Merge tag 'x86_cleanups_for_6.5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52
53 #include "internal.h"
54
55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
57                           struct writeback_control *wbc);
58
59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63         trace_block_touch_buffer(bh);
64         folio_mark_accessed(bh->b_folio);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67
68 void __lock_buffer(struct buffer_head *bh)
69 {
70         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73
74 void unlock_buffer(struct buffer_head *bh)
75 {
76         clear_bit_unlock(BH_Lock, &bh->b_state);
77         smp_mb__after_atomic();
78         wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81
82 /*
83  * Returns if the folio has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the folio_test_dirty information is stale. If
85  * any of the buffers are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct folio *folio,
88                                      bool *dirty, bool *writeback)
89 {
90         struct buffer_head *head, *bh;
91         *dirty = false;
92         *writeback = false;
93
94         BUG_ON(!folio_test_locked(folio));
95
96         head = folio_buffers(folio);
97         if (!head)
98                 return;
99
100         if (folio_test_writeback(folio))
101                 *writeback = true;
102
103         bh = head;
104         do {
105                 if (buffer_locked(bh))
106                         *writeback = true;
107
108                 if (buffer_dirty(bh))
109                         *dirty = true;
110
111                 bh = bh->b_this_page;
112         } while (bh != head);
113 }
114
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128         if (!test_bit(BH_Quiet, &bh->b_state))
129                 printk_ratelimited(KERN_ERR
130                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
131                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144         if (uptodate) {
145                 set_buffer_uptodate(bh);
146         } else {
147                 /* This happens, due to failed read-ahead attempts. */
148                 clear_buffer_uptodate(bh);
149         }
150         unlock_buffer(bh);
151 }
152
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159         __end_buffer_read_notouch(bh, uptodate);
160         put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166         if (uptodate) {
167                 set_buffer_uptodate(bh);
168         } else {
169                 buffer_io_error(bh, ", lost sync page write");
170                 mark_buffer_write_io_error(bh);
171                 clear_buffer_uptodate(bh);
172         }
173         unlock_buffer(bh);
174         put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191         struct inode *bd_inode = bdev->bd_inode;
192         struct address_space *bd_mapping = bd_inode->i_mapping;
193         struct buffer_head *ret = NULL;
194         pgoff_t index;
195         struct buffer_head *bh;
196         struct buffer_head *head;
197         struct page *page;
198         int all_mapped = 1;
199         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203         if (!page)
204                 goto out;
205
206         spin_lock(&bd_mapping->private_lock);
207         if (!page_has_buffers(page))
208                 goto out_unlock;
209         head = page_buffers(page);
210         bh = head;
211         do {
212                 if (!buffer_mapped(bh))
213                         all_mapped = 0;
214                 else if (bh->b_blocknr == block) {
215                         ret = bh;
216                         get_bh(bh);
217                         goto out_unlock;
218                 }
219                 bh = bh->b_this_page;
220         } while (bh != head);
221
222         /* we might be here because some of the buffers on this page are
223          * not mapped.  This is due to various races between
224          * file io on the block device and getblk.  It gets dealt with
225          * elsewhere, don't buffer_error if we had some unmapped buffers
226          */
227         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228         if (all_mapped && __ratelimit(&last_warned)) {
229                 printk("__find_get_block_slow() failed. block=%llu, "
230                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231                        "device %pg blocksize: %d\n",
232                        (unsigned long long)block,
233                        (unsigned long long)bh->b_blocknr,
234                        bh->b_state, bh->b_size, bdev,
235                        1 << bd_inode->i_blkbits);
236         }
237 out_unlock:
238         spin_unlock(&bd_mapping->private_lock);
239         put_page(page);
240 out:
241         return ret;
242 }
243
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246         unsigned long flags;
247         struct buffer_head *first;
248         struct buffer_head *tmp;
249         struct folio *folio;
250         int folio_uptodate = 1;
251
252         BUG_ON(!buffer_async_read(bh));
253
254         folio = bh->b_folio;
255         if (uptodate) {
256                 set_buffer_uptodate(bh);
257         } else {
258                 clear_buffer_uptodate(bh);
259                 buffer_io_error(bh, ", async page read");
260                 folio_set_error(folio);
261         }
262
263         /*
264          * Be _very_ careful from here on. Bad things can happen if
265          * two buffer heads end IO at almost the same time and both
266          * decide that the page is now completely done.
267          */
268         first = folio_buffers(folio);
269         spin_lock_irqsave(&first->b_uptodate_lock, flags);
270         clear_buffer_async_read(bh);
271         unlock_buffer(bh);
272         tmp = bh;
273         do {
274                 if (!buffer_uptodate(tmp))
275                         folio_uptodate = 0;
276                 if (buffer_async_read(tmp)) {
277                         BUG_ON(!buffer_locked(tmp));
278                         goto still_busy;
279                 }
280                 tmp = tmp->b_this_page;
281         } while (tmp != bh);
282         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284         /*
285          * If all of the buffers are uptodate then we can set the page
286          * uptodate.
287          */
288         if (folio_uptodate)
289                 folio_mark_uptodate(folio);
290         folio_unlock(folio);
291         return;
292
293 still_busy:
294         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295         return;
296 }
297
298 struct postprocess_bh_ctx {
299         struct work_struct work;
300         struct buffer_head *bh;
301 };
302
303 static void verify_bh(struct work_struct *work)
304 {
305         struct postprocess_bh_ctx *ctx =
306                 container_of(work, struct postprocess_bh_ctx, work);
307         struct buffer_head *bh = ctx->bh;
308         bool valid;
309
310         valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
311         end_buffer_async_read(bh, valid);
312         kfree(ctx);
313 }
314
315 static bool need_fsverity(struct buffer_head *bh)
316 {
317         struct folio *folio = bh->b_folio;
318         struct inode *inode = folio->mapping->host;
319
320         return fsverity_active(inode) &&
321                 /* needed by ext4 */
322                 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
323 }
324
325 static void decrypt_bh(struct work_struct *work)
326 {
327         struct postprocess_bh_ctx *ctx =
328                 container_of(work, struct postprocess_bh_ctx, work);
329         struct buffer_head *bh = ctx->bh;
330         int err;
331
332         err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
333                                                bh_offset(bh));
334         if (err == 0 && need_fsverity(bh)) {
335                 /*
336                  * We use different work queues for decryption and for verity
337                  * because verity may require reading metadata pages that need
338                  * decryption, and we shouldn't recurse to the same workqueue.
339                  */
340                 INIT_WORK(&ctx->work, verify_bh);
341                 fsverity_enqueue_verify_work(&ctx->work);
342                 return;
343         }
344         end_buffer_async_read(bh, err == 0);
345         kfree(ctx);
346 }
347
348 /*
349  * I/O completion handler for block_read_full_folio() - pages
350  * which come unlocked at the end of I/O.
351  */
352 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
353 {
354         struct inode *inode = bh->b_folio->mapping->host;
355         bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
356         bool verify = need_fsverity(bh);
357
358         /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
359         if (uptodate && (decrypt || verify)) {
360                 struct postprocess_bh_ctx *ctx =
361                         kmalloc(sizeof(*ctx), GFP_ATOMIC);
362
363                 if (ctx) {
364                         ctx->bh = bh;
365                         if (decrypt) {
366                                 INIT_WORK(&ctx->work, decrypt_bh);
367                                 fscrypt_enqueue_decrypt_work(&ctx->work);
368                         } else {
369                                 INIT_WORK(&ctx->work, verify_bh);
370                                 fsverity_enqueue_verify_work(&ctx->work);
371                         }
372                         return;
373                 }
374                 uptodate = 0;
375         }
376         end_buffer_async_read(bh, uptodate);
377 }
378
379 /*
380  * Completion handler for block_write_full_page() - pages which are unlocked
381  * during I/O, and which have PageWriteback cleared upon I/O completion.
382  */
383 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
384 {
385         unsigned long flags;
386         struct buffer_head *first;
387         struct buffer_head *tmp;
388         struct folio *folio;
389
390         BUG_ON(!buffer_async_write(bh));
391
392         folio = bh->b_folio;
393         if (uptodate) {
394                 set_buffer_uptodate(bh);
395         } else {
396                 buffer_io_error(bh, ", lost async page write");
397                 mark_buffer_write_io_error(bh);
398                 clear_buffer_uptodate(bh);
399                 folio_set_error(folio);
400         }
401
402         first = folio_buffers(folio);
403         spin_lock_irqsave(&first->b_uptodate_lock, flags);
404
405         clear_buffer_async_write(bh);
406         unlock_buffer(bh);
407         tmp = bh->b_this_page;
408         while (tmp != bh) {
409                 if (buffer_async_write(tmp)) {
410                         BUG_ON(!buffer_locked(tmp));
411                         goto still_busy;
412                 }
413                 tmp = tmp->b_this_page;
414         }
415         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416         folio_end_writeback(folio);
417         return;
418
419 still_busy:
420         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
421         return;
422 }
423 EXPORT_SYMBOL(end_buffer_async_write);
424
425 /*
426  * If a page's buffers are under async readin (end_buffer_async_read
427  * completion) then there is a possibility that another thread of
428  * control could lock one of the buffers after it has completed
429  * but while some of the other buffers have not completed.  This
430  * locked buffer would confuse end_buffer_async_read() into not unlocking
431  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
432  * that this buffer is not under async I/O.
433  *
434  * The page comes unlocked when it has no locked buffer_async buffers
435  * left.
436  *
437  * PageLocked prevents anyone starting new async I/O reads any of
438  * the buffers.
439  *
440  * PageWriteback is used to prevent simultaneous writeout of the same
441  * page.
442  *
443  * PageLocked prevents anyone from starting writeback of a page which is
444  * under read I/O (PageWriteback is only ever set against a locked page).
445  */
446 static void mark_buffer_async_read(struct buffer_head *bh)
447 {
448         bh->b_end_io = end_buffer_async_read_io;
449         set_buffer_async_read(bh);
450 }
451
452 static void mark_buffer_async_write_endio(struct buffer_head *bh,
453                                           bh_end_io_t *handler)
454 {
455         bh->b_end_io = handler;
456         set_buffer_async_write(bh);
457 }
458
459 void mark_buffer_async_write(struct buffer_head *bh)
460 {
461         mark_buffer_async_write_endio(bh, end_buffer_async_write);
462 }
463 EXPORT_SYMBOL(mark_buffer_async_write);
464
465
466 /*
467  * fs/buffer.c contains helper functions for buffer-backed address space's
468  * fsync functions.  A common requirement for buffer-based filesystems is
469  * that certain data from the backing blockdev needs to be written out for
470  * a successful fsync().  For example, ext2 indirect blocks need to be
471  * written back and waited upon before fsync() returns.
472  *
473  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
474  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
475  * management of a list of dependent buffers at ->i_mapping->private_list.
476  *
477  * Locking is a little subtle: try_to_free_buffers() will remove buffers
478  * from their controlling inode's queue when they are being freed.  But
479  * try_to_free_buffers() will be operating against the *blockdev* mapping
480  * at the time, not against the S_ISREG file which depends on those buffers.
481  * So the locking for private_list is via the private_lock in the address_space
482  * which backs the buffers.  Which is different from the address_space 
483  * against which the buffers are listed.  So for a particular address_space,
484  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
485  * mapping->private_list will always be protected by the backing blockdev's
486  * ->private_lock.
487  *
488  * Which introduces a requirement: all buffers on an address_space's
489  * ->private_list must be from the same address_space: the blockdev's.
490  *
491  * address_spaces which do not place buffers at ->private_list via these
492  * utility functions are free to use private_lock and private_list for
493  * whatever they want.  The only requirement is that list_empty(private_list)
494  * be true at clear_inode() time.
495  *
496  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
497  * filesystems should do that.  invalidate_inode_buffers() should just go
498  * BUG_ON(!list_empty).
499  *
500  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
501  * take an address_space, not an inode.  And it should be called
502  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
503  * queued up.
