1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
26 #include <linux/iomap.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
57 struct writeback_control *wbc);
59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61 inline void touch_buffer(struct buffer_head *bh)
63 trace_block_touch_buffer(bh);
64 folio_mark_accessed(bh->b_folio);
66 EXPORT_SYMBOL(touch_buffer);
68 void __lock_buffer(struct buffer_head *bh)
70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 EXPORT_SYMBOL(__lock_buffer);
74 void unlock_buffer(struct buffer_head *bh)
76 clear_bit_unlock(BH_Lock, &bh->b_state);
77 smp_mb__after_atomic();
78 wake_up_bit(&bh->b_state, BH_Lock);
80 EXPORT_SYMBOL(unlock_buffer);
83 * Returns if the folio has dirty or writeback buffers. If all the buffers
84 * are unlocked and clean then the folio_test_dirty information is stale. If
85 * any of the buffers are locked, it is assumed they are locked for IO.
87 void buffer_check_dirty_writeback(struct folio *folio,
88 bool *dirty, bool *writeback)
90 struct buffer_head *head, *bh;
94 BUG_ON(!folio_test_locked(folio));
96 head = folio_buffers(folio);
100 if (folio_test_writeback(folio))
105 if (buffer_locked(bh))
108 if (buffer_dirty(bh))
111 bh = bh->b_this_page;
112 } while (bh != head);
114 EXPORT_SYMBOL(buffer_check_dirty_writeback);
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
121 void __wait_on_buffer(struct buffer_head * bh)
123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
125 EXPORT_SYMBOL(__wait_on_buffer);
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
129 if (!test_bit(BH_Quiet, &bh->b_state))
130 printk_ratelimited(KERN_ERR
131 "Buffer I/O error on dev %pg, logical block %llu%s\n",
132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
136 * End-of-IO handler helper function which does not touch the bh after
138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139 * a race there is benign: unlock_buffer() only use the bh's address for
140 * hashing after unlocking the buffer, so it doesn't actually touch the bh
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
146 set_buffer_uptodate(bh);
148 /* This happens, due to failed read-ahead attempts. */
149 clear_buffer_uptodate(bh);
155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
160 __end_buffer_read_notouch(bh, uptodate);
163 EXPORT_SYMBOL(end_buffer_read_sync);
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
168 set_buffer_uptodate(bh);
170 buffer_io_error(bh, ", lost sync page write");
171 mark_buffer_write_io_error(bh);
172 clear_buffer_uptodate(bh);
177 EXPORT_SYMBOL(end_buffer_write_sync);
180 * Various filesystems appear to want __find_get_block to be non-blocking.
181 * But it's the page lock which protects the buffers. To get around this,
182 * we get exclusion from try_to_free_buffers with the blockdev mapping's
185 * Hack idea: for the blockdev mapping, private_lock contention
186 * may be quite high. This code could TryLock the page, and if that
187 * succeeds, there is no need to take private_lock.
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
192 struct inode *bd_inode = bdev->bd_inode;
193 struct address_space *bd_mapping = bd_inode->i_mapping;
194 struct buffer_head *ret = NULL;
196 struct buffer_head *bh;
197 struct buffer_head *head;
200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
202 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
203 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
207 spin_lock(&bd_mapping->private_lock);
208 if (!page_has_buffers(page))
210 head = page_buffers(page);
213 if (!buffer_mapped(bh))
215 else if (bh->b_blocknr == block) {
220 bh = bh->b_this_page;
221 } while (bh != head);
223 /* we might be here because some of the buffers on this page are
224 * not mapped. This is due to various races between
225 * file io on the block device and getblk. It gets dealt with
226 * elsewhere, don't buffer_error if we had some unmapped buffers
228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 if (all_mapped && __ratelimit(&last_warned)) {
230 printk("__find_get_block_slow() failed. block=%llu, "
231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 "device %pg blocksize: %d\n",
233 (unsigned long long)block,
234 (unsigned long long)bh->b_blocknr,
235 bh->b_state, bh->b_size, bdev,
236 1 << bd_inode->i_blkbits);
239 spin_unlock(&bd_mapping->private_lock);
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
248 struct buffer_head *first;
249 struct buffer_head *tmp;
251 int folio_uptodate = 1;
253 BUG_ON(!buffer_async_read(bh));
257 set_buffer_uptodate(bh);
259 clear_buffer_uptodate(bh);
260 buffer_io_error(bh, ", async page read");
261 folio_set_error(folio);
265 * Be _very_ careful from here on. Bad things can happen if
266 * two buffer heads end IO at almost the same time and both
267 * decide that the page is now completely done.
269 first = folio_buffers(folio);
270 spin_lock_irqsave(&first->b_uptodate_lock, flags);
271 clear_buffer_async_read(bh);
275 if (!buffer_uptodate(tmp))
277 if (buffer_async_read(tmp)) {
278 BUG_ON(!buffer_locked(tmp));
281 tmp = tmp->b_this_page;
283 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
286 * If all of the buffers are uptodate then we can set the page
290 folio_mark_uptodate(folio);
295 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
299 struct postprocess_bh_ctx {
300 struct work_struct work;
301 struct buffer_head *bh;
304 static void verify_bh(struct work_struct *work)
306 struct postprocess_bh_ctx *ctx =
307 container_of(work, struct postprocess_bh_ctx, work);
308 struct buffer_head *bh = ctx->bh;
311 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
312 end_buffer_async_read(bh, valid);
316 static bool need_fsverity(struct buffer_head *bh)
318 struct folio *folio = bh->b_folio;
319 struct inode *inode = folio->mapping->host;
321 return fsverity_active(inode) &&
323 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
326 static void decrypt_bh(struct work_struct *work)
328 struct postprocess_bh_ctx *ctx =
329 container_of(work, struct postprocess_bh_ctx, work);
330 struct buffer_head *bh = ctx->bh;
333 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
335 if (err == 0 && need_fsverity(bh)) {
337 * We use different work queues for decryption and for verity
338 * because verity may require reading metadata pages that need
339 * decryption, and we shouldn't recurse to the same workqueue.
341 INIT_WORK(&ctx->work, verify_bh);
342 fsverity_enqueue_verify_work(&ctx->work);
345 end_buffer_async_read(bh, err == 0);
350 * I/O completion handler for block_read_full_folio() - pages
351 * which come unlocked at the end of I/O.
353 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
355 struct inode *inode = bh->b_folio->mapping->host;
356 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
357 bool verify = need_fsverity(bh);
359 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
360 if (uptodate && (decrypt || verify)) {
361 struct postprocess_bh_ctx *ctx =
362 kmalloc(sizeof(*ctx), GFP_ATOMIC);
367 INIT_WORK(&ctx->work, decrypt_bh);
368 fscrypt_enqueue_decrypt_work(&ctx->work);
370 INIT_WORK(&ctx->work, verify_bh);
371 fsverity_enqueue_verify_work(&ctx->work);
377 end_buffer_async_read(bh, uptodate);
381 * Completion handler for block_write_full_page() - pages which are unlocked
382 * during I/O, and which have PageWriteback cleared upon I/O completion.
384 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
387 struct buffer_head *first;
388 struct buffer_head *tmp;
391 BUG_ON(!buffer_async_write(bh));
395 set_buffer_uptodate(bh);
397 buffer_io_error(bh, ", lost async page write");
398 mark_buffer_write_io_error(bh);
399 clear_buffer_uptodate(bh);
400 folio_set_error(folio);
403 first = folio_buffers(folio);
404 spin_lock_irqsave(&first->b_uptodate_lock, flags);
406 clear_buffer_async_write(bh);
408 tmp = bh->b_this_page;
410 if (buffer_async_write(tmp)) {
411 BUG_ON(!buffer_locked(tmp));
414 tmp = tmp->b_this_page;
416 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
417 folio_end_writeback(folio);
421 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
424 EXPORT_SYMBOL(end_buffer_async_write);
427 * If a page's buffers are under async readin (end_buffer_async_read
428 * completion) then there is a possibility that another thread of
429 * control could lock one of the buffers after it has completed
430 * but while some of the other buffers have not completed. This
431 * locked buffer would confuse end_buffer_async_read() into not unlocking
432 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
433 * that this buffer is not under async I/O.
435 * The page comes unlocked when it has no locked buffer_async buffers
438 * PageLocked prevents anyone starting new async I/O reads any of
441 * PageWriteback is used to prevent simultaneous writeout of the same
444 * PageLocked prevents anyone from starting writeback of a page which is
445 * under read I/O (PageWriteback is only ever set against a locked page).
447 static void mark_buffer_async_read(struct buffer_head *bh)
449 bh->b_end_io = end_buffer_async_read_io;
450 set_buffer_async_read(bh);
453 static void mark_buffer_async_write_endio(struct buffer_head *bh,
454 bh_end_io_t *handler)
456 bh->b_end_io = handler;
457 set_buffer_async_write(bh);
460 void mark_buffer_async_write(struct buffer_head *bh)
462 mark_buffer_async_write_endio(bh, end_buffer_async_write);
464 EXPORT_SYMBOL(mark_buffer_async_write);
468 * fs/buffer.c contains helper functions for buffer-backed address space's
469 * fsync functions. A common requirement for buffer-based filesystems is
470 * that certain data from the backing blockdev needs to be written out for
471 * a successful fsync(). For example, ext2 indirect blocks need to be
472 * written back and waited upon before fsync() returns.
