btrfs: zoned: fix API misuse of zone finish waiting
[platform/kernel/linux-starfive.git] / fs / btrfs / zoned.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18
19 /* Maximum number of zones to report per blkdev_report_zones() call */
20 #define BTRFS_REPORT_NR_ZONES   4096
21 /* Invalid allocation pointer value for missing devices */
22 #define WP_MISSING_DEV ((u64)-1)
23 /* Pseudo write pointer value for conventional zone */
24 #define WP_CONVENTIONAL ((u64)-2)
25
26 /*
27  * Location of the first zone of superblock logging zone pairs.
28  *
29  * - primary superblock:    0B (zone 0)
30  * - first copy:          512G (zone starting at that offset)
31  * - second copy:           4T (zone starting at that offset)
32  */
33 #define BTRFS_SB_LOG_PRIMARY_OFFSET     (0ULL)
34 #define BTRFS_SB_LOG_FIRST_OFFSET       (512ULL * SZ_1G)
35 #define BTRFS_SB_LOG_SECOND_OFFSET      (4096ULL * SZ_1G)
36
37 #define BTRFS_SB_LOG_FIRST_SHIFT        const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
38 #define BTRFS_SB_LOG_SECOND_SHIFT       const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
39
40 /* Number of superblock log zones */
41 #define BTRFS_NR_SB_LOG_ZONES 2
42
43 /*
44  * Minimum of active zones we need:
45  *
46  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
47  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
48  * - 1 zone for tree-log dedicated block group
49  * - 1 zone for relocation
50  */
51 #define BTRFS_MIN_ACTIVE_ZONES          (BTRFS_SUPER_MIRROR_MAX + 5)
52
53 /*
54  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
55  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
56  * We do not expect the zone size to become larger than 8GiB or smaller than
57  * 4MiB in the near future.
58  */
59 #define BTRFS_MAX_ZONE_SIZE             SZ_8G
60 #define BTRFS_MIN_ZONE_SIZE             SZ_4M
61
62 #define SUPER_INFO_SECTORS      ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
63
64 static inline bool sb_zone_is_full(const struct blk_zone *zone)
65 {
66         return (zone->cond == BLK_ZONE_COND_FULL) ||
67                 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
68 }
69
70 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
71 {
72         struct blk_zone *zones = data;
73
74         memcpy(&zones[idx], zone, sizeof(*zone));
75
76         return 0;
77 }
78
79 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
80                             u64 *wp_ret)
81 {
82         bool empty[BTRFS_NR_SB_LOG_ZONES];
83         bool full[BTRFS_NR_SB_LOG_ZONES];
84         sector_t sector;
85         int i;
86
87         for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
88                 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
89                 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
90                 full[i] = sb_zone_is_full(&zones[i]);
91         }
92
93         /*
94          * Possible states of log buffer zones
95          *
96          *           Empty[0]  In use[0]  Full[0]
97          * Empty[1]         *          0        1
98          * In use[1]        x          x        1
99          * Full[1]          0          0        C
100          *
101          * Log position:
102          *   *: Special case, no superblock is written
103          *   0: Use write pointer of zones[0]
104          *   1: Use write pointer of zones[1]
105          *   C: Compare super blocks from zones[0] and zones[1], use the latest
106          *      one determined by generation
107          *   x: Invalid state
108          */
109
110         if (empty[0] && empty[1]) {
111                 /* Special case to distinguish no superblock to read */
112                 *wp_ret = zones[0].start << SECTOR_SHIFT;
113                 return -ENOENT;
114         } else if (full[0] && full[1]) {
115                 /* Compare two super blocks */
116                 struct address_space *mapping = bdev->bd_inode->i_mapping;
117                 struct page *page[BTRFS_NR_SB_LOG_ZONES];
118                 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
119                 int i;
120
121                 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
122                         u64 bytenr;
123
124                         bytenr = ((zones[i].start + zones[i].len)
125                                    << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
126
127                         page[i] = read_cache_page_gfp(mapping,
128                                         bytenr >> PAGE_SHIFT, GFP_NOFS);
129                         if (IS_ERR(page[i])) {
130                                 if (i == 1)
131                                         btrfs_release_disk_super(super[0]);
132                                 return PTR_ERR(page[i]);
133                         }
134                         super[i] = page_address(page[i]);
135                 }
136
137                 if (super[0]->generation > super[1]->generation)
138                         sector = zones[1].start;
139                 else
140                         sector = zones[0].start;
141
142                 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
143                         btrfs_release_disk_super(super[i]);
144         } else if (!full[0] && (empty[1] || full[1])) {
145                 sector = zones[0].wp;
146         } else if (full[0]) {
147                 sector = zones[1].wp;
148         } else {
149                 return -EUCLEAN;
150         }
151         *wp_ret = sector << SECTOR_SHIFT;
152         return 0;
153 }
154
155 /*
156  * Get the first zone number of the superblock mirror
157  */
158 static inline u32 sb_zone_number(int shift, int mirror)
159 {
160         u64 zone;
161
162         ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
163         switch (mirror) {
164         case 0: zone = 0; break;
165         case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
166         case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
167         }
168
169         ASSERT(zone <= U32_MAX);
170
171         return (u32)zone;
172 }
173
174 static inline sector_t zone_start_sector(u32 zone_number,
175                                          struct block_device *bdev)
176 {
177         return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
178 }
179
180 static inline u64 zone_start_physical(u32 zone_number,
181                                       struct btrfs_zoned_device_info *zone_info)
182 {
183         return (u64)zone_number << zone_info->zone_size_shift;
184 }
185
186 /*
187  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
188  * device into static sized chunks and fake a conventional zone on each of
189  * them.
190  */
191 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
192                                 struct blk_zone *zones, unsigned int nr_zones)
193 {
194         const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
195         sector_t bdev_size = bdev_nr_sectors(device->bdev);
196         unsigned int i;
197
198         pos >>= SECTOR_SHIFT;
199         for (i = 0; i < nr_zones; i++) {
200                 zones[i].start = i * zone_sectors + pos;
201                 zones[i].len = zone_sectors;
202                 zones[i].capacity = zone_sectors;
203                 zones[i].wp = zones[i].start + zone_sectors;
204                 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
205                 zones[i].cond = BLK_ZONE_COND_NOT_WP;
206
207                 if (zones[i].wp >= bdev_size) {
208                         i++;
209                         break;
210                 }
211         }
212
213         return i;
214 }
215
216 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
217                                struct blk_zone *zones, unsigned int *nr_zones)
218 {
219         struct btrfs_zoned_device_info *zinfo = device->zone_info;
220         u32 zno;
221         int ret;
222
223         if (!*nr_zones)
224                 return 0;
225
226         if (!bdev_is_zoned(device->bdev)) {
227                 ret = emulate_report_zones(device, pos, zones, *nr_zones);
228                 *nr_zones = ret;
229                 return 0;
230         }
231
232         /* Check cache */
233         if (zinfo->zone_cache) {
234                 unsigned int i;
235
236                 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
237                 zno = pos >> zinfo->zone_size_shift;
238                 /*
239                  * We cannot report zones beyond the zone end. So, it is OK to
240                  * cap *nr_zones to at the end.
