1 /* SPDX-License-Identifier: GPL-2.0 */
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #ifndef BTRFS_VOLUMES_H
7 #define BTRFS_VOLUMES_H
10 #include <linux/sort.h>
11 #include <linux/btrfs.h>
12 #include "async-thread.h"
14 #define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G)
16 extern struct mutex uuid_mutex;
18 #define BTRFS_STRIPE_LEN SZ_64K
20 struct btrfs_io_geometry {
21 /* remaining bytes before crossing a stripe */
23 /* offset of logical address in chunk */
25 /* length of single IO stripe */
27 /* number of stripe where address falls */
29 /* offset of address in stripe */
31 /* offset of raid56 stripe into the chunk */
32 u64 raid56_stripe_offset;
36 * Use sequence counter to get consistent device stat data on
39 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
40 #include <linux/seqlock.h>
41 #define __BTRFS_NEED_DEVICE_DATA_ORDERED
42 #define btrfs_device_data_ordered_init(device) \
43 seqcount_init(&device->data_seqcount)
45 #define btrfs_device_data_ordered_init(device) do { } while (0)
48 #define BTRFS_DEV_STATE_WRITEABLE (0)
49 #define BTRFS_DEV_STATE_IN_FS_METADATA (1)
50 #define BTRFS_DEV_STATE_MISSING (2)
51 #define BTRFS_DEV_STATE_REPLACE_TGT (3)
52 #define BTRFS_DEV_STATE_FLUSH_SENT (4)
55 struct list_head dev_list; /* device_list_mutex */
56 struct list_head dev_alloc_list; /* chunk mutex */
57 struct list_head post_commit_list; /* chunk mutex */
58 struct btrfs_fs_devices *fs_devices;
59 struct btrfs_fs_info *fs_info;
61 struct rcu_string __rcu *name;
65 struct block_device *bdev;
67 /* the mode sent to blkdev_get */
70 unsigned long dev_state;
71 blk_status_t last_flush_error;
73 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
74 seqcount_t data_seqcount;
77 /* the internal btrfs device id */
80 /* size of the device in memory */
83 /* size of the device on disk */
89 /* optimal io alignment for this device */
92 /* optimal io width for this device */
94 /* type and info about this device */
97 /* minimal io size for this device */
100 /* physical drive uuid (or lvm uuid) */
101 u8 uuid[BTRFS_UUID_SIZE];
104 * size of the device on the current transaction
106 * This variant is update when committing the transaction,
107 * and protected by chunk mutex
109 u64 commit_total_bytes;
111 /* bytes used on the current transaction */
112 u64 commit_bytes_used;
114 /* for sending down flush barriers */
115 struct bio *flush_bio;
116 struct completion flush_wait;
118 /* per-device scrub information */
119 struct scrub_ctx *scrub_ctx;
121 /* readahead state */
122 atomic_t reada_in_flight;
124 struct reada_zone *reada_curr_zone;
125 struct radix_tree_root reada_zones;
126 struct radix_tree_root reada_extents;
128 /* disk I/O failure stats. For detailed description refer to
129 * enum btrfs_dev_stat_values in ioctl.h */
132 /* Counter to record the change of device stats */
133 atomic_t dev_stats_ccnt;
134 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
136 struct extent_io_tree alloc_state;
138 struct completion kobj_unregister;
139 /* For sysfs/FSID/devinfo/devid/ */
140 struct kobject devid_kobj;
144 * If we read those variants at the context of their own lock, we needn't
145 * use the following helpers, reading them directly is safe.
147 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
148 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
150 btrfs_device_get_##name(const struct btrfs_device *dev) \
156 seq = read_seqcount_begin(&dev->data_seqcount); \
158 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \
163 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
166 write_seqcount_begin(&dev->data_seqcount); \
168 write_seqcount_end(&dev->data_seqcount); \
171 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
172 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
174 btrfs_device_get_##name(const struct btrfs_device *dev) \
185 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
192 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
194 btrfs_device_get_##name(const struct btrfs_device *dev) \
200 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
206 BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
207 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
208 BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
210 enum btrfs_chunk_allocation_policy {
211 BTRFS_CHUNK_ALLOC_REGULAR,
214 struct btrfs_fs_devices {
215 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
216 u8 metadata_uuid[BTRFS_FSID_SIZE];
218 struct list_head fs_list;
227 /* Highest generation number of seen devices */
228 u64 latest_generation;
230 struct block_device *latest_bdev;
232 /* all of the devices in the FS, protected by a mutex
233 * so we can safely walk it to write out the supers without
234 * worrying about add/remove by the multi-device code.