474 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
475 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
476 * management of a list of dependent buffers at ->i_mapping->private_list.
478 * Locking is a little subtle: try_to_free_buffers() will remove buffers
479 * from their controlling inode's queue when they are being freed. But
480 * try_to_free_buffers() will be operating against the *blockdev* mapping
481 * at the time, not against the S_ISREG file which depends on those buffers.
482 * So the locking for private_list is via the private_lock in the address_space
483 * which backs the buffers. Which is different from the address_space
484 * against which the buffers are listed. So for a particular address_space,
485 * mapping->private_lock does *not* protect mapping->private_list! In fact,
486 * mapping->private_list will always be protected by the backing blockdev's
489 * Which introduces a requirement: all buffers on an address_space's
490 * ->private_list must be from the same address_space: the blockdev's.
492 * address_spaces which do not place buffers at ->private_list via these
493 * utility functions are free to use private_lock and private_list for
494 * whatever they want. The only requirement is that list_empty(private_list)
495 * be true at clear_inode() time.
497 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
498 * filesystems should do that. invalidate_inode_buffers() should just go
499 * BUG_ON(!list_empty).
501 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
502 * take an address_space, not an inode. And it should be called
503 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
506 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
507 * list if it is already on a list. Because if the buffer is on a list,
508 * it *must* already be on the right one. If not, the filesystem is being
509 * silly. This will save a ton of locking. But first we have to ensure
510 * that buffers are taken *off* the old inode's list when they are freed
511 * (presumably in truncate). That requires careful auditing of all
512 * filesystems (do it inside bforget()). It could also be done by bringing
517 * The buffer's backing address_space's private_lock must be held
519 static void __remove_assoc_queue(struct buffer_head *bh)
521 list_del_init(&bh->b_assoc_buffers);
522 WARN_ON(!bh->b_assoc_map);
523 bh->b_assoc_map = NULL;
526 int inode_has_buffers(struct inode *inode)
528 return !list_empty(&inode->i_data.private_list);
532 * osync is designed to support O_SYNC io. It waits synchronously for
533 * all already-submitted IO to complete, but does not queue any new
534 * writes to the disk.
536 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
537 * as you dirty the buffers, and then use osync_inode_buffers to wait for
538 * completion. Any other dirty buffers which are not yet queued for
539 * write will not be flushed to disk by the osync.
541 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
543 struct buffer_head *bh;
549 list_for_each_prev(p, list) {
551 if (buffer_locked(bh)) {
555 if (!buffer_uptodate(bh))
566 void emergency_thaw_bdev(struct super_block *sb)
568 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
569 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
573 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
574 * @mapping: the mapping which wants those buffers written
576 * Starts I/O against the buffers at mapping->private_list, and waits upon
579 * Basically, this is a convenience function for fsync().
580 * @mapping is a file or directory which needs those buffers to be written for
581 * a successful fsync().
583 int sync_mapping_buffers(struct address_space *mapping)
585 struct address_space *buffer_mapping = mapping->private_data;
587 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
590 return fsync_buffers_list(&buffer_mapping->private_lock,
591 &mapping->private_list);
593 EXPORT_SYMBOL(sync_mapping_buffers);
596 * Called when we've recently written block `bblock', and it is known that
597 * `bblock' was for a buffer_boundary() buffer. This means that the block at
598 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
599 * dirty, schedule it for IO. So that indirects merge nicely with their data.
601 void write_boundary_block(struct block_device *bdev,
602 sector_t bblock, unsigned blocksize)
604 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
606 if (buffer_dirty(bh))
607 write_dirty_buffer(bh, 0);
612 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
614 struct address_space *mapping = inode->i_mapping;
615 struct address_space *buffer_mapping = bh->b_folio->mapping;
617 mark_buffer_dirty(bh);
618 if (!mapping->private_data) {
619 mapping->private_data = buffer_mapping;
621 BUG_ON(mapping->private_data != buffer_mapping);
623 if (!bh->b_assoc_map) {
624 spin_lock(&buffer_mapping->private_lock);
625 list_move_tail(&bh->b_assoc_buffers,
626 &mapping->private_list);
627 bh->b_assoc_map = mapping;
628 spin_unlock(&buffer_mapping->private_lock);
631 EXPORT_SYMBOL(mark_buffer_dirty_inode);
634 * Add a page to the dirty page list.
636 * It is a sad fact of life that this function is called from several places
637 * deeply under spinlocking. It may not sleep.
639 * If the page has buffers, the uptodate buffers are set dirty, to preserve
640 * dirty-state coherency between the page and the buffers. It the page does
641 * not have buffers then when they are later attached they will all be set
644 * The buffers are dirtied before the page is dirtied. There's a small race
645 * window in which a writepage caller may see the page cleanness but not the
646 * buffer dirtiness. That's fine. If this code were to set the page dirty
647 * before the buffers, a concurrent writepage caller could clear the page dirty
648 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
649 * page on the dirty page list.
651 * We use private_lock to lock against try_to_free_buffers while using the
652 * page's buffer list. Also use this to protect against clean buffers being
653 * added to the page after it was set dirty.
655 * FIXME: may need to call ->reservepage here as well. That's rather up to the
656 * address_space though.
658 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
660 struct buffer_head *head;
663 spin_lock(&mapping->private_lock);
664 head = folio_buffers(folio);
666 struct buffer_head *bh = head;
669 set_buffer_dirty(bh);
670 bh = bh->b_this_page;
671 } while (bh != head);
674 * Lock out page's memcg migration to keep PageDirty
675 * synchronized with per-memcg dirty page counters.
677 folio_memcg_lock(folio);
678 newly_dirty = !folio_test_set_dirty(folio);
679 spin_unlock(&mapping->private_lock);
682 __folio_mark_dirty(folio, mapping, 1);
684 folio_memcg_unlock(folio);
687 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
691 EXPORT_SYMBOL(block_dirty_folio);
694 * Write out and wait upon a list of buffers.
696 * We have conflicting pressures: we want to make sure that all
697 * initially dirty buffers get waited on, but that any subsequently
698 * dirtied buffers don't. After all, we don't want fsync to last
699 * forever if somebody is actively writing to the file.
701 * Do this in two main stages: first we copy dirty buffers to a
702 * temporary inode list, queueing the writes as we go. Then we clean
703 * up, waiting for those writes to complete.
705 * During this second stage, any subsequent updates to the file may end
706 * up refiling the buffer on the original inode's dirty list again, so
707 * there is a chance we will end up with a buffer queued for write but
708 * not yet completed on that list. So, as a final cleanup we go through
709 * the osync code to catch these locked, dirty buffers without requeuing
710 * any newly dirty buffers for write.
712 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
714 struct buffer_head *bh;
715 struct list_head tmp;
716 struct address_space *mapping;
718 struct blk_plug plug;
720 INIT_LIST_HEAD(&tmp);
721 blk_start_plug(&plug);
724 while (!list_empty(list)) {
725 bh = BH_ENTRY(list->next);
726 mapping = bh->b_assoc_map;
727 __remove_assoc_queue(bh);
728 /* Avoid race with mark_buffer_dirty_inode() which does
729 * a lockless check and we rely on seeing the dirty bit */
731 if (buffer_dirty(bh) || buffer_locked(bh)) {
732 list_add(&bh->b_assoc_buffers, &tmp);
733 bh->b_assoc_map = mapping;
734 if (buffer_dirty(bh)) {
738 * Ensure any pending I/O completes so that
739 * write_dirty_buffer() actually writes the
740 * current contents - it is a noop if I/O is
741 * still in flight on potentially older
744 write_dirty_buffer(bh, REQ_SYNC);
747 * Kick off IO for the previous mapping. Note
748 * that we will not run the very last mapping,
749 * wait_on_buffer() will do that for us
750 * through sync_buffer().
759 blk_finish_plug(&plug);
762 while (!list_empty(&tmp)) {
763 bh = BH_ENTRY(tmp.prev);
765 mapping = bh->b_assoc_map;
766 __remove_assoc_queue(bh);
767 /* Avoid race with mark_buffer_dirty_inode() which does
768 * a lockless check and we rely on seeing the dirty bit */
770 if (buffer_dirty(bh)) {
771 list_add(&bh->b_assoc_buffers,
772 &mapping->private_list);
773 bh->b_assoc_map = mapping;
777 if (!buffer_uptodate(bh))
784 err2 = osync_buffers_list(lock, list);
792 * Invalidate any and all dirty buffers on a given inode. We are
793 * probably unmounting the fs, but that doesn't mean we have already
794 * done a sync(). Just drop the buffers from the inode list.