241                  */
242                 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
243
244                 for (i = 0; i < *nr_zones; i++) {
245                         struct blk_zone *zone_info;
246
247                         zone_info = &zinfo->zone_cache[zno + i];
248                         if (!zone_info->len)
249                                 break;
250                 }
251
252                 if (i == *nr_zones) {
253                         /* Cache hit on all the zones */
254                         memcpy(zones, zinfo->zone_cache + zno,
255                                sizeof(*zinfo->zone_cache) * *nr_zones);
256                         return 0;
257                 }
258         }
259
260         ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
261                                   copy_zone_info_cb, zones);
262         if (ret < 0) {
263                 btrfs_err_in_rcu(device->fs_info,
264                                  "zoned: failed to read zone %llu on %s (devid %llu)",
265                                  pos, rcu_str_deref(device->name),
266                                  device->devid);
267                 return ret;
268         }
269         *nr_zones = ret;
270         if (!ret)
271                 return -EIO;
272
273         /* Populate cache */
274         if (zinfo->zone_cache)
275                 memcpy(zinfo->zone_cache + zno, zones,
276                        sizeof(*zinfo->zone_cache) * *nr_zones);
277
278         return 0;
279 }
280
281 /* The emulated zone size is determined from the size of device extent */
282 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
283 {
284         struct btrfs_path *path;
285         struct btrfs_root *root = fs_info->dev_root;
286         struct btrfs_key key;
287         struct extent_buffer *leaf;
288         struct btrfs_dev_extent *dext;
289         int ret = 0;
290
291         key.objectid = 1;
292         key.type = BTRFS_DEV_EXTENT_KEY;
293         key.offset = 0;
294
295         path = btrfs_alloc_path();
296         if (!path)
297                 return -ENOMEM;
298
299         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
300         if (ret < 0)
301                 goto out;
302
303         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
304                 ret = btrfs_next_leaf(root, path);
305                 if (ret < 0)
306                         goto out;
307                 /* No dev extents at all? Not good */
308                 if (ret > 0) {
309                         ret = -EUCLEAN;
310                         goto out;
311                 }
312         }
313
314         leaf = path->nodes[0];
315         dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
316         fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
317         ret = 0;
318
319 out:
320         btrfs_free_path(path);
321
322         return ret;
323 }
324
325 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
326 {
327         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
328         struct btrfs_device *device;
329         int ret = 0;
330
331         /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
332         if (!btrfs_fs_incompat(fs_info, ZONED))
333                 return 0;
334
335         mutex_lock(&fs_devices->device_list_mutex);
336         list_for_each_entry(device, &fs_devices->devices, dev_list) {
337                 /* We can skip reading of zone info for missing devices */
338                 if (!device->bdev)
339                         continue;
340
341                 ret = btrfs_get_dev_zone_info(device, true);
342                 if (ret)
343                         break;
344         }
345         mutex_unlock(&fs_devices->device_list_mutex);
346
347         return ret;
348 }
349
350 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
351 {
352         struct btrfs_fs_info *fs_info = device->fs_info;
353         struct btrfs_zoned_device_info *zone_info = NULL;
354         struct block_device *bdev = device->bdev;
355         unsigned int max_active_zones;
356         unsigned int nactive;
357         sector_t nr_sectors;
358         sector_t sector = 0;
359         struct blk_zone *zones = NULL;
360         unsigned int i, nreported = 0, nr_zones;
361         sector_t zone_sectors;
362         char *model, *emulated;
363         int ret;
364
365         /*
366          * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
367          * yet be set.
368          */
369         if (!btrfs_fs_incompat(fs_info, ZONED))
370                 return 0;
371
372         if (device->zone_info)
373                 return 0;
374
375         zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
376         if (!zone_info)
377                 return -ENOMEM;
378
379         device->zone_info = zone_info;
380
381         if (!bdev_is_zoned(bdev)) {
382                 if (!fs_info->zone_size) {
383                         ret = calculate_emulated_zone_size(fs_info);
384                         if (ret)
385                                 goto out;
386                 }
387
388                 ASSERT(fs_info->zone_size);
389                 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
390         } else {
391                 zone_sectors = bdev_zone_sectors(bdev);
392         }
393
394         /* Check if it's power of 2 (see is_power_of_2) */
395         ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
396         zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
397
398         /* We reject devices with a zone size larger than 8GB */
399         if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
400                 btrfs_err_in_rcu(fs_info,
401                 "zoned: %s: zone size %llu larger than supported maximum %llu",
402                                  rcu_str_deref(device->name),
403                                  zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
404                 ret = -EINVAL;
405                 goto out;
406         } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
407                 btrfs_err_in_rcu(fs_info,
408                 "zoned: %s: zone size %llu smaller than supported minimum %u",
409                                  rcu_str_deref(device->name),
410                                  zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
411                 ret = -EINVAL;
412                 goto out;
413         }
414
415         nr_sectors = bdev_nr_sectors(bdev);
416         zone_info->zone_size_shift = ilog2(zone_info->zone_size);
417         zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
418         /*
419          * We limit max_zone_append_size also by max_segments *
420          * PAGE_SIZE. Technically, we can have multiple pages per segment. But,
421          * since btrfs adds the pages one by one to a bio, and btrfs cannot
422          * increase the metadata reservation even if it increases the number of
423          * extents, it is safe to stick with the limit.
424          */
425         zone_info->max_zone_append_size =
426                 min_t(u64, (u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT,
427                       (u64)bdev_max_segments(bdev) << PAGE_SHIFT);
428         if (!IS_ALIGNED(nr_sectors, zone_sectors))
429                 zone_info->nr_zones++;
430
431         max_active_zones = bdev_max_active_zones(bdev);
432         if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
433                 btrfs_err_in_rcu(fs_info,
434 "zoned: %s: max active zones %u is too small, need at least %u active zones",
435                                  rcu_str_deref(device->name), max_active_zones,
436                                  BTRFS_MIN_ACTIVE_ZONES);
437                 ret = -EINVAL;
438                 goto out;
439         }
440         zone_info->max_active_zones = max_active_zones;
441
442         zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
443         if (!zone_info->seq_zones) {
444                 ret = -ENOMEM;
445                 goto out;
446         }
447
448         zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
449         if (!zone_info->empty_zones) {
450                 ret = -ENOMEM;
451                 goto out;
452         }
453
454         zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
455         if (!zone_info->active_zones) {
456                 ret = -ENOMEM;
457                 goto out;
458         }
459
460         zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
461         if (!zones) {
462                 ret = -ENOMEM;
463                 goto out;
464         }
465
466         /*
467          * Enable zone cache only for a zoned device. On a non-zoned device, we
468          * fill the zone info with emulated CONVENTIONAL zones, so no need to
469          * use the cache.
470          */
471         if (populate_cache && bdev_is_zoned(device->bdev)) {
472                 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
473                                                 zone_info->nr_zones);
474                 if (!zone_info->zone_cache) {
475                         btrfs_err_in_rcu(device->fs_info,
476                                 "zoned: failed to allocate zone cache for %s",
477                                 rcu_str_deref(device->name));
478                         ret = -ENOMEM;
479                         goto out;
480                 }
481         }
482
483         /* Get zones type */
484         nactive = 0;
485         while (sector < nr_sectors) {
486                 nr_zones = BTRFS_REPORT_NR_ZONES;
487                 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
488                                           &nr_zones);
489                 if (ret)
490                         goto out;
491
492                 for (i = 0; i < nr_zones; i++) {
493                         if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
494                                 __set_bit(nreported, zone_info->seq_zones);
495                         switch (zones[i].cond) {
496                         case BLK_ZONE_COND_EMPTY:
497                                 __set_bit(nreported, zone_info->empty_zones);
498                                 break;
499                         case BLK_ZONE_COND_IMP_OPEN:
500                         case BLK_ZONE_COND_EXP_OPEN:
501                         case BLK_ZONE_COND_CLOSED:
502                                 __set_bit(nreported, zone_info->active_zones);
503                                 nactive++;
504                                 break;
505                         }
506                         nreported++;
507                 }
508                 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
509         }
510
511         if (nreported != zone_info->nr_zones) {
512                 btrfs_err_in_rcu(device->fs_info,
513                                  "inconsistent number of zones on %s (%u/%u)",
514                                  rcu_str_deref(device->name), nreported,
515                                  zone_info->nr_zones);
516                 ret = -EIO;
517                 goto out;
518         }
519
520         if (max_active_zones) {
521                 if (nactive > max_active_zones) {
522                         btrfs_err_in_rcu(device->fs_info,
523                         "zoned: %u active zones on %s exceeds max_active_zones %u",
524                                          nactive, rcu_str_deref(device->name),
525                                          max_active_zones);
526                         ret = -EIO;
527                         goto out;
528                 }
529                 atomic_set(&zone_info->active_zones_left,
530                            max_active_zones - nactive);
531         }
532
533         /* Validate superblock log */
534         nr_zones = BTRFS_NR_SB_LOG_ZONES;
535         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
536                 u32 sb_zone;
537                 u64 sb_wp;
538                 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
539
540                 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
541                 if (sb_zone + 1 >= zone_info->nr_zones)
542                         continue;
543
544                 ret = btrfs_get_dev_zones(device,
545                                           zone_start_physical(sb_zone, zone_info),
546                                           &zone_info->sb_zones[sb_pos],
547                                           &nr_zones);
548                 if (ret)
549                         goto out;
550
551                 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
552                         btrfs_err_in_rcu(device->fs_info,
553         "zoned: failed to read super block log zone info at devid %llu zone %u",
554                                          device->devid, sb_zone);
555                         ret = -EUCLEAN;
556                         goto out;
557                 }
558
559                 /*
560                  * If zones[0] is conventional, always use the beginning of the
561                  * zone to record superblock. No need to validate in that case.
