btrfs: update device path inode time instead of bd_inode
[platform/kernel/linux-rpi.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34 #include "discard.h"
35 #include "zoned.h"
36
37 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
38         [BTRFS_RAID_RAID10] = {
39                 .sub_stripes    = 2,
40                 .dev_stripes    = 1,
41                 .devs_max       = 0,    /* 0 == as many as possible */
42                 .devs_min       = 2,
43                 .tolerated_failures = 1,
44                 .devs_increment = 2,
45                 .ncopies        = 2,
46                 .nparity        = 0,
47                 .raid_name      = "raid10",
48                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
49                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
50         },
51         [BTRFS_RAID_RAID1] = {
52                 .sub_stripes    = 1,
53                 .dev_stripes    = 1,
54                 .devs_max       = 2,
55                 .devs_min       = 2,
56                 .tolerated_failures = 1,
57                 .devs_increment = 2,
58                 .ncopies        = 2,
59                 .nparity        = 0,
60                 .raid_name      = "raid1",
61                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
62                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
63         },
64         [BTRFS_RAID_RAID1C3] = {
65                 .sub_stripes    = 1,
66                 .dev_stripes    = 1,
67                 .devs_max       = 3,
68                 .devs_min       = 3,
69                 .tolerated_failures = 2,
70                 .devs_increment = 3,
71                 .ncopies        = 3,
72                 .nparity        = 0,
73                 .raid_name      = "raid1c3",
74                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
75                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
76         },
77         [BTRFS_RAID_RAID1C4] = {
78                 .sub_stripes    = 1,
79                 .dev_stripes    = 1,
80                 .devs_max       = 4,
81                 .devs_min       = 4,
82                 .tolerated_failures = 3,
83                 .devs_increment = 4,
84                 .ncopies        = 4,
85                 .nparity        = 0,
86                 .raid_name      = "raid1c4",
87                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
88                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
89         },
90         [BTRFS_RAID_DUP] = {
91                 .sub_stripes    = 1,
92                 .dev_stripes    = 2,
93                 .devs_max       = 1,
94                 .devs_min       = 1,
95                 .tolerated_failures = 0,
96                 .devs_increment = 1,
97                 .ncopies        = 2,
98                 .nparity        = 0,
99                 .raid_name      = "dup",
100                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
101                 .mindev_error   = 0,
102         },
103         [BTRFS_RAID_RAID0] = {
104                 .sub_stripes    = 1,
105                 .dev_stripes    = 1,
106                 .devs_max       = 0,
107                 .devs_min       = 1,
108                 .tolerated_failures = 0,
109                 .devs_increment = 1,
110                 .ncopies        = 1,
111                 .nparity        = 0,
112                 .raid_name      = "raid0",
113                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
114                 .mindev_error   = 0,
115         },
116         [BTRFS_RAID_SINGLE] = {
117                 .sub_stripes    = 1,
118                 .dev_stripes    = 1,
119                 .devs_max       = 1,
120                 .devs_min       = 1,
121                 .tolerated_failures = 0,
122                 .devs_increment = 1,
123                 .ncopies        = 1,
124                 .nparity        = 0,
125                 .raid_name      = "single",
126                 .bg_flag        = 0,
127                 .mindev_error   = 0,
128         },
129         [BTRFS_RAID_RAID5] = {
130                 .sub_stripes    = 1,
131                 .dev_stripes    = 1,
132                 .devs_max       = 0,
133                 .devs_min       = 2,
134                 .tolerated_failures = 1,
135                 .devs_increment = 1,
136                 .ncopies        = 1,
137                 .nparity        = 1,
138                 .raid_name      = "raid5",
139                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
140                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
141         },
142         [BTRFS_RAID_RAID6] = {
143                 .sub_stripes    = 1,
144                 .dev_stripes    = 1,
145                 .devs_max       = 0,
146                 .devs_min       = 3,
147                 .tolerated_failures = 2,
148                 .devs_increment = 1,
149                 .ncopies        = 1,
150                 .nparity        = 2,
151                 .raid_name      = "raid6",
152                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
153                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
154         },
155 };
156
157 /*
158  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
159  * can be used as index to access btrfs_raid_array[].
160  */
161 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
162 {
163         if (flags & BTRFS_BLOCK_GROUP_RAID10)
164                 return BTRFS_RAID_RAID10;
165         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
166                 return BTRFS_RAID_RAID1;
167         else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
168                 return BTRFS_RAID_RAID1C3;
169         else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
170                 return BTRFS_RAID_RAID1C4;
171         else if (flags & BTRFS_BLOCK_GROUP_DUP)
172                 return BTRFS_RAID_DUP;
173         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
174                 return BTRFS_RAID_RAID0;
175         else if (flags & BTRFS_BLOCK_GROUP_RAID5)
176                 return BTRFS_RAID_RAID5;
177         else if (flags & BTRFS_BLOCK_GROUP_RAID6)
178                 return BTRFS_RAID_RAID6;
179
180         return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
181 }
182
183 const char *btrfs_bg_type_to_raid_name(u64 flags)
184 {
185         const int index = btrfs_bg_flags_to_raid_index(flags);
186
187         if (index >= BTRFS_NR_RAID_TYPES)
188                 return NULL;
189
190         return btrfs_raid_array[index].raid_name;
191 }
192
193 /*
194  * Fill @buf with textual description of @bg_flags, no more than @size_buf
195  * bytes including terminating null byte.
196  */
197 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
198 {
199         int i;
200         int ret;
201         char *bp = buf;
202         u64 flags = bg_flags;
203         u32 size_bp = size_buf;
204
205         if (!flags) {
206                 strcpy(bp, "NONE");
207                 return;
208         }
209
210 #define DESCRIBE_FLAG(flag, desc)                                               \
211         do {                                                            \
212                 if (flags & (flag)) {                                   \
213                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
214                         if (ret < 0 || ret >= size_bp)                  \
215                                 goto out_overflow;                      \
216                         size_bp -= ret;                                 \
217                         bp += ret;                                      \
218                         flags &= ~(flag);                               \
219                 }                                                       \
220         } while (0)
221
222         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
223         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
224         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
225
226         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
227         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
228                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
229                               btrfs_raid_array[i].raid_name);
230 #undef DESCRIBE_FLAG
231
232         if (flags) {
233                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
234                 size_bp -= ret;
235         }
236
237         if (size_bp < size_buf)
238                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
239
240         /*
241          * The text is trimmed, it's up to the caller to provide sufficiently
242          * large buffer
243          */
244 out_overflow:;
245 }
246
247 static int init_first_rw_device(struct btrfs_trans_handle *trans);
248 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
249 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
252                              enum btrfs_map_op op,
253                              u64 logical, u64 *length,
254                              struct btrfs_bio **bbio_ret,
255                              int mirror_num, int need_raid_map);
256
257 /*
258  * Device locking
259  * ==============
260  *
261  * There are several mutexes that protect manipulation of devices and low-level
262  * structures like chunks but not block groups, extents or files
263  *
264  * uuid_mutex (global lock)
265  * ------------------------
266  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
267  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
268  * device) or requested by the device= mount option
269  *
270  * the mutex can be very coarse and can cover long-running operations
271  *
272  * protects: updates to fs_devices counters like missing devices, rw devices,
273  * seeding, structure cloning, opening/closing devices at mount/umount time
274  *
275  * global::fs_devs - add, remove, updates to the global list
276  *
277  * does not protect: manipulation of the fs_devices::devices list in general
278  * but in mount context it could be used to exclude list modifications by eg.
279  * scan ioctl
280  *
281  * btrfs_device::name - renames (write side), read is RCU
282  *
283  * fs_devices::device_list_mutex (per-fs, with RCU)
284  * ------------------------------------------------
285  * protects updates to fs_devices::devices, ie. adding and deleting
286  *
287  * simple list traversal with read-only actions can be done with RCU protection
288  *
289  * may be used to exclude some operations from running concurrently without any
290  * modifications to the list (see write_all_supers)
291  *
292  * Is not required at mount and close times, because our device list is
293  * protected by the uuid_mutex at that point.
294  *
295  * balance_mutex
296  * -------------
297  * protects balance structures (status, state) and context accessed from
298  * several places (internally, ioctl)
299  *
300  * chunk_mutex
301  * -----------
302  * protects chunks, adding or removing during allocation, trim or when a new
303  * device is added/removed. Additionally it also protects post_commit_list of
304  * individual devices, since they can be added to the transaction's
305  * post_commit_list only with chunk_mutex held.
306  *
307  * cleaner_mutex
308  * -------------
309  * a big lock that is held by the cleaner thread and prevents running subvolume
310  * cleaning together with relocation or delayed iputs
311  *
312  *
313  * Lock nesting
314  * ============
315  *
316  * uuid_mutex
317  *   device_list_mutex
318  *     chunk_mutex
319  *   balance_mutex
320  *
321  *
322  * Exclusive operations
323  * ====================
324  *
325  * Maintains the exclusivity of the following operations that apply to the
326  * whole filesystem and cannot run in parallel.
327  *
328  * - Balance (*)
329  * - Device add
330  * - Device remove
331  * - Device replace (*)
332  * - Resize
333  *
334  * The device operations (as above) can be in one of the following states:
335  *
336  * - Running state
337  * - Paused state
338  * - Completed state
339  *
340  * Only device operations marked with (*) can go into the Paused state for the
341  * following reasons:
342  *
343  * - ioctl (only Balance can be Paused through ioctl)
344  * - filesystem remounted as read-only
345  * - filesystem unmounted and mounted as read-only
346  * - system power-cycle and filesystem mounted as read-only
347  * - filesystem or device errors leading to forced read-only
348  *
349  * The status of exclusive operation is set and cleared atomically.
350  * During the course of Paused state, fs_info::exclusive_operation remains set.
351  * A device operation in Paused or Running state can be canceled or resumed
352  * either by ioctl (Balance only) or when remounted as read-write.
353  * The exclusive status is cleared when the device operation is canceled or
354  * completed.
355  */
356
357 DEFINE_MUTEX(uuid_mutex);
358 static LIST_HEAD(fs_uuids);
359 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
360 {
361         return &fs_uuids;
362 }
363
364 /*
365  * alloc_fs_devices - allocate struct btrfs_fs_devices
366  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
367  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
368  *
369  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
370  * The returned struct is not linked onto any lists and can be destroyed with
371  * kfree() right away.
372  */
373 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
374                                                  const u8 *metadata_fsid)
375 {
376         struct btrfs_fs_devices *fs_devs;
377
378         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
379         if (!fs_devs)
380                 return ERR_PTR(-ENOMEM);
381
382         mutex_init(&fs_devs->device_list_mutex);
383
384         INIT_LIST_HEAD(&fs_devs->devices);
385         INIT_LIST_HEAD(&fs_devs->alloc_list);
386         INIT_LIST_HEAD(&fs_devs->fs_list);
387         INIT_LIST_HEAD(&fs_devs->seed_list);
388         if (fsid)
389                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
390
391         if (metadata_fsid)
392                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
393         else if (fsid)
394                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
395
396         return fs_devs;
397 }
398
399 void btrfs_free_device(struct btrfs_device *device)
400 {
401         WARN_ON(!list_empty(&device->post_commit_list));
402         rcu_string_free(device->name);
403         extent_io_tree_release(&device->alloc_state);
404         bio_put(device->flush_bio);
405         btrfs_destroy_dev_zone_info(device);
406         kfree(device);
407 }
408
409 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
410 {
411         struct btrfs_device *device;
412         WARN_ON(fs_devices->opened);
413         while (!list_empty(&fs_devices->devices)) {
414                 device = list_entry(fs_devices->devices.next,
415                                     struct btrfs_device, dev_list);
416                 list_del(&device->dev_list);
417                 btrfs_free_device(device);
418         }
419         kfree(fs_devices);
420 }
421
422 void __exit btrfs_cleanup_fs_uuids(void)
423 {
424         struct btrfs_fs_devices *fs_devices;
425
426         while (!list_empty(&fs_uuids)) {
427                 fs_devices = list_entry(fs_uuids.next,
428                                         struct btrfs_fs_devices, fs_list);
429                 list_del(&fs_devices->fs_list);
430                 free_fs_devices(fs_devices);
431         }
432 }
433
434 static noinline struct btrfs_fs_devices *find_fsid(
435                 const u8 *fsid, const u8 *metadata_fsid)
436 {
437         struct btrfs_fs_devices *fs_devices;
438
439         ASSERT(fsid);
440
441         /* Handle non-split brain cases */
442         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
443                 if (metadata_fsid) {
444                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
445                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
446                                       BTRFS_FSID_SIZE) == 0)
447                                 return fs_devices;
448                 } else {
449                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
450                                 return fs_devices;
451                 }
452         }
453         return NULL;
454 }
455
456 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
457                                 struct btrfs_super_block *disk_super)
458 {
459
460         struct btrfs_fs_devices *fs_devices;
461
462         /*
463          * Handle scanned device having completed its fsid change but
464          * belonging to a fs_devices that was created by first scanning
465          * a device which didn't have its fsid/metadata_uuid changed
466          * at all and the CHANGING_FSID_V2 flag set.
467          */
468         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
469                 if (fs_devices->fsid_change &&
470                     memcmp(disk_super->metadata_uuid, fs_devices->fsid,
471                            BTRFS_FSID_SIZE) == 0 &&
472                     memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
473                            BTRFS_FSID_SIZE) == 0) {
474                         return fs_devices;
475                 }
476         }
477         /*
478          * Handle scanned device having completed its fsid change but
479          * belonging to a fs_devices that was created by a device that
480          * has an outdated pair of fsid/metadata_uuid and
481          * CHANGING_FSID_V2 flag set.
482          */
483         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
484                 if (fs_devices->fsid_change &&
485                     memcmp(fs_devices->metadata_uuid,
486                            fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
487                     memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
488                            BTRFS_FSID_SIZE) == 0) {
489                         return fs_devices;
490                 }
491         }
492
493         return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
494 }
495
496
497 static int
498 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
499                       int flush, struct block_device **bdev,
500                       struct btrfs_super_block **disk_super)
501 {
502         int ret;
503
504         *bdev = blkdev_get_by_path(device_path, flags, holder);
505
506         if (IS_ERR(*bdev)) {
507                 ret = PTR_ERR(*bdev);
508                 goto error;
509         }
510
511         if (flush)
512                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
513         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
514         if (ret) {
515                 blkdev_put(*bdev, flags);
516                 goto error;
517         }
518         invalidate_bdev(*bdev);
519         *disk_super = btrfs_read_dev_super(*bdev);
520         if (IS_ERR(*disk_super)) {
521                 ret = PTR_ERR(*disk_super);
522                 blkdev_put(*bdev, flags);
523                 goto error;
524         }
525
526         return 0;
527
528 error:
529         *bdev = NULL;
530         return ret;
531 }
532
533 static bool device_path_matched(const char *path, struct btrfs_device *device)
534 {
535         int found;
536
537         rcu_read_lock();
538         found = strcmp(rcu_str_deref(device->name), path);
539         rcu_read_unlock();
540
541         return found == 0;
542 }
543
544 /*
545  *  Search and remove all stale (devices which are not mounted) devices.
546  *  When both inputs are NULL, it will search and release all stale devices.
547  *  path:       Optional. When provided will it release all unmounted devices
548  *              matching this path only.
549  *  skip_dev:   Optional. Will skip this device when searching for the stale
550  *              devices.
551  *  Return:     0 for success or if @path is NULL.
552  *              -EBUSY if @path is a mounted device.
553  *              -ENOENT if @path does not match any device in the list.
554  */
555 static int btrfs_free_stale_devices(const char *path,
556                                      struct btrfs_device *skip_device)
557 {
558         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
559         struct btrfs_device *device, *tmp_device;
560         int ret = 0;
561
562         lockdep_assert_held(&uuid_mutex);
563
564         if (path)
565                 ret = -ENOENT;
566
567         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
568
569                 mutex_lock(&fs_devices->device_list_mutex);
570                 list_for_each_entry_safe(device, tmp_device,
571                                          &fs_devices->devices, dev_list) {
572                         if (skip_device && skip_device == device)
573                                 continue;
574                         if (path && !device->name)
575                                 continue;
576                         if (path && !device_path_matched(path, device))
577                                 continue;
578                         if (fs_devices->opened) {
579                                 /* for an already deleted device return 0 */
580                                 if (path && ret != 0)
581                                         ret = -EBUSY;
582                                 break;
583                         }
584
585                         /* delete the stale device */
586                         fs_devices->num_devices--;
587                         list_del(&device->dev_list);
588                         btrfs_free_device(device);
589
590                         ret = 0;
591                 }
592                 mutex_unlock(&fs_devices->device_list_mutex);
593
594                 if (fs_devices->num_devices == 0) {
595                         btrfs_sysfs_remove_fsid(fs_devices);
596                         list_del(&fs_devices->fs_list);
597                         free_fs_devices(fs_devices);
598                 }
599         }
600
601         return ret;
602 }
603
604 /*
605  * This is only used on mount, and we are protected from competing things
606  * messing with our fs_devices by the uuid_mutex, thus we do not need the
607  * fs_devices->device_list_mutex here.
608  */
609 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
610                         struct btrfs_device *device, fmode_t flags,
611                         void *holder)
612 {
613         struct request_queue *q;
614         struct block_device *bdev;
615         struct btrfs_super_block *disk_super;
616         u64 devid;
617         int ret;
618
619         if (device->bdev)
620                 return -EINVAL;
621         if (!device->name)
622                 return -EINVAL;
623
624         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
625                                     &bdev, &disk_super);
626         if (ret)
627                 return ret;
628
629         devid = btrfs_stack_device_id(&disk_super->dev_item);
630         if (devid != device->devid)
631                 goto error_free_page;
632
633         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
634                 goto error_free_page;
635
636         device->generation = btrfs_super_generation(disk_super);
637
638         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
639                 if (btrfs_super_incompat_flags(disk_super) &
640                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
641                         pr_err(
642                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
643                         goto error_free_page;
644                 }
645
646                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
647                 fs_devices->seeding = true;
648         } else {
649                 if (bdev_read_only(bdev))
650                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
651                 else
652                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653         }
654
655         q = bdev_get_queue(bdev);
656         if (!blk_queue_nonrot(q))
657                 fs_devices->rotating = true;
658
659         device->bdev = bdev;
660         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
661         device->mode = flags;
662
663         fs_devices->open_devices++;
664         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
665             device->devid != BTRFS_DEV_REPLACE_DEVID) {
666                 fs_devices->rw_devices++;
667                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
668         }
669         btrfs_release_disk_super(disk_super);
670
671         return 0;
672
673 error_free_page:
674         btrfs_release_disk_super(disk_super);
675         blkdev_put(bdev, flags);
676
677         return -EINVAL;
678 }
679
680 /*
681  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
682  * being created with a disk that has already completed its fsid change. Such
683  * disk can belong to an fs which has its FSID changed or to one which doesn't.
684  * Handle both cases here.
685  */
686 static struct btrfs_fs_devices *find_fsid_inprogress(
687                                         struct btrfs_super_block *disk_super)
688 {
689         struct btrfs_fs_devices *fs_devices;
690
691         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
692                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
693                            BTRFS_FSID_SIZE) != 0 &&
694                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
695                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
696                         return fs_devices;
697                 }
698         }
699
700         return find_fsid(disk_super->fsid, NULL);
701 }
702
703
704 static struct btrfs_fs_devices *find_fsid_changed(
705                                         struct btrfs_super_block *disk_super)
706 {
707         struct btrfs_fs_devices *fs_devices;
708
709         /*
710          * Handles the case where scanned device is part of an fs that had
711          * multiple successful changes of FSID but currently device didn't
712          * observe it. Meaning our fsid will be different than theirs. We need
713          * to handle two subcases :
714          *  1 - The fs still continues to have different METADATA/FSID uuids.
715          *  2 - The fs is switched back to its original FSID (METADATA/FSID
716          *  are equal).
717          */
718         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
719                 /* Changed UUIDs */
720                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
721                            BTRFS_FSID_SIZE) != 0 &&
722                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
723                            BTRFS_FSID_SIZE) == 0 &&
724                     memcmp(fs_devices->fsid, disk_super->fsid,
725                            BTRFS_FSID_SIZE) != 0)
726                         return fs_devices;
727
728                 /* Unchanged UUIDs */
729                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
730                            BTRFS_FSID_SIZE) == 0 &&
731                     memcmp(fs_devices->fsid, disk_super->metadata_uuid,
732                            BTRFS_FSID_SIZE) == 0)
733                         return fs_devices;
734         }
735
736         return NULL;
737 }
738
739 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
740                                 struct btrfs_super_block *disk_super)
741 {
742         struct btrfs_fs_devices *fs_devices;
743
744         /*
745          * Handle the case where the scanned device is part of an fs whose last
746          * metadata UUID change reverted it to the original FSID. At the same
747          * time * fs_devices was first created by another constitutent device
748          * which didn't fully observe the operation. This results in an
749          * btrfs_fs_devices created with metadata/fsid different AND
750          * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
751          * fs_devices equal to the FSID of the disk.
752          */
753         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
754                 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
755                            BTRFS_FSID_SIZE) != 0 &&
756                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
757                            BTRFS_FSID_SIZE) == 0 &&
758                     fs_devices->fsid_change)
759                         return fs_devices;
760         }
761
762         return NULL;
763 }
764 /*
765  * Add new device to list of registered devices
766  *
767  * Returns:
768  * device pointer which was just added or updated when successful
769  * error pointer when failed
770  */
771 static noinline struct btrfs_device *device_list_add(const char *path,
772                            struct btrfs_super_block *disk_super,
773                            bool *new_device_added)
774 {
775         struct btrfs_device *device;
776         struct btrfs_fs_devices *fs_devices = NULL;
777         struct rcu_string *name;
778         u64 found_transid = btrfs_super_generation(disk_super);
779         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
780         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
781                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
782         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
783                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
784
785         if (fsid_change_in_progress) {
786                 if (!has_metadata_uuid)
787                         fs_devices = find_fsid_inprogress(disk_super);
788                 else
789                         fs_devices = find_fsid_changed(disk_super);
790         } else if (has_metadata_uuid) {
791                 fs_devices = find_fsid_with_metadata_uuid(disk_super);
792         } else {
793                 fs_devices = find_fsid_reverted_metadata(disk_super);
794                 if (!fs_devices)
795                         fs_devices = find_fsid(disk_super->fsid, NULL);
796         }
797
798
799         if (!fs_devices) {
800                 if (has_metadata_uuid)
801                         fs_devices = alloc_fs_devices(disk_super->fsid,
802                                                       disk_super->metadata_uuid);
803                 else
804                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
805
806                 if (IS_ERR(fs_devices))
807                         return ERR_CAST(fs_devices);
808
809                 fs_devices->fsid_change = fsid_change_in_progress;
810
811                 mutex_lock(&fs_devices->device_list_mutex);
812                 list_add(&fs_devices->fs_list, &fs_uuids);
813
814                 device = NULL;
815         } else {
816                 mutex_lock(&fs_devices->device_list_mutex);
817                 device = btrfs_find_device(fs_devices, devid,
818                                 disk_super->dev_item.uuid, NULL);
819
820                 /*
821                  * If this disk has been pulled into an fs devices created by
822                  * a device which had the CHANGING_FSID_V2 flag then replace the
823                  * metadata_uuid/fsid values of the fs_devices.
824                  */
825                 if (fs_devices->fsid_change &&
826                     found_transid > fs_devices->latest_generation) {
827                         memcpy(fs_devices->fsid, disk_super->fsid,
828                                         BTRFS_FSID_SIZE);
829
830                         if (has_metadata_uuid)
831                                 memcpy(fs_devices->metadata_uuid,
832                                        disk_super->metadata_uuid,
833                                        BTRFS_FSID_SIZE);
834                         else
835                                 memcpy(fs_devices->metadata_uuid,
836                                        disk_super->fsid, BTRFS_FSID_SIZE);
837
838                         fs_devices->fsid_change = false;
839                 }
840         }
841
842         if (!device) {
843                 if (fs_devices->opened) {
844                         mutex_unlock(&fs_devices->device_list_mutex);
845                         return ERR_PTR(-EBUSY);
846                 }
847
848                 device = btrfs_alloc_device(NULL, &devid,
849                                             disk_super->dev_item.uuid);
850                 if (IS_ERR(device)) {
851                         mutex_unlock(&fs_devices->device_list_mutex);
852                         /* we can safely leave the fs_devices entry around */
853                         return device;
854                 }
855
856                 name = rcu_string_strdup(path, GFP_NOFS);
857                 if (!name) {
858                         btrfs_free_device(device);
859                         mutex_unlock(&fs_devices->device_list_mutex);
860                         return ERR_PTR(-ENOMEM);
861                 }
862                 rcu_assign_pointer(device->name, name);
863
864                 list_add_rcu(&device->dev_list, &fs_devices->devices);
865                 fs_devices->num_devices++;
866
867                 device->fs_devices = fs_devices;
868                 *new_device_added = true;
869
870                 if (disk_super->label[0])
871                         pr_info(
872         "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
873                                 disk_super->label, devid, found_transid, path,
874                                 current->comm, task_pid_nr(current));
875                 else
876                         pr_info(
877         "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
878                                 disk_super->fsid, devid, found_transid, path,
879                                 current->comm, task_pid_nr(current));
880
881         } else if (!device->name || strcmp(device->name->str, path)) {
882                 /*
883                  * When FS is already mounted.
884                  * 1. If you are here and if the device->name is NULL that
885                  *    means this device was missing at time of FS mount.
886                  * 2. If you are here and if the device->name is different
887                  *    from 'path' that means either
888                  *      a. The same device disappeared and reappeared with
889                  *         different name. or
890                  *      b. The missing-disk-which-was-replaced, has
891                  *         reappeared now.
892                  *
893                  * We must allow 1 and 2a above. But 2b would be a spurious
894                  * and unintentional.
895                  *
896                  * Further in case of 1 and 2a above, the disk at 'path'
897                  * would have missed some transaction when it was away and
898                  * in case of 2a the stale bdev has to be updated as well.
899                  * 2b must not be allowed at all time.
