4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
25 #include <linux/iomap.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 enum rw_hint hint, struct writeback_control *wbc);
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
56 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
58 bh->b_end_io = handler;
59 bh->b_private = private;
61 EXPORT_SYMBOL(init_buffer);
63 inline void touch_buffer(struct buffer_head *bh)
65 trace_block_touch_buffer(bh);
66 mark_page_accessed(bh->b_page);
68 EXPORT_SYMBOL(touch_buffer);
70 void __lock_buffer(struct buffer_head *bh)
72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
74 EXPORT_SYMBOL(__lock_buffer);
76 void unlock_buffer(struct buffer_head *bh)
78 clear_bit_unlock(BH_Lock, &bh->b_state);
79 smp_mb__after_atomic();
80 wake_up_bit(&bh->b_state, BH_Lock);
82 EXPORT_SYMBOL(unlock_buffer);
85 * Returns if the page has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the PageDirty information is stale. If
87 * any of the pages are locked, it is assumed they are locked for IO.
89 void buffer_check_dirty_writeback(struct page *page,
90 bool *dirty, bool *writeback)
92 struct buffer_head *head, *bh;
96 BUG_ON(!PageLocked(page));
98 if (!page_has_buffers(page))
101 if (PageWriteback(page))
104 head = page_buffers(page);
107 if (buffer_locked(bh))
110 if (buffer_dirty(bh))
113 bh = bh->b_this_page;
114 } while (bh != head);
116 EXPORT_SYMBOL(buffer_check_dirty_writeback);
119 * Block until a buffer comes unlocked. This doesn't stop it
120 * from becoming locked again - you have to lock it yourself
121 * if you want to preserve its state.
123 void __wait_on_buffer(struct buffer_head * bh)
125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
127 EXPORT_SYMBOL(__wait_on_buffer);
130 __clear_page_buffers(struct page *page)
132 ClearPagePrivate(page);
133 set_page_private(page, 0);
137 static void buffer_io_error(struct buffer_head *bh, char *msg)
139 if (!test_bit(BH_Quiet, &bh->b_state))
140 printk_ratelimited(KERN_ERR
141 "Buffer I/O error on dev %pg, logical block %llu%s\n",
142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
146 * End-of-IO handler helper function which does not touch the bh after
148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149 * a race there is benign: unlock_buffer() only use the bh's address for
150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
153 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
156 set_buffer_uptodate(bh);
158 /* This happens, due to failed read-ahead attempts. */
159 clear_buffer_uptodate(bh);
165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
166 * unlock the buffer. This is what ll_rw_block uses too.
168 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
170 __end_buffer_read_notouch(bh, uptodate);
173 EXPORT_SYMBOL(end_buffer_read_sync);
175 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
178 set_buffer_uptodate(bh);
180 buffer_io_error(bh, ", lost sync page write");
181 mark_buffer_write_io_error(bh);
182 clear_buffer_uptodate(bh);
187 EXPORT_SYMBOL(end_buffer_write_sync);
190 * Various filesystems appear to want __find_get_block to be non-blocking.
191 * But it's the page lock which protects the buffers. To get around this,
192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196 * may be quite high. This code could TryLock the page, and if that
197 * succeeds, there is no need to take private_lock. (But if
198 * private_lock is contended then so is mapping->tree_lock).
200 static struct buffer_head *
201 __find_get_block_slow(struct block_device *bdev, sector_t block)
203 struct inode *bd_inode = bdev->bd_inode;
204 struct address_space *bd_mapping = bd_inode->i_mapping;
205 struct buffer_head *ret = NULL;
207 struct buffer_head *bh;
208 struct buffer_head *head;
212 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
213 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
217 spin_lock(&bd_mapping->private_lock);
218 if (!page_has_buffers(page))
220 head = page_buffers(page);
223 if (!buffer_mapped(bh))
225 else if (bh->b_blocknr == block) {
230 bh = bh->b_this_page;
231 } while (bh != head);
233 /* we might be here because some of the buffers on this page are
234 * not mapped. This is due to various races between
235 * file io on the block device and getblk. It gets dealt with
236 * elsewhere, don't buffer_error if we had some unmapped buffers
239 printk("__find_get_block_slow() failed. "
240 "block=%llu, b_blocknr=%llu\n",
241 (unsigned long long)block,
242 (unsigned long long)bh->b_blocknr);
243 printk("b_state=0x%08lx, b_size=%zu\n",
244 bh->b_state, bh->b_size);
245 printk("device %pg blocksize: %d\n", bdev,
246 1 << bd_inode->i_blkbits);
249 spin_unlock(&bd_mapping->private_lock);
256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
258 static void free_more_memory(void)
263 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
266 for_each_online_node(nid) {
268 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
269 gfp_zone(GFP_NOFS), NULL);
271 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
277 * I/O completion handler for block_read_full_page() - pages
278 * which come unlocked at the end of I/O.
280 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
283 struct buffer_head *first;
284 struct buffer_head *tmp;
286 int page_uptodate = 1;
288 BUG_ON(!buffer_async_read(bh));
292 set_buffer_uptodate(bh);
294 clear_buffer_uptodate(bh);
295 buffer_io_error(bh, ", async page read");
300 * Be _very_ careful from here on. Bad things can happen if
301 * two buffer heads end IO at almost the same time and both
302 * decide that the page is now completely done.
304 first = page_buffers(page);
305 local_irq_save(flags);
306 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
307 clear_buffer_async_read(bh);
311 if (!buffer_uptodate(tmp))
313 if (buffer_async_read(tmp)) {
314 BUG_ON(!buffer_locked(tmp));
317 tmp = tmp->b_this_page;
319 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
320 local_irq_restore(flags);
323 * If none of the buffers had errors and they are all
324 * uptodate then we can set the page uptodate.
326 if (page_uptodate && !PageError(page))
327 SetPageUptodate(page);
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
338 * Completion handler for block_write_full_page() - pages which are unlocked
339 * during I/O, and which have PageWriteback cleared upon I/O completion.
341 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
344 struct buffer_head *first;
345 struct buffer_head *tmp;
348 BUG_ON(!buffer_async_write(bh));
352 set_buffer_uptodate(bh);
354 buffer_io_error(bh, ", lost async page write");
355 mark_buffer_write_io_error(bh);
356 clear_buffer_uptodate(bh);
360 first = page_buffers(page);
361 local_irq_save(flags);
362 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
364 clear_buffer_async_write(bh);
366 tmp = bh->b_this_page;
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
372 tmp = tmp->b_this_page;
374 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
375 local_irq_restore(flags);
376 end_page_writeback(page);
380 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
381 local_irq_restore(flags);
384 EXPORT_SYMBOL(end_buffer_async_write);
387 * If a page's buffers are under async readin (end_buffer_async_read
388 * completion) then there is a possibility that another thread of
389 * control could lock one of the buffers after it has completed
390 * but while some of the other buffers have not completed. This
391 * locked buffer would confuse end_buffer_async_read() into not unlocking
392 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
393 * that this buffer is not under async I/O.
395 * The page comes unlocked when it has no locked buffer_async buffers
398 * PageLocked prevents anyone starting new async I/O reads any of
401 * PageWriteback is used to prevent simultaneous writeout of the same
404 * PageLocked prevents anyone from starting writeback of a page which is
405 * under read I/O (PageWriteback is only ever set against a locked page).
407 static void mark_buffer_async_read(struct buffer_head *bh)
409 bh->b_end_io = end_buffer_async_read;
410 set_buffer_async_read(bh);
413 static void mark_buffer_async_write_endio(struct buffer_head *bh,
414 bh_end_io_t *handler)
416 bh->b_end_io = handler;
417 set_buffer_async_write(bh);
420 void mark_buffer_async_write(struct buffer_head *bh)
422 mark_buffer_async_write_endio(bh, end_buffer_async_write);
424 EXPORT_SYMBOL(mark_buffer_async_write);
428 * fs/buffer.c contains helper functions for buffer-backed address space's
429 * fsync functions. A common requirement for buffer-based filesystems is
430 * that certain data from the backing blockdev needs to be written out for
431 * a successful fsync(). For example, ext2 indirect blocks need to be
432 * written back and waited upon before fsync() returns.
434 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
435 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
436 * management of a list of dependent buffers at ->i_mapping->private_list.
438 * Locking is a little subtle: try_to_free_buffers() will remove buffers
439 * from their controlling inode's queue when they are being freed. But
440 * try_to_free_buffers() will be operating against the *blockdev* mapping
441 * at the time, not against the S_ISREG file which depends on those buffers.
442 * So the locking for private_list is via the private_lock in the address_space
443 * which backs the buffers. Which is different from the address_space
444 * against which the buffers are listed. So for a particular address_space,
445 * mapping->private_lock does *not* protect mapping->private_list! In fact,
446 * mapping->private_list will always be protected by the backing blockdev's
449 * Which introduces a requirement: all buffers on an address_space's
450 * ->private_list must be from the same address_space: the blockdev's.
452 * address_spaces which do not place buffers at ->private_list via these
453 * utility functions are free to use private_lock and private_list for
454 * whatever they want. The only requirement is that list_empty(private_list)
455 * be true at clear_inode() time.
457 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
458 * filesystems should do that. invalidate_inode_buffers() should just go
459 * BUG_ON(!list_empty).
461 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
462 * take an address_space, not an inode. And it should be called
463 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
466 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
467 * list if it is already on a list. Because if the buffer is on a list,
468 * it *must* already be on the right one. If not, the filesystem is being
469 * silly. This will save a ton of locking. But first we have to ensure
470 * that buffers are taken *off* the old inode's list when they are freed
471 * (presumably in truncate). That requires careful auditing of all
472 * filesystems (do it inside bforget()). It could also be done by bringing
477 * The buffer's backing address_space's private_lock must be held
479 static void __remove_assoc_queue(struct buffer_head *bh)
481 list_del_init(&bh->b_assoc_buffers);
482 WARN_ON(!bh->b_assoc_map);
483 bh->b_assoc_map = NULL;
486 int inode_has_buffers(struct inode *inode)
488 return !list_empty(&inode->i_data.private_list);
492 * osync is designed to support O_SYNC io. It waits synchronously for
493 * all already-submitted IO to complete, but does not queue any new
494 * writes to the disk.
496 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
497 * you dirty the buffers, and then use osync_inode_buffers to wait for
498 * completion. Any other dirty buffers which are not yet queued for
499 * write will not be flushed to disk by the osync.
