btrfs: fix race between finishing block group creation and its item update
[platform/kernel/linux-rpi.git] / fs / btrfs / zoned.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18 #include "super.h"
19 #include "fs.h"
20 #include "accessors.h"
21 #include "bio.h"
22
23 /* Maximum number of zones to report per blkdev_report_zones() call */
24 #define BTRFS_REPORT_NR_ZONES   4096
25 /* Invalid allocation pointer value for missing devices */
26 #define WP_MISSING_DEV ((u64)-1)
27 /* Pseudo write pointer value for conventional zone */
28 #define WP_CONVENTIONAL ((u64)-2)
29
30 /*
31  * Location of the first zone of superblock logging zone pairs.
32  *
33  * - primary superblock:    0B (zone 0)
34  * - first copy:          512G (zone starting at that offset)
35  * - second copy:           4T (zone starting at that offset)
36  */
37 #define BTRFS_SB_LOG_PRIMARY_OFFSET     (0ULL)
38 #define BTRFS_SB_LOG_FIRST_OFFSET       (512ULL * SZ_1G)
39 #define BTRFS_SB_LOG_SECOND_OFFSET      (4096ULL * SZ_1G)
40
41 #define BTRFS_SB_LOG_FIRST_SHIFT        const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
42 #define BTRFS_SB_LOG_SECOND_SHIFT       const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
43
44 /* Number of superblock log zones */
45 #define BTRFS_NR_SB_LOG_ZONES 2
46
47 /*
48  * Minimum of active zones we need:
49  *
50  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
51  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
52  * - 1 zone for tree-log dedicated block group
53  * - 1 zone for relocation
54  */
55 #define BTRFS_MIN_ACTIVE_ZONES          (BTRFS_SUPER_MIRROR_MAX + 5)
56
57 /*
58  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
59  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
60  * We do not expect the zone size to become larger than 8GiB or smaller than
61  * 4MiB in the near future.
62  */
63 #define BTRFS_MAX_ZONE_SIZE             SZ_8G
64 #define BTRFS_MIN_ZONE_SIZE             SZ_4M
65
66 #define SUPER_INFO_SECTORS      ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
67
68 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
69 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
70
71 static inline bool sb_zone_is_full(const struct blk_zone *zone)
72 {
73         return (zone->cond == BLK_ZONE_COND_FULL) ||
74                 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
75 }
76
77 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
78 {
79         struct blk_zone *zones = data;
80
81         memcpy(&zones[idx], zone, sizeof(*zone));
82
83         return 0;
84 }
85
86 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
87                             u64 *wp_ret)
88 {
89         bool empty[BTRFS_NR_SB_LOG_ZONES];
90         bool full[BTRFS_NR_SB_LOG_ZONES];
91         sector_t sector;
92         int i;
93
94         for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
95                 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
96                 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
97                 full[i] = sb_zone_is_full(&zones[i]);
98         }
99
100         /*
101          * Possible states of log buffer zones
102          *
103          *           Empty[0]  In use[0]  Full[0]
104          * Empty[1]         *          0        1
105          * In use[1]        x          x        1
106          * Full[1]          0          0        C
107          *
108          * Log position:
109          *   *: Special case, no superblock is written
110          *   0: Use write pointer of zones[0]
111          *   1: Use write pointer of zones[1]
112          *   C: Compare super blocks from zones[0] and zones[1], use the latest
113          *      one determined by generation
114          *   x: Invalid state
115          */
116
117         if (empty[0] && empty[1]) {
118                 /* Special case to distinguish no superblock to read */
119                 *wp_ret = zones[0].start << SECTOR_SHIFT;
120                 return -ENOENT;
121         } else if (full[0] && full[1]) {
122                 /* Compare two super blocks */
123                 struct address_space *mapping = bdev->bd_inode->i_mapping;
124                 struct page *page[BTRFS_NR_SB_LOG_ZONES];
125                 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
126                 int i;
127
128                 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
129                         u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
130                         u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
131                                                 BTRFS_SUPER_INFO_SIZE;
132
133                         page[i] = read_cache_page_gfp(mapping,
134                                         bytenr >> PAGE_SHIFT, GFP_NOFS);
135                         if (IS_ERR(page[i])) {
136                                 if (i == 1)
137                                         btrfs_release_disk_super(super[0]);
138                                 return PTR_ERR(page[i]);
139                         }
140                         super[i] = page_address(page[i]);
141                 }
142
143                 if (btrfs_super_generation(super[0]) >
144                     btrfs_super_generation(super[1]))
145                         sector = zones[1].start;
146                 else
147                         sector = zones[0].start;
148
149                 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
150                         btrfs_release_disk_super(super[i]);
151         } else if (!full[0] && (empty[1] || full[1])) {
152                 sector = zones[0].wp;
153         } else if (full[0]) {
154                 sector = zones[1].wp;
155         } else {
156                 return -EUCLEAN;
157         }
158         *wp_ret = sector << SECTOR_SHIFT;
159         return 0;
160 }
161
162 /*
163  * Get the first zone number of the superblock mirror
164  */
165 static inline u32 sb_zone_number(int shift, int mirror)
166 {
167         u64 zone = U64_MAX;
168
169         ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
170         switch (mirror) {
171         case 0: zone = 0; break;
172         case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
173         case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
174         }
175
176         ASSERT(zone <= U32_MAX);
177
178         return (u32)zone;
179 }
180
181 static inline sector_t zone_start_sector(u32 zone_number,
182                                          struct block_device *bdev)
183 {
184         return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
185 }
186
187 static inline u64 zone_start_physical(u32 zone_number,
188                                       struct btrfs_zoned_device_info *zone_info)
189 {
190         return (u64)zone_number << zone_info->zone_size_shift;
191 }
192
193 /*
194  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
195  * device into static sized chunks and fake a conventional zone on each of
196  * them.
197  */
198 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
199                                 struct blk_zone *zones, unsigned int nr_zones)
200 {
201         const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
202         sector_t bdev_size = bdev_nr_sectors(device->bdev);
203         unsigned int i;
204
205         pos >>= SECTOR_SHIFT;
206         for (i = 0; i < nr_zones; i++) {
207                 zones[i].start = i * zone_sectors + pos;
208                 zones[i].len = zone_sectors;
209                 zones[i].capacity = zone_sectors;
210                 zones[i].wp = zones[i].start + zone_sectors;
211                 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
212                 zones[i].cond = BLK_ZONE_COND_NOT_WP;
213
214                 if (zones[i].wp >= bdev_size) {
215                         i++;
216                         break;
217                 }
218         }
219
220         return i;
221 }
222
223 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
224                                struct blk_zone *zones, unsigned int *nr_zones)
225 {
226         struct btrfs_zoned_device_info *zinfo = device->zone_info;
227         int ret;
228
229         if (!*nr_zones)
230                 return 0;
231
232         if (!bdev_is_zoned(device->bdev)) {
233                 ret = emulate_report_zones(device, pos, zones, *nr_zones);
234                 *nr_zones = ret;
235                 return 0;
236         }
237
238         /* Check cache */
239         if (zinfo->zone_cache) {
240                 unsigned int i;
241                 u32 zno;
242
243                 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
244                 zno = pos >> zinfo->zone_size_shift;
245                 /*
246                  * We cannot report zones beyond the zone end. So, it is OK to
247                  * cap *nr_zones to at the end.
248                  */
249                 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
250
251                 for (i = 0; i < *nr_zones; i++) {
252                         struct blk_zone *zone_info;
253
254                         zone_info = &zinfo->zone_cache[zno + i];
255                         if (!zone_info->len)
256                                 break;
257                 }
258
259                 if (i == *nr_zones) {
260                         /* Cache hit on all the zones */
261                         memcpy(zones, zinfo->zone_cache + zno,
262                                sizeof(*zinfo->zone_cache) * *nr_zones);
263                         return 0;
264                 }
265         }
266
267         ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
268                                   copy_zone_info_cb, zones);
269         if (ret < 0) {
270                 btrfs_err_in_rcu(device->fs_info,
271                                  "zoned: failed to read zone %llu on %s (devid %llu)",
272                                  pos, rcu_str_deref(device->name),
273                                  device->devid);
274                 return ret;
275         }
276         *nr_zones = ret;
277         if (!ret)
278                 return -EIO;
279
280         /* Populate cache */
281         if (zinfo->zone_cache) {
282                 u32 zno = pos >> zinfo->zone_size_shift;
283
284                 memcpy(zinfo->zone_cache + zno, zones,
285                        sizeof(*zinfo->zone_cache) * *nr_zones);
286         }
287
288         return 0;
289 }
290
291 /* The emulated zone size is determined from the size of device extent */
292 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
293 {
294         struct btrfs_path *path;
295         struct btrfs_root *root = fs_info->dev_root;
296         struct btrfs_key key;
297         struct extent_buffer *leaf;
298         struct btrfs_dev_extent *dext;
299         int ret = 0;
300
301         key.objectid = 1;
302         key.type = BTRFS_DEV_EXTENT_KEY;
303         key.offset = 0;
304
305         path = btrfs_alloc_path();
306         if (!path)
307                 return -ENOMEM;
308
309         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
310         if (ret < 0)
311                 goto out;
312
313         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
314                 ret = btrfs_next_leaf(root, path);
315                 if (ret < 0)
316                         goto out;
317                 /* No dev extents at all? Not good */
318                 if (ret > 0) {
319                         ret = -EUCLEAN;
320                         goto out;
321                 }
322         }
323
324         leaf = path->nodes[0];
325         dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
326         fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
327         ret = 0;
328
329 out:
330         btrfs_free_path(path);
331
332         return ret;
333 }
334
335 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
336 {
337         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
338         struct btrfs_device *device;
339         int ret = 0;
340
341         /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
342         if (!btrfs_fs_incompat(fs_info, ZONED))
343                 return 0;
344
345         mutex_lock(&fs_devices->device_list_mutex);
346         list_for_each_entry(device, &fs_devices->devices, dev_list) {
347                 /* We can skip reading of zone info for missing devices */
348                 if (!device->bdev)
349                         continue;
350
351                 ret = btrfs_get_dev_zone_info(device, true);
352                 if (ret)
353                         break;
354         }
355         mutex_unlock(&fs_devices->device_list_mutex);
356
357         return ret;
358 }
359
360 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
361 {
362         struct btrfs_fs_info *fs_info = device->fs_info;
363         struct btrfs_zoned_device_info *zone_info = NULL;
364         struct block_device *bdev = device->bdev;
365         unsigned int max_active_zones;
366         unsigned int nactive;
367         sector_t nr_sectors;
368         sector_t sector = 0;
369         struct blk_zone *zones = NULL;
370         unsigned int i, nreported = 0, nr_zones;
371         sector_t zone_sectors;
372         char *model, *emulated;
373         int ret;
374
375         /*
376          * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
377          * yet be set.