796 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
797 * assumes that all the buffers are against the blockdev. Not true
800 void invalidate_inode_buffers(struct inode *inode)
802 if (inode_has_buffers(inode)) {
803 struct address_space *mapping = &inode->i_data;
804 struct list_head *list = &mapping->private_list;
805 struct address_space *buffer_mapping = mapping->private_data;
807 spin_lock(&buffer_mapping->private_lock);
808 while (!list_empty(list))
809 __remove_assoc_queue(BH_ENTRY(list->next));
810 spin_unlock(&buffer_mapping->private_lock);
813 EXPORT_SYMBOL(invalidate_inode_buffers);
816 * Remove any clean buffers from the inode's buffer list. This is called
817 * when we're trying to free the inode itself. Those buffers can pin it.
819 * Returns true if all buffers were removed.
821 int remove_inode_buffers(struct inode *inode)
825 if (inode_has_buffers(inode)) {
826 struct address_space *mapping = &inode->i_data;
827 struct list_head *list = &mapping->private_list;
828 struct address_space *buffer_mapping = mapping->private_data;
830 spin_lock(&buffer_mapping->private_lock);
831 while (!list_empty(list)) {
832 struct buffer_head *bh = BH_ENTRY(list->next);
833 if (buffer_dirty(bh)) {
837 __remove_assoc_queue(bh);
839 spin_unlock(&buffer_mapping->private_lock);
845 * Create the appropriate buffers when given a folio for data area and
846 * the size of each buffer.. Use the bh->b_this_page linked list to
847 * follow the buffers created. Return NULL if unable to create more
850 * The retry flag is used to differentiate async IO (paging, swapping)
851 * which may not fail from ordinary buffer allocations.
853 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
856 struct buffer_head *bh, *head;
857 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
859 struct mem_cgroup *memcg, *old_memcg;
864 /* The folio lock pins the memcg */
865 memcg = folio_memcg(folio);
866 old_memcg = set_active_memcg(memcg);
869 offset = folio_size(folio);
870 while ((offset -= size) >= 0) {
871 bh = alloc_buffer_head(gfp);
875 bh->b_this_page = head;
881 /* Link the buffer to its folio */
882 folio_set_bh(bh, folio, offset);
885 set_active_memcg(old_memcg);
888 * In case anything failed, we just free everything we got.
894 head = head->b_this_page;
895 free_buffer_head(bh);
901 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
903 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
906 return folio_alloc_buffers(page_folio(page), size, retry);
908 EXPORT_SYMBOL_GPL(alloc_page_buffers);
911 link_dev_buffers(struct page *page, struct buffer_head *head)
913 struct buffer_head *bh, *tail;
918 bh = bh->b_this_page;
920 tail->b_this_page = head;
921 attach_page_private(page, head);
924 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
926 sector_t retval = ~((sector_t)0);
927 loff_t sz = bdev_nr_bytes(bdev);
930 unsigned int sizebits = blksize_bits(size);
931 retval = (sz >> sizebits);
937 * Initialise the state of a blockdev page's buffers.
940 init_page_buffers(struct page *page, struct block_device *bdev,
941 sector_t block, int size)
943 struct buffer_head *head = page_buffers(page);
944 struct buffer_head *bh = head;
945 int uptodate = PageUptodate(page);
946 sector_t end_block = blkdev_max_block(bdev, size);
949 if (!buffer_mapped(bh)) {
951 bh->b_private = NULL;
953 bh->b_blocknr = block;
955 set_buffer_uptodate(bh);
956 if (block < end_block)
957 set_buffer_mapped(bh);
960 bh = bh->b_this_page;
961 } while (bh != head);
964 * Caller needs to validate requested block against end of device.
970 * Create the page-cache page that contains the requested block.
972 * This is used purely for blockdev mappings.
975 grow_dev_page(struct block_device *bdev, sector_t block,
976 pgoff_t index, int size, int sizebits, gfp_t gfp)
978 struct inode *inode = bdev->bd_inode;
980 struct buffer_head *bh;
985 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
988 * XXX: __getblk_slow() can not really deal with failure and
989 * will endlessly loop on improvised global reclaim. Prefer
990 * looping in the allocator rather than here, at least that
991 * code knows what it's doing.
993 gfp_mask |= __GFP_NOFAIL;
995 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
997 BUG_ON(!PageLocked(page));
999 if (page_has_buffers(page)) {
1000 bh = page_buffers(page);
1001 if (bh->b_size == size) {
1002 end_block = init_page_buffers(page, bdev,
1003 (sector_t)index << sizebits,
1007 if (!try_to_free_buffers(page_folio(page)))
1012 * Allocate some buffers for this page
1014 bh = alloc_page_buffers(page, size, true);
1017 * Link the page to the buffers and initialise them. Take the
1018 * lock to be atomic wrt __find_get_block(), which does not
1019 * run under the page lock.
1021 spin_lock(&inode->i_mapping->private_lock);
1022 link_dev_buffers(page, bh);
1023 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1025 spin_unlock(&inode->i_mapping->private_lock);
1027 ret = (block < end_block) ? 1 : -ENXIO;
1035 * Create buffers for the specified block device block's page. If
1036 * that page was dirty, the buffers are set dirty also.
1039 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1044 sizebits = PAGE_SHIFT - __ffs(size);
1045 index = block >> sizebits;
1048 * Check for a block which wants to lie outside our maximum possible
1049 * pagecache index. (this comparison is done using sector_t types).
1051 if (unlikely(index != block >> sizebits)) {
1052 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1054 __func__, (unsigned long long)block,
1059 /* Create a page with the proper size buffers.. */
1060 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1063 static struct buffer_head *
1064 __getblk_slow(struct block_device *bdev, sector_t block,
1065 unsigned size, gfp_t gfp)
1067 /* Size must be multiple of hard sectorsize */
1068 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1069 (size < 512 || size > PAGE_SIZE))) {
1070 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1072 printk(KERN_ERR "logical block size: %d\n",
1073 bdev_logical_block_size(bdev));
1080 struct buffer_head *bh;
1083 bh = __find_get_block(bdev, block, size);
1087 ret = grow_buffers(bdev, block, size, gfp);
1094 * The relationship between dirty buffers and dirty pages:
1096 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1097 * the page is tagged dirty in the page cache.
1099 * At all times, the dirtiness of the buffers represents the dirtiness of
1100 * subsections of the page. If the page has buffers, the page dirty bit is
1101 * merely a hint about the true dirty state.
1103 * When a page is set dirty in its entirety, all its buffers are marked dirty
1104 * (if the page has buffers).
1106 * When a buffer is marked dirty, its page is dirtied, but the page's other
1109 * Also. When blockdev buffers are explicitly read with bread(), they
1110 * individually become uptodate. But their backing page remains not
1111 * uptodate - even if all of its buffers are uptodate. A subsequent
1112 * block_read_full_folio() against that folio will discover all the uptodate
1113 * buffers, will set the folio uptodate and will perform no I/O.
1117 * mark_buffer_dirty - mark a buffer_head as needing writeout
1118 * @bh: the buffer_head to mark dirty
1120 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1121 * its backing page dirty, then tag the page as dirty in the page cache
1122 * and then attach the address_space's inode to its superblock's dirty
1125 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->private_lock,
1126 * i_pages lock and mapping->host->i_lock.
1128 void mark_buffer_dirty(struct buffer_head *bh)
1130 WARN_ON_ONCE(!buffer_uptodate(bh));
1132 trace_block_dirty_buffer(bh);
1135 * Very *carefully* optimize the it-is-already-dirty case.
1137 * Don't let the final "is it dirty" escape to before we
1138 * perhaps modified the buffer.
1140 if (buffer_dirty(bh)) {
1142 if (buffer_dirty(bh))
1146 if (!test_set_buffer_dirty(bh)) {
1147 struct folio *folio = bh->b_folio;
1148 struct address_space *mapping = NULL;
1150 folio_memcg_lock(folio);
1151 if (!folio_test_set_dirty(folio)) {
1152 mapping = folio->mapping;
1154 __folio_mark_dirty(folio, mapping, 0);
1156 folio_memcg_unlock(folio);
1158 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1161 EXPORT_SYMBOL(mark_buffer_dirty);
1163 void mark_buffer_write_io_error(struct buffer_head *bh)
1165 struct super_block *sb;
1167 set_buffer_write_io_error(bh);
1168 /* FIXME: do we need to set this in both places? */
1169 if (bh->b_folio && bh->b_folio->mapping)
1170 mapping_set_error(bh->b_folio->mapping, -EIO);
1171 if (bh->b_assoc_map)
1172 mapping_set_error(bh->b_assoc_map, -EIO);
1174 sb = READ_ONCE(bh->b_bdev->bd_super);
1176 errseq_set(&sb->s_wb_err, -EIO);
1179 EXPORT_SYMBOL(mark_buffer_write_io_error);
1182 * Decrement a buffer_head's reference count. If all buffers against a page
1183 * have zero reference count, are clean and unlocked, and if the page is clean
1184 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1185 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1186 * a page but it ends up not being freed, and buffers may later be reattached).