900                  */
901
902                 /*
903                  * For now, we do allow update to btrfs_fs_device through the
904                  * btrfs dev scan cli after FS has been mounted.  We're still
905                  * tracking a problem where systems fail mount by subvolume id
906                  * when we reject replacement on a mounted FS.
907                  */
908                 if (!fs_devices->opened && found_transid < device->generation) {
909                         /*
910                          * That is if the FS is _not_ mounted and if you
911                          * are here, that means there is more than one
912                          * disk with same uuid and devid.We keep the one
913                          * with larger generation number or the last-in if
914                          * generation are equal.
915                          */
916                         mutex_unlock(&fs_devices->device_list_mutex);
917                         return ERR_PTR(-EEXIST);
918                 }
919
920                 /*
921                  * We are going to replace the device path for a given devid,
922                  * make sure it's the same device if the device is mounted
923                  */
924                 if (device->bdev) {
925                         int error;
926                         dev_t path_dev;
927
928                         error = lookup_bdev(path, &path_dev);
929                         if (error) {
930                                 mutex_unlock(&fs_devices->device_list_mutex);
931                                 return ERR_PTR(error);
932                         }
933
934                         if (device->bdev->bd_dev != path_dev) {
935                                 mutex_unlock(&fs_devices->device_list_mutex);
936                                 /*
937                                  * device->fs_info may not be reliable here, so
938                                  * pass in a NULL instead. This avoids a
939                                  * possible use-after-free when the fs_info and
940                                  * fs_info->sb are already torn down.
941                                  */
942                                 btrfs_warn_in_rcu(NULL,
943         "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
944                                                   path, devid, found_transid,
945                                                   current->comm,
946                                                   task_pid_nr(current));
947                                 return ERR_PTR(-EEXIST);
948                         }
949                         btrfs_info_in_rcu(device->fs_info,
950         "devid %llu device path %s changed to %s scanned by %s (%d)",
951                                           devid, rcu_str_deref(device->name),
952                                           path, current->comm,
953                                           task_pid_nr(current));
954                 }
955
956                 name = rcu_string_strdup(path, GFP_NOFS);
957                 if (!name) {
958                         mutex_unlock(&fs_devices->device_list_mutex);
959                         return ERR_PTR(-ENOMEM);
960                 }
961                 rcu_string_free(device->name);
962                 rcu_assign_pointer(device->name, name);
963                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
964                         fs_devices->missing_devices--;
965                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
966                 }
967         }
968
969         /*
970          * Unmount does not free the btrfs_device struct but would zero
971          * generation along with most of the other members. So just update
972          * it back. We need it to pick the disk with largest generation
973          * (as above).
974          */
975         if (!fs_devices->opened) {
976                 device->generation = found_transid;
977                 fs_devices->latest_generation = max_t(u64, found_transid,
978                                                 fs_devices->latest_generation);
979         }
980
981         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
982
983         mutex_unlock(&fs_devices->device_list_mutex);
984         return device;
985 }
986
987 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
988 {
989         struct btrfs_fs_devices *fs_devices;
990         struct btrfs_device *device;
991         struct btrfs_device *orig_dev;
992         int ret = 0;
993
994         lockdep_assert_held(&uuid_mutex);
995
996         fs_devices = alloc_fs_devices(orig->fsid, NULL);
997         if (IS_ERR(fs_devices))
998                 return fs_devices;
999
1000         fs_devices->total_devices = orig->total_devices;
1001
1002         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1003                 struct rcu_string *name;
1004
1005                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1006                                             orig_dev->uuid);
1007                 if (IS_ERR(device)) {
1008                         ret = PTR_ERR(device);
1009                         goto error;
1010                 }
1011
1012                 /*
1013                  * This is ok to do without rcu read locked because we hold the
1014                  * uuid mutex so nothing we touch in here is going to disappear.
1015                  */
1016                 if (orig_dev->name) {
1017                         name = rcu_string_strdup(orig_dev->name->str,
1018                                         GFP_KERNEL);
1019                         if (!name) {
1020                                 btrfs_free_device(device);
1021                                 ret = -ENOMEM;
1022                                 goto error;
1023                         }
1024                         rcu_assign_pointer(device->name, name);
1025                 }
1026
1027                 list_add(&device->dev_list, &fs_devices->devices);
1028                 device->fs_devices = fs_devices;
1029                 fs_devices->num_devices++;
1030         }
1031         return fs_devices;
1032 error:
1033         free_fs_devices(fs_devices);
1034         return ERR_PTR(ret);
1035 }
1036
1037 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1038                                       struct btrfs_device **latest_dev)
1039 {
1040         struct btrfs_device *device, *next;
1041
1042         /* This is the initialized path, it is safe to release the devices. */
1043         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1044                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1045                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1046                                       &device->dev_state) &&
1047                             !test_bit(BTRFS_DEV_STATE_MISSING,
1048                                       &device->dev_state) &&
1049                             (!*latest_dev ||
1050                              device->generation > (*latest_dev)->generation)) {
1051                                 *latest_dev = device;
1052                         }
1053                         continue;
1054                 }
1055
1056                 /*
1057                  * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1058                  * in btrfs_init_dev_replace() so just continue.
1059                  */
1060                 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1061                         continue;
1062
1063                 if (device->bdev) {
1064                         blkdev_put(device->bdev, device->mode);
1065                         device->bdev = NULL;
1066                         fs_devices->open_devices--;
1067                 }
1068                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1069                         list_del_init(&device->dev_alloc_list);
1070                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1071                         fs_devices->rw_devices--;
1072                 }
1073                 list_del_init(&device->dev_list);
1074                 fs_devices->num_devices--;
1075                 btrfs_free_device(device);
1076         }
1077
1078 }
1079
1080 /*
1081  * After we have read the system tree and know devids belonging to this
1082  * filesystem, remove the device which does not belong there.
1083  */
1084 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1085 {
1086         struct btrfs_device *latest_dev = NULL;
1087         struct btrfs_fs_devices *seed_dev;
1088
1089         mutex_lock(&uuid_mutex);
1090         __btrfs_free_extra_devids(fs_devices, &latest_dev);
1091
1092         list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1093                 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1094
1095         fs_devices->latest_bdev = latest_dev->bdev;
1096
1097         mutex_unlock(&uuid_mutex);
1098 }
1099
1100 static void btrfs_close_bdev(struct btrfs_device *device)
1101 {
1102         if (!device->bdev)
1103                 return;
1104
1105         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1106                 sync_blockdev(device->bdev);
1107                 invalidate_bdev(device->bdev);
1108         }
1109
1110         blkdev_put(device->bdev, device->mode);
1111 }
1112
1113 static void btrfs_close_one_device(struct btrfs_device *device)
1114 {
1115         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1116
1117         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1118             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1119                 list_del_init(&device->dev_alloc_list);
1120                 fs_devices->rw_devices--;
1121         }
1122
1123         if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1124                 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1125
1126         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1127                 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1128                 fs_devices->missing_devices--;
1129         }
1130
1131         btrfs_close_bdev(device);
1132         if (device->bdev) {
1133                 fs_devices->open_devices--;
1134                 device->bdev = NULL;
1135         }
1136         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1137         btrfs_destroy_dev_zone_info(device);
1138
1139         device->fs_info = NULL;
1140         atomic_set(&device->dev_stats_ccnt, 0);
1141         extent_io_tree_release(&device->alloc_state);
1142
1143         /*
1144          * Reset the flush error record. We might have a transient flush error
1145          * in this mount, and if so we aborted the current transaction and set
1146          * the fs to an error state, guaranteeing no super blocks can be further
1147          * committed. However that error might be transient and if we unmount the
1148          * filesystem and mount it again, we should allow the mount to succeed
1149          * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1150          * filesystem again we still get flush errors, then we will again abort
1151          * any transaction and set the error state, guaranteeing no commits of
1152          * unsafe super blocks.
1153          */
1154         device->last_flush_error = 0;
1155
1156         /* Verify the device is back in a pristine state  */
1157         ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1158         ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1159         ASSERT(list_empty(&device->dev_alloc_list));
1160         ASSERT(list_empty(&device->post_commit_list));
1161         ASSERT(atomic_read(&device->reada_in_flight) == 0);
1162 }
1163
1164 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1165 {
1166         struct btrfs_device *device, *tmp;
1167
1168         lockdep_assert_held(&uuid_mutex);
1169
1170         if (--fs_devices->opened > 0)
1171                 return;
1172
1173         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1174                 btrfs_close_one_device(device);
1175
1176         WARN_ON(fs_devices->open_devices);
1177         WARN_ON(fs_devices->rw_devices);
1178         fs_devices->opened = 0;
1179         fs_devices->seeding = false;
1180         fs_devices->fs_info = NULL;
1181 }
1182
1183 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1184 {
1185         LIST_HEAD(list);
1186         struct btrfs_fs_devices *tmp;
1187
1188         mutex_lock(&uuid_mutex);
1189         close_fs_devices(fs_devices);
1190         if (!fs_devices->opened)
1191                 list_splice_init(&fs_devices->seed_list, &list);
1192
1193         list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1194                 close_fs_devices(fs_devices);
1195                 list_del(&fs_devices->seed_list);
1196                 free_fs_devices(fs_devices);
1197         }
1198         mutex_unlock(&uuid_mutex);
1199 }
1200
1201 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1202                                 fmode_t flags, void *holder)
1203 {
1204         struct btrfs_device *device;
1205         struct btrfs_device *latest_dev = NULL;
1206         struct btrfs_device *tmp_device;
1207
1208         flags |= FMODE_EXCL;
1209
1210         list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1211                                  dev_list) {
1212                 int ret;
1213
1214                 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1215                 if (ret == 0 &&
1216                     (!latest_dev || device->generation > latest_dev->generation)) {
1217                         latest_dev = device;
1218                 } else if (ret == -ENODATA) {
1219                         fs_devices->num_devices--;
1220                         list_del(&device->dev_list);
1221                         btrfs_free_device(device);
1222                 }
1223         }
1224         if (fs_devices->open_devices == 0)
1225                 return -EINVAL;
1226
1227         fs_devices->opened = 1;
1228         fs_devices->latest_bdev = latest_dev->bdev;
1229         fs_devices->total_rw_bytes = 0;
1230         fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1231         fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1232
1233         return 0;
1234 }
1235
1236 static int devid_cmp(void *priv, const struct list_head *a,
1237                      const struct list_head *b)
1238 {
1239         const struct btrfs_device *dev1, *dev2;
1240
1241         dev1 = list_entry(a, struct btrfs_device, dev_list);
1242         dev2 = list_entry(b, struct btrfs_device, dev_list);
1243
1244         if (dev1->devid < dev2->devid)
1245                 return -1;
1246         else if (dev1->devid > dev2->devid)
1247                 return 1;
1248         return 0;
1249 }
1250
1251 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1252                        fmode_t flags, void *holder)
1253 {
1254         int ret;
1255
1256         lockdep_assert_held(&uuid_mutex);
1257         /*
1258          * The device_list_mutex cannot be taken here in case opening the
1259          * underlying device takes further locks like open_mutex.
1260          *
1261          * We also don't need the lock here as this is called during mount and
1262          * exclusion is provided by uuid_mutex
1263          */
1264
1265         if (fs_devices->opened) {
1266                 fs_devices->opened++;
1267                 ret = 0;
1268         } else {
1269                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1270                 ret = open_fs_devices(fs_devices, flags, holder);
1271         }
1272
1273         return ret;
1274 }
1275
1276 void btrfs_release_disk_super(struct btrfs_super_block *super)
1277 {
1278         struct page *page = virt_to_page(super);
1279
1280         put_page(page);
1281 }
1282
1283 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1284                                                        u64 bytenr, u64 bytenr_orig)
1285 {
1286         struct btrfs_super_block *disk_super;
1287         struct page *page;
1288         void *p;
1289         pgoff_t index;
1290
1291         /* make sure our super fits in the device */
1292         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1293                 return ERR_PTR(-EINVAL);
1294
1295         /* make sure our super fits in the page */
1296         if (sizeof(*disk_super) > PAGE_SIZE)
1297                 return ERR_PTR(-EINVAL);
1298
1299         /* make sure our super doesn't straddle pages on disk */
1300         index = bytenr >> PAGE_SHIFT;
1301         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1302                 return ERR_PTR(-EINVAL);
1303
1304         /* pull in the page with our super */
1305         page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1306
1307         if (IS_ERR(page))
1308                 return ERR_CAST(page);
1309
1310         p = page_address(page);
1311
1312         /* align our pointer to the offset of the super block */
1313         disk_super = p + offset_in_page(bytenr);
1314
1315         if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1316             btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1317                 btrfs_release_disk_super(p);
1318                 return ERR_PTR(-EINVAL);
1319         }
1320
1321         if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1322                 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1323
1324         return disk_super;
1325 }
1326
1327 int btrfs_forget_devices(const char *path)
1328 {
1329         int ret;
1330
1331         mutex_lock(&uuid_mutex);
1332         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1333         mutex_unlock(&uuid_mutex);
1334
1335         return ret;
1336 }
1337
1338 /*
1339  * Look for a btrfs signature on a device. This may be called out of the mount path
1340  * and we are not allowed to call set_blocksize during the scan. The superblock
1341  * is read via pagecache
1342  */
1343 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1344                                            void *holder)
1345 {
1346         struct btrfs_super_block *disk_super;
1347         bool new_device_added = false;
1348         struct btrfs_device *device = NULL;
1349         struct block_device *bdev;
1350         u64 bytenr, bytenr_orig;
1351         int ret;
1352
1353         lockdep_assert_held(&uuid_mutex);
1354
1355         /*
1356          * we would like to check all the supers, but that would make
1357          * a btrfs mount succeed after a mkfs from a different FS.
1358          * So, we need to add a special mount option to scan for
1359          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1360          */
1361         flags |= FMODE_EXCL;
1362
1363         bdev = blkdev_get_by_path(path, flags, holder);
1364         if (IS_ERR(bdev))
1365                 return ERR_CAST(bdev);
1366
1367         bytenr_orig = btrfs_sb_offset(0);
1368         ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1369         if (ret)
1370                 return ERR_PTR(ret);
1371
1372         disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1373         if (IS_ERR(disk_super)) {
1374                 device = ERR_CAST(disk_super);
1375                 goto error_bdev_put;
1376         }
1377
1378         device = device_list_add(path, disk_super, &new_device_added);
1379         if (!IS_ERR(device)) {
1380                 if (new_device_added)
1381                         btrfs_free_stale_devices(path, device);
1382         }
1383
1384         btrfs_release_disk_super(disk_super);
1385
1386 error_bdev_put:
1387         blkdev_put(bdev, flags);
1388
1389         return device;
1390 }
1391
1392 /*
1393  * Try to find a chunk that intersects [start, start + len] range and when one
1394  * such is found, record the end of it in *start
1395  */
1396 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1397                                     u64 len)
1398 {
1399         u64 physical_start, physical_end;
1400
1401         lockdep_assert_held(&device->fs_info->chunk_mutex);
1402
1403         if (!find_first_extent_bit(&device->alloc_state, *start,
1404                                    &physical_start, &physical_end,
1405                                    CHUNK_ALLOCATED, NULL)) {
1406
1407                 if (in_range(physical_start, *start, len) ||
1408                     in_range(*start, physical_start,
1409                              physical_end - physical_start)) {
1410                         *start = physical_end + 1;
1411                         return true;
1412                 }
1413         }
1414         return false;
1415 }
1416
1417 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1418 {
1419         switch (device->fs_devices->chunk_alloc_policy) {
1420         case BTRFS_CHUNK_ALLOC_REGULAR:
1421                 /*
1422                  * We don't want to overwrite the superblock on the drive nor
1423                  * any area used by the boot loader (grub for example), so we
1424                  * make sure to start at an offset of at least 1MB.
1425                  */
1426                 return max_t(u64, start, SZ_1M);
1427         case BTRFS_CHUNK_ALLOC_ZONED:
1428                 /*
1429                  * We don't care about the starting region like regular
1430                  * allocator, because we anyway use/reserve the first two zones
1431                  * for superblock logging.
1432                  */
1433                 return ALIGN(start, device->zone_info->zone_size);
1434         default:
1435                 BUG();
1436         }
1437 }
1438
1439 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1440                                         u64 *hole_start, u64 *hole_size,
1441                                         u64 num_bytes)
1442 {
1443         u64 zone_size = device->zone_info->zone_size;
1444         u64 pos;
1445         int ret;
1446         bool changed = false;
1447
1448         ASSERT(IS_ALIGNED(*hole_start, zone_size));
1449
1450         while (*hole_size > 0) {
1451                 pos = btrfs_find_allocatable_zones(device, *hole_start,
1452                                                    *hole_start + *hole_size,
1453                                                    num_bytes);
1454                 if (pos != *hole_start) {
1455                         *hole_size = *hole_start + *hole_size - pos;
1456                         *hole_start = pos;
1457                         changed = true;
1458                         if (*hole_size < num_bytes)
1459                                 break;
1460                 }
1461
1462                 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1463
1464                 /* Range is ensured to be empty */
1465                 if (!ret)
1466                         return changed;
1467
1468                 /* Given hole range was invalid (outside of device) */
1469                 if (ret == -ERANGE) {
1470                         *hole_start += *hole_size;
1471                         *hole_size = 0;
1472                         return true;
1473                 }
1474
1475                 *hole_start += zone_size;
1476                 *hole_size -= zone_size;
1477                 changed = true;
1478         }
1479
1480         return changed;
1481 }
1482
1483 /**
1484  * dev_extent_hole_check - check if specified hole is suitable for allocation
1485  * @device:     the device which we have the hole
1486  * @hole_start: starting position of the hole
1487  * @hole_size:  the size of the hole
1488  * @num_bytes:  the size of the free space that we need
1489  *
1490  * This function may modify @hole_start and @hole_size to reflect the suitable
1491  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1492  */
1493 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1494                                   u64 *hole_size, u64 num_bytes)
1495 {
1496         bool changed = false;
1497         u64 hole_end = *hole_start + *hole_size;
1498
1499         for (;;) {
1500                 /*
1501                  * Check before we set max_hole_start, otherwise we could end up
1502                  * sending back this offset anyway.
1503                  */
1504                 if (contains_pending_extent(device, hole_start, *hole_size)) {
1505                         if (hole_end >= *hole_start)
1506                                 *hole_size = hole_end - *hole_start;
1507                         else
1508                                 *hole_size = 0;
1509                         changed = true;
1510                 }
1511
1512                 switch (device->fs_devices->chunk_alloc_policy) {
1513                 case BTRFS_CHUNK_ALLOC_REGULAR:
1514                         /* No extra check */
1515                         break;
1516                 case BTRFS_CHUNK_ALLOC_ZONED:
1517                         if (dev_extent_hole_check_zoned(device, hole_start,
1518                                                         hole_size, num_bytes)) {
1519                                 changed = true;
1520                                 /*
1521                                  * The changed hole can contain pending extent.
1522                                  * Loop again to check that.
1523                                  */
1524                                 continue;
1525                         }
1526                         break;
1527                 default:
1528                         BUG();
1529                 }
1530
1531                 break;
1532         }
1533
1534         return changed;
1535 }
1536
1537 /*
1538  * find_free_dev_extent_start - find free space in the specified device
1539  * @device:       the device which we search the free space in
1540  * @num_bytes:    the size of the free space that we need
1541  * @search_start: the position from which to begin the search
1542  * @start:        store the start of the free space.
1543  * @len:          the size of the free space. that we find, or the size
1544  *                of the max free space if we don't find suitable free space
1545  *
1546  * this uses a pretty simple search, the expectation is that it is
1547  * called very infrequently and that a given device has a small number
1548  * of extents
1549  *
1550  * @start is used to store the start of the free space if we find. But if we
1551  * don't find suitable free space, it will be used to store the start position
1552  * of the max free space.
1553  *
1554  * @len is used to store the size of the free space that we find.
1555  * But if we don't find suitable free space, it is used to store the size of
1556  * the max free space.
1557  *
1558  * NOTE: This function will search *commit* root of device tree, and does extra
1559  * check to ensure dev extents are not double allocated.
1560  * This makes the function safe to allocate dev extents but may not report
1561  * correct usable device space, as device extent freed in current transaction
1562  * is not reported as available.
1563  */
1564 static int find_free_dev_extent_start(struct btrfs_device *device,
1565                                 u64 num_bytes, u64 search_start, u64 *start,
1566                                 u64 *len)
1567 {
1568         struct btrfs_fs_info *fs_info = device->fs_info;
1569         struct btrfs_root *root = fs_info->dev_root;
1570         struct btrfs_key key;
1571         struct btrfs_dev_extent *dev_extent;
1572         struct btrfs_path *path;
1573         u64 hole_size;
1574         u64 max_hole_start;
1575         u64 max_hole_size;
1576         u64 extent_end;
1577         u64 search_end = device->total_bytes;
1578         int ret;
1579         int slot;
1580         struct extent_buffer *l;
1581
1582         search_start = dev_extent_search_start(device, search_start);
1583
1584         WARN_ON(device->zone_info &&
1585                 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1586
1587         path = btrfs_alloc_path();
1588         if (!path)
1589                 return -ENOMEM;
1590
1591         max_hole_start = search_start;
1592         max_hole_size = 0;
1593
1594 again:
1595         if (search_start >= search_end ||
1596                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1597                 ret = -ENOSPC;
1598                 goto out;
1599         }
1600
1601         path->reada = READA_FORWARD;
1602         path->search_commit_root = 1;
1603         path->skip_locking = 1;
1604
1605         key.objectid = device->devid;
1606         key.offset = search_start;
1607         key.type = BTRFS_DEV_EXTENT_KEY;
1608
1609         ret = btrfs_search_backwards(root, &key, path);
1610         if (ret < 0)
1611                 goto out;
1612
1613         while (1) {
1614                 l = path->nodes[0];
1615                 slot = path->slots[0];
1616                 if (slot >= btrfs_header_nritems(l)) {
1617                         ret = btrfs_next_leaf(root, path);
1618                         if (ret == 0)
1619                                 continue;
1620                         if (ret < 0)
1621                                 goto out;
1622
1623                         break;
1624                 }
1625                 btrfs_item_key_to_cpu(l, &key, slot);
1626
1627                 if (key.objectid < device->devid)
1628                         goto next;
1629
1630                 if (key.objectid > device->devid)
1631                         break;
1632
1633                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1634                         goto next;
1635
1636                 if (key.offset > search_start) {
1637                         hole_size = key.offset - search_start;
1638                         dev_extent_hole_check(device, &search_start, &hole_size,
1639                                               num_bytes);
1640
1641                         if (hole_size > max_hole_size) {
1642                                 max_hole_start = search_start;
1643                                 max_hole_size = hole_size;
1644                         }
1645
1646                         /*
1647                          * If this free space is greater than which we need,
1648                          * it must be the max free space that we have found
1649                          * until now, so max_hole_start must point to the start
1650                          * of this free space and the length of this free space
1651                          * is stored in max_hole_size. Thus, we return
1652                          * max_hole_start and max_hole_size and go back to the
1653                          * caller.
1654                          */
1655                         if (hole_size >= num_bytes) {
1656                                 ret = 0;
1657                                 goto out;
1658                         }
1659                 }
1660
1661                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1662                 extent_end = key.offset + btrfs_dev_extent_length(l,
1663                                                                   dev_extent);
1664                 if (extent_end > search_start)
1665                         search_start = extent_end;
1666 next:
1667                 path->slots[0]++;
1668                 cond_resched();
1669         }
1670
1671         /*
1672          * At this point, search_start should be the end of
1673          * allocated dev extents, and when shrinking the device,
1674          * search_end may be smaller than search_start.
