
814         struct buffer_head *bh, *head;
815         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
816         long offset;
817         struct mem_cgroup *memcg, *old_memcg;
818
819         if (retry)
820                 gfp |= __GFP_NOFAIL;
821
822         /* The page lock pins the memcg */
823         memcg = page_memcg(page);
824         old_memcg = set_active_memcg(memcg);
825
826         head = NULL;
827         offset = PAGE_SIZE;
828         while ((offset -= size) >= 0) {
829                 bh = alloc_buffer_head(gfp);
830                 if (!bh)
831                         goto no_grow;
832
833                 bh->b_this_page = head;
834                 bh->b_blocknr = -1;
835                 head = bh;
836
837                 bh->b_size = size;
838
839                 /* Link the buffer to its page */
840                 set_bh_page(bh, page, offset);
841         }
842 out:
843         set_active_memcg(old_memcg);
844         return head;
845 /*
846  * In case anything failed, we just free everything we got.
847  */
848 no_grow:
849         if (head) {
850                 do {
851                         bh = head;
852                         head = head->b_this_page;
853                         free_buffer_head(bh);
854                 } while (head);
855         }
856
857         goto out;
858 }
859 EXPORT_SYMBOL_GPL(alloc_page_buffers);
860
861 static inline void
862 link_dev_buffers(struct page *page, struct buffer_head *head)
863 {
864         struct buffer_head *bh, *tail;
865
866         bh = head;
867         do {
868                 tail = bh;
869                 bh = bh->b_this_page;
870         } while (bh);
871         tail->b_this_page = head;
872         attach_page_private(page, head);
873 }
874
875 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
876 {
877         sector_t retval = ~((sector_t)0);
878         loff_t sz = bdev_nr_bytes(bdev);
879
880         if (sz) {
881                 unsigned int sizebits = blksize_bits(size);
882                 retval = (sz >> sizebits);
883         }
884         return retval;
885 }
886
887 /*
888  * Initialise the state of a blockdev page's buffers.
889  */ 
890 static sector_t
891 init_page_buffers(struct page *page, struct block_device *bdev,
892                         sector_t block, int size)
893 {
894         struct buffer_head *head = page_buffers(page);
895         struct buffer_head *bh = head;
896         int uptodate = PageUptodate(page);
897         sector_t end_block = blkdev_max_block(bdev, size);
898
899         do {
900                 if (!buffer_mapped(bh)) {
901                         bh->b_end_io = NULL;
902                         bh->b_private = NULL;
903                         bh->b_bdev = bdev;
904                         bh->b_blocknr = block;
905                         if (uptodate)
906                                 set_buffer_uptodate(bh);
907                         if (block < end_block)
908                                 set_buffer_mapped(bh);
909                 }
910                 block++;
911                 bh = bh->b_this_page;
912         } while (bh != head);
913
914         /*
915          * Caller needs to validate requested block against end of device.
916          */
917         return end_block;
918 }
919
920 /*
921  * Create the page-cache page that contains the requested block.
922  *
923  * This is used purely for blockdev mappings.
924  */
925 static int
926 grow_dev_page(struct block_device *bdev, sector_t block,
927               pgoff_t index, int size, int sizebits, gfp_t gfp)
928 {
929         struct inode *inode = bdev->bd_inode;
930         struct page *page;
931         struct buffer_head *bh;
932         sector_t end_block;
933         int ret = 0;
934         gfp_t gfp_mask;
935
936         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
937
938         /*
939          * XXX: __getblk_slow() can not really deal with failure and
940          * will endlessly loop on improvised global reclaim.  Prefer
941          * looping in the allocator rather than here, at least that
942          * code knows what it's doing.
943          */
944         gfp_mask |= __GFP_NOFAIL;
945
946         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
947
948         BUG_ON(!PageLocked(page));
949
950         if (page_has_buffers(page)) {
951                 bh = page_buffers(page);
952                 if (bh->b_size == size) {
953                         end_block = init_page_buffers(page, bdev,
954                                                 (sector_t)index << sizebits,
955                                                 size);
956                         goto done;
957                 }
958                 if (!try_to_free_buffers(page_folio(page)))
959                         goto failed;
960         }
961
962         /*
963          * Allocate some buffers for this page
964          */
965         bh = alloc_page_buffers(page, size, true);
966
967         /*
968          * Link the page to the buffers and initialise them.  Take the
969          * lock to be atomic wrt __find_get_block(), which does not
970          * run under the page lock.
971          */
972         spin_lock(&inode->i_mapping->private_lock);
973         link_dev_buffers(page, bh);
974         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
975                         size);
976         spin_unlock(&inode->i_mapping->private_lock);
977 done:
978         ret = (block < end_block) ? 1 : -ENXIO;
979 failed:
980         unlock_page(page);
981         put_page(page);
982         return ret;
983 }
984
985 /*
986  * Create buffers for the specified block device block's page.  If
987  * that page was dirty, the buffers are set dirty also.
988  */
989 static int
990 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
991 {
992         pgoff_t index;
993         int sizebits;
994
995         sizebits = PAGE_SHIFT - __ffs(size);
996         index = block >> sizebits;
997
998         /*
999          * Check for a block which wants to lie outside our maximum possible
1000          * pagecache index.  (this comparison is done using sector_t types).
1001          */
1002         if (unlikely(index != block >> sizebits)) {
1003                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1004                         "device %pg\n",
1005                         __func__, (unsigned long long)block,
1006                         bdev);
1007                 return -EIO;
1008         }
1009
1010         /* Create a page with the proper size buffers.. */
1011         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1012 }
1013
1014 static struct buffer_head *
1015 __getblk_slow(struct block_device *bdev, sector_t block,
1016              unsigned size, gfp_t gfp)
1017 {
1018         /* Size must be multiple of hard sectorsize */
1019         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1020                         (size < 512 || size > PAGE_SIZE))) {
1021                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1022                                         size);
1023                 printk(KERN_ERR "logical block size: %d\n",
1024                                         bdev_logical_block_size(bdev));
1025
1026                 dump_stack();
1027                 return NULL;
1028         }
1029
1030         for (;;) {
1031                 struct buffer_head *bh;
1032                 int ret;
1033
1034                 bh = __find_get_block(bdev, block, size);
1035                 if (bh)
1036                         return bh;
1037
1038                 ret = grow_buffers(bdev, block, size, gfp);
1039                 if (ret < 0)
1040                         return NULL;
1041         }
1042 }
1043
1044 /*
1045  * The relationship between dirty buffers and dirty pages:
1046  *
1047  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1048  * the page is tagged dirty in the page cache.
1049  *
1050  * At all times, the dirtiness of the buffers represents the dirtiness of
1051  * subsections of the page.  If the page has buffers, the page dirty bit is
1052  * merely a hint about the true dirty state.
1053  *
1054  * When a page is set dirty in its entirety, all its buffers are marked dirty
1055  * (if the page has buffers).
1056  *
1057  * When a buffer is marked dirty, its page is dirtied, but the page's other
1058  * buffers are not.
1059  *
1060  * Also.  When blockdev buffers are explicitly read with bread(), they
1061  * individually become uptodate.  But their backing page remains not
1062  * uptodate - even if all of its buffers are uptodate.  A subsequent
1063  * block_read_full_folio() against that folio will discover all the uptodate
1064  * buffers, will set the folio uptodate and will perform no I/O.
1065  */
1066
1067 /**
1068  * mark_buffer_dirty - mark a buffer_head as needing writeout
1069  * @bh: the buffer_head to mark dirty
1070  *
1071  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1072  * its backing page dirty, then tag the page as dirty in the page cache
1073  * and then attach the address_space's inode to its superblock's dirty
1074  * inode list.
1075  *
1076  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1077  * i_pages lock and mapping->host->i_lock.
1078  */
1079 void mark_buffer_dirty(struct buffer_head *bh)
1080 {
1081         WARN_ON_ONCE(!buffer_uptodate(bh));
1082
1083         trace_block_dirty_buffer(bh);
1084
1085         /*
1086          * Very *carefully* optimize the it-is-already-dirty case.
1087          *
1088          * Don't let the final "is it dirty" escape to before we
1089          * perhaps modified the buffer.