1188 void __brelse(struct buffer_head * buf)
1190 if (atomic_read(&buf->b_count)) {
1194 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1196 EXPORT_SYMBOL(__brelse);
1199 * bforget() is like brelse(), except it discards any
1200 * potentially dirty data.
1202 void __bforget(struct buffer_head *bh)
1204 clear_buffer_dirty(bh);
1205 if (bh->b_assoc_map) {
1206 struct address_space *buffer_mapping = bh->b_folio->mapping;
1208 spin_lock(&buffer_mapping->private_lock);
1209 list_del_init(&bh->b_assoc_buffers);
1210 bh->b_assoc_map = NULL;
1211 spin_unlock(&buffer_mapping->private_lock);
1215 EXPORT_SYMBOL(__bforget);
1217 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1220 if (buffer_uptodate(bh)) {
1225 bh->b_end_io = end_buffer_read_sync;
1226 submit_bh(REQ_OP_READ, bh);
1228 if (buffer_uptodate(bh))
1236 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1237 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1238 * refcount elevated by one when they're in an LRU. A buffer can only appear
1239 * once in a particular CPU's LRU. A single buffer can be present in multiple
1240 * CPU's LRUs at the same time.
1242 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1243 * sb_find_get_block().
1245 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1246 * a local interrupt disable for that.
1249 #define BH_LRU_SIZE 16
1252 struct buffer_head *bhs[BH_LRU_SIZE];
1255 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1258 #define bh_lru_lock() local_irq_disable()
1259 #define bh_lru_unlock() local_irq_enable()
1261 #define bh_lru_lock() preempt_disable()
1262 #define bh_lru_unlock() preempt_enable()
1265 static inline void check_irqs_on(void)
1267 #ifdef irqs_disabled
1268 BUG_ON(irqs_disabled());
1273 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1274 * inserted at the front, and the buffer_head at the back if any is evicted.
1275 * Or, if already in the LRU it is moved to the front.
1277 static void bh_lru_install(struct buffer_head *bh)
1279 struct buffer_head *evictee = bh;
1287 * the refcount of buffer_head in bh_lru prevents dropping the
1288 * attached page(i.e., try_to_free_buffers) so it could cause
1289 * failing page migration.
1290 * Skip putting upcoming bh into bh_lru until migration is done.
1292 if (lru_cache_disabled()) {
1297 b = this_cpu_ptr(&bh_lrus);
1298 for (i = 0; i < BH_LRU_SIZE; i++) {
1299 swap(evictee, b->bhs[i]);
1300 if (evictee == bh) {
1312 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1314 static struct buffer_head *
1315 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1317 struct buffer_head *ret = NULL;
1322 for (i = 0; i < BH_LRU_SIZE; i++) {
1323 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1325 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1326 bh->b_size == size) {
1329 __this_cpu_write(bh_lrus.bhs[i],
1330 __this_cpu_read(bh_lrus.bhs[i - 1]));
1333 __this_cpu_write(bh_lrus.bhs[0], bh);
1345 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1346 * it in the LRU and mark it as accessed. If it is not present then return
1349 struct buffer_head *
1350 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1352 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1355 /* __find_get_block_slow will mark the page accessed */
1356 bh = __find_get_block_slow(bdev, block);
1364 EXPORT_SYMBOL(__find_get_block);
1367 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1368 * which corresponds to the passed block_device, block and size. The
1369 * returned buffer has its reference count incremented.
1371 * __getblk_gfp() will lock up the machine if grow_dev_page's
1372 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1374 struct buffer_head *
1375 __getblk_gfp(struct block_device *bdev, sector_t block,
1376 unsigned size, gfp_t gfp)
1378 struct buffer_head *bh = __find_get_block(bdev, block, size);
1382 bh = __getblk_slow(bdev, block, size, gfp);
1385 EXPORT_SYMBOL(__getblk_gfp);
1388 * Do async read-ahead on a buffer..
1390 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1392 struct buffer_head *bh = __getblk(bdev, block, size);
1394 bh_readahead(bh, REQ_RAHEAD);
1398 EXPORT_SYMBOL(__breadahead);
1401 * __bread_gfp() - reads a specified block and returns the bh
1402 * @bdev: the block_device to read from
1403 * @block: number of block
1404 * @size: size (in bytes) to read
1405 * @gfp: page allocation flag
1407 * Reads a specified block, and returns buffer head that contains it.
1408 * The page cache can be allocated from non-movable area
1409 * not to prevent page migration if you set gfp to zero.
1410 * It returns NULL if the block was unreadable.
1412 struct buffer_head *
1413 __bread_gfp(struct block_device *bdev, sector_t block,
1414 unsigned size, gfp_t gfp)
1416 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1418 if (likely(bh) && !buffer_uptodate(bh))
1419 bh = __bread_slow(bh);
1422 EXPORT_SYMBOL(__bread_gfp);
1424 static void __invalidate_bh_lrus(struct bh_lru *b)
1428 for (i = 0; i < BH_LRU_SIZE; i++) {
1434 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1435 * This doesn't race because it runs in each cpu either in irq
1436 * or with preempt disabled.
1438 static void invalidate_bh_lru(void *arg)
1440 struct bh_lru *b = &get_cpu_var(bh_lrus);
1442 __invalidate_bh_lrus(b);
1443 put_cpu_var(bh_lrus);
1446 bool has_bh_in_lru(int cpu, void *dummy)
1448 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1451 for (i = 0; i < BH_LRU_SIZE; i++) {
1459 void invalidate_bh_lrus(void)
1461 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1463 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1466 * It's called from workqueue context so we need a bh_lru_lock to close
1467 * the race with preemption/irq.
1469 void invalidate_bh_lrus_cpu(void)
1474 b = this_cpu_ptr(&bh_lrus);
1475 __invalidate_bh_lrus(b);
1479 void set_bh_page(struct buffer_head *bh,
1480 struct page *page, unsigned long offset)
1483 BUG_ON(offset >= PAGE_SIZE);
1484 if (PageHighMem(page))
1486 * This catches illegal uses and preserves the offset:
1488 bh->b_data = (char *)(0 + offset);
1490 bh->b_data = page_address(page) + offset;
1492 EXPORT_SYMBOL(set_bh_page);
1494 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1495 unsigned long offset)
1497 bh->b_folio = folio;
1498 BUG_ON(offset >= folio_size(folio));
1499 if (folio_test_highmem(folio))
1501 * This catches illegal uses and preserves the offset:
1503 bh->b_data = (char *)(0 + offset);
1505 bh->b_data = folio_address(folio) + offset;
1507 EXPORT_SYMBOL(folio_set_bh);
1510 * Called when truncating a buffer on a page completely.
1513 /* Bits that are cleared during an invalidate */
1514 #define BUFFER_FLAGS_DISCARD \
1515 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1516 1 << BH_Delay | 1 << BH_Unwritten)
1518 static void discard_buffer(struct buffer_head * bh)
1520 unsigned long b_state;
1523 clear_buffer_dirty(bh);
1525 b_state = READ_ONCE(bh->b_state);
1527 } while (!try_cmpxchg(&bh->b_state, &b_state,
1528 b_state & ~BUFFER_FLAGS_DISCARD));
1533 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1534 * @folio: The folio which is affected.
1535 * @offset: start of the range to invalidate
1536 * @length: length of the range to invalidate
1538 * block_invalidate_folio() is called when all or part of the folio has been
1539 * invalidated by a truncate operation.
1541 * block_invalidate_folio() does not have to release all buffers, but it must
1542 * ensure that no dirty buffer is left outside @offset and that no I/O
1543 * is underway against any of the blocks which are outside the truncation
1544 * point. Because the caller is about to free (and possibly reuse) those
1547 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1549 struct buffer_head *head, *bh, *next;
1550 size_t curr_off = 0;
1551 size_t stop = length + offset;
1553 BUG_ON(!folio_test_locked(folio));
1556 * Check for overflow
1558 BUG_ON(stop > folio_size(folio) || stop < length);
1560 head = folio_buffers(folio);
1566 size_t next_off = curr_off + bh->b_size;
1567 next = bh->b_this_page;
1570 * Are we still fully in range ?
1572 if (next_off > stop)
1576 * is this block fully invalidated?
1578 if (offset <= curr_off)
1580 curr_off = next_off;
1582 } while (bh != head);
1585 * We release buffers only if the entire folio is being invalidated.
1586 * The get_block cached value has been unconditionally invalidated,
1587 * so real IO is not possible anymore.
1589 if (length == folio_size(folio))
1590 filemap_release_folio(folio, 0);
1594 EXPORT_SYMBOL(block_invalidate_folio);
1597 * We attach and possibly dirty the buffers atomically wrt
1598 * block_dirty_folio() via private_lock. try_to_free_buffers
1599 * is already excluded via the folio lock.