1675          */
1676         if (search_end > search_start) {
1677                 hole_size = search_end - search_start;
1678                 if (dev_extent_hole_check(device, &search_start, &hole_size,
1679                                           num_bytes)) {
1680                         btrfs_release_path(path);
1681                         goto again;
1682                 }
1683
1684                 if (hole_size > max_hole_size) {
1685                         max_hole_start = search_start;
1686                         max_hole_size = hole_size;
1687                 }
1688         }
1689
1690         /* See above. */
1691         if (max_hole_size < num_bytes)
1692                 ret = -ENOSPC;
1693         else
1694                 ret = 0;
1695
1696 out:
1697         btrfs_free_path(path);
1698         *start = max_hole_start;
1699         if (len)
1700                 *len = max_hole_size;
1701         return ret;
1702 }
1703
1704 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1705                          u64 *start, u64 *len)
1706 {
1707         /* FIXME use last free of some kind */
1708         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1709 }
1710
1711 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1712                           struct btrfs_device *device,
1713                           u64 start, u64 *dev_extent_len)
1714 {
1715         struct btrfs_fs_info *fs_info = device->fs_info;
1716         struct btrfs_root *root = fs_info->dev_root;
1717         int ret;
1718         struct btrfs_path *path;
1719         struct btrfs_key key;
1720         struct btrfs_key found_key;
1721         struct extent_buffer *leaf = NULL;
1722         struct btrfs_dev_extent *extent = NULL;
1723
1724         path = btrfs_alloc_path();
1725         if (!path)
1726                 return -ENOMEM;
1727
1728         key.objectid = device->devid;
1729         key.offset = start;
1730         key.type = BTRFS_DEV_EXTENT_KEY;
1731 again:
1732         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1733         if (ret > 0) {
1734                 ret = btrfs_previous_item(root, path, key.objectid,
1735                                           BTRFS_DEV_EXTENT_KEY);
1736                 if (ret)
1737                         goto out;
1738                 leaf = path->nodes[0];
1739                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1740                 extent = btrfs_item_ptr(leaf, path->slots[0],
1741                                         struct btrfs_dev_extent);
1742                 BUG_ON(found_key.offset > start || found_key.offset +
1743                        btrfs_dev_extent_length(leaf, extent) < start);
1744                 key = found_key;
1745                 btrfs_release_path(path);
1746                 goto again;
1747         } else if (ret == 0) {
1748                 leaf = path->nodes[0];
1749                 extent = btrfs_item_ptr(leaf, path->slots[0],
1750                                         struct btrfs_dev_extent);
1751         } else {
1752                 goto out;
1753         }
1754
1755         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1756
1757         ret = btrfs_del_item(trans, root, path);
1758         if (ret == 0)
1759                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1760 out:
1761         btrfs_free_path(path);
1762         return ret;
1763 }
1764
1765 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1766 {
1767         struct extent_map_tree *em_tree;
1768         struct extent_map *em;
1769         struct rb_node *n;
1770         u64 ret = 0;
1771
1772         em_tree = &fs_info->mapping_tree;
1773         read_lock(&em_tree->lock);
1774         n = rb_last(&em_tree->map.rb_root);
1775         if (n) {
1776                 em = rb_entry(n, struct extent_map, rb_node);
1777                 ret = em->start + em->len;
1778         }
1779         read_unlock(&em_tree->lock);
1780
1781         return ret;
1782 }
1783
1784 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1785                                     u64 *devid_ret)
1786 {
1787         int ret;
1788         struct btrfs_key key;
1789         struct btrfs_key found_key;
1790         struct btrfs_path *path;
1791
1792         path = btrfs_alloc_path();
1793         if (!path)
1794                 return -ENOMEM;
1795
1796         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1797         key.type = BTRFS_DEV_ITEM_KEY;
1798         key.offset = (u64)-1;
1799
1800         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1801         if (ret < 0)
1802                 goto error;
1803
1804         if (ret == 0) {
1805                 /* Corruption */
1806                 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1807                 ret = -EUCLEAN;
1808                 goto error;
1809         }
1810
1811         ret = btrfs_previous_item(fs_info->chunk_root, path,
1812                                   BTRFS_DEV_ITEMS_OBJECTID,
1813                                   BTRFS_DEV_ITEM_KEY);
1814         if (ret) {
1815                 *devid_ret = 1;
1816         } else {
1817                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1818                                       path->slots[0]);
1819                 *devid_ret = found_key.offset + 1;
1820         }
1821         ret = 0;
1822 error:
1823         btrfs_free_path(path);
1824         return ret;
1825 }
1826
1827 /*
1828  * the device information is stored in the chunk root
1829  * the btrfs_device struct should be fully filled in
1830  */
1831 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1832                             struct btrfs_device *device)
1833 {
1834         int ret;
1835         struct btrfs_path *path;
1836         struct btrfs_dev_item *dev_item;
1837         struct extent_buffer *leaf;
1838         struct btrfs_key key;
1839         unsigned long ptr;
1840
1841         path = btrfs_alloc_path();
1842         if (!path)
1843                 return -ENOMEM;
1844
1845         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1846         key.type = BTRFS_DEV_ITEM_KEY;
1847         key.offset = device->devid;
1848
1849         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1850                                       &key, sizeof(*dev_item));
1851         if (ret)
1852                 goto out;
1853
1854         leaf = path->nodes[0];
1855         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1856
1857         btrfs_set_device_id(leaf, dev_item, device->devid);
1858         btrfs_set_device_generation(leaf, dev_item, 0);
1859         btrfs_set_device_type(leaf, dev_item, device->type);
1860         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1861         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1862         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1863         btrfs_set_device_total_bytes(leaf, dev_item,
1864                                      btrfs_device_get_disk_total_bytes(device));
1865         btrfs_set_device_bytes_used(leaf, dev_item,
1866                                     btrfs_device_get_bytes_used(device));
1867         btrfs_set_device_group(leaf, dev_item, 0);
1868         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1869         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1870         btrfs_set_device_start_offset(leaf, dev_item, 0);
1871
1872         ptr = btrfs_device_uuid(dev_item);
1873         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1874         ptr = btrfs_device_fsid(dev_item);
1875         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1876                             ptr, BTRFS_FSID_SIZE);
1877         btrfs_mark_buffer_dirty(leaf);
1878
1879         ret = 0;
1880 out:
1881         btrfs_free_path(path);
1882         return ret;
1883 }
1884
1885 /*
1886  * Function to update ctime/mtime for a given device path.
1887  * Mainly used for ctime/mtime based probe like libblkid.
1888  *
1889  * We don't care about errors here, this is just to be kind to userspace.
1890  */
1891 static void update_dev_time(const char *device_path)
1892 {
1893         struct path path;
1894         struct timespec64 now;
1895         int ret;
1896
1897         ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1898         if (ret)
1899                 return;
1900
1901         now = current_time(d_inode(path.dentry));
1902         inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1903         path_put(&path);
1904 }
1905
1906 static int btrfs_rm_dev_item(struct btrfs_device *device)
1907 {
1908         struct btrfs_root *root = device->fs_info->chunk_root;
1909         int ret;
1910         struct btrfs_path *path;
1911         struct btrfs_key key;
1912         struct btrfs_trans_handle *trans;
1913
1914         path = btrfs_alloc_path();
1915         if (!path)
1916                 return -ENOMEM;
1917
1918         trans = btrfs_start_transaction(root, 0);
1919         if (IS_ERR(trans)) {
1920                 btrfs_free_path(path);
1921                 return PTR_ERR(trans);
1922         }
1923         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1924         key.type = BTRFS_DEV_ITEM_KEY;
1925         key.offset = device->devid;
1926
1927         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1928         if (ret) {
1929                 if (ret > 0)
1930                         ret = -ENOENT;
1931                 btrfs_abort_transaction(trans, ret);
1932                 btrfs_end_transaction(trans);
1933                 goto out;
1934         }
1935
1936         ret = btrfs_del_item(trans, root, path);
1937         if (ret) {
1938                 btrfs_abort_transaction(trans, ret);
1939                 btrfs_end_transaction(trans);
1940         }
1941
1942 out:
1943         btrfs_free_path(path);
1944         if (!ret)
1945                 ret = btrfs_commit_transaction(trans);
1946         return ret;
1947 }
1948
1949 /*
1950  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1951  * filesystem. It's up to the caller to adjust that number regarding eg. device
1952  * replace.
1953  */
1954 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1955                 u64 num_devices)
1956 {
1957         u64 all_avail;
1958         unsigned seq;
1959         int i;
1960
1961         do {
1962                 seq = read_seqbegin(&fs_info->profiles_lock);
1963
1964                 all_avail = fs_info->avail_data_alloc_bits |
1965                             fs_info->avail_system_alloc_bits |
1966                             fs_info->avail_metadata_alloc_bits;
1967         } while (read_seqretry(&fs_info->profiles_lock, seq));
1968
1969         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1970                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1971                         continue;
1972
1973                 if (num_devices < btrfs_raid_array[i].devs_min)
1974                         return btrfs_raid_array[i].mindev_error;
1975         }
1976
1977         return 0;
1978 }
1979
1980 static struct btrfs_device * btrfs_find_next_active_device(
1981                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1982 {
1983         struct btrfs_device *next_device;
1984
1985         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1986                 if (next_device != device &&
1987                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1988                     && next_device->bdev)
1989                         return next_device;
1990         }
1991
1992         return NULL;
1993 }
1994
1995 /*
1996  * Helper function to check if the given device is part of s_bdev / latest_bdev
1997  * and replace it with the provided or the next active device, in the context
1998  * where this function called, there should be always be another device (or
1999  * this_dev) which is active.
2000  */
2001 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2002                                             struct btrfs_device *next_device)
2003 {
2004         struct btrfs_fs_info *fs_info = device->fs_info;
2005
2006         if (!next_device)
2007                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2008                                                             device);
2009         ASSERT(next_device);
2010
2011         if (fs_info->sb->s_bdev &&
2012                         (fs_info->sb->s_bdev == device->bdev))
2013                 fs_info->sb->s_bdev = next_device->bdev;
2014
2015         if (fs_info->fs_devices->latest_bdev == device->bdev)
2016                 fs_info->fs_devices->latest_bdev = next_device->bdev;
2017 }
2018
2019 /*
2020  * Return btrfs_fs_devices::num_devices excluding the device that's being
2021  * currently replaced.
2022  */
2023 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2024 {
2025         u64 num_devices = fs_info->fs_devices->num_devices;
2026
2027         down_read(&fs_info->dev_replace.rwsem);
2028         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2029                 ASSERT(num_devices > 1);
2030                 num_devices--;
2031         }
2032         up_read(&fs_info->dev_replace.rwsem);
2033
2034         return num_devices;
2035 }
2036
2037 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2038                                struct block_device *bdev,
2039                                const char *device_path)
2040 {
2041         struct btrfs_super_block *disk_super;
2042         int copy_num;
2043
2044         if (!bdev)
2045                 return;
2046
2047         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2048                 struct page *page;
2049                 int ret;
2050
2051                 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2052                 if (IS_ERR(disk_super))
2053                         continue;
2054
2055                 if (bdev_is_zoned(bdev)) {
2056                         btrfs_reset_sb_log_zones(bdev, copy_num);
2057                         continue;
2058                 }
2059
2060                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2061
2062                 page = virt_to_page(disk_super);
2063                 set_page_dirty(page);
2064                 lock_page(page);
2065                 /* write_on_page() unlocks the page */
2066                 ret = write_one_page(page);
2067                 if (ret)
2068                         btrfs_warn(fs_info,
2069                                 "error clearing superblock number %d (%d)",
2070                                 copy_num, ret);
2071                 btrfs_release_disk_super(disk_super);
2072
2073         }
2074
2075         /* Notify udev that device has changed */
2076         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2077
2078         /* Update ctime/mtime for device path for libblkid */
2079         update_dev_time(device_path);
2080 }
2081
2082 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2083                     u64 devid, struct block_device **bdev, fmode_t *mode)
2084 {
2085         struct btrfs_device *device;
2086         struct btrfs_fs_devices *cur_devices;
2087         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2088         u64 num_devices;
2089         int ret = 0;
2090
2091         /*
2092          * The device list in fs_devices is accessed without locks (neither
2093          * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2094          * filesystem and another device rm cannot run.
2095          */
2096         num_devices = btrfs_num_devices(fs_info);
2097
2098         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2099         if (ret)
2100                 goto out;
2101
2102         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2103
2104         if (IS_ERR(device)) {
2105                 if (PTR_ERR(device) == -ENOENT &&
2106                     device_path && strcmp(device_path, "missing") == 0)
2107                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2108                 else
2109                         ret = PTR_ERR(device);
2110                 goto out;
2111         }
2112
2113         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2114                 btrfs_warn_in_rcu(fs_info,
2115                   "cannot remove device %s (devid %llu) due to active swapfile",
2116                                   rcu_str_deref(device->name), device->devid);
2117                 ret = -ETXTBSY;
2118                 goto out;
2119         }
2120
2121         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2122                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2123                 goto out;
2124         }
2125
2126         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2127             fs_info->fs_devices->rw_devices == 1) {
2128                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2129                 goto out;
2130         }
2131
2132         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2133                 mutex_lock(&fs_info->chunk_mutex);
2134                 list_del_init(&device->dev_alloc_list);
2135                 device->fs_devices->rw_devices--;
2136                 mutex_unlock(&fs_info->chunk_mutex);
2137         }
2138
2139         ret = btrfs_shrink_device(device, 0);
2140         if (!ret)
2141                 btrfs_reada_remove_dev(device);
2142         if (ret)
2143                 goto error_undo;
2144
2145         /*
2146          * TODO: the superblock still includes this device in its num_devices
2147          * counter although write_all_supers() is not locked out. This
2148          * could give a filesystem state which requires a degraded mount.
2149          */
2150         ret = btrfs_rm_dev_item(device);
2151         if (ret)
2152                 goto error_undo;
2153
2154         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2155         btrfs_scrub_cancel_dev(device);
2156
2157         /*
2158          * the device list mutex makes sure that we don't change
2159          * the device list while someone else is writing out all
2160          * the device supers. Whoever is writing all supers, should
2161          * lock the device list mutex before getting the number of
2162          * devices in the super block (super_copy). Conversely,
2163          * whoever updates the number of devices in the super block
2164          * (super_copy) should hold the device list mutex.
2165          */
2166
2167         /*
2168          * In normal cases the cur_devices == fs_devices. But in case
2169          * of deleting a seed device, the cur_devices should point to
2170          * its own fs_devices listed under the fs_devices->seed.
2171          */
2172         cur_devices = device->fs_devices;
2173         mutex_lock(&fs_devices->device_list_mutex);
2174         list_del_rcu(&device->dev_list);
2175
2176         cur_devices->num_devices--;
2177         cur_devices->total_devices--;
2178         /* Update total_devices of the parent fs_devices if it's seed */
2179         if (cur_devices != fs_devices)
2180                 fs_devices->total_devices--;
2181
2182         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2183                 cur_devices->missing_devices--;
2184
2185         btrfs_assign_next_active_device(device, NULL);
2186
2187         if (device->bdev) {
2188                 cur_devices->open_devices--;
2189                 /* remove sysfs entry */
2190                 btrfs_sysfs_remove_device(device);
2191         }
2192
2193         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2194         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2195         mutex_unlock(&fs_devices->device_list_mutex);
2196
2197         /*
2198          * At this point, the device is zero sized and detached from the
2199          * devices list.  All that's left is to zero out the old supers and
2200          * free the device.
2201          *
2202          * We cannot call btrfs_close_bdev() here because we're holding the sb
2203          * write lock, and blkdev_put() will pull in the ->open_mutex on the
2204          * block device and it's dependencies.  Instead just flush the device
2205          * and let the caller do the final blkdev_put.
2206          */
2207         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2208                 btrfs_scratch_superblocks(fs_info, device->bdev,
2209                                           device->name->str);
2210                 if (device->bdev) {
2211                         sync_blockdev(device->bdev);
2212                         invalidate_bdev(device->bdev);
2213                 }
2214         }
2215
2216         *bdev = device->bdev;
2217         *mode = device->mode;
2218         synchronize_rcu();
2219         btrfs_free_device(device);
2220
2221         if (cur_devices->open_devices == 0) {
2222                 list_del_init(&cur_devices->seed_list);
2223                 close_fs_devices(cur_devices);
2224                 free_fs_devices(cur_devices);
2225         }
2226
2227 out:
2228         return ret;
2229
2230 error_undo:
2231         btrfs_reada_undo_remove_dev(device);
2232         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2233                 mutex_lock(&fs_info->chunk_mutex);
2234                 list_add(&device->dev_alloc_list,
2235                          &fs_devices->alloc_list);
2236                 device->fs_devices->rw_devices++;
2237                 mutex_unlock(&fs_info->chunk_mutex);
2238         }
2239         goto out;
2240 }
2241
2242 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2243 {
2244         struct btrfs_fs_devices *fs_devices;
2245
2246         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2247
2248         /*
2249          * in case of fs with no seed, srcdev->fs_devices will point
2250          * to fs_devices of fs_info. However when the dev being replaced is
2251          * a seed dev it will point to the seed's local fs_devices. In short
2252          * srcdev will have its correct fs_devices in both the cases.
2253          */
2254         fs_devices = srcdev->fs_devices;
2255
2256         list_del_rcu(&srcdev->dev_list);
2257         list_del(&srcdev->dev_alloc_list);
2258         fs_devices->num_devices--;
2259         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2260                 fs_devices->missing_devices--;
2261
2262         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2263                 fs_devices->rw_devices--;
2264
2265         if (srcdev->bdev)
2266                 fs_devices->open_devices--;
2267 }
2268
2269 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2270 {
2271         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2272
2273         mutex_lock(&uuid_mutex);
2274
2275         btrfs_close_bdev(srcdev);
2276         synchronize_rcu();
2277         btrfs_free_device(srcdev);
2278
2279         /* if this is no devs we rather delete the fs_devices */
2280         if (!fs_devices->num_devices) {
2281                 /*
2282                  * On a mounted FS, num_devices can't be zero unless it's a
2283                  * seed. In case of a seed device being replaced, the replace
2284                  * target added to the sprout FS, so there will be no more
2285                  * device left under the seed FS.
2286                  */
2287                 ASSERT(fs_devices->seeding);
2288
2289                 list_del_init(&fs_devices->seed_list);
2290                 close_fs_devices(fs_devices);
2291                 free_fs_devices(fs_devices);
2292         }
2293         mutex_unlock(&uuid_mutex);
2294 }
2295
2296 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2297 {
2298         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2299
2300         mutex_lock(&fs_devices->device_list_mutex);
2301
2302         btrfs_sysfs_remove_device(tgtdev);
2303
2304         if (tgtdev->bdev)
2305                 fs_devices->open_devices--;
2306
2307         fs_devices->num_devices--;
2308
2309         btrfs_assign_next_active_device(tgtdev, NULL);
2310
2311         list_del_rcu(&tgtdev->dev_list);
2312
2313         mutex_unlock(&fs_devices->device_list_mutex);
2314
2315         /*
2316          * The update_dev_time() with in btrfs_scratch_superblocks()
2317          * may lead to a call to btrfs_show_devname() which will try
2318          * to hold device_list_mutex. And here this device
2319          * is already out of device list, so we don't have to hold
2320          * the device_list_mutex lock.
2321          */
2322         btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2323                                   tgtdev->name->str);
2324
2325         btrfs_close_bdev(tgtdev);
2326         synchronize_rcu();
2327         btrfs_free_device(tgtdev);
2328 }
2329
2330 static struct btrfs_device *btrfs_find_device_by_path(
2331                 struct btrfs_fs_info *fs_info, const char *device_path)
2332 {
2333         int ret = 0;
2334         struct btrfs_super_block *disk_super;
2335         u64 devid;
2336         u8 *dev_uuid;
2337         struct block_device *bdev;
2338         struct btrfs_device *device;
2339
2340         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2341                                     fs_info->bdev_holder, 0, &bdev, &disk_super);
2342         if (ret)
2343                 return ERR_PTR(ret);
2344
2345         devid = btrfs_stack_device_id(&disk_super->dev_item);
2346         dev_uuid = disk_super->dev_item.uuid;
2347         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2348                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2349                                            disk_super->metadata_uuid);
2350         else
2351                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2352                                            disk_super->fsid);
2353
2354         btrfs_release_disk_super(disk_super);
2355         if (!device)
2356                 device = ERR_PTR(-ENOENT);
2357         blkdev_put(bdev, FMODE_READ);
2358         return device;
2359 }
2360
2361 /*
2362  * Lookup a device given by device id, or the path if the id is 0.
2363  */
2364 struct btrfs_device *btrfs_find_device_by_devspec(
2365                 struct btrfs_fs_info *fs_info, u64 devid,
2366                 const char *device_path)
2367 {
2368         struct btrfs_device *device;
2369
2370         if (devid) {
2371                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2372                                            NULL);
2373                 if (!device)
2374                         return ERR_PTR(-ENOENT);
2375                 return device;
2376         }
2377
2378         if (!device_path || !device_path[0])
2379                 return ERR_PTR(-EINVAL);
2380
2381         if (strcmp(device_path, "missing") == 0) {
2382                 /* Find first missing device */
2383                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2384                                     dev_list) {
2385                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2386                                      &device->dev_state) && !device->bdev)
2387                                 return device;
2388                 }
2389                 return ERR_PTR(-ENOENT);
2390         }
2391
2392         return btrfs_find_device_by_path(fs_info, device_path);
2393 }
2394
2395 /*
2396  * does all the dirty work required for changing file system's UUID.
2397  */
2398 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2399 {
2400         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2401         struct btrfs_fs_devices *old_devices;
2402         struct btrfs_fs_devices *seed_devices;
2403         struct btrfs_super_block *disk_super = fs_info->super_copy;
2404         struct btrfs_device *device;
2405         u64 super_flags;
2406
2407         lockdep_assert_held(&uuid_mutex);
2408         if (!fs_devices->seeding)
2409                 return -EINVAL;
2410
2411         /*
2412          * Private copy of the seed devices, anchored at
2413          * fs_info->fs_devices->seed_list
2414          */
2415         seed_devices = alloc_fs_devices(NULL, NULL);
2416         if (IS_ERR(seed_devices))
2417                 return PTR_ERR(seed_devices);
2418
2419         /*
2420          * It's necessary to retain a copy of the original seed fs_devices in
2421          * fs_uuids so that filesystems which have been seeded can successfully
2422          * reference the seed device from open_seed_devices. This also supports
2423          * multiple fs seed.
2424          */
2425         old_devices = clone_fs_devices(fs_devices);
2426         if (IS_ERR(old_devices)) {
2427                 kfree(seed_devices);
2428                 return PTR_ERR(old_devices);
2429         }
2430
2431         list_add(&old_devices->fs_list, &fs_uuids);
2432
2433         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2434         seed_devices->opened = 1;
2435         INIT_LIST_HEAD(&seed_devices->devices);
2436         INIT_LIST_HEAD(&seed_devices->alloc_list);
2437         mutex_init(&seed_devices->device_list_mutex);
2438
2439         mutex_lock(&fs_devices->device_list_mutex);
2440         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2441                               synchronize_rcu);
2442         list_for_each_entry(device, &seed_devices->devices, dev_list)
2443                 device->fs_devices = seed_devices;
2444
2445         fs_devices->seeding = false;
2446         fs_devices->num_devices = 0;
2447         fs_devices->open_devices = 0;
2448         fs_devices->missing_devices = 0;
2449         fs_devices->rotating = false;
2450         list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2451
2452         generate_random_uuid(fs_devices->fsid);
2453         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2454         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2455         mutex_unlock(&fs_devices->device_list_mutex);
2456
2457         super_flags = btrfs_super_flags(disk_super) &
2458                       ~BTRFS_SUPER_FLAG_SEEDING;
2459         btrfs_set_super_flags(disk_super, super_flags);
2460
2461         return 0;
2462 }
2463
2464 /*
2465  * Store the expected generation for seed devices in device items.
2466  */
2467 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2468 {
2469         struct btrfs_fs_info *fs_info = trans->fs_info;
2470         struct btrfs_root *root = fs_info->chunk_root;
2471         struct btrfs_path *path;
2472         struct extent_buffer *leaf;
2473         struct btrfs_dev_item *dev_item;
2474         struct btrfs_device *device;
2475         struct btrfs_key key;
2476         u8 fs_uuid[BTRFS_FSID_SIZE];
2477         u8 dev_uuid[BTRFS_UUID_SIZE];
2478         u64 devid;
2479         int ret;
2480
2481         path = btrfs_alloc_path();
2482         if (!path)
2483                 return -ENOMEM;
2484
2485         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2486         key.offset = 0;
2487         key.type = BTRFS_DEV_ITEM_KEY;
2488
2489         while (1) {
2490                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2491                 if (ret < 0)
2492                         goto error;
2493
2494                 leaf = path->nodes[0];
2495 next_slot:
2496                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2497                         ret = btrfs_next_leaf(root, path);
2498                         if (ret > 0)
2499                                 break;
2500                         if (ret < 0)
2501                                 goto error;
2502                         leaf = path->nodes[0];
2503                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2504                         btrfs_release_path(path);
2505                         continue;
2506                 }
2507
2508                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2509                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2510                     key.type != BTRFS_DEV_ITEM_KEY)
2511                         break;
2512
2513                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2514                                           struct btrfs_dev_item);
2515                 devid = btrfs_device_id(leaf, dev_item);
2516                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2517                                    BTRFS_UUID_SIZE);
2518                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2519                                    BTRFS_FSID_SIZE);
2520                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2521                                            fs_uuid);
2522                 BUG_ON(!device); /* Logic error */
2523
2524                 if (device->fs_devices->seeding) {
2525                         btrfs_set_device_generation(leaf, dev_item,
2526                                                     device->generation);
2527                         btrfs_mark_buffer_dirty(leaf);
2528                 }
2529
2530                 path->slots[0]++;
2531                 goto next_slot;
2532         }
2533         ret = 0;
2534 error:
2535         btrfs_free_path(path);
2536         return ret;
2537 }
2538
2539 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2540 {
2541         struct btrfs_root *root = fs_info->dev_root;
2542         struct request_queue *q;
2543         struct btrfs_trans_handle *trans;
2544         struct btrfs_device *device;
2545         struct block_device *bdev;
2546         struct super_block *sb = fs_info->sb;
2547         struct rcu_string *name;
2548         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2549         u64 orig_super_total_bytes;
2550         u64 orig_super_num_devices;
2551         int seeding_dev = 0;
2552         int ret = 0;
2553         bool locked = false;
2554
2555         if (sb_rdonly(sb) && !fs_devices->seeding)
2556                 return -EROFS;
2557
2558         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2559                                   fs_info->bdev_holder);
2560         if (IS_ERR(bdev))
2561                 return PTR_ERR(bdev);
2562
2563         if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2564                 ret = -EINVAL;
2565                 goto error;
2566         }
2567
2568         if (fs_devices->seeding) {
2569                 seeding_dev = 1;
2570                 down_write(&sb->s_umount);
2571                 mutex_lock(&uuid_mutex);
2572                 locked = true;
2573         }
2574
2575         sync_blockdev(bdev);
2576
2577         rcu_read_lock();
2578         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2579                 if (device->bdev == bdev) {
2580                         ret = -EEXIST;
2581                         rcu_read_unlock();
2582                         goto error;
2583                 }
2584         }
2585         rcu_read_unlock();
2586
2587         device = btrfs_alloc_device(fs_info, NULL, NULL);
2588         if (IS_ERR(device)) {
2589                 /* we can safely leave the fs_devices entry around */
2590                 ret = PTR_ERR(device);
2591                 goto error;
2592         }
2593
2594         name = rcu_string_strdup(device_path, GFP_KERNEL);
2595         if (!name) {
2596                 ret = -ENOMEM;
2597                 goto error_free_device;
2598         }
2599         rcu_assign_pointer(device->name, name);
2600
2601         device->fs_info = fs_info;
2602         device->bdev = bdev;
2603
2604         ret = btrfs_get_dev_zone_info(device);
2605         if (ret)
2606                 goto error_free_device;
2607
2608         trans = btrfs_start_transaction(root, 0);
2609         if (IS_ERR(trans)) {
2610                 ret = PTR_ERR(trans);
2611                 goto error_free_zone;
2612         }
2613
2614         q = bdev_get_queue(bdev);
2615         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2616         device->generation = trans->transid;
2617         device->io_width = fs_info->sectorsize;
2618         device->io_align = fs_info->sectorsize;
2619         device->sector_size = fs_info->sectorsize;
2620         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2621                                          fs_info->sectorsize);
2622         device->disk_total_bytes = device->total_bytes;
2623         device->commit_total_bytes = device->total_bytes;
2624         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2625         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2626         device->mode = FMODE_EXCL;
2627         device->dev_stats_valid = 1;
2628         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2629
2630         if (seeding_dev) {
2631                 btrfs_clear_sb_rdonly(sb);
2632                 ret = btrfs_prepare_sprout(fs_info);
2633                 if (ret) {
2634                         btrfs_abort_transaction(trans, ret);
2635                         goto error_trans;
2636                 }
2637         }
2638
2639         device->fs_devices = fs_devices;
2640
2641         mutex_lock(&fs_devices->device_list_mutex);
2642         mutex_lock(&fs_info->chunk_mutex);
2643         list_add_rcu(&device->dev_list, &fs_devices->devices);
2644         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2645         fs_devices->num_devices++;
2646         fs_devices->open_devices++;
2647         fs_devices->rw_devices++;
2648         fs_devices->total_devices++;
2649         fs_devices->total_rw_bytes += device->total_bytes;
2650
2651         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2652
2653         if (!blk_queue_nonrot(q))
2654                 fs_devices->rotating = true;
2655
2656         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2657         btrfs_set_super_total_bytes(fs_info->super_copy,
2658                 round_down(orig_super_total_bytes + device->total_bytes,
2659                            fs_info->sectorsize));
2660
2661         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2662         btrfs_set_super_num_devices(fs_info->super_copy,
2663                                     orig_super_num_devices + 1);
2664
2665         /*
2666          * we've got more storage, clear any full flags on the space
2667          * infos
2668          */
2669         btrfs_clear_space_info_full(fs_info);
2670
2671         mutex_unlock(&fs_info->chunk_mutex);
2672
2673         /* Add sysfs device entry */
2674         btrfs_sysfs_add_device(device);
2675
2676         mutex_unlock(&fs_devices->device_list_mutex);
2677
2678         if (seeding_dev) {
2679                 mutex_lock(&fs_info->chunk_mutex);
2680                 ret = init_first_rw_device(trans);
2681                 mutex_unlock(&fs_info->chunk_mutex);
2682                 if (ret) {
2683                         btrfs_abort_transaction(trans, ret);
2684                         goto error_sysfs;
2685                 }
2686         }
2687
2688         ret = btrfs_add_dev_item(trans, device);
2689         if (ret) {
2690                 btrfs_abort_transaction(trans, ret);
2691                 goto error_sysfs;
2692         }
2693
2694         if (seeding_dev) {
2695                 ret = btrfs_finish_sprout(trans);
2696                 if (ret) {
2697                         btrfs_abort_transaction(trans, ret);
2698                         goto error_sysfs;
2699                 }
2700
2701                 /*
2702                  * fs_devices now represents the newly sprouted filesystem and
2703                  * its fsid has been changed by btrfs_prepare_sprout
2704                  */
2705                 btrfs_sysfs_update_sprout_fsid(fs_devices);
2706         }
2707
2708         ret = btrfs_commit_transaction(trans);
2709
2710         if (seeding_dev) {
2711                 mutex_unlock(&uuid_mutex);
2712                 up_write(&sb->s_umount);
2713                 locked = false;
2714
2715                 if (ret) /* transaction commit */
2716                         return ret;
2717
2718                 ret = btrfs_relocate_sys_chunks(fs_info);
2719                 if (ret < 0)
2720                         btrfs_handle_fs_error(fs_info, ret,
2721                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2722                 trans = btrfs_attach_transaction(root);
2723                 if (IS_ERR(trans)) {
2724                         if (PTR_ERR(trans) == -ENOENT)
2725                                 return 0;
2726                         ret = PTR_ERR(trans);
2727                         trans = NULL;
2728                         goto error_sysfs;
2729                 }
2730                 ret = btrfs_commit_transaction(trans);
2731         }
2732
2733         /*
2734          * Now that we have written a new super block to this device, check all
2735          * other fs_devices list if device_path alienates any other scanned
2736          * device.