562                  */
563                 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
564                     BLK_ZONE_TYPE_CONVENTIONAL)
565                         continue;
566
567                 ret = sb_write_pointer(device->bdev,
568                                        &zone_info->sb_zones[sb_pos], &sb_wp);
569                 if (ret != -ENOENT && ret) {
570                         btrfs_err_in_rcu(device->fs_info,
571                         "zoned: super block log zone corrupted devid %llu zone %u",
572                                          device->devid, sb_zone);
573                         ret = -EUCLEAN;
574                         goto out;
575                 }
576         }
577
578
579         kfree(zones);
580
581         switch (bdev_zoned_model(bdev)) {
582         case BLK_ZONED_HM:
583                 model = "host-managed zoned";
584                 emulated = "";
585                 break;
586         case BLK_ZONED_HA:
587                 model = "host-aware zoned";
588                 emulated = "";
589                 break;
590         case BLK_ZONED_NONE:
591                 model = "regular";
592                 emulated = "emulated ";
593                 break;
594         default:
595                 /* Just in case */
596                 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
597                                  bdev_zoned_model(bdev),
598                                  rcu_str_deref(device->name));
599                 ret = -EOPNOTSUPP;
600                 goto out_free_zone_info;
601         }
602
603         btrfs_info_in_rcu(fs_info,
604                 "%s block device %s, %u %szones of %llu bytes",
605                 model, rcu_str_deref(device->name), zone_info->nr_zones,
606                 emulated, zone_info->zone_size);
607
608         return 0;
609
610 out:
611         kfree(zones);
612 out_free_zone_info:
613         btrfs_destroy_dev_zone_info(device);
614
615         return ret;
616 }
617
618 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
619 {
620         struct btrfs_zoned_device_info *zone_info = device->zone_info;
621
622         if (!zone_info)
623                 return;
624
625         bitmap_free(zone_info->active_zones);
626         bitmap_free(zone_info->seq_zones);
627         bitmap_free(zone_info->empty_zones);
628         vfree(zone_info->zone_cache);
629         kfree(zone_info);
630         device->zone_info = NULL;
631 }
632
633 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
634                        struct blk_zone *zone)
635 {
636         unsigned int nr_zones = 1;
637         int ret;
638
639         ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
640         if (ret != 0 || !nr_zones)
641                 return ret ? ret : -EIO;
642
643         return 0;
644 }
645
646 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
647 {
648         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
649         struct btrfs_device *device;
650         u64 zoned_devices = 0;
651         u64 nr_devices = 0;
652         u64 zone_size = 0;
653         u64 max_zone_append_size = 0;
654         const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED);
655         int ret = 0;
656
657         /* Count zoned devices */
658         list_for_each_entry(device, &fs_devices->devices, dev_list) {
659                 enum blk_zoned_model model;
660
661                 if (!device->bdev)
662                         continue;
663
664                 model = bdev_zoned_model(device->bdev);
665                 /*
666                  * A Host-Managed zoned device must be used as a zoned device.
667                  * A Host-Aware zoned device and a non-zoned devices can be
668                  * treated as a zoned device, if ZONED flag is enabled in the
669                  * superblock.
670                  */
671                 if (model == BLK_ZONED_HM ||
672                     (model == BLK_ZONED_HA && incompat_zoned) ||
673                     (model == BLK_ZONED_NONE && incompat_zoned)) {
674                         struct btrfs_zoned_device_info *zone_info;
675
676                         zone_info = device->zone_info;
677                         zoned_devices++;
678                         if (!zone_size) {
679                                 zone_size = zone_info->zone_size;
680                         } else if (zone_info->zone_size != zone_size) {
681                                 btrfs_err(fs_info,
682                 "zoned: unequal block device zone sizes: have %llu found %llu",
683                                           device->zone_info->zone_size,
684                                           zone_size);
685                                 ret = -EINVAL;
686                                 goto out;
687                         }
688                         if (!max_zone_append_size ||
689                             (zone_info->max_zone_append_size &&
690                              zone_info->max_zone_append_size < max_zone_append_size))
691                                 max_zone_append_size =
692                                         zone_info->max_zone_append_size;
693                 }
694                 nr_devices++;
695         }
696
697         if (!zoned_devices && !incompat_zoned)
698                 goto out;
699
700         if (!zoned_devices && incompat_zoned) {
701                 /* No zoned block device found on ZONED filesystem */
702                 btrfs_err(fs_info,
703                           "zoned: no zoned devices found on a zoned filesystem");
704                 ret = -EINVAL;
705                 goto out;
706         }
707
708         if (zoned_devices && !incompat_zoned) {
709                 btrfs_err(fs_info,
710                           "zoned: mode not enabled but zoned device found");
711                 ret = -EINVAL;
712                 goto out;
713         }
714
715         if (zoned_devices != nr_devices) {
716                 btrfs_err(fs_info,
717                           "zoned: cannot mix zoned and regular devices");
718                 ret = -EINVAL;
719                 goto out;
720         }
721
722         /*
723          * stripe_size is always aligned to BTRFS_STRIPE_LEN in
724          * btrfs_create_chunk(). Since we want stripe_len == zone_size,
725          * check the alignment here.
726          */
727         if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
728                 btrfs_err(fs_info,
729                           "zoned: zone size %llu not aligned to stripe %u",
730                           zone_size, BTRFS_STRIPE_LEN);
731                 ret = -EINVAL;
732                 goto out;
733         }
734
735         if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
736                 btrfs_err(fs_info, "zoned: mixed block groups not supported");
737                 ret = -EINVAL;
738                 goto out;
739         }
740
741         fs_info->zone_size = zone_size;
742         fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size,
743                                                    fs_info->sectorsize);
744         fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
745         if (fs_info->max_zone_append_size < fs_info->max_extent_size)
746                 fs_info->max_extent_size = fs_info->max_zone_append_size;
747
748         /*
749          * Check mount options here, because we might change fs_info->zoned
750          * from fs_info->zone_size.
751          */
752         ret = btrfs_check_mountopts_zoned(fs_info);
753         if (ret)
754                 goto out;
755
756         btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
757 out:
758         return ret;
759 }
760
761 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
762 {
763         if (!btrfs_is_zoned(info))
764                 return 0;
765
766         /*
767          * Space cache writing is not COWed. Disable that to avoid write errors
768          * in sequential zones.
769          */
770         if (btrfs_test_opt(info, SPACE_CACHE)) {
771                 btrfs_err(info, "zoned: space cache v1 is not supported");
772                 return -EINVAL;
773         }
774
775         if (btrfs_test_opt(info, NODATACOW)) {
776                 btrfs_err(info, "zoned: NODATACOW not supported");
777                 return -EINVAL;
778         }
779
780         return 0;
781 }
782
783 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
784                            int rw, u64 *bytenr_ret)
785 {
786         u64 wp;
787         int ret;
788
789         if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
790                 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
791                 return 0;
792         }
793
794         ret = sb_write_pointer(bdev, zones, &wp);
795         if (ret != -ENOENT && ret < 0)
796                 return ret;
797
798         if (rw == WRITE) {
799                 struct blk_zone *reset = NULL;
800
801                 if (wp == zones[0].start << SECTOR_SHIFT)
802                         reset = &zones[0];
803                 else if (wp == zones[1].start << SECTOR_SHIFT)
804                         reset = &zones[1];
805
806                 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
807                         ASSERT(sb_zone_is_full(reset));
808
809                         ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
810                                                reset->start, reset->len,
811                                                GFP_NOFS);
812                         if (ret)
813                                 return ret;
814
815                         reset->cond = BLK_ZONE_COND_EMPTY;
816                         reset->wp = reset->start;
817                 }
818         } else if (ret != -ENOENT) {
819                 /*
820                  * For READ, we want the previous one. Move write pointer to
821                  * the end of a zone, if it is at the head of a zone.
822                  */
823                 u64 zone_end = 0;
824
825                 if (wp == zones[0].start << SECTOR_SHIFT)
826                         zone_end = zones[1].start + zones[1].capacity;
827                 else if (wp == zones[1].start << SECTOR_SHIFT)
828                         zone_end = zones[0].start + zones[0].capacity;
829                 if (zone_end)
830                         wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
831                                         BTRFS_SUPER_INFO_SIZE);
832
833                 wp -= BTRFS_SUPER_INFO_SIZE;
834         }
835
836         *bytenr_ret = wp;
837         return 0;
838
839 }
840
841 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
842                                u64 *bytenr_ret)
843 {
844         struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
845         sector_t zone_sectors;
846         u32 sb_zone;
847         int ret;
848         u8 zone_sectors_shift;
849         sector_t nr_sectors;
850         u32 nr_zones;
851
852         if (!bdev_is_zoned(bdev)) {
853                 *bytenr_ret = btrfs_sb_offset(mirror);
854                 return 0;
855         }
856
857         ASSERT(rw == READ || rw == WRITE);
858
859         zone_sectors = bdev_zone_sectors(bdev);
860         if (!is_power_of_2(zone_sectors))
861                 return -EINVAL;
862         zone_sectors_shift = ilog2(zone_sectors);
863         nr_sectors = bdev_nr_sectors(bdev);
864         nr_zones = nr_sectors >> zone_sectors_shift;
865
866         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
867         if (sb_zone + 1 >= nr_zones)
868                 return -ENOENT;
869
870         ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
871                                   BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
872                                   zones);
873         if (ret < 0)
874                 return ret;
875         if (ret != BTRFS_NR_SB_LOG_ZONES)
876                 return -EIO;
877
878         return sb_log_location(bdev, zones, rw, bytenr_ret);
879 }
880
881 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
882                           u64 *bytenr_ret)
883 {
884         struct btrfs_zoned_device_info *zinfo = device->zone_info;
885         u32 zone_num;
886
887         /*
888          * For a zoned filesystem on a non-zoned block device, use the same
889          * super block locations as regular filesystem. Doing so, the super
890          * block can always be retrieved and the zoned flag of the volume
891          * detected from the super block information.