1601 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize,
1602 unsigned long b_state)
1604 struct buffer_head *bh, *head, *tail;
1606 head = folio_alloc_buffers(folio, blocksize, true);
1609 bh->b_state |= b_state;
1611 bh = bh->b_this_page;
1613 tail->b_this_page = head;
1615 spin_lock(&folio->mapping->private_lock);
1616 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1619 if (folio_test_dirty(folio))
1620 set_buffer_dirty(bh);
1621 if (folio_test_uptodate(folio))
1622 set_buffer_uptodate(bh);
1623 bh = bh->b_this_page;
1624 } while (bh != head);
1626 folio_attach_private(folio, head);
1627 spin_unlock(&folio->mapping->private_lock);
1629 EXPORT_SYMBOL(folio_create_empty_buffers);
1631 void create_empty_buffers(struct page *page,
1632 unsigned long blocksize, unsigned long b_state)
1634 folio_create_empty_buffers(page_folio(page), blocksize, b_state);
1636 EXPORT_SYMBOL(create_empty_buffers);
1639 * clean_bdev_aliases: clean a range of buffers in block device
1640 * @bdev: Block device to clean buffers in
1641 * @block: Start of a range of blocks to clean
1642 * @len: Number of blocks to clean
1644 * We are taking a range of blocks for data and we don't want writeback of any
1645 * buffer-cache aliases starting from return from this function and until the
1646 * moment when something will explicitly mark the buffer dirty (hopefully that
1647 * will not happen until we will free that block ;-) We don't even need to mark
1648 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1649 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1650 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1651 * would confuse anyone who might pick it with bread() afterwards...
1653 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1654 * writeout I/O going on against recently-freed buffers. We don't wait on that
1655 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1656 * need to. That happens here.
1658 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1660 struct inode *bd_inode = bdev->bd_inode;
1661 struct address_space *bd_mapping = bd_inode->i_mapping;
1662 struct folio_batch fbatch;
1663 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1666 struct buffer_head *bh;
1667 struct buffer_head *head;
1669 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1670 folio_batch_init(&fbatch);
1671 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1672 count = folio_batch_count(&fbatch);
1673 for (i = 0; i < count; i++) {
1674 struct folio *folio = fbatch.folios[i];
1676 if (!folio_buffers(folio))
1679 * We use folio lock instead of bd_mapping->private_lock
1680 * to pin buffers here since we can afford to sleep and
1681 * it scales better than a global spinlock lock.
1684 /* Recheck when the folio is locked which pins bhs */
1685 head = folio_buffers(folio);
1690 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1692 if (bh->b_blocknr >= block + len)
1694 clear_buffer_dirty(bh);
1696 clear_buffer_req(bh);
1698 bh = bh->b_this_page;
1699 } while (bh != head);
1701 folio_unlock(folio);
1703 folio_batch_release(&fbatch);
1705 /* End of range already reached? */
1706 if (index > end || !index)
1710 EXPORT_SYMBOL(clean_bdev_aliases);
1713 * Size is a power-of-two in the range 512..PAGE_SIZE,
1714 * and the case we care about most is PAGE_SIZE.
1716 * So this *could* possibly be written with those
1717 * constraints in mind (relevant mostly if some
1718 * architecture has a slow bit-scan instruction)
1720 static inline int block_size_bits(unsigned int blocksize)
1722 return ilog2(blocksize);
1725 static struct buffer_head *folio_create_buffers(struct folio *folio,
1726 struct inode *inode,
1727 unsigned int b_state)
1729 BUG_ON(!folio_test_locked(folio));
1731 if (!folio_buffers(folio))
1732 folio_create_empty_buffers(folio,
1733 1 << READ_ONCE(inode->i_blkbits),
1735 return folio_buffers(folio);
1739 * NOTE! All mapped/uptodate combinations are valid:
1741 * Mapped Uptodate Meaning
1743 * No No "unknown" - must do get_block()
1744 * No Yes "hole" - zero-filled
1745 * Yes No "allocated" - allocated on disk, not read in
1746 * Yes Yes "valid" - allocated and up-to-date in memory.
1748 * "Dirty" is valid only with the last case (mapped+uptodate).
1752 * While block_write_full_page is writing back the dirty buffers under
1753 * the page lock, whoever dirtied the buffers may decide to clean them
1754 * again at any time. We handle that by only looking at the buffer
1755 * state inside lock_buffer().
1757 * If block_write_full_page() is called for regular writeback
1758 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1759 * locked buffer. This only can happen if someone has written the buffer
1760 * directly, with submit_bh(). At the address_space level PageWriteback
1761 * prevents this contention from occurring.
1763 * If block_write_full_page() is called with wbc->sync_mode ==
1764 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1765 * causes the writes to be flagged as synchronous writes.
1767 int __block_write_full_page(struct inode *inode, struct page *page,
1768 get_block_t *get_block, struct writeback_control *wbc,
1769 bh_end_io_t *handler)
1773 sector_t last_block;
1774 struct buffer_head *bh, *head;
1775 unsigned int blocksize, bbits;
1776 int nr_underway = 0;
1777 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1779 head = folio_create_buffers(page_folio(page), inode,
1780 (1 << BH_Dirty) | (1 << BH_Uptodate));
1783 * Be very careful. We have no exclusion from block_dirty_folio
1784 * here, and the (potentially unmapped) buffers may become dirty at
1785 * any time. If a buffer becomes dirty here after we've inspected it
1786 * then we just miss that fact, and the page stays dirty.
1788 * Buffers outside i_size may be dirtied by block_dirty_folio;
1789 * handle that here by just cleaning them.
1793 blocksize = bh->b_size;
1794 bbits = block_size_bits(blocksize);
1796 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1797 last_block = (i_size_read(inode) - 1) >> bbits;
1800 * Get all the dirty buffers mapped to disk addresses and
1801 * handle any aliases from the underlying blockdev's mapping.
1804 if (block > last_block) {
1806 * mapped buffers outside i_size will occur, because
1807 * this page can be outside i_size when there is a
1808 * truncate in progress.
1811 * The buffer was zeroed by block_write_full_page()
1813 clear_buffer_dirty(bh);
1814 set_buffer_uptodate(bh);
1815 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1817 WARN_ON(bh->b_size != blocksize);
1818 err = get_block(inode, block, bh, 1);
1821 clear_buffer_delay(bh);
1822 if (buffer_new(bh)) {
1823 /* blockdev mappings never come here */
1824 clear_buffer_new(bh);
1825 clean_bdev_bh_alias(bh);
1828 bh = bh->b_this_page;
1830 } while (bh != head);
1833 if (!buffer_mapped(bh))
1836 * If it's a fully non-blocking write attempt and we cannot
1837 * lock the buffer then redirty the page. Note that this can
1838 * potentially cause a busy-wait loop from writeback threads
1839 * and kswapd activity, but those code paths have their own
1840 * higher-level throttling.
1842 if (wbc->sync_mode != WB_SYNC_NONE) {
1844 } else if (!trylock_buffer(bh)) {
1845 redirty_page_for_writepage(wbc, page);
1848 if (test_clear_buffer_dirty(bh)) {
1849 mark_buffer_async_write_endio(bh, handler);
1853 } while ((bh = bh->b_this_page) != head);
1856 * The page and its buffers are protected by PageWriteback(), so we can
1857 * drop the bh refcounts early.
1859 BUG_ON(PageWriteback(page));
1860 set_page_writeback(page);
1863 struct buffer_head *next = bh->b_this_page;
1864 if (buffer_async_write(bh)) {
1865 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1869 } while (bh != head);
1874 if (nr_underway == 0) {
1876 * The page was marked dirty, but the buffers were
1877 * clean. Someone wrote them back by hand with
1878 * write_dirty_buffer/submit_bh. A rare case.
1880 end_page_writeback(page);
1883 * The page and buffer_heads can be released at any time from
1891 * ENOSPC, or some other error. We may already have added some
1892 * blocks to the file, so we need to write these out to avoid
1893 * exposing stale data.
1894 * The page is currently locked and not marked for writeback
1897 /* Recovery: lock and submit the mapped buffers */
1899 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1900 !buffer_delay(bh)) {
1902 mark_buffer_async_write_endio(bh, handler);
1905 * The buffer may have been set dirty during
1906 * attachment to a dirty page.
1908 clear_buffer_dirty(bh);
1910 } while ((bh = bh->b_this_page) != head);
1912 BUG_ON(PageWriteback(page));
1913 mapping_set_error(page->mapping, err);
1914 set_page_writeback(page);
1916 struct buffer_head *next = bh->b_this_page;
1917 if (buffer_async_write(bh)) {
1918 clear_buffer_dirty(bh);
1919 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1923 } while (bh != head);
1927 EXPORT_SYMBOL(__block_write_full_page);
1930 * If a page has any new buffers, zero them out here, and mark them uptodate
1931 * and dirty so they'll be written out (in order to prevent uninitialised
1932 * block data from leaking). And clear the new bit.