1090          */
1091         if (buffer_dirty(bh)) {
1092                 smp_mb();
1093                 if (buffer_dirty(bh))
1094                         return;
1095         }
1096
1097         if (!test_set_buffer_dirty(bh)) {
1098                 struct page *page = bh->b_page;
1099                 struct address_space *mapping = NULL;
1100
1101                 lock_page_memcg(page);
1102                 if (!TestSetPageDirty(page)) {
1103                         mapping = page_mapping(page);
1104                         if (mapping)
1105                                 __set_page_dirty(page, mapping, 0);
1106                 }
1107                 unlock_page_memcg(page);
1108                 if (mapping)
1109                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1110         }
1111 }
1112 EXPORT_SYMBOL(mark_buffer_dirty);
1113
1114 void mark_buffer_write_io_error(struct buffer_head *bh)
1115 {
1116         struct super_block *sb;
1117
1118         set_buffer_write_io_error(bh);
1119         /* FIXME: do we need to set this in both places? */
1120         if (bh->b_page && bh->b_page->mapping)
1121                 mapping_set_error(bh->b_page->mapping, -EIO);
1122         if (bh->b_assoc_map)
1123                 mapping_set_error(bh->b_assoc_map, -EIO);
1124         rcu_read_lock();
1125         sb = READ_ONCE(bh->b_bdev->bd_super);
1126         if (sb)
1127                 errseq_set(&sb->s_wb_err, -EIO);
1128         rcu_read_unlock();
1129 }
1130 EXPORT_SYMBOL(mark_buffer_write_io_error);
1131
1132 /*
1133  * Decrement a buffer_head's reference count.  If all buffers against a page
1134  * have zero reference count, are clean and unlocked, and if the page is clean
1135  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1136  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1137  * a page but it ends up not being freed, and buffers may later be reattached).
1138  */
1139 void __brelse(struct buffer_head * buf)
1140 {
1141         if (atomic_read(&buf->b_count)) {
1142                 put_bh(buf);
1143                 return;
1144         }
1145         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1146 }
1147 EXPORT_SYMBOL(__brelse);
1148
1149 /*
1150  * bforget() is like brelse(), except it discards any
1151  * potentially dirty data.
1152  */
1153 void __bforget(struct buffer_head *bh)
1154 {
1155         clear_buffer_dirty(bh);
1156         if (bh->b_assoc_map) {
1157                 struct address_space *buffer_mapping = bh->b_page->mapping;
1158
1159                 spin_lock(&buffer_mapping->private_lock);
1160                 list_del_init(&bh->b_assoc_buffers);
1161                 bh->b_assoc_map = NULL;
1162                 spin_unlock(&buffer_mapping->private_lock);
1163         }
1164         __brelse(bh);
1165 }
1166 EXPORT_SYMBOL(__bforget);
1167
1168 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1169 {
1170         lock_buffer(bh);
1171         if (buffer_uptodate(bh)) {
1172                 unlock_buffer(bh);
1173                 return bh;
1174         } else {
1175                 get_bh(bh);
1176                 bh->b_end_io = end_buffer_read_sync;
1177                 submit_bh(REQ_OP_READ, bh);
1178                 wait_on_buffer(bh);
1179                 if (buffer_uptodate(bh))
1180                         return bh;
1181         }
1182         brelse(bh);
1183         return NULL;
1184 }
1185
1186 /*
1187  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1188  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1189  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1190  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1191  * CPU's LRUs at the same time.
1192  *
1193  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1194  * sb_find_get_block().
1195  *
1196  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1197  * a local interrupt disable for that.
1198  */
1199
1200 #define BH_LRU_SIZE     16
1201
1202 struct bh_lru {
1203         struct buffer_head *bhs[BH_LRU_SIZE];
1204 };
1205
1206 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1207
1208 #ifdef CONFIG_SMP
1209 #define bh_lru_lock()   local_irq_disable()
1210 #define bh_lru_unlock() local_irq_enable()
1211 #else
1212 #define bh_lru_lock()   preempt_disable()
1213 #define bh_lru_unlock() preempt_enable()
1214 #endif
1215
1216 static inline void check_irqs_on(void)
1217 {
1218 #ifdef irqs_disabled
1219         BUG_ON(irqs_disabled());
1220 #endif
1221 }
1222
1223 /*
1224  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1225  * inserted at the front, and the buffer_head at the back if any is evicted.
1226  * Or, if already in the LRU it is moved to the front.
1227  */
1228 static void bh_lru_install(struct buffer_head *bh)
1229 {
1230         struct buffer_head *evictee = bh;
1231         struct bh_lru *b;
1232         int i;
1233
1234         check_irqs_on();
1235         bh_lru_lock();
1236
1237         /*
1238          * the refcount of buffer_head in bh_lru prevents dropping the
1239          * attached page(i.e., try_to_free_buffers) so it could cause
1240          * failing page migration.
1241          * Skip putting upcoming bh into bh_lru until migration is done.
1242          */
1243         if (lru_cache_disabled()) {
1244                 bh_lru_unlock();
1245                 return;
1246         }
1247
1248         b = this_cpu_ptr(&bh_lrus);
1249         for (i = 0; i < BH_LRU_SIZE; i++) {
1250                 swap(evictee, b->bhs[i]);
1251                 if (evictee == bh) {
1252                         bh_lru_unlock();
1253                         return;
1254                 }
1255         }
1256
1257         get_bh(bh);
1258         bh_lru_unlock();
1259         brelse(evictee);
1260 }
1261
1262 /*
1263  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1264  */
1265 static struct buffer_head *
1266 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1267 {
1268         struct buffer_head *ret = NULL;
1269         unsigned int i;
1270
1271         check_irqs_on();
1272         bh_lru_lock();
1273         for (i = 0; i < BH_LRU_SIZE; i++) {
1274                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1275
1276                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1277                     bh->b_size == size) {
1278                         if (i) {
1279                                 while (i) {
1280                                         __this_cpu_write(bh_lrus.bhs[i],
1281                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1282                                         i--;
1283                                 }
1284                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1285                         }
1286                         get_bh(bh);
1287                         ret = bh;
1288                         break;
1289                 }
1290         }
1291         bh_lru_unlock();
1292         return ret;
1293 }
1294
1295 /*
1296  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1297  * it in the LRU and mark it as accessed.  If it is not present then return
1298  * NULL
1299  */
1300 struct buffer_head *
1301 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1302 {
1303         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1304
1305         if (bh == NULL) {
1306                 /* __find_get_block_slow will mark the page accessed */
1307                 bh = __find_get_block_slow(bdev, block);
1308                 if (bh)
1309                         bh_lru_install(bh);
1310         } else
1311                 touch_buffer(bh);
1312
1313         return bh;
1314 }
1315 EXPORT_SYMBOL(__find_get_block);
1316
1317 /*
1318  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1319  * which corresponds to the passed block_device, block and size. The
1320  * returned buffer has its reference count incremented.
1321  *
1322  * __getblk_gfp() will lock up the machine if grow_dev_page's
1323  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1324  */
1325 struct buffer_head *
1326 __getblk_gfp(struct block_device *bdev, sector_t block,
1327              unsigned size, gfp_t gfp)
1328 {
1329         struct buffer_head *bh = __find_get_block(bdev, block, size);
1330
1331         might_sleep();
1332         if (bh == NULL)
1333                 bh = __getblk_slow(bdev, block, size, gfp);
1334         return bh;
1335 }
1336 EXPORT_SYMBOL(__getblk_gfp);
1337
1338 /*
1339  * Do async read-ahead on a buffer..
1340  */
1341 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1342 {
1343         struct buffer_head *bh = __getblk(bdev, block, size);
1344         if (likely(bh)) {
1345                 bh_readahead(bh, REQ_RAHEAD);
1346                 brelse(bh);
1347         }
1348 }
1349 EXPORT_SYMBOL(__breadahead);
1350
1351 /**
1352  *  __bread_gfp() - reads a specified block and returns the bh
1353  *  @bdev: the block_device to read from
1354  *  @block: number of block
1355  *  @size: size (in bytes) to read
1356  *  @gfp: page allocation flag
1357  *
1358  *  Reads a specified block, and returns buffer head that contains it.
1359  *  The page cache can be allocated from non-movable area
1360  *  not to prevent page migration if you set gfp to zero.
1361  *  It returns NULL if the block was unreadable.
1362  */
1363 struct buffer_head *
1364 __bread_gfp(struct block_device *bdev, sector_t block,
1365                    unsigned size, gfp_t gfp)
1366 {
1367         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1368
1369         if (likely(bh) && !buffer_uptodate(bh))
1370                 bh = __bread_slow(bh);
1371         return bh;
1372 }
1373 EXPORT_SYMBOL(__bread_gfp);
1374
1375 static void __invalidate_bh_lrus(struct bh_lru *b)
1376 {
1377         int i;
1378
1379         for (i = 0; i < BH_LRU_SIZE; i++) {
1380                 brelse(b->bhs[i]);
1381                 b->bhs[i] = NULL;
1382         }
1383 }
1384 /*
1385  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1386  * This doesn't race because it runs in each cpu either in irq
1387  * or with preempt disabled.
1388  */
1389 static void invalidate_bh_lru(void *arg)
1390 {
1391         struct bh_lru *b = &get_cpu_var(bh_lrus);
1392
1393         __invalidate_bh_lrus(b);
1394         put_cpu_var(bh_lrus);
1395 }
1396
1397 bool has_bh_in_lru(int cpu, void *dummy)
1398 {
1399         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1400         int i;
1401         
1402         for (i = 0; i < BH_LRU_SIZE; i++) {
1403                 if (b->bhs[i])
1404                         return true;
1405         }
1406
1407         return false;
1408 }
1409
1410 void invalidate_bh_lrus(void)
1411 {
1412         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1413 }
1414 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1415
1416 /*
1417  * It's called from workqueue context so we need a bh_lru_lock to close
1418  * the race with preemption/irq.