378          */
379         if (!btrfs_fs_incompat(fs_info, ZONED))
380                 return 0;
381
382         if (device->zone_info)
383                 return 0;
384
385         zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
386         if (!zone_info)
387                 return -ENOMEM;
388
389         device->zone_info = zone_info;
390
391         if (!bdev_is_zoned(bdev)) {
392                 if (!fs_info->zone_size) {
393                         ret = calculate_emulated_zone_size(fs_info);
394                         if (ret)
395                                 goto out;
396                 }
397
398                 ASSERT(fs_info->zone_size);
399                 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
400         } else {
401                 zone_sectors = bdev_zone_sectors(bdev);
402         }
403
404         ASSERT(is_power_of_two_u64(zone_sectors));
405         zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
406
407         /* We reject devices with a zone size larger than 8GB */
408         if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
409                 btrfs_err_in_rcu(fs_info,
410                 "zoned: %s: zone size %llu larger than supported maximum %llu",
411                                  rcu_str_deref(device->name),
412                                  zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
413                 ret = -EINVAL;
414                 goto out;
415         } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
416                 btrfs_err_in_rcu(fs_info,
417                 "zoned: %s: zone size %llu smaller than supported minimum %u",
418                                  rcu_str_deref(device->name),
419                                  zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
420                 ret = -EINVAL;
421                 goto out;
422         }
423
424         nr_sectors = bdev_nr_sectors(bdev);
425         zone_info->zone_size_shift = ilog2(zone_info->zone_size);
426         zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
427         if (!IS_ALIGNED(nr_sectors, zone_sectors))
428                 zone_info->nr_zones++;
429
430         max_active_zones = bdev_max_active_zones(bdev);
431         if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
432                 btrfs_err_in_rcu(fs_info,
433 "zoned: %s: max active zones %u is too small, need at least %u active zones",
434                                  rcu_str_deref(device->name), max_active_zones,
435                                  BTRFS_MIN_ACTIVE_ZONES);
436                 ret = -EINVAL;
437                 goto out;
438         }
439         zone_info->max_active_zones = max_active_zones;
440
441         zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
442         if (!zone_info->seq_zones) {
443                 ret = -ENOMEM;
444                 goto out;
445         }
446
447         zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
448         if (!zone_info->empty_zones) {
449                 ret = -ENOMEM;
450                 goto out;
451         }
452
453         zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
454         if (!zone_info->active_zones) {
455                 ret = -ENOMEM;
456                 goto out;
457         }
458
459         zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
460         if (!zones) {
461                 ret = -ENOMEM;
462                 goto out;
463         }
464
465         /*
466          * Enable zone cache only for a zoned device. On a non-zoned device, we
467          * fill the zone info with emulated CONVENTIONAL zones, so no need to
468          * use the cache.
469          */
470         if (populate_cache && bdev_is_zoned(device->bdev)) {
471                 zone_info->zone_cache = vcalloc(zone_info->nr_zones,
472                                                 sizeof(struct blk_zone));
473                 if (!zone_info->zone_cache) {
474                         btrfs_err_in_rcu(device->fs_info,
475                                 "zoned: failed to allocate zone cache for %s",
476                                 rcu_str_deref(device->name));
477                         ret = -ENOMEM;
478                         goto out;
479                 }
480         }
481
482         /* Get zones type */
483         nactive = 0;
484         while (sector < nr_sectors) {
485                 nr_zones = BTRFS_REPORT_NR_ZONES;
486                 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
487                                           &nr_zones);
488                 if (ret)
489                         goto out;
490
491                 for (i = 0; i < nr_zones; i++) {
492                         if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
493                                 __set_bit(nreported, zone_info->seq_zones);
494                         switch (zones[i].cond) {
495                         case BLK_ZONE_COND_EMPTY:
496                                 __set_bit(nreported, zone_info->empty_zones);
497                                 break;
498                         case BLK_ZONE_COND_IMP_OPEN:
499                         case BLK_ZONE_COND_EXP_OPEN:
500                         case BLK_ZONE_COND_CLOSED:
501                                 __set_bit(nreported, zone_info->active_zones);
502                                 nactive++;
503                                 break;
504                         }
505                         nreported++;
506                 }
507                 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
508         }
509
510         if (nreported != zone_info->nr_zones) {
511                 btrfs_err_in_rcu(device->fs_info,
512                                  "inconsistent number of zones on %s (%u/%u)",
513                                  rcu_str_deref(device->name), nreported,
514                                  zone_info->nr_zones);
515                 ret = -EIO;
516                 goto out;
517         }
518
519         if (max_active_zones) {
520                 if (nactive > max_active_zones) {
521                         btrfs_err_in_rcu(device->fs_info,
522                         "zoned: %u active zones on %s exceeds max_active_zones %u",
523                                          nactive, rcu_str_deref(device->name),
524                                          max_active_zones);
525                         ret = -EIO;
526                         goto out;
527                 }
528                 atomic_set(&zone_info->active_zones_left,
529                            max_active_zones - nactive);
530                 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
531         }
532
533         /* Validate superblock log */
534         nr_zones = BTRFS_NR_SB_LOG_ZONES;
535         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
536                 u32 sb_zone;
537                 u64 sb_wp;
538                 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
539
540                 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
541                 if (sb_zone + 1 >= zone_info->nr_zones)
542                         continue;
543
544                 ret = btrfs_get_dev_zones(device,
545                                           zone_start_physical(sb_zone, zone_info),
546                                           &zone_info->sb_zones[sb_pos],
547                                           &nr_zones);
548                 if (ret)
549                         goto out;
550
551                 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
552                         btrfs_err_in_rcu(device->fs_info,
553         "zoned: failed to read super block log zone info at devid %llu zone %u",
554                                          device->devid, sb_zone);
555                         ret = -EUCLEAN;
556                         goto out;
557                 }
558
559                 /*
560                  * If zones[0] is conventional, always use the beginning of the
561                  * zone to record superblock. No need to validate in that case.
562                  */
563                 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
564                     BLK_ZONE_TYPE_CONVENTIONAL)
565                         continue;
566
567                 ret = sb_write_pointer(device->bdev,
568                                        &zone_info->sb_zones[sb_pos], &sb_wp);
569                 if (ret != -ENOENT && ret) {
570                         btrfs_err_in_rcu(device->fs_info,
571                         "zoned: super block log zone corrupted devid %llu zone %u",
572                                          device->devid, sb_zone);
573                         ret = -EUCLEAN;
574                         goto out;
575                 }
576         }
577
578
579         kvfree(zones);
580
581         switch (bdev_zoned_model(bdev)) {
582         case BLK_ZONED_HM:
583                 model = "host-managed zoned";
584                 emulated = "";
585                 break;
586         case BLK_ZONED_HA:
587                 model = "host-aware zoned";
588                 emulated = "";
589                 break;
590         case BLK_ZONED_NONE:
591                 model = "regular";
592                 emulated = "emulated ";
593                 break;
594         default:
595                 /* Just in case */
596                 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
597                                  bdev_zoned_model(bdev),
598                                  rcu_str_deref(device->name));
599                 ret = -EOPNOTSUPP;
600                 goto out_free_zone_info;
601         }
602
603         btrfs_info_in_rcu(fs_info,
604                 "%s block device %s, %u %szones of %llu bytes",
605                 model, rcu_str_deref(device->name), zone_info->nr_zones,
606                 emulated, zone_info->zone_size);
607
608         return 0;
609
610 out:
611         kvfree(zones);
612 out_free_zone_info:
613         btrfs_destroy_dev_zone_info(device);
614
615         return ret;
616 }
617
618 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
619 {
620         struct btrfs_zoned_device_info *zone_info = device->zone_info;
621
622         if (!zone_info)
623                 return;
624
625         bitmap_free(zone_info->active_zones);
626         bitmap_free(zone_info->seq_zones);
627         bitmap_free(zone_info->empty_zones);
628         vfree(zone_info->zone_cache);
629         kfree(zone_info);
630         device->zone_info = NULL;
631 }
632
633 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
634 {
635         struct btrfs_zoned_device_info *zone_info;
636
637         zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
638         if (!zone_info)
639                 return NULL;
640
641         zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
642         if (!zone_info->seq_zones)
643                 goto out;
644
645         bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
646                     zone_info->nr_zones);
647
648         zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
649         if (!zone_info->empty_zones)
650                 goto out;
651
652         bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
653                     zone_info->nr_zones);
654
655         zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
656         if (!zone_info->active_zones)
657                 goto out;
658
659         bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
660                     zone_info->nr_zones);
661         zone_info->zone_cache = NULL;
662
663         return zone_info;
664
665 out:
666         bitmap_free(zone_info->seq_zones);
667         bitmap_free(zone_info->empty_zones);
668         bitmap_free(zone_info->active_zones);
669         kfree(zone_info);
670         return NULL;
671 }
672
673 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
674                        struct blk_zone *zone)
675 {
676         unsigned int nr_zones = 1;
677         int ret;
678
679         ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
680         if (ret != 0 || !nr_zones)
681                 return ret ? ret : -EIO;
682
683         return 0;
684 }
685
686 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
687 {
688         struct btrfs_device *device;
689
690         list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
691                 if (device->bdev &&
692                     bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
693                         btrfs_err(fs_info,
694                                 "zoned: mode not enabled but zoned device found: %pg",
695                                 device->bdev);
696                         return -EINVAL;
697                 }
698         }
699
700         return 0;
701 }
702
703 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
704 {
705         struct queue_limits *lim = &fs_info->limits;
706         struct btrfs_device *device;
707         u64 zone_size = 0;
708         int ret;
709
710         /*
711          * Host-Managed devices can't be used without the ZONED flag.  With the
712          * ZONED all devices can be used, using zone emulation if required.