504  *
505  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
506  * list if it is already on a list.  Because if the buffer is on a list,
507  * it *must* already be on the right one.  If not, the filesystem is being
508  * silly.  This will save a ton of locking.  But first we have to ensure
509  * that buffers are taken *off* the old inode's list when they are freed
510  * (presumably in truncate).  That requires careful auditing of all
511  * filesystems (do it inside bforget()).  It could also be done by bringing
512  * b_inode back.
513  */
514
515 /*
516  * The buffer's backing address_space's private_lock must be held
517  */
518 static void __remove_assoc_queue(struct buffer_head *bh)
519 {
520         list_del_init(&bh->b_assoc_buffers);
521         WARN_ON(!bh->b_assoc_map);
522         bh->b_assoc_map = NULL;
523 }
524
525 int inode_has_buffers(struct inode *inode)
526 {
527         return !list_empty(&inode->i_data.private_list);
528 }
529
530 /*
531  * osync is designed to support O_SYNC io.  It waits synchronously for
532  * all already-submitted IO to complete, but does not queue any new
533  * writes to the disk.
534  *
535  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
536  * as you dirty the buffers, and then use osync_inode_buffers to wait for
537  * completion.  Any other dirty buffers which are not yet queued for
538  * write will not be flushed to disk by the osync.
539  */
540 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
541 {
542         struct buffer_head *bh;
543         struct list_head *p;
544         int err = 0;
545
546         spin_lock(lock);
547 repeat:
548         list_for_each_prev(p, list) {
549                 bh = BH_ENTRY(p);
550                 if (buffer_locked(bh)) {
551                         get_bh(bh);
552                         spin_unlock(lock);
553                         wait_on_buffer(bh);
554                         if (!buffer_uptodate(bh))
555                                 err = -EIO;
556                         brelse(bh);
557                         spin_lock(lock);
558                         goto repeat;
559                 }
560         }
561         spin_unlock(lock);
562         return err;
563 }
564
565 void emergency_thaw_bdev(struct super_block *sb)
566 {
567         while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
568                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
569 }
570
571 /**
572  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
573  * @mapping: the mapping which wants those buffers written
574  *
575  * Starts I/O against the buffers at mapping->private_list, and waits upon
576  * that I/O.
577  *
578  * Basically, this is a convenience function for fsync().
579  * @mapping is a file or directory which needs those buffers to be written for
580  * a successful fsync().
581  */
582 int sync_mapping_buffers(struct address_space *mapping)
583 {
584         struct address_space *buffer_mapping = mapping->private_data;
585
586         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
587                 return 0;
588
589         return fsync_buffers_list(&buffer_mapping->private_lock,
590                                         &mapping->private_list);
591 }
592 EXPORT_SYMBOL(sync_mapping_buffers);
593
594 /*
595  * Called when we've recently written block `bblock', and it is known that
596  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
597  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
598  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
599  */
600 void write_boundary_block(struct block_device *bdev,
601                         sector_t bblock, unsigned blocksize)
602 {
603         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
604         if (bh) {
605                 if (buffer_dirty(bh))
606                         write_dirty_buffer(bh, 0);
607                 put_bh(bh);
608         }
609 }
610
611 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
612 {
613         struct address_space *mapping = inode->i_mapping;
614         struct address_space *buffer_mapping = bh->b_folio->mapping;
615
616         mark_buffer_dirty(bh);
617         if (!mapping->private_data) {
618                 mapping->private_data = buffer_mapping;
619         } else {
620                 BUG_ON(mapping->private_data != buffer_mapping);
621         }
622         if (!bh->b_assoc_map) {
623                 spin_lock(&buffer_mapping->private_lock);
624                 list_move_tail(&bh->b_assoc_buffers,
625                                 &mapping->private_list);
626                 bh->b_assoc_map = mapping;
627                 spin_unlock(&buffer_mapping->private_lock);
628         }
629 }
630 EXPORT_SYMBOL(mark_buffer_dirty_inode);
631
632 /*
633  * Add a page to the dirty page list.
634  *
635  * It is a sad fact of life that this function is called from several places
636  * deeply under spinlocking.  It may not sleep.
637  *
638  * If the page has buffers, the uptodate buffers are set dirty, to preserve
639  * dirty-state coherency between the page and the buffers.  It the page does
640  * not have buffers then when they are later attached they will all be set
641  * dirty.
642  *
643  * The buffers are dirtied before the page is dirtied.  There's a small race
644  * window in which a writepage caller may see the page cleanness but not the
645  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
646  * before the buffers, a concurrent writepage caller could clear the page dirty
647  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
648  * page on the dirty page list.
649  *
650  * We use private_lock to lock against try_to_free_buffers while using the
651  * page's buffer list.  Also use this to protect against clean buffers being
652  * added to the page after it was set dirty.
653  *
654  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
655  * address_space though.
656  */
657 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
658 {
659         struct buffer_head *head;
660         bool newly_dirty;
661
662         spin_lock(&mapping->private_lock);
663         head = folio_buffers(folio);
664         if (head) {
665                 struct buffer_head *bh = head;
666
667                 do {
668                         set_buffer_dirty(bh);
669                         bh = bh->b_this_page;
670                 } while (bh != head);
671         }
672         /*
673          * Lock out page's memcg migration to keep PageDirty
674          * synchronized with per-memcg dirty page counters.
675          */
676         folio_memcg_lock(folio);
677         newly_dirty = !folio_test_set_dirty(folio);
678         spin_unlock(&mapping->private_lock);
679
680         if (newly_dirty)
681                 __folio_mark_dirty(folio, mapping, 1);
682
683         folio_memcg_unlock(folio);
684
685         if (newly_dirty)
686                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
687
688         return newly_dirty;
689 }
690 EXPORT_SYMBOL(block_dirty_folio);
691
692 /*
693  * Write out and wait upon a list of buffers.
694  *
695  * We have conflicting pressures: we want to make sure that all
696  * initially dirty buffers get waited on, but that any subsequently
697  * dirtied buffers don't.  After all, we don't want fsync to last
698  * forever if somebody is actively writing to the file.
699  *
700  * Do this in two main stages: first we copy dirty buffers to a
701  * temporary inode list, queueing the writes as we go.  Then we clean
702  * up, waiting for those writes to complete.
703  * 
704  * During this second stage, any subsequent updates to the file may end
705  * up refiling the buffer on the original inode's dirty list again, so
706  * there is a chance we will end up with a buffer queued for write but
707  * not yet completed on that list.  So, as a final cleanup we go through
708  * the osync code to catch these locked, dirty buffers without requeuing
709  * any newly dirty buffers for write.
710  */
711 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
712 {
713         struct buffer_head *bh;
714         struct list_head tmp;
715         struct address_space *mapping;
716         int err = 0, err2;
717         struct blk_plug plug;
718
719         INIT_LIST_HEAD(&tmp);
720         blk_start_plug(&plug);
721
722         spin_lock(lock);
723         while (!list_empty(list)) {
724                 bh = BH_ENTRY(list->next);
725                 mapping = bh->b_assoc_map;
726                 __remove_assoc_queue(bh);
727                 /* Avoid race with mark_buffer_dirty_inode() which does
728                  * a lockless check and we rely on seeing the dirty bit */
729                 smp_mb();
730                 if (buffer_dirty(bh) || buffer_locked(bh)) {
731                         list_add(&bh->b_assoc_buffers, &tmp);
732                         bh->b_assoc_map = mapping;
733                         if (buffer_dirty(bh)) {
734                                 get_bh(bh);
735                                 spin_unlock(lock);
736                                 /*
737                                  * Ensure any pending I/O completes so that
738                                  * write_dirty_buffer() actually writes the
739                                  * current contents - it is a noop if I/O is
740                                  * still in flight on potentially older
741                                  * contents.
742                                  */
743                                 write_dirty_buffer(bh, REQ_SYNC);
744
745                                 /*
746                                  * Kick off IO for the previous mapping. Note
747                                  * that we will not run the very last mapping,
748                                  * wait_on_buffer() will do that for us
749                                  * through sync_buffer().
750                                  */
751                                 brelse(bh);
752                                 spin_lock(lock);
753                         }
754                 }
755         }
756
757         spin_unlock(lock);
758         blk_finish_plug(&plug);
759         spin_lock(lock);
760
761         while (!list_empty(&tmp)) {
762                 bh = BH_ENTRY(tmp.prev);
763                 get_bh(bh);
764                 mapping = bh->b_assoc_map;
765                 __remove_assoc_queue(bh);
766                 /* Avoid race with mark_buffer_dirty_inode() which does
767                  * a lockless check and we rely on seeing the dirty bit */
768                 smp_mb();
769                 if (buffer_dirty(bh)) {
770                         list_add(&bh->b_assoc_buffers,
771                                  &mapping->private_list);
772                         bh->b_assoc_map = mapping;
773                 }
774                 spin_unlock(lock);
775                 wait_on_buffer(bh);
776                 if (!buffer_uptodate(bh))
777                         err = -EIO;
778                 brelse(bh);
779                 spin_lock(lock);
780         }
781         
782         spin_unlock(lock);
783         err2 = osync_buffers_list(lock, list);
784         if (err)
785                 return err;
786         else
787                 return err2;
788 }
789
790 /*
791  * Invalidate any and all dirty buffers on a given inode.  We are
792  * probably unmounting the fs, but that doesn't mean we have already
793  * done a sync().  Just drop the buffers from the inode list.
794  *
795  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
796  * assumes that all the buffers are against the blockdev.  Not true
797  * for reiserfs.
798  */
799 void invalidate_inode_buffers(struct inode *inode)
800 {
801         if (inode_has_buffers(inode)) {
802                 struct address_space *mapping = &inode->i_data;
803                 struct list_head *list = &mapping->private_list;
804                 struct address_space *buffer_mapping = mapping->private_data;
805
806                 spin_lock(&buffer_mapping->private_lock);
807                 while (!list_empty(list))
808                         __remove_assoc_queue(BH_ENTRY(list->next));
809                 spin_unlock(&buffer_mapping->private_lock);
810         }
811 }
812 EXPORT_SYMBOL(invalidate_inode_buffers);
813
814 /*
815  * Remove any clean buffers from the inode's buffer list.  This is called
816  * when we're trying to free the inode itself.  Those buffers can pin it.
817  *
818  * Returns true if all buffers were removed.
819  */
820 int remove_inode_buffers(struct inode *inode)
821 {
822         int ret = 1;
823
824         if (inode_has_buffers(inode)) {
825                 struct address_space *mapping = &inode->i_data;
826                 struct list_head *list = &mapping->private_list;
827                 struct address_space *buffer_mapping = mapping->private_data;
828
829                 spin_lock(&buffer_mapping->private_lock);
830                 while (!list_empty(list)) {
831                         struct buffer_head *bh = BH_ENTRY(list->next);
832                         if (buffer_dirty(bh)) {
833                                 ret = 0;
834                                 break;
835                         }
836                         __remove_assoc_queue(bh);
837                 }
838                 spin_unlock(&buffer_mapping->private_lock);
839         }
840         return ret;
841 }
842
843 /*
844  * Create the appropriate buffers when given a folio for data area and
845  * the size of each buffer.. Use the bh->b_this_page linked list to
846  * follow the buffers created.  Return NULL if unable to create more
847  * buffers.
848  *
849  * The retry flag is used to differentiate async IO (paging, swapping)
850  * which may not fail from ordinary buffer allocations.
851  */
852 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
853                                         bool retry)
854 {
855         struct buffer_head *bh, *head;
856         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
857         long offset;
858         struct mem_cgroup *memcg, *old_memcg;
859
860         if (retry)
861                 gfp |= __GFP_NOFAIL;
862
863         /* The folio lock pins the memcg */
864         memcg = folio_memcg(folio);
865         old_memcg = set_active_memcg(memcg);
866
867         head = NULL;
868         offset = folio_size(folio);
869         while ((offset -= size) >= 0) {
870                 bh = alloc_buffer_head(gfp);
871                 if (!bh)
872                         goto no_grow;
873
874                 bh->b_this_page = head;
875                 bh->b_blocknr = -1;
876                 head = bh;
877
878                 bh->b_size = size;
879
880                 /* Link the buffer to its folio */
881                 folio_set_bh(bh, folio, offset);
882         }
883 out:
884         set_active_memcg(old_memcg);
885         return head;
886 /*
887  * In case anything failed, we just free everything we got.
