wifi: cfg80211: use system_unbound_wq for wiphy work
[platform/kernel/linux-starfive.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
53
54 #include "internal.h"
55
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58                           struct writeback_control *wbc);
59
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61
62 inline void touch_buffer(struct buffer_head *bh)
63 {
64         trace_block_touch_buffer(bh);
65         folio_mark_accessed(bh->b_folio);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68
69 void __lock_buffer(struct buffer_head *bh)
70 {
71         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74
75 void unlock_buffer(struct buffer_head *bh)
76 {
77         clear_bit_unlock(BH_Lock, &bh->b_state);
78         smp_mb__after_atomic();
79         wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82
83 /*
84  * Returns if the folio has dirty or writeback buffers. If all the buffers
85  * are unlocked and clean then the folio_test_dirty information is stale. If
86  * any of the buffers are locked, it is assumed they are locked for IO.
87  */
88 void buffer_check_dirty_writeback(struct folio *folio,
89                                      bool *dirty, bool *writeback)
90 {
91         struct buffer_head *head, *bh;
92         *dirty = false;
93         *writeback = false;
94
95         BUG_ON(!folio_test_locked(folio));
96
97         head = folio_buffers(folio);
98         if (!head)
99                 return;
100
101         if (folio_test_writeback(folio))
102                 *writeback = true;
103
104         bh = head;
105         do {
106                 if (buffer_locked(bh))
107                         *writeback = true;
108
109                 if (buffer_dirty(bh))
110                         *dirty = true;
111
112                 bh = bh->b_this_page;
113         } while (bh != head);
114 }
115
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129         if (!test_bit(BH_Quiet, &bh->b_state))
130                 printk_ratelimited(KERN_ERR
131                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
132                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145         if (uptodate) {
146                 set_buffer_uptodate(bh);
147         } else {
148                 /* This happens, due to failed read-ahead attempts. */
149                 clear_buffer_uptodate(bh);
150         }
151         unlock_buffer(bh);
152 }
153
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160         __end_buffer_read_notouch(bh, uptodate);
161         put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167         if (uptodate) {
168                 set_buffer_uptodate(bh);
169         } else {
170                 buffer_io_error(bh, ", lost sync page write");
171                 mark_buffer_write_io_error(bh);
172                 clear_buffer_uptodate(bh);
173         }
174         unlock_buffer(bh);
175         put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * private_lock.
184  *
185  * Hack idea: for the blockdev mapping, private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192         struct inode *bd_inode = bdev->bd_inode;
193         struct address_space *bd_mapping = bd_inode->i_mapping;
194         struct buffer_head *ret = NULL;
195         pgoff_t index;
196         struct buffer_head *bh;
197         struct buffer_head *head;
198         struct folio *folio;
199         int all_mapped = 1;
200         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201
202         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
203         folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204         if (IS_ERR(folio))
205                 goto out;
206
207         spin_lock(&bd_mapping->private_lock);
208         head = folio_buffers(folio);
209         if (!head)
210                 goto out_unlock;
211         bh = head;
212         do {
213                 if (!buffer_mapped(bh))
214                         all_mapped = 0;
215                 else if (bh->b_blocknr == block) {
216                         ret = bh;
217                         get_bh(bh);
218                         goto out_unlock;
219                 }
220                 bh = bh->b_this_page;
221         } while (bh != head);
222
223         /* we might be here because some of the buffers on this page are
224          * not mapped.  This is due to various races between
225          * file io on the block device and getblk.  It gets dealt with
226          * elsewhere, don't buffer_error if we had some unmapped buffers
227          */
228         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229         if (all_mapped && __ratelimit(&last_warned)) {
230                 printk("__find_get_block_slow() failed. block=%llu, "
231                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232                        "device %pg blocksize: %d\n",
233                        (unsigned long long)block,
234                        (unsigned long long)bh->b_blocknr,
235                        bh->b_state, bh->b_size, bdev,
236                        1 << bd_inode->i_blkbits);
237         }
238 out_unlock:
239         spin_unlock(&bd_mapping->private_lock);
240         folio_put(folio);
241 out:
242         return ret;
243 }
244
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247         unsigned long flags;
248         struct buffer_head *first;
249         struct buffer_head *tmp;
250         struct folio *folio;
251         int folio_uptodate = 1;
252
253         BUG_ON(!buffer_async_read(bh));
254
255         folio = bh->b_folio;
256         if (uptodate) {
257                 set_buffer_uptodate(bh);
258         } else {
259                 clear_buffer_uptodate(bh);
260                 buffer_io_error(bh, ", async page read");
261                 folio_set_error(folio);
262         }
263
264         /*
265          * Be _very_ careful from here on. Bad things can happen if
266          * two buffer heads end IO at almost the same time and both
267          * decide that the page is now completely done.
268          */
269         first = folio_buffers(folio);
270         spin_lock_irqsave(&first->b_uptodate_lock, flags);
271         clear_buffer_async_read(bh);
272         unlock_buffer(bh);
273         tmp = bh;
274         do {
275                 if (!buffer_uptodate(tmp))
276                         folio_uptodate = 0;
277                 if (buffer_async_read(tmp)) {
278                         BUG_ON(!buffer_locked(tmp));
279                         goto still_busy;
280                 }
281                 tmp = tmp->b_this_page;
282         } while (tmp != bh);
283         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284
285         /*
286          * If all of the buffers are uptodate then we can set the page
287          * uptodate.
288          */
289         if (folio_uptodate)
290                 folio_mark_uptodate(folio);
291         folio_unlock(folio);
292         return;
293
294 still_busy:
295         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
296         return;
297 }
298
299 struct postprocess_bh_ctx {
300         struct work_struct work;
301         struct buffer_head *bh;
302 };
303
304 static void verify_bh(struct work_struct *work)
305 {
306         struct postprocess_bh_ctx *ctx =
307                 container_of(work, struct postprocess_bh_ctx, work);
308         struct buffer_head *bh = ctx->bh;
309         bool valid;
310
311         valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
312         end_buffer_async_read(bh, valid);
313         kfree(ctx);
314 }
315
316 static bool need_fsverity(struct buffer_head *bh)
317 {
318         struct folio *folio = bh->b_folio;
319         struct inode *inode = folio->mapping->host;
320
321         return fsverity_active(inode) &&
322                 /* needed by ext4 */
323                 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
324 }
325
326 static void decrypt_bh(struct work_struct *work)
327 {
328         struct postprocess_bh_ctx *ctx =
329                 container_of(work, struct postprocess_bh_ctx, work);
330         struct buffer_head *bh = ctx->bh;
331         int err;
332
333         err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
334                                                bh_offset(bh));
335         if (err == 0 && need_fsverity(bh)) {
336                 /*
337                  * We use different work queues for decryption and for verity
338                  * because verity may require reading metadata pages that need
339                  * decryption, and we shouldn't recurse to the same workqueue.
340                  */
341                 INIT_WORK(&ctx->work, verify_bh);
342                 fsverity_enqueue_verify_work(&ctx->work);
343                 return;
344         }
345         end_buffer_async_read(bh, err == 0);
346         kfree(ctx);
347 }
348
349 /*
350  * I/O completion handler for block_read_full_folio() - pages
351  * which come unlocked at the end of I/O.
352  */
353 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
354 {
355         struct inode *inode = bh->b_folio->mapping->host;
356         bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
357         bool verify = need_fsverity(bh);
358
359         /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
360         if (uptodate && (decrypt || verify)) {
361                 struct postprocess_bh_ctx *ctx =
362                         kmalloc(sizeof(*ctx), GFP_ATOMIC);
363
364                 if (ctx) {
365                         ctx->bh = bh;
366                         if (decrypt) {
367                                 INIT_WORK(&ctx->work, decrypt_bh);
368                                 fscrypt_enqueue_decrypt_work(&ctx->work);
369                         } else {
370                                 INIT_WORK(&ctx->work, verify_bh);
371                                 fsverity_enqueue_verify_work(&ctx->work);
372                         }
373                         return;
374                 }
375                 uptodate = 0;
376         }
377         end_buffer_async_read(bh, uptodate);
378 }
379
380 /*
381  * Completion handler for block_write_full_page() - pages which are unlocked
382  * during I/O, and which have PageWriteback cleared upon I/O completion.
383  */
384 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
385 {
386         unsigned long flags;
387         struct buffer_head *first;
388         struct buffer_head *tmp;
389         struct folio *folio;
390
391         BUG_ON(!buffer_async_write(bh));
392
393         folio = bh->b_folio;
394         if (uptodate) {
395                 set_buffer_uptodate(bh);
396         } else {
397                 buffer_io_error(bh, ", lost async page write");
398                 mark_buffer_write_io_error(bh);
399                 clear_buffer_uptodate(bh);
400                 folio_set_error(folio);
401         }
402
403         first = folio_buffers(folio);
404         spin_lock_irqsave(&first->b_uptodate_lock, flags);
405
406         clear_buffer_async_write(bh);
407         unlock_buffer(bh);
408         tmp = bh->b_this_page;
409         while (tmp != bh) {
410                 if (buffer_async_write(tmp)) {
411                         BUG_ON(!buffer_locked(tmp));
412                         goto still_busy;
413                 }
414                 tmp = tmp->b_this_page;
415         }
416         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
417         folio_end_writeback(folio);
418         return;
419
420 still_busy:
421         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
422         return;
423 }
424 EXPORT_SYMBOL(end_buffer_async_write);
425
426 /*
427  * If a page's buffers are under async readin (end_buffer_async_read
428  * completion) then there is a possibility that another thread of
429  * control could lock one of the buffers after it has completed
430  * but while some of the other buffers have not completed.  This
431  * locked buffer would confuse end_buffer_async_read() into not unlocking
432  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
433  * that this buffer is not under async I/O.
434  *
435  * The page comes unlocked when it has no locked buffer_async buffers
436  * left.
437  *
438  * PageLocked prevents anyone starting new async I/O reads any of
439  * the buffers.
440  *
441  * PageWriteback is used to prevent simultaneous writeout of the same
442  * page.
443  *
444  * PageLocked prevents anyone from starting writeback of a page which is
445  * under read I/O (PageWriteback is only ever set against a locked page).
446  */
447 static void mark_buffer_async_read(struct buffer_head *bh)
448 {
449         bh->b_end_io = end_buffer_async_read_io;
450         set_buffer_async_read(bh);
451 }
452
453 static void mark_buffer_async_write_endio(struct buffer_head *bh,
454                                           bh_end_io_t *handler)
455 {
456         bh->b_end_io = handler;
457         set_buffer_async_write(bh);
458 }
459
460 void mark_buffer_async_write(struct buffer_head *bh)
461 {
462         mark_buffer_async_write_endio(bh, end_buffer_async_write);
463 }
464 EXPORT_SYMBOL(mark_buffer_async_write);
465
466
467 /*
468  * fs/buffer.c contains helper functions for buffer-backed address space's
469  * fsync functions.  A common requirement for buffer-based filesystems is
470  * that certain data from the backing blockdev needs to be written out for
471  * a successful fsync().  For example, ext2 indirect blocks need to be
472  * written back and waited upon before fsync() returns.
473  *
474  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
475  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
476  * management of a list of dependent buffers at ->i_mapping->private_list.
477  *
478  * Locking is a little subtle: try_to_free_buffers() will remove buffers
479  * from their controlling inode's queue when they are being freed.  But
480  * try_to_free_buffers() will be operating against the *blockdev* mapping
481  * at the time, not against the S_ISREG file which depends on those buffers.
482  * So the locking for private_list is via the private_lock in the address_space
483  * which backs the buffers.  Which is different from the address_space 
484  * against which the buffers are listed.  So for a particular address_space,
485  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
486  * mapping->private_list will always be protected by the backing blockdev's
487  * ->private_lock.
488  *
489  * Which introduces a requirement: all buffers on an address_space's
490  * ->private_list must be from the same address_space: the blockdev's.
491  *
492  * address_spaces which do not place buffers at ->private_list via these
493  * utility functions are free to use private_lock and private_list for
494  * whatever they want.  The only requirement is that list_empty(private_list)
495  * be true at clear_inode() time.
496  *
497  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
498  * filesystems should do that.  invalidate_inode_buffers() should just go
499  * BUG_ON(!list_empty).