713          */
714         if (!btrfs_fs_incompat(fs_info, ZONED))
715                 return btrfs_check_for_zoned_device(fs_info);
716
717         blk_set_stacking_limits(lim);
718
719         list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
720                 struct btrfs_zoned_device_info *zone_info = device->zone_info;
721
722                 if (!device->bdev)
723                         continue;
724
725                 if (!zone_size) {
726                         zone_size = zone_info->zone_size;
727                 } else if (zone_info->zone_size != zone_size) {
728                         btrfs_err(fs_info,
729                 "zoned: unequal block device zone sizes: have %llu found %llu",
730                                   zone_info->zone_size, zone_size);
731                         return -EINVAL;
732                 }
733
734                 /*
735                  * With the zoned emulation, we can have non-zoned device on the
736                  * zoned mode. In this case, we don't have a valid max zone
737                  * append size.
738                  */
739                 if (bdev_is_zoned(device->bdev)) {
740                         blk_stack_limits(lim,
741                                          &bdev_get_queue(device->bdev)->limits,
742                                          0);
743                 }
744         }
745
746         /*
747          * stripe_size is always aligned to BTRFS_STRIPE_LEN in
748          * btrfs_create_chunk(). Since we want stripe_len == zone_size,
749          * check the alignment here.
750          */
751         if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
752                 btrfs_err(fs_info,
753                           "zoned: zone size %llu not aligned to stripe %u",
754                           zone_size, BTRFS_STRIPE_LEN);
755                 return -EINVAL;
756         }
757
758         if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
759                 btrfs_err(fs_info, "zoned: mixed block groups not supported");
760                 return -EINVAL;
761         }
762
763         fs_info->zone_size = zone_size;
764         /*
765          * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
766          * Technically, we can have multiple pages per segment. But, since
767          * we add the pages one by one to a bio, and cannot increase the
768          * metadata reservation even if it increases the number of extents, it
769          * is safe to stick with the limit.
770          */
771         fs_info->max_zone_append_size = ALIGN_DOWN(
772                 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
773                      (u64)lim->max_sectors << SECTOR_SHIFT,
774                      (u64)lim->max_segments << PAGE_SHIFT),
775                 fs_info->sectorsize);
776         fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
777         if (fs_info->max_zone_append_size < fs_info->max_extent_size)
778                 fs_info->max_extent_size = fs_info->max_zone_append_size;
779
780         /*
781          * Check mount options here, because we might change fs_info->zoned
782          * from fs_info->zone_size.
783          */
784         ret = btrfs_check_mountopts_zoned(fs_info);
785         if (ret)
786                 return ret;
787
788         btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
789         return 0;
790 }
791
792 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
793 {
794         if (!btrfs_is_zoned(info))
795                 return 0;
796
797         /*
798          * Space cache writing is not COWed. Disable that to avoid write errors
799          * in sequential zones.
800          */
801         if (btrfs_test_opt(info, SPACE_CACHE)) {
802                 btrfs_err(info, "zoned: space cache v1 is not supported");
803                 return -EINVAL;
804         }
805
806         if (btrfs_test_opt(info, NODATACOW)) {
807                 btrfs_err(info, "zoned: NODATACOW not supported");
808                 return -EINVAL;
809         }
810
811         btrfs_clear_and_info(info, DISCARD_ASYNC,
812                         "zoned: async discard ignored and disabled for zoned mode");
813
814         return 0;
815 }
816
817 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
818                            int rw, u64 *bytenr_ret)
819 {
820         u64 wp;
821         int ret;
822
823         if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
824                 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
825                 return 0;
826         }
827
828         ret = sb_write_pointer(bdev, zones, &wp);
829         if (ret != -ENOENT && ret < 0)
830                 return ret;
831
832         if (rw == WRITE) {
833                 struct blk_zone *reset = NULL;
834
835                 if (wp == zones[0].start << SECTOR_SHIFT)
836                         reset = &zones[0];
837                 else if (wp == zones[1].start << SECTOR_SHIFT)
838                         reset = &zones[1];
839
840                 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
841                         ASSERT(sb_zone_is_full(reset));
842
843                         ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
844                                                reset->start, reset->len,
845                                                GFP_NOFS);
846                         if (ret)
847                                 return ret;
848
849                         reset->cond = BLK_ZONE_COND_EMPTY;
850                         reset->wp = reset->start;
851                 }
852         } else if (ret != -ENOENT) {
853                 /*
854                  * For READ, we want the previous one. Move write pointer to
855                  * the end of a zone, if it is at the head of a zone.
856                  */
857                 u64 zone_end = 0;
858
859                 if (wp == zones[0].start << SECTOR_SHIFT)
860                         zone_end = zones[1].start + zones[1].capacity;
861                 else if (wp == zones[1].start << SECTOR_SHIFT)
862                         zone_end = zones[0].start + zones[0].capacity;
863                 if (zone_end)
864                         wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
865                                         BTRFS_SUPER_INFO_SIZE);
866
867                 wp -= BTRFS_SUPER_INFO_SIZE;
868         }
869
870         *bytenr_ret = wp;
871         return 0;
872
873 }
874
875 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
876                                u64 *bytenr_ret)
877 {
878         struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
879         sector_t zone_sectors;
880         u32 sb_zone;
881         int ret;
882         u8 zone_sectors_shift;
883         sector_t nr_sectors;
884         u32 nr_zones;
885
886         if (!bdev_is_zoned(bdev)) {
887                 *bytenr_ret = btrfs_sb_offset(mirror);
888                 return 0;
889         }
890
891         ASSERT(rw == READ || rw == WRITE);
892
893         zone_sectors = bdev_zone_sectors(bdev);
894         if (!is_power_of_2(zone_sectors))
895                 return -EINVAL;
896         zone_sectors_shift = ilog2(zone_sectors);
897         nr_sectors = bdev_nr_sectors(bdev);
898         nr_zones = nr_sectors >> zone_sectors_shift;
899
900         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
901         if (sb_zone + 1 >= nr_zones)
902                 return -ENOENT;
903
904         ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
905                                   BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
906                                   zones);
907         if (ret < 0)
908                 return ret;
909         if (ret != BTRFS_NR_SB_LOG_ZONES)
910                 return -EIO;
911
912         return sb_log_location(bdev, zones, rw, bytenr_ret);
913 }
914
915 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
916                           u64 *bytenr_ret)
917 {
918         struct btrfs_zoned_device_info *zinfo = device->zone_info;
919         u32 zone_num;
920
921         /*
922          * For a zoned filesystem on a non-zoned block device, use the same
923          * super block locations as regular filesystem. Doing so, the super
924          * block can always be retrieved and the zoned flag of the volume
925          * detected from the super block information.
926          */
927         if (!bdev_is_zoned(device->bdev)) {
928                 *bytenr_ret = btrfs_sb_offset(mirror);
929                 return 0;
930         }
931
932         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
933         if (zone_num + 1 >= zinfo->nr_zones)
934                 return -ENOENT;
935
936         return sb_log_location(device->bdev,
937                                &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
938                                rw, bytenr_ret);
939 }
940
941 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
942                                   int mirror)
943 {
944         u32 zone_num;
945
946         if (!zinfo)
947                 return false;
948
949         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
950         if (zone_num + 1 >= zinfo->nr_zones)
951                 return false;
952
953         if (!test_bit(zone_num, zinfo->seq_zones))
954                 return false;
955
956         return true;
957 }
958
959 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
960 {
961         struct btrfs_zoned_device_info *zinfo = device->zone_info;
962         struct blk_zone *zone;
963         int i;
964
965         if (!is_sb_log_zone(zinfo, mirror))
966                 return 0;
967
968         zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
969         for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
970                 /* Advance the next zone */
971                 if (zone->cond == BLK_ZONE_COND_FULL) {
972                         zone++;
973                         continue;
974                 }
975
976                 if (zone->cond == BLK_ZONE_COND_EMPTY)
977                         zone->cond = BLK_ZONE_COND_IMP_OPEN;
978
979                 zone->wp += SUPER_INFO_SECTORS;
980
981                 if (sb_zone_is_full(zone)) {
982                         /*
983                          * No room left to write new superblock. Since
984                          * superblock is written with REQ_SYNC, it is safe to
985                          * finish the zone now.