892          */
893         if (!bdev_is_zoned(device->bdev)) {
894                 *bytenr_ret = btrfs_sb_offset(mirror);
895                 return 0;
896         }
897
898         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
899         if (zone_num + 1 >= zinfo->nr_zones)
900                 return -ENOENT;
901
902         return sb_log_location(device->bdev,
903                                &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
904                                rw, bytenr_ret);
905 }
906
907 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
908                                   int mirror)
909 {
910         u32 zone_num;
911
912         if (!zinfo)
913                 return false;
914
915         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
916         if (zone_num + 1 >= zinfo->nr_zones)
917                 return false;
918
919         if (!test_bit(zone_num, zinfo->seq_zones))
920                 return false;
921
922         return true;
923 }
924
925 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
926 {
927         struct btrfs_zoned_device_info *zinfo = device->zone_info;
928         struct blk_zone *zone;
929         int i;
930
931         if (!is_sb_log_zone(zinfo, mirror))
932                 return 0;
933
934         zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
935         for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
936                 /* Advance the next zone */
937                 if (zone->cond == BLK_ZONE_COND_FULL) {
938                         zone++;
939                         continue;
940                 }
941
942                 if (zone->cond == BLK_ZONE_COND_EMPTY)
943                         zone->cond = BLK_ZONE_COND_IMP_OPEN;
944
945                 zone->wp += SUPER_INFO_SECTORS;
946
947                 if (sb_zone_is_full(zone)) {
948                         /*
949                          * No room left to write new superblock. Since
950                          * superblock is written with REQ_SYNC, it is safe to
951                          * finish the zone now.
952                          *
953                          * If the write pointer is exactly at the capacity,
954                          * explicit ZONE_FINISH is not necessary.
955                          */
956                         if (zone->wp != zone->start + zone->capacity) {
957                                 int ret;
958
959                                 ret = blkdev_zone_mgmt(device->bdev,
960                                                 REQ_OP_ZONE_FINISH, zone->start,
961                                                 zone->len, GFP_NOFS);
962                                 if (ret)
963                                         return ret;
964                         }
965
966                         zone->wp = zone->start + zone->len;
967                         zone->cond = BLK_ZONE_COND_FULL;
968                 }
969                 return 0;
970         }
971
972         /* All the zones are FULL. Should not reach here. */
973         ASSERT(0);
974         return -EIO;
975 }
976
977 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
978 {
979         sector_t zone_sectors;
980         sector_t nr_sectors;
981         u8 zone_sectors_shift;
982         u32 sb_zone;
983         u32 nr_zones;
984
985         zone_sectors = bdev_zone_sectors(bdev);
986         zone_sectors_shift = ilog2(zone_sectors);
987         nr_sectors = bdev_nr_sectors(bdev);
988         nr_zones = nr_sectors >> zone_sectors_shift;
989
990         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
991         if (sb_zone + 1 >= nr_zones)
992                 return -ENOENT;
993
994         return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
995                                 zone_start_sector(sb_zone, bdev),
996                                 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
997 }
998
999 /**
1000  * btrfs_find_allocatable_zones - find allocatable zones within a given region
1001  *
1002  * @device:     the device to allocate a region on
1003  * @hole_start: the position of the hole to allocate the region
1004  * @num_bytes:  size of wanted region
1005  * @hole_end:   the end of the hole
1006  * @return:     position of allocatable zones
1007  *
1008  * Allocatable region should not contain any superblock locations.
1009  */
1010 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1011                                  u64 hole_end, u64 num_bytes)
1012 {
1013         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1014         const u8 shift = zinfo->zone_size_shift;
1015         u64 nzones = num_bytes >> shift;
1016         u64 pos = hole_start;
1017         u64 begin, end;
1018         bool have_sb;
1019         int i;
1020
1021         ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1022         ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1023
1024         while (pos < hole_end) {
1025                 begin = pos >> shift;
1026                 end = begin + nzones;
1027
1028                 if (end > zinfo->nr_zones)
1029                         return hole_end;
1030
1031                 /* Check if zones in the region are all empty */
1032                 if (btrfs_dev_is_sequential(device, pos) &&
1033                     find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1034                         pos += zinfo->zone_size;
1035                         continue;
1036                 }
1037
1038                 have_sb = false;
1039                 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1040                         u32 sb_zone;
1041                         u64 sb_pos;
1042
1043                         sb_zone = sb_zone_number(shift, i);
1044                         if (!(end <= sb_zone ||
1045                               sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1046                                 have_sb = true;
1047                                 pos = zone_start_physical(
1048                                         sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1049                                 break;
1050                         }
1051
1052                         /* We also need to exclude regular superblock positions */
1053                         sb_pos = btrfs_sb_offset(i);
1054                         if (!(pos + num_bytes <= sb_pos ||
1055                               sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1056                                 have_sb = true;
1057                                 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1058                                             zinfo->zone_size);
1059                                 break;
1060                         }
1061                 }
1062                 if (!have_sb)
1063                         break;
1064         }
1065
1066         return pos;
1067 }
1068
1069 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1070 {
1071         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1072         unsigned int zno = (pos >> zone_info->zone_size_shift);
1073
1074         /* We can use any number of zones */
1075         if (zone_info->max_active_zones == 0)
1076                 return true;
1077
1078         if (!test_bit(zno, zone_info->active_zones)) {
1079                 /* Active zone left? */
1080                 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1081                         return false;
1082                 if (test_and_set_bit(zno, zone_info->active_zones)) {
1083                         /* Someone already set the bit */
1084                         atomic_inc(&zone_info->active_zones_left);
1085                 }
1086         }
1087
1088         return true;
1089 }
1090
1091 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1092 {
1093         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1094         unsigned int zno = (pos >> zone_info->zone_size_shift);
1095
1096         /* We can use any number of zones */
1097         if (zone_info->max_active_zones == 0)
1098                 return;
1099
1100         if (test_and_clear_bit(zno, zone_info->active_zones))
1101                 atomic_inc(&zone_info->active_zones_left);
1102 }
1103
1104 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1105                             u64 length, u64 *bytes)
1106 {
1107         int ret;
1108
1109         *bytes = 0;
1110         ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1111                                physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1112                                GFP_NOFS);
1113         if (ret)
1114                 return ret;
1115
1116         *bytes = length;
1117         while (length) {
1118                 btrfs_dev_set_zone_empty(device, physical);
1119                 btrfs_dev_clear_active_zone(device, physical);
1120                 physical += device->zone_info->zone_size;
1121                 length -= device->zone_info->zone_size;
1122         }
1123
1124         return 0;
1125 }
1126
1127 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1128 {
1129         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1130         const u8 shift = zinfo->zone_size_shift;
1131         unsigned long begin = start >> shift;
1132         unsigned long end = (start + size) >> shift;
1133         u64 pos;
1134         int ret;
1135
1136         ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1137         ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1138
1139         if (end > zinfo->nr_zones)
1140                 return -ERANGE;
1141
1142         /* All the zones are conventional */
1143         if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1144                 return 0;
1145
1146         /* All the zones are sequential and empty */
1147         if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1148             find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1149                 return 0;
1150
1151         for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1152                 u64 reset_bytes;
1153
1154                 if (!btrfs_dev_is_sequential(device, pos) ||
1155                     btrfs_dev_is_empty_zone(device, pos))
1156                         continue;
1157
1158                 /* Free regions should be empty */
1159                 btrfs_warn_in_rcu(
1160                         device->fs_info,
1161                 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1162                         rcu_str_deref(device->name), device->devid, pos >> shift);
1163                 WARN_ON_ONCE(1);
1164
1165                 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1166                                               &reset_bytes);
1167                 if (ret)
1168                         return ret;
1169         }
1170
1171         return 0;
1172 }
1173
1174 /*
1175  * Calculate an allocation pointer from the extent allocation information
1176  * for a block group consist of conventional zones. It is pointed to the
1177  * end of the highest addressed extent in the block group as an allocation
1178  * offset.