500  *
501  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
502  * take an address_space, not an inode.  And it should be called
503  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
504  * queued up.
505  *
506  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
507  * list if it is already on a list.  Because if the buffer is on a list,
508  * it *must* already be on the right one.  If not, the filesystem is being
509  * silly.  This will save a ton of locking.  But first we have to ensure
510  * that buffers are taken *off* the old inode's list when they are freed
511  * (presumably in truncate).  That requires careful auditing of all
512  * filesystems (do it inside bforget()).  It could also be done by bringing
513  * b_inode back.
514  */
515
516 /*
517  * The buffer's backing address_space's private_lock must be held
518  */
519 static void __remove_assoc_queue(struct buffer_head *bh)
520 {
521         list_del_init(&bh->b_assoc_buffers);
522         WARN_ON(!bh->b_assoc_map);
523         bh->b_assoc_map = NULL;
524 }
525
526 int inode_has_buffers(struct inode *inode)
527 {
528         return !list_empty(&inode->i_data.private_list);
529 }
530
531 /*
532  * osync is designed to support O_SYNC io.  It waits synchronously for
533  * all already-submitted IO to complete, but does not queue any new
534  * writes to the disk.
535  *
536  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
537  * as you dirty the buffers, and then use osync_inode_buffers to wait for
538  * completion.  Any other dirty buffers which are not yet queued for
539  * write will not be flushed to disk by the osync.
540  */
541 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
542 {
543         struct buffer_head *bh;
544         struct list_head *p;
545         int err = 0;
546
547         spin_lock(lock);
548 repeat:
549         list_for_each_prev(p, list) {
550                 bh = BH_ENTRY(p);
551                 if (buffer_locked(bh)) {
552                         get_bh(bh);
553                         spin_unlock(lock);
554                         wait_on_buffer(bh);
555                         if (!buffer_uptodate(bh))
556                                 err = -EIO;
557                         brelse(bh);
558                         spin_lock(lock);
559                         goto repeat;
560                 }
561         }
562         spin_unlock(lock);
563         return err;
564 }
565
566 /**
567  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
568  * @mapping: the mapping which wants those buffers written
569  *
570  * Starts I/O against the buffers at mapping->private_list, and waits upon
571  * that I/O.
572  *
573  * Basically, this is a convenience function for fsync().
574  * @mapping is a file or directory which needs those buffers to be written for
575  * a successful fsync().
576  */
577 int sync_mapping_buffers(struct address_space *mapping)
578 {
579         struct address_space *buffer_mapping = mapping->private_data;
580
581         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
582                 return 0;
583
584         return fsync_buffers_list(&buffer_mapping->private_lock,
585                                         &mapping->private_list);
586 }
587 EXPORT_SYMBOL(sync_mapping_buffers);
588
589 /**
590  * generic_buffers_fsync_noflush - generic buffer fsync implementation
591  * for simple filesystems with no inode lock
592  *
593  * @file:       file to synchronize
594  * @start:      start offset in bytes
595  * @end:        end offset in bytes (inclusive)
596  * @datasync:   only synchronize essential metadata if true
597  *
598  * This is a generic implementation of the fsync method for simple
599  * filesystems which track all non-inode metadata in the buffers list
600  * hanging off the address_space structure.
601  */
602 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
603                                   bool datasync)
604 {
605         struct inode *inode = file->f_mapping->host;
606         int err;
607         int ret;
608
609         err = file_write_and_wait_range(file, start, end);
610         if (err)
611                 return err;
612
613         ret = sync_mapping_buffers(inode->i_mapping);
614         if (!(inode->i_state & I_DIRTY_ALL))
615                 goto out;
616         if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
617                 goto out;
618
619         err = sync_inode_metadata(inode, 1);
620         if (ret == 0)
621                 ret = err;
622
623 out:
624         /* check and advance again to catch errors after syncing out buffers */
625         err = file_check_and_advance_wb_err(file);
626         if (ret == 0)
627                 ret = err;
628         return ret;
629 }
630 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
631
632 /**
633  * generic_buffers_fsync - generic buffer fsync implementation
634  * for simple filesystems with no inode lock
635  *
636  * @file:       file to synchronize
637  * @start:      start offset in bytes
638  * @end:        end offset in bytes (inclusive)
639  * @datasync:   only synchronize essential metadata if true
640  *
641  * This is a generic implementation of the fsync method for simple
642  * filesystems which track all non-inode metadata in the buffers list
643  * hanging off the address_space structure. This also makes sure that
644  * a device cache flush operation is called at the end.
645  */
646 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
647                           bool datasync)
648 {
649         struct inode *inode = file->f_mapping->host;
650         int ret;
651
652         ret = generic_buffers_fsync_noflush(file, start, end, datasync);
653         if (!ret)
654                 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
655         return ret;
656 }
657 EXPORT_SYMBOL(generic_buffers_fsync);
658
659 /*
660  * Called when we've recently written block `bblock', and it is known that
661  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
662  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
663  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
664  */
665 void write_boundary_block(struct block_device *bdev,
666                         sector_t bblock, unsigned blocksize)
667 {
668         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
669         if (bh) {
670                 if (buffer_dirty(bh))
671                         write_dirty_buffer(bh, 0);
672                 put_bh(bh);
673         }
674 }
675
676 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
677 {
678         struct address_space *mapping = inode->i_mapping;
679         struct address_space *buffer_mapping = bh->b_folio->mapping;
680
681         mark_buffer_dirty(bh);
682         if (!mapping->private_data) {
683                 mapping->private_data = buffer_mapping;
684         } else {
685                 BUG_ON(mapping->private_data != buffer_mapping);
686         }
687         if (!bh->b_assoc_map) {
688                 spin_lock(&buffer_mapping->private_lock);
689                 list_move_tail(&bh->b_assoc_buffers,
690                                 &mapping->private_list);
691                 bh->b_assoc_map = mapping;
692                 spin_unlock(&buffer_mapping->private_lock);
693         }
694 }
695 EXPORT_SYMBOL(mark_buffer_dirty_inode);
696
697 /*
698  * Add a page to the dirty page list.
699  *
700  * It is a sad fact of life that this function is called from several places
701  * deeply under spinlocking.  It may not sleep.
702  *
703  * If the page has buffers, the uptodate buffers are set dirty, to preserve
704  * dirty-state coherency between the page and the buffers.  It the page does
705  * not have buffers then when they are later attached they will all be set
706  * dirty.
707  *
708  * The buffers are dirtied before the page is dirtied.  There's a small race
709  * window in which a writepage caller may see the page cleanness but not the
710  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
711  * before the buffers, a concurrent writepage caller could clear the page dirty
712  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
713  * page on the dirty page list.
714  *
715  * We use private_lock to lock against try_to_free_buffers while using the
716  * page's buffer list.  Also use this to protect against clean buffers being
717  * added to the page after it was set dirty.
718  *
719  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
720  * address_space though.
721  */
722 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
723 {
724         struct buffer_head *head;
725         bool newly_dirty;
726
727         spin_lock(&mapping->private_lock);
728         head = folio_buffers(folio);
729         if (head) {
730                 struct buffer_head *bh = head;
731
732                 do {
733                         set_buffer_dirty(bh);
734                         bh = bh->b_this_page;
735                 } while (bh != head);
736         }
737         /*
738          * Lock out page's memcg migration to keep PageDirty
739          * synchronized with per-memcg dirty page counters.
740          */
741         folio_memcg_lock(folio);
742         newly_dirty = !folio_test_set_dirty(folio);
743         spin_unlock(&mapping->private_lock);
744
745         if (newly_dirty)
746                 __folio_mark_dirty(folio, mapping, 1);
747
748         folio_memcg_unlock(folio);
749
750         if (newly_dirty)
751                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
752
753         return newly_dirty;
754 }
755 EXPORT_SYMBOL(block_dirty_folio);
756
757 /*
758  * Write out and wait upon a list of buffers.
759  *
760  * We have conflicting pressures: we want to make sure that all
761  * initially dirty buffers get waited on, but that any subsequently
762  * dirtied buffers don't.  After all, we don't want fsync to last
763  * forever if somebody is actively writing to the file.
764  *
765  * Do this in two main stages: first we copy dirty buffers to a
766  * temporary inode list, queueing the writes as we go.  Then we clean
767  * up, waiting for those writes to complete.
768  * 
769  * During this second stage, any subsequent updates to the file may end
770  * up refiling the buffer on the original inode's dirty list again, so
771  * there is a chance we will end up with a buffer queued for write but
772  * not yet completed on that list.  So, as a final cleanup we go through
773  * the osync code to catch these locked, dirty buffers without requeuing
774  * any newly dirty buffers for write.
775  */
776 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
777 {
778         struct buffer_head *bh;
779         struct list_head tmp;
780         struct address_space *mapping;
781         int err = 0, err2;
782         struct blk_plug plug;
783
784         INIT_LIST_HEAD(&tmp);
785         blk_start_plug(&plug);
786
787         spin_lock(lock);
788         while (!list_empty(list)) {
789                 bh = BH_ENTRY(list->next);
790                 mapping = bh->b_assoc_map;
791                 __remove_assoc_queue(bh);
792                 /* Avoid race with mark_buffer_dirty_inode() which does
793                  * a lockless check and we rely on seeing the dirty bit */
794                 smp_mb();
795                 if (buffer_dirty(bh) || buffer_locked(bh)) {
796                         list_add(&bh->b_assoc_buffers, &tmp);
797                         bh->b_assoc_map = mapping;
798                         if (buffer_dirty(bh)) {
799                                 get_bh(bh);
800                                 spin_unlock(lock);
801                                 /*
802                                  * Ensure any pending I/O completes so that
803                                  * write_dirty_buffer() actually writes the
804                                  * current contents - it is a noop if I/O is
805                                  * still in flight on potentially older
806                                  * contents.
807                                  */
808                                 write_dirty_buffer(bh, REQ_SYNC);
809
810                                 /*
811                                  * Kick off IO for the previous mapping. Note
812                                  * that we will not run the very last mapping,
813                                  * wait_on_buffer() will do that for us
814                                  * through sync_buffer().
815                                  */
816                                 brelse(bh);
817                                 spin_lock(lock);
818                         }
819                 }
820         }
821
822         spin_unlock(lock);
823         blk_finish_plug(&plug);
824         spin_lock(lock);
825
826         while (!list_empty(&tmp)) {
827                 bh = BH_ENTRY(tmp.prev);
828                 get_bh(bh);
829                 mapping = bh->b_assoc_map;
830                 __remove_assoc_queue(bh);
831                 /* Avoid race with mark_buffer_dirty_inode() which does
832                  * a lockless check and we rely on seeing the dirty bit */
833                 smp_mb();
834                 if (buffer_dirty(bh)) {
835                         list_add(&bh->b_assoc_buffers,
836                                  &mapping->private_list);
837                         bh->b_assoc_map = mapping;
838                 }
839                 spin_unlock(lock);
840                 wait_on_buffer(bh);
841                 if (!buffer_uptodate(bh))
842                         err = -EIO;
843                 brelse(bh);
844                 spin_lock(lock);
845         }
846         
847         spin_unlock(lock);
848         err2 = osync_buffers_list(lock, list);
849         if (err)
850                 return err;
851         else
852                 return err2;
853 }
854
855 /*
856  * Invalidate any and all dirty buffers on a given inode.  We are
857  * probably unmounting the fs, but that doesn't mean we have already
858  * done a sync().  Just drop the buffers from the inode list.
859  *
860  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
861  * assumes that all the buffers are against the blockdev.  Not true
862  * for reiserfs.
863  */
864 void invalidate_inode_buffers(struct inode *inode)
865 {
866         if (inode_has_buffers(inode)) {
867                 struct address_space *mapping = &inode->i_data;
868                 struct list_head *list = &mapping->private_list;
869                 struct address_space *buffer_mapping = mapping->private_data;
870
871                 spin_lock(&buffer_mapping->private_lock);
872                 while (!list_empty(list))
873                         __remove_assoc_queue(BH_ENTRY(list->next));
874                 spin_unlock(&buffer_mapping->private_lock);
875         }
876 }
877 EXPORT_SYMBOL(invalidate_inode_buffers);
878
879 /*
880  * Remove any clean buffers from the inode's buffer list.  This is called
881  * when we're trying to free the inode itself.  Those buffers can pin it.