888  */
889 no_grow:
890         if (head) {
891                 do {
892                         bh = head;
893                         head = head->b_this_page;
894                         free_buffer_head(bh);
895                 } while (head);
896         }
897
898         goto out;
899 }
900 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
901
902 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
903                                        bool retry)
904 {
905         return folio_alloc_buffers(page_folio(page), size, retry);
906 }
907 EXPORT_SYMBOL_GPL(alloc_page_buffers);
908
909 static inline void
910 link_dev_buffers(struct page *page, struct buffer_head *head)
911 {
912         struct buffer_head *bh, *tail;
913
914         bh = head;
915         do {
916                 tail = bh;
917                 bh = bh->b_this_page;
918         } while (bh);
919         tail->b_this_page = head;
920         attach_page_private(page, head);
921 }
922
923 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
924 {
925         sector_t retval = ~((sector_t)0);
926         loff_t sz = bdev_nr_bytes(bdev);
927
928         if (sz) {
929                 unsigned int sizebits = blksize_bits(size);
930                 retval = (sz >> sizebits);
931         }
932         return retval;
933 }
934
935 /*
936  * Initialise the state of a blockdev page's buffers.
937  */ 
938 static sector_t
939 init_page_buffers(struct page *page, struct block_device *bdev,
940                         sector_t block, int size)
941 {
942         struct buffer_head *head = page_buffers(page);
943         struct buffer_head *bh = head;
944         int uptodate = PageUptodate(page);
945         sector_t end_block = blkdev_max_block(bdev, size);
946
947         do {
948                 if (!buffer_mapped(bh)) {
949                         bh->b_end_io = NULL;
950                         bh->b_private = NULL;
951                         bh->b_bdev = bdev;
952                         bh->b_blocknr = block;
953                         if (uptodate)
954                                 set_buffer_uptodate(bh);
955                         if (block < end_block)
956                                 set_buffer_mapped(bh);
957                 }
958                 block++;
959                 bh = bh->b_this_page;
960         } while (bh != head);
961
962         /*
963          * Caller needs to validate requested block against end of device.
964          */
965         return end_block;
966 }
967
968 /*
969  * Create the page-cache page that contains the requested block.
970  *
971  * This is used purely for blockdev mappings.
972  */
973 static int
974 grow_dev_page(struct block_device *bdev, sector_t block,
975               pgoff_t index, int size, int sizebits, gfp_t gfp)
976 {
977         struct inode *inode = bdev->bd_inode;
978         struct page *page;
979         struct buffer_head *bh;
980         sector_t end_block;
981         int ret = 0;
982         gfp_t gfp_mask;
983
984         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
985
986         /*
987          * XXX: __getblk_slow() can not really deal with failure and
988          * will endlessly loop on improvised global reclaim.  Prefer
989          * looping in the allocator rather than here, at least that
990          * code knows what it's doing.
991          */
992         gfp_mask |= __GFP_NOFAIL;
993
994         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
995
996         BUG_ON(!PageLocked(page));
997
998         if (page_has_buffers(page)) {
999                 bh = page_buffers(page);
1000                 if (bh->b_size == size) {
1001                         end_block = init_page_buffers(page, bdev,
1002                                                 (sector_t)index << sizebits,
1003                                                 size);
1004                         goto done;
1005                 }
1006                 if (!try_to_free_buffers(page_folio(page)))
1007                         goto failed;
1008         }
1009
1010         /*
1011          * Allocate some buffers for this page
1012          */
1013         bh = alloc_page_buffers(page, size, true);
1014
1015         /*
1016          * Link the page to the buffers and initialise them.  Take the
1017          * lock to be atomic wrt __find_get_block(), which does not
1018          * run under the page lock.
1019          */
1020         spin_lock(&inode->i_mapping->private_lock);
1021         link_dev_buffers(page, bh);
1022         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1023                         size);
1024         spin_unlock(&inode->i_mapping->private_lock);
1025 done:
1026         ret = (block < end_block) ? 1 : -ENXIO;
1027 failed:
1028         unlock_page(page);
1029         put_page(page);
1030         return ret;
1031 }
1032
1033 /*
1034  * Create buffers for the specified block device block's page.  If
1035  * that page was dirty, the buffers are set dirty also.
1036  */
1037 static int
1038 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1039 {
1040         pgoff_t index;
1041         int sizebits;
1042
1043         sizebits = PAGE_SHIFT - __ffs(size);
1044         index = block >> sizebits;
1045
1046         /*
1047          * Check for a block which wants to lie outside our maximum possible
1048          * pagecache index.  (this comparison is done using sector_t types).
1049          */
1050         if (unlikely(index != block >> sizebits)) {
1051                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1052                         "device %pg\n",
1053                         __func__, (unsigned long long)block,
1054                         bdev);
1055                 return -EIO;
1056         }
1057
1058         /* Create a page with the proper size buffers.. */
1059         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1060 }
1061
1062 static struct buffer_head *
1063 __getblk_slow(struct block_device *bdev, sector_t block,
1064              unsigned size, gfp_t gfp)
1065 {
1066         /* Size must be multiple of hard sectorsize */
1067         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1068                         (size < 512 || size > PAGE_SIZE))) {
1069                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1070                                         size);
1071                 printk(KERN_ERR "logical block size: %d\n",
1072                                         bdev_logical_block_size(bdev));
1073
1074                 dump_stack();
1075                 return NULL;
1076         }
1077
1078         for (;;) {
1079                 struct buffer_head *bh;
1080                 int ret;
1081
1082                 bh = __find_get_block(bdev, block, size);
1083                 if (bh)
1084                         return bh;
1085
1086                 ret = grow_buffers(bdev, block, size, gfp);
1087                 if (ret < 0)
1088                         return NULL;
1089         }
1090 }
1091
1092 /*
1093  * The relationship between dirty buffers and dirty pages:
1094  *
1095  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1096  * the page is tagged dirty in the page cache.
1097  *
1098  * At all times, the dirtiness of the buffers represents the dirtiness of
1099  * subsections of the page.  If the page has buffers, the page dirty bit is
1100  * merely a hint about the true dirty state.
1101  *
1102  * When a page is set dirty in its entirety, all its buffers are marked dirty
1103  * (if the page has buffers).
1104  *
1105  * When a buffer is marked dirty, its page is dirtied, but the page's other
1106  * buffers are not.
1107  *
1108  * Also.  When blockdev buffers are explicitly read with bread(), they
1109  * individually become uptodate.  But their backing page remains not
1110  * uptodate - even if all of its buffers are uptodate.  A subsequent
1111  * block_read_full_folio() against that folio will discover all the uptodate
1112  * buffers, will set the folio uptodate and will perform no I/O.
1113  */
1114
1115 /**
1116  * mark_buffer_dirty - mark a buffer_head as needing writeout
1117  * @bh: the buffer_head to mark dirty
1118  *
1119  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1120  * its backing page dirty, then tag the page as dirty in the page cache
1121  * and then attach the address_space's inode to its superblock's dirty
1122  * inode list.
1123  *
1124  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->private_lock,
1125  * i_pages lock and mapping->host->i_lock.
1126  */
1127 void mark_buffer_dirty(struct buffer_head *bh)
1128 {
1129         WARN_ON_ONCE(!buffer_uptodate(bh));
1130
1131         trace_block_dirty_buffer(bh);
1132
1133         /*
1134          * Very *carefully* optimize the it-is-already-dirty case.
1135          *
1136          * Don't let the final "is it dirty" escape to before we
1137          * perhaps modified the buffer.
1138          */
1139         if (buffer_dirty(bh)) {
1140                 smp_mb();
1141                 if (buffer_dirty(bh))
1142                         return;
1143         }
1144
1145         if (!test_set_buffer_dirty(bh)) {
1146                 struct folio *folio = bh->b_folio;
1147                 struct address_space *mapping = NULL;
1148
1149                 folio_memcg_lock(folio);
1150                 if (!folio_test_set_dirty(folio)) {
1151                         mapping = folio->mapping;
1152                         if (mapping)
1153                                 __folio_mark_dirty(folio, mapping, 0);
1154                 }
1155                 folio_memcg_unlock(folio);
1156                 if (mapping)
1157                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1158         }
1159 }
1160 EXPORT_SYMBOL(mark_buffer_dirty);
1161
1162 void mark_buffer_write_io_error(struct buffer_head *bh)
1163 {
1164         struct super_block *sb;
1165
1166         set_buffer_write_io_error(bh);
1167         /* FIXME: do we need to set this in both places? */
1168         if (bh->b_folio && bh->b_folio->mapping)
1169                 mapping_set_error(bh->b_folio->mapping, -EIO);
1170         if (bh->b_assoc_map)
1171                 mapping_set_error(bh->b_assoc_map, -EIO);
1172         rcu_read_lock();
1173         sb = READ_ONCE(bh->b_bdev->bd_super);
1174         if (sb)
1175                 errseq_set(&sb->s_wb_err, -EIO);
1176         rcu_read_unlock();
1177 }
1178 EXPORT_SYMBOL(mark_buffer_write_io_error);
1179
1180 /*
1181  * Decrement a buffer_head's reference count.  If all buffers against a page
1182  * have zero reference count, are clean and unlocked, and if the page is clean
1183  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1184  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1185  * a page but it ends up not being freed, and buffers may later be reattached).
1186  */
1187 void __brelse(struct buffer_head * buf)
1188 {
1189         if (atomic_read(&buf->b_count)) {
1190                 put_bh(buf);
1191                 return;
1192         }
1193         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1194 }
1195 EXPORT_SYMBOL(__brelse);
1196
1197 /*
1198  * bforget() is like brelse(), except it discards any
1199  * potentially dirty data.
1200  */
1201 void __bforget(struct buffer_head *bh)
1202 {
1203         clear_buffer_dirty(bh);
1204         if (bh->b_assoc_map) {
1205                 struct address_space *buffer_mapping = bh->b_folio->mapping;
1206
1207                 spin_lock(&buffer_mapping->private_lock);
1208                 list_del_init(&bh->b_assoc_buffers);
1209                 bh->b_assoc_map = NULL;
1210                 spin_unlock(&buffer_mapping->private_lock);
1211         }
1212         __brelse(bh);
1213 }
1214 EXPORT_SYMBOL(__bforget);
1215
1216 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1217 {
1218         lock_buffer(bh);
1219         if (buffer_uptodate(bh)) {
1220                 unlock_buffer(bh);
1221                 return bh;
1222         } else {
1223                 get_bh(bh);
1224                 bh->b_end_io = end_buffer_read_sync;
1225                 submit_bh(REQ_OP_READ, bh);
1226                 wait_on_buffer(bh);
1227                 if (buffer_uptodate(bh))
1228                         return bh;
1229         }
1230         brelse(bh);
1231         return NULL;
1232 }
1233
1234 /*
1235  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1236  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1237  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1238  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1239  * CPU's LRUs at the same time.
1240  *
1241  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1242  * sb_find_get_block().
1243  *
1244  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1245  * a local interrupt disable for that.
1246  */
1247
1248 #define BH_LRU_SIZE     16
1249
1250 struct bh_lru {
1251         struct buffer_head *bhs[BH_LRU_SIZE];
1252 };
1253
1254 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1255
1256 #ifdef CONFIG_SMP
1257 #define bh_lru_lock()   local_irq_disable()
1258 #define bh_lru_unlock() local_irq_enable()
1259 #else
1260 #define bh_lru_lock()   preempt_disable()
1261 #define bh_lru_unlock() preempt_enable()
1262 #endif
1263
1264 static inline void check_irqs_on(void)
1265 {
1266 #ifdef irqs_disabled
1267         BUG_ON(irqs_disabled());
1268 #endif
1269 }
1270
1271 /*
1272  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1273  * inserted at the front, and the buffer_head at the back if any is evicted.