1179  */
1180 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1181                                    u64 *offset_ret)
1182 {
1183         struct btrfs_fs_info *fs_info = cache->fs_info;
1184         struct btrfs_root *root;
1185         struct btrfs_path *path;
1186         struct btrfs_key key;
1187         struct btrfs_key found_key;
1188         int ret;
1189         u64 length;
1190
1191         path = btrfs_alloc_path();
1192         if (!path)
1193                 return -ENOMEM;
1194
1195         key.objectid = cache->start + cache->length;
1196         key.type = 0;
1197         key.offset = 0;
1198
1199         root = btrfs_extent_root(fs_info, key.objectid);
1200         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1201         /* We should not find the exact match */
1202         if (!ret)
1203                 ret = -EUCLEAN;
1204         if (ret < 0)
1205                 goto out;
1206
1207         ret = btrfs_previous_extent_item(root, path, cache->start);
1208         if (ret) {
1209                 if (ret == 1) {
1210                         ret = 0;
1211                         *offset_ret = 0;
1212                 }
1213                 goto out;
1214         }
1215
1216         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1217
1218         if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1219                 length = found_key.offset;
1220         else
1221                 length = fs_info->nodesize;
1222
1223         if (!(found_key.objectid >= cache->start &&
1224                found_key.objectid + length <= cache->start + cache->length)) {
1225                 ret = -EUCLEAN;
1226                 goto out;
1227         }
1228         *offset_ret = found_key.objectid + length - cache->start;
1229         ret = 0;
1230
1231 out:
1232         btrfs_free_path(path);
1233         return ret;
1234 }
1235
1236 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1237 {
1238         struct btrfs_fs_info *fs_info = cache->fs_info;
1239         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1240         struct extent_map *em;
1241         struct map_lookup *map;
1242         struct btrfs_device *device;
1243         u64 logical = cache->start;
1244         u64 length = cache->length;
1245         int ret;
1246         int i;
1247         unsigned int nofs_flag;
1248         u64 *alloc_offsets = NULL;
1249         u64 *caps = NULL;
1250         u64 *physical = NULL;
1251         unsigned long *active = NULL;
1252         u64 last_alloc = 0;
1253         u32 num_sequential = 0, num_conventional = 0;
1254
1255         if (!btrfs_is_zoned(fs_info))
1256                 return 0;
1257
1258         /* Sanity check */
1259         if (!IS_ALIGNED(length, fs_info->zone_size)) {
1260                 btrfs_err(fs_info,
1261                 "zoned: block group %llu len %llu unaligned to zone size %llu",
1262                           logical, length, fs_info->zone_size);
1263                 return -EIO;
1264         }
1265
1266         /* Get the chunk mapping */
1267         read_lock(&em_tree->lock);
1268         em = lookup_extent_mapping(em_tree, logical, length);
1269         read_unlock(&em_tree->lock);
1270
1271         if (!em)
1272                 return -EINVAL;
1273
1274         map = em->map_lookup;
1275
1276         cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1277         if (!cache->physical_map) {
1278                 ret = -ENOMEM;
1279                 goto out;
1280         }
1281
1282         alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1283         if (!alloc_offsets) {
1284                 ret = -ENOMEM;
1285                 goto out;
1286         }
1287
1288         caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1289         if (!caps) {
1290                 ret = -ENOMEM;
1291                 goto out;
1292         }
1293
1294         physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1295         if (!physical) {
1296                 ret = -ENOMEM;
1297                 goto out;
1298         }
1299
1300         active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1301         if (!active) {
1302                 ret = -ENOMEM;
1303                 goto out;
1304         }
1305
1306         for (i = 0; i < map->num_stripes; i++) {
1307                 bool is_sequential;
1308                 struct blk_zone zone;
1309                 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1310                 int dev_replace_is_ongoing = 0;
1311
1312                 device = map->stripes[i].dev;
1313                 physical[i] = map->stripes[i].physical;
1314
1315                 if (device->bdev == NULL) {
1316                         alloc_offsets[i] = WP_MISSING_DEV;
1317                         continue;
1318                 }
1319
1320                 is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1321                 if (is_sequential)
1322                         num_sequential++;
1323                 else
1324                         num_conventional++;
1325
1326                 if (!is_sequential) {
1327                         alloc_offsets[i] = WP_CONVENTIONAL;
1328                         continue;
1329                 }
1330
1331                 /*
1332                  * This zone will be used for allocation, so mark this zone
1333                  * non-empty.
1334                  */
1335                 btrfs_dev_clear_zone_empty(device, physical[i]);
1336
1337                 down_read(&dev_replace->rwsem);
1338                 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1339                 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1340                         btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1341                 up_read(&dev_replace->rwsem);
1342
1343                 /*
1344                  * The group is mapped to a sequential zone. Get the zone write
1345                  * pointer to determine the allocation offset within the zone.
1346                  */
1347                 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1348                 nofs_flag = memalloc_nofs_save();
1349                 ret = btrfs_get_dev_zone(device, physical[i], &zone);
1350                 memalloc_nofs_restore(nofs_flag);
1351                 if (ret == -EIO || ret == -EOPNOTSUPP) {
1352                         ret = 0;
1353                         alloc_offsets[i] = WP_MISSING_DEV;
1354                         continue;
1355                 } else if (ret) {
1356                         goto out;
1357                 }
1358
1359                 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1360                         btrfs_err_in_rcu(fs_info,
1361         "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1362                                 zone.start << SECTOR_SHIFT,
1363                                 rcu_str_deref(device->name), device->devid);
1364                         ret = -EIO;
1365                         goto out;
1366                 }
1367
1368                 caps[i] = (zone.capacity << SECTOR_SHIFT);
1369
1370                 switch (zone.cond) {
1371                 case BLK_ZONE_COND_OFFLINE:
1372                 case BLK_ZONE_COND_READONLY:
1373                         btrfs_err(fs_info,
1374                 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1375                                   physical[i] >> device->zone_info->zone_size_shift,
1376                                   rcu_str_deref(device->name), device->devid);
1377                         alloc_offsets[i] = WP_MISSING_DEV;
1378                         break;
1379                 case BLK_ZONE_COND_EMPTY:
1380                         alloc_offsets[i] = 0;
1381                         break;
1382                 case BLK_ZONE_COND_FULL:
1383                         alloc_offsets[i] = caps[i];
1384                         break;
1385                 default:
1386                         /* Partially used zone */
1387                         alloc_offsets[i] =
1388                                         ((zone.wp - zone.start) << SECTOR_SHIFT);
1389                         __set_bit(i, active);
1390                         break;
1391                 }
1392
1393                 /*
1394                  * Consider a zone as active if we can allow any number of
1395                  * active zones.
1396                  */
1397                 if (!device->zone_info->max_active_zones)
1398                         __set_bit(i, active);
1399         }
1400
1401         if (num_sequential > 0)
1402                 cache->seq_zone = true;
1403
1404         if (num_conventional > 0) {
1405                 /*
1406                  * Avoid calling calculate_alloc_pointer() for new BG. It
1407                  * is no use for new BG. It must be always 0.
1408                  *
1409                  * Also, we have a lock chain of extent buffer lock ->
1410                  * chunk mutex.  For new BG, this function is called from
1411                  * btrfs_make_block_group() which is already taking the
1412                  * chunk mutex. Thus, we cannot call
1413                  * calculate_alloc_pointer() which takes extent buffer
1414                  * locks to avoid deadlock.