882  *
883  * Returns true if all buffers were removed.
884  */
885 int remove_inode_buffers(struct inode *inode)
886 {
887         int ret = 1;
888
889         if (inode_has_buffers(inode)) {
890                 struct address_space *mapping = &inode->i_data;
891                 struct list_head *list = &mapping->private_list;
892                 struct address_space *buffer_mapping = mapping->private_data;
893
894                 spin_lock(&buffer_mapping->private_lock);
895                 while (!list_empty(list)) {
896                         struct buffer_head *bh = BH_ENTRY(list->next);
897                         if (buffer_dirty(bh)) {
898                                 ret = 0;
899                                 break;
900                         }
901                         __remove_assoc_queue(bh);
902                 }
903                 spin_unlock(&buffer_mapping->private_lock);
904         }
905         return ret;
906 }
907
908 /*
909  * Create the appropriate buffers when given a folio for data area and
910  * the size of each buffer.. Use the bh->b_this_page linked list to
911  * follow the buffers created.  Return NULL if unable to create more
912  * buffers.
913  *
914  * The retry flag is used to differentiate async IO (paging, swapping)
915  * which may not fail from ordinary buffer allocations.
916  */
917 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
918                                         bool retry)
919 {
920         struct buffer_head *bh, *head;
921         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
922         long offset;
923         struct mem_cgroup *memcg, *old_memcg;
924
925         if (retry)
926                 gfp |= __GFP_NOFAIL;
927
928         /* The folio lock pins the memcg */
929         memcg = folio_memcg(folio);
930         old_memcg = set_active_memcg(memcg);
931
932         head = NULL;
933         offset = folio_size(folio);
934         while ((offset -= size) >= 0) {
935                 bh = alloc_buffer_head(gfp);
936                 if (!bh)
937                         goto no_grow;
938
939                 bh->b_this_page = head;
940                 bh->b_blocknr = -1;
941                 head = bh;
942
943                 bh->b_size = size;
944
945                 /* Link the buffer to its folio */
946                 folio_set_bh(bh, folio, offset);
947         }
948 out:
949         set_active_memcg(old_memcg);
950         return head;
951 /*
952  * In case anything failed, we just free everything we got.
953  */
954 no_grow:
955         if (head) {
956                 do {
957                         bh = head;
958                         head = head->b_this_page;
959                         free_buffer_head(bh);
960                 } while (head);
961         }
962
963         goto out;
964 }
965 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
966
967 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
968                                        bool retry)
969 {
970         return folio_alloc_buffers(page_folio(page), size, retry);
971 }
972 EXPORT_SYMBOL_GPL(alloc_page_buffers);
973
974 static inline void link_dev_buffers(struct folio *folio,
975                 struct buffer_head *head)
976 {
977         struct buffer_head *bh, *tail;
978
979         bh = head;
980         do {
981                 tail = bh;
982                 bh = bh->b_this_page;
983         } while (bh);
984         tail->b_this_page = head;
985         folio_attach_private(folio, head);
986 }
987
988 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
989 {
990         sector_t retval = ~((sector_t)0);
991         loff_t sz = bdev_nr_bytes(bdev);
992
993         if (sz) {
994                 unsigned int sizebits = blksize_bits(size);
995                 retval = (sz >> sizebits);
996         }
997         return retval;
998 }
999
1000 /*
1001  * Initialise the state of a blockdev folio's buffers.
1002  */ 
1003 static sector_t folio_init_buffers(struct folio *folio,
1004                 struct block_device *bdev, sector_t block, int size)
1005 {
1006         struct buffer_head *head = folio_buffers(folio);
1007         struct buffer_head *bh = head;
1008         bool uptodate = folio_test_uptodate(folio);
1009         sector_t end_block = blkdev_max_block(bdev, size);
1010
1011         do {
1012                 if (!buffer_mapped(bh)) {
1013                         bh->b_end_io = NULL;
1014                         bh->b_private = NULL;
1015                         bh->b_bdev = bdev;
1016                         bh->b_blocknr = block;
1017                         if (uptodate)
1018                                 set_buffer_uptodate(bh);
1019                         if (block < end_block)
1020                                 set_buffer_mapped(bh);
1021                 }
1022                 block++;
1023                 bh = bh->b_this_page;
1024         } while (bh != head);
1025
1026         /*
1027          * Caller needs to validate requested block against end of device.
1028          */
1029         return end_block;
1030 }
1031
1032 /*
1033  * Create the page-cache page that contains the requested block.
1034  *
1035  * This is used purely for blockdev mappings.
1036  */
1037 static int
1038 grow_dev_page(struct block_device *bdev, sector_t block,
1039               pgoff_t index, int size, int sizebits, gfp_t gfp)
1040 {
1041         struct inode *inode = bdev->bd_inode;
1042         struct folio *folio;
1043         struct buffer_head *bh;
1044         sector_t end_block;
1045         int ret = 0;
1046         gfp_t gfp_mask;
1047
1048         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
1049
1050         /*
1051          * XXX: __getblk_slow() can not really deal with failure and
1052          * will endlessly loop on improvised global reclaim.  Prefer
1053          * looping in the allocator rather than here, at least that
1054          * code knows what it's doing.
1055          */
1056         gfp_mask |= __GFP_NOFAIL;
1057
1058         folio = __filemap_get_folio(inode->i_mapping, index,
1059                         FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp_mask);
1060
1061         bh = folio_buffers(folio);
1062         if (bh) {
1063                 if (bh->b_size == size) {
1064                         end_block = folio_init_buffers(folio, bdev,
1065                                         (sector_t)index << sizebits, size);
1066                         goto done;
1067                 }
1068                 if (!try_to_free_buffers(folio))
1069                         goto failed;
1070         }
1071
1072         bh = folio_alloc_buffers(folio, size, true);
1073
1074         /*
1075          * Link the folio to the buffers and initialise them.  Take the
1076          * lock to be atomic wrt __find_get_block(), which does not
1077          * run under the folio lock.
1078          */
1079         spin_lock(&inode->i_mapping->private_lock);
1080         link_dev_buffers(folio, bh);
1081         end_block = folio_init_buffers(folio, bdev,
1082                         (sector_t)index << sizebits, size);
1083         spin_unlock(&inode->i_mapping->private_lock);
1084 done:
1085         ret = (block < end_block) ? 1 : -ENXIO;
1086 failed:
1087         folio_unlock(folio);
1088         folio_put(folio);
1089         return ret;
1090 }
1091
1092 /*
1093  * Create buffers for the specified block device block's page.  If
1094  * that page was dirty, the buffers are set dirty also.
1095  */
1096 static int
1097 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1098 {
1099         pgoff_t index;
1100         int sizebits;
1101
1102         sizebits = PAGE_SHIFT - __ffs(size);
1103         index = block >> sizebits;
1104
1105         /*
1106          * Check for a block which wants to lie outside our maximum possible
1107          * pagecache index.  (this comparison is done using sector_t types).
1108          */
1109         if (unlikely(index != block >> sizebits)) {
1110                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1111                         "device %pg\n",
1112                         __func__, (unsigned long long)block,
1113                         bdev);
1114                 return -EIO;
1115         }
1116
1117         /* Create a page with the proper size buffers.. */
1118         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1119 }
1120
1121 static struct buffer_head *
1122 __getblk_slow(struct block_device *bdev, sector_t block,
1123              unsigned size, gfp_t gfp)
1124 {
1125         /* Size must be multiple of hard sectorsize */
1126         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1127                         (size < 512 || size > PAGE_SIZE))) {
1128                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1129                                         size);
1130                 printk(KERN_ERR "logical block size: %d\n",
1131                                         bdev_logical_block_size(bdev));
1132
1133                 dump_stack();
1134                 return NULL;
1135         }
1136
1137         for (;;) {
1138                 struct buffer_head *bh;
1139                 int ret;
1140
1141                 bh = __find_get_block(bdev, block, size);
1142                 if (bh)
1143                         return bh;
1144
1145                 ret = grow_buffers(bdev, block, size, gfp);
1146                 if (ret < 0)
1147                         return NULL;
1148         }
1149 }
1150
1151 /*
1152  * The relationship between dirty buffers and dirty pages:
1153  *
1154  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1155  * the page is tagged dirty in the page cache.
1156  *
1157  * At all times, the dirtiness of the buffers represents the dirtiness of
1158  * subsections of the page.  If the page has buffers, the page dirty bit is
1159  * merely a hint about the true dirty state.
1160  *
1161  * When a page is set dirty in its entirety, all its buffers are marked dirty
1162  * (if the page has buffers).
1163  *
1164  * When a buffer is marked dirty, its page is dirtied, but the page's other
1165  * buffers are not.
1166  *
1167  * Also.  When blockdev buffers are explicitly read with bread(), they
1168  * individually become uptodate.  But their backing page remains not
1169  * uptodate - even if all of its buffers are uptodate.  A subsequent
1170  * block_read_full_folio() against that folio will discover all the uptodate
1171  * buffers, will set the folio uptodate and will perform no I/O.
1172  */
1173
1174 /**
1175  * mark_buffer_dirty - mark a buffer_head as needing writeout
1176  * @bh: the buffer_head to mark dirty
1177  *
1178  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1179  * its backing page dirty, then tag the page as dirty in the page cache
1180  * and then attach the address_space's inode to its superblock's dirty
1181  * inode list.
1182  *
1183  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->private_lock,
1184  * i_pages lock and mapping->host->i_lock.
1185  */
1186 void mark_buffer_dirty(struct buffer_head *bh)
1187 {
1188         WARN_ON_ONCE(!buffer_uptodate(bh));
1189
1190         trace_block_dirty_buffer(bh);
1191
1192         /*
1193          * Very *carefully* optimize the it-is-already-dirty case.
1194          *
1195          * Don't let the final "is it dirty" escape to before we
1196          * perhaps modified the buffer.
1197          */
1198         if (buffer_dirty(bh)) {
1199                 smp_mb();
1200                 if (buffer_dirty(bh))
1201                         return;
1202         }
1203
1204         if (!test_set_buffer_dirty(bh)) {
1205                 struct folio *folio = bh->b_folio;
1206                 struct address_space *mapping = NULL;
1207
1208                 folio_memcg_lock(folio);
1209                 if (!folio_test_set_dirty(folio)) {
1210                         mapping = folio->mapping;
1211                         if (mapping)
1212                                 __folio_mark_dirty(folio, mapping, 0);
1213                 }
1214                 folio_memcg_unlock(folio);
1215                 if (mapping)
1216                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1217         }
1218 }
1219 EXPORT_SYMBOL(mark_buffer_dirty);
1220
1221 void mark_buffer_write_io_error(struct buffer_head *bh)
1222 {
1223         set_buffer_write_io_error(bh);
1224         /* FIXME: do we need to set this in both places? */
1225         if (bh->b_folio && bh->b_folio->mapping)
1226                 mapping_set_error(bh->b_folio->mapping, -EIO);
1227         if (bh->b_assoc_map) {
1228                 mapping_set_error(bh->b_assoc_map, -EIO);
1229                 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1230         }
1231 }
1232 EXPORT_SYMBOL(mark_buffer_write_io_error);
1233
1234 /*
1235  * Decrement a buffer_head's reference count.  If all buffers against a page
1236  * have zero reference count, are clean and unlocked, and if the page is clean
1237  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1238  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1239  * a page but it ends up not being freed, and buffers may later be reattached).
1240  */
1241 void __brelse(struct buffer_head * buf)
1242 {
1243         if (atomic_read(&buf->b_count)) {
1244                 put_bh(buf);
1245                 return;
1246         }
1247         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1248 }
1249 EXPORT_SYMBOL(__brelse);
1250
1251 /*
1252  * bforget() is like brelse(), except it discards any
1253  * potentially dirty data.