1274  * Or, if already in the LRU it is moved to the front.
1275  */
1276 static void bh_lru_install(struct buffer_head *bh)
1277 {
1278         struct buffer_head *evictee = bh;
1279         struct bh_lru *b;
1280         int i;
1281
1282         check_irqs_on();
1283         bh_lru_lock();
1284
1285         /*
1286          * the refcount of buffer_head in bh_lru prevents dropping the
1287          * attached page(i.e., try_to_free_buffers) so it could cause
1288          * failing page migration.
1289          * Skip putting upcoming bh into bh_lru until migration is done.
1290          */
1291         if (lru_cache_disabled()) {
1292                 bh_lru_unlock();
1293                 return;
1294         }
1295
1296         b = this_cpu_ptr(&bh_lrus);
1297         for (i = 0; i < BH_LRU_SIZE; i++) {
1298                 swap(evictee, b->bhs[i]);
1299                 if (evictee == bh) {
1300                         bh_lru_unlock();
1301                         return;
1302                 }
1303         }
1304
1305         get_bh(bh);
1306         bh_lru_unlock();
1307         brelse(evictee);
1308 }
1309
1310 /*
1311  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1312  */
1313 static struct buffer_head *
1314 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1315 {
1316         struct buffer_head *ret = NULL;
1317         unsigned int i;
1318
1319         check_irqs_on();
1320         bh_lru_lock();
1321         for (i = 0; i < BH_LRU_SIZE; i++) {
1322                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1323
1324                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1325                     bh->b_size == size) {
1326                         if (i) {
1327                                 while (i) {
1328                                         __this_cpu_write(bh_lrus.bhs[i],
1329                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1330                                         i--;
1331                                 }
1332                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1333                         }
1334                         get_bh(bh);
1335                         ret = bh;
1336                         break;
1337                 }
1338         }
1339         bh_lru_unlock();
1340         return ret;
1341 }
1342
1343 /*
1344  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1345  * it in the LRU and mark it as accessed.  If it is not present then return
1346  * NULL
1347  */
1348 struct buffer_head *
1349 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1350 {
1351         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1352
1353         if (bh == NULL) {
1354                 /* __find_get_block_slow will mark the page accessed */
1355                 bh = __find_get_block_slow(bdev, block);
1356                 if (bh)
1357                         bh_lru_install(bh);
1358         } else
1359                 touch_buffer(bh);
1360
1361         return bh;
1362 }
1363 EXPORT_SYMBOL(__find_get_block);
1364
1365 /*
1366  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1367  * which corresponds to the passed block_device, block and size. The
1368  * returned buffer has its reference count incremented.
1369  *
1370  * __getblk_gfp() will lock up the machine if grow_dev_page's
1371  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1372  */
1373 struct buffer_head *
1374 __getblk_gfp(struct block_device *bdev, sector_t block,
1375              unsigned size, gfp_t gfp)
1376 {
1377         struct buffer_head *bh = __find_get_block(bdev, block, size);
1378
1379         might_sleep();
1380         if (bh == NULL)
1381                 bh = __getblk_slow(bdev, block, size, gfp);
1382         return bh;
1383 }
1384 EXPORT_SYMBOL(__getblk_gfp);
1385
1386 /*
1387  * Do async read-ahead on a buffer..
1388  */
1389 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1390 {
1391         struct buffer_head *bh = __getblk(bdev, block, size);
1392         if (likely(bh)) {
1393                 bh_readahead(bh, REQ_RAHEAD);
1394                 brelse(bh);
1395         }
1396 }
1397 EXPORT_SYMBOL(__breadahead);
1398
1399 /**
1400  *  __bread_gfp() - reads a specified block and returns the bh
1401  *  @bdev: the block_device to read from
1402  *  @block: number of block
1403  *  @size: size (in bytes) to read
1404  *  @gfp: page allocation flag
1405  *
1406  *  Reads a specified block, and returns buffer head that contains it.
1407  *  The page cache can be allocated from non-movable area
1408  *  not to prevent page migration if you set gfp to zero.
1409  *  It returns NULL if the block was unreadable.
1410  */
1411 struct buffer_head *
1412 __bread_gfp(struct block_device *bdev, sector_t block,
1413                    unsigned size, gfp_t gfp)
1414 {
1415         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1416
1417         if (likely(bh) && !buffer_uptodate(bh))
1418                 bh = __bread_slow(bh);
1419         return bh;
1420 }
1421 EXPORT_SYMBOL(__bread_gfp);
1422
1423 static void __invalidate_bh_lrus(struct bh_lru *b)
1424 {
1425         int i;
1426
1427         for (i = 0; i < BH_LRU_SIZE; i++) {
1428                 brelse(b->bhs[i]);
1429                 b->bhs[i] = NULL;
1430         }
1431 }
1432 /*
1433  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1434  * This doesn't race because it runs in each cpu either in irq
1435  * or with preempt disabled.
1436  */
1437 static void invalidate_bh_lru(void *arg)
1438 {
1439         struct bh_lru *b = &get_cpu_var(bh_lrus);
1440
1441         __invalidate_bh_lrus(b);
1442         put_cpu_var(bh_lrus);
1443 }
1444
1445 bool has_bh_in_lru(int cpu, void *dummy)
1446 {
1447         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1448         int i;
1449         
1450         for (i = 0; i < BH_LRU_SIZE; i++) {
1451                 if (b->bhs[i])
1452                         return true;
1453         }
1454
1455         return false;
1456 }
1457
1458 void invalidate_bh_lrus(void)
1459 {
1460         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1461 }
1462 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1463
1464 /*
1465  * It's called from workqueue context so we need a bh_lru_lock to close
1466  * the race with preemption/irq.
1467  */
1468 void invalidate_bh_lrus_cpu(void)
1469 {
1470         struct bh_lru *b;
1471
1472         bh_lru_lock();
1473         b = this_cpu_ptr(&bh_lrus);
1474         __invalidate_bh_lrus(b);
1475         bh_lru_unlock();
1476 }
1477
1478 void set_bh_page(struct buffer_head *bh,
1479                 struct page *page, unsigned long offset)
1480 {
1481         bh->b_page = page;
1482         BUG_ON(offset >= PAGE_SIZE);
1483         if (PageHighMem(page))
1484                 /*
1485                  * This catches illegal uses and preserves the offset:
1486                  */
1487                 bh->b_data = (char *)(0 + offset);
1488         else
1489                 bh->b_data = page_address(page) + offset;
1490 }
1491 EXPORT_SYMBOL(set_bh_page);
1492
1493 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1494                   unsigned long offset)
1495 {
1496         bh->b_folio = folio;
1497         BUG_ON(offset >= folio_size(folio));
1498         if (folio_test_highmem(folio))
1499                 /*
1500                  * This catches illegal uses and preserves the offset:
1501                  */
1502                 bh->b_data = (char *)(0 + offset);
1503         else
1504                 bh->b_data = folio_address(folio) + offset;
1505 }
1506 EXPORT_SYMBOL(folio_set_bh);
1507
1508 /*
1509  * Called when truncating a buffer on a page completely.
1510  */
1511
1512 /* Bits that are cleared during an invalidate */
1513 #define BUFFER_FLAGS_DISCARD \
1514         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1515          1 << BH_Delay | 1 << BH_Unwritten)
1516
1517 static void discard_buffer(struct buffer_head * bh)
1518 {
1519         unsigned long b_state;
1520
1521         lock_buffer(bh);
1522         clear_buffer_dirty(bh);
1523         bh->b_bdev = NULL;
1524         b_state = READ_ONCE(bh->b_state);
1525         do {
1526         } while (!try_cmpxchg(&bh->b_state, &b_state,
1527                               b_state & ~BUFFER_FLAGS_DISCARD));
1528         unlock_buffer(bh);
1529 }
1530
1531 /**
1532  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1533  * @folio: The folio which is affected.
1534  * @offset: start of the range to invalidate
1535  * @length: length of the range to invalidate
1536  *
1537  * block_invalidate_folio() is called when all or part of the folio has been
1538  * invalidated by a truncate operation.
1539  *
1540  * block_invalidate_folio() does not have to release all buffers, but it must
1541  * ensure that no dirty buffer is left outside @offset and that no I/O
1542  * is underway against any of the blocks which are outside the truncation
1543  * point.  Because the caller is about to free (and possibly reuse) those
1544  * blocks on-disk.
1545  */
1546 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1547 {
1548         struct buffer_head *head, *bh, *next;
1549         size_t curr_off = 0;
1550         size_t stop = length + offset;
1551
1552         BUG_ON(!folio_test_locked(folio));
1553
1554         /*
1555          * Check for overflow
1556          */
1557         BUG_ON(stop > folio_size(folio) || stop < length);
1558
1559         head = folio_buffers(folio);
1560         if (!head)
1561                 return;
1562
1563         bh = head;
1564         do {
1565                 size_t next_off = curr_off + bh->b_size;
1566                 next = bh->b_this_page;
1567
1568                 /*
1569                  * Are we still fully in range ?
1570                  */
1571                 if (next_off > stop)
1572                         goto out;
1573
1574                 /*
1575                  * is this block fully invalidated?
1576                  */
1577                 if (offset <= curr_off)
1578                         discard_buffer(bh);
1579                 curr_off = next_off;
1580                 bh = next;
1581         } while (bh != head);
1582
1583         /*
1584          * We release buffers only if the entire folio is being invalidated.
1585          * The get_block cached value has been unconditionally invalidated,
1586          * so real IO is not possible anymore.
1587          */
1588         if (length == folio_size(folio))
1589                 filemap_release_folio(folio, 0);
1590 out:
1591         return;
1592 }
1593 EXPORT_SYMBOL(block_invalidate_folio);
1594
1595 /*
1596  * We attach and possibly dirty the buffers atomically wrt
1597  * block_dirty_folio() via private_lock.  try_to_free_buffers
1598  * is already excluded via the folio lock.
1599  */
1600 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize,
1601                                 unsigned long b_state)
1602 {
1603         struct buffer_head *bh, *head, *tail;
1604
1605         head = folio_alloc_buffers(folio, blocksize, true);
1606         bh = head;
1607         do {
1608                 bh->b_state |= b_state;
1609                 tail = bh;
1610                 bh = bh->b_this_page;
1611         } while (bh);
1612         tail->b_this_page = head;
1613
1614         spin_lock(&folio->mapping->private_lock);
1615         if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1616                 bh = head;
1617                 do {
1618                         if (folio_test_dirty(folio))
1619                                 set_buffer_dirty(bh);
1620                         if (folio_test_uptodate(folio))
1621                                 set_buffer_uptodate(bh);
1622                         bh = bh->b_this_page;
1623                 } while (bh != head);
1624         }
1625         folio_attach_private(folio, head);
1626         spin_unlock(&folio->mapping->private_lock);
1627 }
1628 EXPORT_SYMBOL(folio_create_empty_buffers);
1629
1630 void create_empty_buffers(struct page *page,
1631                         unsigned long blocksize, unsigned long b_state)
1632 {
1633         folio_create_empty_buffers(page_folio(page), blocksize, b_state);
1634 }
1635 EXPORT_SYMBOL(create_empty_buffers);
1636
1637 /**
1638  * clean_bdev_aliases: clean a range of buffers in block device
1639  * @bdev: Block device to clean buffers in
1640  * @block: Start of a range of blocks to clean
1641  * @len: Number of blocks to clean
1642  *
1643  * We are taking a range of blocks for data and we don't want writeback of any
1644  * buffer-cache aliases starting from return from this function and until the
1645  * moment when something will explicitly mark the buffer dirty (hopefully that
1646  * will not happen until we will free that block ;-) We don't even need to mark
1647  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1648  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1649  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1650  * would confuse anyone who might pick it with bread() afterwards...
1651  *
1652  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1653  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1654  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1655  * need to.  That happens here.