1419  */
1420 void invalidate_bh_lrus_cpu(void)
1421 {
1422         struct bh_lru *b;
1423
1424         bh_lru_lock();
1425         b = this_cpu_ptr(&bh_lrus);
1426         __invalidate_bh_lrus(b);
1427         bh_lru_unlock();
1428 }
1429
1430 void set_bh_page(struct buffer_head *bh,
1431                 struct page *page, unsigned long offset)
1432 {
1433         bh->b_page = page;
1434         BUG_ON(offset >= PAGE_SIZE);
1435         if (PageHighMem(page))
1436                 /*
1437                  * This catches illegal uses and preserves the offset:
1438                  */
1439                 bh->b_data = (char *)(0 + offset);
1440         else
1441                 bh->b_data = page_address(page) + offset;
1442 }
1443 EXPORT_SYMBOL(set_bh_page);
1444
1445 /*
1446  * Called when truncating a buffer on a page completely.
1447  */
1448
1449 /* Bits that are cleared during an invalidate */
1450 #define BUFFER_FLAGS_DISCARD \
1451         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1452          1 << BH_Delay | 1 << BH_Unwritten)
1453
1454 static void discard_buffer(struct buffer_head * bh)
1455 {
1456         unsigned long b_state, b_state_old;
1457
1458         lock_buffer(bh);
1459         clear_buffer_dirty(bh);
1460         bh->b_bdev = NULL;
1461         b_state = bh->b_state;
1462         for (;;) {
1463                 b_state_old = cmpxchg(&bh->b_state, b_state,
1464                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1465                 if (b_state_old == b_state)
1466                         break;
1467                 b_state = b_state_old;
1468         }
1469         unlock_buffer(bh);
1470 }
1471
1472 /**
1473  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1474  * @folio: The folio which is affected.
1475  * @offset: start of the range to invalidate
1476  * @length: length of the range to invalidate
1477  *
1478  * block_invalidate_folio() is called when all or part of the folio has been
1479  * invalidated by a truncate operation.
1480  *
1481  * block_invalidate_folio() does not have to release all buffers, but it must
1482  * ensure that no dirty buffer is left outside @offset and that no I/O
1483  * is underway against any of the blocks which are outside the truncation
1484  * point.  Because the caller is about to free (and possibly reuse) those
1485  * blocks on-disk.
1486  */
1487 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1488 {
1489         struct buffer_head *head, *bh, *next;
1490         size_t curr_off = 0;
1491         size_t stop = length + offset;
1492
1493         BUG_ON(!folio_test_locked(folio));
1494
1495         /*
1496          * Check for overflow
1497          */
1498         BUG_ON(stop > folio_size(folio) || stop < length);
1499
1500         head = folio_buffers(folio);
1501         if (!head)
1502                 return;
1503
1504         bh = head;
1505         do {
1506                 size_t next_off = curr_off + bh->b_size;
1507                 next = bh->b_this_page;
1508
1509                 /*
1510                  * Are we still fully in range ?
1511                  */
1512                 if (next_off > stop)
1513                         goto out;
1514
1515                 /*
1516                  * is this block fully invalidated?
1517                  */
1518                 if (offset <= curr_off)
1519                         discard_buffer(bh);
1520                 curr_off = next_off;
1521                 bh = next;
1522         } while (bh != head);
1523
1524         /*
1525          * We release buffers only if the entire folio is being invalidated.
1526          * The get_block cached value has been unconditionally invalidated,
1527          * so real IO is not possible anymore.
1528          */
1529         if (length == folio_size(folio))
1530                 filemap_release_folio(folio, 0);
1531 out:
1532         return;
1533 }
1534 EXPORT_SYMBOL(block_invalidate_folio);
1535
1536
1537 /*
1538  * We attach and possibly dirty the buffers atomically wrt
1539  * block_dirty_folio() via private_lock.  try_to_free_buffers
1540  * is already excluded via the page lock.
1541  */
1542 void create_empty_buffers(struct page *page,
1543                         unsigned long blocksize, unsigned long b_state)
1544 {
1545         struct buffer_head *bh, *head, *tail;
1546
1547         head = alloc_page_buffers(page, blocksize, true);
1548         bh = head;
1549         do {
1550                 bh->b_state |= b_state;
1551                 tail = bh;
1552                 bh = bh->b_this_page;
1553         } while (bh);
1554         tail->b_this_page = head;
1555
1556         spin_lock(&page->mapping->private_lock);
1557         if (PageUptodate(page) || PageDirty(page)) {
1558                 bh = head;
1559                 do {
1560                         if (PageDirty(page))
1561                                 set_buffer_dirty(bh);
1562                         if (PageUptodate(page))
1563                                 set_buffer_uptodate(bh);
1564                         bh = bh->b_this_page;
1565                 } while (bh != head);
1566         }
1567         attach_page_private(page, head);
1568         spin_unlock(&page->mapping->private_lock);
1569 }
1570 EXPORT_SYMBOL(create_empty_buffers);
1571
1572 /**
1573  * clean_bdev_aliases: clean a range of buffers in block device
1574  * @bdev: Block device to clean buffers in
1575  * @block: Start of a range of blocks to clean
1576  * @len: Number of blocks to clean
1577  *
1578  * We are taking a range of blocks for data and we don't want writeback of any
1579  * buffer-cache aliases starting from return from this function and until the
1580  * moment when something will explicitly mark the buffer dirty (hopefully that
1581  * will not happen until we will free that block ;-) We don't even need to mark
1582  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1583  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1584  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1585  * would confuse anyone who might pick it with bread() afterwards...
1586  *
1587  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1588  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1589  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1590  * need to.  That happens here.
1591  */
1592 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1593 {
1594         struct inode *bd_inode = bdev->bd_inode;
1595         struct address_space *bd_mapping = bd_inode->i_mapping;
1596         struct folio_batch fbatch;
1597         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1598         pgoff_t end;
1599         int i, count;
1600         struct buffer_head *bh;
1601         struct buffer_head *head;
1602
1603         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1604         folio_batch_init(&fbatch);
1605         while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1606                 count = folio_batch_count(&fbatch);
1607                 for (i = 0; i < count; i++) {
1608                         struct folio *folio = fbatch.folios[i];
1609
1610                         if (!folio_buffers(folio))
1611                                 continue;
1612                         /*
1613                          * We use folio lock instead of bd_mapping->private_lock
1614                          * to pin buffers here since we can afford to sleep and
1615                          * it scales better than a global spinlock lock.
1616                          */
1617                         folio_lock(folio);
1618                         /* Recheck when the folio is locked which pins bhs */
1619                         head = folio_buffers(folio);
1620                         if (!head)
1621                                 goto unlock_page;
1622                         bh = head;
1623                         do {
1624                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1625                                         goto next;
1626                                 if (bh->b_blocknr >= block + len)
1627                                         break;
1628                                 clear_buffer_dirty(bh);
1629                                 wait_on_buffer(bh);
1630                                 clear_buffer_req(bh);
1631 next:
1632                                 bh = bh->b_this_page;
1633                         } while (bh != head);
1634 unlock_page:
1635                         folio_unlock(folio);
1636                 }
1637                 folio_batch_release(&fbatch);
1638                 cond_resched();
1639                 /* End of range already reached? */
1640                 if (index > end || !index)
1641                         break;
1642         }
1643 }
1644 EXPORT_SYMBOL(clean_bdev_aliases);
1645
1646 /*
1647  * Size is a power-of-two in the range 512..PAGE_SIZE,
1648  * and the case we care about most is PAGE_SIZE.
1649  *
1650  * So this *could* possibly be written with those
1651  * constraints in mind (relevant mostly if some
1652  * architecture has a slow bit-scan instruction)
1653  */
1654 static inline int block_size_bits(unsigned int blocksize)
1655 {
1656         return ilog2(blocksize);
1657 }
1658
1659 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1660 {
1661         BUG_ON(!PageLocked(page));
1662
1663         if (!page_has_buffers(page))
1664                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1665                                      b_state);
1666         return page_buffers(page);
1667 }
1668
1669 /*
1670  * NOTE! All mapped/uptodate combinations are valid:
1671  *
1672  *      Mapped  Uptodate        Meaning
1673  *
1674  *      No      No              "unknown" - must do get_block()
1675  *      No      Yes             "hole" - zero-filled
1676  *      Yes     No              "allocated" - allocated on disk, not read in
1677  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1678  *
1679  * "Dirty" is valid only with the last case (mapped+uptodate).
1680  */
1681
1682 /*
1683  * While block_write_full_page is writing back the dirty buffers under
1684  * the page lock, whoever dirtied the buffers may decide to clean them
1685  * again at any time.  We handle that by only looking at the buffer
1686  * state inside lock_buffer().