501 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
503 struct buffer_head *bh;
509 list_for_each_prev(p, list) {
511 if (buffer_locked(bh)) {
515 if (!buffer_uptodate(bh))
526 static void do_thaw_one(struct super_block *sb, void *unused)
528 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
529 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
532 static void do_thaw_all(struct work_struct *work)
534 iterate_supers(do_thaw_one, NULL);
536 printk(KERN_WARNING "Emergency Thaw complete\n");
540 * emergency_thaw_all -- forcibly thaw every frozen filesystem
542 * Used for emergency unfreeze of all filesystems via SysRq
544 void emergency_thaw_all(void)
546 struct work_struct *work;
548 work = kmalloc(sizeof(*work), GFP_ATOMIC);
550 INIT_WORK(work, do_thaw_all);
556 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
557 * @mapping: the mapping which wants those buffers written
559 * Starts I/O against the buffers at mapping->private_list, and waits upon
562 * Basically, this is a convenience function for fsync().
563 * @mapping is a file or directory which needs those buffers to be written for
564 * a successful fsync().
566 int sync_mapping_buffers(struct address_space *mapping)
568 struct address_space *buffer_mapping = mapping->private_data;
570 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
573 return fsync_buffers_list(&buffer_mapping->private_lock,
574 &mapping->private_list);
576 EXPORT_SYMBOL(sync_mapping_buffers);
579 * Called when we've recently written block `bblock', and it is known that
580 * `bblock' was for a buffer_boundary() buffer. This means that the block at
581 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
582 * dirty, schedule it for IO. So that indirects merge nicely with their data.
584 void write_boundary_block(struct block_device *bdev,
585 sector_t bblock, unsigned blocksize)
587 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
589 if (buffer_dirty(bh))
590 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
595 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
597 struct address_space *mapping = inode->i_mapping;
598 struct address_space *buffer_mapping = bh->b_page->mapping;
600 mark_buffer_dirty(bh);
601 if (!mapping->private_data) {
602 mapping->private_data = buffer_mapping;
604 BUG_ON(mapping->private_data != buffer_mapping);
606 if (!bh->b_assoc_map) {
607 spin_lock(&buffer_mapping->private_lock);
608 list_move_tail(&bh->b_assoc_buffers,
609 &mapping->private_list);
610 bh->b_assoc_map = mapping;
611 spin_unlock(&buffer_mapping->private_lock);
614 EXPORT_SYMBOL(mark_buffer_dirty_inode);
617 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
620 * If warn is true, then emit a warning if the page is not uptodate and has
621 * not been truncated.
623 * The caller must hold lock_page_memcg().
625 static void __set_page_dirty(struct page *page, struct address_space *mapping,
630 spin_lock_irqsave(&mapping->tree_lock, flags);
631 if (page->mapping) { /* Race with truncate? */
632 WARN_ON_ONCE(warn && !PageUptodate(page));
633 account_page_dirtied(page, mapping);
634 radix_tree_tag_set(&mapping->page_tree,
635 page_index(page), PAGECACHE_TAG_DIRTY);
637 spin_unlock_irqrestore(&mapping->tree_lock, flags);
641 * Add a page to the dirty page list.
643 * It is a sad fact of life that this function is called from several places
644 * deeply under spinlocking. It may not sleep.
646 * If the page has buffers, the uptodate buffers are set dirty, to preserve
647 * dirty-state coherency between the page and the buffers. It the page does
648 * not have buffers then when they are later attached they will all be set
651 * The buffers are dirtied before the page is dirtied. There's a small race
652 * window in which a writepage caller may see the page cleanness but not the
653 * buffer dirtiness. That's fine. If this code were to set the page dirty
654 * before the buffers, a concurrent writepage caller could clear the page dirty
655 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
656 * page on the dirty page list.
658 * We use private_lock to lock against try_to_free_buffers while using the
659 * page's buffer list. Also use this to protect against clean buffers being
660 * added to the page after it was set dirty.
662 * FIXME: may need to call ->reservepage here as well. That's rather up to the
663 * address_space though.
665 int __set_page_dirty_buffers(struct page *page)
668 struct address_space *mapping = page_mapping(page);
670 if (unlikely(!mapping))
671 return !TestSetPageDirty(page);
673 spin_lock(&mapping->private_lock);
674 if (page_has_buffers(page)) {
675 struct buffer_head *head = page_buffers(page);
676 struct buffer_head *bh = head;
679 set_buffer_dirty(bh);
680 bh = bh->b_this_page;
681 } while (bh != head);
684 * Lock out page->mem_cgroup migration to keep PageDirty
685 * synchronized with per-memcg dirty page counters.
687 lock_page_memcg(page);
688 newly_dirty = !TestSetPageDirty(page);
689 spin_unlock(&mapping->private_lock);
692 __set_page_dirty(page, mapping, 1);
694 unlock_page_memcg(page);
697 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
701 EXPORT_SYMBOL(__set_page_dirty_buffers);
704 * Write out and wait upon a list of buffers.
706 * We have conflicting pressures: we want to make sure that all
707 * initially dirty buffers get waited on, but that any subsequently
708 * dirtied buffers don't. After all, we don't want fsync to last
709 * forever if somebody is actively writing to the file.
711 * Do this in two main stages: first we copy dirty buffers to a
712 * temporary inode list, queueing the writes as we go. Then we clean
713 * up, waiting for those writes to complete.
715 * During this second stage, any subsequent updates to the file may end
716 * up refiling the buffer on the original inode's dirty list again, so
717 * there is a chance we will end up with a buffer queued for write but
718 * not yet completed on that list. So, as a final cleanup we go through
719 * the osync code to catch these locked, dirty buffers without requeuing
720 * any newly dirty buffers for write.
722 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
724 struct buffer_head *bh;
725 struct list_head tmp;
726 struct address_space *mapping;
728 struct blk_plug plug;
730 INIT_LIST_HEAD(&tmp);
731 blk_start_plug(&plug);
734 while (!list_empty(list)) {
735 bh = BH_ENTRY(list->next);
736 mapping = bh->b_assoc_map;
737 __remove_assoc_queue(bh);
738 /* Avoid race with mark_buffer_dirty_inode() which does
739 * a lockless check and we rely on seeing the dirty bit */
741 if (buffer_dirty(bh) || buffer_locked(bh)) {
742 list_add(&bh->b_assoc_buffers, &tmp);
743 bh->b_assoc_map = mapping;
744 if (buffer_dirty(bh)) {
748 * Ensure any pending I/O completes so that
749 * write_dirty_buffer() actually writes the
750 * current contents - it is a noop if I/O is
751 * still in flight on potentially older
754 write_dirty_buffer(bh, REQ_SYNC);
757 * Kick off IO for the previous mapping. Note
758 * that we will not run the very last mapping,
759 * wait_on_buffer() will do that for us
760 * through sync_buffer().
769 blk_finish_plug(&plug);
772 while (!list_empty(&tmp)) {
773 bh = BH_ENTRY(tmp.prev);
775 mapping = bh->b_assoc_map;
776 __remove_assoc_queue(bh);
777 /* Avoid race with mark_buffer_dirty_inode() which does
778 * a lockless check and we rely on seeing the dirty bit */
780 if (buffer_dirty(bh)) {
781 list_add(&bh->b_assoc_buffers,
782 &mapping->private_list);
783 bh->b_assoc_map = mapping;
787 if (!buffer_uptodate(bh))
794 err2 = osync_buffers_list(lock, list);
802 * Invalidate any and all dirty buffers on a given inode. We are
803 * probably unmounting the fs, but that doesn't mean we have already
804 * done a sync(). Just drop the buffers from the inode list.
806 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
807 * assumes that all the buffers are against the blockdev. Not true
810 void invalidate_inode_buffers(struct inode *inode)
812 if (inode_has_buffers(inode)) {
813 struct address_space *mapping = &inode->i_data;
814 struct list_head *list = &mapping->private_list;
815 struct address_space *buffer_mapping = mapping->private_data;
817 spin_lock(&buffer_mapping->private_lock);
818 while (!list_empty(list))
819 __remove_assoc_queue(BH_ENTRY(list->next));
820 spin_unlock(&buffer_mapping->private_lock);
823 EXPORT_SYMBOL(invalidate_inode_buffers);
826 * Remove any clean buffers from the inode's buffer list. This is called
827 * when we're trying to free the inode itself. Those buffers can pin it.
829 * Returns true if all buffers were removed.
831 int remove_inode_buffers(struct inode *inode)
835 if (inode_has_buffers(inode)) {
836 struct address_space *mapping = &inode->i_data;
837 struct list_head *list = &mapping->private_list;
838 struct address_space *buffer_mapping = mapping->private_data;
840 spin_lock(&buffer_mapping->private_lock);
841 while (!list_empty(list)) {
842 struct buffer_head *bh = BH_ENTRY(list->next);
843 if (buffer_dirty(bh)) {
847 __remove_assoc_queue(bh);
849 spin_unlock(&buffer_mapping->private_lock);
855 * Create the appropriate buffers when given a page for data area and
856 * the size of each buffer.. Use the bh->b_this_page linked list to
857 * follow the buffers created. Return NULL if unable to create more
860 * The retry flag is used to differentiate async IO (paging, swapping)
861 * which may not fail from ordinary buffer allocations.
863 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
866 struct buffer_head *bh, *head;
872 while ((offset -= size) >= 0) {
873 bh = alloc_buffer_head(GFP_NOFS);
877 bh->b_this_page = head;
883 /* Link the buffer to its page */
884 set_bh_page(bh, page, offset);
888 * In case anything failed, we just free everything we got.
894 head = head->b_this_page;
895 free_buffer_head(bh);
900 * Return failure for non-async IO requests. Async IO requests
901 * are not allowed to fail, so we have to wait until buffer heads
902 * become available. But we don't want tasks sleeping with
903 * partially complete buffers, so all were released above.
908 /* We're _really_ low on memory. Now we just
909 * wait for old buffer heads to become free due to
910 * finishing IO. Since this is an async request and
911 * the reserve list is empty, we're sure there are
912 * async buffer heads in use.