2737          * We can ignore the return value as it typically returns -EINVAL and
2738          * only succeeds if the device was an alien.
2739          */
2740         btrfs_forget_devices(device_path);
2741
2742         /* Update ctime/mtime for blkid or udev */
2743         update_dev_time(device_path);
2744
2745         return ret;
2746
2747 error_sysfs:
2748         btrfs_sysfs_remove_device(device);
2749         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2750         mutex_lock(&fs_info->chunk_mutex);
2751         list_del_rcu(&device->dev_list);
2752         list_del(&device->dev_alloc_list);
2753         fs_info->fs_devices->num_devices--;
2754         fs_info->fs_devices->open_devices--;
2755         fs_info->fs_devices->rw_devices--;
2756         fs_info->fs_devices->total_devices--;
2757         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2758         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2759         btrfs_set_super_total_bytes(fs_info->super_copy,
2760                                     orig_super_total_bytes);
2761         btrfs_set_super_num_devices(fs_info->super_copy,
2762                                     orig_super_num_devices);
2763         mutex_unlock(&fs_info->chunk_mutex);
2764         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2765 error_trans:
2766         if (seeding_dev)
2767                 btrfs_set_sb_rdonly(sb);
2768         if (trans)
2769                 btrfs_end_transaction(trans);
2770 error_free_zone:
2771         btrfs_destroy_dev_zone_info(device);
2772 error_free_device:
2773         btrfs_free_device(device);
2774 error:
2775         blkdev_put(bdev, FMODE_EXCL);
2776         if (locked) {
2777                 mutex_unlock(&uuid_mutex);
2778                 up_write(&sb->s_umount);
2779         }
2780         return ret;
2781 }
2782
2783 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2784                                         struct btrfs_device *device)
2785 {
2786         int ret;
2787         struct btrfs_path *path;
2788         struct btrfs_root *root = device->fs_info->chunk_root;
2789         struct btrfs_dev_item *dev_item;
2790         struct extent_buffer *leaf;
2791         struct btrfs_key key;
2792
2793         path = btrfs_alloc_path();
2794         if (!path)
2795                 return -ENOMEM;
2796
2797         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2798         key.type = BTRFS_DEV_ITEM_KEY;
2799         key.offset = device->devid;
2800
2801         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2802         if (ret < 0)
2803                 goto out;
2804
2805         if (ret > 0) {
2806                 ret = -ENOENT;
2807                 goto out;
2808         }
2809
2810         leaf = path->nodes[0];
2811         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2812
2813         btrfs_set_device_id(leaf, dev_item, device->devid);
2814         btrfs_set_device_type(leaf, dev_item, device->type);
2815         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2816         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2817         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2818         btrfs_set_device_total_bytes(leaf, dev_item,
2819                                      btrfs_device_get_disk_total_bytes(device));
2820         btrfs_set_device_bytes_used(leaf, dev_item,
2821                                     btrfs_device_get_bytes_used(device));
2822         btrfs_mark_buffer_dirty(leaf);
2823
2824 out:
2825         btrfs_free_path(path);
2826         return ret;
2827 }
2828
2829 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2830                       struct btrfs_device *device, u64 new_size)
2831 {
2832         struct btrfs_fs_info *fs_info = device->fs_info;
2833         struct btrfs_super_block *super_copy = fs_info->super_copy;
2834         u64 old_total;
2835         u64 diff;
2836
2837         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2838                 return -EACCES;
2839
2840         new_size = round_down(new_size, fs_info->sectorsize);
2841
2842         mutex_lock(&fs_info->chunk_mutex);
2843         old_total = btrfs_super_total_bytes(super_copy);
2844         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2845
2846         if (new_size <= device->total_bytes ||
2847             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2848                 mutex_unlock(&fs_info->chunk_mutex);
2849                 return -EINVAL;
2850         }
2851
2852         btrfs_set_super_total_bytes(super_copy,
2853                         round_down(old_total + diff, fs_info->sectorsize));
2854         device->fs_devices->total_rw_bytes += diff;
2855
2856         btrfs_device_set_total_bytes(device, new_size);
2857         btrfs_device_set_disk_total_bytes(device, new_size);
2858         btrfs_clear_space_info_full(device->fs_info);
2859         if (list_empty(&device->post_commit_list))
2860                 list_add_tail(&device->post_commit_list,
2861                               &trans->transaction->dev_update_list);
2862         mutex_unlock(&fs_info->chunk_mutex);
2863
2864         return btrfs_update_device(trans, device);
2865 }
2866
2867 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2868 {
2869         struct btrfs_fs_info *fs_info = trans->fs_info;
2870         struct btrfs_root *root = fs_info->chunk_root;
2871         int ret;
2872         struct btrfs_path *path;
2873         struct btrfs_key key;
2874
2875         path = btrfs_alloc_path();
2876         if (!path)
2877                 return -ENOMEM;
2878
2879         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2880         key.offset = chunk_offset;
2881         key.type = BTRFS_CHUNK_ITEM_KEY;
2882
2883         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2884         if (ret < 0)
2885                 goto out;
2886         else if (ret > 0) { /* Logic error or corruption */
2887                 btrfs_handle_fs_error(fs_info, -ENOENT,
2888                                       "Failed lookup while freeing chunk.");
2889                 ret = -ENOENT;
2890                 goto out;
2891         }
2892
2893         ret = btrfs_del_item(trans, root, path);
2894         if (ret < 0)
2895                 btrfs_handle_fs_error(fs_info, ret,
2896                                       "Failed to delete chunk item.");
2897 out:
2898         btrfs_free_path(path);
2899         return ret;
2900 }
2901
2902 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2903 {
2904         struct btrfs_super_block *super_copy = fs_info->super_copy;
2905         struct btrfs_disk_key *disk_key;
2906         struct btrfs_chunk *chunk;
2907         u8 *ptr;
2908         int ret = 0;
2909         u32 num_stripes;
2910         u32 array_size;
2911         u32 len = 0;
2912         u32 cur;
2913         struct btrfs_key key;
2914
2915         lockdep_assert_held(&fs_info->chunk_mutex);
2916         array_size = btrfs_super_sys_array_size(super_copy);
2917
2918         ptr = super_copy->sys_chunk_array;
2919         cur = 0;
2920
2921         while (cur < array_size) {
2922                 disk_key = (struct btrfs_disk_key *)ptr;
2923                 btrfs_disk_key_to_cpu(&key, disk_key);
2924
2925                 len = sizeof(*disk_key);
2926
2927                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2928                         chunk = (struct btrfs_chunk *)(ptr + len);
2929                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2930                         len += btrfs_chunk_item_size(num_stripes);
2931                 } else {
2932                         ret = -EIO;
2933                         break;
2934                 }
2935                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2936                     key.offset == chunk_offset) {
2937                         memmove(ptr, ptr + len, array_size - (cur + len));
2938                         array_size -= len;
2939                         btrfs_set_super_sys_array_size(super_copy, array_size);
2940                 } else {
2941                         ptr += len;
2942                         cur += len;
2943                 }
2944         }
2945         return ret;
2946 }
2947
2948 /*
2949  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2950  * @logical: Logical block offset in bytes.
2951  * @length: Length of extent in bytes.
2952  *
2953  * Return: Chunk mapping or ERR_PTR.
2954  */
2955 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2956                                        u64 logical, u64 length)
2957 {
2958         struct extent_map_tree *em_tree;
2959         struct extent_map *em;
2960
2961         em_tree = &fs_info->mapping_tree;
2962         read_lock(&em_tree->lock);
2963         em = lookup_extent_mapping(em_tree, logical, length);
2964         read_unlock(&em_tree->lock);
2965
2966         if (!em) {
2967                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2968                            logical, length);
2969                 return ERR_PTR(-EINVAL);
2970         }
2971
2972         if (em->start > logical || em->start + em->len < logical) {
2973                 btrfs_crit(fs_info,
2974                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2975                            logical, length, em->start, em->start + em->len);
2976                 free_extent_map(em);
2977                 return ERR_PTR(-EINVAL);
2978         }
2979
2980         /* callers are responsible for dropping em's ref. */
2981         return em;
2982 }
2983
2984 static int remove_chunk_item(struct btrfs_trans_handle *trans,
2985                              struct map_lookup *map, u64 chunk_offset)
2986 {
2987         int i;
2988
2989         /*
2990          * Removing chunk items and updating the device items in the chunks btree
2991          * requires holding the chunk_mutex.
2992          * See the comment at btrfs_chunk_alloc() for the details.
2993          */
2994         lockdep_assert_held(&trans->fs_info->chunk_mutex);
2995
2996         for (i = 0; i < map->num_stripes; i++) {
2997                 int ret;
2998
2999                 ret = btrfs_update_device(trans, map->stripes[i].dev);
3000                 if (ret)
3001                         return ret;
3002         }
3003
3004         return btrfs_free_chunk(trans, chunk_offset);
3005 }
3006
3007 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3008 {
3009         struct btrfs_fs_info *fs_info = trans->fs_info;
3010         struct extent_map *em;
3011         struct map_lookup *map;
3012         u64 dev_extent_len = 0;
3013         int i, ret = 0;
3014         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3015
3016         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3017         if (IS_ERR(em)) {
3018                 /*
3019                  * This is a logic error, but we don't want to just rely on the
3020                  * user having built with ASSERT enabled, so if ASSERT doesn't
3021                  * do anything we still error out.
3022                  */
3023                 ASSERT(0);
3024                 return PTR_ERR(em);
3025         }
3026         map = em->map_lookup;
3027
3028         /*
3029          * First delete the device extent items from the devices btree.
3030          * We take the device_list_mutex to avoid racing with the finishing phase
3031          * of a device replace operation. See the comment below before acquiring
3032          * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3033          * because that can result in a deadlock when deleting the device extent
3034          * items from the devices btree - COWing an extent buffer from the btree
3035          * may result in allocating a new metadata chunk, which would attempt to
3036          * lock again fs_info->chunk_mutex.
3037          */
3038         mutex_lock(&fs_devices->device_list_mutex);
3039         for (i = 0; i < map->num_stripes; i++) {
3040                 struct btrfs_device *device = map->stripes[i].dev;
3041                 ret = btrfs_free_dev_extent(trans, device,
3042                                             map->stripes[i].physical,
3043                                             &dev_extent_len);
3044                 if (ret) {
3045                         mutex_unlock(&fs_devices->device_list_mutex);
3046                         btrfs_abort_transaction(trans, ret);
3047                         goto out;
3048                 }
3049
3050                 if (device->bytes_used > 0) {
3051                         mutex_lock(&fs_info->chunk_mutex);
3052                         btrfs_device_set_bytes_used(device,
3053                                         device->bytes_used - dev_extent_len);
3054                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3055                         btrfs_clear_space_info_full(fs_info);
3056                         mutex_unlock(&fs_info->chunk_mutex);
3057                 }
3058         }
3059         mutex_unlock(&fs_devices->device_list_mutex);
3060
3061         /*
3062          * We acquire fs_info->chunk_mutex for 2 reasons:
3063          *
3064          * 1) Just like with the first phase of the chunk allocation, we must
3065          *    reserve system space, do all chunk btree updates and deletions, and
3066          *    update the system chunk array in the superblock while holding this
3067          *    mutex. This is for similar reasons as explained on the comment at
3068          *    the top of btrfs_chunk_alloc();
3069          *
3070          * 2) Prevent races with the final phase of a device replace operation
3071          *    that replaces the device object associated with the map's stripes,
3072          *    because the device object's id can change at any time during that
3073          *    final phase of the device replace operation
3074          *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3075          *    replaced device and then see it with an ID of
3076          *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3077          *    the device item, which does not exists on the chunk btree.
3078          *    The finishing phase of device replace acquires both the
3079          *    device_list_mutex and the chunk_mutex, in that order, so we are
3080          *    safe by just acquiring the chunk_mutex.
3081          */
3082         trans->removing_chunk = true;
3083         mutex_lock(&fs_info->chunk_mutex);
3084
3085         check_system_chunk(trans, map->type);
3086
3087         ret = remove_chunk_item(trans, map, chunk_offset);
3088         /*
3089          * Normally we should not get -ENOSPC since we reserved space before
3090          * through the call to check_system_chunk().
3091          *
3092          * Despite our system space_info having enough free space, we may not
3093          * be able to allocate extents from its block groups, because all have
3094          * an incompatible profile, which will force us to allocate a new system
3095          * block group with the right profile, or right after we called
3096          * check_system_space() above, a scrub turned the only system block group
3097          * with enough free space into RO mode.
3098          * This is explained with more detail at do_chunk_alloc().
3099          *
3100          * So if we get -ENOSPC, allocate a new system chunk and retry once.
3101          */
3102         if (ret == -ENOSPC) {
3103                 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3104                 struct btrfs_block_group *sys_bg;
3105
3106                 sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3107                 if (IS_ERR(sys_bg)) {
3108                         ret = PTR_ERR(sys_bg);
3109                         btrfs_abort_transaction(trans, ret);
3110                         goto out;
3111                 }
3112
3113                 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3114                 if (ret) {
3115                         btrfs_abort_transaction(trans, ret);
3116                         goto out;
3117                 }
3118
3119                 ret = remove_chunk_item(trans, map, chunk_offset);
3120                 if (ret) {
3121                         btrfs_abort_transaction(trans, ret);
3122                         goto out;
3123                 }
3124         } else if (ret) {
3125                 btrfs_abort_transaction(trans, ret);
3126                 goto out;
3127         }
3128
3129         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3130
3131         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3132                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3133                 if (ret) {
3134                         btrfs_abort_transaction(trans, ret);
3135                         goto out;
3136                 }
3137         }
3138
3139         mutex_unlock(&fs_info->chunk_mutex);
3140         trans->removing_chunk = false;
3141
3142         /*
3143          * We are done with chunk btree updates and deletions, so release the
3144          * system space we previously reserved (with check_system_chunk()).
3145          */
3146         btrfs_trans_release_chunk_metadata(trans);
3147
3148         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3149         if (ret) {
3150                 btrfs_abort_transaction(trans, ret);
3151                 goto out;
3152         }
3153
3154 out:
3155         if (trans->removing_chunk) {
3156                 mutex_unlock(&fs_info->chunk_mutex);
3157                 trans->removing_chunk = false;
3158         }
3159         /* once for us */
3160         free_extent_map(em);
3161         return ret;
3162 }
3163
3164 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3165 {
3166         struct btrfs_root *root = fs_info->chunk_root;
3167         struct btrfs_trans_handle *trans;
3168         struct btrfs_block_group *block_group;
3169         u64 length;
3170         int ret;
3171
3172         /*
3173          * Prevent races with automatic removal of unused block groups.
3174          * After we relocate and before we remove the chunk with offset
3175          * chunk_offset, automatic removal of the block group can kick in,
3176          * resulting in a failure when calling btrfs_remove_chunk() below.
3177          *
3178          * Make sure to acquire this mutex before doing a tree search (dev
3179          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3180          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3181          * we release the path used to search the chunk/dev tree and before
3182          * the current task acquires this mutex and calls us.
3183          */
3184         lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3185
3186         /* step one, relocate all the extents inside this chunk */
3187         btrfs_scrub_pause(fs_info);
3188         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3189         btrfs_scrub_continue(fs_info);
3190         if (ret)
3191                 return ret;
3192
3193         block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3194         if (!block_group)
3195                 return -ENOENT;
3196         btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3197         length = block_group->length;
3198         btrfs_put_block_group(block_group);
3199
3200         /*
3201          * On a zoned file system, discard the whole block group, this will
3202          * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3203          * resetting the zone fails, don't treat it as a fatal problem from the
3204          * filesystem's point of view.
3205          */
3206         if (btrfs_is_zoned(fs_info)) {
3207                 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3208                 if (ret)
3209                         btrfs_info(fs_info,
3210                                 "failed to reset zone %llu after relocation",
3211                                 chunk_offset);
3212         }
3213
3214         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3215                                                      chunk_offset);
3216         if (IS_ERR(trans)) {
3217                 ret = PTR_ERR(trans);
3218                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3219                 return ret;
3220         }
3221
3222         /*
3223          * step two, delete the device extents and the
3224          * chunk tree entries
3225          */
3226         ret = btrfs_remove_chunk(trans, chunk_offset);
3227         btrfs_end_transaction(trans);
3228         return ret;
3229 }
3230
3231 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3232 {
3233         struct btrfs_root *chunk_root = fs_info->chunk_root;
3234         struct btrfs_path *path;
3235         struct extent_buffer *leaf;
3236         struct btrfs_chunk *chunk;
3237         struct btrfs_key key;
3238         struct btrfs_key found_key;
3239         u64 chunk_type;
3240         bool retried = false;
3241         int failed = 0;
3242         int ret;
3243
3244         path = btrfs_alloc_path();
3245         if (!path)
3246                 return -ENOMEM;
3247
3248 again:
3249         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3250         key.offset = (u64)-1;
3251         key.type = BTRFS_CHUNK_ITEM_KEY;
3252
3253         while (1) {
3254                 mutex_lock(&fs_info->reclaim_bgs_lock);
3255                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3256                 if (ret < 0) {
3257                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3258                         goto error;
3259                 }
3260                 BUG_ON(ret == 0); /* Corruption */
3261
3262                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3263                                           key.type);
3264                 if (ret)
3265                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3266                 if (ret < 0)
3267                         goto error;
3268                 if (ret > 0)
3269                         break;
3270
3271                 leaf = path->nodes[0];
3272                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3273
3274                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3275                                        struct btrfs_chunk);
3276                 chunk_type = btrfs_chunk_type(leaf, chunk);
3277                 btrfs_release_path(path);
3278
3279                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3280                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3281                         if (ret == -ENOSPC)
3282                                 failed++;
3283                         else
3284                                 BUG_ON(ret);
3285                 }
3286                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3287
3288                 if (found_key.offset == 0)
3289                         break;
3290                 key.offset = found_key.offset - 1;
3291         }
3292         ret = 0;
3293         if (failed && !retried) {
3294                 failed = 0;
3295                 retried = true;
3296                 goto again;
3297         } else if (WARN_ON(failed && retried)) {
3298                 ret = -ENOSPC;
3299         }
3300 error:
3301         btrfs_free_path(path);
3302         return ret;
3303 }
3304
3305 /*
3306  * return 1 : allocate a data chunk successfully,
3307  * return <0: errors during allocating a data chunk,
3308  * return 0 : no need to allocate a data chunk.
3309  */
3310 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3311                                       u64 chunk_offset)
3312 {
3313         struct btrfs_block_group *cache;
3314         u64 bytes_used;
3315         u64 chunk_type;
3316
3317         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3318         ASSERT(cache);
3319         chunk_type = cache->flags;
3320         btrfs_put_block_group(cache);
3321
3322         if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3323                 return 0;
3324
3325         spin_lock(&fs_info->data_sinfo->lock);
3326         bytes_used = fs_info->data_sinfo->bytes_used;
3327         spin_unlock(&fs_info->data_sinfo->lock);
3328
3329         if (!bytes_used) {
3330                 struct btrfs_trans_handle *trans;
3331                 int ret;
3332
3333                 trans = btrfs_join_transaction(fs_info->tree_root);
3334                 if (IS_ERR(trans))
3335                         return PTR_ERR(trans);
3336
3337                 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3338                 btrfs_end_transaction(trans);
3339                 if (ret < 0)
3340                         return ret;
3341                 return 1;
3342         }
3343
3344         return 0;
3345 }
3346
3347 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3348                                struct btrfs_balance_control *bctl)
3349 {
3350         struct btrfs_root *root = fs_info->tree_root;
3351         struct btrfs_trans_handle *trans;
3352         struct btrfs_balance_item *item;
3353         struct btrfs_disk_balance_args disk_bargs;
3354         struct btrfs_path *path;
3355         struct extent_buffer *leaf;
3356         struct btrfs_key key;
3357         int ret, err;
3358
3359         path = btrfs_alloc_path();
3360         if (!path)
3361                 return -ENOMEM;
3362
3363         trans = btrfs_start_transaction(root, 0);
3364         if (IS_ERR(trans)) {
3365                 btrfs_free_path(path);
3366                 return PTR_ERR(trans);
3367         }
3368
3369         key.objectid = BTRFS_BALANCE_OBJECTID;
3370         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3371         key.offset = 0;
3372
3373         ret = btrfs_insert_empty_item(trans, root, path, &key,
3374                                       sizeof(*item));
3375         if (ret)
3376                 goto out;
3377
3378         leaf = path->nodes[0];
3379         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3380
3381         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3382
3383         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3384         btrfs_set_balance_data(leaf, item, &disk_bargs);
3385         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3386         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3387         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3388         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3389
3390         btrfs_set_balance_flags(leaf, item, bctl->flags);
3391
3392         btrfs_mark_buffer_dirty(leaf);
3393 out:
3394         btrfs_free_path(path);
3395         err = btrfs_commit_transaction(trans);
3396         if (err && !ret)
3397                 ret = err;
3398         return ret;
3399 }
3400
3401 static int del_balance_item(struct btrfs_fs_info *fs_info)
3402 {
3403         struct btrfs_root *root = fs_info->tree_root;
3404         struct btrfs_trans_handle *trans;
3405         struct btrfs_path *path;
3406         struct btrfs_key key;
3407         int ret, err;
3408
3409         path = btrfs_alloc_path();
3410         if (!path)
3411                 return -ENOMEM;
3412
3413         trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3414         if (IS_ERR(trans)) {
3415                 btrfs_free_path(path);
3416                 return PTR_ERR(trans);
3417         }
3418
3419         key.objectid = BTRFS_BALANCE_OBJECTID;
3420         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3421         key.offset = 0;
3422
3423         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3424         if (ret < 0)
3425                 goto out;
3426         if (ret > 0) {
3427                 ret = -ENOENT;
3428                 goto out;
3429         }
3430
3431         ret = btrfs_del_item(trans, root, path);
3432 out:
3433         btrfs_free_path(path);
3434         err = btrfs_commit_transaction(trans);
3435         if (err && !ret)
3436                 ret = err;
3437         return ret;
3438 }
3439
3440 /*
3441  * This is a heuristic used to reduce the number of chunks balanced on
3442  * resume after balance was interrupted.
3443  */
3444 static void update_balance_args(struct btrfs_balance_control *bctl)
3445 {
3446         /*
3447          * Turn on soft mode for chunk types that were being converted.