1254  */
1255 void __bforget(struct buffer_head *bh)
1256 {
1257         clear_buffer_dirty(bh);
1258         if (bh->b_assoc_map) {
1259                 struct address_space *buffer_mapping = bh->b_folio->mapping;
1260
1261                 spin_lock(&buffer_mapping->private_lock);
1262                 list_del_init(&bh->b_assoc_buffers);
1263                 bh->b_assoc_map = NULL;
1264                 spin_unlock(&buffer_mapping->private_lock);
1265         }
1266         __brelse(bh);
1267 }
1268 EXPORT_SYMBOL(__bforget);
1269
1270 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1271 {
1272         lock_buffer(bh);
1273         if (buffer_uptodate(bh)) {
1274                 unlock_buffer(bh);
1275                 return bh;
1276         } else {
1277                 get_bh(bh);
1278                 bh->b_end_io = end_buffer_read_sync;
1279                 submit_bh(REQ_OP_READ, bh);
1280                 wait_on_buffer(bh);
1281                 if (buffer_uptodate(bh))
1282                         return bh;
1283         }
1284         brelse(bh);
1285         return NULL;
1286 }
1287
1288 /*
1289  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1290  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1291  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1292  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1293  * CPU's LRUs at the same time.
1294  *
1295  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1296  * sb_find_get_block().
1297  *
1298  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1299  * a local interrupt disable for that.
1300  */
1301
1302 #define BH_LRU_SIZE     16
1303
1304 struct bh_lru {
1305         struct buffer_head *bhs[BH_LRU_SIZE];
1306 };
1307
1308 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1309
1310 #ifdef CONFIG_SMP
1311 #define bh_lru_lock()   local_irq_disable()
1312 #define bh_lru_unlock() local_irq_enable()
1313 #else
1314 #define bh_lru_lock()   preempt_disable()
1315 #define bh_lru_unlock() preempt_enable()
1316 #endif
1317
1318 static inline void check_irqs_on(void)
1319 {
1320 #ifdef irqs_disabled
1321         BUG_ON(irqs_disabled());
1322 #endif
1323 }
1324
1325 /*
1326  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1327  * inserted at the front, and the buffer_head at the back if any is evicted.
1328  * Or, if already in the LRU it is moved to the front.
1329  */
1330 static void bh_lru_install(struct buffer_head *bh)
1331 {
1332         struct buffer_head *evictee = bh;
1333         struct bh_lru *b;
1334         int i;
1335
1336         check_irqs_on();
1337         bh_lru_lock();
1338
1339         /*
1340          * the refcount of buffer_head in bh_lru prevents dropping the
1341          * attached page(i.e., try_to_free_buffers) so it could cause
1342          * failing page migration.
1343          * Skip putting upcoming bh into bh_lru until migration is done.
1344          */
1345         if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1346                 bh_lru_unlock();
1347                 return;
1348         }
1349
1350         b = this_cpu_ptr(&bh_lrus);
1351         for (i = 0; i < BH_LRU_SIZE; i++) {
1352                 swap(evictee, b->bhs[i]);
1353                 if (evictee == bh) {
1354                         bh_lru_unlock();
1355                         return;
1356                 }
1357         }
1358
1359         get_bh(bh);
1360         bh_lru_unlock();
1361         brelse(evictee);
1362 }
1363
1364 /*
1365  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1366  */
1367 static struct buffer_head *
1368 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1369 {
1370         struct buffer_head *ret = NULL;
1371         unsigned int i;
1372
1373         check_irqs_on();
1374         bh_lru_lock();
1375         if (cpu_is_isolated(smp_processor_id())) {
1376                 bh_lru_unlock();
1377                 return NULL;
1378         }
1379         for (i = 0; i < BH_LRU_SIZE; i++) {
1380                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1381
1382                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1383                     bh->b_size == size) {
1384                         if (i) {
1385                                 while (i) {
1386                                         __this_cpu_write(bh_lrus.bhs[i],
1387                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1388                                         i--;
1389                                 }
1390                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1391                         }
1392                         get_bh(bh);
1393                         ret = bh;
1394                         break;
1395                 }
1396         }
1397         bh_lru_unlock();
1398         return ret;
1399 }
1400
1401 /*
1402  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1403  * it in the LRU and mark it as accessed.  If it is not present then return
1404  * NULL
1405  */
1406 struct buffer_head *
1407 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1408 {
1409         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1410
1411         if (bh == NULL) {
1412                 /* __find_get_block_slow will mark the page accessed */
1413                 bh = __find_get_block_slow(bdev, block);
1414                 if (bh)
1415                         bh_lru_install(bh);
1416         } else
1417                 touch_buffer(bh);
1418
1419         return bh;
1420 }
1421 EXPORT_SYMBOL(__find_get_block);
1422
1423 /*
1424  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1425  * which corresponds to the passed block_device, block and size. The
1426  * returned buffer has its reference count incremented.
1427  *
1428  * __getblk_gfp() will lock up the machine if grow_dev_page's
1429  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1430  */
1431 struct buffer_head *
1432 __getblk_gfp(struct block_device *bdev, sector_t block,
1433              unsigned size, gfp_t gfp)
1434 {
1435         struct buffer_head *bh = __find_get_block(bdev, block, size);
1436
1437         might_sleep();
1438         if (bh == NULL)
1439                 bh = __getblk_slow(bdev, block, size, gfp);
1440         return bh;
1441 }
1442 EXPORT_SYMBOL(__getblk_gfp);
1443
1444 /*
1445  * Do async read-ahead on a buffer..
1446  */
1447 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1448 {
1449         struct buffer_head *bh = __getblk(bdev, block, size);
1450         if (likely(bh)) {
1451                 bh_readahead(bh, REQ_RAHEAD);
1452                 brelse(bh);
1453         }
1454 }
1455 EXPORT_SYMBOL(__breadahead);
1456
1457 /**
1458  *  __bread_gfp() - reads a specified block and returns the bh
1459  *  @bdev: the block_device to read from
1460  *  @block: number of block
1461  *  @size: size (in bytes) to read
1462  *  @gfp: page allocation flag
1463  *
1464  *  Reads a specified block, and returns buffer head that contains it.
1465  *  The page cache can be allocated from non-movable area
1466  *  not to prevent page migration if you set gfp to zero.
1467  *  It returns NULL if the block was unreadable.
1468  */
1469 struct buffer_head *
1470 __bread_gfp(struct block_device *bdev, sector_t block,
1471                    unsigned size, gfp_t gfp)
1472 {
1473         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1474
1475         if (likely(bh) && !buffer_uptodate(bh))
1476                 bh = __bread_slow(bh);
1477         return bh;
1478 }
1479 EXPORT_SYMBOL(__bread_gfp);
1480
1481 static void __invalidate_bh_lrus(struct bh_lru *b)
1482 {
1483         int i;
1484
1485         for (i = 0; i < BH_LRU_SIZE; i++) {
1486                 brelse(b->bhs[i]);
1487                 b->bhs[i] = NULL;
1488         }
1489 }
1490 /*
1491  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1492  * This doesn't race because it runs in each cpu either in irq
1493  * or with preempt disabled.
1494  */
1495 static void invalidate_bh_lru(void *arg)
1496 {
1497         struct bh_lru *b = &get_cpu_var(bh_lrus);
1498
1499         __invalidate_bh_lrus(b);
1500         put_cpu_var(bh_lrus);
1501 }
1502
1503 bool has_bh_in_lru(int cpu, void *dummy)
1504 {
1505         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1506         int i;
1507         
1508         for (i = 0; i < BH_LRU_SIZE; i++) {
1509                 if (b->bhs[i])
1510                         return true;
1511         }
1512
1513         return false;
1514 }
1515
1516 void invalidate_bh_lrus(void)
1517 {
1518         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1519 }
1520 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1521
1522 /*
1523  * It's called from workqueue context so we need a bh_lru_lock to close
1524  * the race with preemption/irq.
1525  */
1526 void invalidate_bh_lrus_cpu(void)
1527 {
1528         struct bh_lru *b;
1529
1530         bh_lru_lock();
1531         b = this_cpu_ptr(&bh_lrus);
1532         __invalidate_bh_lrus(b);
1533         bh_lru_unlock();
1534 }
1535
1536 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1537                   unsigned long offset)
1538 {
1539         bh->b_folio = folio;
1540         BUG_ON(offset >= folio_size(folio));
1541         if (folio_test_highmem(folio))
1542                 /*
1543                  * This catches illegal uses and preserves the offset:
1544                  */
1545                 bh->b_data = (char *)(0 + offset);
1546         else
1547                 bh->b_data = folio_address(folio) + offset;
1548 }
1549 EXPORT_SYMBOL(folio_set_bh);
1550
1551 /*
1552  * Called when truncating a buffer on a page completely.
1553  */
1554
1555 /* Bits that are cleared during an invalidate */
1556 #define BUFFER_FLAGS_DISCARD \
1557         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1558          1 << BH_Delay | 1 << BH_Unwritten)
1559
1560 static void discard_buffer(struct buffer_head * bh)
1561 {
1562         unsigned long b_state;
1563
1564         lock_buffer(bh);
1565         clear_buffer_dirty(bh);
1566         bh->b_bdev = NULL;
1567         b_state = READ_ONCE(bh->b_state);
1568         do {
1569         } while (!try_cmpxchg(&bh->b_state, &b_state,
1570                               b_state & ~BUFFER_FLAGS_DISCARD));
1571         unlock_buffer(bh);
1572 }
1573
1574 /**
1575  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1576  * @folio: The folio which is affected.
1577  * @offset: start of the range to invalidate
1578  * @length: length of the range to invalidate
1579  *
1580  * block_invalidate_folio() is called when all or part of the folio has been
1581  * invalidated by a truncate operation.
1582  *
1583  * block_invalidate_folio() does not have to release all buffers, but it must
1584  * ensure that no dirty buffer is left outside @offset and that no I/O
1585  * is underway against any of the blocks which are outside the truncation
1586  * point.  Because the caller is about to free (and possibly reuse) those
1587  * blocks on-disk.
1588  */
1589 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1590 {
1591         struct buffer_head *head, *bh, *next;
1592         size_t curr_off = 0;
1593         size_t stop = length + offset;
1594
1595         BUG_ON(!folio_test_locked(folio));
1596
1597         /*
1598          * Check for overflow
1599          */
1600         BUG_ON(stop > folio_size(folio) || stop < length);
1601
1602         head = folio_buffers(folio);
1603         if (!head)
1604                 return;
1605
1606         bh = head;
1607         do {
1608                 size_t next_off = curr_off + bh->b_size;
1609                 next = bh->b_this_page;
1610
1611                 /*
1612                  * Are we still fully in range ?
1613                  */
1614                 if (next_off > stop)
1615                         goto out;
1616
1617                 /*
1618                  * is this block fully invalidated?
1619                  */
1620                 if (offset <= curr_off)
1621                         discard_buffer(bh);
1622                 curr_off = next_off;
1623                 bh = next;
1624         } while (bh != head);
1625
1626         /*
1627          * We release buffers only if the entire folio is being invalidated.
1628          * The get_block cached value has been unconditionally invalidated,
1629          * so real IO is not possible anymore.
1630          */
1631         if (length == folio_size(folio))
1632                 filemap_release_folio(folio, 0);
1633 out:
1634         return;
1635 }
1636 EXPORT_SYMBOL(block_invalidate_folio);
1637
1638 /*
1639  * We attach and possibly dirty the buffers atomically wrt
1640  * block_dirty_folio() via private_lock.  try_to_free_buffers
1641  * is already excluded via the folio lock.
1642  */
1643 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize,
1644                                 unsigned long b_state)
1645 {
1646         struct buffer_head *bh, *head, *tail;
1647
1648         head = folio_alloc_buffers(folio, blocksize, true);
1649         bh = head;
1650         do {
1651                 bh->b_state |= b_state;
1652                 tail = bh;
1653                 bh = bh->b_this_page;
1654         } while (bh);
1655         tail->b_this_page = head;
1656
1657         spin_lock(&folio->mapping->private_lock);
1658         if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1659                 bh = head;
1660                 do {
1661                         if (folio_test_dirty(folio))
1662                                 set_buffer_dirty(bh);
1663                         if (folio_test_uptodate(folio))
1664                                 set_buffer_uptodate(bh);
1665                         bh = bh->b_this_page;
1666                 } while (bh != head);
1667         }
1668         folio_attach_private(folio, head);
1669         spin_unlock(&folio->mapping->private_lock);
1670 }
1671 EXPORT_SYMBOL(folio_create_empty_buffers);
1672
1673 void create_empty_buffers(struct page *page,
1674                         unsigned long blocksize, unsigned long b_state)
1675 {
1676         folio_create_empty_buffers(page_folio(page), blocksize, b_state);
1677 }
1678 EXPORT_SYMBOL(create_empty_buffers);
1679
1680 /**
1681  * clean_bdev_aliases: clean a range of buffers in block device
1682  * @bdev: Block device to clean buffers in
1683  * @block: Start of a range of blocks to clean
1684  * @len: Number of blocks to clean
1685  *
1686  * We are taking a range of blocks for data and we don't want writeback of any
1687  * buffer-cache aliases starting from return from this function and until the
1688  * moment when something will explicitly mark the buffer dirty (hopefully that
1689  * will not happen until we will free that block ;-) We don't even need to mark
1690  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1691  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1692  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1693  * would confuse anyone who might pick it with bread() afterwards...