986                          *
987                          * If the write pointer is exactly at the capacity,
988                          * explicit ZONE_FINISH is not necessary.
989                          */
990                         if (zone->wp != zone->start + zone->capacity) {
991                                 int ret;
992
993                                 ret = blkdev_zone_mgmt(device->bdev,
994                                                 REQ_OP_ZONE_FINISH, zone->start,
995                                                 zone->len, GFP_NOFS);
996                                 if (ret)
997                                         return ret;
998                         }
999
1000                         zone->wp = zone->start + zone->len;
1001                         zone->cond = BLK_ZONE_COND_FULL;
1002                 }
1003                 return 0;
1004         }
1005
1006         /* All the zones are FULL. Should not reach here. */
1007         ASSERT(0);
1008         return -EIO;
1009 }
1010
1011 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1012 {
1013         sector_t zone_sectors;
1014         sector_t nr_sectors;
1015         u8 zone_sectors_shift;
1016         u32 sb_zone;
1017         u32 nr_zones;
1018
1019         zone_sectors = bdev_zone_sectors(bdev);
1020         zone_sectors_shift = ilog2(zone_sectors);
1021         nr_sectors = bdev_nr_sectors(bdev);
1022         nr_zones = nr_sectors >> zone_sectors_shift;
1023
1024         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1025         if (sb_zone + 1 >= nr_zones)
1026                 return -ENOENT;
1027
1028         return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1029                                 zone_start_sector(sb_zone, bdev),
1030                                 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1031 }
1032
1033 /*
1034  * Find allocatable zones within a given region.
1035  *
1036  * @device:     the device to allocate a region on
1037  * @hole_start: the position of the hole to allocate the region
1038  * @num_bytes:  size of wanted region
1039  * @hole_end:   the end of the hole
1040  * @return:     position of allocatable zones
1041  *
1042  * Allocatable region should not contain any superblock locations.
1043  */
1044 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1045                                  u64 hole_end, u64 num_bytes)
1046 {
1047         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1048         const u8 shift = zinfo->zone_size_shift;
1049         u64 nzones = num_bytes >> shift;
1050         u64 pos = hole_start;
1051         u64 begin, end;
1052         bool have_sb;
1053         int i;
1054
1055         ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1056         ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1057
1058         while (pos < hole_end) {
1059                 begin = pos >> shift;
1060                 end = begin + nzones;
1061
1062                 if (end > zinfo->nr_zones)
1063                         return hole_end;
1064
1065                 /* Check if zones in the region are all empty */
1066                 if (btrfs_dev_is_sequential(device, pos) &&
1067                     !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1068                         pos += zinfo->zone_size;
1069                         continue;
1070                 }
1071
1072                 have_sb = false;
1073                 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1074                         u32 sb_zone;
1075                         u64 sb_pos;
1076
1077                         sb_zone = sb_zone_number(shift, i);
1078                         if (!(end <= sb_zone ||
1079                               sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1080                                 have_sb = true;
1081                                 pos = zone_start_physical(
1082                                         sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1083                                 break;
1084                         }
1085
1086                         /* We also need to exclude regular superblock positions */
1087                         sb_pos = btrfs_sb_offset(i);
1088                         if (!(pos + num_bytes <= sb_pos ||
1089                               sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1090                                 have_sb = true;
1091                                 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1092                                             zinfo->zone_size);
1093                                 break;
1094                         }
1095                 }
1096                 if (!have_sb)
1097                         break;
1098         }
1099
1100         return pos;
1101 }
1102
1103 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1104 {
1105         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1106         unsigned int zno = (pos >> zone_info->zone_size_shift);
1107
1108         /* We can use any number of zones */
1109         if (zone_info->max_active_zones == 0)
1110                 return true;
1111
1112         if (!test_bit(zno, zone_info->active_zones)) {
1113                 /* Active zone left? */
1114                 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1115                         return false;
1116                 if (test_and_set_bit(zno, zone_info->active_zones)) {
1117                         /* Someone already set the bit */
1118                         atomic_inc(&zone_info->active_zones_left);
1119                 }
1120         }
1121
1122         return true;
1123 }
1124
1125 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1126 {
1127         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1128         unsigned int zno = (pos >> zone_info->zone_size_shift);
1129
1130         /* We can use any number of zones */
1131         if (zone_info->max_active_zones == 0)
1132                 return;
1133
1134         if (test_and_clear_bit(zno, zone_info->active_zones))
1135                 atomic_inc(&zone_info->active_zones_left);
1136 }
1137
1138 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1139                             u64 length, u64 *bytes)
1140 {
1141         int ret;
1142
1143         *bytes = 0;
1144         ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1145                                physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1146                                GFP_NOFS);
1147         if (ret)
1148                 return ret;
1149
1150         *bytes = length;
1151         while (length) {
1152                 btrfs_dev_set_zone_empty(device, physical);
1153                 btrfs_dev_clear_active_zone(device, physical);
1154                 physical += device->zone_info->zone_size;
1155                 length -= device->zone_info->zone_size;
1156         }
1157
1158         return 0;
1159 }
1160
1161 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1162 {
1163         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1164         const u8 shift = zinfo->zone_size_shift;
1165         unsigned long begin = start >> shift;
1166         unsigned long nbits = size >> shift;
1167         u64 pos;
1168         int ret;
1169
1170         ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1171         ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1172
1173         if (begin + nbits > zinfo->nr_zones)
1174                 return -ERANGE;
1175
1176         /* All the zones are conventional */
1177         if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1178                 return 0;
1179
1180         /* All the zones are sequential and empty */
1181         if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1182             bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1183                 return 0;
1184
1185         for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1186                 u64 reset_bytes;
1187
1188                 if (!btrfs_dev_is_sequential(device, pos) ||
1189                     btrfs_dev_is_empty_zone(device, pos))
1190                         continue;
1191
1192                 /* Free regions should be empty */
1193                 btrfs_warn_in_rcu(
1194                         device->fs_info,
1195                 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1196                         rcu_str_deref(device->name), device->devid, pos >> shift);
1197                 WARN_ON_ONCE(1);
1198
1199                 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1200                                               &reset_bytes);
1201                 if (ret)
1202                         return ret;
1203         }
1204
1205         return 0;
1206 }
1207
1208 /*
1209  * Calculate an allocation pointer from the extent allocation information
1210  * for a block group consist of conventional zones. It is pointed to the
1211  * end of the highest addressed extent in the block group as an allocation
1212  * offset.
1213  */
1214 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1215                                    u64 *offset_ret, bool new)
1216 {
1217         struct btrfs_fs_info *fs_info = cache->fs_info;
1218         struct btrfs_root *root;
1219         struct btrfs_path *path;
1220         struct btrfs_key key;
1221         struct btrfs_key found_key;
1222         int ret;
1223         u64 length;
1224
1225         /*
1226          * Avoid  tree lookups for a new block group, there's no use for it.
1227          * It must always be 0.
1228          *
1229          * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1230          * For new a block group, this function is called from
1231          * btrfs_make_block_group() which is already taking the chunk mutex.
1232          * Thus, we cannot call calculate_alloc_pointer() which takes extent
1233          * buffer locks to avoid deadlock.
1234          */
1235         if (new) {
1236                 *offset_ret = 0;
1237                 return 0;
1238         }
1239
1240         path = btrfs_alloc_path();
1241         if (!path)
1242                 return -ENOMEM;
1243
1244         key.objectid = cache->start + cache->length;
1245         key.type = 0;
1246         key.offset = 0;
1247
1248         root = btrfs_extent_root(fs_info, key.objectid);
1249         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1250         /* We should not find the exact match */
1251         if (!ret)
1252                 ret = -EUCLEAN;
1253         if (ret < 0)
1254                 goto out;
1255
1256         ret = btrfs_previous_extent_item(root, path, cache->start);
1257         if (ret) {
1258                 if (ret == 1) {
1259                         ret = 0;
1260                         *offset_ret = 0;
1261                 }
1262                 goto out;
1263         }
1264
1265         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1266
1267         if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1268                 length = found_key.offset;
1269         else
1270                 length = fs_info->nodesize;
1271
1272         if (!(found_key.objectid >= cache->start &&
1273                found_key.objectid + length <= cache->start + cache->length)) {
1274                 ret = -EUCLEAN;
1275                 goto out;
1276         }
1277         *offset_ret = found_key.objectid + length - cache->start;
1278         ret = 0;
1279
1280 out:
1281         btrfs_free_path(path);
1282         return ret;
1283 }
1284
1285 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1286 {
1287         struct btrfs_fs_info *fs_info = cache->fs_info;
1288         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1289         struct extent_map *em;
1290         struct map_lookup *map;
1291         struct btrfs_device *device;
1292         u64 logical = cache->start;
1293         u64 length = cache->length;
1294         int ret;
1295         int i;
1296         unsigned int nofs_flag;
1297         u64 *alloc_offsets = NULL;
1298         u64 *caps = NULL;
1299         u64 *physical = NULL;
1300         unsigned long *active = NULL;
1301         u64 last_alloc = 0;
1302         u32 num_sequential = 0, num_conventional = 0;
1303
1304         if (!btrfs_is_zoned(fs_info))
1305                 return 0;
1306
1307         /* Sanity check */
1308         if (!IS_ALIGNED(length, fs_info->zone_size)) {
1309                 btrfs_err(fs_info,
1310                 "zoned: block group %llu len %llu unaligned to zone size %llu",
1311                           logical, length, fs_info->zone_size);
1312                 return -EIO;
1313         }
1314
1315         /* Get the chunk mapping */
1316         read_lock(&em_tree->lock);
1317         em = lookup_extent_mapping(em_tree, logical, length);
1318         read_unlock(&em_tree->lock);
1319
1320         if (!em)
1321                 return -EINVAL;
1322
1323         map = em->map_lookup;
1324
1325         cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1326         if (!cache->physical_map) {
1327                 ret = -ENOMEM;
1328                 goto out;
1329         }
1330
1331         alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1332         if (!alloc_offsets) {
1333                 ret = -ENOMEM;
1334                 goto out;
1335         }
1336
1337         caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1338         if (!caps) {
1339                 ret = -ENOMEM;
1340                 goto out;
1341         }
1342
1343         physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1344         if (!physical) {
1345                 ret = -ENOMEM;
1346                 goto out;
1347         }
1348
1349         active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1350         if (!active) {
1351                 ret = -ENOMEM;
1352                 goto out;
1353         }
1354
1355         for (i = 0; i < map->num_stripes; i++) {
1356                 bool is_sequential;
1357                 struct blk_zone zone;
1358                 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1359                 int dev_replace_is_ongoing = 0;
1360
1361                 device = map->stripes[i].dev;
1362                 physical[i] = map->stripes[i].physical;
1363
1364                 if (device->bdev == NULL) {
1365                         alloc_offsets[i] = WP_MISSING_DEV;
1366                         continue;
1367                 }
1368
1369                 is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1370                 if (is_sequential)
1371                         num_sequential++;
1372                 else
1373                         num_conventional++;
1374
1375                 /*
1376                  * Consider a zone as active if we can allow any number of
1377                  * active zones.