1687  *
1688  * If block_write_full_page() is called for regular writeback
1689  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1690  * locked buffer.   This only can happen if someone has written the buffer
1691  * directly, with submit_bh().  At the address_space level PageWriteback
1692  * prevents this contention from occurring.
1693  *
1694  * If block_write_full_page() is called with wbc->sync_mode ==
1695  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1696  * causes the writes to be flagged as synchronous writes.
1697  */
1698 int __block_write_full_page(struct inode *inode, struct page *page,
1699                         get_block_t *get_block, struct writeback_control *wbc,
1700                         bh_end_io_t *handler)
1701 {
1702         int err;
1703         sector_t block;
1704         sector_t last_block;
1705         struct buffer_head *bh, *head;
1706         unsigned int blocksize, bbits;
1707         int nr_underway = 0;
1708         blk_opf_t write_flags = wbc_to_write_flags(wbc);
1709
1710         head = create_page_buffers(page, inode,
1711                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1712
1713         /*
1714          * Be very careful.  We have no exclusion from block_dirty_folio
1715          * here, and the (potentially unmapped) buffers may become dirty at
1716          * any time.  If a buffer becomes dirty here after we've inspected it
1717          * then we just miss that fact, and the page stays dirty.
1718          *
1719          * Buffers outside i_size may be dirtied by block_dirty_folio;
1720          * handle that here by just cleaning them.
1721          */
1722
1723         bh = head;
1724         blocksize = bh->b_size;
1725         bbits = block_size_bits(blocksize);
1726
1727         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1728         last_block = (i_size_read(inode) - 1) >> bbits;
1729
1730         /*
1731          * Get all the dirty buffers mapped to disk addresses and
1732          * handle any aliases from the underlying blockdev's mapping.
1733          */
1734         do {
1735                 if (block > last_block) {
1736                         /*
1737                          * mapped buffers outside i_size will occur, because
1738                          * this page can be outside i_size when there is a
1739                          * truncate in progress.
1740                          */
1741                         /*
1742                          * The buffer was zeroed by block_write_full_page()
1743                          */
1744                         clear_buffer_dirty(bh);
1745                         set_buffer_uptodate(bh);
1746                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1747                            buffer_dirty(bh)) {
1748                         WARN_ON(bh->b_size != blocksize);
1749                         err = get_block(inode, block, bh, 1);
1750                         if (err)
1751                                 goto recover;
1752                         clear_buffer_delay(bh);
1753                         if (buffer_new(bh)) {
1754                                 /* blockdev mappings never come here */
1755                                 clear_buffer_new(bh);
1756                                 clean_bdev_bh_alias(bh);
1757                         }
1758                 }
1759                 bh = bh->b_this_page;
1760                 block++;
1761         } while (bh != head);
1762
1763         do {
1764                 if (!buffer_mapped(bh))
1765                         continue;
1766                 /*
1767                  * If it's a fully non-blocking write attempt and we cannot
1768                  * lock the buffer then redirty the page.  Note that this can
1769                  * potentially cause a busy-wait loop from writeback threads
1770                  * and kswapd activity, but those code paths have their own
1771                  * higher-level throttling.
1772                  */
1773                 if (wbc->sync_mode != WB_SYNC_NONE) {
1774                         lock_buffer(bh);
1775                 } else if (!trylock_buffer(bh)) {
1776                         redirty_page_for_writepage(wbc, page);
1777                         continue;
1778                 }
1779                 if (test_clear_buffer_dirty(bh)) {
1780                         mark_buffer_async_write_endio(bh, handler);
1781                 } else {
1782                         unlock_buffer(bh);
1783                 }
1784         } while ((bh = bh->b_this_page) != head);
1785
1786         /*
1787          * The page and its buffers are protected by PageWriteback(), so we can
1788          * drop the bh refcounts early.
1789          */
1790         BUG_ON(PageWriteback(page));
1791         set_page_writeback(page);
1792
1793         do {
1794                 struct buffer_head *next = bh->b_this_page;
1795                 if (buffer_async_write(bh)) {
1796                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1797                         nr_underway++;
1798                 }
1799                 bh = next;
1800         } while (bh != head);
1801         unlock_page(page);
1802
1803         err = 0;
1804 done:
1805         if (nr_underway == 0) {
1806                 /*
1807                  * The page was marked dirty, but the buffers were
1808                  * clean.  Someone wrote them back by hand with
1809                  * write_dirty_buffer/submit_bh.  A rare case.
1810                  */
1811                 end_page_writeback(page);
1812
1813                 /*
1814                  * The page and buffer_heads can be released at any time from
1815                  * here on.
1816                  */
1817         }
1818         return err;
1819
1820 recover:
1821         /*
1822          * ENOSPC, or some other error.  We may already have added some
1823          * blocks to the file, so we need to write these out to avoid
1824          * exposing stale data.
1825          * The page is currently locked and not marked for writeback
1826          */
1827         bh = head;
1828         /* Recovery: lock and submit the mapped buffers */
1829         do {
1830                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1831                     !buffer_delay(bh)) {
1832                         lock_buffer(bh);
1833                         mark_buffer_async_write_endio(bh, handler);
1834                 } else {
1835                         /*
1836                          * The buffer may have been set dirty during
1837                          * attachment to a dirty page.
1838                          */
1839                         clear_buffer_dirty(bh);
1840                 }
1841         } while ((bh = bh->b_this_page) != head);
1842         SetPageError(page);
1843         BUG_ON(PageWriteback(page));
1844         mapping_set_error(page->mapping, err);
1845         set_page_writeback(page);
1846         do {
1847                 struct buffer_head *next = bh->b_this_page;
1848                 if (buffer_async_write(bh)) {
1849                         clear_buffer_dirty(bh);
1850                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1851                         nr_underway++;
1852                 }
1853                 bh = next;
1854         } while (bh != head);
1855         unlock_page(page);
1856         goto done;
1857 }
1858 EXPORT_SYMBOL(__block_write_full_page);
1859
1860 /*
1861  * If a page has any new buffers, zero them out here, and mark them uptodate
1862  * and dirty so they'll be written out (in order to prevent uninitialised
1863  * block data from leaking). And clear the new bit.
1864  */
1865 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1866 {
1867         unsigned int block_start, block_end;
1868         struct buffer_head *head, *bh;
1869
1870         BUG_ON(!PageLocked(page));
1871         if (!page_has_buffers(page))
1872                 return;
1873
1874         bh = head = page_buffers(page);
1875         block_start = 0;
1876         do {
1877                 block_end = block_start + bh->b_size;
1878
1879                 if (buffer_new(bh)) {
1880                         if (block_end > from && block_start < to) {
1881                                 if (!PageUptodate(page)) {
1882                                         unsigned start, size;
1883
1884                                         start = max(from, block_start);
1885                                         size = min(to, block_end) - start;
1886
1887                                         zero_user(page, start, size);
1888                                         set_buffer_uptodate(bh);
1889                                 }
1890
1891                                 clear_buffer_new(bh);
1892                                 mark_buffer_dirty(bh);
1893                         }
1894                 }
1895
1896                 block_start = block_end;
1897                 bh = bh->b_this_page;
1898         } while (bh != head);
1899 }
1900 EXPORT_SYMBOL(page_zero_new_buffers);
1901
1902 static void
1903 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1904                 const struct iomap *iomap)
1905 {
1906         loff_t offset = block << inode->i_blkbits;
1907
1908         bh->b_bdev = iomap->bdev;
1909
1910         /*
1911          * Block points to offset in file we need to map, iomap contains
1912          * the offset at which the map starts. If the map ends before the
1913          * current block, then do not map the buffer and let the caller
1914          * handle it.
1915          */
1916         BUG_ON(offset >= iomap->offset + iomap->length);
1917
1918         switch (iomap->type) {
1919         case IOMAP_HOLE:
1920                 /*
1921                  * If the buffer is not up to date or beyond the current EOF,
1922                  * we need to mark it as new to ensure sub-block zeroing is
1923                  * executed if necessary.
1924                  */
1925                 if (!buffer_uptodate(bh) ||
1926                     (offset >= i_size_read(inode)))
1927                         set_buffer_new(bh);
1928                 break;
1929         case IOMAP_DELALLOC:
1930                 if (!buffer_uptodate(bh) ||
1931                     (offset >= i_size_read(inode)))
1932                         set_buffer_new(bh);
1933                 set_buffer_uptodate(bh);
1934                 set_buffer_mapped(bh);
1935                 set_buffer_delay(bh);
1936                 break;
1937         case IOMAP_UNWRITTEN:
1938                 /*
1939                  * For unwritten regions, we always need to ensure that regions
1940                  * in the block we are not writing to are zeroed. Mark the
1941                  * buffer as new to ensure this.