1656  */
1657 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1658 {
1659         struct inode *bd_inode = bdev->bd_inode;
1660         struct address_space *bd_mapping = bd_inode->i_mapping;
1661         struct folio_batch fbatch;
1662         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1663         pgoff_t end;
1664         int i, count;
1665         struct buffer_head *bh;
1666         struct buffer_head *head;
1667
1668         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1669         folio_batch_init(&fbatch);
1670         while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1671                 count = folio_batch_count(&fbatch);
1672                 for (i = 0; i < count; i++) {
1673                         struct folio *folio = fbatch.folios[i];
1674
1675                         if (!folio_buffers(folio))
1676                                 continue;
1677                         /*
1678                          * We use folio lock instead of bd_mapping->private_lock
1679                          * to pin buffers here since we can afford to sleep and
1680                          * it scales better than a global spinlock lock.
1681                          */
1682                         folio_lock(folio);
1683                         /* Recheck when the folio is locked which pins bhs */
1684                         head = folio_buffers(folio);
1685                         if (!head)
1686                                 goto unlock_page;
1687                         bh = head;
1688                         do {
1689                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1690                                         goto next;
1691                                 if (bh->b_blocknr >= block + len)
1692                                         break;
1693                                 clear_buffer_dirty(bh);
1694                                 wait_on_buffer(bh);
1695                                 clear_buffer_req(bh);
1696 next:
1697                                 bh = bh->b_this_page;
1698                         } while (bh != head);
1699 unlock_page:
1700                         folio_unlock(folio);
1701                 }
1702                 folio_batch_release(&fbatch);
1703                 cond_resched();
1704                 /* End of range already reached? */
1705                 if (index > end || !index)
1706                         break;
1707         }
1708 }
1709 EXPORT_SYMBOL(clean_bdev_aliases);
1710
1711 /*
1712  * Size is a power-of-two in the range 512..PAGE_SIZE,
1713  * and the case we care about most is PAGE_SIZE.
1714  *
1715  * So this *could* possibly be written with those
1716  * constraints in mind (relevant mostly if some
1717  * architecture has a slow bit-scan instruction)
1718  */
1719 static inline int block_size_bits(unsigned int blocksize)
1720 {
1721         return ilog2(blocksize);
1722 }
1723
1724 static struct buffer_head *folio_create_buffers(struct folio *folio,
1725                                                 struct inode *inode,
1726                                                 unsigned int b_state)
1727 {
1728         BUG_ON(!folio_test_locked(folio));
1729
1730         if (!folio_buffers(folio))
1731                 folio_create_empty_buffers(folio,
1732                                            1 << READ_ONCE(inode->i_blkbits),
1733                                            b_state);
1734         return folio_buffers(folio);
1735 }
1736
1737 /*
1738  * NOTE! All mapped/uptodate combinations are valid:
1739  *
1740  *      Mapped  Uptodate        Meaning
1741  *
1742  *      No      No              "unknown" - must do get_block()
1743  *      No      Yes             "hole" - zero-filled
1744  *      Yes     No              "allocated" - allocated on disk, not read in
1745  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1746  *
1747  * "Dirty" is valid only with the last case (mapped+uptodate).
1748  */
1749
1750 /*
1751  * While block_write_full_page is writing back the dirty buffers under
1752  * the page lock, whoever dirtied the buffers may decide to clean them
1753  * again at any time.  We handle that by only looking at the buffer
1754  * state inside lock_buffer().
1755  *
1756  * If block_write_full_page() is called for regular writeback
1757  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1758  * locked buffer.   This only can happen if someone has written the buffer
1759  * directly, with submit_bh().  At the address_space level PageWriteback
1760  * prevents this contention from occurring.
1761  *
1762  * If block_write_full_page() is called with wbc->sync_mode ==
1763  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1764  * causes the writes to be flagged as synchronous writes.
1765  */
1766 int __block_write_full_page(struct inode *inode, struct page *page,
1767                         get_block_t *get_block, struct writeback_control *wbc,
1768                         bh_end_io_t *handler)
1769 {
1770         int err;
1771         sector_t block;
1772         sector_t last_block;
1773         struct buffer_head *bh, *head;
1774         unsigned int blocksize, bbits;
1775         int nr_underway = 0;
1776         blk_opf_t write_flags = wbc_to_write_flags(wbc);
1777
1778         head = folio_create_buffers(page_folio(page), inode,
1779                                     (1 << BH_Dirty) | (1 << BH_Uptodate));
1780
1781         /*
1782          * Be very careful.  We have no exclusion from block_dirty_folio
1783          * here, and the (potentially unmapped) buffers may become dirty at
1784          * any time.  If a buffer becomes dirty here after we've inspected it
1785          * then we just miss that fact, and the page stays dirty.
1786          *
1787          * Buffers outside i_size may be dirtied by block_dirty_folio;
1788          * handle that here by just cleaning them.
1789          */
1790
1791         bh = head;
1792         blocksize = bh->b_size;
1793         bbits = block_size_bits(blocksize);
1794
1795         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1796         last_block = (i_size_read(inode) - 1) >> bbits;
1797
1798         /*
1799          * Get all the dirty buffers mapped to disk addresses and
1800          * handle any aliases from the underlying blockdev's mapping.
1801          */
1802         do {
1803                 if (block > last_block) {
1804                         /*
1805                          * mapped buffers outside i_size will occur, because
1806                          * this page can be outside i_size when there is a
1807                          * truncate in progress.
1808                          */
1809                         /*
1810                          * The buffer was zeroed by block_write_full_page()
1811                          */
1812                         clear_buffer_dirty(bh);
1813                         set_buffer_uptodate(bh);
1814                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1815                            buffer_dirty(bh)) {
1816                         WARN_ON(bh->b_size != blocksize);
1817                         err = get_block(inode, block, bh, 1);
1818                         if (err)
1819                                 goto recover;
1820                         clear_buffer_delay(bh);
1821                         if (buffer_new(bh)) {
1822                                 /* blockdev mappings never come here */
1823                                 clear_buffer_new(bh);
1824                                 clean_bdev_bh_alias(bh);
1825                         }
1826                 }
1827                 bh = bh->b_this_page;
1828                 block++;
1829         } while (bh != head);
1830
1831         do {
1832                 if (!buffer_mapped(bh))
1833                         continue;
1834                 /*
1835                  * If it's a fully non-blocking write attempt and we cannot
1836                  * lock the buffer then redirty the page.  Note that this can
1837                  * potentially cause a busy-wait loop from writeback threads
1838                  * and kswapd activity, but those code paths have their own
1839                  * higher-level throttling.
1840                  */
1841                 if (wbc->sync_mode != WB_SYNC_NONE) {
1842                         lock_buffer(bh);
1843                 } else if (!trylock_buffer(bh)) {
1844                         redirty_page_for_writepage(wbc, page);
1845                         continue;
1846                 }
1847                 if (test_clear_buffer_dirty(bh)) {
1848                         mark_buffer_async_write_endio(bh, handler);
1849                 } else {
1850                         unlock_buffer(bh);
1851                 }
1852         } while ((bh = bh->b_this_page) != head);
1853
1854         /*
1855          * The page and its buffers are protected by PageWriteback(), so we can
1856          * drop the bh refcounts early.
1857          */
1858         BUG_ON(PageWriteback(page));
1859         set_page_writeback(page);
1860
1861         do {
1862                 struct buffer_head *next = bh->b_this_page;
1863                 if (buffer_async_write(bh)) {
1864                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1865                         nr_underway++;
1866                 }
1867                 bh = next;
1868         } while (bh != head);
1869         unlock_page(page);
1870
1871         err = 0;
1872 done:
1873         if (nr_underway == 0) {
1874                 /*
1875                  * The page was marked dirty, but the buffers were
1876                  * clean.  Someone wrote them back by hand with
1877                  * write_dirty_buffer/submit_bh.  A rare case.
1878                  */
1879                 end_page_writeback(page);
1880
1881                 /*
1882                  * The page and buffer_heads can be released at any time from
1883                  * here on.
1884                  */
1885         }
1886         return err;
1887
1888 recover:
1889         /*
1890          * ENOSPC, or some other error.  We may already have added some
1891          * blocks to the file, so we need to write these out to avoid
1892          * exposing stale data.
1893          * The page is currently locked and not marked for writeback
1894          */
1895         bh = head;
1896         /* Recovery: lock and submit the mapped buffers */
1897         do {
1898                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1899                     !buffer_delay(bh)) {
1900                         lock_buffer(bh);
1901                         mark_buffer_async_write_endio(bh, handler);
1902                 } else {
1903                         /*
1904                          * The buffer may have been set dirty during
1905                          * attachment to a dirty page.
1906                          */
1907                         clear_buffer_dirty(bh);
1908                 }
1909         } while ((bh = bh->b_this_page) != head);
1910         SetPageError(page);
1911         BUG_ON(PageWriteback(page));
1912         mapping_set_error(page->mapping, err);
1913         set_page_writeback(page);
1914         do {
1915                 struct buffer_head *next = bh->b_this_page;
1916                 if (buffer_async_write(bh)) {
1917                         clear_buffer_dirty(bh);
1918                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1919                         nr_underway++;
1920                 }
1921                 bh = next;
1922         } while (bh != head);
1923         unlock_page(page);
1924         goto done;
1925 }
1926 EXPORT_SYMBOL(__block_write_full_page);
1927
1928 /*
1929  * If a page has any new buffers, zero them out here, and mark them uptodate
1930  * and dirty so they'll be written out (in order to prevent uninitialised
1931  * block data from leaking). And clear the new bit.
1932  */
1933 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1934 {
1935         unsigned int block_start, block_end;
1936         struct buffer_head *head, *bh;
1937
1938         BUG_ON(!PageLocked(page));
1939         if (!page_has_buffers(page))
1940                 return;
1941
1942         bh = head = page_buffers(page);
1943         block_start = 0;
1944         do {
1945                 block_end = block_start + bh->b_size;
1946
1947                 if (buffer_new(bh)) {
1948                         if (block_end > from && block_start < to) {
1949                                 if (!PageUptodate(page)) {
1950                                         unsigned start, size;
1951
1952                                         start = max(from, block_start);
1953                                         size = min(to, block_end) - start;
1954
1955                                         zero_user(page, start, size);
1956                                         set_buffer_uptodate(bh);
1957                                 }
1958
1959                                 clear_buffer_new(bh);
1960                                 mark_buffer_dirty(bh);
1961                         }
1962                 }
1963
1964                 block_start = block_end;
1965                 bh = bh->b_this_page;
1966         } while (bh != head);
1967 }
1968 EXPORT_SYMBOL(page_zero_new_buffers);
1969
1970 static void
1971 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1972                 const struct iomap *iomap)
1973 {
1974         loff_t offset = block << inode->i_blkbits;
1975
1976         bh->b_bdev = iomap->bdev;
1977
1978         /*
1979          * Block points to offset in file we need to map, iomap contains
1980          * the offset at which the map starts. If the map ends before the
1981          * current block, then do not map the buffer and let the caller
1982          * handle it.
1983          */
1984         BUG_ON(offset >= iomap->offset + iomap->length);
1985
1986         switch (iomap->type) {
1987         case IOMAP_HOLE:
1988                 /*
1989                  * If the buffer is not up to date or beyond the current EOF,
1990                  * we need to mark it as new to ensure sub-block zeroing is
1991                  * executed if necessary.
1992                  */
1993                 if (!buffer_uptodate(bh) ||
1994                     (offset >= i_size_read(inode)))
1995                         set_buffer_new(bh);
1996                 break;
1997         case IOMAP_DELALLOC:
1998                 if (!buffer_uptodate(bh) ||
1999                     (offset >= i_size_read(inode)))
2000                         set_buffer_new(bh);
2001                 set_buffer_uptodate(bh);
2002                 set_buffer_mapped(bh);
2003                 set_buffer_delay(bh);
2004                 break;
2005         case IOMAP_UNWRITTEN:
2006                 /*
2007                  * For unwritten regions, we always need to ensure that regions
2008                  * in the block we are not writing to are zeroed. Mark the
2009                  * buffer as new to ensure this.