1934 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1936 unsigned int block_start, block_end;
1937 struct buffer_head *head, *bh;
1939 BUG_ON(!PageLocked(page));
1940 if (!page_has_buffers(page))
1943 bh = head = page_buffers(page);
1946 block_end = block_start + bh->b_size;
1948 if (buffer_new(bh)) {
1949 if (block_end > from && block_start < to) {
1950 if (!PageUptodate(page)) {
1951 unsigned start, size;
1953 start = max(from, block_start);
1954 size = min(to, block_end) - start;
1956 zero_user(page, start, size);
1957 set_buffer_uptodate(bh);
1960 clear_buffer_new(bh);
1961 mark_buffer_dirty(bh);
1965 block_start = block_end;
1966 bh = bh->b_this_page;
1967 } while (bh != head);
1969 EXPORT_SYMBOL(page_zero_new_buffers);
1972 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1973 const struct iomap *iomap)
1975 loff_t offset = block << inode->i_blkbits;
1977 bh->b_bdev = iomap->bdev;
1980 * Block points to offset in file we need to map, iomap contains
1981 * the offset at which the map starts. If the map ends before the
1982 * current block, then do not map the buffer and let the caller
1985 BUG_ON(offset >= iomap->offset + iomap->length);
1987 switch (iomap->type) {
1990 * If the buffer is not up to date or beyond the current EOF,
1991 * we need to mark it as new to ensure sub-block zeroing is
1992 * executed if necessary.
1994 if (!buffer_uptodate(bh) ||
1995 (offset >= i_size_read(inode)))
1998 case IOMAP_DELALLOC:
1999 if (!buffer_uptodate(bh) ||
2000 (offset >= i_size_read(inode)))
2002 set_buffer_uptodate(bh);
2003 set_buffer_mapped(bh);
2004 set_buffer_delay(bh);
2006 case IOMAP_UNWRITTEN:
2008 * For unwritten regions, we always need to ensure that regions
2009 * in the block we are not writing to are zeroed. Mark the
2010 * buffer as new to ensure this.
2013 set_buffer_unwritten(bh);
2016 if ((iomap->flags & IOMAP_F_NEW) ||
2017 offset >= i_size_read(inode))
2019 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2021 set_buffer_mapped(bh);
2026 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2027 get_block_t *get_block, const struct iomap *iomap)
2029 unsigned from = pos & (PAGE_SIZE - 1);
2030 unsigned to = from + len;
2031 struct inode *inode = folio->mapping->host;
2032 unsigned block_start, block_end;
2035 unsigned blocksize, bbits;
2036 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2038 BUG_ON(!folio_test_locked(folio));
2039 BUG_ON(from > PAGE_SIZE);
2040 BUG_ON(to > PAGE_SIZE);
2043 head = folio_create_buffers(folio, inode, 0);
2044 blocksize = head->b_size;
2045 bbits = block_size_bits(blocksize);
2047 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2049 for(bh = head, block_start = 0; bh != head || !block_start;
2050 block++, block_start=block_end, bh = bh->b_this_page) {
2051 block_end = block_start + blocksize;
2052 if (block_end <= from || block_start >= to) {
2053 if (folio_test_uptodate(folio)) {
2054 if (!buffer_uptodate(bh))
2055 set_buffer_uptodate(bh);
2060 clear_buffer_new(bh);
2061 if (!buffer_mapped(bh)) {
2062 WARN_ON(bh->b_size != blocksize);
2064 err = get_block(inode, block, bh, 1);
2068 iomap_to_bh(inode, block, bh, iomap);
2071 if (buffer_new(bh)) {
2072 clean_bdev_bh_alias(bh);
2073 if (folio_test_uptodate(folio)) {
2074 clear_buffer_new(bh);
2075 set_buffer_uptodate(bh);
2076 mark_buffer_dirty(bh);
2079 if (block_end > to || block_start < from)
2080 folio_zero_segments(folio,
2086 if (folio_test_uptodate(folio)) {
2087 if (!buffer_uptodate(bh))
2088 set_buffer_uptodate(bh);
2091 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2092 !buffer_unwritten(bh) &&
2093 (block_start < from || block_end > to)) {
2094 bh_read_nowait(bh, 0);
2099 * If we issued read requests - let them complete.
2101 while(wait_bh > wait) {
2102 wait_on_buffer(*--wait_bh);
2103 if (!buffer_uptodate(*wait_bh))
2107 page_zero_new_buffers(&folio->page, from, to);
2111 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2112 get_block_t *get_block)
2114 return __block_write_begin_int(page_folio(page), pos, len, get_block,
2117 EXPORT_SYMBOL(__block_write_begin);
2119 static int __block_commit_write(struct inode *inode, struct page *page,
2120 unsigned from, unsigned to)
2122 unsigned block_start, block_end;
2125 struct buffer_head *bh, *head;
2127 bh = head = page_buffers(page);
2128 blocksize = bh->b_size;
2132 block_end = block_start + blocksize;
2133 if (block_end <= from || block_start >= to) {
2134 if (!buffer_uptodate(bh))
2137 set_buffer_uptodate(bh);
2138 mark_buffer_dirty(bh);
2141 clear_buffer_new(bh);
2143 block_start = block_end;
2144 bh = bh->b_this_page;
2145 } while (bh != head);
2148 * If this is a partial write which happened to make all buffers
2149 * uptodate then we can optimize away a bogus read_folio() for
2150 * the next read(). Here we 'discover' whether the page went
2151 * uptodate as a result of this (potentially partial) write.
2154 SetPageUptodate(page);
2159 * block_write_begin takes care of the basic task of block allocation and
2160 * bringing partial write blocks uptodate first.
2162 * The filesystem needs to handle block truncation upon failure.
2164 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2165 struct page **pagep, get_block_t *get_block)
2167 pgoff_t index = pos >> PAGE_SHIFT;
2171 page = grab_cache_page_write_begin(mapping, index);
2175 status = __block_write_begin(page, pos, len, get_block);
2176 if (unlikely(status)) {
2185 EXPORT_SYMBOL(block_write_begin);
2187 int block_write_end(struct file *file, struct address_space *mapping,
2188 loff_t pos, unsigned len, unsigned copied,
2189 struct page *page, void *fsdata)
2191 struct inode *inode = mapping->host;
2194 start = pos & (PAGE_SIZE - 1);
2196 if (unlikely(copied < len)) {
2198 * The buffers that were written will now be uptodate, so
2199 * we don't have to worry about a read_folio reading them
2200 * and overwriting a partial write. However if we have
2201 * encountered a short write and only partially written
2202 * into a buffer, it will not be marked uptodate, so a
2203 * read_folio might come in and destroy our partial write.
2205 * Do the simplest thing, and just treat any short write to a
2206 * non uptodate page as a zero-length write, and force the
2207 * caller to redo the whole thing.
2209 if (!PageUptodate(page))
2212 page_zero_new_buffers(page, start+copied, start+len);
2214 flush_dcache_page(page);
2216 /* This could be a short (even 0-length) commit */
2217 __block_commit_write(inode, page, start, start+copied);
2221 EXPORT_SYMBOL(block_write_end);
2223 int generic_write_end(struct file *file, struct address_space *mapping,
2224 loff_t pos, unsigned len, unsigned copied,
2225 struct page *page, void *fsdata)
2227 struct inode *inode = mapping->host;
2228 loff_t old_size = inode->i_size;
2229 bool i_size_changed = false;
2231 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2234 * No need to use i_size_read() here, the i_size cannot change under us
2235 * because we hold i_rwsem.
2237 * But it's important to update i_size while still holding page lock:
2238 * page writeout could otherwise come in and zero beyond i_size.
2240 if (pos + copied > inode->i_size) {
2241 i_size_write(inode, pos + copied);
2242 i_size_changed = true;
2249 pagecache_isize_extended(inode, old_size, pos);
2251 * Don't mark the inode dirty under page lock. First, it unnecessarily
2252 * makes the holding time of page lock longer. Second, it forces lock
2253 * ordering of page lock and transaction start for journaling
2257 mark_inode_dirty(inode);
2260 EXPORT_SYMBOL(generic_write_end);
2263 * block_is_partially_uptodate checks whether buffers within a folio are
2266 * Returns true if all buffers which correspond to the specified part
2267 * of the folio are uptodate.
2269 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2271 unsigned block_start, block_end, blocksize;
2273 struct buffer_head *bh, *head;
2276 head = folio_buffers(folio);
2279 blocksize = head->b_size;
2280 to = min_t(unsigned, folio_size(folio) - from, count);
2282 if (from < blocksize && to > folio_size(folio) - blocksize)
2288 block_end = block_start + blocksize;
2289 if (block_end > from && block_start < to) {
2290 if (!buffer_uptodate(bh)) {
2294 if (block_end >= to)
2297 block_start = block_end;
2298 bh = bh->b_this_page;
2299 } while (bh != head);
2303 EXPORT_SYMBOL(block_is_partially_uptodate);
2306 * Generic "read_folio" function for block devices that have the normal
2307 * get_block functionality. This is most of the block device filesystems.
2308 * Reads the folio asynchronously --- the unlock_buffer() and
2309 * set/clear_buffer_uptodate() functions propagate buffer state into the
2310 * folio once IO has completed.