917 EXPORT_SYMBOL_GPL(alloc_page_buffers);
920 link_dev_buffers(struct page *page, struct buffer_head *head)
922 struct buffer_head *bh, *tail;
927 bh = bh->b_this_page;
929 tail->b_this_page = head;
930 attach_page_buffers(page, head);
933 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
935 sector_t retval = ~((sector_t)0);
936 loff_t sz = i_size_read(bdev->bd_inode);
939 unsigned int sizebits = blksize_bits(size);
940 retval = (sz >> sizebits);
946 * Initialise the state of a blockdev page's buffers.
949 init_page_buffers(struct page *page, struct block_device *bdev,
950 sector_t block, int size)
952 struct buffer_head *head = page_buffers(page);
953 struct buffer_head *bh = head;
954 int uptodate = PageUptodate(page);
955 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
958 if (!buffer_mapped(bh)) {
959 init_buffer(bh, NULL, NULL);
961 bh->b_blocknr = block;
963 set_buffer_uptodate(bh);
964 if (block < end_block)
965 set_buffer_mapped(bh);
968 bh = bh->b_this_page;
969 } while (bh != head);
972 * Caller needs to validate requested block against end of device.
978 * Create the page-cache page that contains the requested block.
980 * This is used purely for blockdev mappings.
983 grow_dev_page(struct block_device *bdev, sector_t block,
984 pgoff_t index, int size, int sizebits, gfp_t gfp)
986 struct inode *inode = bdev->bd_inode;
988 struct buffer_head *bh;
990 int ret = 0; /* Will call free_more_memory() */
993 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
996 * XXX: __getblk_slow() can not really deal with failure and
997 * will endlessly loop on improvised global reclaim. Prefer
998 * looping in the allocator rather than here, at least that
999 * code knows what it's doing.
1001 gfp_mask |= __GFP_NOFAIL;
1003 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1007 BUG_ON(!PageLocked(page));
1009 if (page_has_buffers(page)) {
1010 bh = page_buffers(page);
1011 if (bh->b_size == size) {
1012 end_block = init_page_buffers(page, bdev,
1013 (sector_t)index << sizebits,
1017 if (!try_to_free_buffers(page))
1022 * Allocate some buffers for this page
1024 bh = alloc_page_buffers(page, size, 0);
1029 * Link the page to the buffers and initialise them. Take the
1030 * lock to be atomic wrt __find_get_block(), which does not
1031 * run under the page lock.
1033 spin_lock(&inode->i_mapping->private_lock);
1034 link_dev_buffers(page, bh);
1035 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1037 spin_unlock(&inode->i_mapping->private_lock);
1039 ret = (block < end_block) ? 1 : -ENXIO;
1047 * Create buffers for the specified block device block's page. If
1048 * that page was dirty, the buffers are set dirty also.
1051 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1059 } while ((size << sizebits) < PAGE_SIZE);
1061 index = block >> sizebits;
1064 * Check for a block which wants to lie outside our maximum possible
1065 * pagecache index. (this comparison is done using sector_t types).
1067 if (unlikely(index != block >> sizebits)) {
1068 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1070 __func__, (unsigned long long)block,
1075 /* Create a page with the proper size buffers.. */
1076 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1079 static struct buffer_head *
1080 __getblk_slow(struct block_device *bdev, sector_t block,
1081 unsigned size, gfp_t gfp)
1083 /* Size must be multiple of hard sectorsize */
1084 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1085 (size < 512 || size > PAGE_SIZE))) {
1086 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1088 printk(KERN_ERR "logical block size: %d\n",
1089 bdev_logical_block_size(bdev));
1096 struct buffer_head *bh;
1099 bh = __find_get_block(bdev, block, size);
1103 ret = grow_buffers(bdev, block, size, gfp);
1112 * The relationship between dirty buffers and dirty pages:
1114 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1115 * the page is tagged dirty in its radix tree.
1117 * At all times, the dirtiness of the buffers represents the dirtiness of
1118 * subsections of the page. If the page has buffers, the page dirty bit is
1119 * merely a hint about the true dirty state.
1121 * When a page is set dirty in its entirety, all its buffers are marked dirty
1122 * (if the page has buffers).
1124 * When a buffer is marked dirty, its page is dirtied, but the page's other
1127 * Also. When blockdev buffers are explicitly read with bread(), they
1128 * individually become uptodate. But their backing page remains not
1129 * uptodate - even if all of its buffers are uptodate. A subsequent
1130 * block_read_full_page() against that page will discover all the uptodate
1131 * buffers, will set the page uptodate and will perform no I/O.
1135 * mark_buffer_dirty - mark a buffer_head as needing writeout
1136 * @bh: the buffer_head to mark dirty
1138 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1139 * backing page dirty, then tag the page as dirty in its address_space's radix
1140 * tree and then attach the address_space's inode to its superblock's dirty
1143 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1144 * mapping->tree_lock and mapping->host->i_lock.
1146 void mark_buffer_dirty(struct buffer_head *bh)
1148 WARN_ON_ONCE(!buffer_uptodate(bh));
1150 trace_block_dirty_buffer(bh);
1153 * Very *carefully* optimize the it-is-already-dirty case.
1155 * Don't let the final "is it dirty" escape to before we
1156 * perhaps modified the buffer.
1158 if (buffer_dirty(bh)) {
1160 if (buffer_dirty(bh))
1164 if (!test_set_buffer_dirty(bh)) {
1165 struct page *page = bh->b_page;
1166 struct address_space *mapping = NULL;
1168 lock_page_memcg(page);
1169 if (!TestSetPageDirty(page)) {
1170 mapping = page_mapping(page);
1172 __set_page_dirty(page, mapping, 0);
1174 unlock_page_memcg(page);
1176 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1179 EXPORT_SYMBOL(mark_buffer_dirty);
1181 void mark_buffer_write_io_error(struct buffer_head *bh)
1183 set_buffer_write_io_error(bh);
1184 /* FIXME: do we need to set this in both places? */
1185 if (bh->b_page && bh->b_page->mapping)
1186 mapping_set_error(bh->b_page->mapping, -EIO);
1187 if (bh->b_assoc_map)
1188 mapping_set_error(bh->b_assoc_map, -EIO);
1190 EXPORT_SYMBOL(mark_buffer_write_io_error);
1193 * Decrement a buffer_head's reference count. If all buffers against a page
1194 * have zero reference count, are clean and unlocked, and if the page is clean
1195 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1196 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1197 * a page but it ends up not being freed, and buffers may later be reattached).
1199 void __brelse(struct buffer_head * buf)
1201 if (atomic_read(&buf->b_count)) {
1205 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1207 EXPORT_SYMBOL(__brelse);
1210 * bforget() is like brelse(), except it discards any
1211 * potentially dirty data.
1213 void __bforget(struct buffer_head *bh)
1215 clear_buffer_dirty(bh);
1216 if (bh->b_assoc_map) {
1217 struct address_space *buffer_mapping = bh->b_page->mapping;
1219 spin_lock(&buffer_mapping->private_lock);
1220 list_del_init(&bh->b_assoc_buffers);
1221 bh->b_assoc_map = NULL;
1222 spin_unlock(&buffer_mapping->private_lock);
1226 EXPORT_SYMBOL(__bforget);
1228 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1231 if (buffer_uptodate(bh)) {
1236 bh->b_end_io = end_buffer_read_sync;
1237 submit_bh(REQ_OP_READ, 0, bh);
1239 if (buffer_uptodate(bh))
1247 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1248 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1249 * refcount elevated by one when they're in an LRU. A buffer can only appear
1250 * once in a particular CPU's LRU. A single buffer can be present in multiple
1251 * CPU's LRUs at the same time.
1253 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1254 * sb_find_get_block().
1256 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1257 * a local interrupt disable for that.
1260 #define BH_LRU_SIZE 16
1263 struct buffer_head *bhs[BH_LRU_SIZE];
1266 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1269 #define bh_lru_lock() local_irq_disable()
1270 #define bh_lru_unlock() local_irq_enable()
1272 #define bh_lru_lock() preempt_disable()
1273 #define bh_lru_unlock() preempt_enable()
1276 static inline void check_irqs_on(void)
1278 #ifdef irqs_disabled
1279 BUG_ON(irqs_disabled());
1284 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1285 * inserted at the front, and the buffer_head at the back if any is evicted.
1286 * Or, if already in the LRU it is moved to the front.
1288 static void bh_lru_install(struct buffer_head *bh)
1290 struct buffer_head *evictee = bh;
1297 b = this_cpu_ptr(&bh_lrus);
1298 for (i = 0; i < BH_LRU_SIZE; i++) {
1299 swap(evictee, b->bhs[i]);
1300 if (evictee == bh) {
1312 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1314 static struct buffer_head *
1315 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1317 struct buffer_head *ret = NULL;
1322 for (i = 0; i < BH_LRU_SIZE; i++) {
1323 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1325 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1326 bh->b_size == size) {
1329 __this_cpu_write(bh_lrus.bhs[i],
1330 __this_cpu_read(bh_lrus.bhs[i - 1]));
1333 __this_cpu_write(bh_lrus.bhs[0], bh);
1345 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1346 * it in the LRU and mark it as accessed. If it is not present then return
1349 struct buffer_head *
1350 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1352 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1355 /* __find_get_block_slow will mark the page accessed */
1356 bh = __find_get_block_slow(bdev, block);
1364 EXPORT_SYMBOL(__find_get_block);
1367 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1368 * which corresponds to the passed block_device, block and size. The
1369 * returned buffer has its reference count incremented.
1371 * __getblk_gfp() will lock up the machine if grow_dev_page's
1372 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1374 struct buffer_head *
1375 __getblk_gfp(struct block_device *bdev, sector_t block,
1376 unsigned size, gfp_t gfp)
1378 struct buffer_head *bh = __find_get_block(bdev, block, size);
1382 bh = __getblk_slow(bdev, block, size, gfp);
1385 EXPORT_SYMBOL(__getblk_gfp);
1388 * Do async read-ahead on a buffer..
1390 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1392 struct buffer_head *bh = __getblk(bdev, block, size);
1394 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1398 EXPORT_SYMBOL(__breadahead);
1401 * __bread_gfp() - reads a specified block and returns the bh
1402 * @bdev: the block_device to read from
1403 * @block: number of block
1404 * @size: size (in bytes) to read
1405 * @gfp: page allocation flag
1407 * Reads a specified block, and returns buffer head that contains it.
1408 * The page cache can be allocated from non-movable area
1409 * not to prevent page migration if you set gfp to zero.
1410 * It returns NULL if the block was unreadable.