1942                  */
1943                 set_buffer_new(bh);
1944                 set_buffer_unwritten(bh);
1945                 fallthrough;
1946         case IOMAP_MAPPED:
1947                 if ((iomap->flags & IOMAP_F_NEW) ||
1948                     offset >= i_size_read(inode))
1949                         set_buffer_new(bh);
1950                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1951                                 inode->i_blkbits;
1952                 set_buffer_mapped(bh);
1953                 break;
1954         }
1955 }
1956
1957 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
1958                 get_block_t *get_block, const struct iomap *iomap)
1959 {
1960         unsigned from = pos & (PAGE_SIZE - 1);
1961         unsigned to = from + len;
1962         struct inode *inode = folio->mapping->host;
1963         unsigned block_start, block_end;
1964         sector_t block;
1965         int err = 0;
1966         unsigned blocksize, bbits;
1967         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1968
1969         BUG_ON(!folio_test_locked(folio));
1970         BUG_ON(from > PAGE_SIZE);
1971         BUG_ON(to > PAGE_SIZE);
1972         BUG_ON(from > to);
1973
1974         head = create_page_buffers(&folio->page, inode, 0);
1975         blocksize = head->b_size;
1976         bbits = block_size_bits(blocksize);
1977
1978         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1979
1980         for(bh = head, block_start = 0; bh != head || !block_start;
1981             block++, block_start=block_end, bh = bh->b_this_page) {
1982                 block_end = block_start + blocksize;
1983                 if (block_end <= from || block_start >= to) {
1984                         if (folio_test_uptodate(folio)) {
1985                                 if (!buffer_uptodate(bh))
1986                                         set_buffer_uptodate(bh);
1987                         }
1988                         continue;
1989                 }
1990                 if (buffer_new(bh))
1991                         clear_buffer_new(bh);
1992                 if (!buffer_mapped(bh)) {
1993                         WARN_ON(bh->b_size != blocksize);
1994                         if (get_block) {
1995                                 err = get_block(inode, block, bh, 1);
1996                                 if (err)
1997                                         break;
1998                         } else {
1999                                 iomap_to_bh(inode, block, bh, iomap);
2000                         }
2001
2002                         if (buffer_new(bh)) {
2003                                 clean_bdev_bh_alias(bh);
2004                                 if (folio_test_uptodate(folio)) {
2005                                         clear_buffer_new(bh);
2006                                         set_buffer_uptodate(bh);
2007                                         mark_buffer_dirty(bh);
2008                                         continue;
2009                                 }
2010                                 if (block_end > to || block_start < from)
2011                                         folio_zero_segments(folio,
2012                                                 to, block_end,
2013                                                 block_start, from);
2014                                 continue;
2015                         }
2016                 }
2017                 if (folio_test_uptodate(folio)) {
2018                         if (!buffer_uptodate(bh))
2019                                 set_buffer_uptodate(bh);
2020                         continue; 
2021                 }
2022                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2023                     !buffer_unwritten(bh) &&
2024                      (block_start < from || block_end > to)) {
2025                         bh_read_nowait(bh, 0);
2026                         *wait_bh++=bh;
2027                 }
2028         }
2029         /*
2030          * If we issued read requests - let them complete.
2031          */
2032         while(wait_bh > wait) {
2033                 wait_on_buffer(*--wait_bh);
2034                 if (!buffer_uptodate(*wait_bh))
2035                         err = -EIO;
2036         }
2037         if (unlikely(err))
2038                 page_zero_new_buffers(&folio->page, from, to);
2039         return err;
2040 }
2041
2042 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2043                 get_block_t *get_block)
2044 {
2045         return __block_write_begin_int(page_folio(page), pos, len, get_block,
2046                                        NULL);
2047 }
2048 EXPORT_SYMBOL(__block_write_begin);
2049
2050 static int __block_commit_write(struct inode *inode, struct page *page,
2051                 unsigned from, unsigned to)
2052 {
2053         unsigned block_start, block_end;
2054         int partial = 0;
2055         unsigned blocksize;
2056         struct buffer_head *bh, *head;
2057
2058         bh = head = page_buffers(page);
2059         blocksize = bh->b_size;
2060
2061         block_start = 0;
2062         do {
2063                 block_end = block_start + blocksize;
2064                 if (block_end <= from || block_start >= to) {
2065                         if (!buffer_uptodate(bh))
2066                                 partial = 1;
2067                 } else {
2068                         set_buffer_uptodate(bh);
2069                         mark_buffer_dirty(bh);
2070                 }
2071                 if (buffer_new(bh))
2072                         clear_buffer_new(bh);
2073
2074                 block_start = block_end;
2075                 bh = bh->b_this_page;
2076         } while (bh != head);
2077
2078         /*
2079          * If this is a partial write which happened to make all buffers
2080          * uptodate then we can optimize away a bogus read_folio() for
2081          * the next read(). Here we 'discover' whether the page went
2082          * uptodate as a result of this (potentially partial) write.
2083          */
2084         if (!partial)
2085                 SetPageUptodate(page);
2086         return 0;
2087 }
2088
2089 /*
2090  * block_write_begin takes care of the basic task of block allocation and
2091  * bringing partial write blocks uptodate first.
2092  *
2093  * The filesystem needs to handle block truncation upon failure.
2094  */
2095 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2096                 struct page **pagep, get_block_t *get_block)
2097 {
2098         pgoff_t index = pos >> PAGE_SHIFT;
2099         struct page *page;
2100         int status;
2101
2102         page = grab_cache_page_write_begin(mapping, index);
2103         if (!page)
2104                 return -ENOMEM;
2105
2106         status = __block_write_begin(page, pos, len, get_block);
2107         if (unlikely(status)) {
2108                 unlock_page(page);
2109                 put_page(page);
2110                 page = NULL;
2111         }
2112
2113         *pagep = page;
2114         return status;
2115 }
2116 EXPORT_SYMBOL(block_write_begin);
2117
2118 int block_write_end(struct file *file, struct address_space *mapping,
2119                         loff_t pos, unsigned len, unsigned copied,
2120                         struct page *page, void *fsdata)
2121 {
2122         struct inode *inode = mapping->host;
2123         unsigned start;
2124
2125         start = pos & (PAGE_SIZE - 1);
2126
2127         if (unlikely(copied < len)) {
2128                 /*
2129                  * The buffers that were written will now be uptodate, so
2130                  * we don't have to worry about a read_folio reading them
2131                  * and overwriting a partial write. However if we have
2132                  * encountered a short write and only partially written
2133                  * into a buffer, it will not be marked uptodate, so a
2134                  * read_folio might come in and destroy our partial write.
2135                  *
2136                  * Do the simplest thing, and just treat any short write to a
2137                  * non uptodate page as a zero-length write, and force the
2138                  * caller to redo the whole thing.
2139                  */
2140                 if (!PageUptodate(page))
2141                         copied = 0;
2142
2143                 page_zero_new_buffers(page, start+copied, start+len);
2144         }
2145         flush_dcache_page(page);
2146
2147         /* This could be a short (even 0-length) commit */
2148         __block_commit_write(inode, page, start, start+copied);
2149
2150         return copied;
2151 }
2152 EXPORT_SYMBOL(block_write_end);
2153
2154 int generic_write_end(struct file *file, struct address_space *mapping,
2155                         loff_t pos, unsigned len, unsigned copied,
2156                         struct page *page, void *fsdata)
2157 {
2158         struct inode *inode = mapping->host;
2159         loff_t old_size = inode->i_size;
2160         bool i_size_changed = false;
2161
2162         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2163
2164         /*
2165          * No need to use i_size_read() here, the i_size cannot change under us
2166          * because we hold i_rwsem.
2167          *
2168          * But it's important to update i_size while still holding page lock:
2169          * page writeout could otherwise come in and zero beyond i_size.
2170          */
2171         if (pos + copied > inode->i_size) {
2172                 i_size_write(inode, pos + copied);
2173                 i_size_changed = true;
2174         }
2175
2176         unlock_page(page);
2177         put_page(page);
2178
2179         if (old_size < pos)
2180                 pagecache_isize_extended(inode, old_size, pos);
2181         /*
2182          * Don't mark the inode dirty under page lock. First, it unnecessarily
2183          * makes the holding time of page lock longer. Second, it forces lock
2184          * ordering of page lock and transaction start for journaling
2185          * filesystems.
2186          */
2187         if (i_size_changed)
2188                 mark_inode_dirty(inode);
2189         return copied;
2190 }
2191 EXPORT_SYMBOL(generic_write_end);
2192
2193 /*
2194  * block_is_partially_uptodate checks whether buffers within a folio are
2195  * uptodate or not.
2196  *
2197  * Returns true if all buffers which correspond to the specified part
2198  * of the folio are uptodate.