235 * Scrubbing super can kick off supers writing by holding
238 struct mutex device_list_mutex;
240 /* List of all devices, protected by device_list_mutex */
241 struct list_head devices;
244 * Devices which can satisfy space allocation. Protected by
247 struct list_head alloc_list;
249 struct list_head seed_list;
254 /* set when we find or add a device that doesn't have the
259 struct btrfs_fs_info *fs_info;
261 struct kobject fsid_kobj;
262 struct kobject *devices_kobj;
263 struct kobject *devinfo_kobj;
264 struct completion kobj_unregister;
266 enum btrfs_chunk_allocation_policy chunk_alloc_policy;
269 #define BTRFS_BIO_INLINE_CSUM_SIZE 64
271 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
272 - sizeof(struct btrfs_chunk)) \
273 / sizeof(struct btrfs_stripe) + 1)
275 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
276 - 2 * sizeof(struct btrfs_disk_key) \
277 - 2 * sizeof(struct btrfs_chunk)) \
278 / sizeof(struct btrfs_stripe) + 1)
281 * we need the mirror number and stripe index to be passed around
282 * the call chain while we are processing end_io (especially errors).
283 * Really, what we need is a btrfs_bio structure that has this info
284 * and is properly sized with its stripe array, but we're not there
285 * quite yet. We have our own btrfs bioset, and all of the bios
286 * we allocate are actually btrfs_io_bios. We'll cram as much of
287 * struct btrfs_bio as we can into this over time.
289 struct btrfs_io_bio {
290 unsigned int mirror_num;
291 struct btrfs_device *device;
294 u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
295 struct bvec_iter iter;
297 * This member must come last, bio_alloc_bioset will allocate enough
298 * bytes for entire btrfs_io_bio but relies on bio being last.
303 static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
305 return container_of(bio, struct btrfs_io_bio, bio);
308 static inline void btrfs_io_bio_free_csum(struct btrfs_io_bio *io_bio)
310 if (io_bio->csum != io_bio->csum_inline) {
316 struct btrfs_bio_stripe {
317 struct btrfs_device *dev;
319 u64 length; /* only used for discard mappings */
324 atomic_t stripes_pending;
325 struct btrfs_fs_info *fs_info;
326 u64 map_type; /* get from map_lookup->type */
327 bio_end_io_t *end_io;
328 struct bio *orig_bio;
337 * logical block numbers for the start of each stripe
338 * The last one or two are p/q. These are sorted,
339 * so raid_map[0] is the start of our full stripe
342 struct btrfs_bio_stripe stripes[];
345 struct btrfs_device_info {
346 struct btrfs_device *dev;
352 struct btrfs_raid_attr {
353 u8 sub_stripes; /* sub_stripes info for map */
354 u8 dev_stripes; /* stripes per dev */
355 u8 devs_max; /* max devs to use */
356 u8 devs_min; /* min devs needed */
357 u8 tolerated_failures; /* max tolerated fail devs */
358 u8 devs_increment; /* ndevs has to be a multiple of this */
359 u8 ncopies; /* how many copies to data has */
360 u8 nparity; /* number of stripes worth of bytes to store
361 * parity information */
362 u8 mindev_error; /* error code if min devs requisite is unmet */
363 const char raid_name[8]; /* name of the raid */
364 u64 bg_flag; /* block group flag of the raid */
367 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
376 int verified_stripes; /* For mount time dev extent verification */
377 struct btrfs_bio_stripe stripes[];
380 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
381 (sizeof(struct btrfs_bio_stripe) * (n)))
383 struct btrfs_balance_args;
384 struct btrfs_balance_progress;
385 struct btrfs_balance_control {
386 struct btrfs_balance_args data;
387 struct btrfs_balance_args meta;
388 struct btrfs_balance_args sys;
392 struct btrfs_balance_progress stat;
399 BTRFS_MAP_GET_READ_MIRRORS,
402 static inline enum btrfs_map_op btrfs_op(struct bio *bio)
404 switch (bio_op(bio)) {
406 return BTRFS_MAP_DISCARD;
408 return BTRFS_MAP_WRITE;
413 return BTRFS_MAP_READ;
417 void btrfs_get_bbio(struct btrfs_bio *bbio);
418 void btrfs_put_bbio(struct btrfs_bio *bbio);
419 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
420 u64 logical, u64 *length,
421 struct btrfs_bio **bbio_ret, int mirror_num);
422 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
423 u64 logical, u64 *length,
424 struct btrfs_bio **bbio_ret);
425 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
426 u64 logical, u64 len, struct btrfs_io_geometry *io_geom);
427 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
428 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
429 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type);
430 void btrfs_mapping_tree_free(struct extent_map_tree *tree);
431 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
433 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
434 fmode_t flags, void *holder);
435 struct btrfs_device *btrfs_scan_one_device(const char *path,
436 fmode_t flags, void *holder);
437 int btrfs_forget_devices(const char *path);
438 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
439 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step);
440 void btrfs_assign_next_active_device(struct btrfs_device *device,