1412 struct buffer_head *
1413 __bread_gfp(struct block_device *bdev, sector_t block,
1414 unsigned size, gfp_t gfp)
1416 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1418 if (likely(bh) && !buffer_uptodate(bh))
1419 bh = __bread_slow(bh);
1422 EXPORT_SYMBOL(__bread_gfp);
1425 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1426 * This doesn't race because it runs in each cpu either in irq
1427 * or with preempt disabled.
1429 static void invalidate_bh_lru(void *arg)
1431 struct bh_lru *b = &get_cpu_var(bh_lrus);
1434 for (i = 0; i < BH_LRU_SIZE; i++) {
1438 put_cpu_var(bh_lrus);
1441 static bool has_bh_in_lru(int cpu, void *dummy)
1443 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1446 for (i = 0; i < BH_LRU_SIZE; i++) {
1454 void invalidate_bh_lrus(void)
1456 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1458 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1460 void set_bh_page(struct buffer_head *bh,
1461 struct page *page, unsigned long offset)
1464 BUG_ON(offset >= PAGE_SIZE);
1465 if (PageHighMem(page))
1467 * This catches illegal uses and preserves the offset:
1469 bh->b_data = (char *)(0 + offset);
1471 bh->b_data = page_address(page) + offset;
1473 EXPORT_SYMBOL(set_bh_page);
1476 * Called when truncating a buffer on a page completely.
1479 /* Bits that are cleared during an invalidate */
1480 #define BUFFER_FLAGS_DISCARD \
1481 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1482 1 << BH_Delay | 1 << BH_Unwritten)
1484 static void discard_buffer(struct buffer_head * bh)
1486 unsigned long b_state, b_state_old;
1489 clear_buffer_dirty(bh);
1491 b_state = bh->b_state;
1493 b_state_old = cmpxchg(&bh->b_state, b_state,
1494 (b_state & ~BUFFER_FLAGS_DISCARD));
1495 if (b_state_old == b_state)
1497 b_state = b_state_old;
1503 * block_invalidatepage - invalidate part or all of a buffer-backed page
1505 * @page: the page which is affected
1506 * @offset: start of the range to invalidate
1507 * @length: length of the range to invalidate
1509 * block_invalidatepage() is called when all or part of the page has become
1510 * invalidated by a truncate operation.
1512 * block_invalidatepage() does not have to release all buffers, but it must
1513 * ensure that no dirty buffer is left outside @offset and that no I/O
1514 * is underway against any of the blocks which are outside the truncation
1515 * point. Because the caller is about to free (and possibly reuse) those
1518 void block_invalidatepage(struct page *page, unsigned int offset,
1519 unsigned int length)
1521 struct buffer_head *head, *bh, *next;
1522 unsigned int curr_off = 0;
1523 unsigned int stop = length + offset;
1525 BUG_ON(!PageLocked(page));
1526 if (!page_has_buffers(page))
1530 * Check for overflow
1532 BUG_ON(stop > PAGE_SIZE || stop < length);
1534 head = page_buffers(page);
1537 unsigned int next_off = curr_off + bh->b_size;
1538 next = bh->b_this_page;
1541 * Are we still fully in range ?
1543 if (next_off > stop)
1547 * is this block fully invalidated?
1549 if (offset <= curr_off)
1551 curr_off = next_off;
1553 } while (bh != head);
1556 * We release buffers only if the entire page is being invalidated.
1557 * The get_block cached value has been unconditionally invalidated,
1558 * so real IO is not possible anymore.
1561 try_to_release_page(page, 0);
1565 EXPORT_SYMBOL(block_invalidatepage);
1569 * We attach and possibly dirty the buffers atomically wrt
1570 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1571 * is already excluded via the page lock.
1573 void create_empty_buffers(struct page *page,
1574 unsigned long blocksize, unsigned long b_state)
1576 struct buffer_head *bh, *head, *tail;
1578 head = alloc_page_buffers(page, blocksize, 1);
1581 bh->b_state |= b_state;
1583 bh = bh->b_this_page;
1585 tail->b_this_page = head;
1587 spin_lock(&page->mapping->private_lock);
1588 if (PageUptodate(page) || PageDirty(page)) {
1591 if (PageDirty(page))
1592 set_buffer_dirty(bh);
1593 if (PageUptodate(page))
1594 set_buffer_uptodate(bh);
1595 bh = bh->b_this_page;
1596 } while (bh != head);
1598 attach_page_buffers(page, head);
1599 spin_unlock(&page->mapping->private_lock);
1601 EXPORT_SYMBOL(create_empty_buffers);
1604 * clean_bdev_aliases: clean a range of buffers in block device
1605 * @bdev: Block device to clean buffers in
1606 * @block: Start of a range of blocks to clean
1607 * @len: Number of blocks to clean
1609 * We are taking a range of blocks for data and we don't want writeback of any
1610 * buffer-cache aliases starting from return from this function and until the
1611 * moment when something will explicitly mark the buffer dirty (hopefully that
1612 * will not happen until we will free that block ;-) We don't even need to mark
1613 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1614 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1615 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1616 * would confuse anyone who might pick it with bread() afterwards...
1618 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1619 * writeout I/O going on against recently-freed buffers. We don't wait on that
1620 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1621 * need to. That happens here.
1623 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1625 struct inode *bd_inode = bdev->bd_inode;
1626 struct address_space *bd_mapping = bd_inode->i_mapping;
1627 struct pagevec pvec;
1628 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1631 struct buffer_head *bh;
1632 struct buffer_head *head;
1634 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1635 pagevec_init(&pvec, 0);
1636 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1637 count = pagevec_count(&pvec);
1638 for (i = 0; i < count; i++) {
1639 struct page *page = pvec.pages[i];
1641 if (!page_has_buffers(page))
1644 * We use page lock instead of bd_mapping->private_lock
1645 * to pin buffers here since we can afford to sleep and
1646 * it scales better than a global spinlock lock.
1649 /* Recheck when the page is locked which pins bhs */
1650 if (!page_has_buffers(page))
1652 head = page_buffers(page);
1655 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1657 if (bh->b_blocknr >= block + len)
1659 clear_buffer_dirty(bh);
1661 clear_buffer_req(bh);
1663 bh = bh->b_this_page;
1664 } while (bh != head);
1668 pagevec_release(&pvec);
1670 /* End of range already reached? */
1671 if (index > end || !index)
1675 EXPORT_SYMBOL(clean_bdev_aliases);
1678 * Size is a power-of-two in the range 512..PAGE_SIZE,
1679 * and the case we care about most is PAGE_SIZE.
1681 * So this *could* possibly be written with those
1682 * constraints in mind (relevant mostly if some
1683 * architecture has a slow bit-scan instruction)
1685 static inline int block_size_bits(unsigned int blocksize)
1687 return ilog2(blocksize);
1690 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1692 BUG_ON(!PageLocked(page));
1694 if (!page_has_buffers(page))
1695 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1696 return page_buffers(page);
1700 * NOTE! All mapped/uptodate combinations are valid:
1702 * Mapped Uptodate Meaning
1704 * No No "unknown" - must do get_block()
1705 * No Yes "hole" - zero-filled
1706 * Yes No "allocated" - allocated on disk, not read in
1707 * Yes Yes "valid" - allocated and up-to-date in memory.
1709 * "Dirty" is valid only with the last case (mapped+uptodate).
1713 * While block_write_full_page is writing back the dirty buffers under
1714 * the page lock, whoever dirtied the buffers may decide to clean them
1715 * again at any time. We handle that by only looking at the buffer
1716 * state inside lock_buffer().
1718 * If block_write_full_page() is called for regular writeback
1719 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1720 * locked buffer. This only can happen if someone has written the buffer
1721 * directly, with submit_bh(). At the address_space level PageWriteback
1722 * prevents this contention from occurring.
1724 * If block_write_full_page() is called with wbc->sync_mode ==
1725 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1726 * causes the writes to be flagged as synchronous writes.
1728 int __block_write_full_page(struct inode *inode, struct page *page,
1729 get_block_t *get_block, struct writeback_control *wbc,
1730 bh_end_io_t *handler)
1734 sector_t last_block;
1735 struct buffer_head *bh, *head;
1736 unsigned int blocksize, bbits;
1737 int nr_underway = 0;
1738 int write_flags = wbc_to_write_flags(wbc);
1740 head = create_page_buffers(page, inode,
1741 (1 << BH_Dirty)|(1 << BH_Uptodate));
1744 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1745 * here, and the (potentially unmapped) buffers may become dirty at
1746 * any time. If a buffer becomes dirty here after we've inspected it
1747 * then we just miss that fact, and the page stays dirty.
1749 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1750 * handle that here by just cleaning them.
1754 blocksize = bh->b_size;
1755 bbits = block_size_bits(blocksize);
1757 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1758 last_block = (i_size_read(inode) - 1) >> bbits;
1761 * Get all the dirty buffers mapped to disk addresses and
1762 * handle any aliases from the underlying blockdev's mapping.
1765 if (block > last_block) {
1767 * mapped buffers outside i_size will occur, because
1768 * this page can be outside i_size when there is a
1769 * truncate in progress.
1772 * The buffer was zeroed by block_write_full_page()
1774 clear_buffer_dirty(bh);
1775 set_buffer_uptodate(bh);
1776 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1778 WARN_ON(bh->b_size != blocksize);
1779 err = get_block(inode, block, bh, 1);
1782 clear_buffer_delay(bh);
1783 if (buffer_new(bh)) {
1784 /* blockdev mappings never come here */
1785 clear_buffer_new(bh);
1786 clean_bdev_bh_alias(bh);
1789 bh = bh->b_this_page;
1791 } while (bh != head);
1794 if (!buffer_mapped(bh))
1797 * If it's a fully non-blocking write attempt and we cannot
1798 * lock the buffer then redirty the page. Note that this can
1799 * potentially cause a busy-wait loop from writeback threads
1800 * and kswapd activity, but those code paths have their own
1801 * higher-level throttling.
1803 if (wbc->sync_mode != WB_SYNC_NONE) {
1805 } else if (!trylock_buffer(bh)) {
1806 redirty_page_for_writepage(wbc, page);
1809 if (test_clear_buffer_dirty(bh)) {
1810 mark_buffer_async_write_endio(bh, handler);
1814 } while ((bh = bh->b_this_page) != head);
1817 * The page and its buffers are protected by PageWriteback(), so we can
1818 * drop the bh refcounts early.