2199  */
2200 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2201 {
2202         unsigned block_start, block_end, blocksize;
2203         unsigned to;
2204         struct buffer_head *bh, *head;
2205         bool ret = true;
2206
2207         head = folio_buffers(folio);
2208         if (!head)
2209                 return false;
2210         blocksize = head->b_size;
2211         to = min_t(unsigned, folio_size(folio) - from, count);
2212         to = from + to;
2213         if (from < blocksize && to > folio_size(folio) - blocksize)
2214                 return false;
2215
2216         bh = head;
2217         block_start = 0;
2218         do {
2219                 block_end = block_start + blocksize;
2220                 if (block_end > from && block_start < to) {
2221                         if (!buffer_uptodate(bh)) {
2222                                 ret = false;
2223                                 break;
2224                         }
2225                         if (block_end >= to)
2226                                 break;
2227                 }
2228                 block_start = block_end;
2229                 bh = bh->b_this_page;
2230         } while (bh != head);
2231
2232         return ret;
2233 }
2234 EXPORT_SYMBOL(block_is_partially_uptodate);
2235
2236 /*
2237  * Generic "read_folio" function for block devices that have the normal
2238  * get_block functionality. This is most of the block device filesystems.
2239  * Reads the folio asynchronously --- the unlock_buffer() and
2240  * set/clear_buffer_uptodate() functions propagate buffer state into the
2241  * folio once IO has completed.
2242  */
2243 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2244 {
2245         struct inode *inode = folio->mapping->host;
2246         sector_t iblock, lblock;
2247         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2248         unsigned int blocksize, bbits;
2249         int nr, i;
2250         int fully_mapped = 1;
2251         bool page_error = false;
2252
2253         VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2254
2255         head = create_page_buffers(&folio->page, inode, 0);
2256         blocksize = head->b_size;
2257         bbits = block_size_bits(blocksize);
2258
2259         iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2260         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2261         bh = head;
2262         nr = 0;
2263         i = 0;
2264
2265         do {
2266                 if (buffer_uptodate(bh))
2267                         continue;
2268
2269                 if (!buffer_mapped(bh)) {
2270                         int err = 0;
2271
2272                         fully_mapped = 0;
2273                         if (iblock < lblock) {
2274                                 WARN_ON(bh->b_size != blocksize);
2275                                 err = get_block(inode, iblock, bh, 0);
2276                                 if (err) {
2277                                         folio_set_error(folio);
2278                                         page_error = true;
2279                                 }
2280                         }
2281                         if (!buffer_mapped(bh)) {
2282                                 folio_zero_range(folio, i * blocksize,
2283                                                 blocksize);
2284                                 if (!err)
2285                                         set_buffer_uptodate(bh);
2286                                 continue;
2287                         }
2288                         /*
2289                          * get_block() might have updated the buffer
2290                          * synchronously
2291                          */
2292                         if (buffer_uptodate(bh))
2293                                 continue;
2294                 }
2295                 arr[nr++] = bh;
2296         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2297
2298         if (fully_mapped)
2299                 folio_set_mappedtodisk(folio);
2300
2301         if (!nr) {
2302                 /*
2303                  * All buffers are uptodate - we can set the folio uptodate
2304                  * as well. But not if get_block() returned an error.
2305                  */
2306                 if (!page_error)
2307                         folio_mark_uptodate(folio);
2308                 folio_unlock(folio);
2309                 return 0;
2310         }
2311
2312         /* Stage two: lock the buffers */
2313         for (i = 0; i < nr; i++) {
2314                 bh = arr[i];
2315                 lock_buffer(bh);
2316                 mark_buffer_async_read(bh);
2317         }
2318
2319         /*
2320          * Stage 3: start the IO.  Check for uptodateness
2321          * inside the buffer lock in case another process reading
2322          * the underlying blockdev brought it uptodate (the sct fix).
2323          */
2324         for (i = 0; i < nr; i++) {
2325                 bh = arr[i];
2326                 if (buffer_uptodate(bh))
2327                         end_buffer_async_read(bh, 1);
2328                 else
2329                         submit_bh(REQ_OP_READ, bh);
2330         }
2331         return 0;
2332 }
2333 EXPORT_SYMBOL(block_read_full_folio);
2334
2335 /* utility function for filesystems that need to do work on expanding
2336  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2337  * deal with the hole.  
2338  */
2339 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2340 {
2341         struct address_space *mapping = inode->i_mapping;
2342         const struct address_space_operations *aops = mapping->a_ops;
2343         struct page *page;
2344         void *fsdata = NULL;
2345         int err;
2346
2347         err = inode_newsize_ok(inode, size);
2348         if (err)
2349                 goto out;
2350
2351         err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2352         if (err)
2353                 goto out;
2354
2355         err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2356         BUG_ON(err > 0);
2357
2358 out:
2359         return err;
2360 }
2361 EXPORT_SYMBOL(generic_cont_expand_simple);
2362
2363 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2364                             loff_t pos, loff_t *bytes)
2365 {
2366         struct inode *inode = mapping->host;
2367         const struct address_space_operations *aops = mapping->a_ops;
2368         unsigned int blocksize = i_blocksize(inode);
2369         struct page *page;
2370         void *fsdata = NULL;
2371         pgoff_t index, curidx;
2372         loff_t curpos;
2373         unsigned zerofrom, offset, len;
2374         int err = 0;
2375
2376         index = pos >> PAGE_SHIFT;
2377         offset = pos & ~PAGE_MASK;
2378
2379         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2380                 zerofrom = curpos & ~PAGE_MASK;
2381                 if (zerofrom & (blocksize-1)) {
2382                         *bytes |= (blocksize-1);
2383                         (*bytes)++;
2384                 }
2385                 len = PAGE_SIZE - zerofrom;
2386
2387                 err = aops->write_begin(file, mapping, curpos, len,
2388                                             &page, &fsdata);
2389                 if (err)
2390                         goto out;
2391                 zero_user(page, zerofrom, len);
2392                 err = aops->write_end(file, mapping, curpos, len, len,
2393                                                 page, fsdata);
2394                 if (err < 0)
2395                         goto out;
2396                 BUG_ON(err != len);
2397                 err = 0;
2398
2399                 balance_dirty_pages_ratelimited(mapping);
2400
2401                 if (fatal_signal_pending(current)) {
2402                         err = -EINTR;
2403                         goto out;
2404                 }
2405         }
2406
2407         /* page covers the boundary, find the boundary offset */
2408         if (index == curidx) {
2409                 zerofrom = curpos & ~PAGE_MASK;
2410                 /* if we will expand the thing last block will be filled */
2411                 if (offset <= zerofrom) {
2412                         goto out;
2413                 }
2414                 if (zerofrom & (blocksize-1)) {
2415                         *bytes |= (blocksize-1);
2416                         (*bytes)++;
2417                 }
2418                 len = offset - zerofrom;
2419
2420                 err = aops->write_begin(file, mapping, curpos, len,
2421                                             &page, &fsdata);
2422                 if (err)
2423                         goto out;
2424                 zero_user(page, zerofrom, len);
2425                 err = aops->write_end(file, mapping, curpos, len, len,
2426                                                 page, fsdata);
2427                 if (err < 0)
2428                         goto out;
2429                 BUG_ON(err != len);
2430                 err = 0;
2431         }
2432 out:
2433         return err;
2434 }
2435
2436 /*
2437  * For moronic filesystems that do not allow holes in file.
2438  * We may have to extend the file.
2439  */
2440 int cont_write_begin(struct file *file, struct address_space *mapping,
2441                         loff_t pos, unsigned len,
2442                         struct page **pagep, void **fsdata,
2443                         get_block_t *get_block, loff_t *bytes)
2444 {
2445         struct inode *inode = mapping->host;
2446         unsigned int blocksize = i_blocksize(inode);
2447         unsigned int zerofrom;
2448         int err;
2449
2450         err = cont_expand_zero(file, mapping, pos, bytes);
2451         if (err)
2452                 return err;
2453
2454         zerofrom = *bytes & ~PAGE_MASK;
2455         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2456                 *bytes |= (blocksize-1);
2457                 (*bytes)++;
2458         }
2459
2460         return block_write_begin(mapping, pos, len, pagep, get_block);
2461 }
2462 EXPORT_SYMBOL(cont_write_begin);
2463
2464 int block_commit_write(struct page *page, unsigned from, unsigned to)
2465 {
2466         struct inode *inode = page->mapping->host;
2467         __block_commit_write(inode,page,from,to);
2468         return 0;
2469 }
2470 EXPORT_SYMBOL(block_commit_write);
2471
2472 /*
2473  * block_page_mkwrite() is not allowed to change the file size as it gets
2474  * called from a page fault handler when a page is first dirtied. Hence we must
2475  * be careful to check for EOF conditions here. We set the page up correctly
2476  * for a written page which means we get ENOSPC checking when writing into
2477  * holes and correct delalloc and unwritten extent mapping on filesystems that
2478  * support these features.
2479  *
2480  * We are not allowed to take the i_mutex here so we have to play games to
2481  * protect against truncate races as the page could now be beyond EOF.  Because
2482  * truncate writes the inode size before removing pages, once we have the
2483  * page lock we can determine safely if the page is beyond EOF. If it is not
2484  * beyond EOF, then the page is guaranteed safe against truncation until we
2485  * unlock the page.
2486  *
2487  * Direct callers of this function should protect against filesystem freezing
2488  * using sb_start_pagefault() - sb_end_pagefault() functions.