1694  *
1695  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1696  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1697  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1698  * need to.  That happens here.
1699  */
1700 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1701 {
1702         struct inode *bd_inode = bdev->bd_inode;
1703         struct address_space *bd_mapping = bd_inode->i_mapping;
1704         struct folio_batch fbatch;
1705         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1706         pgoff_t end;
1707         int i, count;
1708         struct buffer_head *bh;
1709         struct buffer_head *head;
1710
1711         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1712         folio_batch_init(&fbatch);
1713         while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1714                 count = folio_batch_count(&fbatch);
1715                 for (i = 0; i < count; i++) {
1716                         struct folio *folio = fbatch.folios[i];
1717
1718                         if (!folio_buffers(folio))
1719                                 continue;
1720                         /*
1721                          * We use folio lock instead of bd_mapping->private_lock
1722                          * to pin buffers here since we can afford to sleep and
1723                          * it scales better than a global spinlock lock.
1724                          */
1725                         folio_lock(folio);
1726                         /* Recheck when the folio is locked which pins bhs */
1727                         head = folio_buffers(folio);
1728                         if (!head)
1729                                 goto unlock_page;
1730                         bh = head;
1731                         do {
1732                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1733                                         goto next;
1734                                 if (bh->b_blocknr >= block + len)
1735                                         break;
1736                                 clear_buffer_dirty(bh);
1737                                 wait_on_buffer(bh);
1738                                 clear_buffer_req(bh);
1739 next:
1740                                 bh = bh->b_this_page;
1741                         } while (bh != head);
1742 unlock_page:
1743                         folio_unlock(folio);
1744                 }
1745                 folio_batch_release(&fbatch);
1746                 cond_resched();
1747                 /* End of range already reached? */
1748                 if (index > end || !index)
1749                         break;
1750         }
1751 }
1752 EXPORT_SYMBOL(clean_bdev_aliases);
1753
1754 /*
1755  * Size is a power-of-two in the range 512..PAGE_SIZE,
1756  * and the case we care about most is PAGE_SIZE.
1757  *
1758  * So this *could* possibly be written with those
1759  * constraints in mind (relevant mostly if some
1760  * architecture has a slow bit-scan instruction)
1761  */
1762 static inline int block_size_bits(unsigned int blocksize)
1763 {
1764         return ilog2(blocksize);
1765 }
1766
1767 static struct buffer_head *folio_create_buffers(struct folio *folio,
1768                                                 struct inode *inode,
1769                                                 unsigned int b_state)
1770 {
1771         BUG_ON(!folio_test_locked(folio));
1772
1773         if (!folio_buffers(folio))
1774                 folio_create_empty_buffers(folio,
1775                                            1 << READ_ONCE(inode->i_blkbits),
1776                                            b_state);
1777         return folio_buffers(folio);
1778 }
1779
1780 /*
1781  * NOTE! All mapped/uptodate combinations are valid:
1782  *
1783  *      Mapped  Uptodate        Meaning
1784  *
1785  *      No      No              "unknown" - must do get_block()
1786  *      No      Yes             "hole" - zero-filled
1787  *      Yes     No              "allocated" - allocated on disk, not read in
1788  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1789  *
1790  * "Dirty" is valid only with the last case (mapped+uptodate).
1791  */
1792
1793 /*
1794  * While block_write_full_page is writing back the dirty buffers under
1795  * the page lock, whoever dirtied the buffers may decide to clean them
1796  * again at any time.  We handle that by only looking at the buffer
1797  * state inside lock_buffer().
1798  *
1799  * If block_write_full_page() is called for regular writeback
1800  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1801  * locked buffer.   This only can happen if someone has written the buffer
1802  * directly, with submit_bh().  At the address_space level PageWriteback
1803  * prevents this contention from occurring.
1804  *
1805  * If block_write_full_page() is called with wbc->sync_mode ==
1806  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1807  * causes the writes to be flagged as synchronous writes.
1808  */
1809 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1810                         get_block_t *get_block, struct writeback_control *wbc,
1811                         bh_end_io_t *handler)
1812 {
1813         int err;
1814         sector_t block;
1815         sector_t last_block;
1816         struct buffer_head *bh, *head;
1817         unsigned int blocksize, bbits;
1818         int nr_underway = 0;
1819         blk_opf_t write_flags = wbc_to_write_flags(wbc);
1820
1821         head = folio_create_buffers(folio, inode,
1822                                     (1 << BH_Dirty) | (1 << BH_Uptodate));
1823
1824         /*
1825          * Be very careful.  We have no exclusion from block_dirty_folio
1826          * here, and the (potentially unmapped) buffers may become dirty at
1827          * any time.  If a buffer becomes dirty here after we've inspected it
1828          * then we just miss that fact, and the folio stays dirty.
1829          *
1830          * Buffers outside i_size may be dirtied by block_dirty_folio;
1831          * handle that here by just cleaning them.
1832          */
1833
1834         bh = head;
1835         blocksize = bh->b_size;
1836         bbits = block_size_bits(blocksize);
1837
1838         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1839         last_block = (i_size_read(inode) - 1) >> bbits;
1840
1841         /*
1842          * Get all the dirty buffers mapped to disk addresses and
1843          * handle any aliases from the underlying blockdev's mapping.
1844          */
1845         do {
1846                 if (block > last_block) {
1847                         /*
1848                          * mapped buffers outside i_size will occur, because
1849                          * this folio can be outside i_size when there is a
1850                          * truncate in progress.
1851                          */
1852                         /*
1853                          * The buffer was zeroed by block_write_full_page()
1854                          */
1855                         clear_buffer_dirty(bh);
1856                         set_buffer_uptodate(bh);
1857                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1858                            buffer_dirty(bh)) {
1859                         WARN_ON(bh->b_size != blocksize);
1860                         err = get_block(inode, block, bh, 1);
1861                         if (err)
1862                                 goto recover;
1863                         clear_buffer_delay(bh);
1864                         if (buffer_new(bh)) {
1865                                 /* blockdev mappings never come here */
1866                                 clear_buffer_new(bh);
1867                                 clean_bdev_bh_alias(bh);
1868                         }
1869                 }
1870                 bh = bh->b_this_page;
1871                 block++;
1872         } while (bh != head);
1873
1874         do {
1875                 if (!buffer_mapped(bh))
1876                         continue;
1877                 /*
1878                  * If it's a fully non-blocking write attempt and we cannot
1879                  * lock the buffer then redirty the folio.  Note that this can
1880                  * potentially cause a busy-wait loop from writeback threads
1881                  * and kswapd activity, but those code paths have their own
1882                  * higher-level throttling.
1883                  */
1884                 if (wbc->sync_mode != WB_SYNC_NONE) {
1885                         lock_buffer(bh);
1886                 } else if (!trylock_buffer(bh)) {
1887                         folio_redirty_for_writepage(wbc, folio);
1888                         continue;
1889                 }
1890                 if (test_clear_buffer_dirty(bh)) {
1891                         mark_buffer_async_write_endio(bh, handler);
1892                 } else {
1893                         unlock_buffer(bh);
1894                 }
1895         } while ((bh = bh->b_this_page) != head);
1896
1897         /*
1898          * The folio and its buffers are protected by the writeback flag,
1899          * so we can drop the bh refcounts early.
1900          */
1901         BUG_ON(folio_test_writeback(folio));
1902         folio_start_writeback(folio);
1903
1904         do {
1905                 struct buffer_head *next = bh->b_this_page;
1906                 if (buffer_async_write(bh)) {
1907                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1908                         nr_underway++;
1909                 }
1910                 bh = next;
1911         } while (bh != head);
1912         folio_unlock(folio);
1913
1914         err = 0;
1915 done:
1916         if (nr_underway == 0) {
1917                 /*
1918                  * The folio was marked dirty, but the buffers were
1919                  * clean.  Someone wrote them back by hand with
1920                  * write_dirty_buffer/submit_bh.  A rare case.
1921                  */
1922                 folio_end_writeback(folio);
1923
1924                 /*
1925                  * The folio and buffer_heads can be released at any time from
1926                  * here on.
1927                  */
1928         }
1929         return err;
1930
1931 recover:
1932         /*
1933          * ENOSPC, or some other error.  We may already have added some
1934          * blocks to the file, so we need to write these out to avoid
1935          * exposing stale data.
1936          * The folio is currently locked and not marked for writeback
1937          */
1938         bh = head;
1939         /* Recovery: lock and submit the mapped buffers */
1940         do {
1941                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1942                     !buffer_delay(bh)) {
1943                         lock_buffer(bh);
1944                         mark_buffer_async_write_endio(bh, handler);
1945                 } else {
1946                         /*
1947                          * The buffer may have been set dirty during
1948                          * attachment to a dirty folio.
1949                          */
1950                         clear_buffer_dirty(bh);
1951                 }
1952         } while ((bh = bh->b_this_page) != head);
1953         folio_set_error(folio);
1954         BUG_ON(folio_test_writeback(folio));
1955         mapping_set_error(folio->mapping, err);
1956         folio_start_writeback(folio);
1957         do {
1958                 struct buffer_head *next = bh->b_this_page;
1959                 if (buffer_async_write(bh)) {
1960                         clear_buffer_dirty(bh);
1961                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1962                         nr_underway++;
1963                 }
1964                 bh = next;
1965         } while (bh != head);
1966         folio_unlock(folio);
1967         goto done;
1968 }
1969 EXPORT_SYMBOL(__block_write_full_folio);
1970
1971 /*
1972  * If a folio has any new buffers, zero them out here, and mark them uptodate
1973  * and dirty so they'll be written out (in order to prevent uninitialised
1974  * block data from leaking). And clear the new bit.
1975  */
1976 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1977 {
1978         size_t block_start, block_end;
1979         struct buffer_head *head, *bh;
1980
1981         BUG_ON(!folio_test_locked(folio));
1982         head = folio_buffers(folio);
1983         if (!head)
1984                 return;
1985
1986         bh = head;
1987         block_start = 0;
1988         do {
1989                 block_end = block_start + bh->b_size;
1990
1991                 if (buffer_new(bh)) {
1992                         if (block_end > from && block_start < to) {
1993                                 if (!folio_test_uptodate(folio)) {
1994                                         size_t start, xend;
1995
1996                                         start = max(from, block_start);
1997                                         xend = min(to, block_end);
1998
1999                                         folio_zero_segment(folio, start, xend);
2000                                         set_buffer_uptodate(bh);
2001                                 }
2002
2003                                 clear_buffer_new(bh);
2004                                 mark_buffer_dirty(bh);
2005                         }
2006                 }
2007
2008                 block_start = block_end;
2009                 bh = bh->b_this_page;
2010         } while (bh != head);
2011 }
2012 EXPORT_SYMBOL(folio_zero_new_buffers);
2013
2014 static int
2015 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2016                 const struct iomap *iomap)
2017 {
2018         loff_t offset = block << inode->i_blkbits;
2019
2020         bh->b_bdev = iomap->bdev;
2021
2022         /*
2023          * Block points to offset in file we need to map, iomap contains
2024          * the offset at which the map starts. If the map ends before the
2025          * current block, then do not map the buffer and let the caller
2026          * handle it.
2027          */
2028         if (offset >= iomap->offset + iomap->length)
2029                 return -EIO;
2030
2031         switch (iomap->type) {
2032         case IOMAP_HOLE:
2033                 /*
2034                  * If the buffer is not up to date or beyond the current EOF,
2035                  * we need to mark it as new to ensure sub-block zeroing is
2036                  * executed if necessary.