1820 BUG_ON(PageWriteback(page));
1821 set_page_writeback(page);
1824 struct buffer_head *next = bh->b_this_page;
1825 if (buffer_async_write(bh)) {
1826 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1827 inode->i_write_hint, wbc);
1831 } while (bh != head);
1836 if (nr_underway == 0) {
1838 * The page was marked dirty, but the buffers were
1839 * clean. Someone wrote them back by hand with
1840 * ll_rw_block/submit_bh. A rare case.
1842 end_page_writeback(page);
1845 * The page and buffer_heads can be released at any time from
1853 * ENOSPC, or some other error. We may already have added some
1854 * blocks to the file, so we need to write these out to avoid
1855 * exposing stale data.
1856 * The page is currently locked and not marked for writeback
1859 /* Recovery: lock and submit the mapped buffers */
1861 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1862 !buffer_delay(bh)) {
1864 mark_buffer_async_write_endio(bh, handler);
1867 * The buffer may have been set dirty during
1868 * attachment to a dirty page.
1870 clear_buffer_dirty(bh);
1872 } while ((bh = bh->b_this_page) != head);
1874 BUG_ON(PageWriteback(page));
1875 mapping_set_error(page->mapping, err);
1876 set_page_writeback(page);
1878 struct buffer_head *next = bh->b_this_page;
1879 if (buffer_async_write(bh)) {
1880 clear_buffer_dirty(bh);
1881 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1882 inode->i_write_hint, wbc);
1886 } while (bh != head);
1890 EXPORT_SYMBOL(__block_write_full_page);
1893 * If a page has any new buffers, zero them out here, and mark them uptodate
1894 * and dirty so they'll be written out (in order to prevent uninitialised
1895 * block data from leaking). And clear the new bit.
1897 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1899 unsigned int block_start, block_end;
1900 struct buffer_head *head, *bh;
1902 BUG_ON(!PageLocked(page));
1903 if (!page_has_buffers(page))
1906 bh = head = page_buffers(page);
1909 block_end = block_start + bh->b_size;
1911 if (buffer_new(bh)) {
1912 if (block_end > from && block_start < to) {
1913 if (!PageUptodate(page)) {
1914 unsigned start, size;
1916 start = max(from, block_start);
1917 size = min(to, block_end) - start;
1919 zero_user(page, start, size);
1920 set_buffer_uptodate(bh);
1923 clear_buffer_new(bh);
1924 mark_buffer_dirty(bh);
1928 block_start = block_end;
1929 bh = bh->b_this_page;
1930 } while (bh != head);
1932 EXPORT_SYMBOL(page_zero_new_buffers);
1935 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1936 struct iomap *iomap)
1938 loff_t offset = block << inode->i_blkbits;
1940 bh->b_bdev = iomap->bdev;
1943 * Block points to offset in file we need to map, iomap contains
1944 * the offset at which the map starts. If the map ends before the
1945 * current block, then do not map the buffer and let the caller
1948 BUG_ON(offset >= iomap->offset + iomap->length);
1950 switch (iomap->type) {
1953 * If the buffer is not up to date or beyond the current EOF,
1954 * we need to mark it as new to ensure sub-block zeroing is
1955 * executed if necessary.
1957 if (!buffer_uptodate(bh) ||
1958 (offset >= i_size_read(inode)))
1961 case IOMAP_DELALLOC:
1962 if (!buffer_uptodate(bh) ||
1963 (offset >= i_size_read(inode)))
1965 set_buffer_uptodate(bh);
1966 set_buffer_mapped(bh);
1967 set_buffer_delay(bh);
1969 case IOMAP_UNWRITTEN:
1971 * For unwritten regions, we always need to ensure that
1972 * sub-block writes cause the regions in the block we are not
1973 * writing to are zeroed. Set the buffer as new to ensure this.
1976 set_buffer_unwritten(bh);
1979 if (offset >= i_size_read(inode))
1981 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1982 ((offset - iomap->offset) >> inode->i_blkbits);
1983 set_buffer_mapped(bh);
1988 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1989 get_block_t *get_block, struct iomap *iomap)
1991 unsigned from = pos & (PAGE_SIZE - 1);
1992 unsigned to = from + len;
1993 struct inode *inode = page->mapping->host;
1994 unsigned block_start, block_end;
1997 unsigned blocksize, bbits;
1998 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2000 BUG_ON(!PageLocked(page));
2001 BUG_ON(from > PAGE_SIZE);
2002 BUG_ON(to > PAGE_SIZE);
2005 head = create_page_buffers(page, inode, 0);
2006 blocksize = head->b_size;
2007 bbits = block_size_bits(blocksize);
2009 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2011 for(bh = head, block_start = 0; bh != head || !block_start;
2012 block++, block_start=block_end, bh = bh->b_this_page) {
2013 block_end = block_start + blocksize;
2014 if (block_end <= from || block_start >= to) {
2015 if (PageUptodate(page)) {
2016 if (!buffer_uptodate(bh))
2017 set_buffer_uptodate(bh);
2022 clear_buffer_new(bh);
2023 if (!buffer_mapped(bh)) {
2024 WARN_ON(bh->b_size != blocksize);
2026 err = get_block(inode, block, bh, 1);
2030 iomap_to_bh(inode, block, bh, iomap);
2033 if (buffer_new(bh)) {
2034 clean_bdev_bh_alias(bh);
2035 if (PageUptodate(page)) {
2036 clear_buffer_new(bh);
2037 set_buffer_uptodate(bh);
2038 mark_buffer_dirty(bh);
2041 if (block_end > to || block_start < from)
2042 zero_user_segments(page,
2048 if (PageUptodate(page)) {
2049 if (!buffer_uptodate(bh))
2050 set_buffer_uptodate(bh);
2053 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2054 !buffer_unwritten(bh) &&
2055 (block_start < from || block_end > to)) {
2056 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2061 * If we issued read requests - let them complete.
2063 while(wait_bh > wait) {
2064 wait_on_buffer(*--wait_bh);
2065 if (!buffer_uptodate(*wait_bh))
2069 page_zero_new_buffers(page, from, to);
2073 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2074 get_block_t *get_block)
2076 return __block_write_begin_int(page, pos, len, get_block, NULL);
2078 EXPORT_SYMBOL(__block_write_begin);
2080 static int __block_commit_write(struct inode *inode, struct page *page,
2081 unsigned from, unsigned to)
2083 unsigned block_start, block_end;
2086 struct buffer_head *bh, *head;
2088 bh = head = page_buffers(page);
2089 blocksize = bh->b_size;
2093 block_end = block_start + blocksize;
2094 if (block_end <= from || block_start >= to) {
2095 if (!buffer_uptodate(bh))
2098 set_buffer_uptodate(bh);
2099 mark_buffer_dirty(bh);
2101 clear_buffer_new(bh);
2103 block_start = block_end;
2104 bh = bh->b_this_page;
2105 } while (bh != head);
2108 * If this is a partial write which happened to make all buffers
2109 * uptodate then we can optimize away a bogus readpage() for
2110 * the next read(). Here we 'discover' whether the page went
2111 * uptodate as a result of this (potentially partial) write.
2114 SetPageUptodate(page);
2119 * block_write_begin takes care of the basic task of block allocation and
2120 * bringing partial write blocks uptodate first.
2122 * The filesystem needs to handle block truncation upon failure.
2124 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2125 unsigned flags, struct page **pagep, get_block_t *get_block)
2127 pgoff_t index = pos >> PAGE_SHIFT;
2131 page = grab_cache_page_write_begin(mapping, index, flags);
2135 status = __block_write_begin(page, pos, len, get_block);
2136 if (unlikely(status)) {
2145 EXPORT_SYMBOL(block_write_begin);
2147 int block_write_end(struct file *file, struct address_space *mapping,
2148 loff_t pos, unsigned len, unsigned copied,
2149 struct page *page, void *fsdata)
2151 struct inode *inode = mapping->host;
2154 start = pos & (PAGE_SIZE - 1);
2156 if (unlikely(copied < len)) {
2158 * The buffers that were written will now be uptodate, so we
2159 * don't have to worry about a readpage reading them and
2160 * overwriting a partial write. However if we have encountered
2161 * a short write and only partially written into a buffer, it
2162 * will not be marked uptodate, so a readpage might come in and
2163 * destroy our partial write.
2165 * Do the simplest thing, and just treat any short write to a
2166 * non uptodate page as a zero-length write, and force the
2167 * caller to redo the whole thing.
2169 if (!PageUptodate(page))
2172 page_zero_new_buffers(page, start+copied, start+len);
2174 flush_dcache_page(page);
2176 /* This could be a short (even 0-length) commit */
2177 __block_commit_write(inode, page, start, start+copied);
2181 EXPORT_SYMBOL(block_write_end);
2183 int generic_write_end(struct file *file, struct address_space *mapping,
2184 loff_t pos, unsigned len, unsigned copied,
2185 struct page *page, void *fsdata)
2187 struct inode *inode = mapping->host;
2188 loff_t old_size = inode->i_size;
2189 int i_size_changed = 0;
2191 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2194 * No need to use i_size_read() here, the i_size
2195 * cannot change under us because we hold i_mutex.
2197 * But it's important to update i_size while still holding page lock:
2198 * page writeout could otherwise come in and zero beyond i_size.
2200 if (pos+copied > inode->i_size) {
2201 i_size_write(inode, pos+copied);
2209 pagecache_isize_extended(inode, old_size, pos);
2211 * Don't mark the inode dirty under page lock. First, it unnecessarily
2212 * makes the holding time of page lock longer. Second, it forces lock
2213 * ordering of page lock and transaction start for journaling
2217 mark_inode_dirty(inode);
2221 EXPORT_SYMBOL(generic_write_end);
2224 * block_is_partially_uptodate checks whether buffers within a page are
2227 * Returns true if all buffers which correspond to a file portion
2228 * we want to read are uptodate.
2230 int block_is_partially_uptodate(struct page *page, unsigned long from,
2231 unsigned long count)
2233 unsigned block_start, block_end, blocksize;
2235 struct buffer_head *bh, *head;
2238 if (!page_has_buffers(page))
2241 head = page_buffers(page);
2242 blocksize = head->b_size;
2243 to = min_t(unsigned, PAGE_SIZE - from, count);
2245 if (from < blocksize && to > PAGE_SIZE - blocksize)
2251 block_end = block_start + blocksize;
2252 if (block_end > from && block_start < to) {
2253 if (!buffer_uptodate(bh)) {
2257 if (block_end >= to)
2260 block_start = block_end;
2261 bh = bh->b_this_page;
2262 } while (bh != head);
2266 EXPORT_SYMBOL(block_is_partially_uptodate);
2269 * Generic "read page" function for block devices that have the normal
2270 * get_block functionality. This is most of the block device filesystems.