2010                  */
2011                 set_buffer_new(bh);
2012                 set_buffer_unwritten(bh);
2013                 fallthrough;
2014         case IOMAP_MAPPED:
2015                 if ((iomap->flags & IOMAP_F_NEW) ||
2016                     offset >= i_size_read(inode))
2017                         set_buffer_new(bh);
2018                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2019                                 inode->i_blkbits;
2020                 set_buffer_mapped(bh);
2021                 break;
2022         }
2023 }
2024
2025 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2026                 get_block_t *get_block, const struct iomap *iomap)
2027 {
2028         unsigned from = pos & (PAGE_SIZE - 1);
2029         unsigned to = from + len;
2030         struct inode *inode = folio->mapping->host;
2031         unsigned block_start, block_end;
2032         sector_t block;
2033         int err = 0;
2034         unsigned blocksize, bbits;
2035         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2036
2037         BUG_ON(!folio_test_locked(folio));
2038         BUG_ON(from > PAGE_SIZE);
2039         BUG_ON(to > PAGE_SIZE);
2040         BUG_ON(from > to);
2041
2042         head = folio_create_buffers(folio, inode, 0);
2043         blocksize = head->b_size;
2044         bbits = block_size_bits(blocksize);
2045
2046         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2047
2048         for(bh = head, block_start = 0; bh != head || !block_start;
2049             block++, block_start=block_end, bh = bh->b_this_page) {
2050                 block_end = block_start + blocksize;
2051                 if (block_end <= from || block_start >= to) {
2052                         if (folio_test_uptodate(folio)) {
2053                                 if (!buffer_uptodate(bh))
2054                                         set_buffer_uptodate(bh);
2055                         }
2056                         continue;
2057                 }
2058                 if (buffer_new(bh))
2059                         clear_buffer_new(bh);
2060                 if (!buffer_mapped(bh)) {
2061                         WARN_ON(bh->b_size != blocksize);
2062                         if (get_block) {
2063                                 err = get_block(inode, block, bh, 1);
2064                                 if (err)
2065                                         break;
2066                         } else {
2067                                 iomap_to_bh(inode, block, bh, iomap);
2068                         }
2069
2070                         if (buffer_new(bh)) {
2071                                 clean_bdev_bh_alias(bh);
2072                                 if (folio_test_uptodate(folio)) {
2073                                         clear_buffer_new(bh);
2074                                         set_buffer_uptodate(bh);
2075                                         mark_buffer_dirty(bh);
2076                                         continue;
2077                                 }
2078                                 if (block_end > to || block_start < from)
2079                                         folio_zero_segments(folio,
2080                                                 to, block_end,
2081                                                 block_start, from);
2082                                 continue;
2083                         }
2084                 }
2085                 if (folio_test_uptodate(folio)) {
2086                         if (!buffer_uptodate(bh))
2087                                 set_buffer_uptodate(bh);
2088                         continue; 
2089                 }
2090                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2091                     !buffer_unwritten(bh) &&
2092                      (block_start < from || block_end > to)) {
2093                         bh_read_nowait(bh, 0);
2094                         *wait_bh++=bh;
2095                 }
2096         }
2097         /*
2098          * If we issued read requests - let them complete.
2099          */
2100         while(wait_bh > wait) {
2101                 wait_on_buffer(*--wait_bh);
2102                 if (!buffer_uptodate(*wait_bh))
2103                         err = -EIO;
2104         }
2105         if (unlikely(err))
2106                 page_zero_new_buffers(&folio->page, from, to);
2107         return err;
2108 }
2109
2110 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2111                 get_block_t *get_block)
2112 {
2113         return __block_write_begin_int(page_folio(page), pos, len, get_block,
2114                                        NULL);
2115 }
2116 EXPORT_SYMBOL(__block_write_begin);
2117
2118 static int __block_commit_write(struct inode *inode, struct page *page,
2119                 unsigned from, unsigned to)
2120 {
2121         unsigned block_start, block_end;
2122         int partial = 0;
2123         unsigned blocksize;
2124         struct buffer_head *bh, *head;
2125
2126         bh = head = page_buffers(page);
2127         blocksize = bh->b_size;
2128
2129         block_start = 0;
2130         do {
2131                 block_end = block_start + blocksize;
2132                 if (block_end <= from || block_start >= to) {
2133                         if (!buffer_uptodate(bh))
2134                                 partial = 1;
2135                 } else {
2136                         set_buffer_uptodate(bh);
2137                         mark_buffer_dirty(bh);
2138                 }
2139                 if (buffer_new(bh))
2140                         clear_buffer_new(bh);
2141
2142                 block_start = block_end;
2143                 bh = bh->b_this_page;
2144         } while (bh != head);
2145
2146         /*
2147          * If this is a partial write which happened to make all buffers
2148          * uptodate then we can optimize away a bogus read_folio() for
2149          * the next read(). Here we 'discover' whether the page went
2150          * uptodate as a result of this (potentially partial) write.
2151          */
2152         if (!partial)
2153                 SetPageUptodate(page);
2154         return 0;
2155 }
2156
2157 /*
2158  * block_write_begin takes care of the basic task of block allocation and
2159  * bringing partial write blocks uptodate first.
2160  *
2161  * The filesystem needs to handle block truncation upon failure.
2162  */
2163 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2164                 struct page **pagep, get_block_t *get_block)
2165 {
2166         pgoff_t index = pos >> PAGE_SHIFT;
2167         struct page *page;
2168         int status;
2169
2170         page = grab_cache_page_write_begin(mapping, index);
2171         if (!page)
2172                 return -ENOMEM;
2173
2174         status = __block_write_begin(page, pos, len, get_block);
2175         if (unlikely(status)) {
2176                 unlock_page(page);
2177                 put_page(page);
2178                 page = NULL;
2179         }
2180
2181         *pagep = page;
2182         return status;
2183 }
2184 EXPORT_SYMBOL(block_write_begin);
2185
2186 int block_write_end(struct file *file, struct address_space *mapping,
2187                         loff_t pos, unsigned len, unsigned copied,
2188                         struct page *page, void *fsdata)
2189 {
2190         struct inode *inode = mapping->host;
2191         unsigned start;
2192
2193         start = pos & (PAGE_SIZE - 1);
2194
2195         if (unlikely(copied < len)) {
2196                 /*
2197                  * The buffers that were written will now be uptodate, so
2198                  * we don't have to worry about a read_folio reading them
2199                  * and overwriting a partial write. However if we have
2200                  * encountered a short write and only partially written
2201                  * into a buffer, it will not be marked uptodate, so a
2202                  * read_folio might come in and destroy our partial write.
2203                  *
2204                  * Do the simplest thing, and just treat any short write to a
2205                  * non uptodate page as a zero-length write, and force the
2206                  * caller to redo the whole thing.
2207                  */
2208                 if (!PageUptodate(page))
2209                         copied = 0;
2210
2211                 page_zero_new_buffers(page, start+copied, start+len);
2212         }
2213         flush_dcache_page(page);
2214
2215         /* This could be a short (even 0-length) commit */
2216         __block_commit_write(inode, page, start, start+copied);
2217
2218         return copied;
2219 }
2220 EXPORT_SYMBOL(block_write_end);
2221
2222 int generic_write_end(struct file *file, struct address_space *mapping,
2223                         loff_t pos, unsigned len, unsigned copied,
2224                         struct page *page, void *fsdata)
2225 {
2226         struct inode *inode = mapping->host;
2227         loff_t old_size = inode->i_size;
2228         bool i_size_changed = false;
2229
2230         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2231
2232         /*
2233          * No need to use i_size_read() here, the i_size cannot change under us
2234          * because we hold i_rwsem.
2235          *
2236          * But it's important to update i_size while still holding page lock:
2237          * page writeout could otherwise come in and zero beyond i_size.
2238          */
2239         if (pos + copied > inode->i_size) {
2240                 i_size_write(inode, pos + copied);
2241                 i_size_changed = true;
2242         }
2243
2244         unlock_page(page);
2245         put_page(page);
2246
2247         if (old_size < pos)
2248                 pagecache_isize_extended(inode, old_size, pos);
2249         /*
2250          * Don't mark the inode dirty under page lock. First, it unnecessarily
2251          * makes the holding time of page lock longer. Second, it forces lock
2252          * ordering of page lock and transaction start for journaling
2253          * filesystems.
2254          */
2255         if (i_size_changed)
2256                 mark_inode_dirty(inode);
2257         return copied;
2258 }
2259 EXPORT_SYMBOL(generic_write_end);
2260
2261 /*
2262  * block_is_partially_uptodate checks whether buffers within a folio are
2263  * uptodate or not.
2264  *
2265  * Returns true if all buffers which correspond to the specified part
2266  * of the folio are uptodate.
2267  */
2268 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2269 {
2270         unsigned block_start, block_end, blocksize;
2271         unsigned to;
2272         struct buffer_head *bh, *head;
2273         bool ret = true;
2274
2275         head = folio_buffers(folio);
2276         if (!head)
2277                 return false;
2278         blocksize = head->b_size;
2279         to = min_t(unsigned, folio_size(folio) - from, count);
2280         to = from + to;
2281         if (from < blocksize && to > folio_size(folio) - blocksize)
2282                 return false;
2283
2284         bh = head;
2285         block_start = 0;
2286         do {
2287                 block_end = block_start + blocksize;
2288                 if (block_end > from && block_start < to) {
2289                         if (!buffer_uptodate(bh)) {
2290                                 ret = false;
2291                                 break;
2292                         }
2293                         if (block_end >= to)
2294                                 break;
2295                 }
2296                 block_start = block_end;
2297                 bh = bh->b_this_page;
2298         } while (bh != head);
2299
2300         return ret;
2301 }
2302 EXPORT_SYMBOL(block_is_partially_uptodate);
2303
2304 /*
2305  * Generic "read_folio" function for block devices that have the normal
2306  * get_block functionality. This is most of the block device filesystems.
2307  * Reads the folio asynchronously --- the unlock_buffer() and
2308  * set/clear_buffer_uptodate() functions propagate buffer state into the
2309  * folio once IO has completed.
2310  */
2311 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2312 {
2313         struct inode *inode = folio->mapping->host;
2314         sector_t iblock, lblock;
2315         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2316         unsigned int blocksize, bbits;
2317         int nr, i;
2318         int fully_mapped = 1;
2319         bool page_error = false;
2320         loff_t limit = i_size_read(inode);
2321
2322         /* This is needed for ext4. */
2323         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2324                 limit = inode->i_sb->s_maxbytes;
2325
2326         VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2327
2328         head = folio_create_buffers(folio, inode, 0);
2329         blocksize = head->b_size;
2330         bbits = block_size_bits(blocksize);
2331
2332         iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2333         lblock = (limit+blocksize-1) >> bbits;
2334         bh = head;
2335         nr = 0;
2336         i = 0;
2337
2338         do {
2339                 if (buffer_uptodate(bh))
2340                         continue;
2341
2342                 if (!buffer_mapped(bh)) {
2343                         int err = 0;
2344
2345                         fully_mapped = 0;
2346                         if (iblock < lblock) {
2347                                 WARN_ON(bh->b_size != blocksize);
2348                                 err = get_block(inode, iblock, bh, 0);
2349                                 if (err) {
2350                                         folio_set_error(folio);
2351                                         page_error = true;
2352                                 }
2353                         }
2354                         if (!buffer_mapped(bh)) {
2355                                 folio_zero_range(folio, i * blocksize,
2356                                                 blocksize);
2357                                 if (!err)
2358                                         set_buffer_uptodate(bh);
2359                                 continue;
2360                         }
2361                         /*
2362                          * get_block() might have updated the buffer
2363                          * synchronously
2364                          */
2365                         if (buffer_uptodate(bh))
2366                                 continue;
2367                 }
2368                 arr[nr++] = bh;
2369         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2370
2371         if (fully_mapped)
2372                 folio_set_mappedtodisk(folio);
2373
2374         if (!nr) {
2375                 /*
2376                  * All buffers are uptodate - we can set the folio uptodate
2377                  * as well. But not if get_block() returned an error.