2037                  */
2038                 if (!buffer_uptodate(bh) ||
2039                     (offset >= i_size_read(inode)))
2040                         set_buffer_new(bh);
2041                 return 0;
2042         case IOMAP_DELALLOC:
2043                 if (!buffer_uptodate(bh) ||
2044                     (offset >= i_size_read(inode)))
2045                         set_buffer_new(bh);
2046                 set_buffer_uptodate(bh);
2047                 set_buffer_mapped(bh);
2048                 set_buffer_delay(bh);
2049                 return 0;
2050         case IOMAP_UNWRITTEN:
2051                 /*
2052                  * For unwritten regions, we always need to ensure that regions
2053                  * in the block we are not writing to are zeroed. Mark the
2054                  * buffer as new to ensure this.
2055                  */
2056                 set_buffer_new(bh);
2057                 set_buffer_unwritten(bh);
2058                 fallthrough;
2059         case IOMAP_MAPPED:
2060                 if ((iomap->flags & IOMAP_F_NEW) ||
2061                     offset >= i_size_read(inode)) {
2062                         /*
2063                          * This can happen if truncating the block device races
2064                          * with the check in the caller as i_size updates on
2065                          * block devices aren't synchronized by i_rwsem for
2066                          * block devices.
2067                          */
2068                         if (S_ISBLK(inode->i_mode))
2069                                 return -EIO;
2070                         set_buffer_new(bh);
2071                 }
2072                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2073                                 inode->i_blkbits;
2074                 set_buffer_mapped(bh);
2075                 return 0;
2076         default:
2077                 WARN_ON_ONCE(1);
2078                 return -EIO;
2079         }
2080 }
2081
2082 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2083                 get_block_t *get_block, const struct iomap *iomap)
2084 {
2085         unsigned from = pos & (PAGE_SIZE - 1);
2086         unsigned to = from + len;
2087         struct inode *inode = folio->mapping->host;
2088         unsigned block_start, block_end;
2089         sector_t block;
2090         int err = 0;
2091         unsigned blocksize, bbits;
2092         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2093
2094         BUG_ON(!folio_test_locked(folio));
2095         BUG_ON(from > PAGE_SIZE);
2096         BUG_ON(to > PAGE_SIZE);
2097         BUG_ON(from > to);
2098
2099         head = folio_create_buffers(folio, inode, 0);
2100         blocksize = head->b_size;
2101         bbits = block_size_bits(blocksize);
2102
2103         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2104
2105         for(bh = head, block_start = 0; bh != head || !block_start;
2106             block++, block_start=block_end, bh = bh->b_this_page) {
2107                 block_end = block_start + blocksize;
2108                 if (block_end <= from || block_start >= to) {
2109                         if (folio_test_uptodate(folio)) {
2110                                 if (!buffer_uptodate(bh))
2111                                         set_buffer_uptodate(bh);
2112                         }
2113                         continue;
2114                 }
2115                 if (buffer_new(bh))
2116                         clear_buffer_new(bh);
2117                 if (!buffer_mapped(bh)) {
2118                         WARN_ON(bh->b_size != blocksize);
2119                         if (get_block)
2120                                 err = get_block(inode, block, bh, 1);
2121                         else
2122                                 err = iomap_to_bh(inode, block, bh, iomap);
2123                         if (err)
2124                                 break;
2125
2126                         if (buffer_new(bh)) {
2127                                 clean_bdev_bh_alias(bh);
2128                                 if (folio_test_uptodate(folio)) {
2129                                         clear_buffer_new(bh);
2130                                         set_buffer_uptodate(bh);
2131                                         mark_buffer_dirty(bh);
2132                                         continue;
2133                                 }
2134                                 if (block_end > to || block_start < from)
2135                                         folio_zero_segments(folio,
2136                                                 to, block_end,
2137                                                 block_start, from);
2138                                 continue;
2139                         }
2140                 }
2141                 if (folio_test_uptodate(folio)) {
2142                         if (!buffer_uptodate(bh))
2143                                 set_buffer_uptodate(bh);
2144                         continue; 
2145                 }
2146                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2147                     !buffer_unwritten(bh) &&
2148                      (block_start < from || block_end > to)) {
2149                         bh_read_nowait(bh, 0);
2150                         *wait_bh++=bh;
2151                 }
2152         }
2153         /*
2154          * If we issued read requests - let them complete.
2155          */
2156         while(wait_bh > wait) {
2157                 wait_on_buffer(*--wait_bh);
2158                 if (!buffer_uptodate(*wait_bh))
2159                         err = -EIO;
2160         }
2161         if (unlikely(err))
2162                 folio_zero_new_buffers(folio, from, to);
2163         return err;
2164 }
2165
2166 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2167                 get_block_t *get_block)
2168 {
2169         return __block_write_begin_int(page_folio(page), pos, len, get_block,
2170                                        NULL);
2171 }
2172 EXPORT_SYMBOL(__block_write_begin);
2173
2174 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2175 {
2176         size_t block_start, block_end;
2177         bool partial = false;
2178         unsigned blocksize;
2179         struct buffer_head *bh, *head;
2180
2181         bh = head = folio_buffers(folio);
2182         blocksize = bh->b_size;
2183
2184         block_start = 0;
2185         do {
2186                 block_end = block_start + blocksize;
2187                 if (block_end <= from || block_start >= to) {
2188                         if (!buffer_uptodate(bh))
2189                                 partial = true;
2190                 } else {
2191                         set_buffer_uptodate(bh);
2192                         mark_buffer_dirty(bh);
2193                 }
2194                 if (buffer_new(bh))
2195                         clear_buffer_new(bh);
2196
2197                 block_start = block_end;
2198                 bh = bh->b_this_page;
2199         } while (bh != head);
2200
2201         /*
2202          * If this is a partial write which happened to make all buffers
2203          * uptodate then we can optimize away a bogus read_folio() for
2204          * the next read(). Here we 'discover' whether the folio went
2205          * uptodate as a result of this (potentially partial) write.
2206          */
2207         if (!partial)
2208                 folio_mark_uptodate(folio);
2209 }
2210
2211 /*
2212  * block_write_begin takes care of the basic task of block allocation and
2213  * bringing partial write blocks uptodate first.
2214  *
2215  * The filesystem needs to handle block truncation upon failure.
2216  */
2217 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2218                 struct page **pagep, get_block_t *get_block)
2219 {
2220         pgoff_t index = pos >> PAGE_SHIFT;
2221         struct page *page;
2222         int status;
2223
2224         page = grab_cache_page_write_begin(mapping, index);
2225         if (!page)
2226                 return -ENOMEM;
2227
2228         status = __block_write_begin(page, pos, len, get_block);
2229         if (unlikely(status)) {
2230                 unlock_page(page);
2231                 put_page(page);
2232                 page = NULL;
2233         }
2234
2235         *pagep = page;
2236         return status;
2237 }
2238 EXPORT_SYMBOL(block_write_begin);
2239
2240 int block_write_end(struct file *file, struct address_space *mapping,
2241                         loff_t pos, unsigned len, unsigned copied,
2242                         struct page *page, void *fsdata)
2243 {
2244         struct folio *folio = page_folio(page);
2245         size_t start = pos - folio_pos(folio);
2246
2247         if (unlikely(copied < len)) {
2248                 /*
2249                  * The buffers that were written will now be uptodate, so
2250                  * we don't have to worry about a read_folio reading them
2251                  * and overwriting a partial write. However if we have
2252                  * encountered a short write and only partially written
2253                  * into a buffer, it will not be marked uptodate, so a
2254                  * read_folio might come in and destroy our partial write.
2255                  *
2256                  * Do the simplest thing, and just treat any short write to a
2257                  * non uptodate folio as a zero-length write, and force the
2258                  * caller to redo the whole thing.
2259                  */
2260                 if (!folio_test_uptodate(folio))
2261                         copied = 0;
2262
2263                 folio_zero_new_buffers(folio, start+copied, start+len);
2264         }
2265         flush_dcache_folio(folio);
2266
2267         /* This could be a short (even 0-length) commit */
2268         __block_commit_write(folio, start, start + copied);
2269
2270         return copied;
2271 }
2272 EXPORT_SYMBOL(block_write_end);
2273
2274 int generic_write_end(struct file *file, struct address_space *mapping,
2275                         loff_t pos, unsigned len, unsigned copied,
2276                         struct page *page, void *fsdata)
2277 {
2278         struct inode *inode = mapping->host;
2279         loff_t old_size = inode->i_size;
2280         bool i_size_changed = false;
2281
2282         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2283
2284         /*
2285          * No need to use i_size_read() here, the i_size cannot change under us
2286          * because we hold i_rwsem.
2287          *
2288          * But it's important to update i_size while still holding page lock:
2289          * page writeout could otherwise come in and zero beyond i_size.
2290          */
2291         if (pos + copied > inode->i_size) {
2292                 i_size_write(inode, pos + copied);
2293                 i_size_changed = true;
2294         }
2295
2296         unlock_page(page);
2297         put_page(page);
2298
2299         if (old_size < pos)
2300                 pagecache_isize_extended(inode, old_size, pos);
2301         /*
2302          * Don't mark the inode dirty under page lock. First, it unnecessarily
2303          * makes the holding time of page lock longer. Second, it forces lock
2304          * ordering of page lock and transaction start for journaling
2305          * filesystems.
2306          */
2307         if (i_size_changed)
2308                 mark_inode_dirty(inode);
2309         return copied;
2310 }
2311 EXPORT_SYMBOL(generic_write_end);
2312
2313 /*
2314  * block_is_partially_uptodate checks whether buffers within a folio are
2315  * uptodate or not.
2316  *
2317  * Returns true if all buffers which correspond to the specified part
2318  * of the folio are uptodate.
2319  */
2320 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2321 {
2322         unsigned block_start, block_end, blocksize;
2323         unsigned to;
2324         struct buffer_head *bh, *head;
2325         bool ret = true;
2326
2327         head = folio_buffers(folio);
2328         if (!head)
2329                 return false;
2330         blocksize = head->b_size;
2331         to = min_t(unsigned, folio_size(folio) - from, count);
2332         to = from + to;
2333         if (from < blocksize && to > folio_size(folio) - blocksize)
2334                 return false;
2335
2336         bh = head;
2337         block_start = 0;
2338         do {
2339                 block_end = block_start + blocksize;
2340                 if (block_end > from && block_start < to) {
2341                         if (!buffer_uptodate(bh)) {
2342                                 ret = false;
2343                                 break;
2344                         }
2345                         if (block_end >= to)
2346                                 break;
2347                 }
2348                 block_start = block_end;
2349                 bh = bh->b_this_page;
2350         } while (bh != head);
2351
2352         return ret;
2353 }
2354 EXPORT_SYMBOL(block_is_partially_uptodate);
2355
2356 /*
2357  * Generic "read_folio" function for block devices that have the normal
2358  * get_block functionality. This is most of the block device filesystems.
2359  * Reads the folio asynchronously --- the unlock_buffer() and
2360  * set/clear_buffer_uptodate() functions propagate buffer state into the
2361  * folio once IO has completed.
2362  */
2363 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2364 {
2365         struct inode *inode = folio->mapping->host;
2366         sector_t iblock, lblock;
2367         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2368         unsigned int blocksize, bbits;
2369         int nr, i;
2370         int fully_mapped = 1;
2371         bool page_error = false;
2372         loff_t limit = i_size_read(inode);
2373
2374         /* This is needed for ext4. */
2375         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2376                 limit = inode->i_sb->s_maxbytes;
2377
2378         VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2379
2380         head = folio_create_buffers(folio, inode, 0);
2381         blocksize = head->b_size;
2382         bbits = block_size_bits(blocksize);
2383
2384         iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2385         lblock = (limit+blocksize-1) >> bbits;
2386         bh = head;
2387         nr = 0;
2388         i = 0;
2389
2390         do {
2391                 if (buffer_uptodate(bh))
2392                         continue;
2393
2394                 if (!buffer_mapped(bh)) {
2395                         int err = 0;
2396
2397                         fully_mapped = 0;
2398                         if (iblock < lblock) {
2399                                 WARN_ON(bh->b_size != blocksize);
2400                                 err = get_block(inode, iblock, bh, 0);
2401                                 if (err) {
2402                                         folio_set_error(folio);
2403                                         page_error = true;
2404                                 }
2405                         }
2406                         if (!buffer_mapped(bh)) {
2407                                 folio_zero_range(folio, i * blocksize,
2408                                                 blocksize);
2409                                 if (!err)
2410                                         set_buffer_uptodate(bh);
2411                                 continue;
2412                         }
2413                         /*
2414                          * get_block() might have updated the buffer
2415                          * synchronously
2416                          */
2417                         if (buffer_uptodate(bh))
2418                                 continue;
2419                 }
2420                 arr[nr++] = bh;
2421         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2422
2423         if (fully_mapped)
2424                 folio_set_mappedtodisk(folio);
2425
2426         if (!nr) {
2427                 /*
2428                  * All buffers are uptodate - we can set the folio uptodate
2429                  * as well. But not if get_block() returned an error.