3448          */
3449         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3450                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3451         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3452                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3453         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3454                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3455
3456         /*
3457          * Turn on usage filter if is not already used.  The idea is
3458          * that chunks that we have already balanced should be
3459          * reasonably full.  Don't do it for chunks that are being
3460          * converted - that will keep us from relocating unconverted
3461          * (albeit full) chunks.
3462          */
3463         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3464             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3465             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3466                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3467                 bctl->data.usage = 90;
3468         }
3469         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3470             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3471             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3472                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3473                 bctl->sys.usage = 90;
3474         }
3475         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3476             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3477             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3478                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3479                 bctl->meta.usage = 90;
3480         }
3481 }
3482
3483 /*
3484  * Clear the balance status in fs_info and delete the balance item from disk.
3485  */
3486 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3487 {
3488         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3489         int ret;
3490
3491         BUG_ON(!fs_info->balance_ctl);
3492
3493         spin_lock(&fs_info->balance_lock);
3494         fs_info->balance_ctl = NULL;
3495         spin_unlock(&fs_info->balance_lock);
3496
3497         kfree(bctl);
3498         ret = del_balance_item(fs_info);
3499         if (ret)
3500                 btrfs_handle_fs_error(fs_info, ret, NULL);
3501 }
3502
3503 /*
3504  * Balance filters.  Return 1 if chunk should be filtered out
3505  * (should not be balanced).
3506  */
3507 static int chunk_profiles_filter(u64 chunk_type,
3508                                  struct btrfs_balance_args *bargs)
3509 {
3510         chunk_type = chunk_to_extended(chunk_type) &
3511                                 BTRFS_EXTENDED_PROFILE_MASK;
3512
3513         if (bargs->profiles & chunk_type)
3514                 return 0;
3515
3516         return 1;
3517 }
3518
3519 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3520                               struct btrfs_balance_args *bargs)
3521 {
3522         struct btrfs_block_group *cache;
3523         u64 chunk_used;
3524         u64 user_thresh_min;
3525         u64 user_thresh_max;
3526         int ret = 1;
3527
3528         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3529         chunk_used = cache->used;
3530
3531         if (bargs->usage_min == 0)
3532                 user_thresh_min = 0;
3533         else
3534                 user_thresh_min = div_factor_fine(cache->length,
3535                                                   bargs->usage_min);
3536
3537         if (bargs->usage_max == 0)
3538                 user_thresh_max = 1;
3539         else if (bargs->usage_max > 100)
3540                 user_thresh_max = cache->length;
3541         else
3542                 user_thresh_max = div_factor_fine(cache->length,
3543                                                   bargs->usage_max);
3544
3545         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3546                 ret = 0;
3547
3548         btrfs_put_block_group(cache);
3549         return ret;
3550 }
3551
3552 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3553                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3554 {
3555         struct btrfs_block_group *cache;
3556         u64 chunk_used, user_thresh;
3557         int ret = 1;
3558
3559         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3560         chunk_used = cache->used;
3561
3562         if (bargs->usage_min == 0)
3563                 user_thresh = 1;
3564         else if (bargs->usage > 100)
3565                 user_thresh = cache->length;
3566         else
3567                 user_thresh = div_factor_fine(cache->length, bargs->usage);
3568
3569         if (chunk_used < user_thresh)
3570                 ret = 0;
3571
3572         btrfs_put_block_group(cache);
3573         return ret;
3574 }
3575
3576 static int chunk_devid_filter(struct extent_buffer *leaf,
3577                               struct btrfs_chunk *chunk,
3578                               struct btrfs_balance_args *bargs)
3579 {
3580         struct btrfs_stripe *stripe;
3581         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3582         int i;
3583
3584         for (i = 0; i < num_stripes; i++) {
3585                 stripe = btrfs_stripe_nr(chunk, i);
3586                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3587                         return 0;
3588         }
3589
3590         return 1;
3591 }
3592
3593 static u64 calc_data_stripes(u64 type, int num_stripes)
3594 {
3595         const int index = btrfs_bg_flags_to_raid_index(type);
3596         const int ncopies = btrfs_raid_array[index].ncopies;
3597         const int nparity = btrfs_raid_array[index].nparity;
3598
3599         return (num_stripes - nparity) / ncopies;
3600 }
3601
3602 /* [pstart, pend) */
3603 static int chunk_drange_filter(struct extent_buffer *leaf,
3604                                struct btrfs_chunk *chunk,
3605                                struct btrfs_balance_args *bargs)
3606 {
3607         struct btrfs_stripe *stripe;
3608         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3609         u64 stripe_offset;
3610         u64 stripe_length;
3611         u64 type;
3612         int factor;
3613         int i;
3614
3615         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3616                 return 0;
3617
3618         type = btrfs_chunk_type(leaf, chunk);
3619         factor = calc_data_stripes(type, num_stripes);
3620
3621         for (i = 0; i < num_stripes; i++) {
3622                 stripe = btrfs_stripe_nr(chunk, i);
3623                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3624                         continue;
3625
3626                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3627                 stripe_length = btrfs_chunk_length(leaf, chunk);
3628                 stripe_length = div_u64(stripe_length, factor);
3629
3630                 if (stripe_offset < bargs->pend &&
3631                     stripe_offset + stripe_length > bargs->pstart)
3632                         return 0;
3633         }
3634
3635         return 1;
3636 }
3637
3638 /* [vstart, vend) */
3639 static int chunk_vrange_filter(struct extent_buffer *leaf,
3640                                struct btrfs_chunk *chunk,
3641                                u64 chunk_offset,
3642                                struct btrfs_balance_args *bargs)
3643 {
3644         if (chunk_offset < bargs->vend &&
3645             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3646                 /* at least part of the chunk is inside this vrange */
3647                 return 0;
3648
3649         return 1;
3650 }
3651
3652 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3653                                struct btrfs_chunk *chunk,
3654                                struct btrfs_balance_args *bargs)
3655 {
3656         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3657
3658         if (bargs->stripes_min <= num_stripes
3659                         && num_stripes <= bargs->stripes_max)
3660                 return 0;
3661
3662         return 1;
3663 }
3664
3665 static int chunk_soft_convert_filter(u64 chunk_type,
3666                                      struct btrfs_balance_args *bargs)
3667 {
3668         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3669                 return 0;
3670
3671         chunk_type = chunk_to_extended(chunk_type) &
3672                                 BTRFS_EXTENDED_PROFILE_MASK;
3673
3674         if (bargs->target == chunk_type)
3675                 return 1;
3676
3677         return 0;
3678 }
3679
3680 static int should_balance_chunk(struct extent_buffer *leaf,
3681                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3682 {
3683         struct btrfs_fs_info *fs_info = leaf->fs_info;
3684         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3685         struct btrfs_balance_args *bargs = NULL;
3686         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3687
3688         /* type filter */
3689         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3690               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3691                 return 0;
3692         }
3693
3694         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3695                 bargs = &bctl->data;
3696         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3697                 bargs = &bctl->sys;
3698         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3699                 bargs = &bctl->meta;
3700
3701         /* profiles filter */
3702         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3703             chunk_profiles_filter(chunk_type, bargs)) {
3704                 return 0;
3705         }
3706
3707         /* usage filter */
3708         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3709             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3710                 return 0;
3711         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3712             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3713                 return 0;
3714         }
3715
3716         /* devid filter */
3717         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3718             chunk_devid_filter(leaf, chunk, bargs)) {
3719                 return 0;
3720         }
3721
3722         /* drange filter, makes sense only with devid filter */
3723         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3724             chunk_drange_filter(leaf, chunk, bargs)) {
3725                 return 0;
3726         }
3727
3728         /* vrange filter */
3729         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3730             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3731                 return 0;
3732         }
3733
3734         /* stripes filter */
3735         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3736             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3737                 return 0;
3738         }
3739
3740         /* soft profile changing mode */
3741         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3742             chunk_soft_convert_filter(chunk_type, bargs)) {
3743                 return 0;
3744         }
3745
3746         /*
3747          * limited by count, must be the last filter
3748          */
3749         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3750                 if (bargs->limit == 0)
3751                         return 0;
3752                 else
3753                         bargs->limit--;
3754         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3755                 /*
3756                  * Same logic as the 'limit' filter; the minimum cannot be
3757                  * determined here because we do not have the global information
3758                  * about the count of all chunks that satisfy the filters.
3759                  */
3760                 if (bargs->limit_max == 0)
3761                         return 0;
3762                 else
3763                         bargs->limit_max--;
3764         }
3765
3766         return 1;
3767 }
3768
3769 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3770 {
3771         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3772         struct btrfs_root *chunk_root = fs_info->chunk_root;
3773         u64 chunk_type;
3774         struct btrfs_chunk *chunk;
3775         struct btrfs_path *path = NULL;
3776         struct btrfs_key key;
3777         struct btrfs_key found_key;
3778         struct extent_buffer *leaf;
3779         int slot;
3780         int ret;
3781         int enospc_errors = 0;
3782         bool counting = true;
3783         /* The single value limit and min/max limits use the same bytes in the */
3784         u64 limit_data = bctl->data.limit;
3785         u64 limit_meta = bctl->meta.limit;
3786         u64 limit_sys = bctl->sys.limit;
3787         u32 count_data = 0;
3788         u32 count_meta = 0;
3789         u32 count_sys = 0;
3790         int chunk_reserved = 0;
3791
3792         path = btrfs_alloc_path();
3793         if (!path) {
3794                 ret = -ENOMEM;
3795                 goto error;
3796         }
3797
3798         /* zero out stat counters */
3799         spin_lock(&fs_info->balance_lock);
3800         memset(&bctl->stat, 0, sizeof(bctl->stat));
3801         spin_unlock(&fs_info->balance_lock);
3802 again:
3803         if (!counting) {
3804                 /*
3805                  * The single value limit and min/max limits use the same bytes
3806                  * in the
3807                  */
3808                 bctl->data.limit = limit_data;
3809                 bctl->meta.limit = limit_meta;
3810                 bctl->sys.limit = limit_sys;
3811         }
3812         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3813         key.offset = (u64)-1;
3814         key.type = BTRFS_CHUNK_ITEM_KEY;
3815
3816         while (1) {
3817                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3818                     atomic_read(&fs_info->balance_cancel_req)) {
3819                         ret = -ECANCELED;
3820                         goto error;
3821                 }
3822
3823                 mutex_lock(&fs_info->reclaim_bgs_lock);
3824                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3825                 if (ret < 0) {
3826                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3827                         goto error;
3828                 }
3829
3830                 /*
3831                  * this shouldn't happen, it means the last relocate
3832                  * failed
3833                  */
3834                 if (ret == 0)
3835                         BUG(); /* FIXME break ? */
3836
3837                 ret = btrfs_previous_item(chunk_root, path, 0,
3838                                           BTRFS_CHUNK_ITEM_KEY);
3839                 if (ret) {
3840                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3841                         ret = 0;
3842                         break;
3843                 }
3844
3845                 leaf = path->nodes[0];
3846                 slot = path->slots[0];
3847                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3848
3849                 if (found_key.objectid != key.objectid) {
3850                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3851                         break;
3852                 }
3853
3854                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3855                 chunk_type = btrfs_chunk_type(leaf, chunk);
3856
3857                 if (!counting) {
3858                         spin_lock(&fs_info->balance_lock);
3859                         bctl->stat.considered++;
3860                         spin_unlock(&fs_info->balance_lock);
3861                 }
3862
3863                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3864
3865                 btrfs_release_path(path);
3866                 if (!ret) {
3867                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3868                         goto loop;
3869                 }
3870
3871                 if (counting) {
3872                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3873                         spin_lock(&fs_info->balance_lock);
3874                         bctl->stat.expected++;
3875                         spin_unlock(&fs_info->balance_lock);
3876
3877                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3878                                 count_data++;
3879                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3880                                 count_sys++;
3881                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3882                                 count_meta++;
3883
3884                         goto loop;
3885                 }
3886
3887                 /*
3888                  * Apply limit_min filter, no need to check if the LIMITS
3889                  * filter is used, limit_min is 0 by default
3890                  */
3891                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3892                                         count_data < bctl->data.limit_min)
3893                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3894                                         count_meta < bctl->meta.limit_min)
3895                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3896                                         count_sys < bctl->sys.limit_min)) {
3897                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3898                         goto loop;
3899                 }
3900
3901                 if (!chunk_reserved) {
3902                         /*
3903                          * We may be relocating the only data chunk we have,
3904                          * which could potentially end up with losing data's
3905                          * raid profile, so lets allocate an empty one in
3906                          * advance.
3907                          */
3908                         ret = btrfs_may_alloc_data_chunk(fs_info,
3909                                                          found_key.offset);
3910                         if (ret < 0) {
3911                                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3912                                 goto error;
3913                         } else if (ret == 1) {
3914                                 chunk_reserved = 1;
3915                         }
3916                 }
3917
3918                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3919                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3920                 if (ret == -ENOSPC) {
3921                         enospc_errors++;
3922                 } else if (ret == -ETXTBSY) {
3923                         btrfs_info(fs_info,
3924            "skipping relocation of block group %llu due to active swapfile",
3925                                    found_key.offset);
3926                         ret = 0;
3927                 } else if (ret) {
3928                         goto error;
3929                 } else {
3930                         spin_lock(&fs_info->balance_lock);
3931                         bctl->stat.completed++;
3932                         spin_unlock(&fs_info->balance_lock);
3933                 }
3934 loop:
3935                 if (found_key.offset == 0)
3936                         break;
3937                 key.offset = found_key.offset - 1;
3938         }
3939
3940         if (counting) {
3941                 btrfs_release_path(path);
3942                 counting = false;
3943                 goto again;
3944         }
3945 error:
3946         btrfs_free_path(path);
3947         if (enospc_errors) {
3948                 btrfs_info(fs_info, "%d enospc errors during balance",
3949                            enospc_errors);
3950                 if (!ret)
3951                         ret = -ENOSPC;
3952         }
3953
3954         return ret;
3955 }
3956
3957 /**
3958  * alloc_profile_is_valid - see if a given profile is valid and reduced
3959  * @flags: profile to validate
3960  * @extended: if true @flags is treated as an extended profile
3961  */
3962 static int alloc_profile_is_valid(u64 flags, int extended)
3963 {
3964         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3965                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3966
3967         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3968
3969         /* 1) check that all other bits are zeroed */
3970         if (flags & ~mask)
3971                 return 0;
3972
3973         /* 2) see if profile is reduced */
3974         if (flags == 0)
3975                 return !extended; /* "0" is valid for usual profiles */
3976
3977         return has_single_bit_set(flags);
3978 }
3979
3980 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3981 {
3982         /* cancel requested || normal exit path */
3983         return atomic_read(&fs_info->balance_cancel_req) ||
3984                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3985                  atomic_read(&fs_info->balance_cancel_req) == 0);
3986 }
3987
3988 /*
3989  * Validate target profile against allowed profiles and return true if it's OK.
3990  * Otherwise print the error message and return false.
3991  */
3992 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3993                 const struct btrfs_balance_args *bargs,
3994                 u64 allowed, const char *type)
3995 {
3996         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3997                 return true;
3998
3999         if (fs_info->sectorsize < PAGE_SIZE &&
4000                 bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
4001                 btrfs_err(fs_info,
4002                 "RAID56 is not yet supported for sectorsize %u with page size %lu",
4003                           fs_info->sectorsize, PAGE_SIZE);
4004                 return false;
4005         }
4006         /* Profile is valid and does not have bits outside of the allowed set */
4007         if (alloc_profile_is_valid(bargs->target, 1) &&
4008             (bargs->target & ~allowed) == 0)
4009                 return true;
4010
4011         btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4012                         type, btrfs_bg_type_to_raid_name(bargs->target));
4013         return false;
4014 }
4015
4016 /*
4017  * Fill @buf with textual description of balance filter flags @bargs, up to
4018  * @size_buf including the terminating null. The output may be trimmed if it
4019  * does not fit into the provided buffer.
4020  */
4021 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4022                                  u32 size_buf)
4023 {
4024         int ret;
4025         u32 size_bp = size_buf;
4026         char *bp = buf;
4027         u64 flags = bargs->flags;
4028         char tmp_buf[128] = {'\0'};
4029
4030         if (!flags)
4031                 return;
4032
4033 #define CHECK_APPEND_NOARG(a)                                           \
4034         do {                                                            \
4035                 ret = snprintf(bp, size_bp, (a));                       \
4036                 if (ret < 0 || ret >= size_bp)                          \
4037                         goto out_overflow;                              \
4038                 size_bp -= ret;                                         \
4039                 bp += ret;                                              \
4040         } while (0)
4041
4042 #define CHECK_APPEND_1ARG(a, v1)                                        \
4043         do {                                                            \
4044                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4045                 if (ret < 0 || ret >= size_bp)                          \
4046                         goto out_overflow;                              \
4047                 size_bp -= ret;                                         \
4048                 bp += ret;                                              \
4049         } while (0)
4050
4051 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
4052         do {                                                            \
4053                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
4054                 if (ret < 0 || ret >= size_bp)                          \
4055                         goto out_overflow;                              \
4056                 size_bp -= ret;                                         \
4057                 bp += ret;                                              \
4058         } while (0)
4059
4060         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4061                 CHECK_APPEND_1ARG("convert=%s,",
4062                                   btrfs_bg_type_to_raid_name(bargs->target));
4063
4064         if (flags & BTRFS_BALANCE_ARGS_SOFT)
4065                 CHECK_APPEND_NOARG("soft,");
4066
4067         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4068                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4069                                             sizeof(tmp_buf));
4070                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4071         }
4072
4073         if (flags & BTRFS_BALANCE_ARGS_USAGE)
4074                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4075
4076         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4077                 CHECK_APPEND_2ARG("usage=%u..%u,",
4078                                   bargs->usage_min, bargs->usage_max);
4079
4080         if (flags & BTRFS_BALANCE_ARGS_DEVID)
4081                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4082
4083         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4084                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4085                                   bargs->pstart, bargs->pend);
4086
4087         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4088                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4089                                   bargs->vstart, bargs->vend);
4090
4091         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4092                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4093
4094         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4095                 CHECK_APPEND_2ARG("limit=%u..%u,",
4096                                 bargs->limit_min, bargs->limit_max);
4097
4098         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4099                 CHECK_APPEND_2ARG("stripes=%u..%u,",
4100                                   bargs->stripes_min, bargs->stripes_max);
4101
4102 #undef CHECK_APPEND_2ARG
4103 #undef CHECK_APPEND_1ARG
4104 #undef CHECK_APPEND_NOARG
4105
4106 out_overflow:
4107
4108         if (size_bp < size_buf)
4109                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4110         else
4111                 buf[0] = '\0';
4112 }
4113
4114 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4115 {
4116         u32 size_buf = 1024;
4117         char tmp_buf[192] = {'\0'};
4118         char *buf;
4119         char *bp;
4120         u32 size_bp = size_buf;
4121         int ret;
4122         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4123
4124         buf = kzalloc(size_buf, GFP_KERNEL);
4125         if (!buf)
4126                 return;
4127
4128         bp = buf;
4129
4130 #define CHECK_APPEND_1ARG(a, v1)                                        \
4131         do {                                                            \
4132                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4133                 if (ret < 0 || ret >= size_bp)                          \
4134                         goto out_overflow;                              \
4135                 size_bp -= ret;                                         \
4136                 bp += ret;                                              \
4137         } while (0)
4138
4139         if (bctl->flags & BTRFS_BALANCE_FORCE)
4140                 CHECK_APPEND_1ARG("%s", "-f ");
4141
4142         if (bctl->flags & BTRFS_BALANCE_DATA) {
4143                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4144                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4145         }
4146
4147         if (bctl->flags & BTRFS_BALANCE_METADATA) {
4148                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4149                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4150         }
4151
4152         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4153                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4154                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4155         }
4156
4157 #undef CHECK_APPEND_1ARG
4158
4159 out_overflow:
4160
4161         if (size_bp < size_buf)
4162                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4163         btrfs_info(fs_info, "balance: %s %s",
4164                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
4165                    "resume" : "start", buf);
4166
4167         kfree(buf);
4168 }
4169
4170 /*
4171  * Should be called with balance mutexe held
4172  */
4173 int btrfs_balance(struct btrfs_fs_info *fs_info,
4174                   struct btrfs_balance_control *bctl,
4175                   struct btrfs_ioctl_balance_args *bargs)
4176 {
4177         u64 meta_target, data_target;
4178         u64 allowed;
4179         int mixed = 0;
4180         int ret;
4181         u64 num_devices;
4182         unsigned seq;
4183         bool reducing_redundancy;
4184         int i;
4185
4186         if (btrfs_fs_closing(fs_info) ||
4187             atomic_read(&fs_info->balance_pause_req) ||
4188             btrfs_should_cancel_balance(fs_info)) {
4189                 ret = -EINVAL;
4190                 goto out;
4191         }
4192
4193         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4194         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4195                 mixed = 1;
4196
4197         /*
4198          * In case of mixed groups both data and meta should be picked,
4199          * and identical options should be given for both of them.
4200          */
4201         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4202         if (mixed && (bctl->flags & allowed)) {
4203                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4204                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4205                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4206                         btrfs_err(fs_info,
4207           "balance: mixed groups data and metadata options must be the same");
4208                         ret = -EINVAL;
4209                         goto out;
4210                 }
4211         }
4212
4213         /*
4214          * rw_devices will not change at the moment, device add/delete/replace
4215          * are exclusive
4216          */
4217         num_devices = fs_info->fs_devices->rw_devices;
4218
4219         /*
4220          * SINGLE profile on-disk has no profile bit, but in-memory we have a
4221          * special bit for it, to make it easier to distinguish.  Thus we need
4222          * to set it manually, or balance would refuse the profile.
4223          */
4224         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4225         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4226                 if (num_devices >= btrfs_raid_array[i].devs_min)
4227                         allowed |= btrfs_raid_array[i].bg_flag;
4228
4229         if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4230             !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4231             !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4232                 ret = -EINVAL;
4233                 goto out;
4234         }
4235
4236         /*
4237          * Allow to reduce metadata or system integrity only if force set for
4238          * profiles with redundancy (copies, parity)
4239          */
4240         allowed = 0;
4241         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4242                 if (btrfs_raid_array[i].ncopies >= 2 ||
4243                     btrfs_raid_array[i].tolerated_failures >= 1)
4244                         allowed |= btrfs_raid_array[i].bg_flag;
4245         }
4246         do {
4247                 seq = read_seqbegin(&fs_info->profiles_lock);
4248
4249                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4250                      (fs_info->avail_system_alloc_bits & allowed) &&
4251                      !(bctl->sys.target & allowed)) ||
4252                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4253                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4254                      !(bctl->meta.target & allowed)))
4255                         reducing_redundancy = true;
4256                 else
4257                         reducing_redundancy = false;
4258
4259                 /* if we're not converting, the target field is uninitialized */
4260                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4261                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4262                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4263                         bctl->data.target : fs_info->avail_data_alloc_bits;
4264         } while (read_seqretry(&fs_info->profiles_lock, seq));
4265
4266         if (reducing_redundancy) {
4267                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4268                         btrfs_info(fs_info,
4269                            "balance: force reducing metadata redundancy");
4270                 } else {
4271                         btrfs_err(fs_info,
4272         "balance: reduces metadata redundancy, use --force if you want this");
4273                         ret = -EINVAL;
4274                         goto out;
4275                 }
4276         }
4277
4278         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4279                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4280                 btrfs_warn(fs_info,
4281         "balance: metadata profile %s has lower redundancy than data profile %s",
4282                                 btrfs_bg_type_to_raid_name(meta_target),
4283                                 btrfs_bg_type_to_raid_name(data_target));
4284         }
4285
4286         ret = insert_balance_item(fs_info, bctl);
4287         if (ret && ret != -EEXIST)
4288                 goto out;
4289
4290         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4291                 BUG_ON(ret == -EEXIST);
4292                 BUG_ON(fs_info->balance_ctl);
4293                 spin_lock(&fs_info->balance_lock);
4294                 fs_info->balance_ctl = bctl;
4295                 spin_unlock(&fs_info->balance_lock);
4296         } else {
4297                 BUG_ON(ret != -EEXIST);
4298                 spin_lock(&fs_info->balance_lock);
4299                 update_balance_args(bctl);
4300                 spin_unlock(&fs_info->balance_lock);
4301         }
4302
4303         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4304         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4305         describe_balance_start_or_resume(fs_info);
4306         mutex_unlock(&fs_info->balance_mutex);
4307
4308         ret = __btrfs_balance(fs_info);
4309
4310         mutex_lock(&fs_info->balance_mutex);
4311         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4312                 btrfs_info(fs_info, "balance: paused");
4313         /*
4314          * Balance can be canceled by:
4315          *
4316          * - Regular cancel request
4317          *   Then ret == -ECANCELED and balance_cancel_req > 0
4318          *
4319          * - Fatal signal to "btrfs" process
4320          *   Either the signal caught by wait_reserve_ticket() and callers
4321          *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4322          *   got -ECANCELED.
4323          *   Either way, in this case balance_cancel_req = 0, and
4324          *   ret == -EINTR or ret == -ECANCELED.
4325          *
4326          * So here we only check the return value to catch canceled balance.
4327          */
4328         else if (ret == -ECANCELED || ret == -EINTR)
4329                 btrfs_info(fs_info, "balance: canceled");
4330         else
4331                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4332
4333         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4334
4335         if (bargs) {
4336                 memset(bargs, 0, sizeof(*bargs));
4337                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4338         }
4339
4340         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4341             balance_need_close(fs_info)) {
4342                 reset_balance_state(fs_info);
4343                 btrfs_exclop_finish(fs_info);
4344         }
4345
4346         wake_up(&fs_info->balance_wait_q);
4347
4348         return ret;
4349 out:
4350         if (bctl->flags & BTRFS_BALANCE_RESUME)
4351                 reset_balance_state(fs_info);
4352         else
4353                 kfree(bctl);
4354         btrfs_exclop_finish(fs_info);
4355
4356         return ret;
4357 }
4358
4359 static int balance_kthread(void *data)
4360 {
4361         struct btrfs_fs_info *fs_info = data;
4362         int ret = 0;
4363
4364         mutex_lock(&fs_info->balance_mutex);
4365         if (fs_info->balance_ctl)
4366                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4367         mutex_unlock(&fs_info->balance_mutex);
4368
4369         return ret;
4370 }
4371
4372 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4373 {
4374         struct task_struct *tsk;
4375
4376         mutex_lock(&fs_info->balance_mutex);
4377         if (!fs_info->balance_ctl) {
4378                 mutex_unlock(&fs_info->balance_mutex);
4379                 return 0;
4380         }
4381         mutex_unlock(&fs_info->balance_mutex);
4382
4383         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4384                 btrfs_info(fs_info, "balance: resume skipped");
4385                 return 0;
4386         }
4387
4388         /*
4389          * A ro->rw remount sequence should continue with the paused balance
4390          * regardless of who pauses it, system or the user as of now, so set
4391          * the resume flag.