2378                  */
2379                 if (!page_error)
2380                         folio_mark_uptodate(folio);
2381                 folio_unlock(folio);
2382                 return 0;
2383         }
2384
2385         /* Stage two: lock the buffers */
2386         for (i = 0; i < nr; i++) {
2387                 bh = arr[i];
2388                 lock_buffer(bh);
2389                 mark_buffer_async_read(bh);
2390         }
2391
2392         /*
2393          * Stage 3: start the IO.  Check for uptodateness
2394          * inside the buffer lock in case another process reading
2395          * the underlying blockdev brought it uptodate (the sct fix).
2396          */
2397         for (i = 0; i < nr; i++) {
2398                 bh = arr[i];
2399                 if (buffer_uptodate(bh))
2400                         end_buffer_async_read(bh, 1);
2401                 else
2402                         submit_bh(REQ_OP_READ, bh);
2403         }
2404         return 0;
2405 }
2406 EXPORT_SYMBOL(block_read_full_folio);
2407
2408 /* utility function for filesystems that need to do work on expanding
2409  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2410  * deal with the hole.  
2411  */
2412 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2413 {
2414         struct address_space *mapping = inode->i_mapping;
2415         const struct address_space_operations *aops = mapping->a_ops;
2416         struct page *page;
2417         void *fsdata = NULL;
2418         int err;
2419
2420         err = inode_newsize_ok(inode, size);
2421         if (err)
2422                 goto out;
2423
2424         err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2425         if (err)
2426                 goto out;
2427
2428         err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2429         BUG_ON(err > 0);
2430
2431 out:
2432         return err;
2433 }
2434 EXPORT_SYMBOL(generic_cont_expand_simple);
2435
2436 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2437                             loff_t pos, loff_t *bytes)
2438 {
2439         struct inode *inode = mapping->host;
2440         const struct address_space_operations *aops = mapping->a_ops;
2441         unsigned int blocksize = i_blocksize(inode);
2442         struct page *page;
2443         void *fsdata = NULL;
2444         pgoff_t index, curidx;
2445         loff_t curpos;
2446         unsigned zerofrom, offset, len;
2447         int err = 0;
2448
2449         index = pos >> PAGE_SHIFT;
2450         offset = pos & ~PAGE_MASK;
2451
2452         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2453                 zerofrom = curpos & ~PAGE_MASK;
2454                 if (zerofrom & (blocksize-1)) {
2455                         *bytes |= (blocksize-1);
2456                         (*bytes)++;
2457                 }
2458                 len = PAGE_SIZE - zerofrom;
2459
2460                 err = aops->write_begin(file, mapping, curpos, len,
2461                                             &page, &fsdata);
2462                 if (err)
2463                         goto out;
2464                 zero_user(page, zerofrom, len);
2465                 err = aops->write_end(file, mapping, curpos, len, len,
2466                                                 page, fsdata);
2467                 if (err < 0)
2468                         goto out;
2469                 BUG_ON(err != len);
2470                 err = 0;
2471
2472                 balance_dirty_pages_ratelimited(mapping);
2473
2474                 if (fatal_signal_pending(current)) {
2475                         err = -EINTR;
2476                         goto out;
2477                 }
2478         }
2479
2480         /* page covers the boundary, find the boundary offset */
2481         if (index == curidx) {
2482                 zerofrom = curpos & ~PAGE_MASK;
2483                 /* if we will expand the thing last block will be filled */
2484                 if (offset <= zerofrom) {
2485                         goto out;
2486                 }
2487                 if (zerofrom & (blocksize-1)) {
2488                         *bytes |= (blocksize-1);
2489                         (*bytes)++;
2490                 }
2491                 len = offset - zerofrom;
2492
2493                 err = aops->write_begin(file, mapping, curpos, len,
2494                                             &page, &fsdata);
2495                 if (err)
2496                         goto out;
2497                 zero_user(page, zerofrom, len);
2498                 err = aops->write_end(file, mapping, curpos, len, len,
2499                                                 page, fsdata);
2500                 if (err < 0)
2501                         goto out;
2502                 BUG_ON(err != len);
2503                 err = 0;
2504         }
2505 out:
2506         return err;
2507 }
2508
2509 /*
2510  * For moronic filesystems that do not allow holes in file.
2511  * We may have to extend the file.
2512  */
2513 int cont_write_begin(struct file *file, struct address_space *mapping,
2514                         loff_t pos, unsigned len,
2515                         struct page **pagep, void **fsdata,
2516                         get_block_t *get_block, loff_t *bytes)
2517 {
2518         struct inode *inode = mapping->host;
2519         unsigned int blocksize = i_blocksize(inode);
2520         unsigned int zerofrom;
2521         int err;
2522
2523         err = cont_expand_zero(file, mapping, pos, bytes);
2524         if (err)
2525                 return err;
2526
2527         zerofrom = *bytes & ~PAGE_MASK;
2528         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2529                 *bytes |= (blocksize-1);
2530                 (*bytes)++;
2531         }
2532
2533         return block_write_begin(mapping, pos, len, pagep, get_block);
2534 }
2535 EXPORT_SYMBOL(cont_write_begin);
2536
2537 int block_commit_write(struct page *page, unsigned from, unsigned to)
2538 {
2539         struct inode *inode = page->mapping->host;
2540         __block_commit_write(inode,page,from,to);
2541         return 0;
2542 }
2543 EXPORT_SYMBOL(block_commit_write);
2544
2545 /*
2546  * block_page_mkwrite() is not allowed to change the file size as it gets
2547  * called from a page fault handler when a page is first dirtied. Hence we must
2548  * be careful to check for EOF conditions here. We set the page up correctly
2549  * for a written page which means we get ENOSPC checking when writing into
2550  * holes and correct delalloc and unwritten extent mapping on filesystems that
2551  * support these features.
2552  *
2553  * We are not allowed to take the i_mutex here so we have to play games to
2554  * protect against truncate races as the page could now be beyond EOF.  Because
2555  * truncate writes the inode size before removing pages, once we have the
2556  * page lock we can determine safely if the page is beyond EOF. If it is not
2557  * beyond EOF, then the page is guaranteed safe against truncation until we
2558  * unlock the page.
2559  *
2560  * Direct callers of this function should protect against filesystem freezing
2561  * using sb_start_pagefault() - sb_end_pagefault() functions.
2562  */
2563 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2564                          get_block_t get_block)
2565 {
2566         struct page *page = vmf->page;
2567         struct inode *inode = file_inode(vma->vm_file);
2568         unsigned long end;
2569         loff_t size;
2570         int ret;
2571
2572         lock_page(page);
2573         size = i_size_read(inode);
2574         if ((page->mapping != inode->i_mapping) ||
2575             (page_offset(page) > size)) {
2576                 /* We overload EFAULT to mean page got truncated */
2577                 ret = -EFAULT;
2578                 goto out_unlock;
2579         }
2580
2581         /* page is wholly or partially inside EOF */
2582         if (((page->index + 1) << PAGE_SHIFT) > size)
2583                 end = size & ~PAGE_MASK;
2584         else
2585                 end = PAGE_SIZE;
2586
2587         ret = __block_write_begin(page, 0, end, get_block);
2588         if (!ret)
2589                 ret = block_commit_write(page, 0, end);
2590
2591         if (unlikely(ret < 0))
2592                 goto out_unlock;
2593         set_page_dirty(page);
2594         wait_for_stable_page(page);
2595         return 0;
2596 out_unlock:
2597         unlock_page(page);
2598         return ret;
2599 }
2600 EXPORT_SYMBOL(block_page_mkwrite);
2601
2602 int block_truncate_page(struct address_space *mapping,
2603                         loff_t from, get_block_t *get_block)
2604 {
2605         pgoff_t index = from >> PAGE_SHIFT;
2606         unsigned offset = from & (PAGE_SIZE-1);
2607         unsigned blocksize;
2608         sector_t iblock;
2609         unsigned length, pos;
2610         struct inode *inode = mapping->host;
2611         struct page *page;
2612         struct buffer_head *bh;
2613         int err = 0;
2614
2615         blocksize = i_blocksize(inode);
2616         length = offset & (blocksize - 1);
2617
2618         /* Block boundary? Nothing to do */
2619         if (!length)
2620                 return 0;
2621
2622         length = blocksize - length;
2623         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2624         
2625         page = grab_cache_page(mapping, index);
2626         if (!page)
2627                 return -ENOMEM;
2628
2629         if (!page_has_buffers(page))
2630                 create_empty_buffers(page, blocksize, 0);
2631
2632         /* Find the buffer that contains "offset" */
2633         bh = page_buffers(page);
2634         pos = blocksize;
2635         while (offset >= pos) {
2636                 bh = bh->b_this_page;
2637                 iblock++;
2638                 pos += blocksize;
2639         }
2640
2641         if (!buffer_mapped(bh)) {
2642                 WARN_ON(bh->b_size != blocksize);
2643                 err = get_block(inode, iblock, bh, 0);
2644                 if (err)
2645                         goto unlock;
2646                 /* unmapped? It's a hole - nothing to do */
2647                 if (!buffer_mapped(bh))
2648                         goto unlock;
2649         }
2650
2651         /* Ok, it's mapped. Make sure it's up-to-date */
2652         if (PageUptodate(page))
2653                 set_buffer_uptodate(bh);
2654
2655         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2656                 err = bh_read(bh, 0);
2657                 /* Uhhuh. Read error. Complain and punt. */
2658                 if (err < 0)
2659                         goto unlock;
2660         }
2661
2662         zero_user(page, offset, length);
2663         mark_buffer_dirty(bh);
2664
2665 unlock:
2666         unlock_page(page);
2667         put_page(page);
2668
2669         return err;
2670 }
2671 EXPORT_SYMBOL(block_truncate_page);
2672
2673 /*
2674  * The generic ->writepage function for buffer-backed address_spaces
2675  */
2676 int block_write_full_page(struct page *page, get_block_t *get_block,
2677                         struct writeback_control *wbc)
2678 {
2679         struct inode * const inode = page->mapping->host;
2680         loff_t i_size = i_size_read(inode);
2681         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2682         unsigned offset;
2683
2684         /* Is the page fully inside i_size? */
2685         if (page->index < end_index)
2686                 return __block_write_full_page(inode, page, get_block, wbc,
2687                                                end_buffer_async_write);
2688
2689         /* Is the page fully outside i_size? (truncate in progress) */
2690         offset = i_size & (PAGE_SIZE-1);
2691         if (page->index >= end_index+1 || !offset) {
2692                 unlock_page(page);
2693                 return 0; /* don't care */
2694         }
2695
2696         /*
2697          * The page straddles i_size.  It must be zeroed out on each and every
2698          * writepage invocation because it may be mmapped.  "A file is mapped
2699          * in multiples of the page size.  For a file that is not a multiple of
2700          * the  page size, the remaining memory is zeroed when mapped, and
2701          * writes to that region are not written out to the file."