1378                  */
1379                 if (!device->zone_info->max_active_zones)
1380                         __set_bit(i, active);
1381
1382                 if (!is_sequential) {
1383                         alloc_offsets[i] = WP_CONVENTIONAL;
1384                         continue;
1385                 }
1386
1387                 /*
1388                  * This zone will be used for allocation, so mark this zone
1389                  * non-empty.
1390                  */
1391                 btrfs_dev_clear_zone_empty(device, physical[i]);
1392
1393                 down_read(&dev_replace->rwsem);
1394                 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1395                 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1396                         btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1397                 up_read(&dev_replace->rwsem);
1398
1399                 /*
1400                  * The group is mapped to a sequential zone. Get the zone write
1401                  * pointer to determine the allocation offset within the zone.
1402                  */
1403                 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1404                 nofs_flag = memalloc_nofs_save();
1405                 ret = btrfs_get_dev_zone(device, physical[i], &zone);
1406                 memalloc_nofs_restore(nofs_flag);
1407                 if (ret == -EIO || ret == -EOPNOTSUPP) {
1408                         ret = 0;
1409                         alloc_offsets[i] = WP_MISSING_DEV;
1410                         continue;
1411                 } else if (ret) {
1412                         goto out;
1413                 }
1414
1415                 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1416                         btrfs_err_in_rcu(fs_info,
1417         "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1418                                 zone.start << SECTOR_SHIFT,
1419                                 rcu_str_deref(device->name), device->devid);
1420                         ret = -EIO;
1421                         goto out;
1422                 }
1423
1424                 caps[i] = (zone.capacity << SECTOR_SHIFT);
1425
1426                 switch (zone.cond) {
1427                 case BLK_ZONE_COND_OFFLINE:
1428                 case BLK_ZONE_COND_READONLY:
1429                         btrfs_err(fs_info,
1430                 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1431                                   physical[i] >> device->zone_info->zone_size_shift,
1432                                   rcu_str_deref(device->name), device->devid);
1433                         alloc_offsets[i] = WP_MISSING_DEV;
1434                         break;
1435                 case BLK_ZONE_COND_EMPTY:
1436                         alloc_offsets[i] = 0;
1437                         break;
1438                 case BLK_ZONE_COND_FULL:
1439                         alloc_offsets[i] = caps[i];
1440                         break;
1441                 default:
1442                         /* Partially used zone */
1443                         alloc_offsets[i] =
1444                                         ((zone.wp - zone.start) << SECTOR_SHIFT);
1445                         __set_bit(i, active);
1446                         break;
1447                 }
1448         }
1449
1450         if (num_sequential > 0)
1451                 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1452
1453         if (num_conventional > 0) {
1454                 /* Zone capacity is always zone size in emulation */
1455                 cache->zone_capacity = cache->length;
1456                 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1457                 if (ret) {
1458                         btrfs_err(fs_info,
1459                         "zoned: failed to determine allocation offset of bg %llu",
1460                                   cache->start);
1461                         goto out;
1462                 } else if (map->num_stripes == num_conventional) {
1463                         cache->alloc_offset = last_alloc;
1464                         set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1465                         goto out;
1466                 }
1467         }
1468
1469         switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1470         case 0: /* single */
1471                 if (alloc_offsets[0] == WP_MISSING_DEV) {
1472                         btrfs_err(fs_info,
1473                         "zoned: cannot recover write pointer for zone %llu",
1474                                 physical[0]);
1475                         ret = -EIO;
1476                         goto out;
1477                 }
1478                 cache->alloc_offset = alloc_offsets[0];
1479                 cache->zone_capacity = caps[0];
1480                 if (test_bit(0, active))
1481                         set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1482                 break;
1483         case BTRFS_BLOCK_GROUP_DUP:
1484                 if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1485                         btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1486                         ret = -EINVAL;
1487                         goto out;
1488                 }
1489                 if (alloc_offsets[0] == WP_MISSING_DEV) {
1490                         btrfs_err(fs_info,
1491                         "zoned: cannot recover write pointer for zone %llu",
1492                                 physical[0]);
1493                         ret = -EIO;
1494                         goto out;
1495                 }
1496                 if (alloc_offsets[1] == WP_MISSING_DEV) {
1497                         btrfs_err(fs_info,
1498                         "zoned: cannot recover write pointer for zone %llu",
1499                                 physical[1]);
1500                         ret = -EIO;
1501                         goto out;
1502                 }
1503                 if (alloc_offsets[0] != alloc_offsets[1]) {
1504                         btrfs_err(fs_info,
1505                         "zoned: write pointer offset mismatch of zones in DUP profile");
1506                         ret = -EIO;
1507                         goto out;
1508                 }
1509                 if (test_bit(0, active) != test_bit(1, active)) {
1510                         if (!btrfs_zone_activate(cache)) {
1511                                 ret = -EIO;
1512                                 goto out;
1513                         }
1514                 } else {
1515                         if (test_bit(0, active))
1516                                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1517                                         &cache->runtime_flags);
1518                 }
1519                 cache->alloc_offset = alloc_offsets[0];
1520                 cache->zone_capacity = min(caps[0], caps[1]);
1521                 break;
1522         case BTRFS_BLOCK_GROUP_RAID1:
1523         case BTRFS_BLOCK_GROUP_RAID0:
1524         case BTRFS_BLOCK_GROUP_RAID10:
1525         case BTRFS_BLOCK_GROUP_RAID5:
1526         case BTRFS_BLOCK_GROUP_RAID6:
1527                 /* non-single profiles are not supported yet */
1528         default:
1529                 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1530                           btrfs_bg_type_to_raid_name(map->type));
1531                 ret = -EINVAL;
1532                 goto out;
1533         }
1534
1535 out:
1536         if (cache->alloc_offset > fs_info->zone_size) {
1537                 btrfs_err(fs_info,
1538                         "zoned: invalid write pointer %llu in block group %llu",
1539                         cache->alloc_offset, cache->start);
1540                 ret = -EIO;
1541         }
1542
1543         if (cache->alloc_offset > cache->zone_capacity) {
1544                 btrfs_err(fs_info,
1545 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1546                           cache->alloc_offset, cache->zone_capacity,
1547                           cache->start);
1548                 ret = -EIO;
1549         }
1550
1551         /* An extent is allocated after the write pointer */
1552         if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1553                 btrfs_err(fs_info,
1554                           "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1555                           logical, last_alloc, cache->alloc_offset);
1556                 ret = -EIO;
1557         }
1558
1559         if (!ret) {
1560                 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1561                 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1562                         btrfs_get_block_group(cache);
1563                         spin_lock(&fs_info->zone_active_bgs_lock);
1564                         list_add_tail(&cache->active_bg_list,
1565                                       &fs_info->zone_active_bgs);
1566                         spin_unlock(&fs_info->zone_active_bgs_lock);
1567                 }
1568         } else {
1569                 kfree(cache->physical_map);
1570                 cache->physical_map = NULL;
1571         }
1572         bitmap_free(active);
1573         kfree(physical);
1574         kfree(caps);
1575         kfree(alloc_offsets);
1576         free_extent_map(em);
1577
1578         return ret;
1579 }
1580
1581 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1582 {
1583         u64 unusable, free;
1584
1585         if (!btrfs_is_zoned(cache->fs_info))
1586                 return;
1587
1588         WARN_ON(cache->bytes_super != 0);
1589         unusable = (cache->alloc_offset - cache->used) +
1590                    (cache->length - cache->zone_capacity);
1591         free = cache->zone_capacity - cache->alloc_offset;
1592
1593         /* We only need ->free_space in ALLOC_SEQ block groups */
1594         cache->cached = BTRFS_CACHE_FINISHED;
1595         cache->free_space_ctl->free_space = free;
1596         cache->zone_unusable = unusable;
1597 }
1598
1599 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1600                             struct extent_buffer *eb)
1601 {
1602         if (!btrfs_is_zoned(eb->fs_info) ||
1603             btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN))
1604                 return;
1605
1606         ASSERT(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1607
1608         memzero_extent_buffer(eb, 0, eb->len);
1609         set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1610         set_extent_buffer_dirty(eb);
1611         set_extent_bit(&trans->dirty_pages, eb->start, eb->start + eb->len - 1,
1612                         EXTENT_DIRTY | EXTENT_NOWAIT, NULL);
1613 }
1614
1615 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1616 {
1617         u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1618         struct btrfs_inode *inode = bbio->inode;
1619         struct btrfs_fs_info *fs_info = bbio->fs_info;
1620         struct btrfs_block_group *cache;
1621         bool ret = false;
1622
1623         if (!btrfs_is_zoned(fs_info))
1624                 return false;
1625
1626         if (!inode || !is_data_inode(&inode->vfs_inode))
1627                 return false;
1628
1629         if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1630                 return false;
1631
1632         /*
1633          * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1634          * extent layout the relocation code has.