2430                  */
2431                 if (!page_error)
2432                         folio_mark_uptodate(folio);
2433                 folio_unlock(folio);
2434                 return 0;
2435         }
2436
2437         /* Stage two: lock the buffers */
2438         for (i = 0; i < nr; i++) {
2439                 bh = arr[i];
2440                 lock_buffer(bh);
2441                 mark_buffer_async_read(bh);
2442         }
2443
2444         /*
2445          * Stage 3: start the IO.  Check for uptodateness
2446          * inside the buffer lock in case another process reading
2447          * the underlying blockdev brought it uptodate (the sct fix).
2448          */
2449         for (i = 0; i < nr; i++) {
2450                 bh = arr[i];
2451                 if (buffer_uptodate(bh))
2452                         end_buffer_async_read(bh, 1);
2453                 else
2454                         submit_bh(REQ_OP_READ, bh);
2455         }
2456         return 0;
2457 }
2458 EXPORT_SYMBOL(block_read_full_folio);
2459
2460 /* utility function for filesystems that need to do work on expanding
2461  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2462  * deal with the hole.  
2463  */
2464 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2465 {
2466         struct address_space *mapping = inode->i_mapping;
2467         const struct address_space_operations *aops = mapping->a_ops;
2468         struct page *page;
2469         void *fsdata = NULL;
2470         int err;
2471
2472         err = inode_newsize_ok(inode, size);
2473         if (err)
2474                 goto out;
2475
2476         err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2477         if (err)
2478                 goto out;
2479
2480         err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2481         BUG_ON(err > 0);
2482
2483 out:
2484         return err;
2485 }
2486 EXPORT_SYMBOL(generic_cont_expand_simple);
2487
2488 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2489                             loff_t pos, loff_t *bytes)
2490 {
2491         struct inode *inode = mapping->host;
2492         const struct address_space_operations *aops = mapping->a_ops;
2493         unsigned int blocksize = i_blocksize(inode);
2494         struct page *page;
2495         void *fsdata = NULL;
2496         pgoff_t index, curidx;
2497         loff_t curpos;
2498         unsigned zerofrom, offset, len;
2499         int err = 0;
2500
2501         index = pos >> PAGE_SHIFT;
2502         offset = pos & ~PAGE_MASK;
2503
2504         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2505                 zerofrom = curpos & ~PAGE_MASK;
2506                 if (zerofrom & (blocksize-1)) {
2507                         *bytes |= (blocksize-1);
2508                         (*bytes)++;
2509                 }
2510                 len = PAGE_SIZE - zerofrom;
2511
2512                 err = aops->write_begin(file, mapping, curpos, len,
2513                                             &page, &fsdata);
2514                 if (err)
2515                         goto out;
2516                 zero_user(page, zerofrom, len);
2517                 err = aops->write_end(file, mapping, curpos, len, len,
2518                                                 page, fsdata);
2519                 if (err < 0)
2520                         goto out;
2521                 BUG_ON(err != len);
2522                 err = 0;
2523
2524                 balance_dirty_pages_ratelimited(mapping);
2525
2526                 if (fatal_signal_pending(current)) {
2527                         err = -EINTR;
2528                         goto out;
2529                 }
2530         }
2531
2532         /* page covers the boundary, find the boundary offset */
2533         if (index == curidx) {
2534                 zerofrom = curpos & ~PAGE_MASK;
2535                 /* if we will expand the thing last block will be filled */
2536                 if (offset <= zerofrom) {
2537                         goto out;
2538                 }
2539                 if (zerofrom & (blocksize-1)) {
2540                         *bytes |= (blocksize-1);
2541                         (*bytes)++;
2542                 }
2543                 len = offset - zerofrom;
2544
2545                 err = aops->write_begin(file, mapping, curpos, len,
2546                                             &page, &fsdata);
2547                 if (err)
2548                         goto out;
2549                 zero_user(page, zerofrom, len);
2550                 err = aops->write_end(file, mapping, curpos, len, len,
2551                                                 page, fsdata);
2552                 if (err < 0)
2553                         goto out;
2554                 BUG_ON(err != len);
2555                 err = 0;
2556         }
2557 out:
2558         return err;
2559 }
2560
2561 /*
2562  * For moronic filesystems that do not allow holes in file.
2563  * We may have to extend the file.
2564  */
2565 int cont_write_begin(struct file *file, struct address_space *mapping,
2566                         loff_t pos, unsigned len,
2567                         struct page **pagep, void **fsdata,
2568                         get_block_t *get_block, loff_t *bytes)
2569 {
2570         struct inode *inode = mapping->host;
2571         unsigned int blocksize = i_blocksize(inode);
2572         unsigned int zerofrom;
2573         int err;
2574
2575         err = cont_expand_zero(file, mapping, pos, bytes);
2576         if (err)
2577                 return err;
2578
2579         zerofrom = *bytes & ~PAGE_MASK;
2580         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2581                 *bytes |= (blocksize-1);
2582                 (*bytes)++;
2583         }
2584
2585         return block_write_begin(mapping, pos, len, pagep, get_block);
2586 }
2587 EXPORT_SYMBOL(cont_write_begin);
2588
2589 void block_commit_write(struct page *page, unsigned from, unsigned to)
2590 {
2591         struct folio *folio = page_folio(page);
2592         __block_commit_write(folio, from, to);
2593 }
2594 EXPORT_SYMBOL(block_commit_write);
2595
2596 /*
2597  * block_page_mkwrite() is not allowed to change the file size as it gets
2598  * called from a page fault handler when a page is first dirtied. Hence we must
2599  * be careful to check for EOF conditions here. We set the page up correctly
2600  * for a written page which means we get ENOSPC checking when writing into
2601  * holes and correct delalloc and unwritten extent mapping on filesystems that
2602  * support these features.
2603  *
2604  * We are not allowed to take the i_mutex here so we have to play games to
2605  * protect against truncate races as the page could now be beyond EOF.  Because
2606  * truncate writes the inode size before removing pages, once we have the
2607  * page lock we can determine safely if the page is beyond EOF. If it is not
2608  * beyond EOF, then the page is guaranteed safe against truncation until we
2609  * unlock the page.
2610  *
2611  * Direct callers of this function should protect against filesystem freezing
2612  * using sb_start_pagefault() - sb_end_pagefault() functions.
2613  */
2614 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2615                          get_block_t get_block)
2616 {
2617         struct folio *folio = page_folio(vmf->page);
2618         struct inode *inode = file_inode(vma->vm_file);
2619         unsigned long end;
2620         loff_t size;
2621         int ret;
2622
2623         folio_lock(folio);
2624         size = i_size_read(inode);
2625         if ((folio->mapping != inode->i_mapping) ||
2626             (folio_pos(folio) >= size)) {
2627                 /* We overload EFAULT to mean page got truncated */
2628                 ret = -EFAULT;
2629                 goto out_unlock;
2630         }
2631
2632         end = folio_size(folio);
2633         /* folio is wholly or partially inside EOF */
2634         if (folio_pos(folio) + end > size)
2635                 end = size - folio_pos(folio);
2636
2637         ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2638         if (unlikely(ret))
2639                 goto out_unlock;
2640
2641         __block_commit_write(folio, 0, end);
2642
2643         folio_mark_dirty(folio);
2644         folio_wait_stable(folio);
2645         return 0;
2646 out_unlock:
2647         folio_unlock(folio);
2648         return ret;
2649 }
2650 EXPORT_SYMBOL(block_page_mkwrite);
2651
2652 int block_truncate_page(struct address_space *mapping,
2653                         loff_t from, get_block_t *get_block)
2654 {
2655         pgoff_t index = from >> PAGE_SHIFT;
2656         unsigned blocksize;
2657         sector_t iblock;
2658         size_t offset, length, pos;
2659         struct inode *inode = mapping->host;
2660         struct folio *folio;
2661         struct buffer_head *bh;
2662         int err = 0;
2663
2664         blocksize = i_blocksize(inode);
2665         length = from & (blocksize - 1);
2666
2667         /* Block boundary? Nothing to do */
2668         if (!length)
2669                 return 0;
2670
2671         length = blocksize - length;
2672         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2673         
2674         folio = filemap_grab_folio(mapping, index);
2675         if (IS_ERR(folio))
2676                 return PTR_ERR(folio);
2677
2678         bh = folio_buffers(folio);
2679         if (!bh) {
2680                 folio_create_empty_buffers(folio, blocksize, 0);
2681                 bh = folio_buffers(folio);
2682         }
2683
2684         /* Find the buffer that contains "offset" */
2685         offset = offset_in_folio(folio, from);
2686         pos = blocksize;
2687         while (offset >= pos) {
2688                 bh = bh->b_this_page;
2689                 iblock++;
2690                 pos += blocksize;
2691         }
2692
2693         if (!buffer_mapped(bh)) {
2694                 WARN_ON(bh->b_size != blocksize);
2695                 err = get_block(inode, iblock, bh, 0);
2696                 if (err)
2697                         goto unlock;
2698                 /* unmapped? It's a hole - nothing to do */
2699                 if (!buffer_mapped(bh))
2700                         goto unlock;
2701         }
2702
2703         /* Ok, it's mapped. Make sure it's up-to-date */
2704         if (folio_test_uptodate(folio))
2705                 set_buffer_uptodate(bh);
2706
2707         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2708                 err = bh_read(bh, 0);
2709                 /* Uhhuh. Read error. Complain and punt. */
2710                 if (err < 0)
2711                         goto unlock;
2712         }
2713
2714         folio_zero_range(folio, offset, length);
2715         mark_buffer_dirty(bh);
2716
2717 unlock:
2718         folio_unlock(folio);
2719         folio_put(folio);
2720
2721         return err;
2722 }
2723 EXPORT_SYMBOL(block_truncate_page);
2724
2725 /*
2726  * The generic ->writepage function for buffer-backed address_spaces
2727  */
2728 int block_write_full_page(struct page *page, get_block_t *get_block,
2729                         struct writeback_control *wbc)
2730 {
2731         struct folio *folio = page_folio(page);
2732         struct inode * const inode = folio->mapping->host;
2733         loff_t i_size = i_size_read(inode);
2734
2735         /* Is the folio fully inside i_size? */
2736         if (folio_pos(folio) + folio_size(folio) <= i_size)
2737                 return __block_write_full_folio(inode, folio, get_block, wbc,
2738                                                end_buffer_async_write);
2739
2740         /* Is the folio fully outside i_size? (truncate in progress) */
2741         if (folio_pos(folio) >= i_size) {
2742                 folio_unlock(folio);
2743                 return 0; /* don't care */
2744         }
2745
2746         /*
2747          * The folio straddles i_size.  It must be zeroed out on each and every
2748          * writepage invocation because it may be mmapped.  "A file is mapped
2749          * in multiples of the page size.  For a file that is not a multiple of
2750          * the page size, the remaining memory is zeroed when mapped, and
2751          * writes to that region are not written out to the file."