2489  */
2490 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2491                          get_block_t get_block)
2492 {
2493         struct page *page = vmf->page;
2494         struct inode *inode = file_inode(vma->vm_file);
2495         unsigned long end;
2496         loff_t size;
2497         int ret;
2498
2499         lock_page(page);
2500         size = i_size_read(inode);
2501         if ((page->mapping != inode->i_mapping) ||
2502             (page_offset(page) > size)) {
2503                 /* We overload EFAULT to mean page got truncated */
2504                 ret = -EFAULT;
2505                 goto out_unlock;
2506         }
2507
2508         /* page is wholly or partially inside EOF */
2509         if (((page->index + 1) << PAGE_SHIFT) > size)
2510                 end = size & ~PAGE_MASK;
2511         else
2512                 end = PAGE_SIZE;
2513
2514         ret = __block_write_begin(page, 0, end, get_block);
2515         if (!ret)
2516                 ret = block_commit_write(page, 0, end);
2517
2518         if (unlikely(ret < 0))
2519                 goto out_unlock;
2520         set_page_dirty(page);
2521         wait_for_stable_page(page);
2522         return 0;
2523 out_unlock:
2524         unlock_page(page);
2525         return ret;
2526 }
2527 EXPORT_SYMBOL(block_page_mkwrite);
2528
2529 int block_truncate_page(struct address_space *mapping,
2530                         loff_t from, get_block_t *get_block)
2531 {
2532         pgoff_t index = from >> PAGE_SHIFT;
2533         unsigned offset = from & (PAGE_SIZE-1);
2534         unsigned blocksize;
2535         sector_t iblock;
2536         unsigned length, pos;
2537         struct inode *inode = mapping->host;
2538         struct page *page;
2539         struct buffer_head *bh;
2540         int err;
2541
2542         blocksize = i_blocksize(inode);
2543         length = offset & (blocksize - 1);
2544
2545         /* Block boundary? Nothing to do */
2546         if (!length)
2547                 return 0;
2548
2549         length = blocksize - length;
2550         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2551         
2552         page = grab_cache_page(mapping, index);
2553         err = -ENOMEM;
2554         if (!page)
2555                 goto out;
2556
2557         if (!page_has_buffers(page))
2558                 create_empty_buffers(page, blocksize, 0);
2559
2560         /* Find the buffer that contains "offset" */
2561         bh = page_buffers(page);
2562         pos = blocksize;
2563         while (offset >= pos) {
2564                 bh = bh->b_this_page;
2565                 iblock++;
2566                 pos += blocksize;
2567         }
2568
2569         err = 0;
2570         if (!buffer_mapped(bh)) {
2571                 WARN_ON(bh->b_size != blocksize);
2572                 err = get_block(inode, iblock, bh, 0);
2573                 if (err)
2574                         goto unlock;
2575                 /* unmapped? It's a hole - nothing to do */
2576                 if (!buffer_mapped(bh))
2577                         goto unlock;
2578         }
2579
2580         /* Ok, it's mapped. Make sure it's up-to-date */
2581         if (PageUptodate(page))
2582                 set_buffer_uptodate(bh);
2583
2584         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2585                 err = bh_read(bh, 0);
2586                 /* Uhhuh. Read error. Complain and punt. */
2587                 if (err < 0)
2588                         goto unlock;
2589         }
2590
2591         zero_user(page, offset, length);
2592         mark_buffer_dirty(bh);
2593         err = 0;
2594
2595 unlock:
2596         unlock_page(page);
2597         put_page(page);
2598 out:
2599         return err;
2600 }
2601 EXPORT_SYMBOL(block_truncate_page);
2602
2603 /*
2604  * The generic ->writepage function for buffer-backed address_spaces
2605  */
2606 int block_write_full_page(struct page *page, get_block_t *get_block,
2607                         struct writeback_control *wbc)
2608 {
2609         struct inode * const inode = page->mapping->host;
2610         loff_t i_size = i_size_read(inode);
2611         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2612         unsigned offset;
2613
2614         /* Is the page fully inside i_size? */
2615         if (page->index < end_index)
2616                 return __block_write_full_page(inode, page, get_block, wbc,
2617                                                end_buffer_async_write);
2618
2619         /* Is the page fully outside i_size? (truncate in progress) */
2620         offset = i_size & (PAGE_SIZE-1);
2621         if (page->index >= end_index+1 || !offset) {
2622                 unlock_page(page);
2623                 return 0; /* don't care */
2624         }
2625
2626         /*
2627          * The page straddles i_size.  It must be zeroed out on each and every
2628          * writepage invocation because it may be mmapped.  "A file is mapped
2629          * in multiples of the page size.  For a file that is not a multiple of
2630          * the  page size, the remaining memory is zeroed when mapped, and
2631          * writes to that region are not written out to the file."
2632          */
2633         zero_user_segment(page, offset, PAGE_SIZE);
2634         return __block_write_full_page(inode, page, get_block, wbc,
2635                                                         end_buffer_async_write);
2636 }
2637 EXPORT_SYMBOL(block_write_full_page);
2638
2639 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2640                             get_block_t *get_block)
2641 {
2642         struct inode *inode = mapping->host;
2643         struct buffer_head tmp = {
2644                 .b_size = i_blocksize(inode),
2645         };
2646
2647         get_block(inode, block, &tmp, 0);
2648         return tmp.b_blocknr;
2649 }
2650 EXPORT_SYMBOL(generic_block_bmap);
2651
2652 static void end_bio_bh_io_sync(struct bio *bio)
2653 {
2654         struct buffer_head *bh = bio->bi_private;
2655
2656         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2657                 set_bit(BH_Quiet, &bh->b_state);
2658
2659         bh->b_end_io(bh, !bio->bi_status);
2660         bio_put(bio);
2661 }
2662
2663 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2664                           struct writeback_control *wbc)
2665 {
2666         const enum req_op op = opf & REQ_OP_MASK;
2667         struct bio *bio;
2668
2669         BUG_ON(!buffer_locked(bh));
2670         BUG_ON(!buffer_mapped(bh));
2671         BUG_ON(!bh->b_end_io);
2672         BUG_ON(buffer_delay(bh));
2673         BUG_ON(buffer_unwritten(bh));
2674
2675         /*
2676          * Only clear out a write error when rewriting
2677          */
2678         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2679                 clear_buffer_write_io_error(bh);
2680
2681         if (buffer_meta(bh))
2682                 opf |= REQ_META;
2683         if (buffer_prio(bh))
2684                 opf |= REQ_PRIO;
2685
2686         bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2687
2688         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2689
2690         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2691
2692         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2693         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
2694
2695         bio->bi_end_io = end_bio_bh_io_sync;
2696         bio->bi_private = bh;
2697
2698         /* Take care of bh's that straddle the end of the device */
2699         guard_bio_eod(bio);
2700
2701         if (wbc) {
2702                 wbc_init_bio(wbc, bio);
2703                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2704         }
2705
2706         submit_bio(bio);
2707 }
2708
2709 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2710 {
2711         submit_bh_wbc(opf, bh, NULL);
2712 }
2713 EXPORT_SYMBOL(submit_bh);
2714
2715 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2716 {
2717         lock_buffer(bh);
2718         if (!test_clear_buffer_dirty(bh)) {
2719                 unlock_buffer(bh);
2720                 return;
2721         }
2722         bh->b_end_io = end_buffer_write_sync;
2723         get_bh(bh);
2724         submit_bh(REQ_OP_WRITE | op_flags, bh);
2725 }
2726 EXPORT_SYMBOL(write_dirty_buffer);
2727
2728 /*
2729  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2730  * and then start new I/O and then wait upon it.  The caller must have a ref on
2731  * the buffer_head.
2732  */
2733 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2734 {
2735         WARN_ON(atomic_read(&bh->b_count) < 1);
2736         lock_buffer(bh);
2737         if (test_clear_buffer_dirty(bh)) {
2738                 /*
2739                  * The bh should be mapped, but it might not be if the
2740                  * device was hot-removed. Not much we can do but fail the I/O.
2741                  */
2742                 if (!buffer_mapped(bh)) {
2743                         unlock_buffer(bh);
2744                         return -EIO;
2745                 }
2746
2747                 get_bh(bh);
2748                 bh->b_end_io = end_buffer_write_sync;
2749                 submit_bh(REQ_OP_WRITE | op_flags, bh);
2750                 wait_on_buffer(bh);
2751                 if (!buffer_uptodate(bh))
2752                         return -EIO;
2753         } else {
2754                 unlock_buffer(bh);
2755         }
2756         return 0;
2757 }
2758 EXPORT_SYMBOL(__sync_dirty_buffer);
2759
2760 int sync_dirty_buffer(struct buffer_head *bh)
2761 {
2762         return __sync_dirty_buffer(bh, REQ_SYNC);
2763 }
2764 EXPORT_SYMBOL(sync_dirty_buffer);
2765
2766 /*
2767  * try_to_free_buffers() checks if all the buffers on this particular folio
2768  * are unused, and releases them if so.