1635          * Furthermore we have set aside own block-group from which only the
1636          * relocation "process" can allocate and make sure only one process at a
1637          * time can add pages to an extent that gets relocated, so it's safe to
1638          * use regular REQ_OP_WRITE for this special case.
1639          */
1640         if (btrfs_is_data_reloc_root(inode->root))
1641                 return false;
1642
1643         cache = btrfs_lookup_block_group(fs_info, start);
1644         ASSERT(cache);
1645         if (!cache)
1646                 return false;
1647
1648         ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1649         btrfs_put_block_group(cache);
1650
1651         return ret;
1652 }
1653
1654 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1655 {
1656         const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1657         struct btrfs_ordered_sum *sum = bbio->sums;
1658
1659         if (physical < bbio->orig_physical)
1660                 sum->logical -= bbio->orig_physical - physical;
1661         else
1662                 sum->logical += physical - bbio->orig_physical;
1663 }
1664
1665 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1666                                         u64 logical)
1667 {
1668         struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree;
1669         struct extent_map *em;
1670
1671         ordered->disk_bytenr = logical;
1672
1673         write_lock(&em_tree->lock);
1674         em = search_extent_mapping(em_tree, ordered->file_offset,
1675                                    ordered->num_bytes);
1676         em->block_start = logical;
1677         free_extent_map(em);
1678         write_unlock(&em_tree->lock);
1679 }
1680
1681 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1682                                       u64 logical, u64 len)
1683 {
1684         struct btrfs_ordered_extent *new;
1685
1686         if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1687             split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset,
1688                              ordered->num_bytes, len, logical))
1689                 return false;
1690
1691         new = btrfs_split_ordered_extent(ordered, len);
1692         if (IS_ERR(new))
1693                 return false;
1694         new->disk_bytenr = logical;
1695         btrfs_finish_one_ordered(new);
1696         return true;
1697 }
1698
1699 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1700 {
1701         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1702         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1703         struct btrfs_ordered_sum *sum;
1704         u64 logical, len;
1705
1706         /*
1707          * Write to pre-allocated region is for the data relocation, and so
1708          * it should use WRITE operation. No split/rewrite are necessary.
1709          */
1710         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1711                 return;
1712
1713         ASSERT(!list_empty(&ordered->list));
1714         /* The ordered->list can be empty in the above pre-alloc case. */
1715         sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1716         logical = sum->logical;
1717         len = sum->len;
1718
1719         while (len < ordered->disk_num_bytes) {
1720                 sum = list_next_entry(sum, list);
1721                 if (sum->logical == logical + len) {
1722                         len += sum->len;
1723                         continue;
1724                 }
1725                 if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1726                         set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1727                         btrfs_err(fs_info, "failed to split ordered extent");
1728                         goto out;
1729                 }
1730                 logical = sum->logical;
1731                 len = sum->len;
1732         }
1733
1734         if (ordered->disk_bytenr != logical)
1735                 btrfs_rewrite_logical_zoned(ordered, logical);
1736
1737 out:
1738         /*
1739          * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1740          * were allocated by btrfs_alloc_dummy_sum only to record the logical
1741          * addresses and don't contain actual checksums.  We thus must free them
1742          * here so that we don't attempt to log the csums later.
1743          */
1744         if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1745             test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) {
1746                 while ((sum = list_first_entry_or_null(&ordered->list,
1747                                                        typeof(*sum), list))) {
1748                         list_del(&sum->list);
1749                         kfree(sum);
1750                 }
1751         }
1752 }
1753
1754 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1755                                struct btrfs_block_group **active_bg)
1756 {
1757         const struct writeback_control *wbc = ctx->wbc;
1758         struct btrfs_block_group *block_group = ctx->zoned_bg;
1759         struct btrfs_fs_info *fs_info = block_group->fs_info;
1760
1761         if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1762                 return true;
1763
1764         if (fs_info->treelog_bg == block_group->start) {
1765                 if (!btrfs_zone_activate(block_group)) {
1766                         int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1767
1768                         if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1769                                 return false;
1770                 }
1771         } else if (*active_bg != block_group) {
1772                 struct btrfs_block_group *tgt = *active_bg;
1773
1774                 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1775                 lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1776
1777                 if (tgt) {
1778                         /*
1779                          * If there is an unsent IO left in the allocated area,
1780                          * we cannot wait for them as it may cause a deadlock.
1781                          */
1782                         if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1783                                 if (wbc->sync_mode == WB_SYNC_NONE ||
1784                                     (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1785                                         return false;
1786                         }
1787
1788                         /* Pivot active metadata/system block group. */
1789                         btrfs_zoned_meta_io_unlock(fs_info);
1790                         wait_eb_writebacks(tgt);
1791                         do_zone_finish(tgt, true);
1792                         btrfs_zoned_meta_io_lock(fs_info);
1793                         if (*active_bg == tgt) {
1794                                 btrfs_put_block_group(tgt);
1795                                 *active_bg = NULL;
1796                         }
1797                 }
1798                 if (!btrfs_zone_activate(block_group))
1799                         return false;
1800                 if (*active_bg != block_group) {
1801                         ASSERT(*active_bg == NULL);
1802                         *active_bg = block_group;
1803                         btrfs_get_block_group(block_group);
1804                 }
1805         }
1806
1807         return true;
1808 }
1809
1810 /*
1811  * Check if @ctx->eb is aligned to the write pointer.
1812  *
1813  * Return:
1814  *   0:        @ctx->eb is at the write pointer. You can write it.
1815  *   -EAGAIN:  There is a hole. The caller should handle the case.
1816  *   -EBUSY:   There is a hole, but the caller can just bail out.
1817  */
1818 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1819                                    struct btrfs_eb_write_context *ctx)
1820 {
1821         const struct writeback_control *wbc = ctx->wbc;
1822         const struct extent_buffer *eb = ctx->eb;
1823         struct btrfs_block_group *block_group = ctx->zoned_bg;
1824
1825         if (!btrfs_is_zoned(fs_info))
1826                 return 0;
1827
1828         if (block_group) {
1829                 if (block_group->start > eb->start ||
1830                     block_group->start + block_group->length <= eb->start) {
1831                         btrfs_put_block_group(block_group);
1832                         block_group = NULL;
1833                         ctx->zoned_bg = NULL;
1834                 }
1835         }
1836
1837         if (!block_group) {
1838                 block_group = btrfs_lookup_block_group(fs_info, eb->start);
1839                 if (!block_group)
1840                         return 0;
1841                 ctx->zoned_bg = block_group;
1842         }
1843
1844         if (block_group->meta_write_pointer == eb->start) {
1845                 struct btrfs_block_group **tgt;
1846
1847                 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1848                         return 0;
1849
1850                 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1851                         tgt = &fs_info->active_system_bg;
1852                 else
1853                         tgt = &fs_info->active_meta_bg;
1854                 if (check_bg_is_active(ctx, tgt))
1855                         return 0;
1856         }
1857
1858         /*
1859          * Since we may release fs_info->zoned_meta_io_lock, someone can already
1860          * start writing this eb. In that case, we can just bail out.
1861          */
1862         if (block_group->meta_write_pointer > eb->start)
1863                 return -EBUSY;
1864
1865         /* If for_sync, this hole will be filled with trasnsaction commit. */
1866         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1867                 return -EAGAIN;
1868         return -EBUSY;
1869 }
1870
1871 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1872 {
1873         if (!btrfs_dev_is_sequential(device, physical))
1874                 return -EOPNOTSUPP;
1875
1876         return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1877                                     length >> SECTOR_SHIFT, GFP_NOFS, 0);
1878 }
1879
1880 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1881                           struct blk_zone *zone)
1882 {
1883         struct btrfs_io_context *bioc = NULL;
1884         u64 mapped_length = PAGE_SIZE;
1885         unsigned int nofs_flag;
1886         int nmirrors;
1887         int i, ret;
1888
1889         ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1890                               &mapped_length, &bioc, NULL, NULL, 1);
1891         if (ret || !bioc || mapped_length < PAGE_SIZE) {
1892                 ret = -EIO;
1893                 goto out_put_bioc;
1894         }
1895
1896         if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1897                 ret = -EINVAL;
1898                 goto out_put_bioc;
1899         }
1900
1901         nofs_flag = memalloc_nofs_save();
1902         nmirrors = (int)bioc->num_stripes;
1903         for (i = 0; i < nmirrors; i++) {
1904                 u64 physical = bioc->stripes[i].physical;
1905                 struct btrfs_device *dev = bioc->stripes[i].dev;
1906
1907                 /* Missing device */
1908                 if (!dev->bdev)
1909                         continue;
1910
1911                 ret = btrfs_get_dev_zone(dev, physical, zone);
1912                 /* Failing device */
1913                 if (ret == -EIO || ret == -EOPNOTSUPP)
1914                         continue;
1915                 break;
1916         }
1917         memalloc_nofs_restore(nofs_flag);
1918 out_put_bioc:
1919         btrfs_put_bioc(bioc);
1920         return ret;
1921 }
1922
1923 /*
1924  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1925  * filling zeros between @physical_pos to a write pointer of dev-replace
1926  * source device.