1415                  */
1416
1417                 /* Zone capacity is always zone size in emulation */
1418                 cache->zone_capacity = cache->length;
1419                 if (new) {
1420                         cache->alloc_offset = 0;
1421                         goto out;
1422                 }
1423                 ret = calculate_alloc_pointer(cache, &last_alloc);
1424                 if (ret || map->num_stripes == num_conventional) {
1425                         if (!ret)
1426                                 cache->alloc_offset = last_alloc;
1427                         else
1428                                 btrfs_err(fs_info,
1429                         "zoned: failed to determine allocation offset of bg %llu",
1430                                           cache->start);
1431                         goto out;
1432                 }
1433         }
1434
1435         switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1436         case 0: /* single */
1437                 if (alloc_offsets[0] == WP_MISSING_DEV) {
1438                         btrfs_err(fs_info,
1439                         "zoned: cannot recover write pointer for zone %llu",
1440                                 physical[0]);
1441                         ret = -EIO;
1442                         goto out;
1443                 }
1444                 cache->alloc_offset = alloc_offsets[0];
1445                 cache->zone_capacity = caps[0];
1446                 cache->zone_is_active = test_bit(0, active);
1447                 break;
1448         case BTRFS_BLOCK_GROUP_DUP:
1449                 if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1450                         btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1451                         ret = -EINVAL;
1452                         goto out;
1453                 }
1454                 if (alloc_offsets[0] == WP_MISSING_DEV) {
1455                         btrfs_err(fs_info,
1456                         "zoned: cannot recover write pointer for zone %llu",
1457                                 physical[0]);
1458                         ret = -EIO;
1459                         goto out;
1460                 }
1461                 if (alloc_offsets[1] == WP_MISSING_DEV) {
1462                         btrfs_err(fs_info,
1463                         "zoned: cannot recover write pointer for zone %llu",
1464                                 physical[1]);
1465                         ret = -EIO;
1466                         goto out;
1467                 }
1468                 if (alloc_offsets[0] != alloc_offsets[1]) {
1469                         btrfs_err(fs_info,
1470                         "zoned: write pointer offset mismatch of zones in DUP profile");
1471                         ret = -EIO;
1472                         goto out;
1473                 }
1474                 if (test_bit(0, active) != test_bit(1, active)) {
1475                         if (!btrfs_zone_activate(cache)) {
1476                                 ret = -EIO;
1477                                 goto out;
1478                         }
1479                 } else {
1480                         cache->zone_is_active = test_bit(0, active);
1481                 }
1482                 cache->alloc_offset = alloc_offsets[0];
1483                 cache->zone_capacity = min(caps[0], caps[1]);
1484                 break;
1485         case BTRFS_BLOCK_GROUP_RAID1:
1486         case BTRFS_BLOCK_GROUP_RAID0:
1487         case BTRFS_BLOCK_GROUP_RAID10:
1488         case BTRFS_BLOCK_GROUP_RAID5:
1489         case BTRFS_BLOCK_GROUP_RAID6:
1490                 /* non-single profiles are not supported yet */
1491         default:
1492                 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1493                           btrfs_bg_type_to_raid_name(map->type));
1494                 ret = -EINVAL;
1495                 goto out;
1496         }
1497
1498         if (cache->zone_is_active) {
1499                 btrfs_get_block_group(cache);
1500                 spin_lock(&fs_info->zone_active_bgs_lock);
1501                 list_add_tail(&cache->active_bg_list, &fs_info->zone_active_bgs);
1502                 spin_unlock(&fs_info->zone_active_bgs_lock);
1503         }
1504
1505 out:
1506         if (cache->alloc_offset > fs_info->zone_size) {
1507                 btrfs_err(fs_info,
1508                         "zoned: invalid write pointer %llu in block group %llu",
1509                         cache->alloc_offset, cache->start);
1510                 ret = -EIO;
1511         }
1512
1513         if (cache->alloc_offset > cache->zone_capacity) {
1514                 btrfs_err(fs_info,
1515 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1516                           cache->alloc_offset, cache->zone_capacity,
1517                           cache->start);
1518                 ret = -EIO;
1519         }
1520
1521         /* An extent is allocated after the write pointer */
1522         if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1523                 btrfs_err(fs_info,
1524                           "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1525                           logical, last_alloc, cache->alloc_offset);
1526                 ret = -EIO;
1527         }
1528
1529         if (!ret)
1530                 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1531
1532         if (ret) {
1533                 kfree(cache->physical_map);
1534                 cache->physical_map = NULL;
1535         }
1536         bitmap_free(active);
1537         kfree(physical);
1538         kfree(caps);
1539         kfree(alloc_offsets);
1540         free_extent_map(em);
1541
1542         return ret;
1543 }
1544
1545 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1546 {
1547         u64 unusable, free;
1548
1549         if (!btrfs_is_zoned(cache->fs_info))
1550                 return;
1551
1552         WARN_ON(cache->bytes_super != 0);
1553         unusable = (cache->alloc_offset - cache->used) +
1554                    (cache->length - cache->zone_capacity);
1555         free = cache->zone_capacity - cache->alloc_offset;
1556
1557         /* We only need ->free_space in ALLOC_SEQ block groups */
1558         cache->last_byte_to_unpin = (u64)-1;
1559         cache->cached = BTRFS_CACHE_FINISHED;
1560         cache->free_space_ctl->free_space = free;
1561         cache->zone_unusable = unusable;
1562 }
1563
1564 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1565                             struct extent_buffer *eb)
1566 {
1567         struct btrfs_fs_info *fs_info = eb->fs_info;
1568
1569         if (!btrfs_is_zoned(fs_info) ||
1570             btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1571             !list_empty(&eb->release_list))
1572                 return;
1573
1574         set_extent_buffer_dirty(eb);
1575         set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1576                                eb->start + eb->len - 1, EXTENT_DIRTY);
1577         memzero_extent_buffer(eb, 0, eb->len);
1578         set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1579
1580         spin_lock(&trans->releasing_ebs_lock);
1581         list_add_tail(&eb->release_list, &trans->releasing_ebs);
1582         spin_unlock(&trans->releasing_ebs_lock);
1583         atomic_inc(&eb->refs);
1584 }
1585
1586 void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1587 {
1588         spin_lock(&trans->releasing_ebs_lock);
1589         while (!list_empty(&trans->releasing_ebs)) {
1590                 struct extent_buffer *eb;
1591
1592                 eb = list_first_entry(&trans->releasing_ebs,
1593                                       struct extent_buffer, release_list);
1594                 list_del_init(&eb->release_list);
1595                 free_extent_buffer(eb);
1596         }
1597         spin_unlock(&trans->releasing_ebs_lock);
1598 }
1599
1600 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
1601 {
1602         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1603         struct btrfs_block_group *cache;
1604         bool ret = false;
1605
1606         if (!btrfs_is_zoned(fs_info))
1607                 return false;
1608
1609         if (!is_data_inode(&inode->vfs_inode))
1610                 return false;
1611
1612         /*
1613          * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1614          * extent layout the relocation code has.
1615          * Furthermore we have set aside own block-group from which only the
1616          * relocation "process" can allocate and make sure only one process at a
1617          * time can add pages to an extent that gets relocated, so it's safe to
1618          * use regular REQ_OP_WRITE for this special case.