2769  *
2770  * Exclusion against try_to_free_buffers may be obtained by either
2771  * locking the folio or by holding its mapping's private_lock.
2772  *
2773  * If the folio is dirty but all the buffers are clean then we need to
2774  * be sure to mark the folio clean as well.  This is because the folio
2775  * may be against a block device, and a later reattachment of buffers
2776  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2777  * filesystem data on the same device.
2778  *
2779  * The same applies to regular filesystem folios: if all the buffers are
2780  * clean then we set the folio clean and proceed.  To do that, we require
2781  * total exclusion from block_dirty_folio().  That is obtained with
2782  * private_lock.
2783  *
2784  * try_to_free_buffers() is non-blocking.
2785  */
2786 static inline int buffer_busy(struct buffer_head *bh)
2787 {
2788         return atomic_read(&bh->b_count) |
2789                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2790 }
2791
2792 static bool
2793 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2794 {
2795         struct buffer_head *head = folio_buffers(folio);
2796         struct buffer_head *bh;
2797
2798         bh = head;
2799         do {
2800                 if (buffer_busy(bh))
2801                         goto failed;
2802                 bh = bh->b_this_page;
2803         } while (bh != head);
2804
2805         do {
2806                 struct buffer_head *next = bh->b_this_page;
2807
2808                 if (bh->b_assoc_map)
2809                         __remove_assoc_queue(bh);
2810                 bh = next;
2811         } while (bh != head);
2812         *buffers_to_free = head;
2813         folio_detach_private(folio);
2814         return true;
2815 failed:
2816         return false;
2817 }
2818
2819 bool try_to_free_buffers(struct folio *folio)
2820 {
2821         struct address_space * const mapping = folio->mapping;
2822         struct buffer_head *buffers_to_free = NULL;
2823         bool ret = 0;
2824
2825         BUG_ON(!folio_test_locked(folio));
2826         if (folio_test_writeback(folio))
2827                 return false;
2828
2829         if (mapping == NULL) {          /* can this still happen? */
2830                 ret = drop_buffers(folio, &buffers_to_free);
2831                 goto out;
2832         }
2833
2834         spin_lock(&mapping->private_lock);
2835         ret = drop_buffers(folio, &buffers_to_free);
2836
2837         /*
2838          * If the filesystem writes its buffers by hand (eg ext3)
2839          * then we can have clean buffers against a dirty folio.  We
2840          * clean the folio here; otherwise the VM will never notice
2841          * that the filesystem did any IO at all.
2842          *
2843          * Also, during truncate, discard_buffer will have marked all
2844          * the folio's buffers clean.  We discover that here and clean
2845          * the folio also.
2846          *
2847          * private_lock must be held over this entire operation in order
2848          * to synchronise against block_dirty_folio and prevent the
2849          * dirty bit from being lost.
2850          */
2851         if (ret)
2852                 folio_cancel_dirty(folio);
2853         spin_unlock(&mapping->private_lock);
2854 out:
2855         if (buffers_to_free) {
2856                 struct buffer_head *bh = buffers_to_free;
2857
2858                 do {
2859                         struct buffer_head *next = bh->b_this_page;
2860                         free_buffer_head(bh);
2861                         bh = next;
2862                 } while (bh != buffers_to_free);
2863         }
2864         return ret;
2865 }
2866 EXPORT_SYMBOL(try_to_free_buffers);
2867
2868 /*
2869  * Buffer-head allocation
2870  */
2871 static struct kmem_cache *bh_cachep __read_mostly;
2872
2873 /*
2874  * Once the number of bh's in the machine exceeds this level, we start
2875  * stripping them in writeback.
2876  */
2877 static unsigned long max_buffer_heads;
2878
2879 int buffer_heads_over_limit;
2880
2881 struct bh_accounting {
2882         int nr;                 /* Number of live bh's */
2883         int ratelimit;          /* Limit cacheline bouncing */
2884 };
2885
2886 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2887
2888 static void recalc_bh_state(void)
2889 {
2890         int i;
2891         int tot = 0;
2892
2893         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2894                 return;
2895         __this_cpu_write(bh_accounting.ratelimit, 0);
2896         for_each_online_cpu(i)
2897                 tot += per_cpu(bh_accounting, i).nr;
2898         buffer_heads_over_limit = (tot > max_buffer_heads);
2899 }
2900
2901 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2902 {
2903         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2904         if (ret) {
2905                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
2906                 spin_lock_init(&ret->b_uptodate_lock);
2907                 preempt_disable();
2908                 __this_cpu_inc(bh_accounting.nr);
2909                 recalc_bh_state();
2910                 preempt_enable();
2911         }
2912         return ret;
2913 }
2914 EXPORT_SYMBOL(alloc_buffer_head);
2915
2916 void free_buffer_head(struct buffer_head *bh)
2917 {
2918         BUG_ON(!list_empty(&bh->b_assoc_buffers));
2919         kmem_cache_free(bh_cachep, bh);
2920         preempt_disable();
2921         __this_cpu_dec(bh_accounting.nr);
2922         recalc_bh_state();
2923         preempt_enable();
2924 }
2925 EXPORT_SYMBOL(free_buffer_head);
2926
2927 static int buffer_exit_cpu_dead(unsigned int cpu)
2928 {
2929         int i;
2930         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2931
2932         for (i = 0; i < BH_LRU_SIZE; i++) {
2933                 brelse(b->bhs[i]);
2934                 b->bhs[i] = NULL;
2935         }
2936         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
2937         per_cpu(bh_accounting, cpu).nr = 0;
2938         return 0;
2939 }
2940
2941 /**
2942  * bh_uptodate_or_lock - Test whether the buffer is uptodate
2943  * @bh: struct buffer_head
2944  *
2945  * Return true if the buffer is up-to-date and false,
2946  * with the buffer locked, if not.
2947  */
2948 int bh_uptodate_or_lock(struct buffer_head *bh)
2949 {
2950         if (!buffer_uptodate(bh)) {
2951                 lock_buffer(bh);
2952                 if (!buffer_uptodate(bh))
2953                         return 0;
2954                 unlock_buffer(bh);
2955         }
2956         return 1;
2957 }
2958 EXPORT_SYMBOL(bh_uptodate_or_lock);
2959
2960 /**
2961  * __bh_read - Submit read for a locked buffer
2962  * @bh: struct buffer_head
2963  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
2964  * @wait: wait until reading finish
2965  *
2966  * Returns zero on success or don't wait, and -EIO on error.
2967  */
2968 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
2969 {
2970         int ret = 0;
2971
2972         BUG_ON(!buffer_locked(bh));
2973
2974         get_bh(bh);
2975         bh->b_end_io = end_buffer_read_sync;
2976         submit_bh(REQ_OP_READ | op_flags, bh);
2977         if (wait) {
2978                 wait_on_buffer(bh);
2979                 if (!buffer_uptodate(bh))
2980                         ret = -EIO;
2981         }
2982         return ret;
2983 }
2984 EXPORT_SYMBOL(__bh_read);
2985
2986 /**
2987  * __bh_read_batch - Submit read for a batch of unlocked buffers
2988  * @nr: entry number of the buffer batch
2989  * @bhs: a batch of struct buffer_head
2990  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
2991  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
2992  *              buffer that cannot lock.
2993  *
2994  * Returns zero on success or don't wait, and -EIO on error.
2995  */
2996 void __bh_read_batch(int nr, struct buffer_head *bhs[],
2997                      blk_opf_t op_flags, bool force_lock)
2998 {
2999         int i;
3000
3001         for (i = 0; i < nr; i++) {
3002                 struct buffer_head *bh = bhs[i];
3003
3004                 if (buffer_uptodate(bh))
3005                         continue;
3006
3007                 if (force_lock)
3008                         lock_buffer(bh);
3009                 else
3010                         if (!trylock_buffer(bh))
3011                                 continue;
3012
3013                 if (buffer_uptodate(bh)) {
3014                         unlock_buffer(bh);
3015                         continue;
3016                 }
3017
3018                 bh->b_end_io = end_buffer_read_sync;
3019                 get_bh(bh);
3020                 submit_bh(REQ_OP_READ | op_flags, bh);
3021         }
3022 }
3023 EXPORT_SYMBOL(__bh_read_batch);
3024
3025 void __init buffer_init(void)
3026 {
3027         unsigned long nrpages;
3028         int ret;
3029
3030         bh_cachep = kmem_cache_create("buffer_head",
3031                         sizeof(struct buffer_head), 0,
3032                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3033                                 SLAB_MEM_SPREAD),
3034                                 NULL);
3035
3036         /*
3037          * Limit the bh occupancy to 10% of ZONE_NORMAL
3038          */
3039         nrpages = (nr_free_buffer_pages() * 10) / 100;
3040         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3041         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3042                                         NULL, buffer_exit_cpu_dead);
3043         WARN_ON(ret < 0);
3044 }