1927  */
1928 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1929                                     u64 physical_start, u64 physical_pos)
1930 {
1931         struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1932         struct blk_zone zone;
1933         u64 length;
1934         u64 wp;
1935         int ret;
1936
1937         if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1938                 return 0;
1939
1940         ret = read_zone_info(fs_info, logical, &zone);
1941         if (ret)
1942                 return ret;
1943
1944         wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1945
1946         if (physical_pos == wp)
1947                 return 0;
1948
1949         if (physical_pos > wp)
1950                 return -EUCLEAN;
1951
1952         length = wp - physical_pos;
1953         return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1954 }
1955
1956 /*
1957  * Activate block group and underlying device zones
1958  *
1959  * @block_group: the block group to activate
1960  *
1961  * Return: true on success, false otherwise
1962  */
1963 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1964 {
1965         struct btrfs_fs_info *fs_info = block_group->fs_info;
1966         struct map_lookup *map;
1967         struct btrfs_device *device;
1968         u64 physical;
1969         const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
1970         bool ret;
1971         int i;
1972
1973         if (!btrfs_is_zoned(block_group->fs_info))
1974                 return true;
1975
1976         map = block_group->physical_map;
1977
1978         spin_lock(&block_group->lock);
1979         if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1980                 ret = true;
1981                 goto out_unlock;
1982         }
1983
1984         /* No space left */
1985         if (btrfs_zoned_bg_is_full(block_group)) {
1986                 ret = false;
1987                 goto out_unlock;
1988         }
1989
1990         spin_lock(&fs_info->zone_active_bgs_lock);
1991         for (i = 0; i < map->num_stripes; i++) {
1992                 struct btrfs_zoned_device_info *zinfo;
1993                 int reserved = 0;
1994
1995                 device = map->stripes[i].dev;
1996                 physical = map->stripes[i].physical;
1997                 zinfo = device->zone_info;
1998
1999                 if (zinfo->max_active_zones == 0)
2000                         continue;
2001
2002                 if (is_data)
2003                         reserved = zinfo->reserved_active_zones;
2004                 /*
2005                  * For the data block group, leave active zones for one
2006                  * metadata block group and one system block group.
2007                  */
2008                 if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2009                         ret = false;
2010                         spin_unlock(&fs_info->zone_active_bgs_lock);
2011                         goto out_unlock;
2012                 }
2013
2014                 if (!btrfs_dev_set_active_zone(device, physical)) {
2015                         /* Cannot activate the zone */
2016                         ret = false;
2017                         spin_unlock(&fs_info->zone_active_bgs_lock);
2018                         goto out_unlock;
2019                 }
2020                 if (!is_data)
2021                         zinfo->reserved_active_zones--;
2022         }
2023         spin_unlock(&fs_info->zone_active_bgs_lock);
2024
2025         /* Successfully activated all the zones */
2026         set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2027         spin_unlock(&block_group->lock);
2028
2029         /* For the active block group list */
2030         btrfs_get_block_group(block_group);
2031
2032         spin_lock(&fs_info->zone_active_bgs_lock);
2033         list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2034         spin_unlock(&fs_info->zone_active_bgs_lock);
2035
2036         return true;
2037
2038 out_unlock:
2039         spin_unlock(&block_group->lock);
2040         return ret;
2041 }
2042
2043 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2044 {
2045         struct btrfs_fs_info *fs_info = block_group->fs_info;
2046         const u64 end = block_group->start + block_group->length;
2047         struct radix_tree_iter iter;
2048         struct extent_buffer *eb;
2049         void __rcu **slot;
2050
2051         rcu_read_lock();
2052         radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2053                                  block_group->start >> fs_info->sectorsize_bits) {
2054                 eb = radix_tree_deref_slot(slot);
2055                 if (!eb)
2056                         continue;
2057                 if (radix_tree_deref_retry(eb)) {
2058                         slot = radix_tree_iter_retry(&iter);
2059                         continue;
2060                 }
2061
2062                 if (eb->start < block_group->start)
2063                         continue;
2064                 if (eb->start >= end)
2065                         break;
2066
2067                 slot = radix_tree_iter_resume(slot, &iter);
2068                 rcu_read_unlock();
2069                 wait_on_extent_buffer_writeback(eb);
2070                 rcu_read_lock();
2071         }
2072         rcu_read_unlock();
2073 }
2074
2075 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2076 {
2077         struct btrfs_fs_info *fs_info = block_group->fs_info;
2078         struct map_lookup *map;
2079         const bool is_metadata = (block_group->flags &
2080                         (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2081         int ret = 0;
2082         int i;
2083
2084         spin_lock(&block_group->lock);
2085         if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2086                 spin_unlock(&block_group->lock);
2087                 return 0;
2088         }
2089
2090         /* Check if we have unwritten allocated space */
2091         if (is_metadata &&
2092             block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2093                 spin_unlock(&block_group->lock);
2094                 return -EAGAIN;
2095         }
2096
2097         /*
2098          * If we are sure that the block group is full (= no more room left for
2099          * new allocation) and the IO for the last usable block is completed, we
2100          * don't need to wait for the other IOs. This holds because we ensure
2101          * the sequential IO submissions using the ZONE_APPEND command for data
2102          * and block_group->meta_write_pointer for metadata.
2103          */
2104         if (!fully_written) {
2105                 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2106                         spin_unlock(&block_group->lock);
2107                         return -EAGAIN;
2108                 }
2109                 spin_unlock(&block_group->lock);
2110
2111                 ret = btrfs_inc_block_group_ro(block_group, false);
2112                 if (ret)
2113                         return ret;
2114
2115                 /* Ensure all writes in this block group finish */
2116                 btrfs_wait_block_group_reservations(block_group);
2117                 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2118                 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2119                                          block_group->length);
2120                 /* Wait for extent buffers to be written. */
2121                 if (is_metadata)
2122                         wait_eb_writebacks(block_group);
2123
2124                 spin_lock(&block_group->lock);
2125
2126                 /*
2127                  * Bail out if someone already deactivated the block group, or
2128                  * allocated space is left in the block group.