1619          */
1620         if (btrfs_is_data_reloc_root(inode->root))
1621                 return false;
1622
1623         cache = btrfs_lookup_block_group(fs_info, start);
1624         ASSERT(cache);
1625         if (!cache)
1626                 return false;
1627
1628         ret = cache->seq_zone;
1629         btrfs_put_block_group(cache);
1630
1631         return ret;
1632 }
1633
1634 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1635                                  struct bio *bio)
1636 {
1637         struct btrfs_ordered_extent *ordered;
1638         const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1639
1640         if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1641                 return;
1642
1643         ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1644         if (WARN_ON(!ordered))
1645                 return;
1646
1647         ordered->physical = physical;
1648         ordered->bdev = bio->bi_bdev;
1649
1650         btrfs_put_ordered_extent(ordered);
1651 }
1652
1653 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1654 {
1655         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1656         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1657         struct extent_map_tree *em_tree;
1658         struct extent_map *em;
1659         struct btrfs_ordered_sum *sum;
1660         u64 orig_logical = ordered->disk_bytenr;
1661         u64 *logical = NULL;
1662         int nr, stripe_len;
1663
1664         /* Zoned devices should not have partitions. So, we can assume it is 0 */
1665         ASSERT(!bdev_is_partition(ordered->bdev));
1666         if (WARN_ON(!ordered->bdev))
1667                 return;
1668
1669         if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
1670                                      ordered->physical, &logical, &nr,
1671                                      &stripe_len)))
1672                 goto out;
1673
1674         WARN_ON(nr != 1);
1675
1676         if (orig_logical == *logical)
1677                 goto out;
1678
1679         ordered->disk_bytenr = *logical;
1680
1681         em_tree = &inode->extent_tree;
1682         write_lock(&em_tree->lock);
1683         em = search_extent_mapping(em_tree, ordered->file_offset,
1684                                    ordered->num_bytes);
1685         em->block_start = *logical;
1686         free_extent_map(em);
1687         write_unlock(&em_tree->lock);
1688
1689         list_for_each_entry(sum, &ordered->list, list) {
1690                 if (*logical < orig_logical)
1691                         sum->bytenr -= orig_logical - *logical;
1692                 else
1693                         sum->bytenr += *logical - orig_logical;
1694         }
1695
1696 out:
1697         kfree(logical);
1698 }
1699
1700 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1701                                     struct extent_buffer *eb,
1702                                     struct btrfs_block_group **cache_ret)
1703 {
1704         struct btrfs_block_group *cache;
1705         bool ret = true;
1706
1707         if (!btrfs_is_zoned(fs_info))
1708                 return true;
1709
1710         cache = btrfs_lookup_block_group(fs_info, eb->start);
1711         if (!cache)
1712                 return true;
1713
1714         if (cache->meta_write_pointer != eb->start) {
1715                 btrfs_put_block_group(cache);
1716                 cache = NULL;
1717                 ret = false;
1718         } else {
1719                 cache->meta_write_pointer = eb->start + eb->len;
1720         }
1721
1722         *cache_ret = cache;
1723
1724         return ret;
1725 }
1726
1727 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1728                                      struct extent_buffer *eb)
1729 {
1730         if (!btrfs_is_zoned(eb->fs_info) || !cache)
1731                 return;
1732
1733         ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1734         cache->meta_write_pointer = eb->start;
1735 }
1736
1737 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1738 {
1739         if (!btrfs_dev_is_sequential(device, physical))
1740                 return -EOPNOTSUPP;
1741
1742         return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1743                                     length >> SECTOR_SHIFT, GFP_NOFS, 0);
1744 }
1745
1746 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1747                           struct blk_zone *zone)
1748 {
1749         struct btrfs_io_context *bioc = NULL;
1750         u64 mapped_length = PAGE_SIZE;
1751         unsigned int nofs_flag;
1752         int nmirrors;
1753         int i, ret;
1754
1755         ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1756                                &mapped_length, &bioc);
1757         if (ret || !bioc || mapped_length < PAGE_SIZE) {
1758                 ret = -EIO;
1759                 goto out_put_bioc;
1760         }
1761
1762         if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1763                 ret = -EINVAL;
1764                 goto out_put_bioc;
1765         }
1766
1767         nofs_flag = memalloc_nofs_save();
1768         nmirrors = (int)bioc->num_stripes;
1769         for (i = 0; i < nmirrors; i++) {
1770                 u64 physical = bioc->stripes[i].physical;
1771                 struct btrfs_device *dev = bioc->stripes[i].dev;
1772
1773                 /* Missing device */
1774                 if (!dev->bdev)
1775                         continue;
1776
1777                 ret = btrfs_get_dev_zone(dev, physical, zone);
1778                 /* Failing device */
1779                 if (ret == -EIO || ret == -EOPNOTSUPP)
1780                         continue;
1781                 break;
1782         }
1783         memalloc_nofs_restore(nofs_flag);
1784 out_put_bioc:
1785         btrfs_put_bioc(bioc);
1786         return ret;
1787 }
1788
1789 /*
1790  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1791  * filling zeros between @physical_pos to a write pointer of dev-replace
1792  * source device.
1793  */
1794 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1795                                     u64 physical_start, u64 physical_pos)
1796 {
1797         struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1798         struct blk_zone zone;
1799         u64 length;
1800         u64 wp;
1801         int ret;
1802
1803         if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1804                 return 0;
1805
1806         ret = read_zone_info(fs_info, logical, &zone);
1807         if (ret)
1808                 return ret;
1809
1810         wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1811
1812         if (physical_pos == wp)
1813                 return 0;
1814
1815         if (physical_pos > wp)
1816                 return -EUCLEAN;
1817
1818         length = wp - physical_pos;
1819         return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1820 }
1821
1822 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1823                                             u64 logical, u64 length)
1824 {
1825         struct btrfs_device *device;
1826         struct extent_map *em;
1827         struct map_lookup *map;
1828
1829         em = btrfs_get_chunk_map(fs_info, logical, length);
1830         if (IS_ERR(em))
1831                 return ERR_CAST(em);
1832
1833         map = em->map_lookup;
1834         /* We only support single profile for now */
1835         device = map->stripes[0].dev;
1836
1837         free_extent_map(em);
1838
1839         return device;
1840 }
1841
1842 /**
1843  * Activate block group and underlying device zones
1844  *
1845  * @block_group: the block group to activate
1846  *
1847  * Return: true on success, false otherwise
1848  */
1849 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1850 {
1851         struct btrfs_fs_info *fs_info = block_group->fs_info;
1852         struct btrfs_space_info *space_info = block_group->space_info;
1853         struct map_lookup *map;
1854         struct btrfs_device *device;
1855         u64 physical;
1856         bool ret;
1857         int i;
1858
1859         if (!btrfs_is_zoned(block_group->fs_info))
1860                 return true;
1861
1862         map = block_group->physical_map;
1863
1864         spin_lock(&space_info->lock);
1865         spin_lock(&block_group->lock);
1866         if (block_group->zone_is_active) {
1867                 ret = true;
1868                 goto out_unlock;
1869         }
1870
1871         /* No space left */
1872         if (btrfs_zoned_bg_is_full(block_group)) {
1873                 ret = false;
1874                 goto out_unlock;
1875         }
1876
1877         for (i = 0; i < map->num_stripes; i++) {
1878                 device = map->stripes[i].dev;
1879                 physical = map->stripes[i].physical;
1880
1881                 if (device->zone_info->max_active_zones == 0)
1882                         continue;
1883
1884                 if (!btrfs_dev_set_active_zone(device, physical)) {
1885                         /* Cannot activate the zone */
1886                         ret = false;
1887                         goto out_unlock;
1888                 }
1889         }
1890
1891         /* Successfully activated all the zones */
1892         block_group->zone_is_active = 1;
1893         space_info->active_total_bytes += block_group->length;
1894         spin_unlock(&block_group->lock);
1895         btrfs_try_granting_tickets(fs_info, space_info);
1896         spin_unlock(&space_info->lock);
1897
1898         /* For the active block group list */
1899         btrfs_get_block_group(block_group);
1900
1901         spin_lock(&fs_info->zone_active_bgs_lock);
1902         list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1903         spin_unlock(&fs_info->zone_active_bgs_lock);
1904
1905         return true;
1906
1907 out_unlock:
1908         spin_unlock(&block_group->lock);
1909         spin_unlock(&space_info->lock);
1910         return ret;
1911 }
1912
1913 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
1914 {
1915         struct btrfs_fs_info *fs_info = block_group->fs_info;
1916         struct map_lookup *map;
1917         int ret = 0;
1918         int i;
1919
1920         spin_lock(&block_group->lock);
1921         if (!block_group->zone_is_active) {
1922                 spin_unlock(&block_group->lock);
1923                 return 0;
1924         }
1925
1926         /* Check if we have unwritten allocated space */
1927         if ((block_group->flags &
1928              (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) &&
1929             block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
1930                 spin_unlock(&block_group->lock);
1931                 return -EAGAIN;
1932         }
1933
1934         /*
1935          * If we are sure that the block group is full (= no more room left for
1936          * new allocation) and the IO for the last usable block is completed, we
1937          * don't need to wait for the other IOs. This holds because we ensure
1938          * the sequential IO submissions using the ZONE_APPEND command for data
1939          * and block_group->meta_write_pointer for metadata.
1940          */
1941         if (!fully_written) {
1942                 spin_unlock(&block_group->lock);
1943
1944                 ret = btrfs_inc_block_group_ro(block_group, false);
1945                 if (ret)
1946                         return ret;
1947
1948                 /* Ensure all writes in this block group finish */
1949                 btrfs_wait_block_group_reservations(block_group);
1950                 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
1951                 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
1952                                          block_group->length);
1953
1954                 spin_lock(&block_group->lock);
1955
1956                 /*
1957                  * Bail out if someone already deactivated the block group, or
1958                  * allocated space is left in the block group.