2752          */
2753         folio_zero_segment(folio, offset_in_folio(folio, i_size),
2754                         folio_size(folio));
2755         return __block_write_full_folio(inode, folio, get_block, wbc,
2756                         end_buffer_async_write);
2757 }
2758 EXPORT_SYMBOL(block_write_full_page);
2759
2760 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2761                             get_block_t *get_block)
2762 {
2763         struct inode *inode = mapping->host;
2764         struct buffer_head tmp = {
2765                 .b_size = i_blocksize(inode),
2766         };
2767
2768         get_block(inode, block, &tmp, 0);
2769         return tmp.b_blocknr;
2770 }
2771 EXPORT_SYMBOL(generic_block_bmap);
2772
2773 static void end_bio_bh_io_sync(struct bio *bio)
2774 {
2775         struct buffer_head *bh = bio->bi_private;
2776
2777         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2778                 set_bit(BH_Quiet, &bh->b_state);
2779
2780         bh->b_end_io(bh, !bio->bi_status);
2781         bio_put(bio);
2782 }
2783
2784 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2785                           struct writeback_control *wbc)
2786 {
2787         const enum req_op op = opf & REQ_OP_MASK;
2788         struct bio *bio;
2789
2790         BUG_ON(!buffer_locked(bh));
2791         BUG_ON(!buffer_mapped(bh));
2792         BUG_ON(!bh->b_end_io);
2793         BUG_ON(buffer_delay(bh));
2794         BUG_ON(buffer_unwritten(bh));
2795
2796         /*
2797          * Only clear out a write error when rewriting
2798          */
2799         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2800                 clear_buffer_write_io_error(bh);
2801
2802         if (buffer_meta(bh))
2803                 opf |= REQ_META;
2804         if (buffer_prio(bh))
2805                 opf |= REQ_PRIO;
2806
2807         bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2808
2809         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2810
2811         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2812
2813         __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2814
2815         bio->bi_end_io = end_bio_bh_io_sync;
2816         bio->bi_private = bh;
2817
2818         /* Take care of bh's that straddle the end of the device */
2819         guard_bio_eod(bio);
2820
2821         if (wbc) {
2822                 wbc_init_bio(wbc, bio);
2823                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2824         }
2825
2826         submit_bio(bio);
2827 }
2828
2829 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2830 {
2831         submit_bh_wbc(opf, bh, NULL);
2832 }
2833 EXPORT_SYMBOL(submit_bh);
2834
2835 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2836 {
2837         lock_buffer(bh);
2838         if (!test_clear_buffer_dirty(bh)) {
2839                 unlock_buffer(bh);
2840                 return;
2841         }
2842         bh->b_end_io = end_buffer_write_sync;
2843         get_bh(bh);
2844         submit_bh(REQ_OP_WRITE | op_flags, bh);
2845 }
2846 EXPORT_SYMBOL(write_dirty_buffer);
2847
2848 /*
2849  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2850  * and then start new I/O and then wait upon it.  The caller must have a ref on
2851  * the buffer_head.
2852  */
2853 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2854 {
2855         WARN_ON(atomic_read(&bh->b_count) < 1);
2856         lock_buffer(bh);
2857         if (test_clear_buffer_dirty(bh)) {
2858                 /*
2859                  * The bh should be mapped, but it might not be if the
2860                  * device was hot-removed. Not much we can do but fail the I/O.
2861                  */
2862                 if (!buffer_mapped(bh)) {
2863                         unlock_buffer(bh);
2864                         return -EIO;
2865                 }
2866
2867                 get_bh(bh);
2868                 bh->b_end_io = end_buffer_write_sync;
2869                 submit_bh(REQ_OP_WRITE | op_flags, bh);
2870                 wait_on_buffer(bh);
2871                 if (!buffer_uptodate(bh))
2872                         return -EIO;
2873         } else {
2874                 unlock_buffer(bh);
2875         }
2876         return 0;
2877 }
2878 EXPORT_SYMBOL(__sync_dirty_buffer);
2879
2880 int sync_dirty_buffer(struct buffer_head *bh)
2881 {
2882         return __sync_dirty_buffer(bh, REQ_SYNC);
2883 }
2884 EXPORT_SYMBOL(sync_dirty_buffer);
2885
2886 /*
2887  * try_to_free_buffers() checks if all the buffers on this particular folio
2888  * are unused, and releases them if so.
2889  *
2890  * Exclusion against try_to_free_buffers may be obtained by either
2891  * locking the folio or by holding its mapping's private_lock.
2892  *
2893  * If the folio is dirty but all the buffers are clean then we need to
2894  * be sure to mark the folio clean as well.  This is because the folio
2895  * may be against a block device, and a later reattachment of buffers
2896  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2897  * filesystem data on the same device.
2898  *
2899  * The same applies to regular filesystem folios: if all the buffers are
2900  * clean then we set the folio clean and proceed.  To do that, we require
2901  * total exclusion from block_dirty_folio().  That is obtained with
2902  * private_lock.
2903  *
2904  * try_to_free_buffers() is non-blocking.
2905  */
2906 static inline int buffer_busy(struct buffer_head *bh)
2907 {
2908         return atomic_read(&bh->b_count) |
2909                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2910 }
2911
2912 static bool
2913 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2914 {
2915         struct buffer_head *head = folio_buffers(folio);
2916         struct buffer_head *bh;
2917
2918         bh = head;
2919         do {
2920                 if (buffer_busy(bh))
2921                         goto failed;
2922                 bh = bh->b_this_page;
2923         } while (bh != head);
2924
2925         do {
2926                 struct buffer_head *next = bh->b_this_page;
2927
2928                 if (bh->b_assoc_map)
2929                         __remove_assoc_queue(bh);
2930                 bh = next;
2931         } while (bh != head);
2932         *buffers_to_free = head;
2933         folio_detach_private(folio);
2934         return true;
2935 failed:
2936         return false;
2937 }
2938
2939 bool try_to_free_buffers(struct folio *folio)
2940 {
2941         struct address_space * const mapping = folio->mapping;
2942         struct buffer_head *buffers_to_free = NULL;
2943         bool ret = 0;
2944
2945         BUG_ON(!folio_test_locked(folio));
2946         if (folio_test_writeback(folio))
2947                 return false;
2948
2949         if (mapping == NULL) {          /* can this still happen? */
2950                 ret = drop_buffers(folio, &buffers_to_free);
2951                 goto out;
2952         }
2953
2954         spin_lock(&mapping->private_lock);
2955         ret = drop_buffers(folio, &buffers_to_free);
2956
2957         /*
2958          * If the filesystem writes its buffers by hand (eg ext3)
2959          * then we can have clean buffers against a dirty folio.  We
2960          * clean the folio here; otherwise the VM will never notice
2961          * that the filesystem did any IO at all.
2962          *
2963          * Also, during truncate, discard_buffer will have marked all
2964          * the folio's buffers clean.  We discover that here and clean
2965          * the folio also.
2966          *
2967          * private_lock must be held over this entire operation in order
2968          * to synchronise against block_dirty_folio and prevent the
2969          * dirty bit from being lost.
2970          */
2971         if (ret)
2972                 folio_cancel_dirty(folio);
2973         spin_unlock(&mapping->private_lock);
2974 out:
2975         if (buffers_to_free) {
2976                 struct buffer_head *bh = buffers_to_free;
2977
2978                 do {
2979                         struct buffer_head *next = bh->b_this_page;
2980                         free_buffer_head(bh);
2981                         bh = next;
2982                 } while (bh != buffers_to_free);
2983         }
2984         return ret;
2985 }
2986 EXPORT_SYMBOL(try_to_free_buffers);
2987
2988 /*
2989  * Buffer-head allocation
2990  */
2991 static struct kmem_cache *bh_cachep __read_mostly;
2992
2993 /*
2994  * Once the number of bh's in the machine exceeds this level, we start
2995  * stripping them in writeback.
2996  */
2997 static unsigned long max_buffer_heads;
2998
2999 int buffer_heads_over_limit;
3000
3001 struct bh_accounting {
3002         int nr;                 /* Number of live bh's */
3003         int ratelimit;          /* Limit cacheline bouncing */
3004 };
3005
3006 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3007
3008 static void recalc_bh_state(void)
3009 {
3010         int i;
3011         int tot = 0;
3012
3013         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3014                 return;
3015         __this_cpu_write(bh_accounting.ratelimit, 0);
3016         for_each_online_cpu(i)
3017                 tot += per_cpu(bh_accounting, i).nr;
3018         buffer_heads_over_limit = (tot > max_buffer_heads);
3019 }
3020
3021 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3022 {
3023         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3024         if (ret) {
3025                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3026                 spin_lock_init(&ret->b_uptodate_lock);
3027                 preempt_disable();
3028                 __this_cpu_inc(bh_accounting.nr);
3029                 recalc_bh_state();
3030                 preempt_enable();
3031         }
3032         return ret;
3033 }
3034 EXPORT_SYMBOL(alloc_buffer_head);
3035
3036 void free_buffer_head(struct buffer_head *bh)
3037 {
3038         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3039         kmem_cache_free(bh_cachep, bh);
3040         preempt_disable();
3041         __this_cpu_dec(bh_accounting.nr);
3042         recalc_bh_state();
3043         preempt_enable();
3044 }
3045 EXPORT_SYMBOL(free_buffer_head);
3046
3047 static int buffer_exit_cpu_dead(unsigned int cpu)
3048 {
3049         int i;
3050         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3051
3052         for (i = 0; i < BH_LRU_SIZE; i++) {
3053                 brelse(b->bhs[i]);
3054                 b->bhs[i] = NULL;
3055         }
3056         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3057         per_cpu(bh_accounting, cpu).nr = 0;
3058         return 0;
3059 }
3060
3061 /**
3062  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3063  * @bh: struct buffer_head
3064  *
3065  * Return true if the buffer is up-to-date and false,
3066  * with the buffer locked, if not.
3067  */
3068 int bh_uptodate_or_lock(struct buffer_head *bh)
3069 {
3070         if (!buffer_uptodate(bh)) {
3071                 lock_buffer(bh);
3072                 if (!buffer_uptodate(bh))
3073                         return 0;
3074                 unlock_buffer(bh);
3075         }
3076         return 1;
3077 }
3078 EXPORT_SYMBOL(bh_uptodate_or_lock);
3079
3080 /**
3081  * __bh_read - Submit read for a locked buffer
3082  * @bh: struct buffer_head
3083  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3084  * @wait: wait until reading finish
3085  *
3086  * Returns zero on success or don't wait, and -EIO on error.
3087  */
3088 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3089 {
3090         int ret = 0;
3091
3092         BUG_ON(!buffer_locked(bh));
3093
3094         get_bh(bh);
3095         bh->b_end_io = end_buffer_read_sync;
3096         submit_bh(REQ_OP_READ | op_flags, bh);
3097         if (wait) {
3098                 wait_on_buffer(bh);
3099                 if (!buffer_uptodate(bh))
3100                         ret = -EIO;
3101         }
3102         return ret;
3103 }
3104 EXPORT_SYMBOL(__bh_read);
3105
3106 /**
3107  * __bh_read_batch - Submit read for a batch of unlocked buffers
3108  * @nr: entry number of the buffer batch
3109  * @bhs: a batch of struct buffer_head
3110  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3111  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3112  *              buffer that cannot lock.
3113  *
3114  * Returns zero on success or don't wait, and -EIO on error.
3115  */
3116 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3117                      blk_opf_t op_flags, bool force_lock)
3118 {
3119         int i;
3120
3121         for (i = 0; i < nr; i++) {
3122                 struct buffer_head *bh = bhs[i];
3123
3124                 if (buffer_uptodate(bh))
3125                         continue;
3126
3127                 if (force_lock)
3128                         lock_buffer(bh);
3129                 else
3130                         if (!trylock_buffer(bh))
3131                                 continue;
3132
3133                 if (buffer_uptodate(bh)) {
3134                         unlock_buffer(bh);
3135                         continue;
3136                 }
3137
3138                 bh->b_end_io = end_buffer_read_sync;
3139                 get_bh(bh);
3140                 submit_bh(REQ_OP_READ | op_flags, bh);
3141         }
3142 }
3143 EXPORT_SYMBOL(__bh_read_batch);
3144
3145 void __init buffer_init(void)
3146 {
3147         unsigned long nrpages;
3148         int ret;
3149
3150         bh_cachep = kmem_cache_create("buffer_head",
3151                         sizeof(struct buffer_head), 0,
3152                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3153                                 SLAB_MEM_SPREAD),
3154                                 NULL);
3155
3156         /*
3157          * Limit the bh occupancy to 10% of ZONE_NORMAL
3158          */
3159         nrpages = (nr_free_buffer_pages() * 10) / 100;
3160         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3161         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3162                                         NULL, buffer_exit_cpu_dead);
3163         WARN_ON(ret < 0);
3164 }