2312 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2314 struct inode *inode = folio->mapping->host;
2315 sector_t iblock, lblock;
2316 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2317 unsigned int blocksize, bbits;
2319 int fully_mapped = 1;
2320 bool page_error = false;
2321 loff_t limit = i_size_read(inode);
2323 /* This is needed for ext4. */
2324 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2325 limit = inode->i_sb->s_maxbytes;
2327 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2329 head = folio_create_buffers(folio, inode, 0);
2330 blocksize = head->b_size;
2331 bbits = block_size_bits(blocksize);
2333 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2334 lblock = (limit+blocksize-1) >> bbits;
2340 if (buffer_uptodate(bh))
2343 if (!buffer_mapped(bh)) {
2347 if (iblock < lblock) {
2348 WARN_ON(bh->b_size != blocksize);
2349 err = get_block(inode, iblock, bh, 0);
2351 folio_set_error(folio);
2355 if (!buffer_mapped(bh)) {
2356 folio_zero_range(folio, i * blocksize,
2359 set_buffer_uptodate(bh);
2363 * get_block() might have updated the buffer
2366 if (buffer_uptodate(bh))
2370 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2373 folio_set_mappedtodisk(folio);
2377 * All buffers are uptodate - we can set the folio uptodate
2378 * as well. But not if get_block() returned an error.
2381 folio_mark_uptodate(folio);
2382 folio_unlock(folio);
2386 /* Stage two: lock the buffers */
2387 for (i = 0; i < nr; i++) {
2390 mark_buffer_async_read(bh);
2394 * Stage 3: start the IO. Check for uptodateness
2395 * inside the buffer lock in case another process reading
2396 * the underlying blockdev brought it uptodate (the sct fix).
2398 for (i = 0; i < nr; i++) {
2400 if (buffer_uptodate(bh))
2401 end_buffer_async_read(bh, 1);
2403 submit_bh(REQ_OP_READ, bh);
2407 EXPORT_SYMBOL(block_read_full_folio);
2409 /* utility function for filesystems that need to do work on expanding
2410 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2411 * deal with the hole.
2413 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2415 struct address_space *mapping = inode->i_mapping;
2416 const struct address_space_operations *aops = mapping->a_ops;
2418 void *fsdata = NULL;
2421 err = inode_newsize_ok(inode, size);
2425 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2429 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2435 EXPORT_SYMBOL(generic_cont_expand_simple);
2437 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2438 loff_t pos, loff_t *bytes)
2440 struct inode *inode = mapping->host;
2441 const struct address_space_operations *aops = mapping->a_ops;
2442 unsigned int blocksize = i_blocksize(inode);
2444 void *fsdata = NULL;
2445 pgoff_t index, curidx;
2447 unsigned zerofrom, offset, len;
2450 index = pos >> PAGE_SHIFT;
2451 offset = pos & ~PAGE_MASK;
2453 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2454 zerofrom = curpos & ~PAGE_MASK;
2455 if (zerofrom & (blocksize-1)) {
2456 *bytes |= (blocksize-1);
2459 len = PAGE_SIZE - zerofrom;
2461 err = aops->write_begin(file, mapping, curpos, len,
2465 zero_user(page, zerofrom, len);
2466 err = aops->write_end(file, mapping, curpos, len, len,
2473 balance_dirty_pages_ratelimited(mapping);
2475 if (fatal_signal_pending(current)) {
2481 /* page covers the boundary, find the boundary offset */
2482 if (index == curidx) {
2483 zerofrom = curpos & ~PAGE_MASK;
2484 /* if we will expand the thing last block will be filled */
2485 if (offset <= zerofrom) {
2488 if (zerofrom & (blocksize-1)) {
2489 *bytes |= (blocksize-1);
2492 len = offset - zerofrom;
2494 err = aops->write_begin(file, mapping, curpos, len,
2498 zero_user(page, zerofrom, len);
2499 err = aops->write_end(file, mapping, curpos, len, len,
2511 * For moronic filesystems that do not allow holes in file.
2512 * We may have to extend the file.
2514 int cont_write_begin(struct file *file, struct address_space *mapping,
2515 loff_t pos, unsigned len,
2516 struct page **pagep, void **fsdata,
2517 get_block_t *get_block, loff_t *bytes)
2519 struct inode *inode = mapping->host;
2520 unsigned int blocksize = i_blocksize(inode);
2521 unsigned int zerofrom;
2524 err = cont_expand_zero(file, mapping, pos, bytes);
2528 zerofrom = *bytes & ~PAGE_MASK;
2529 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2530 *bytes |= (blocksize-1);
2534 return block_write_begin(mapping, pos, len, pagep, get_block);
2536 EXPORT_SYMBOL(cont_write_begin);
2538 int block_commit_write(struct page *page, unsigned from, unsigned to)
2540 struct inode *inode = page->mapping->host;
2541 __block_commit_write(inode,page,from,to);
2544 EXPORT_SYMBOL(block_commit_write);
2547 * block_page_mkwrite() is not allowed to change the file size as it gets
2548 * called from a page fault handler when a page is first dirtied. Hence we must
2549 * be careful to check for EOF conditions here. We set the page up correctly
2550 * for a written page which means we get ENOSPC checking when writing into
2551 * holes and correct delalloc and unwritten extent mapping on filesystems that
2552 * support these features.
2554 * We are not allowed to take the i_mutex here so we have to play games to
2555 * protect against truncate races as the page could now be beyond EOF. Because
2556 * truncate writes the inode size before removing pages, once we have the
2557 * page lock we can determine safely if the page is beyond EOF. If it is not
2558 * beyond EOF, then the page is guaranteed safe against truncation until we
2561 * Direct callers of this function should protect against filesystem freezing
2562 * using sb_start_pagefault() - sb_end_pagefault() functions.
2564 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2565 get_block_t get_block)
2567 struct page *page = vmf->page;
2568 struct inode *inode = file_inode(vma->vm_file);
2574 size = i_size_read(inode);
2575 if ((page->mapping != inode->i_mapping) ||
2576 (page_offset(page) > size)) {
2577 /* We overload EFAULT to mean page got truncated */
2582 /* page is wholly or partially inside EOF */
2583 if (((page->index + 1) << PAGE_SHIFT) > size)
2584 end = size & ~PAGE_MASK;
2588 ret = __block_write_begin(page, 0, end, get_block);
2590 ret = block_commit_write(page, 0, end);
2592 if (unlikely(ret < 0))
2594 set_page_dirty(page);
2595 wait_for_stable_page(page);
2601 EXPORT_SYMBOL(block_page_mkwrite);
2603 int block_truncate_page(struct address_space *mapping,
2604 loff_t from, get_block_t *get_block)
2606 pgoff_t index = from >> PAGE_SHIFT;
2607 unsigned offset = from & (PAGE_SIZE-1);
2610 unsigned length, pos;
2611 struct inode *inode = mapping->host;
2613 struct buffer_head *bh;
2616 blocksize = i_blocksize(inode);
2617 length = offset & (blocksize - 1);
2619 /* Block boundary? Nothing to do */
2623 length = blocksize - length;
2624 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2626 page = grab_cache_page(mapping, index);
2630 if (!page_has_buffers(page))
2631 create_empty_buffers(page, blocksize, 0);
2633 /* Find the buffer that contains "offset" */
2634 bh = page_buffers(page);
2636 while (offset >= pos) {
2637 bh = bh->b_this_page;
2642 if (!buffer_mapped(bh)) {
2643 WARN_ON(bh->b_size != blocksize);
2644 err = get_block(inode, iblock, bh, 0);
2647 /* unmapped? It's a hole - nothing to do */
2648 if (!buffer_mapped(bh))
2652 /* Ok, it's mapped. Make sure it's up-to-date */
2653 if (PageUptodate(page))
2654 set_buffer_uptodate(bh);
2656 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2657 err = bh_read(bh, 0);
2658 /* Uhhuh. Read error. Complain and punt. */
2663 zero_user(page, offset, length);
2664 mark_buffer_dirty(bh);
2672 EXPORT_SYMBOL(block_truncate_page);
2675 * The generic ->writepage function for buffer-backed address_spaces
2677 int block_write_full_page(struct page *page, get_block_t *get_block,
2678 struct writeback_control *wbc)
2680 struct inode * const inode = page->mapping->host;
2681 loff_t i_size = i_size_read(inode);
2682 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2685 /* Is the page fully inside i_size? */
2686 if (page->index < end_index)
2687 return __block_write_full_page(inode, page, get_block, wbc,
2688 end_buffer_async_write);
2690 /* Is the page fully outside i_size? (truncate in progress) */
2691 offset = i_size & (PAGE_SIZE-1);
2692 if (page->index >= end_index+1 || !offset) {
2694 return 0; /* don't care */
2698 * The page straddles i_size. It must be zeroed out on each and every
2699 * writepage invocation because it may be mmapped. "A file is mapped
2700 * in multiples of the page size. For a file that is not a multiple of
2701 * the page size, the remaining memory is zeroed when mapped, and
2702 * writes to that region are not written out to the file."