2129                  */
2130                 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2131                               &block_group->runtime_flags)) {
2132                         spin_unlock(&block_group->lock);
2133                         btrfs_dec_block_group_ro(block_group);
2134                         return 0;
2135                 }
2136
2137                 if (block_group->reserved ||
2138                     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2139                              &block_group->runtime_flags)) {
2140                         spin_unlock(&block_group->lock);
2141                         btrfs_dec_block_group_ro(block_group);
2142                         return -EAGAIN;
2143                 }
2144         }
2145
2146         clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2147         block_group->alloc_offset = block_group->zone_capacity;
2148         if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2149                 block_group->meta_write_pointer = block_group->start +
2150                                                   block_group->zone_capacity;
2151         block_group->free_space_ctl->free_space = 0;
2152         btrfs_clear_treelog_bg(block_group);
2153         btrfs_clear_data_reloc_bg(block_group);
2154         spin_unlock(&block_group->lock);
2155
2156         map = block_group->physical_map;
2157         for (i = 0; i < map->num_stripes; i++) {
2158                 struct btrfs_device *device = map->stripes[i].dev;
2159                 const u64 physical = map->stripes[i].physical;
2160                 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2161
2162                 if (zinfo->max_active_zones == 0)
2163                         continue;
2164
2165                 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2166                                        physical >> SECTOR_SHIFT,
2167                                        zinfo->zone_size >> SECTOR_SHIFT,
2168                                        GFP_NOFS);
2169
2170                 if (ret)
2171                         return ret;
2172
2173                 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2174                         zinfo->reserved_active_zones++;
2175                 btrfs_dev_clear_active_zone(device, physical);
2176         }
2177
2178         if (!fully_written)
2179                 btrfs_dec_block_group_ro(block_group);
2180
2181         spin_lock(&fs_info->zone_active_bgs_lock);
2182         ASSERT(!list_empty(&block_group->active_bg_list));
2183         list_del_init(&block_group->active_bg_list);
2184         spin_unlock(&fs_info->zone_active_bgs_lock);
2185
2186         /* For active_bg_list */
2187         btrfs_put_block_group(block_group);
2188
2189         clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2190
2191         return 0;
2192 }
2193
2194 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2195 {
2196         if (!btrfs_is_zoned(block_group->fs_info))
2197                 return 0;
2198
2199         return do_zone_finish(block_group, false);
2200 }
2201
2202 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2203 {
2204         struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2205         struct btrfs_device *device;
2206         bool ret = false;
2207
2208         if (!btrfs_is_zoned(fs_info))
2209                 return true;
2210
2211         /* Check if there is a device with active zones left */
2212         mutex_lock(&fs_info->chunk_mutex);
2213         spin_lock(&fs_info->zone_active_bgs_lock);
2214         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2215                 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2216                 int reserved = 0;
2217
2218                 if (!device->bdev)
2219                         continue;
2220
2221                 if (!zinfo->max_active_zones) {
2222                         ret = true;
2223                         break;
2224                 }
2225
2226                 if (flags & BTRFS_BLOCK_GROUP_DATA)
2227                         reserved = zinfo->reserved_active_zones;
2228
2229                 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2230                 case 0: /* single */
2231                         ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2232                         break;
2233                 case BTRFS_BLOCK_GROUP_DUP:
2234                         ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2235                         break;
2236                 }
2237                 if (ret)
2238                         break;
2239         }
2240         spin_unlock(&fs_info->zone_active_bgs_lock);
2241         mutex_unlock(&fs_info->chunk_mutex);
2242
2243         if (!ret)
2244                 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2245
2246         return ret;
2247 }
2248
2249 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2250 {
2251         struct btrfs_block_group *block_group;
2252         u64 min_alloc_bytes;
2253
2254         if (!btrfs_is_zoned(fs_info))
2255                 return;
2256
2257         block_group = btrfs_lookup_block_group(fs_info, logical);
2258         ASSERT(block_group);
2259
2260         /* No MIXED_BG on zoned btrfs. */
2261         if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2262                 min_alloc_bytes = fs_info->sectorsize;
2263         else
2264                 min_alloc_bytes = fs_info->nodesize;
2265
2266         /* Bail out if we can allocate more data from this block group. */
2267         if (logical + length + min_alloc_bytes <=
2268             block_group->start + block_group->zone_capacity)
2269                 goto out;
2270
2271         do_zone_finish(block_group, true);
2272
2273 out:
2274         btrfs_put_block_group(block_group);
2275 }
2276
2277 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2278 {
2279         struct btrfs_block_group *bg =
2280                 container_of(work, struct btrfs_block_group, zone_finish_work);
2281
2282         wait_on_extent_buffer_writeback(bg->last_eb);
2283         free_extent_buffer(bg->last_eb);
2284         btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2285         btrfs_put_block_group(bg);
2286 }
2287
2288 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2289                                    struct extent_buffer *eb)
2290 {
2291         if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2292             eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2293                 return;
2294
2295         if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2296                 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2297                           bg->start);
2298                 return;
2299         }
2300
2301         /* For the work */
2302         btrfs_get_block_group(bg);
2303         atomic_inc(&eb->refs);
2304         bg->last_eb = eb;
2305         INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2306         queue_work(system_unbound_wq, &bg->zone_finish_work);
2307 }
2308
2309 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2310 {
2311         struct btrfs_fs_info *fs_info = bg->fs_info;
2312
2313         spin_lock(&fs_info->relocation_bg_lock);
2314         if (fs_info->data_reloc_bg == bg->start)
2315                 fs_info->data_reloc_bg = 0;
2316         spin_unlock(&fs_info->relocation_bg_lock);
2317 }
2318
2319 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2320 {
2321         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2322         struct btrfs_device *device;
2323
2324         if (!btrfs_is_zoned(fs_info))
2325                 return;
2326
2327         mutex_lock(&fs_devices->device_list_mutex);
2328         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2329                 if (device->zone_info) {
2330                         vfree(device->zone_info->zone_cache);
2331                         device->zone_info->zone_cache = NULL;
2332                 }
2333         }
2334         mutex_unlock(&fs_devices->device_list_mutex);
2335 }
2336
2337 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2338 {
2339         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2340         struct btrfs_device *device;
2341         u64 used = 0;
2342         u64 total = 0;
2343         u64 factor;
2344
2345         ASSERT(btrfs_is_zoned(fs_info));
2346
2347         if (fs_info->bg_reclaim_threshold == 0)
2348                 return false;
2349
2350         mutex_lock(&fs_devices->device_list_mutex);
2351         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2352                 if (!device->bdev)
2353                         continue;
2354
2355                 total += device->disk_total_bytes;
2356                 used += device->bytes_used;
2357         }
2358         mutex_unlock(&fs_devices->device_list_mutex);
2359
2360         factor = div64_u64(used * 100, total);
2361         return factor >= fs_info->bg_reclaim_threshold;
2362 }
2363
2364 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2365                                        u64 length)
2366 {
2367         struct btrfs_block_group *block_group;
2368
2369         if (!btrfs_is_zoned(fs_info))
2370                 return;
2371
2372         block_group = btrfs_lookup_block_group(fs_info, logical);
2373         /* It should be called on a previous data relocation block group. */
2374         ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2375
2376         spin_lock(&block_group->lock);
2377         if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2378                 goto out;
2379
2380         /* All relocation extents are written. */
2381         if (block_group->start + block_group->alloc_offset == logical + length) {
2382                 /*
2383                  * Now, release this block group for further allocations and
2384                  * zone finish.
2385                  */
2386                 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2387                           &block_group->runtime_flags);
2388         }
2389
2390 out:
2391         spin_unlock(&block_group->lock);
2392         btrfs_put_block_group(block_group);
2393 }
2394
2395 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2396 {
2397         struct btrfs_block_group *block_group;
2398         struct btrfs_block_group *min_bg = NULL;
2399         u64 min_avail = U64_MAX;
2400         int ret;
2401
2402         spin_lock(&fs_info->zone_active_bgs_lock);
2403         list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2404                             active_bg_list) {
2405                 u64 avail;
2406
2407                 spin_lock(&block_group->lock);
2408                 if (block_group->reserved || block_group->alloc_offset == 0 ||
2409                     (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2410                     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2411                         spin_unlock(&block_group->lock);
2412                         continue;
2413                 }
2414
2415                 avail = block_group->zone_capacity - block_group->alloc_offset;
2416                 if (min_avail > avail) {
2417                         if (min_bg)
2418                                 btrfs_put_block_group(min_bg);
2419                         min_bg = block_group;
2420                         min_avail = avail;
2421                         btrfs_get_block_group(min_bg);
2422                 }
2423                 spin_unlock(&block_group->lock);
2424         }
2425         spin_unlock(&fs_info->zone_active_bgs_lock);
2426
2427         if (!min_bg)
2428                 return 0;
2429
2430         ret = btrfs_zone_finish(min_bg);
2431         btrfs_put_block_group(min_bg);
2432
2433         return ret < 0 ? ret : 1;
2434 }
2435
2436 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2437                                 struct btrfs_space_info *space_info,
2438                                 bool do_finish)
2439 {
2440         struct btrfs_block_group *bg;
2441         int index;
2442
2443         if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2444                 return 0;
2445
2446         for (;;) {
2447                 int ret;
2448                 bool need_finish = false;
2449
2450                 down_read(&space_info->groups_sem);
2451                 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2452                         list_for_each_entry(bg, &space_info->block_groups[index],
2453                                             list) {
2454                                 if (!spin_trylock(&bg->lock))
2455                                         continue;
2456                                 if (btrfs_zoned_bg_is_full(bg) ||
2457                                     test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2458                                              &bg->runtime_flags)) {
2459                                         spin_unlock(&bg->lock);
2460                                         continue;
2461                                 }
2462                                 spin_unlock(&bg->lock);
2463
2464                                 if (btrfs_zone_activate(bg)) {
2465                                         up_read(&space_info->groups_sem);
2466                                         return 1;
2467                                 }
2468
2469                                 need_finish = true;
2470                         }
2471                 }
2472                 up_read(&space_info->groups_sem);
2473
2474                 if (!do_finish || !need_finish)
2475                         break;
2476
2477                 ret = btrfs_zone_finish_one_bg(fs_info);
2478                 if (ret == 0)
2479                         break;
2480                 if (ret < 0)
2481                         return ret;
2482         }
2483
2484         return 0;
2485 }
2486
2487 /*
2488  * Reserve zones for one metadata block group, one tree-log block group, and one
2489  * system block group.
2490  */
2491 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2492 {
2493         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2494         struct btrfs_block_group *block_group;
2495         struct btrfs_device *device;
2496         /* Reserve zones for normal SINGLE metadata and tree-log block group. */
2497         unsigned int metadata_reserve = 2;
2498         /* Reserve a zone for SINGLE system block group. */
2499         unsigned int system_reserve = 1;
2500
2501         if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2502                 return;
2503
2504         /*
2505          * This function is called from the mount context. So, there is no
2506          * parallel process touching the bits. No need for read_seqretry().
2507          */
2508         if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2509                 metadata_reserve = 4;
2510         if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2511                 system_reserve = 2;
2512
2513         /* Apply the reservation on all the devices. */
2514         mutex_lock(&fs_devices->device_list_mutex);
2515         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2516                 if (!device->bdev)
2517                         continue;
2518
2519                 device->zone_info->reserved_active_zones =
2520                         metadata_reserve + system_reserve;
2521         }
2522         mutex_unlock(&fs_devices->device_list_mutex);
2523
2524         /* Release reservation for currently active block groups. */
2525         spin_lock(&fs_info->zone_active_bgs_lock);
2526         list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2527                 struct map_lookup *map = block_group->physical_map;
2528
2529                 if (!(block_group->flags &
2530                       (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2531                         continue;
2532
2533                 for (int i = 0; i < map->num_stripes; i++)
2534                         map->stripes[i].dev->zone_info->reserved_active_zones--;
2535         }
2536         spin_unlock(&fs_info->zone_active_bgs_lock);
2537 }