4392          */
4393         spin_lock(&fs_info->balance_lock);
4394         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4395         spin_unlock(&fs_info->balance_lock);
4396
4397         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4398         return PTR_ERR_OR_ZERO(tsk);
4399 }
4400
4401 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4402 {
4403         struct btrfs_balance_control *bctl;
4404         struct btrfs_balance_item *item;
4405         struct btrfs_disk_balance_args disk_bargs;
4406         struct btrfs_path *path;
4407         struct extent_buffer *leaf;
4408         struct btrfs_key key;
4409         int ret;
4410
4411         path = btrfs_alloc_path();
4412         if (!path)
4413                 return -ENOMEM;
4414
4415         key.objectid = BTRFS_BALANCE_OBJECTID;
4416         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4417         key.offset = 0;
4418
4419         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4420         if (ret < 0)
4421                 goto out;
4422         if (ret > 0) { /* ret = -ENOENT; */
4423                 ret = 0;
4424                 goto out;
4425         }
4426
4427         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4428         if (!bctl) {
4429                 ret = -ENOMEM;
4430                 goto out;
4431         }
4432
4433         leaf = path->nodes[0];
4434         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4435
4436         bctl->flags = btrfs_balance_flags(leaf, item);
4437         bctl->flags |= BTRFS_BALANCE_RESUME;
4438
4439         btrfs_balance_data(leaf, item, &disk_bargs);
4440         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4441         btrfs_balance_meta(leaf, item, &disk_bargs);
4442         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4443         btrfs_balance_sys(leaf, item, &disk_bargs);
4444         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4445
4446         /*
4447          * This should never happen, as the paused balance state is recovered
4448          * during mount without any chance of other exclusive ops to collide.
4449          *
4450          * This gives the exclusive op status to balance and keeps in paused
4451          * state until user intervention (cancel or umount). If the ownership
4452          * cannot be assigned, show a message but do not fail. The balance
4453          * is in a paused state and must have fs_info::balance_ctl properly
4454          * set up.
4455          */
4456         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4457                 btrfs_warn(fs_info,
4458         "balance: cannot set exclusive op status, resume manually");
4459
4460         btrfs_release_path(path);
4461
4462         mutex_lock(&fs_info->balance_mutex);
4463         BUG_ON(fs_info->balance_ctl);
4464         spin_lock(&fs_info->balance_lock);
4465         fs_info->balance_ctl = bctl;
4466         spin_unlock(&fs_info->balance_lock);
4467         mutex_unlock(&fs_info->balance_mutex);
4468 out:
4469         btrfs_free_path(path);
4470         return ret;
4471 }
4472
4473 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4474 {
4475         int ret = 0;
4476
4477         mutex_lock(&fs_info->balance_mutex);
4478         if (!fs_info->balance_ctl) {
4479                 mutex_unlock(&fs_info->balance_mutex);
4480                 return -ENOTCONN;
4481         }
4482
4483         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4484                 atomic_inc(&fs_info->balance_pause_req);
4485                 mutex_unlock(&fs_info->balance_mutex);
4486
4487                 wait_event(fs_info->balance_wait_q,
4488                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4489
4490                 mutex_lock(&fs_info->balance_mutex);
4491                 /* we are good with balance_ctl ripped off from under us */
4492                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4493                 atomic_dec(&fs_info->balance_pause_req);
4494         } else {
4495                 ret = -ENOTCONN;
4496         }
4497
4498         mutex_unlock(&fs_info->balance_mutex);
4499         return ret;
4500 }
4501
4502 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4503 {
4504         mutex_lock(&fs_info->balance_mutex);
4505         if (!fs_info->balance_ctl) {
4506                 mutex_unlock(&fs_info->balance_mutex);
4507                 return -ENOTCONN;
4508         }
4509
4510         /*
4511          * A paused balance with the item stored on disk can be resumed at
4512          * mount time if the mount is read-write. Otherwise it's still paused
4513          * and we must not allow cancelling as it deletes the item.
4514          */
4515         if (sb_rdonly(fs_info->sb)) {
4516                 mutex_unlock(&fs_info->balance_mutex);
4517                 return -EROFS;
4518         }
4519
4520         atomic_inc(&fs_info->balance_cancel_req);
4521         /*
4522          * if we are running just wait and return, balance item is
4523          * deleted in btrfs_balance in this case
4524          */
4525         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4526                 mutex_unlock(&fs_info->balance_mutex);
4527                 wait_event(fs_info->balance_wait_q,
4528                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4529                 mutex_lock(&fs_info->balance_mutex);
4530         } else {
4531                 mutex_unlock(&fs_info->balance_mutex);
4532                 /*
4533                  * Lock released to allow other waiters to continue, we'll
4534                  * reexamine the status again.
4535                  */
4536                 mutex_lock(&fs_info->balance_mutex);
4537
4538                 if (fs_info->balance_ctl) {
4539                         reset_balance_state(fs_info);
4540                         btrfs_exclop_finish(fs_info);
4541                         btrfs_info(fs_info, "balance: canceled");
4542                 }
4543         }
4544
4545         BUG_ON(fs_info->balance_ctl ||
4546                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4547         atomic_dec(&fs_info->balance_cancel_req);
4548         mutex_unlock(&fs_info->balance_mutex);
4549         return 0;
4550 }
4551
4552 int btrfs_uuid_scan_kthread(void *data)
4553 {
4554         struct btrfs_fs_info *fs_info = data;
4555         struct btrfs_root *root = fs_info->tree_root;
4556         struct btrfs_key key;
4557         struct btrfs_path *path = NULL;
4558         int ret = 0;
4559         struct extent_buffer *eb;
4560         int slot;
4561         struct btrfs_root_item root_item;
4562         u32 item_size;
4563         struct btrfs_trans_handle *trans = NULL;
4564         bool closing = false;
4565
4566         path = btrfs_alloc_path();
4567         if (!path) {
4568                 ret = -ENOMEM;
4569                 goto out;
4570         }
4571
4572         key.objectid = 0;
4573         key.type = BTRFS_ROOT_ITEM_KEY;
4574         key.offset = 0;
4575
4576         while (1) {
4577                 if (btrfs_fs_closing(fs_info)) {
4578                         closing = true;
4579                         break;
4580                 }
4581                 ret = btrfs_search_forward(root, &key, path,
4582                                 BTRFS_OLDEST_GENERATION);
4583                 if (ret) {
4584                         if (ret > 0)
4585                                 ret = 0;
4586                         break;
4587                 }
4588
4589                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4590                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4591                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4592                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4593                         goto skip;
4594
4595                 eb = path->nodes[0];
4596                 slot = path->slots[0];
4597                 item_size = btrfs_item_size_nr(eb, slot);
4598                 if (item_size < sizeof(root_item))
4599                         goto skip;
4600
4601                 read_extent_buffer(eb, &root_item,
4602                                    btrfs_item_ptr_offset(eb, slot),
4603                                    (int)sizeof(root_item));
4604                 if (btrfs_root_refs(&root_item) == 0)
4605                         goto skip;
4606
4607                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4608                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4609                         if (trans)
4610                                 goto update_tree;
4611
4612                         btrfs_release_path(path);
4613                         /*
4614                          * 1 - subvol uuid item
4615                          * 1 - received_subvol uuid item
4616                          */
4617                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4618                         if (IS_ERR(trans)) {
4619                                 ret = PTR_ERR(trans);
4620                                 break;
4621                         }
4622                         continue;
4623                 } else {
4624                         goto skip;
4625                 }
4626 update_tree:
4627                 btrfs_release_path(path);
4628                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4629                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4630                                                   BTRFS_UUID_KEY_SUBVOL,
4631                                                   key.objectid);
4632                         if (ret < 0) {
4633                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4634                                         ret);
4635                                 break;
4636                         }
4637                 }
4638
4639                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4640                         ret = btrfs_uuid_tree_add(trans,
4641                                                   root_item.received_uuid,
4642                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4643                                                   key.objectid);
4644                         if (ret < 0) {
4645                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4646                                         ret);
4647                                 break;
4648                         }
4649                 }
4650
4651 skip:
4652                 btrfs_release_path(path);
4653                 if (trans) {
4654                         ret = btrfs_end_transaction(trans);
4655                         trans = NULL;
4656                         if (ret)
4657                                 break;
4658                 }
4659
4660                 if (key.offset < (u64)-1) {
4661                         key.offset++;
4662                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4663                         key.offset = 0;
4664                         key.type = BTRFS_ROOT_ITEM_KEY;
4665                 } else if (key.objectid < (u64)-1) {
4666                         key.offset = 0;
4667                         key.type = BTRFS_ROOT_ITEM_KEY;
4668                         key.objectid++;
4669                 } else {
4670                         break;
4671                 }
4672                 cond_resched();
4673         }
4674
4675 out:
4676         btrfs_free_path(path);
4677         if (trans && !IS_ERR(trans))
4678                 btrfs_end_transaction(trans);
4679         if (ret)
4680                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4681         else if (!closing)
4682                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4683         up(&fs_info->uuid_tree_rescan_sem);
4684         return 0;
4685 }
4686
4687 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4688 {
4689         struct btrfs_trans_handle *trans;
4690         struct btrfs_root *tree_root = fs_info->tree_root;
4691         struct btrfs_root *uuid_root;
4692         struct task_struct *task;
4693         int ret;
4694
4695         /*
4696          * 1 - root node
4697          * 1 - root item
4698          */
4699         trans = btrfs_start_transaction(tree_root, 2);
4700         if (IS_ERR(trans))
4701                 return PTR_ERR(trans);
4702
4703         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4704         if (IS_ERR(uuid_root)) {
4705                 ret = PTR_ERR(uuid_root);
4706                 btrfs_abort_transaction(trans, ret);
4707                 btrfs_end_transaction(trans);
4708                 return ret;
4709         }
4710
4711         fs_info->uuid_root = uuid_root;
4712
4713         ret = btrfs_commit_transaction(trans);
4714         if (ret)
4715                 return ret;
4716
4717         down(&fs_info->uuid_tree_rescan_sem);
4718         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4719         if (IS_ERR(task)) {
4720                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4721                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4722                 up(&fs_info->uuid_tree_rescan_sem);
4723                 return PTR_ERR(task);
4724         }
4725
4726         return 0;
4727 }
4728
4729 /*
4730  * shrinking a device means finding all of the device extents past
4731  * the new size, and then following the back refs to the chunks.
4732  * The chunk relocation code actually frees the device extent
4733  */
4734 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4735 {
4736         struct btrfs_fs_info *fs_info = device->fs_info;
4737         struct btrfs_root *root = fs_info->dev_root;
4738         struct btrfs_trans_handle *trans;
4739         struct btrfs_dev_extent *dev_extent = NULL;
4740         struct btrfs_path *path;
4741         u64 length;
4742         u64 chunk_offset;
4743         int ret;
4744         int slot;
4745         int failed = 0;
4746         bool retried = false;
4747         struct extent_buffer *l;
4748         struct btrfs_key key;
4749         struct btrfs_super_block *super_copy = fs_info->super_copy;
4750         u64 old_total = btrfs_super_total_bytes(super_copy);
4751         u64 old_size = btrfs_device_get_total_bytes(device);
4752         u64 diff;
4753         u64 start;
4754
4755         new_size = round_down(new_size, fs_info->sectorsize);
4756         start = new_size;
4757         diff = round_down(old_size - new_size, fs_info->sectorsize);
4758
4759         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4760                 return -EINVAL;
4761
4762         path = btrfs_alloc_path();
4763         if (!path)
4764                 return -ENOMEM;
4765
4766         path->reada = READA_BACK;
4767
4768         trans = btrfs_start_transaction(root, 0);
4769         if (IS_ERR(trans)) {
4770                 btrfs_free_path(path);
4771                 return PTR_ERR(trans);
4772         }
4773
4774         mutex_lock(&fs_info->chunk_mutex);
4775
4776         btrfs_device_set_total_bytes(device, new_size);
4777         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4778                 device->fs_devices->total_rw_bytes -= diff;
4779                 atomic64_sub(diff, &fs_info->free_chunk_space);
4780         }
4781
4782         /*
4783          * Once the device's size has been set to the new size, ensure all
4784          * in-memory chunks are synced to disk so that the loop below sees them
4785          * and relocates them accordingly.
4786          */
4787         if (contains_pending_extent(device, &start, diff)) {
4788                 mutex_unlock(&fs_info->chunk_mutex);
4789                 ret = btrfs_commit_transaction(trans);
4790                 if (ret)
4791                         goto done;
4792         } else {
4793                 mutex_unlock(&fs_info->chunk_mutex);
4794                 btrfs_end_transaction(trans);
4795         }
4796
4797 again:
4798         key.objectid = device->devid;
4799         key.offset = (u64)-1;
4800         key.type = BTRFS_DEV_EXTENT_KEY;
4801
4802         do {
4803                 mutex_lock(&fs_info->reclaim_bgs_lock);
4804                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4805                 if (ret < 0) {
4806                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4807                         goto done;
4808                 }
4809
4810                 ret = btrfs_previous_item(root, path, 0, key.type);
4811                 if (ret) {
4812                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4813                         if (ret < 0)
4814                                 goto done;
4815                         ret = 0;
4816                         btrfs_release_path(path);
4817                         break;
4818                 }
4819
4820                 l = path->nodes[0];
4821                 slot = path->slots[0];
4822                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4823
4824                 if (key.objectid != device->devid) {
4825                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4826                         btrfs_release_path(path);
4827                         break;
4828                 }
4829
4830                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4831                 length = btrfs_dev_extent_length(l, dev_extent);
4832
4833                 if (key.offset + length <= new_size) {
4834                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4835                         btrfs_release_path(path);
4836                         break;
4837                 }
4838
4839                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4840                 btrfs_release_path(path);
4841
4842                 /*
4843                  * We may be relocating the only data chunk we have,
4844                  * which could potentially end up with losing data's
4845                  * raid profile, so lets allocate an empty one in
4846                  * advance.
4847                  */
4848                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4849                 if (ret < 0) {
4850                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4851                         goto done;
4852                 }
4853
4854                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4855                 mutex_unlock(&fs_info->reclaim_bgs_lock);
4856                 if (ret == -ENOSPC) {
4857                         failed++;
4858                 } else if (ret) {
4859                         if (ret == -ETXTBSY) {
4860                                 btrfs_warn(fs_info,
4861                    "could not shrink block group %llu due to active swapfile",
4862                                            chunk_offset);
4863                         }
4864                         goto done;
4865                 }
4866         } while (key.offset-- > 0);
4867
4868         if (failed && !retried) {
4869                 failed = 0;
4870                 retried = true;
4871                 goto again;
4872         } else if (failed && retried) {
4873                 ret = -ENOSPC;
4874                 goto done;
4875         }
4876
4877         /* Shrinking succeeded, else we would be at "done". */
4878         trans = btrfs_start_transaction(root, 0);
4879         if (IS_ERR(trans)) {
4880                 ret = PTR_ERR(trans);
4881                 goto done;
4882         }
4883
4884         mutex_lock(&fs_info->chunk_mutex);
4885         /* Clear all state bits beyond the shrunk device size */
4886         clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4887                           CHUNK_STATE_MASK);
4888
4889         btrfs_device_set_disk_total_bytes(device, new_size);
4890         if (list_empty(&device->post_commit_list))
4891                 list_add_tail(&device->post_commit_list,
4892                               &trans->transaction->dev_update_list);
4893
4894         WARN_ON(diff > old_total);
4895         btrfs_set_super_total_bytes(super_copy,
4896                         round_down(old_total - diff, fs_info->sectorsize));
4897         mutex_unlock(&fs_info->chunk_mutex);
4898
4899         /* Now btrfs_update_device() will change the on-disk size. */
4900         ret = btrfs_update_device(trans, device);
4901         if (ret < 0) {
4902                 btrfs_abort_transaction(trans, ret);
4903                 btrfs_end_transaction(trans);
4904         } else {
4905                 ret = btrfs_commit_transaction(trans);
4906         }
4907 done:
4908         btrfs_free_path(path);
4909         if (ret) {
4910                 mutex_lock(&fs_info->chunk_mutex);
4911                 btrfs_device_set_total_bytes(device, old_size);
4912                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4913                         device->fs_devices->total_rw_bytes += diff;
4914                 atomic64_add(diff, &fs_info->free_chunk_space);
4915                 mutex_unlock(&fs_info->chunk_mutex);
4916         }
4917         return ret;
4918 }
4919
4920 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4921                            struct btrfs_key *key,
4922                            struct btrfs_chunk *chunk, int item_size)
4923 {
4924         struct btrfs_super_block *super_copy = fs_info->super_copy;
4925         struct btrfs_disk_key disk_key;
4926         u32 array_size;
4927         u8 *ptr;
4928
4929         lockdep_assert_held(&fs_info->chunk_mutex);
4930
4931         array_size = btrfs_super_sys_array_size(super_copy);
4932         if (array_size + item_size + sizeof(disk_key)
4933                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4934                 return -EFBIG;
4935
4936         ptr = super_copy->sys_chunk_array + array_size;
4937         btrfs_cpu_key_to_disk(&disk_key, key);
4938         memcpy(ptr, &disk_key, sizeof(disk_key));
4939         ptr += sizeof(disk_key);
4940         memcpy(ptr, chunk, item_size);
4941         item_size += sizeof(disk_key);
4942         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4943
4944         return 0;
4945 }
4946
4947 /*
4948  * sort the devices in descending order by max_avail, total_avail
4949  */
4950 static int btrfs_cmp_device_info(const void *a, const void *b)
4951 {
4952         const struct btrfs_device_info *di_a = a;
4953         const struct btrfs_device_info *di_b = b;
4954
4955         if (di_a->max_avail > di_b->max_avail)
4956                 return -1;
4957         if (di_a->max_avail < di_b->max_avail)
4958                 return 1;
4959         if (di_a->total_avail > di_b->total_avail)
4960                 return -1;
4961         if (di_a->total_avail < di_b->total_avail)
4962                 return 1;
4963         return 0;
4964 }
4965
4966 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4967 {
4968         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4969                 return;
4970
4971         btrfs_set_fs_incompat(info, RAID56);
4972 }
4973
4974 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4975 {
4976         if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4977                 return;
4978
4979         btrfs_set_fs_incompat(info, RAID1C34);
4980 }
4981
4982 /*
4983  * Structure used internally for __btrfs_alloc_chunk() function.
4984  * Wraps needed parameters.
4985  */
4986 struct alloc_chunk_ctl {
4987         u64 start;
4988         u64 type;
4989         /* Total number of stripes to allocate */
4990         int num_stripes;
4991         /* sub_stripes info for map */
4992         int sub_stripes;
4993         /* Stripes per device */
4994         int dev_stripes;
4995         /* Maximum number of devices to use */
4996         int devs_max;
4997         /* Minimum number of devices to use */
4998         int devs_min;
4999         /* ndevs has to be a multiple of this */
5000         int devs_increment;
5001         /* Number of copies */
5002         int ncopies;
5003         /* Number of stripes worth of bytes to store parity information */
5004         int nparity;
5005         u64 max_stripe_size;
5006         u64 max_chunk_size;
5007         u64 dev_extent_min;
5008         u64 stripe_size;
5009         u64 chunk_size;
5010         int ndevs;
5011 };
5012
5013 static void init_alloc_chunk_ctl_policy_regular(
5014                                 struct btrfs_fs_devices *fs_devices,
5015                                 struct alloc_chunk_ctl *ctl)
5016 {
5017         u64 type = ctl->type;
5018
5019         if (type & BTRFS_BLOCK_GROUP_DATA) {
5020                 ctl->max_stripe_size = SZ_1G;
5021                 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5022         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5023                 /* For larger filesystems, use larger metadata chunks */
5024                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5025                         ctl->max_stripe_size = SZ_1G;
5026                 else
5027                         ctl->max_stripe_size = SZ_256M;
5028                 ctl->max_chunk_size = ctl->max_stripe_size;
5029         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5030                 ctl->max_stripe_size = SZ_32M;
5031                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5032                 ctl->devs_max = min_t(int, ctl->devs_max,
5033                                       BTRFS_MAX_DEVS_SYS_CHUNK);
5034         } else {
5035                 BUG();
5036         }
5037
5038         /* We don't want a chunk larger than 10% of writable space */
5039         ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5040                                   ctl->max_chunk_size);
5041         ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5042 }
5043
5044 static void init_alloc_chunk_ctl_policy_zoned(
5045                                       struct btrfs_fs_devices *fs_devices,
5046                                       struct alloc_chunk_ctl *ctl)
5047 {
5048         u64 zone_size = fs_devices->fs_info->zone_size;
5049         u64 limit;
5050         int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5051         int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5052         u64 min_chunk_size = min_data_stripes * zone_size;
5053         u64 type = ctl->type;
5054
5055         ctl->max_stripe_size = zone_size;
5056         if (type & BTRFS_BLOCK_GROUP_DATA) {
5057                 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5058                                                  zone_size);
5059         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5060                 ctl->max_chunk_size = ctl->max_stripe_size;
5061         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5062                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5063                 ctl->devs_max = min_t(int, ctl->devs_max,
5064                                       BTRFS_MAX_DEVS_SYS_CHUNK);
5065         } else {
5066                 BUG();
5067         }
5068
5069         /* We don't want a chunk larger than 10% of writable space */
5070         limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5071                                zone_size),
5072                     min_chunk_size);
5073         ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5074         ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5075 }
5076
5077 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5078                                  struct alloc_chunk_ctl *ctl)
5079 {
5080         int index = btrfs_bg_flags_to_raid_index(ctl->type);
5081
5082         ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5083         ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5084         ctl->devs_max = btrfs_raid_array[index].devs_max;
5085         if (!ctl->devs_max)
5086                 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5087         ctl->devs_min = btrfs_raid_array[index].devs_min;
5088         ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5089         ctl->ncopies = btrfs_raid_array[index].ncopies;
5090         ctl->nparity = btrfs_raid_array[index].nparity;
5091         ctl->ndevs = 0;
5092
5093         switch (fs_devices->chunk_alloc_policy) {
5094         case BTRFS_CHUNK_ALLOC_REGULAR:
5095                 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5096                 break;
5097         case BTRFS_CHUNK_ALLOC_ZONED:
5098                 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5099                 break;
5100         default:
5101                 BUG();
5102         }
5103 }
5104
5105 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5106                               struct alloc_chunk_ctl *ctl,
5107                               struct btrfs_device_info *devices_info)
5108 {
5109         struct btrfs_fs_info *info = fs_devices->fs_info;
5110         struct btrfs_device *device;
5111         u64 total_avail;
5112         u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5113         int ret;
5114         int ndevs = 0;
5115         u64 max_avail;
5116         u64 dev_offset;
5117
5118         /*
5119          * in the first pass through the devices list, we gather information
5120          * about the available holes on each device.
5121          */
5122         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5123                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5124                         WARN(1, KERN_ERR
5125                                "BTRFS: read-only device in alloc_list\n");
5126                         continue;
5127                 }
5128
5129                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5130                                         &device->dev_state) ||
5131                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5132                         continue;
5133
5134                 if (device->total_bytes > device->bytes_used)
5135                         total_avail = device->total_bytes - device->bytes_used;
5136                 else
5137                         total_avail = 0;
5138
5139                 /* If there is no space on this device, skip it. */
5140                 if (total_avail < ctl->dev_extent_min)
5141                         continue;
5142
5143                 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5144                                            &max_avail);
5145                 if (ret && ret != -ENOSPC)
5146                         return ret;
5147
5148                 if (ret == 0)
5149                         max_avail = dev_extent_want;
5150
5151                 if (max_avail < ctl->dev_extent_min) {
5152                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
5153                                 btrfs_debug(info,
5154                         "%s: devid %llu has no free space, have=%llu want=%llu",
5155                                             __func__, device->devid, max_avail,
5156                                             ctl->dev_extent_min);
5157                         continue;
5158                 }
5159
5160                 if (ndevs == fs_devices->rw_devices) {
5161                         WARN(1, "%s: found more than %llu devices\n",
5162                              __func__, fs_devices->rw_devices);
5163                         break;
5164                 }
5165                 devices_info[ndevs].dev_offset = dev_offset;
5166                 devices_info[ndevs].max_avail = max_avail;
5167                 devices_info[ndevs].total_avail = total_avail;
5168                 devices_info[ndevs].dev = device;
5169                 ++ndevs;
5170         }
5171         ctl->ndevs = ndevs;
5172
5173         /*
5174          * now sort the devices by hole size / available space
5175          */
5176         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5177              btrfs_cmp_device_info, NULL);
5178
5179         return 0;
5180 }
5181
5182 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5183                                       struct btrfs_device_info *devices_info)
5184 {
5185         /* Number of stripes that count for block group size */
5186         int data_stripes;
5187
5188         /*
5189          * The primary goal is to maximize the number of stripes, so use as
5190          * many devices as possible, even if the stripes are not maximum sized.
5191          *
5192          * The DUP profile stores more than one stripe per device, the
5193          * max_avail is the total size so we have to adjust.
5194          */
5195         ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5196                                    ctl->dev_stripes);
5197         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5198
5199         /* This will have to be fixed for RAID1 and RAID10 over more drives */
5200         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5201
5202         /*
5203          * Use the number of data stripes to figure out how big this chunk is
5204          * really going to be in terms of logical address space, and compare
5205          * that answer with the max chunk size. If it's higher, we try to
5206          * reduce stripe_size.