2271 * Reads the page asynchronously --- the unlock_buffer() and
2272 * set/clear_buffer_uptodate() functions propagate buffer state into the
2273 * page struct once IO has completed.
2275 int block_read_full_page(struct page *page, get_block_t *get_block)
2277 struct inode *inode = page->mapping->host;
2278 sector_t iblock, lblock;
2279 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2280 unsigned int blocksize, bbits;
2282 int fully_mapped = 1;
2284 head = create_page_buffers(page, inode, 0);
2285 blocksize = head->b_size;
2286 bbits = block_size_bits(blocksize);
2288 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2289 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2295 if (buffer_uptodate(bh))
2298 if (!buffer_mapped(bh)) {
2302 if (iblock < lblock) {
2303 WARN_ON(bh->b_size != blocksize);
2304 err = get_block(inode, iblock, bh, 0);
2308 if (!buffer_mapped(bh)) {
2309 zero_user(page, i * blocksize, blocksize);
2311 set_buffer_uptodate(bh);
2315 * get_block() might have updated the buffer
2318 if (buffer_uptodate(bh))
2322 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2325 SetPageMappedToDisk(page);
2329 * All buffers are uptodate - we can set the page uptodate
2330 * as well. But not if get_block() returned an error.
2332 if (!PageError(page))
2333 SetPageUptodate(page);
2338 /* Stage two: lock the buffers */
2339 for (i = 0; i < nr; i++) {
2342 mark_buffer_async_read(bh);
2346 * Stage 3: start the IO. Check for uptodateness
2347 * inside the buffer lock in case another process reading
2348 * the underlying blockdev brought it uptodate (the sct fix).
2350 for (i = 0; i < nr; i++) {
2352 if (buffer_uptodate(bh))
2353 end_buffer_async_read(bh, 1);
2355 submit_bh(REQ_OP_READ, 0, bh);
2359 EXPORT_SYMBOL(block_read_full_page);
2361 /* utility function for filesystems that need to do work on expanding
2362 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2363 * deal with the hole.
2365 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2367 struct address_space *mapping = inode->i_mapping;
2372 err = inode_newsize_ok(inode, size);
2376 err = pagecache_write_begin(NULL, mapping, size, 0,
2377 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2381 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2387 EXPORT_SYMBOL(generic_cont_expand_simple);
2389 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2390 loff_t pos, loff_t *bytes)
2392 struct inode *inode = mapping->host;
2393 unsigned int blocksize = i_blocksize(inode);
2396 pgoff_t index, curidx;
2398 unsigned zerofrom, offset, len;
2401 index = pos >> PAGE_SHIFT;
2402 offset = pos & ~PAGE_MASK;
2404 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2405 zerofrom = curpos & ~PAGE_MASK;
2406 if (zerofrom & (blocksize-1)) {
2407 *bytes |= (blocksize-1);
2410 len = PAGE_SIZE - zerofrom;
2412 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2416 zero_user(page, zerofrom, len);
2417 err = pagecache_write_end(file, mapping, curpos, len, len,
2424 balance_dirty_pages_ratelimited(mapping);
2426 if (unlikely(fatal_signal_pending(current))) {
2432 /* page covers the boundary, find the boundary offset */
2433 if (index == curidx) {
2434 zerofrom = curpos & ~PAGE_MASK;
2435 /* if we will expand the thing last block will be filled */
2436 if (offset <= zerofrom) {
2439 if (zerofrom & (blocksize-1)) {
2440 *bytes |= (blocksize-1);
2443 len = offset - zerofrom;
2445 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2449 zero_user(page, zerofrom, len);
2450 err = pagecache_write_end(file, mapping, curpos, len, len,
2462 * For moronic filesystems that do not allow holes in file.
2463 * We may have to extend the file.
2465 int cont_write_begin(struct file *file, struct address_space *mapping,
2466 loff_t pos, unsigned len, unsigned flags,
2467 struct page **pagep, void **fsdata,
2468 get_block_t *get_block, loff_t *bytes)
2470 struct inode *inode = mapping->host;
2471 unsigned int blocksize = i_blocksize(inode);
2472 unsigned int zerofrom;
2475 err = cont_expand_zero(file, mapping, pos, bytes);
2479 zerofrom = *bytes & ~PAGE_MASK;
2480 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2481 *bytes |= (blocksize-1);
2485 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2487 EXPORT_SYMBOL(cont_write_begin);
2489 int block_commit_write(struct page *page, unsigned from, unsigned to)
2491 struct inode *inode = page->mapping->host;
2492 __block_commit_write(inode,page,from,to);
2495 EXPORT_SYMBOL(block_commit_write);
2498 * block_page_mkwrite() is not allowed to change the file size as it gets
2499 * called from a page fault handler when a page is first dirtied. Hence we must
2500 * be careful to check for EOF conditions here. We set the page up correctly
2501 * for a written page which means we get ENOSPC checking when writing into
2502 * holes and correct delalloc and unwritten extent mapping on filesystems that
2503 * support these features.
2505 * We are not allowed to take the i_mutex here so we have to play games to
2506 * protect against truncate races as the page could now be beyond EOF. Because
2507 * truncate writes the inode size before removing pages, once we have the
2508 * page lock we can determine safely if the page is beyond EOF. If it is not
2509 * beyond EOF, then the page is guaranteed safe against truncation until we
2512 * Direct callers of this function should protect against filesystem freezing
2513 * using sb_start_pagefault() - sb_end_pagefault() functions.
2515 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2516 get_block_t get_block)
2518 struct page *page = vmf->page;
2519 struct inode *inode = file_inode(vma->vm_file);
2525 size = i_size_read(inode);
2526 if ((page->mapping != inode->i_mapping) ||
2527 (page_offset(page) > size)) {
2528 /* We overload EFAULT to mean page got truncated */
2533 /* page is wholly or partially inside EOF */
2534 if (((page->index + 1) << PAGE_SHIFT) > size)
2535 end = size & ~PAGE_MASK;
2539 ret = __block_write_begin(page, 0, end, get_block);
2541 ret = block_commit_write(page, 0, end);
2543 if (unlikely(ret < 0))
2545 set_page_dirty(page);
2546 wait_for_stable_page(page);
2552 EXPORT_SYMBOL(block_page_mkwrite);
2555 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2556 * immediately, while under the page lock. So it needs a special end_io
2557 * handler which does not touch the bh after unlocking it.
2559 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2561 __end_buffer_read_notouch(bh, uptodate);
2565 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2566 * the page (converting it to circular linked list and taking care of page
2569 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2571 struct buffer_head *bh;
2573 BUG_ON(!PageLocked(page));
2575 spin_lock(&page->mapping->private_lock);
2578 if (PageDirty(page))
2579 set_buffer_dirty(bh);
2580 if (!bh->b_this_page)
2581 bh->b_this_page = head;
2582 bh = bh->b_this_page;
2583 } while (bh != head);
2584 attach_page_buffers(page, head);
2585 spin_unlock(&page->mapping->private_lock);
2589 * On entry, the page is fully not uptodate.
2590 * On exit the page is fully uptodate in the areas outside (from,to)
2591 * The filesystem needs to handle block truncation upon failure.
2593 int nobh_write_begin(struct address_space *mapping,
2594 loff_t pos, unsigned len, unsigned flags,
2595 struct page **pagep, void **fsdata,
2596 get_block_t *get_block)
2598 struct inode *inode = mapping->host;
2599 const unsigned blkbits = inode->i_blkbits;
2600 const unsigned blocksize = 1 << blkbits;
2601 struct buffer_head *head, *bh;
2605 unsigned block_in_page;
2606 unsigned block_start, block_end;
2607 sector_t block_in_file;
2610 int is_mapped_to_disk = 1;
2612 index = pos >> PAGE_SHIFT;
2613 from = pos & (PAGE_SIZE - 1);
2616 page = grab_cache_page_write_begin(mapping, index, flags);
2622 if (page_has_buffers(page)) {
2623 ret = __block_write_begin(page, pos, len, get_block);
2629 if (PageMappedToDisk(page))
2633 * Allocate buffers so that we can keep track of state, and potentially
2634 * attach them to the page if an error occurs. In the common case of
2635 * no error, they will just be freed again without ever being attached
2636 * to the page (which is all OK, because we're under the page lock).
2638 * Be careful: the buffer linked list is a NULL terminated one, rather
2639 * than the circular one we're used to.
2641 head = alloc_page_buffers(page, blocksize, 0);
2647 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2650 * We loop across all blocks in the page, whether or not they are
2651 * part of the affected region. This is so we can discover if the
2652 * page is fully mapped-to-disk.
2654 for (block_start = 0, block_in_page = 0, bh = head;
2655 block_start < PAGE_SIZE;
2656 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2659 block_end = block_start + blocksize;
2662 if (block_start >= to)
2664 ret = get_block(inode, block_in_file + block_in_page,
2668 if (!buffer_mapped(bh))
2669 is_mapped_to_disk = 0;
2671 clean_bdev_bh_alias(bh);
2672 if (PageUptodate(page)) {
2673 set_buffer_uptodate(bh);
2676 if (buffer_new(bh) || !buffer_mapped(bh)) {
2677 zero_user_segments(page, block_start, from,
2681 if (buffer_uptodate(bh))
2682 continue; /* reiserfs does this */
2683 if (block_start < from || block_end > to) {
2685 bh->b_end_io = end_buffer_read_nobh;
2686 submit_bh(REQ_OP_READ, 0, bh);
2693 * The page is locked, so these buffers are protected from
2694 * any VM or truncate activity. Hence we don't need to care
2695 * for the buffer_head refcounts.
2697 for (bh = head; bh; bh = bh->b_this_page) {
2699 if (!buffer_uptodate(bh))
2706 if (is_mapped_to_disk)
2707 SetPageMappedToDisk(page);
2709 *fsdata = head; /* to be released by nobh_write_end */
2716 * Error recovery is a bit difficult. We need to zero out blocks that
2717 * were newly allocated, and dirty them to ensure they get written out.