2702          */
2703         zero_user_segment(page, offset, PAGE_SIZE);
2704         return __block_write_full_page(inode, page, get_block, wbc,
2705                                                         end_buffer_async_write);
2706 }
2707 EXPORT_SYMBOL(block_write_full_page);
2708
2709 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2710                             get_block_t *get_block)
2711 {
2712         struct inode *inode = mapping->host;
2713         struct buffer_head tmp = {
2714                 .b_size = i_blocksize(inode),
2715         };
2716
2717         get_block(inode, block, &tmp, 0);
2718         return tmp.b_blocknr;
2719 }
2720 EXPORT_SYMBOL(generic_block_bmap);
2721
2722 static void end_bio_bh_io_sync(struct bio *bio)
2723 {
2724         struct buffer_head *bh = bio->bi_private;
2725
2726         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2727                 set_bit(BH_Quiet, &bh->b_state);
2728
2729         bh->b_end_io(bh, !bio->bi_status);
2730         bio_put(bio);
2731 }
2732
2733 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2734                           struct writeback_control *wbc)
2735 {
2736         const enum req_op op = opf & REQ_OP_MASK;
2737         struct bio *bio;
2738
2739         BUG_ON(!buffer_locked(bh));
2740         BUG_ON(!buffer_mapped(bh));
2741         BUG_ON(!bh->b_end_io);
2742         BUG_ON(buffer_delay(bh));
2743         BUG_ON(buffer_unwritten(bh));
2744
2745         /*
2746          * Only clear out a write error when rewriting
2747          */
2748         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2749                 clear_buffer_write_io_error(bh);
2750
2751         if (buffer_meta(bh))
2752                 opf |= REQ_META;
2753         if (buffer_prio(bh))
2754                 opf |= REQ_PRIO;
2755
2756         bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2757
2758         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2759
2760         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2761
2762         __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2763
2764         bio->bi_end_io = end_bio_bh_io_sync;
2765         bio->bi_private = bh;
2766
2767         /* Take care of bh's that straddle the end of the device */
2768         guard_bio_eod(bio);
2769
2770         if (wbc) {
2771                 wbc_init_bio(wbc, bio);
2772                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2773         }
2774
2775         submit_bio(bio);
2776 }
2777
2778 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2779 {
2780         submit_bh_wbc(opf, bh, NULL);
2781 }
2782 EXPORT_SYMBOL(submit_bh);
2783
2784 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2785 {
2786         lock_buffer(bh);
2787         if (!test_clear_buffer_dirty(bh)) {
2788                 unlock_buffer(bh);
2789                 return;
2790         }
2791         bh->b_end_io = end_buffer_write_sync;
2792         get_bh(bh);
2793         submit_bh(REQ_OP_WRITE | op_flags, bh);
2794 }
2795 EXPORT_SYMBOL(write_dirty_buffer);
2796
2797 /*
2798  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2799  * and then start new I/O and then wait upon it.  The caller must have a ref on
2800  * the buffer_head.
2801  */
2802 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2803 {
2804         WARN_ON(atomic_read(&bh->b_count) < 1);
2805         lock_buffer(bh);
2806         if (test_clear_buffer_dirty(bh)) {
2807                 /*
2808                  * The bh should be mapped, but it might not be if the
2809                  * device was hot-removed. Not much we can do but fail the I/O.
2810                  */
2811                 if (!buffer_mapped(bh)) {
2812                         unlock_buffer(bh);
2813                         return -EIO;
2814                 }
2815
2816                 get_bh(bh);
2817                 bh->b_end_io = end_buffer_write_sync;
2818                 submit_bh(REQ_OP_WRITE | op_flags, bh);
2819                 wait_on_buffer(bh);
2820                 if (!buffer_uptodate(bh))
2821                         return -EIO;
2822         } else {
2823                 unlock_buffer(bh);
2824         }
2825         return 0;
2826 }
2827 EXPORT_SYMBOL(__sync_dirty_buffer);
2828
2829 int sync_dirty_buffer(struct buffer_head *bh)
2830 {
2831         return __sync_dirty_buffer(bh, REQ_SYNC);
2832 }
2833 EXPORT_SYMBOL(sync_dirty_buffer);
2834
2835 /*
2836  * try_to_free_buffers() checks if all the buffers on this particular folio
2837  * are unused, and releases them if so.
2838  *
2839  * Exclusion against try_to_free_buffers may be obtained by either
2840  * locking the folio or by holding its mapping's private_lock.
2841  *
2842  * If the folio is dirty but all the buffers are clean then we need to
2843  * be sure to mark the folio clean as well.  This is because the folio
2844  * may be against a block device, and a later reattachment of buffers
2845  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2846  * filesystem data on the same device.
2847  *
2848  * The same applies to regular filesystem folios: if all the buffers are
2849  * clean then we set the folio clean and proceed.  To do that, we require
2850  * total exclusion from block_dirty_folio().  That is obtained with
2851  * private_lock.
2852  *
2853  * try_to_free_buffers() is non-blocking.
2854  */
2855 static inline int buffer_busy(struct buffer_head *bh)
2856 {
2857         return atomic_read(&bh->b_count) |
2858                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2859 }
2860
2861 static bool
2862 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2863 {
2864         struct buffer_head *head = folio_buffers(folio);
2865         struct buffer_head *bh;
2866
2867         bh = head;
2868         do {
2869                 if (buffer_busy(bh))
2870                         goto failed;
2871                 bh = bh->b_this_page;
2872         } while (bh != head);
2873
2874         do {
2875                 struct buffer_head *next = bh->b_this_page;
2876
2877                 if (bh->b_assoc_map)
2878                         __remove_assoc_queue(bh);
2879                 bh = next;
2880         } while (bh != head);
2881         *buffers_to_free = head;
2882         folio_detach_private(folio);
2883         return true;
2884 failed:
2885         return false;
2886 }
2887
2888 bool try_to_free_buffers(struct folio *folio)
2889 {
2890         struct address_space * const mapping = folio->mapping;
2891         struct buffer_head *buffers_to_free = NULL;
2892         bool ret = 0;
2893
2894         BUG_ON(!folio_test_locked(folio));
2895         if (folio_test_writeback(folio))
2896                 return false;
2897
2898         if (mapping == NULL) {          /* can this still happen? */
2899                 ret = drop_buffers(folio, &buffers_to_free);
2900                 goto out;
2901         }
2902
2903         spin_lock(&mapping->private_lock);
2904         ret = drop_buffers(folio, &buffers_to_free);
2905
2906         /*
2907          * If the filesystem writes its buffers by hand (eg ext3)
2908          * then we can have clean buffers against a dirty folio.  We
2909          * clean the folio here; otherwise the VM will never notice
2910          * that the filesystem did any IO at all.
2911          *
2912          * Also, during truncate, discard_buffer will have marked all
2913          * the folio's buffers clean.  We discover that here and clean
2914          * the folio also.
2915          *
2916          * private_lock must be held over this entire operation in order
2917          * to synchronise against block_dirty_folio and prevent the
2918          * dirty bit from being lost.
2919          */
2920         if (ret)
2921                 folio_cancel_dirty(folio);
2922         spin_unlock(&mapping->private_lock);
2923 out:
2924         if (buffers_to_free) {
2925                 struct buffer_head *bh = buffers_to_free;
2926
2927                 do {
2928                         struct buffer_head *next = bh->b_this_page;
2929                         free_buffer_head(bh);
2930                         bh = next;
2931                 } while (bh != buffers_to_free);
2932         }
2933         return ret;
2934 }
2935 EXPORT_SYMBOL(try_to_free_buffers);
2936
2937 /*
2938  * Buffer-head allocation
2939  */
2940 static struct kmem_cache *bh_cachep __read_mostly;
2941
2942 /*
2943  * Once the number of bh's in the machine exceeds this level, we start
2944  * stripping them in writeback.
2945  */
2946 static unsigned long max_buffer_heads;
2947
2948 int buffer_heads_over_limit;
2949
2950 struct bh_accounting {
2951         int nr;                 /* Number of live bh's */
2952         int ratelimit;          /* Limit cacheline bouncing */
2953 };
2954
2955 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2956
2957 static void recalc_bh_state(void)
2958 {
2959         int i;
2960         int tot = 0;
2961
2962         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2963                 return;
2964         __this_cpu_write(bh_accounting.ratelimit, 0);
2965         for_each_online_cpu(i)
2966                 tot += per_cpu(bh_accounting, i).nr;
2967         buffer_heads_over_limit = (tot > max_buffer_heads);
2968 }
2969
2970 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2971 {
2972         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2973         if (ret) {
2974                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
2975                 spin_lock_init(&ret->b_uptodate_lock);
2976                 preempt_disable();
2977                 __this_cpu_inc(bh_accounting.nr);
2978                 recalc_bh_state();
2979                 preempt_enable();
2980         }
2981         return ret;
2982 }
2983 EXPORT_SYMBOL(alloc_buffer_head);
2984
2985 void free_buffer_head(struct buffer_head *bh)
2986 {
2987         BUG_ON(!list_empty(&bh->b_assoc_buffers));
2988         kmem_cache_free(bh_cachep, bh);
2989         preempt_disable();
2990         __this_cpu_dec(bh_accounting.nr);
2991         recalc_bh_state();
2992         preempt_enable();
2993 }
2994 EXPORT_SYMBOL(free_buffer_head);
2995
2996 static int buffer_exit_cpu_dead(unsigned int cpu)
2997 {
2998         int i;
2999         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3000
3001         for (i = 0; i < BH_LRU_SIZE; i++) {
3002                 brelse(b->bhs[i]);
3003                 b->bhs[i] = NULL;
3004         }
3005         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3006         per_cpu(bh_accounting, cpu).nr = 0;
3007         return 0;
3008 }
3009
3010 /**
3011  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3012  * @bh: struct buffer_head
3013  *
3014  * Return true if the buffer is up-to-date and false,
3015  * with the buffer locked, if not.
3016  */
3017 int bh_uptodate_or_lock(struct buffer_head *bh)
3018 {
3019         if (!buffer_uptodate(bh)) {
3020                 lock_buffer(bh);
3021                 if (!buffer_uptodate(bh))
3022                         return 0;
3023                 unlock_buffer(bh);
3024         }
3025         return 1;
3026 }
3027 EXPORT_SYMBOL(bh_uptodate_or_lock);
3028
3029 /**
3030  * __bh_read - Submit read for a locked buffer
3031  * @bh: struct buffer_head
3032  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3033  * @wait: wait until reading finish
3034  *
3035  * Returns zero on success or don't wait, and -EIO on error.
3036  */
3037 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3038 {
3039         int ret = 0;
3040
3041         BUG_ON(!buffer_locked(bh));
3042
3043         get_bh(bh);
3044         bh->b_end_io = end_buffer_read_sync;
3045         submit_bh(REQ_OP_READ | op_flags, bh);
3046         if (wait) {
3047                 wait_on_buffer(bh);
3048                 if (!buffer_uptodate(bh))
3049                         ret = -EIO;
3050         }
3051         return ret;
3052 }
3053 EXPORT_SYMBOL(__bh_read);
3054
3055 /**
3056  * __bh_read_batch - Submit read for a batch of unlocked buffers
3057  * @nr: entry number of the buffer batch
3058  * @bhs: a batch of struct buffer_head
3059  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3060  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3061  *              buffer that cannot lock.
3062  *
3063  * Returns zero on success or don't wait, and -EIO on error.
3064  */
3065 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3066                      blk_opf_t op_flags, bool force_lock)
3067 {
3068         int i;
3069
3070         for (i = 0; i < nr; i++) {
3071                 struct buffer_head *bh = bhs[i];
3072
3073                 if (buffer_uptodate(bh))
3074                         continue;
3075
3076                 if (force_lock)
3077                         lock_buffer(bh);
3078                 else
3079                         if (!trylock_buffer(bh))
3080                                 continue;
3081
3082                 if (buffer_uptodate(bh)) {
3083                         unlock_buffer(bh);
3084                         continue;
3085                 }
3086
3087                 bh->b_end_io = end_buffer_read_sync;
3088                 get_bh(bh);
3089                 submit_bh(REQ_OP_READ | op_flags, bh);
3090         }
3091 }
3092 EXPORT_SYMBOL(__bh_read_batch);
3093
3094 void __init buffer_init(void)
3095 {
3096         unsigned long nrpages;
3097         int ret;
3098
3099         bh_cachep = kmem_cache_create("buffer_head",
3100                         sizeof(struct buffer_head), 0,
3101                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3102                                 SLAB_MEM_SPREAD),
3103                                 NULL);
3104
3105         /*
3106          * Limit the bh occupancy to 10% of ZONE_NORMAL
3107          */
3108         nrpages = (nr_free_buffer_pages() * 10) / 100;
3109         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3110         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3111                                         NULL, buffer_exit_cpu_dead);
3112         WARN_ON(ret < 0);
3113 }