1959                  */
1960                 if (!block_group->zone_is_active) {
1961                         spin_unlock(&block_group->lock);
1962                         btrfs_dec_block_group_ro(block_group);
1963                         return 0;
1964                 }
1965
1966                 if (block_group->reserved) {
1967                         spin_unlock(&block_group->lock);
1968                         btrfs_dec_block_group_ro(block_group);
1969                         return -EAGAIN;
1970                 }
1971         }
1972
1973         block_group->zone_is_active = 0;
1974         block_group->alloc_offset = block_group->zone_capacity;
1975         block_group->free_space_ctl->free_space = 0;
1976         btrfs_clear_treelog_bg(block_group);
1977         btrfs_clear_data_reloc_bg(block_group);
1978         spin_unlock(&block_group->lock);
1979
1980         map = block_group->physical_map;
1981         for (i = 0; i < map->num_stripes; i++) {
1982                 struct btrfs_device *device = map->stripes[i].dev;
1983                 const u64 physical = map->stripes[i].physical;
1984
1985                 if (device->zone_info->max_active_zones == 0)
1986                         continue;
1987
1988                 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
1989                                        physical >> SECTOR_SHIFT,
1990                                        device->zone_info->zone_size >> SECTOR_SHIFT,
1991                                        GFP_NOFS);
1992
1993                 if (ret)
1994                         return ret;
1995
1996                 btrfs_dev_clear_active_zone(device, physical);
1997         }
1998
1999         if (!fully_written)
2000                 btrfs_dec_block_group_ro(block_group);
2001
2002         spin_lock(&fs_info->zone_active_bgs_lock);
2003         ASSERT(!list_empty(&block_group->active_bg_list));
2004         list_del_init(&block_group->active_bg_list);
2005         spin_unlock(&fs_info->zone_active_bgs_lock);
2006
2007         /* For active_bg_list */
2008         btrfs_put_block_group(block_group);
2009
2010         clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2011
2012         return 0;
2013 }
2014
2015 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2016 {
2017         if (!btrfs_is_zoned(block_group->fs_info))
2018                 return 0;
2019
2020         return do_zone_finish(block_group, false);
2021 }
2022
2023 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2024 {
2025         struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2026         struct btrfs_device *device;
2027         bool ret = false;
2028
2029         if (!btrfs_is_zoned(fs_info))
2030                 return true;
2031
2032         /* Check if there is a device with active zones left */
2033         mutex_lock(&fs_info->chunk_mutex);
2034         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2035                 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2036
2037                 if (!device->bdev)
2038                         continue;
2039
2040                 if (!zinfo->max_active_zones ||
2041                     atomic_read(&zinfo->active_zones_left)) {
2042                         ret = true;
2043                         break;
2044                 }
2045         }
2046         mutex_unlock(&fs_info->chunk_mutex);
2047
2048         if (!ret)
2049                 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2050
2051         return ret;
2052 }
2053
2054 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2055 {
2056         struct btrfs_block_group *block_group;
2057         u64 min_alloc_bytes;
2058
2059         if (!btrfs_is_zoned(fs_info))
2060                 return;
2061
2062         block_group = btrfs_lookup_block_group(fs_info, logical);
2063         ASSERT(block_group);
2064
2065         /* No MIXED_BG on zoned btrfs. */
2066         if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2067                 min_alloc_bytes = fs_info->sectorsize;
2068         else
2069                 min_alloc_bytes = fs_info->nodesize;
2070
2071         /* Bail out if we can allocate more data from this block group. */
2072         if (logical + length + min_alloc_bytes <=
2073             block_group->start + block_group->zone_capacity)
2074                 goto out;
2075
2076         do_zone_finish(block_group, true);
2077
2078 out:
2079         btrfs_put_block_group(block_group);
2080 }
2081
2082 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2083 {
2084         struct btrfs_block_group *bg =
2085                 container_of(work, struct btrfs_block_group, zone_finish_work);
2086
2087         wait_on_extent_buffer_writeback(bg->last_eb);
2088         free_extent_buffer(bg->last_eb);
2089         btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2090         btrfs_put_block_group(bg);
2091 }
2092
2093 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2094                                    struct extent_buffer *eb)
2095 {
2096         if (!bg->seq_zone || eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2097                 return;
2098
2099         if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2100                 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2101                           bg->start);
2102                 return;
2103         }
2104
2105         /* For the work */
2106         btrfs_get_block_group(bg);
2107         atomic_inc(&eb->refs);
2108         bg->last_eb = eb;
2109         INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2110         queue_work(system_unbound_wq, &bg->zone_finish_work);
2111 }
2112
2113 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2114 {
2115         struct btrfs_fs_info *fs_info = bg->fs_info;
2116
2117         spin_lock(&fs_info->relocation_bg_lock);
2118         if (fs_info->data_reloc_bg == bg->start)
2119                 fs_info->data_reloc_bg = 0;
2120         spin_unlock(&fs_info->relocation_bg_lock);
2121 }
2122
2123 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2124 {
2125         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2126         struct btrfs_device *device;
2127
2128         if (!btrfs_is_zoned(fs_info))
2129                 return;
2130
2131         mutex_lock(&fs_devices->device_list_mutex);
2132         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2133                 if (device->zone_info) {
2134                         vfree(device->zone_info->zone_cache);
2135                         device->zone_info->zone_cache = NULL;
2136                 }
2137         }
2138         mutex_unlock(&fs_devices->device_list_mutex);
2139 }
2140
2141 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2142 {
2143         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2144         struct btrfs_device *device;
2145         u64 used = 0;
2146         u64 total = 0;
2147         u64 factor;
2148
2149         ASSERT(btrfs_is_zoned(fs_info));
2150
2151         if (fs_info->bg_reclaim_threshold == 0)
2152                 return false;
2153
2154         mutex_lock(&fs_devices->device_list_mutex);
2155         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2156                 if (!device->bdev)
2157                         continue;
2158
2159                 total += device->disk_total_bytes;
2160                 used += device->bytes_used;
2161         }
2162         mutex_unlock(&fs_devices->device_list_mutex);
2163
2164         factor = div64_u64(used * 100, total);
2165         return factor >= fs_info->bg_reclaim_threshold;
2166 }
2167
2168 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2169                                        u64 length)
2170 {
2171         struct btrfs_block_group *block_group;
2172
2173         if (!btrfs_is_zoned(fs_info))
2174                 return;
2175
2176         block_group = btrfs_lookup_block_group(fs_info, logical);
2177         /* It should be called on a previous data relocation block group. */
2178         ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2179
2180         spin_lock(&block_group->lock);
2181         if (!block_group->zoned_data_reloc_ongoing)
2182                 goto out;
2183
2184         /* All relocation extents are written. */
2185         if (block_group->start + block_group->alloc_offset == logical + length) {
2186                 /* Now, release this block group for further allocations. */
2187                 block_group->zoned_data_reloc_ongoing = 0;
2188         }
2189
2190 out:
2191         spin_unlock(&block_group->lock);
2192         btrfs_put_block_group(block_group);
2193 }
2194
2195 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2196 {
2197         struct btrfs_block_group *block_group;
2198         struct btrfs_block_group *min_bg = NULL;
2199         u64 min_avail = U64_MAX;
2200         int ret;
2201
2202         spin_lock(&fs_info->zone_active_bgs_lock);
2203         list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2204                             active_bg_list) {
2205                 u64 avail;
2206
2207                 spin_lock(&block_group->lock);
2208                 if (block_group->reserved ||
2209                     (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
2210                         spin_unlock(&block_group->lock);
2211                         continue;
2212                 }
2213
2214                 avail = block_group->zone_capacity - block_group->alloc_offset;
2215                 if (min_avail > avail) {
2216                         if (min_bg)
2217                                 btrfs_put_block_group(min_bg);
2218                         min_bg = block_group;
2219                         min_avail = avail;
2220                         btrfs_get_block_group(min_bg);
2221                 }
2222                 spin_unlock(&block_group->lock);
2223         }
2224         spin_unlock(&fs_info->zone_active_bgs_lock);
2225
2226         if (!min_bg)
2227                 return 0;
2228
2229         ret = btrfs_zone_finish(min_bg);
2230         btrfs_put_block_group(min_bg);
2231
2232         return ret < 0 ? ret : 1;
2233 }
2234
2235 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2236                                 struct btrfs_space_info *space_info,
2237                                 bool do_finish)
2238 {
2239         struct btrfs_block_group *bg;
2240         int index;
2241
2242         if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2243                 return 0;
2244
2245         /* No more block groups to activate */
2246         if (space_info->active_total_bytes == space_info->total_bytes)
2247                 return 0;
2248
2249         for (;;) {
2250                 int ret;
2251                 bool need_finish = false;
2252
2253                 down_read(&space_info->groups_sem);
2254                 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2255                         list_for_each_entry(bg, &space_info->block_groups[index],
2256                                             list) {
2257                                 if (!spin_trylock(&bg->lock))
2258                                         continue;
2259                                 if (btrfs_zoned_bg_is_full(bg) || bg->zone_is_active) {
2260                                         spin_unlock(&bg->lock);
2261                                         continue;
2262                                 }
2263                                 spin_unlock(&bg->lock);
2264
2265                                 if (btrfs_zone_activate(bg)) {
2266                                         up_read(&space_info->groups_sem);
2267                                         return 1;
2268                                 }
2269
2270                                 need_finish = true;
2271                         }
2272                 }
2273                 up_read(&space_info->groups_sem);
2274
2275                 if (!do_finish || !need_finish)
2276                         break;
2277
2278                 ret = btrfs_zone_finish_one_bg(fs_info);
2279                 if (ret == 0)
2280                         break;
2281                 if (ret < 0)
2282                         return ret;
2283         }
2284
2285         return 0;
2286 }