2718 * Buffers need to be attached to the page at this point, otherwise
2719 * the handling of potential IO errors during writeout would be hard
2720 * (could try doing synchronous writeout, but what if that fails too?)
2722 attach_nobh_buffers(page, head);
2723 page_zero_new_buffers(page, from, to);
2732 EXPORT_SYMBOL(nobh_write_begin);
2734 int nobh_write_end(struct file *file, struct address_space *mapping,
2735 loff_t pos, unsigned len, unsigned copied,
2736 struct page *page, void *fsdata)
2738 struct inode *inode = page->mapping->host;
2739 struct buffer_head *head = fsdata;
2740 struct buffer_head *bh;
2741 BUG_ON(fsdata != NULL && page_has_buffers(page));
2743 if (unlikely(copied < len) && head)
2744 attach_nobh_buffers(page, head);
2745 if (page_has_buffers(page))
2746 return generic_write_end(file, mapping, pos, len,
2747 copied, page, fsdata);
2749 SetPageUptodate(page);
2750 set_page_dirty(page);
2751 if (pos+copied > inode->i_size) {
2752 i_size_write(inode, pos+copied);
2753 mark_inode_dirty(inode);
2761 head = head->b_this_page;
2762 free_buffer_head(bh);
2767 EXPORT_SYMBOL(nobh_write_end);
2770 * nobh_writepage() - based on block_full_write_page() except
2771 * that it tries to operate without attaching bufferheads to
2774 int nobh_writepage(struct page *page, get_block_t *get_block,
2775 struct writeback_control *wbc)
2777 struct inode * const inode = page->mapping->host;
2778 loff_t i_size = i_size_read(inode);
2779 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2783 /* Is the page fully inside i_size? */
2784 if (page->index < end_index)
2787 /* Is the page fully outside i_size? (truncate in progress) */
2788 offset = i_size & (PAGE_SIZE-1);
2789 if (page->index >= end_index+1 || !offset) {
2791 * The page may have dirty, unmapped buffers. For example,
2792 * they may have been added in ext3_writepage(). Make them
2793 * freeable here, so the page does not leak.
2796 /* Not really sure about this - do we need this ? */
2797 if (page->mapping->a_ops->invalidatepage)
2798 page->mapping->a_ops->invalidatepage(page, offset);
2801 return 0; /* don't care */
2805 * The page straddles i_size. It must be zeroed out on each and every
2806 * writepage invocation because it may be mmapped. "A file is mapped
2807 * in multiples of the page size. For a file that is not a multiple of
2808 * the page size, the remaining memory is zeroed when mapped, and
2809 * writes to that region are not written out to the file."
2811 zero_user_segment(page, offset, PAGE_SIZE);
2813 ret = mpage_writepage(page, get_block, wbc);
2815 ret = __block_write_full_page(inode, page, get_block, wbc,
2816 end_buffer_async_write);
2819 EXPORT_SYMBOL(nobh_writepage);
2821 int nobh_truncate_page(struct address_space *mapping,
2822 loff_t from, get_block_t *get_block)
2824 pgoff_t index = from >> PAGE_SHIFT;
2825 unsigned offset = from & (PAGE_SIZE-1);
2828 unsigned length, pos;
2829 struct inode *inode = mapping->host;
2831 struct buffer_head map_bh;
2834 blocksize = i_blocksize(inode);
2835 length = offset & (blocksize - 1);
2837 /* Block boundary? Nothing to do */
2841 length = blocksize - length;
2842 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2844 page = grab_cache_page(mapping, index);
2849 if (page_has_buffers(page)) {
2853 return block_truncate_page(mapping, from, get_block);
2856 /* Find the buffer that contains "offset" */
2858 while (offset >= pos) {
2863 map_bh.b_size = blocksize;
2865 err = get_block(inode, iblock, &map_bh, 0);
2868 /* unmapped? It's a hole - nothing to do */
2869 if (!buffer_mapped(&map_bh))
2872 /* Ok, it's mapped. Make sure it's up-to-date */
2873 if (!PageUptodate(page)) {
2874 err = mapping->a_ops->readpage(NULL, page);
2880 if (!PageUptodate(page)) {
2884 if (page_has_buffers(page))
2887 zero_user(page, offset, length);
2888 set_page_dirty(page);
2897 EXPORT_SYMBOL(nobh_truncate_page);
2899 int block_truncate_page(struct address_space *mapping,
2900 loff_t from, get_block_t *get_block)
2902 pgoff_t index = from >> PAGE_SHIFT;
2903 unsigned offset = from & (PAGE_SIZE-1);
2906 unsigned length, pos;
2907 struct inode *inode = mapping->host;
2909 struct buffer_head *bh;
2912 blocksize = i_blocksize(inode);
2913 length = offset & (blocksize - 1);
2915 /* Block boundary? Nothing to do */
2919 length = blocksize - length;
2920 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2922 page = grab_cache_page(mapping, index);
2927 if (!page_has_buffers(page))
2928 create_empty_buffers(page, blocksize, 0);
2930 /* Find the buffer that contains "offset" */
2931 bh = page_buffers(page);
2933 while (offset >= pos) {
2934 bh = bh->b_this_page;
2940 if (!buffer_mapped(bh)) {
2941 WARN_ON(bh->b_size != blocksize);
2942 err = get_block(inode, iblock, bh, 0);
2945 /* unmapped? It's a hole - nothing to do */
2946 if (!buffer_mapped(bh))
2950 /* Ok, it's mapped. Make sure it's up-to-date */
2951 if (PageUptodate(page))
2952 set_buffer_uptodate(bh);
2954 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2956 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2958 /* Uhhuh. Read error. Complain and punt. */
2959 if (!buffer_uptodate(bh))
2963 zero_user(page, offset, length);
2964 mark_buffer_dirty(bh);
2973 EXPORT_SYMBOL(block_truncate_page);
2976 * The generic ->writepage function for buffer-backed address_spaces
2978 int block_write_full_page(struct page *page, get_block_t *get_block,
2979 struct writeback_control *wbc)
2981 struct inode * const inode = page->mapping->host;
2982 loff_t i_size = i_size_read(inode);
2983 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2986 /* Is the page fully inside i_size? */
2987 if (page->index < end_index)
2988 return __block_write_full_page(inode, page, get_block, wbc,
2989 end_buffer_async_write);
2991 /* Is the page fully outside i_size? (truncate in progress) */
2992 offset = i_size & (PAGE_SIZE-1);
2993 if (page->index >= end_index+1 || !offset) {
2995 * The page may have dirty, unmapped buffers. For example,
2996 * they may have been added in ext3_writepage(). Make them
2997 * freeable here, so the page does not leak.
2999 do_invalidatepage(page, 0, PAGE_SIZE);
3001 return 0; /* don't care */
3005 * The page straddles i_size. It must be zeroed out on each and every
3006 * writepage invocation because it may be mmapped. "A file is mapped
3007 * in multiples of the page size. For a file that is not a multiple of
3008 * the page size, the remaining memory is zeroed when mapped, and
3009 * writes to that region are not written out to the file."
3011 zero_user_segment(page, offset, PAGE_SIZE);
3012 return __block_write_full_page(inode, page, get_block, wbc,
3013 end_buffer_async_write);
3015 EXPORT_SYMBOL(block_write_full_page);
3017 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3018 get_block_t *get_block)
3020 struct inode *inode = mapping->host;
3021 struct buffer_head tmp = {
3022 .b_size = i_blocksize(inode),
3025 get_block(inode, block, &tmp, 0);
3026 return tmp.b_blocknr;
3028 EXPORT_SYMBOL(generic_block_bmap);
3030 static void end_bio_bh_io_sync(struct bio *bio)
3032 struct buffer_head *bh = bio->bi_private;
3034 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3035 set_bit(BH_Quiet, &bh->b_state);
3037 bh->b_end_io(bh, !bio->bi_status);
3042 * This allows us to do IO even on the odd last sectors
3043 * of a device, even if the block size is some multiple
3044 * of the physical sector size.
3046 * We'll just truncate the bio to the size of the device,
3047 * and clear the end of the buffer head manually.
3049 * Truly out-of-range accesses will turn into actual IO
3050 * errors, this only handles the "we need to be able to
3051 * do IO at the final sector" case.
3053 void guard_bio_eod(int op, struct bio *bio)
3056 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3057 unsigned truncated_bytes;
3059 maxsector = get_capacity(bio->bi_disk);
3064 * If the *whole* IO is past the end of the device,
3065 * let it through, and the IO layer will turn it into
3068 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3071 maxsector -= bio->bi_iter.bi_sector;
3072 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3075 /* Uhhuh. We've got a bio that straddles the device size! */
3076 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3078 /* Truncate the bio.. */
3079 bio->bi_iter.bi_size -= truncated_bytes;
3080 bvec->bv_len -= truncated_bytes;
3082 /* ..and clear the end of the buffer for reads */
3083 if (op == REQ_OP_READ) {
3084 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3089 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3090 enum rw_hint write_hint, struct writeback_control *wbc)
3094 BUG_ON(!buffer_locked(bh));
3095 BUG_ON(!buffer_mapped(bh));
3096 BUG_ON(!bh->b_end_io);
3097 BUG_ON(buffer_delay(bh));
3098 BUG_ON(buffer_unwritten(bh));
3101 * Only clear out a write error when rewriting
3103 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3104 clear_buffer_write_io_error(bh);
3107 * from here on down, it's all bio -- do the initial mapping,
3108 * submit_bio -> generic_make_request may further map this bio around
3110 bio = bio_alloc(GFP_NOIO, 1);
3113 wbc_init_bio(wbc, bio);
3114 wbc_account_io(wbc, bh->b_page, bh->b_size);
3117 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3118 bio_set_dev(bio, bh->b_bdev);
3119 bio->bi_write_hint = write_hint;
3121 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3122 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3124 bio->bi_end_io = end_bio_bh_io_sync;
3125 bio->bi_private = bh;
3127 /* Take care of bh's that straddle the end of the device */
3128 guard_bio_eod(op, bio);
3130 if (buffer_meta(bh))
3131 op_flags |= REQ_META;
3132 if (buffer_prio(bh))
3133 op_flags |= REQ_PRIO;
3134 bio_set_op_attrs(bio, op, op_flags);
3140 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3142 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3144 EXPORT_SYMBOL(submit_bh);
3147 * ll_rw_block: low-level access to block devices (DEPRECATED)
3148 * @op: whether to %READ or %WRITE
3149 * @op_flags: req_flag_bits
3150 * @nr: number of &struct buffer_heads in the array
3151 * @bhs: array of pointers to &struct buffer_head
3153 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3154 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3155 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3158 * This function drops any buffer that it cannot get a lock on (with the
3159 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3160 * request, and any buffer that appears to be up-to-date when doing read
3161 * request. Further it marks as clean buffers that are processed for
3162 * writing (the buffer cache won't assume that they are actually clean
3163 * until the buffer gets unlocked).