2704 zero_user_segment(page, offset, PAGE_SIZE);
2705 return __block_write_full_page(inode, page, get_block, wbc,
2706 end_buffer_async_write);
2708 EXPORT_SYMBOL(block_write_full_page);
2710 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2711 get_block_t *get_block)
2713 struct inode *inode = mapping->host;
2714 struct buffer_head tmp = {
2715 .b_size = i_blocksize(inode),
2718 get_block(inode, block, &tmp, 0);
2719 return tmp.b_blocknr;
2721 EXPORT_SYMBOL(generic_block_bmap);
2723 static void end_bio_bh_io_sync(struct bio *bio)
2725 struct buffer_head *bh = bio->bi_private;
2727 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2728 set_bit(BH_Quiet, &bh->b_state);
2730 bh->b_end_io(bh, !bio->bi_status);
2734 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2735 struct writeback_control *wbc)
2737 const enum req_op op = opf & REQ_OP_MASK;
2740 BUG_ON(!buffer_locked(bh));
2741 BUG_ON(!buffer_mapped(bh));
2742 BUG_ON(!bh->b_end_io);
2743 BUG_ON(buffer_delay(bh));
2744 BUG_ON(buffer_unwritten(bh));
2747 * Only clear out a write error when rewriting
2749 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2750 clear_buffer_write_io_error(bh);
2752 if (buffer_meta(bh))
2754 if (buffer_prio(bh))
2757 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2759 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2761 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2763 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2764 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
2766 bio->bi_end_io = end_bio_bh_io_sync;
2767 bio->bi_private = bh;
2769 /* Take care of bh's that straddle the end of the device */
2773 wbc_init_bio(wbc, bio);
2774 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2780 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2782 submit_bh_wbc(opf, bh, NULL);
2784 EXPORT_SYMBOL(submit_bh);
2786 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2789 if (!test_clear_buffer_dirty(bh)) {
2793 bh->b_end_io = end_buffer_write_sync;
2795 submit_bh(REQ_OP_WRITE | op_flags, bh);
2797 EXPORT_SYMBOL(write_dirty_buffer);
2800 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2801 * and then start new I/O and then wait upon it. The caller must have a ref on
2804 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2806 WARN_ON(atomic_read(&bh->b_count) < 1);
2808 if (test_clear_buffer_dirty(bh)) {
2810 * The bh should be mapped, but it might not be if the
2811 * device was hot-removed. Not much we can do but fail the I/O.
2813 if (!buffer_mapped(bh)) {
2819 bh->b_end_io = end_buffer_write_sync;
2820 submit_bh(REQ_OP_WRITE | op_flags, bh);
2822 if (!buffer_uptodate(bh))
2829 EXPORT_SYMBOL(__sync_dirty_buffer);
2831 int sync_dirty_buffer(struct buffer_head *bh)
2833 return __sync_dirty_buffer(bh, REQ_SYNC);
2835 EXPORT_SYMBOL(sync_dirty_buffer);
2838 * try_to_free_buffers() checks if all the buffers on this particular folio
2839 * are unused, and releases them if so.
2841 * Exclusion against try_to_free_buffers may be obtained by either
2842 * locking the folio or by holding its mapping's private_lock.
2844 * If the folio is dirty but all the buffers are clean then we need to
2845 * be sure to mark the folio clean as well. This is because the folio
2846 * may be against a block device, and a later reattachment of buffers
2847 * to a dirty folio will set *all* buffers dirty. Which would corrupt
2848 * filesystem data on the same device.
2850 * The same applies to regular filesystem folios: if all the buffers are
2851 * clean then we set the folio clean and proceed. To do that, we require
2852 * total exclusion from block_dirty_folio(). That is obtained with
2855 * try_to_free_buffers() is non-blocking.
2857 static inline int buffer_busy(struct buffer_head *bh)
2859 return atomic_read(&bh->b_count) |
2860 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2864 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2866 struct buffer_head *head = folio_buffers(folio);
2867 struct buffer_head *bh;
2871 if (buffer_busy(bh))
2873 bh = bh->b_this_page;
2874 } while (bh != head);
2877 struct buffer_head *next = bh->b_this_page;
2879 if (bh->b_assoc_map)
2880 __remove_assoc_queue(bh);
2882 } while (bh != head);
2883 *buffers_to_free = head;
2884 folio_detach_private(folio);
2890 bool try_to_free_buffers(struct folio *folio)
2892 struct address_space * const mapping = folio->mapping;
2893 struct buffer_head *buffers_to_free = NULL;
2896 BUG_ON(!folio_test_locked(folio));
2897 if (folio_test_writeback(folio))
2900 if (mapping == NULL) { /* can this still happen? */
2901 ret = drop_buffers(folio, &buffers_to_free);
2905 spin_lock(&mapping->private_lock);
2906 ret = drop_buffers(folio, &buffers_to_free);
2909 * If the filesystem writes its buffers by hand (eg ext3)
2910 * then we can have clean buffers against a dirty folio. We
2911 * clean the folio here; otherwise the VM will never notice
2912 * that the filesystem did any IO at all.
2914 * Also, during truncate, discard_buffer will have marked all
2915 * the folio's buffers clean. We discover that here and clean
2918 * private_lock must be held over this entire operation in order
2919 * to synchronise against block_dirty_folio and prevent the
2920 * dirty bit from being lost.
2923 folio_cancel_dirty(folio);
2924 spin_unlock(&mapping->private_lock);
2926 if (buffers_to_free) {
2927 struct buffer_head *bh = buffers_to_free;
2930 struct buffer_head *next = bh->b_this_page;
2931 free_buffer_head(bh);
2933 } while (bh != buffers_to_free);
2937 EXPORT_SYMBOL(try_to_free_buffers);
2940 * Buffer-head allocation
2942 static struct kmem_cache *bh_cachep __read_mostly;
2945 * Once the number of bh's in the machine exceeds this level, we start
2946 * stripping them in writeback.
2948 static unsigned long max_buffer_heads;
2950 int buffer_heads_over_limit;
2952 struct bh_accounting {
2953 int nr; /* Number of live bh's */
2954 int ratelimit; /* Limit cacheline bouncing */
2957 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2959 static void recalc_bh_state(void)
2964 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2966 __this_cpu_write(bh_accounting.ratelimit, 0);
2967 for_each_online_cpu(i)
2968 tot += per_cpu(bh_accounting, i).nr;
2969 buffer_heads_over_limit = (tot > max_buffer_heads);
2972 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2974 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2976 INIT_LIST_HEAD(&ret->b_assoc_buffers);
2977 spin_lock_init(&ret->b_uptodate_lock);
2979 __this_cpu_inc(bh_accounting.nr);
2985 EXPORT_SYMBOL(alloc_buffer_head);
2987 void free_buffer_head(struct buffer_head *bh)
2989 BUG_ON(!list_empty(&bh->b_assoc_buffers));
2990 kmem_cache_free(bh_cachep, bh);
2992 __this_cpu_dec(bh_accounting.nr);
2996 EXPORT_SYMBOL(free_buffer_head);
2998 static int buffer_exit_cpu_dead(unsigned int cpu)
3001 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3003 for (i = 0; i < BH_LRU_SIZE; i++) {
3007 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3008 per_cpu(bh_accounting, cpu).nr = 0;
3013 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3014 * @bh: struct buffer_head
3016 * Return true if the buffer is up-to-date and false,
3017 * with the buffer locked, if not.
3019 int bh_uptodate_or_lock(struct buffer_head *bh)
3021 if (!buffer_uptodate(bh)) {
3023 if (!buffer_uptodate(bh))
3029 EXPORT_SYMBOL(bh_uptodate_or_lock);
3032 * __bh_read - Submit read for a locked buffer
3033 * @bh: struct buffer_head
3034 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3035 * @wait: wait until reading finish
3037 * Returns zero on success or don't wait, and -EIO on error.
3039 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3043 BUG_ON(!buffer_locked(bh));
3046 bh->b_end_io = end_buffer_read_sync;
3047 submit_bh(REQ_OP_READ | op_flags, bh);
3050 if (!buffer_uptodate(bh))
3055 EXPORT_SYMBOL(__bh_read);
3058 * __bh_read_batch - Submit read for a batch of unlocked buffers
3059 * @nr: entry number of the buffer batch
3060 * @bhs: a batch of struct buffer_head
3061 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3062 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3063 * buffer that cannot lock.
3065 * Returns zero on success or don't wait, and -EIO on error.
3067 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3068 blk_opf_t op_flags, bool force_lock)
3072 for (i = 0; i < nr; i++) {
3073 struct buffer_head *bh = bhs[i];
3075 if (buffer_uptodate(bh))
3081 if (!trylock_buffer(bh))
3084 if (buffer_uptodate(bh)) {
3089 bh->b_end_io = end_buffer_read_sync;
3091 submit_bh(REQ_OP_READ | op_flags, bh);
3094 EXPORT_SYMBOL(__bh_read_batch);
3096 void __init buffer_init(void)
3098 unsigned long nrpages;
3101 bh_cachep = kmem_cache_create("buffer_head",
3102 sizeof(struct buffer_head), 0,
3103 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3108 * Limit the bh occupancy to 10% of ZONE_NORMAL
3110 nrpages = (nr_free_buffer_pages() * 10) / 100;
3111 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3112 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3113 NULL, buffer_exit_cpu_dead);