5207          */
5208         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5209                 /*
5210                  * Reduce stripe_size, round it up to a 16MB boundary again and
5211                  * then use it, unless it ends up being even bigger than the
5212                  * previous value we had already.
5213                  */
5214                 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5215                                                         data_stripes), SZ_16M),
5216                                        ctl->stripe_size);
5217         }
5218
5219         /* Align to BTRFS_STRIPE_LEN */
5220         ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5221         ctl->chunk_size = ctl->stripe_size * data_stripes;
5222
5223         return 0;
5224 }
5225
5226 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5227                                     struct btrfs_device_info *devices_info)
5228 {
5229         u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5230         /* Number of stripes that count for block group size */
5231         int data_stripes;
5232
5233         /*
5234          * It should hold because:
5235          *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5236          */
5237         ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5238
5239         ctl->stripe_size = zone_size;
5240         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5241         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5242
5243         /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5244         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5245                 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5246                                              ctl->stripe_size) + ctl->nparity,
5247                                      ctl->dev_stripes);
5248                 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5249                 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5250                 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5251         }
5252
5253         ctl->chunk_size = ctl->stripe_size * data_stripes;
5254
5255         return 0;
5256 }
5257
5258 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5259                               struct alloc_chunk_ctl *ctl,
5260                               struct btrfs_device_info *devices_info)
5261 {
5262         struct btrfs_fs_info *info = fs_devices->fs_info;
5263
5264         /*
5265          * Round down to number of usable stripes, devs_increment can be any
5266          * number so we can't use round_down() that requires power of 2, while
5267          * rounddown is safe.
5268          */
5269         ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5270
5271         if (ctl->ndevs < ctl->devs_min) {
5272                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5273                         btrfs_debug(info,
5274         "%s: not enough devices with free space: have=%d minimum required=%d",
5275                                     __func__, ctl->ndevs, ctl->devs_min);
5276                 }
5277                 return -ENOSPC;
5278         }
5279
5280         ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5281
5282         switch (fs_devices->chunk_alloc_policy) {
5283         case BTRFS_CHUNK_ALLOC_REGULAR:
5284                 return decide_stripe_size_regular(ctl, devices_info);
5285         case BTRFS_CHUNK_ALLOC_ZONED:
5286                 return decide_stripe_size_zoned(ctl, devices_info);
5287         default:
5288                 BUG();
5289         }
5290 }
5291
5292 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5293                         struct alloc_chunk_ctl *ctl,
5294                         struct btrfs_device_info *devices_info)
5295 {
5296         struct btrfs_fs_info *info = trans->fs_info;
5297         struct map_lookup *map = NULL;
5298         struct extent_map_tree *em_tree;
5299         struct btrfs_block_group *block_group;
5300         struct extent_map *em;
5301         u64 start = ctl->start;
5302         u64 type = ctl->type;
5303         int ret;
5304         int i;
5305         int j;
5306
5307         map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5308         if (!map)
5309                 return ERR_PTR(-ENOMEM);
5310         map->num_stripes = ctl->num_stripes;
5311
5312         for (i = 0; i < ctl->ndevs; ++i) {
5313                 for (j = 0; j < ctl->dev_stripes; ++j) {
5314                         int s = i * ctl->dev_stripes + j;
5315                         map->stripes[s].dev = devices_info[i].dev;
5316                         map->stripes[s].physical = devices_info[i].dev_offset +
5317                                                    j * ctl->stripe_size;
5318                 }
5319         }
5320         map->stripe_len = BTRFS_STRIPE_LEN;
5321         map->io_align = BTRFS_STRIPE_LEN;
5322         map->io_width = BTRFS_STRIPE_LEN;
5323         map->type = type;
5324         map->sub_stripes = ctl->sub_stripes;
5325
5326         trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5327
5328         em = alloc_extent_map();
5329         if (!em) {
5330                 kfree(map);
5331                 return ERR_PTR(-ENOMEM);
5332         }
5333         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5334         em->map_lookup = map;
5335         em->start = start;
5336         em->len = ctl->chunk_size;
5337         em->block_start = 0;
5338         em->block_len = em->len;
5339         em->orig_block_len = ctl->stripe_size;
5340
5341         em_tree = &info->mapping_tree;
5342         write_lock(&em_tree->lock);
5343         ret = add_extent_mapping(em_tree, em, 0);
5344         if (ret) {
5345                 write_unlock(&em_tree->lock);
5346                 free_extent_map(em);
5347                 return ERR_PTR(ret);
5348         }
5349         write_unlock(&em_tree->lock);
5350
5351         block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5352         if (IS_ERR(block_group))
5353                 goto error_del_extent;
5354
5355         for (i = 0; i < map->num_stripes; i++) {
5356                 struct btrfs_device *dev = map->stripes[i].dev;
5357
5358                 btrfs_device_set_bytes_used(dev,
5359                                             dev->bytes_used + ctl->stripe_size);
5360                 if (list_empty(&dev->post_commit_list))
5361                         list_add_tail(&dev->post_commit_list,
5362                                       &trans->transaction->dev_update_list);
5363         }
5364
5365         atomic64_sub(ctl->stripe_size * map->num_stripes,
5366                      &info->free_chunk_space);
5367
5368         free_extent_map(em);
5369         check_raid56_incompat_flag(info, type);
5370         check_raid1c34_incompat_flag(info, type);
5371
5372         return block_group;
5373
5374 error_del_extent:
5375         write_lock(&em_tree->lock);
5376         remove_extent_mapping(em_tree, em);
5377         write_unlock(&em_tree->lock);
5378
5379         /* One for our allocation */
5380         free_extent_map(em);
5381         /* One for the tree reference */
5382         free_extent_map(em);
5383
5384         return block_group;
5385 }
5386
5387 struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5388                                             u64 type)
5389 {
5390         struct btrfs_fs_info *info = trans->fs_info;
5391         struct btrfs_fs_devices *fs_devices = info->fs_devices;
5392         struct btrfs_device_info *devices_info = NULL;
5393         struct alloc_chunk_ctl ctl;
5394         struct btrfs_block_group *block_group;
5395         int ret;
5396
5397         lockdep_assert_held(&info->chunk_mutex);
5398
5399         if (!alloc_profile_is_valid(type, 0)) {
5400                 ASSERT(0);
5401                 return ERR_PTR(-EINVAL);
5402         }
5403
5404         if (list_empty(&fs_devices->alloc_list)) {
5405                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5406                         btrfs_debug(info, "%s: no writable device", __func__);
5407                 return ERR_PTR(-ENOSPC);
5408         }
5409
5410         if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5411                 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5412                 ASSERT(0);
5413                 return ERR_PTR(-EINVAL);
5414         }
5415
5416         ctl.start = find_next_chunk(info);
5417         ctl.type = type;
5418         init_alloc_chunk_ctl(fs_devices, &ctl);
5419
5420         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5421                                GFP_NOFS);
5422         if (!devices_info)
5423                 return ERR_PTR(-ENOMEM);
5424
5425         ret = gather_device_info(fs_devices, &ctl, devices_info);
5426         if (ret < 0) {
5427                 block_group = ERR_PTR(ret);
5428                 goto out;
5429         }
5430
5431         ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5432         if (ret < 0) {
5433                 block_group = ERR_PTR(ret);
5434                 goto out;
5435         }
5436
5437         block_group = create_chunk(trans, &ctl, devices_info);
5438
5439 out:
5440         kfree(devices_info);
5441         return block_group;
5442 }
5443
5444 /*
5445  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5446  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5447  * chunks.
5448  *
5449  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5450  * phases.
5451  */
5452 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5453                                      struct btrfs_block_group *bg)
5454 {
5455         struct btrfs_fs_info *fs_info = trans->fs_info;
5456         struct btrfs_root *extent_root = fs_info->extent_root;
5457         struct btrfs_root *chunk_root = fs_info->chunk_root;
5458         struct btrfs_key key;
5459         struct btrfs_chunk *chunk;
5460         struct btrfs_stripe *stripe;
5461         struct extent_map *em;
5462         struct map_lookup *map;
5463         size_t item_size;
5464         int i;
5465         int ret;
5466
5467         /*
5468          * We take the chunk_mutex for 2 reasons:
5469          *
5470          * 1) Updates and insertions in the chunk btree must be done while holding
5471          *    the chunk_mutex, as well as updating the system chunk array in the
5472          *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5473          *    details;
5474          *
5475          * 2) To prevent races with the final phase of a device replace operation
5476          *    that replaces the device object associated with the map's stripes,
5477          *    because the device object's id can change at any time during that
5478          *    final phase of the device replace operation
5479          *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5480          *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5481          *    which would cause a failure when updating the device item, which does
5482          *    not exists, or persisting a stripe of the chunk item with such ID.
5483          *    Here we can't use the device_list_mutex because our caller already
5484          *    has locked the chunk_mutex, and the final phase of device replace
5485          *    acquires both mutexes - first the device_list_mutex and then the
5486          *    chunk_mutex. Using any of those two mutexes protects us from a
5487          *    concurrent device replace.
5488          */
5489         lockdep_assert_held(&fs_info->chunk_mutex);
5490
5491         em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5492         if (IS_ERR(em)) {
5493                 ret = PTR_ERR(em);
5494                 btrfs_abort_transaction(trans, ret);
5495                 return ret;
5496         }
5497
5498         map = em->map_lookup;
5499         item_size = btrfs_chunk_item_size(map->num_stripes);
5500
5501         chunk = kzalloc(item_size, GFP_NOFS);
5502         if (!chunk) {
5503                 ret = -ENOMEM;
5504                 btrfs_abort_transaction(trans, ret);
5505                 goto out;
5506         }
5507
5508         for (i = 0; i < map->num_stripes; i++) {
5509                 struct btrfs_device *device = map->stripes[i].dev;
5510
5511                 ret = btrfs_update_device(trans, device);
5512                 if (ret)
5513                         goto out;
5514         }
5515
5516         stripe = &chunk->stripe;
5517         for (i = 0; i < map->num_stripes; i++) {
5518                 struct btrfs_device *device = map->stripes[i].dev;
5519                 const u64 dev_offset = map->stripes[i].physical;
5520
5521                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5522                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5523                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5524                 stripe++;
5525         }
5526
5527         btrfs_set_stack_chunk_length(chunk, bg->length);
5528         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5529         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5530         btrfs_set_stack_chunk_type(chunk, map->type);
5531         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5532         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5533         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5534         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5535         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5536
5537         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5538         key.type = BTRFS_CHUNK_ITEM_KEY;
5539         key.offset = bg->start;
5540
5541         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5542         if (ret)
5543                 goto out;
5544
5545         bg->chunk_item_inserted = 1;
5546
5547         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5548                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5549                 if (ret)
5550                         goto out;
5551         }
5552
5553 out:
5554         kfree(chunk);
5555         free_extent_map(em);
5556         return ret;
5557 }
5558
5559 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5560 {
5561         struct btrfs_fs_info *fs_info = trans->fs_info;
5562         u64 alloc_profile;
5563         struct btrfs_block_group *meta_bg;
5564         struct btrfs_block_group *sys_bg;
5565
5566         /*
5567          * When adding a new device for sprouting, the seed device is read-only
5568          * so we must first allocate a metadata and a system chunk. But before
5569          * adding the block group items to the extent, device and chunk btrees,
5570          * we must first:
5571          *
5572          * 1) Create both chunks without doing any changes to the btrees, as
5573          *    otherwise we would get -ENOSPC since the block groups from the
5574          *    seed device are read-only;
5575          *
5576          * 2) Add the device item for the new sprout device - finishing the setup
5577          *    of a new block group requires updating the device item in the chunk
5578          *    btree, so it must exist when we attempt to do it. The previous step
5579          *    ensures this does not fail with -ENOSPC.
5580          *
5581          * After that we can add the block group items to their btrees:
5582          * update existing device item in the chunk btree, add a new block group
5583          * item to the extent btree, add a new chunk item to the chunk btree and
5584          * finally add the new device extent items to the devices btree.
5585          */
5586
5587         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5588         meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5589         if (IS_ERR(meta_bg))
5590                 return PTR_ERR(meta_bg);
5591
5592         alloc_profile = btrfs_system_alloc_profile(fs_info);
5593         sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5594         if (IS_ERR(sys_bg))
5595                 return PTR_ERR(sys_bg);
5596
5597         return 0;
5598 }
5599
5600 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5601 {
5602         const int index = btrfs_bg_flags_to_raid_index(map->type);
5603
5604         return btrfs_raid_array[index].tolerated_failures;
5605 }
5606
5607 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5608 {
5609         struct extent_map *em;
5610         struct map_lookup *map;
5611         int readonly = 0;
5612         int miss_ndevs = 0;
5613         int i;
5614
5615         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5616         if (IS_ERR(em))
5617                 return 1;
5618
5619         map = em->map_lookup;
5620         for (i = 0; i < map->num_stripes; i++) {
5621                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5622                                         &map->stripes[i].dev->dev_state)) {
5623                         miss_ndevs++;
5624                         continue;
5625                 }
5626                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5627                                         &map->stripes[i].dev->dev_state)) {
5628                         readonly = 1;
5629                         goto end;
5630                 }
5631         }
5632
5633         /*
5634          * If the number of missing devices is larger than max errors,
5635          * we can not write the data into that chunk successfully, so
5636          * set it readonly.
5637          */
5638         if (miss_ndevs > btrfs_chunk_max_errors(map))
5639                 readonly = 1;
5640 end:
5641         free_extent_map(em);
5642         return readonly;
5643 }
5644
5645 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5646 {
5647         struct extent_map *em;
5648
5649         while (1) {
5650                 write_lock(&tree->lock);
5651                 em = lookup_extent_mapping(tree, 0, (u64)-1);
5652                 if (em)
5653                         remove_extent_mapping(tree, em);
5654                 write_unlock(&tree->lock);
5655                 if (!em)
5656                         break;
5657                 /* once for us */
5658                 free_extent_map(em);
5659                 /* once for the tree */
5660                 free_extent_map(em);
5661         }
5662 }
5663
5664 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5665 {
5666         struct extent_map *em;
5667         struct map_lookup *map;
5668         int ret;
5669
5670         em = btrfs_get_chunk_map(fs_info, logical, len);
5671         if (IS_ERR(em))
5672                 /*
5673                  * We could return errors for these cases, but that could get
5674                  * ugly and we'd probably do the same thing which is just not do
5675                  * anything else and exit, so return 1 so the callers don't try
5676                  * to use other copies.
5677                  */
5678                 return 1;
5679
5680         map = em->map_lookup;
5681         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5682                 ret = map->num_stripes;
5683         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5684                 ret = map->sub_stripes;
5685         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5686                 ret = 2;
5687         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5688                 /*
5689                  * There could be two corrupted data stripes, we need
5690                  * to loop retry in order to rebuild the correct data.
5691                  *
5692                  * Fail a stripe at a time on every retry except the
5693                  * stripe under reconstruction.
5694                  */
5695                 ret = map->num_stripes;
5696         else
5697                 ret = 1;
5698         free_extent_map(em);
5699
5700         down_read(&fs_info->dev_replace.rwsem);
5701         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5702             fs_info->dev_replace.tgtdev)
5703                 ret++;
5704         up_read(&fs_info->dev_replace.rwsem);
5705
5706         return ret;
5707 }
5708
5709 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5710                                     u64 logical)
5711 {
5712         struct extent_map *em;
5713         struct map_lookup *map;
5714         unsigned long len = fs_info->sectorsize;
5715
5716         em = btrfs_get_chunk_map(fs_info, logical, len);
5717
5718         if (!WARN_ON(IS_ERR(em))) {
5719                 map = em->map_lookup;
5720                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5721                         len = map->stripe_len * nr_data_stripes(map);
5722                 free_extent_map(em);
5723         }
5724         return len;
5725 }
5726
5727 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5728 {
5729         struct extent_map *em;
5730         struct map_lookup *map;
5731         int ret = 0;
5732
5733         em = btrfs_get_chunk_map(fs_info, logical, len);
5734
5735         if(!WARN_ON(IS_ERR(em))) {
5736                 map = em->map_lookup;
5737                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5738                         ret = 1;
5739                 free_extent_map(em);
5740         }
5741         return ret;
5742 }
5743
5744 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5745                             struct map_lookup *map, int first,
5746                             int dev_replace_is_ongoing)
5747 {
5748         int i;
5749         int num_stripes;
5750         int preferred_mirror;
5751         int tolerance;
5752         struct btrfs_device *srcdev;
5753
5754         ASSERT((map->type &
5755                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5756
5757         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5758                 num_stripes = map->sub_stripes;
5759         else
5760                 num_stripes = map->num_stripes;
5761
5762         switch (fs_info->fs_devices->read_policy) {
5763         default:
5764                 /* Shouldn't happen, just warn and use pid instead of failing */
5765                 btrfs_warn_rl(fs_info,
5766                               "unknown read_policy type %u, reset to pid",
5767                               fs_info->fs_devices->read_policy);
5768                 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5769                 fallthrough;
5770         case BTRFS_READ_POLICY_PID:
5771                 preferred_mirror = first + (current->pid % num_stripes);
5772                 break;
5773         }
5774
5775         if (dev_replace_is_ongoing &&
5776             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5777              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5778                 srcdev = fs_info->dev_replace.srcdev;
5779         else
5780                 srcdev = NULL;
5781
5782         /*
5783          * try to avoid the drive that is the source drive for a
5784          * dev-replace procedure, only choose it if no other non-missing
5785          * mirror is available
5786          */
5787         for (tolerance = 0; tolerance < 2; tolerance++) {
5788                 if (map->stripes[preferred_mirror].dev->bdev &&
5789                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5790                         return preferred_mirror;
5791                 for (i = first; i < first + num_stripes; i++) {
5792                         if (map->stripes[i].dev->bdev &&
5793                             (tolerance || map->stripes[i].dev != srcdev))
5794                                 return i;
5795                 }
5796         }
5797
5798         /* we couldn't find one that doesn't fail.  Just return something
5799          * and the io error handling code will clean up eventually
5800          */
5801         return preferred_mirror;
5802 }
5803
5804 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5805 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5806 {
5807         int i;
5808         int again = 1;
5809
5810         while (again) {
5811                 again = 0;
5812                 for (i = 0; i < num_stripes - 1; i++) {
5813                         /* Swap if parity is on a smaller index */
5814                         if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5815                                 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5816                                 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5817                                 again = 1;
5818                         }
5819                 }
5820         }
5821 }
5822
5823 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5824 {
5825         struct btrfs_bio *bbio = kzalloc(
5826                  /* the size of the btrfs_bio */
5827                 sizeof(struct btrfs_bio) +
5828                 /* plus the variable array for the stripes */
5829                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5830                 /* plus the variable array for the tgt dev */
5831                 sizeof(int) * (real_stripes) +
5832                 /*
5833                  * plus the raid_map, which includes both the tgt dev
5834                  * and the stripes
5835                  */
5836                 sizeof(u64) * (total_stripes),
5837                 GFP_NOFS|__GFP_NOFAIL);
5838
5839         atomic_set(&bbio->error, 0);
5840         refcount_set(&bbio->refs, 1);
5841
5842         bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5843         bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5844
5845         return bbio;
5846 }
5847
5848 void btrfs_get_bbio(struct btrfs_bio *bbio)
5849 {
5850         WARN_ON(!refcount_read(&bbio->refs));
5851         refcount_inc(&bbio->refs);
5852 }
5853
5854 void btrfs_put_bbio(struct btrfs_bio *bbio)
5855 {
5856         if (!bbio)
5857                 return;
5858         if (refcount_dec_and_test(&bbio->refs))
5859                 kfree(bbio);
5860 }
5861
5862 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5863 /*
5864  * Please note that, discard won't be sent to target device of device
5865  * replace.
5866  */
5867 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5868                                          u64 logical, u64 *length_ret,
5869                                          struct btrfs_bio **bbio_ret)
5870 {
5871         struct extent_map *em;
5872         struct map_lookup *map;
5873         struct btrfs_bio *bbio;
5874         u64 length = *length_ret;
5875         u64 offset;
5876         u64 stripe_nr;
5877         u64 stripe_nr_end;
5878         u64 stripe_end_offset;
5879         u64 stripe_cnt;
5880         u64 stripe_len;
5881         u64 stripe_offset;
5882         u64 num_stripes;
5883         u32 stripe_index;
5884         u32 factor = 0;
5885         u32 sub_stripes = 0;
5886         u64 stripes_per_dev = 0;
5887         u32 remaining_stripes = 0;
5888         u32 last_stripe = 0;
5889         int ret = 0;
5890         int i;
5891
5892         /* discard always return a bbio */
5893         ASSERT(bbio_ret);
5894
5895         em = btrfs_get_chunk_map(fs_info, logical, length);
5896         if (IS_ERR(em))
5897                 return PTR_ERR(em);
5898
5899         map = em->map_lookup;
5900         /* we don't discard raid56 yet */
5901         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5902                 ret = -EOPNOTSUPP;
5903                 goto out;
5904         }
5905
5906         offset = logical - em->start;
5907         length = min_t(u64, em->start + em->len - logical, length);
5908         *length_ret = length;
5909
5910         stripe_len = map->stripe_len;
5911         /*
5912          * stripe_nr counts the total number of stripes we have to stride
5913          * to get to this block
5914          */
5915         stripe_nr = div64_u64(offset, stripe_len);
5916
5917         /* stripe_offset is the offset of this block in its stripe */
5918         stripe_offset = offset - stripe_nr * stripe_len;
5919
5920         stripe_nr_end = round_up(offset + length, map->stripe_len);
5921         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5922         stripe_cnt = stripe_nr_end - stripe_nr;
5923         stripe_end_offset = stripe_nr_end * map->stripe_len -
5924                             (offset + length);
5925         /*
5926          * after this, stripe_nr is the number of stripes on this
5927          * device we have to walk to find the data, and stripe_index is
5928          * the number of our device in the stripe array
5929          */
5930         num_stripes = 1;
5931         stripe_index = 0;
5932         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5933                          BTRFS_BLOCK_GROUP_RAID10)) {
5934                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5935                         sub_stripes = 1;
5936                 else
5937                         sub_stripes = map->sub_stripes;
5938
5939                 factor = map->num_stripes / sub_stripes;
5940                 num_stripes = min_t(u64, map->num_stripes,
5941                                     sub_stripes * stripe_cnt);
5942                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5943                 stripe_index *= sub_stripes;
5944                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5945                                               &remaining_stripes);
5946                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5947                 last_stripe *= sub_stripes;
5948         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5949                                 BTRFS_BLOCK_GROUP_DUP)) {
5950                 num_stripes = map->num_stripes;
5951         } else {
5952                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5953                                         &stripe_index);
5954         }
5955
5956         bbio = alloc_btrfs_bio(num_stripes, 0);
5957         if (!bbio) {
5958                 ret = -ENOMEM;
5959                 goto out;
5960         }
5961
5962         for (i = 0; i < num_stripes; i++) {
5963                 bbio->stripes[i].physical =
5964                         map->stripes[stripe_index].physical +
5965                         stripe_offset + stripe_nr * map->stripe_len;
5966                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5967
5968                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5969                                  BTRFS_BLOCK_GROUP_RAID10)) {
5970                         bbio->stripes[i].length = stripes_per_dev *
5971                                 map->stripe_len;
5972
5973                         if (i / sub_stripes < remaining_stripes)
5974                                 bbio->stripes[i].length +=
5975                                         map->stripe_len;
5976
5977                         /*
5978                          * Special for the first stripe and
5979                          * the last stripe:
5980                          *
5981                          * |-------|...|-------|
5982                          *     |----------|
5983                          *    off     end_off
5984                          */
5985                         if (i < sub_stripes)
5986                                 bbio->stripes[i].length -=
5987                                         stripe_offset;
5988
5989                         if (stripe_index >= last_stripe &&
5990                             stripe_index <= (last_stripe +
5991                                              sub_stripes - 1))
5992                                 bbio->stripes[i].length -=
5993                                         stripe_end_offset;
5994
5995                         if (i == sub_stripes - 1)
5996                                 stripe_offset = 0;
5997                 } else {
5998                         bbio->stripes[i].length = length;
5999                 }
6000
6001                 stripe_index++;
6002                 if (stripe_index == map->num_stripes) {
6003                         stripe_index = 0;
6004                         stripe_nr++;
6005                 }
6006         }
6007
6008         *bbio_ret = bbio;
6009         bbio->map_type = map->type;
6010         bbio->num_stripes = num_stripes;
6011 out:
6012         free_extent_map(em);
6013         return ret;
6014 }
6015
6016 /*
6017  * In dev-replace case, for repair case (that's the only case where the mirror
6018  * is selected explicitly when calling btrfs_map_block), blocks left of the
6019  * left cursor can also be read from the target drive.
6020  *
6021  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6022  * array of stripes.
6023  * For READ, it also needs to be supported using the same mirror number.
6024  *
6025  * If the requested block is not left of the left cursor, EIO is returned. This
6026  * can happen because btrfs_num_copies() returns one more in the dev-replace
6027  * case.
6028  */
6029 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6030                                          u64 logical, u64 length,
6031                                          u64 srcdev_devid, int *mirror_num,
6032                                          u64 *physical)
6033 {
6034         struct btrfs_bio *bbio = NULL;
6035         int num_stripes;
6036         int index_srcdev = 0;
6037         int found = 0;
6038         u64 physical_of_found = 0;
6039         int i;
6040         int ret = 0;
6041
6042         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6043                                 logical, &length, &bbio, 0, 0);
6044         if (ret) {
6045                 ASSERT(bbio == NULL);
6046                 return ret;
6047         }
6048
6049         num_stripes = bbio->num_stripes;
6050         if (*mirror_num > num_stripes) {
6051                 /*
6052                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6053                  * that means that the requested area is not left of the left
6054                  * cursor
6055                  */
6056                 btrfs_put_bbio(bbio);
6057                 return -EIO;
6058         }
6059
6060         /*
6061          * process the rest of the function using the mirror_num of the source
6062          * drive. Therefore look it up first.  At the end, patch the device
6063          * pointer to the one of the target drive.