3165 * ll_rw_block sets b_end_io to simple completion handler that marks
3166 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3169 * All of the buffers must be for the same device, and must also be a
3170 * multiple of the current approved size for the device.
3172 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3176 for (i = 0; i < nr; i++) {
3177 struct buffer_head *bh = bhs[i];
3179 if (!trylock_buffer(bh))
3182 if (test_clear_buffer_dirty(bh)) {
3183 bh->b_end_io = end_buffer_write_sync;
3185 submit_bh(op, op_flags, bh);
3189 if (!buffer_uptodate(bh)) {
3190 bh->b_end_io = end_buffer_read_sync;
3192 submit_bh(op, op_flags, bh);
3199 EXPORT_SYMBOL(ll_rw_block);
3201 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3204 if (!test_clear_buffer_dirty(bh)) {
3208 bh->b_end_io = end_buffer_write_sync;
3210 submit_bh(REQ_OP_WRITE, op_flags, bh);
3212 EXPORT_SYMBOL(write_dirty_buffer);
3215 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3216 * and then start new I/O and then wait upon it. The caller must have a ref on
3219 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3223 WARN_ON(atomic_read(&bh->b_count) < 1);
3225 if (test_clear_buffer_dirty(bh)) {
3227 bh->b_end_io = end_buffer_write_sync;
3228 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3230 if (!ret && !buffer_uptodate(bh))
3237 EXPORT_SYMBOL(__sync_dirty_buffer);
3239 int sync_dirty_buffer(struct buffer_head *bh)
3241 return __sync_dirty_buffer(bh, REQ_SYNC);
3243 EXPORT_SYMBOL(sync_dirty_buffer);
3246 * try_to_free_buffers() checks if all the buffers on this particular page
3247 * are unused, and releases them if so.
3249 * Exclusion against try_to_free_buffers may be obtained by either
3250 * locking the page or by holding its mapping's private_lock.
3252 * If the page is dirty but all the buffers are clean then we need to
3253 * be sure to mark the page clean as well. This is because the page
3254 * may be against a block device, and a later reattachment of buffers
3255 * to a dirty page will set *all* buffers dirty. Which would corrupt
3256 * filesystem data on the same device.
3258 * The same applies to regular filesystem pages: if all the buffers are
3259 * clean then we set the page clean and proceed. To do that, we require
3260 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3263 * try_to_free_buffers() is non-blocking.
3265 static inline int buffer_busy(struct buffer_head *bh)
3267 return atomic_read(&bh->b_count) |
3268 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3272 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3274 struct buffer_head *head = page_buffers(page);
3275 struct buffer_head *bh;
3279 if (buffer_busy(bh))
3281 bh = bh->b_this_page;
3282 } while (bh != head);
3285 struct buffer_head *next = bh->b_this_page;
3287 if (bh->b_assoc_map)
3288 __remove_assoc_queue(bh);
3290 } while (bh != head);
3291 *buffers_to_free = head;
3292 __clear_page_buffers(page);
3298 int try_to_free_buffers(struct page *page)
3300 struct address_space * const mapping = page->mapping;
3301 struct buffer_head *buffers_to_free = NULL;
3304 BUG_ON(!PageLocked(page));
3305 if (PageWriteback(page))
3308 if (mapping == NULL) { /* can this still happen? */
3309 ret = drop_buffers(page, &buffers_to_free);
3313 spin_lock(&mapping->private_lock);
3314 ret = drop_buffers(page, &buffers_to_free);
3317 * If the filesystem writes its buffers by hand (eg ext3)
3318 * then we can have clean buffers against a dirty page. We
3319 * clean the page here; otherwise the VM will never notice
3320 * that the filesystem did any IO at all.
3322 * Also, during truncate, discard_buffer will have marked all
3323 * the page's buffers clean. We discover that here and clean
3326 * private_lock must be held over this entire operation in order
3327 * to synchronise against __set_page_dirty_buffers and prevent the
3328 * dirty bit from being lost.
3331 cancel_dirty_page(page);
3332 spin_unlock(&mapping->private_lock);
3334 if (buffers_to_free) {
3335 struct buffer_head *bh = buffers_to_free;
3338 struct buffer_head *next = bh->b_this_page;
3339 free_buffer_head(bh);
3341 } while (bh != buffers_to_free);
3345 EXPORT_SYMBOL(try_to_free_buffers);
3348 * There are no bdflush tunables left. But distributions are
3349 * still running obsolete flush daemons, so we terminate them here.
3351 * Use of bdflush() is deprecated and will be removed in a future kernel.
3352 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3354 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3356 static int msg_count;
3358 if (!capable(CAP_SYS_ADMIN))
3361 if (msg_count < 5) {
3364 "warning: process `%s' used the obsolete bdflush"
3365 " system call\n", current->comm);
3366 printk(KERN_INFO "Fix your initscripts?\n");
3375 * Buffer-head allocation
3377 static struct kmem_cache *bh_cachep __read_mostly;
3380 * Once the number of bh's in the machine exceeds this level, we start
3381 * stripping them in writeback.
3383 static unsigned long max_buffer_heads;
3385 int buffer_heads_over_limit;
3387 struct bh_accounting {
3388 int nr; /* Number of live bh's */
3389 int ratelimit; /* Limit cacheline bouncing */
3392 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3394 static void recalc_bh_state(void)
3399 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3401 __this_cpu_write(bh_accounting.ratelimit, 0);
3402 for_each_online_cpu(i)
3403 tot += per_cpu(bh_accounting, i).nr;
3404 buffer_heads_over_limit = (tot > max_buffer_heads);
3407 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3409 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3411 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3413 __this_cpu_inc(bh_accounting.nr);
3419 EXPORT_SYMBOL(alloc_buffer_head);
3421 void free_buffer_head(struct buffer_head *bh)
3423 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3424 kmem_cache_free(bh_cachep, bh);
3426 __this_cpu_dec(bh_accounting.nr);
3430 EXPORT_SYMBOL(free_buffer_head);
3432 static int buffer_exit_cpu_dead(unsigned int cpu)
3435 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3437 for (i = 0; i < BH_LRU_SIZE; i++) {
3441 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3442 per_cpu(bh_accounting, cpu).nr = 0;
3447 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3448 * @bh: struct buffer_head
3450 * Return true if the buffer is up-to-date and false,
3451 * with the buffer locked, if not.
3453 int bh_uptodate_or_lock(struct buffer_head *bh)
3455 if (!buffer_uptodate(bh)) {
3457 if (!buffer_uptodate(bh))
3463 EXPORT_SYMBOL(bh_uptodate_or_lock);
3466 * bh_submit_read - Submit a locked buffer for reading
3467 * @bh: struct buffer_head
3469 * Returns zero on success and -EIO on error.
3471 int bh_submit_read(struct buffer_head *bh)
3473 BUG_ON(!buffer_locked(bh));
3475 if (buffer_uptodate(bh)) {
3481 bh->b_end_io = end_buffer_read_sync;
3482 submit_bh(REQ_OP_READ, 0, bh);
3484 if (buffer_uptodate(bh))
3488 EXPORT_SYMBOL(bh_submit_read);
3491 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3493 * Returns the offset within the file on success, and -ENOENT otherwise.
3496 page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3498 loff_t offset = page_offset(page);
3499 struct buffer_head *bh, *head;
3500 bool seek_data = whence == SEEK_DATA;
3502 if (lastoff < offset)
3505 bh = head = page_buffers(page);
3507 offset += bh->b_size;
3508 if (lastoff >= offset)
3512 * Unwritten extents that have data in the page cache covering
3513 * them can be identified by the BH_Unwritten state flag.
3514 * Pages with multiple buffers might have a mix of holes, data
3515 * and unwritten extents - any buffer with valid data in it
3516 * should have BH_Uptodate flag set on it.
3519 if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3523 } while ((bh = bh->b_this_page) != head);
3528 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3530 * Within unwritten extents, the page cache determines which parts are holes
3531 * and which are data: unwritten and uptodate buffer heads count as data;
3532 * everything else counts as a hole.
3534 * Returns the resulting offset on successs, and -ENOENT otherwise.
3537 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3540 pgoff_t index = offset >> PAGE_SHIFT;
3541 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3542 loff_t lastoff = offset;
3543 struct pagevec pvec;
3548 pagevec_init(&pvec, 0);
3551 unsigned nr_pages, i;
3553 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
3558 for (i = 0; i < nr_pages; i++) {
3559 struct page *page = pvec.pages[i];
3562 * At this point, the page may be truncated or
3563 * invalidated (changing page->mapping to NULL), or
3564 * even swizzled back from swapper_space to tmpfs file
3565 * mapping. However, page->index will not change
3566 * because we have a reference on the page.
3568 * If current page offset is beyond where we've ended,
3569 * we've found a hole.
3571 if (whence == SEEK_HOLE &&
3572 lastoff < page_offset(page))
3576 if (likely(page->mapping == inode->i_mapping) &&
3577 page_has_buffers(page)) {
3578 lastoff = page_seek_hole_data(page, lastoff, whence);
3585 lastoff = page_offset(page) + PAGE_SIZE;
3587 pagevec_release(&pvec);
3588 } while (index < end);
3590 /* When no page at lastoff and we are not done, we found a hole. */
3591 if (whence != SEEK_HOLE)
3595 if (lastoff < offset + length)
3600 pagevec_release(&pvec);
3604 void __init buffer_init(void)
3606 unsigned long nrpages;
3609 bh_cachep = kmem_cache_create("buffer_head",
3610 sizeof(struct buffer_head), 0,
3611 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3616 * Limit the bh occupancy to 10% of ZONE_NORMAL
3618 nrpages = (nr_free_buffer_pages() * 10) / 100;
3619 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3620 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3621 NULL, buffer_exit_cpu_dead);