441 struct btrfs_device *this_dev);
442 struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info,
444 const char *devpath);
445 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
448 void btrfs_free_device(struct btrfs_device *device);
449 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
450 const char *device_path, u64 devid);
451 void __exit btrfs_cleanup_fs_uuids(void);
452 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
453 int btrfs_grow_device(struct btrfs_trans_handle *trans,
454 struct btrfs_device *device, u64 new_size);
455 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
456 u64 devid, u8 *uuid, u8 *fsid, bool seed);
457 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
458 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
459 int btrfs_balance(struct btrfs_fs_info *fs_info,
460 struct btrfs_balance_control *bctl,
461 struct btrfs_ioctl_balance_args *bargs);
462 void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf);
463 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
464 int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
465 int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
466 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
467 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
468 int btrfs_uuid_scan_kthread(void *data);
469 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
470 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
471 u64 *start, u64 *max_avail);
472 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
473 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
474 struct btrfs_ioctl_get_dev_stats *stats);
475 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
476 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
477 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans);
478 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
479 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev);
480 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
481 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
482 u64 logical, u64 len);
483 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
485 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
486 u64 chunk_offset, u64 chunk_size);
487 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
488 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
489 u64 logical, u64 length);
490 void btrfs_release_disk_super(struct btrfs_super_block *super);
492 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
495 atomic_inc(dev->dev_stat_values + index);
497 * This memory barrier orders stores updating statistics before stores
498 * updating dev_stats_ccnt.
500 * It pairs with smp_rmb() in btrfs_run_dev_stats().
502 smp_mb__before_atomic();
503 atomic_inc(&dev->dev_stats_ccnt);
506 static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
509 return atomic_read(dev->dev_stat_values + index);
512 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
517 ret = atomic_xchg(dev->dev_stat_values + index, 0);
519 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
520 * - RMW operations that have a return value are fully ordered;
522 * This implicit memory barriers is paired with the smp_rmb in
523 * btrfs_run_dev_stats
525 atomic_inc(&dev->dev_stats_ccnt);
529 static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
530 int index, unsigned long val)
532 atomic_set(dev->dev_stat_values + index, val);
534 * This memory barrier orders stores updating statistics before stores
535 * updating dev_stats_ccnt.
537 * It pairs with smp_rmb() in btrfs_run_dev_stats().
539 smp_mb__before_atomic();
540 atomic_inc(&dev->dev_stats_ccnt);
544 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
545 * can be used as index to access btrfs_raid_array[].
547 static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
549 if (flags & BTRFS_BLOCK_GROUP_RAID10)
550 return BTRFS_RAID_RAID10;
551 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
552 return BTRFS_RAID_RAID1;
553 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
554 return BTRFS_RAID_RAID1C3;
555 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
556 return BTRFS_RAID_RAID1C4;
557 else if (flags & BTRFS_BLOCK_GROUP_DUP)
558 return BTRFS_RAID_DUP;
559 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
560 return BTRFS_RAID_RAID0;
561 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
562 return BTRFS_RAID_RAID5;
563 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
564 return BTRFS_RAID_RAID6;
566 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
569 void btrfs_commit_device_sizes(struct btrfs_transaction *trans);
571 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void);
572 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
573 struct btrfs_device *failing_dev);
574 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
575 struct block_device *bdev,
576 const char *device_path);
578 int btrfs_bg_type_to_factor(u64 flags);
579 const char *btrfs_bg_type_to_raid_name(u64 flags);
580 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);