6064          */
6065         for (i = 0; i < num_stripes; i++) {
6066                 if (bbio->stripes[i].dev->devid != srcdev_devid)
6067                         continue;
6068
6069                 /*
6070                  * In case of DUP, in order to keep it simple, only add the
6071                  * mirror with the lowest physical address
6072                  */
6073                 if (found &&
6074                     physical_of_found <= bbio->stripes[i].physical)
6075                         continue;
6076
6077                 index_srcdev = i;
6078                 found = 1;
6079                 physical_of_found = bbio->stripes[i].physical;
6080         }
6081
6082         btrfs_put_bbio(bbio);
6083
6084         ASSERT(found);
6085         if (!found)
6086                 return -EIO;
6087
6088         *mirror_num = index_srcdev + 1;
6089         *physical = physical_of_found;
6090         return ret;
6091 }
6092
6093 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6094 {
6095         struct btrfs_block_group *cache;
6096         bool ret;
6097
6098         /* Non zoned filesystem does not use "to_copy" flag */
6099         if (!btrfs_is_zoned(fs_info))
6100                 return false;
6101
6102         cache = btrfs_lookup_block_group(fs_info, logical);
6103
6104         spin_lock(&cache->lock);
6105         ret = cache->to_copy;
6106         spin_unlock(&cache->lock);
6107
6108         btrfs_put_block_group(cache);
6109         return ret;
6110 }
6111
6112 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6113                                       struct btrfs_bio **bbio_ret,
6114                                       struct btrfs_dev_replace *dev_replace,
6115                                       u64 logical,
6116                                       int *num_stripes_ret, int *max_errors_ret)
6117 {
6118         struct btrfs_bio *bbio = *bbio_ret;
6119         u64 srcdev_devid = dev_replace->srcdev->devid;
6120         int tgtdev_indexes = 0;
6121         int num_stripes = *num_stripes_ret;
6122         int max_errors = *max_errors_ret;
6123         int i;
6124
6125         if (op == BTRFS_MAP_WRITE) {
6126                 int index_where_to_add;
6127
6128                 /*
6129                  * A block group which have "to_copy" set will eventually
6130                  * copied by dev-replace process. We can avoid cloning IO here.
6131                  */
6132                 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6133                         return;
6134
6135                 /*
6136                  * duplicate the write operations while the dev replace
6137                  * procedure is running. Since the copying of the old disk to
6138                  * the new disk takes place at run time while the filesystem is
6139                  * mounted writable, the regular write operations to the old
6140                  * disk have to be duplicated to go to the new disk as well.
6141                  *
6142                  * Note that device->missing is handled by the caller, and that
6143                  * the write to the old disk is already set up in the stripes
6144                  * array.
6145                  */
6146                 index_where_to_add = num_stripes;
6147                 for (i = 0; i < num_stripes; i++) {
6148                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
6149                                 /* write to new disk, too */
6150                                 struct btrfs_bio_stripe *new =
6151                                         bbio->stripes + index_where_to_add;
6152                                 struct btrfs_bio_stripe *old =
6153                                         bbio->stripes + i;
6154
6155                                 new->physical = old->physical;
6156                                 new->length = old->length;
6157                                 new->dev = dev_replace->tgtdev;
6158                                 bbio->tgtdev_map[i] = index_where_to_add;
6159                                 index_where_to_add++;
6160                                 max_errors++;
6161                                 tgtdev_indexes++;
6162                         }
6163                 }
6164                 num_stripes = index_where_to_add;
6165         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6166                 int index_srcdev = 0;
6167                 int found = 0;
6168                 u64 physical_of_found = 0;
6169
6170                 /*
6171                  * During the dev-replace procedure, the target drive can also
6172                  * be used to read data in case it is needed to repair a corrupt
6173                  * block elsewhere. This is possible if the requested area is
6174                  * left of the left cursor. In this area, the target drive is a
6175                  * full copy of the source drive.
6176                  */
6177                 for (i = 0; i < num_stripes; i++) {
6178                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
6179                                 /*
6180                                  * In case of DUP, in order to keep it simple,
6181                                  * only add the mirror with the lowest physical
6182                                  * address
6183                                  */
6184                                 if (found &&
6185                                     physical_of_found <=
6186                                      bbio->stripes[i].physical)
6187                                         continue;
6188                                 index_srcdev = i;
6189                                 found = 1;
6190                                 physical_of_found = bbio->stripes[i].physical;
6191                         }
6192                 }
6193                 if (found) {
6194                         struct btrfs_bio_stripe *tgtdev_stripe =
6195                                 bbio->stripes + num_stripes;
6196
6197                         tgtdev_stripe->physical = physical_of_found;
6198                         tgtdev_stripe->length =
6199                                 bbio->stripes[index_srcdev].length;
6200                         tgtdev_stripe->dev = dev_replace->tgtdev;
6201                         bbio->tgtdev_map[index_srcdev] = num_stripes;
6202
6203                         tgtdev_indexes++;
6204                         num_stripes++;
6205                 }
6206         }
6207
6208         *num_stripes_ret = num_stripes;
6209         *max_errors_ret = max_errors;
6210         bbio->num_tgtdevs = tgtdev_indexes;
6211         *bbio_ret = bbio;
6212 }
6213
6214 static bool need_full_stripe(enum btrfs_map_op op)
6215 {
6216         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6217 }
6218
6219 /*
6220  * Calculate the geometry of a particular (address, len) tuple. This
6221  * information is used to calculate how big a particular bio can get before it
6222  * straddles a stripe.
6223  *
6224  * @fs_info: the filesystem
6225  * @em:      mapping containing the logical extent
6226  * @op:      type of operation - write or read
6227  * @logical: address that we want to figure out the geometry of
6228  * @io_geom: pointer used to return values
6229  *
6230  * Returns < 0 in case a chunk for the given logical address cannot be found,
6231  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6232  */
6233 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6234                           enum btrfs_map_op op, u64 logical,
6235                           struct btrfs_io_geometry *io_geom)
6236 {
6237         struct map_lookup *map;
6238         u64 len;
6239         u64 offset;
6240         u64 stripe_offset;
6241         u64 stripe_nr;
6242         u64 stripe_len;
6243         u64 raid56_full_stripe_start = (u64)-1;
6244         int data_stripes;
6245
6246         ASSERT(op != BTRFS_MAP_DISCARD);
6247
6248         map = em->map_lookup;
6249         /* Offset of this logical address in the chunk */
6250         offset = logical - em->start;
6251         /* Len of a stripe in a chunk */
6252         stripe_len = map->stripe_len;
6253         /* Stripe where this block falls in */
6254         stripe_nr = div64_u64(offset, stripe_len);
6255         /* Offset of stripe in the chunk */
6256         stripe_offset = stripe_nr * stripe_len;
6257         if (offset < stripe_offset) {
6258                 btrfs_crit(fs_info,
6259 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6260                         stripe_offset, offset, em->start, logical, stripe_len);
6261                 return -EINVAL;
6262         }
6263
6264         /* stripe_offset is the offset of this block in its stripe */
6265         stripe_offset = offset - stripe_offset;
6266         data_stripes = nr_data_stripes(map);
6267
6268         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6269                 u64 max_len = stripe_len - stripe_offset;
6270
6271                 /*
6272                  * In case of raid56, we need to know the stripe aligned start
6273                  */
6274                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6275                         unsigned long full_stripe_len = stripe_len * data_stripes;
6276                         raid56_full_stripe_start = offset;
6277
6278                         /*
6279                          * Allow a write of a full stripe, but make sure we
6280                          * don't allow straddling of stripes
6281                          */
6282                         raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6283                                         full_stripe_len);
6284                         raid56_full_stripe_start *= full_stripe_len;
6285
6286                         /*
6287                          * For writes to RAID[56], allow a full stripeset across
6288                          * all disks. For other RAID types and for RAID[56]
6289                          * reads, just allow a single stripe (on a single disk).
6290                          */
6291                         if (op == BTRFS_MAP_WRITE) {
6292                                 max_len = stripe_len * data_stripes -
6293                                           (offset - raid56_full_stripe_start);
6294                         }
6295                 }
6296                 len = min_t(u64, em->len - offset, max_len);
6297         } else {
6298                 len = em->len - offset;
6299         }
6300
6301         io_geom->len = len;
6302         io_geom->offset = offset;
6303         io_geom->stripe_len = stripe_len;
6304         io_geom->stripe_nr = stripe_nr;
6305         io_geom->stripe_offset = stripe_offset;
6306         io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6307
6308         return 0;
6309 }
6310
6311 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6312                              enum btrfs_map_op op,
6313                              u64 logical, u64 *length,
6314                              struct btrfs_bio **bbio_ret,
6315                              int mirror_num, int need_raid_map)
6316 {
6317         struct extent_map *em;
6318         struct map_lookup *map;
6319         u64 stripe_offset;
6320         u64 stripe_nr;
6321         u64 stripe_len;
6322         u32 stripe_index;
6323         int data_stripes;
6324         int i;
6325         int ret = 0;
6326         int num_stripes;
6327         int max_errors = 0;
6328         int tgtdev_indexes = 0;
6329         struct btrfs_bio *bbio = NULL;
6330         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6331         int dev_replace_is_ongoing = 0;
6332         int num_alloc_stripes;
6333         int patch_the_first_stripe_for_dev_replace = 0;
6334         u64 physical_to_patch_in_first_stripe = 0;
6335         u64 raid56_full_stripe_start = (u64)-1;
6336         struct btrfs_io_geometry geom;
6337
6338         ASSERT(bbio_ret);
6339         ASSERT(op != BTRFS_MAP_DISCARD);
6340
6341         em = btrfs_get_chunk_map(fs_info, logical, *length);
6342         ASSERT(!IS_ERR(em));
6343
6344         ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6345         if (ret < 0)
6346                 return ret;
6347
6348         map = em->map_lookup;
6349
6350         *length = geom.len;
6351         stripe_len = geom.stripe_len;
6352         stripe_nr = geom.stripe_nr;
6353         stripe_offset = geom.stripe_offset;
6354         raid56_full_stripe_start = geom.raid56_stripe_offset;
6355         data_stripes = nr_data_stripes(map);
6356
6357         down_read(&dev_replace->rwsem);
6358         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6359         /*
6360          * Hold the semaphore for read during the whole operation, write is
6361          * requested at commit time but must wait.
6362          */
6363         if (!dev_replace_is_ongoing)
6364                 up_read(&dev_replace->rwsem);
6365
6366         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6367             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6368                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6369                                                     dev_replace->srcdev->devid,
6370                                                     &mirror_num,
6371                                             &physical_to_patch_in_first_stripe);
6372                 if (ret)
6373                         goto out;
6374                 else
6375                         patch_the_first_stripe_for_dev_replace = 1;
6376         } else if (mirror_num > map->num_stripes) {
6377                 mirror_num = 0;
6378         }
6379
6380         num_stripes = 1;
6381         stripe_index = 0;
6382         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6383                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6384                                 &stripe_index);
6385                 if (!need_full_stripe(op))
6386                         mirror_num = 1;
6387         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6388                 if (need_full_stripe(op))
6389                         num_stripes = map->num_stripes;
6390                 else if (mirror_num)
6391                         stripe_index = mirror_num - 1;
6392                 else {
6393                         stripe_index = find_live_mirror(fs_info, map, 0,
6394                                             dev_replace_is_ongoing);
6395                         mirror_num = stripe_index + 1;
6396                 }
6397
6398         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6399                 if (need_full_stripe(op)) {
6400                         num_stripes = map->num_stripes;
6401                 } else if (mirror_num) {
6402                         stripe_index = mirror_num - 1;
6403                 } else {
6404                         mirror_num = 1;
6405                 }
6406
6407         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6408                 u32 factor = map->num_stripes / map->sub_stripes;
6409
6410                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6411                 stripe_index *= map->sub_stripes;
6412
6413                 if (need_full_stripe(op))
6414                         num_stripes = map->sub_stripes;
6415                 else if (mirror_num)
6416                         stripe_index += mirror_num - 1;
6417                 else {
6418                         int old_stripe_index = stripe_index;
6419                         stripe_index = find_live_mirror(fs_info, map,
6420                                               stripe_index,
6421                                               dev_replace_is_ongoing);
6422                         mirror_num = stripe_index - old_stripe_index + 1;
6423                 }
6424
6425         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6426                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6427                         /* push stripe_nr back to the start of the full stripe */
6428                         stripe_nr = div64_u64(raid56_full_stripe_start,
6429                                         stripe_len * data_stripes);
6430
6431                         /* RAID[56] write or recovery. Return all stripes */
6432                         num_stripes = map->num_stripes;
6433                         max_errors = nr_parity_stripes(map);
6434
6435                         *length = map->stripe_len;
6436                         stripe_index = 0;
6437                         stripe_offset = 0;
6438                 } else {
6439                         /*
6440                          * Mirror #0 or #1 means the original data block.
6441                          * Mirror #2 is RAID5 parity block.
6442                          * Mirror #3 is RAID6 Q block.
6443                          */
6444                         stripe_nr = div_u64_rem(stripe_nr,
6445                                         data_stripes, &stripe_index);
6446                         if (mirror_num > 1)
6447                                 stripe_index = data_stripes + mirror_num - 2;
6448
6449                         /* We distribute the parity blocks across stripes */
6450                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6451                                         &stripe_index);
6452                         if (!need_full_stripe(op) && mirror_num <= 1)
6453                                 mirror_num = 1;
6454                 }
6455         } else {
6456                 /*
6457                  * after this, stripe_nr is the number of stripes on this
6458                  * device we have to walk to find the data, and stripe_index is
6459                  * the number of our device in the stripe array
6460                  */
6461                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6462                                 &stripe_index);
6463                 mirror_num = stripe_index + 1;
6464         }
6465         if (stripe_index >= map->num_stripes) {
6466                 btrfs_crit(fs_info,
6467                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6468                            stripe_index, map->num_stripes);
6469                 ret = -EINVAL;
6470                 goto out;
6471         }
6472
6473         num_alloc_stripes = num_stripes;
6474         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6475                 if (op == BTRFS_MAP_WRITE)
6476                         num_alloc_stripes <<= 1;
6477                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6478                         num_alloc_stripes++;
6479                 tgtdev_indexes = num_stripes;
6480         }
6481
6482         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6483         if (!bbio) {
6484                 ret = -ENOMEM;
6485                 goto out;
6486         }
6487
6488         for (i = 0; i < num_stripes; i++) {
6489                 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6490                         stripe_offset + stripe_nr * map->stripe_len;
6491                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6492                 stripe_index++;
6493         }
6494
6495         /* build raid_map */
6496         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6497             (need_full_stripe(op) || mirror_num > 1)) {
6498                 u64 tmp;
6499                 unsigned rot;
6500
6501                 /* Work out the disk rotation on this stripe-set */
6502                 div_u64_rem(stripe_nr, num_stripes, &rot);
6503
6504                 /* Fill in the logical address of each stripe */
6505                 tmp = stripe_nr * data_stripes;
6506                 for (i = 0; i < data_stripes; i++)
6507                         bbio->raid_map[(i+rot) % num_stripes] =
6508                                 em->start + (tmp + i) * map->stripe_len;
6509
6510                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6511                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6512                         bbio->raid_map[(i+rot+1) % num_stripes] =
6513                                 RAID6_Q_STRIPE;
6514
6515                 sort_parity_stripes(bbio, num_stripes);
6516         }
6517
6518         if (need_full_stripe(op))
6519                 max_errors = btrfs_chunk_max_errors(map);
6520
6521         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6522             need_full_stripe(op)) {
6523                 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6524                                           &num_stripes, &max_errors);
6525         }
6526
6527         *bbio_ret = bbio;
6528         bbio->map_type = map->type;
6529         bbio->num_stripes = num_stripes;
6530         bbio->max_errors = max_errors;
6531         bbio->mirror_num = mirror_num;
6532
6533         /*
6534          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6535          * mirror_num == num_stripes + 1 && dev_replace target drive is
6536          * available as a mirror
6537          */
6538         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6539                 WARN_ON(num_stripes > 1);
6540                 bbio->stripes[0].dev = dev_replace->tgtdev;
6541                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6542                 bbio->mirror_num = map->num_stripes + 1;
6543         }
6544 out:
6545         if (dev_replace_is_ongoing) {
6546                 lockdep_assert_held(&dev_replace->rwsem);
6547                 /* Unlock and let waiting writers proceed */
6548                 up_read(&dev_replace->rwsem);
6549         }
6550         free_extent_map(em);
6551         return ret;
6552 }
6553
6554 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6555                       u64 logical, u64 *length,
6556                       struct btrfs_bio **bbio_ret, int mirror_num)
6557 {
6558         if (op == BTRFS_MAP_DISCARD)
6559                 return __btrfs_map_block_for_discard(fs_info, logical,
6560                                                      length, bbio_ret);
6561
6562         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6563                                  mirror_num, 0);
6564 }
6565
6566 /* For Scrub/replace */
6567 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6568                      u64 logical, u64 *length,
6569                      struct btrfs_bio **bbio_ret)
6570 {
6571         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6572 }
6573
6574 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6575 {
6576         bio->bi_private = bbio->private;
6577         bio->bi_end_io = bbio->end_io;
6578         bio_endio(bio);
6579
6580         btrfs_put_bbio(bbio);
6581 }
6582
6583 static void btrfs_end_bio(struct bio *bio)
6584 {
6585         struct btrfs_bio *bbio = bio->bi_private;
6586         int is_orig_bio = 0;
6587
6588         if (bio->bi_status) {
6589                 atomic_inc(&bbio->error);
6590                 if (bio->bi_status == BLK_STS_IOERR ||
6591                     bio->bi_status == BLK_STS_TARGET) {
6592                         struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6593
6594                         ASSERT(dev->bdev);
6595                         if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6596                                 btrfs_dev_stat_inc_and_print(dev,
6597                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6598                         else if (!(bio->bi_opf & REQ_RAHEAD))
6599                                 btrfs_dev_stat_inc_and_print(dev,
6600                                                 BTRFS_DEV_STAT_READ_ERRS);
6601                         if (bio->bi_opf & REQ_PREFLUSH)
6602                                 btrfs_dev_stat_inc_and_print(dev,
6603                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6604                 }
6605         }
6606
6607         if (bio == bbio->orig_bio)
6608                 is_orig_bio = 1;
6609
6610         btrfs_bio_counter_dec(bbio->fs_info);
6611
6612         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6613                 if (!is_orig_bio) {
6614                         bio_put(bio);
6615                         bio = bbio->orig_bio;
6616                 }
6617
6618                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6619                 /* only send an error to the higher layers if it is
6620                  * beyond the tolerance of the btrfs bio
6621                  */
6622                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6623                         bio->bi_status = BLK_STS_IOERR;
6624                 } else {
6625                         /*
6626                          * this bio is actually up to date, we didn't
6627                          * go over the max number of errors
6628                          */
6629                         bio->bi_status = BLK_STS_OK;
6630                 }
6631
6632                 btrfs_end_bbio(bbio, bio);
6633         } else if (!is_orig_bio) {
6634                 bio_put(bio);
6635         }
6636 }
6637
6638 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6639                               u64 physical, struct btrfs_device *dev)
6640 {
6641         struct btrfs_fs_info *fs_info = bbio->fs_info;
6642
6643         bio->bi_private = bbio;
6644         btrfs_io_bio(bio)->device = dev;
6645         bio->bi_end_io = btrfs_end_bio;
6646         bio->bi_iter.bi_sector = physical >> 9;
6647         /*
6648          * For zone append writing, bi_sector must point the beginning of the
6649          * zone
6650          */
6651         if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6652                 if (btrfs_dev_is_sequential(dev, physical)) {
6653                         u64 zone_start = round_down(physical, fs_info->zone_size);
6654
6655                         bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6656                 } else {
6657                         bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6658                         bio->bi_opf |= REQ_OP_WRITE;
6659                 }
6660         }
6661         btrfs_debug_in_rcu(fs_info,
6662         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6663                 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6664                 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6665                 dev->devid, bio->bi_iter.bi_size);
6666         bio_set_dev(bio, dev->bdev);
6667
6668         btrfs_bio_counter_inc_noblocked(fs_info);
6669
6670         btrfsic_submit_bio(bio);
6671 }
6672
6673 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6674 {
6675         atomic_inc(&bbio->error);
6676         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6677                 /* Should be the original bio. */
6678                 WARN_ON(bio != bbio->orig_bio);
6679
6680                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6681                 bio->bi_iter.bi_sector = logical >> 9;
6682                 if (atomic_read(&bbio->error) > bbio->max_errors)
6683                         bio->bi_status = BLK_STS_IOERR;
6684                 else
6685                         bio->bi_status = BLK_STS_OK;
6686                 btrfs_end_bbio(bbio, bio);
6687         }
6688 }
6689
6690 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6691                            int mirror_num)
6692 {
6693         struct btrfs_device *dev;
6694         struct bio *first_bio = bio;
6695         u64 logical = bio->bi_iter.bi_sector << 9;
6696         u64 length = 0;
6697         u64 map_length;
6698         int ret;
6699         int dev_nr;
6700         int total_devs;
6701         struct btrfs_bio *bbio = NULL;
6702
6703         length = bio->bi_iter.bi_size;
6704         map_length = length;
6705
6706         btrfs_bio_counter_inc_blocked(fs_info);
6707         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6708                                 &map_length, &bbio, mirror_num, 1);
6709         if (ret) {
6710                 btrfs_bio_counter_dec(fs_info);
6711                 return errno_to_blk_status(ret);
6712         }
6713
6714         total_devs = bbio->num_stripes;
6715         bbio->orig_bio = first_bio;
6716         bbio->private = first_bio->bi_private;
6717         bbio->end_io = first_bio->bi_end_io;
6718         bbio->fs_info = fs_info;
6719         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6720
6721         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6722             ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6723                 /* In this case, map_length has been set to the length of
6724                    a single stripe; not the whole write */
6725                 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6726                         ret = raid56_parity_write(fs_info, bio, bbio,
6727                                                   map_length);
6728                 } else {
6729                         ret = raid56_parity_recover(fs_info, bio, bbio,
6730                                                     map_length, mirror_num, 1);
6731                 }
6732
6733                 btrfs_bio_counter_dec(fs_info);
6734                 return errno_to_blk_status(ret);
6735         }
6736
6737         if (map_length < length) {
6738                 btrfs_crit(fs_info,
6739                            "mapping failed logical %llu bio len %llu len %llu",
6740                            logical, length, map_length);
6741                 BUG();
6742         }
6743
6744         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6745                 dev = bbio->stripes[dev_nr].dev;
6746                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6747                                                    &dev->dev_state) ||
6748                     (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6749                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6750                         bbio_error(bbio, first_bio, logical);
6751                         continue;
6752                 }
6753
6754                 if (dev_nr < total_devs - 1)
6755                         bio = btrfs_bio_clone(first_bio);
6756                 else
6757                         bio = first_bio;
6758
6759                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6760         }
6761         btrfs_bio_counter_dec(fs_info);
6762         return BLK_STS_OK;
6763 }
6764
6765 /*
6766  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6767  * return NULL.
6768  *
6769  * If devid and uuid are both specified, the match must be exact, otherwise
6770  * only devid is used.
6771  */
6772 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6773                                        u64 devid, u8 *uuid, u8 *fsid)
6774 {
6775         struct btrfs_device *device;
6776         struct btrfs_fs_devices *seed_devs;
6777
6778         if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6779                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6780                         if (device->devid == devid &&
6781                             (!uuid || memcmp(device->uuid, uuid,
6782                                              BTRFS_UUID_SIZE) == 0))
6783                                 return device;
6784                 }
6785         }
6786
6787         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6788                 if (!fsid ||
6789                     !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6790                         list_for_each_entry(device, &seed_devs->devices,
6791                                             dev_list) {
6792                                 if (device->devid == devid &&
6793                                     (!uuid || memcmp(device->uuid, uuid,
6794                                                      BTRFS_UUID_SIZE) == 0))
6795                                         return device;
6796                         }
6797                 }
6798         }
6799
6800         return NULL;
6801 }
6802
6803 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6804                                             u64 devid, u8 *dev_uuid)
6805 {
6806         struct btrfs_device *device;
6807         unsigned int nofs_flag;
6808
6809         /*
6810          * We call this under the chunk_mutex, so we want to use NOFS for this
6811          * allocation, however we don't want to change btrfs_alloc_device() to
6812          * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6813          * places.
6814          */
6815         nofs_flag = memalloc_nofs_save();
6816         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6817         memalloc_nofs_restore(nofs_flag);
6818         if (IS_ERR(device))
6819                 return device;
6820
6821         list_add(&device->dev_list, &fs_devices->devices);
6822         device->fs_devices = fs_devices;
6823         fs_devices->num_devices++;
6824
6825         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6826         fs_devices->missing_devices++;
6827
6828         return device;
6829 }
6830
6831 /**
6832  * btrfs_alloc_device - allocate struct btrfs_device
6833  * @fs_info:    used only for generating a new devid, can be NULL if
6834  *              devid is provided (i.e. @devid != NULL).
6835  * @devid:      a pointer to devid for this device.  If NULL a new devid
6836  *              is generated.
6837  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6838  *              is generated.
6839  *
6840  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6841  * on error.  Returned struct is not linked onto any lists and must be
6842  * destroyed with btrfs_free_device.
6843  */
6844 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6845                                         const u64 *devid,
6846                                         const u8 *uuid)
6847 {
6848         struct btrfs_device *dev;
6849         u64 tmp;
6850
6851         if (WARN_ON(!devid && !fs_info))
6852                 return ERR_PTR(-EINVAL);
6853
6854         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6855         if (!dev)
6856                 return ERR_PTR(-ENOMEM);
6857
6858         /*
6859          * Preallocate a bio that's always going to be used for flushing device
6860          * barriers and matches the device lifespan
6861          */
6862         dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6863         if (!dev->flush_bio) {
6864                 kfree(dev);
6865                 return ERR_PTR(-ENOMEM);
6866         }
6867
6868         INIT_LIST_HEAD(&dev->dev_list);
6869         INIT_LIST_HEAD(&dev->dev_alloc_list);
6870         INIT_LIST_HEAD(&dev->post_commit_list);
6871
6872         atomic_set(&dev->reada_in_flight, 0);
6873         atomic_set(&dev->dev_stats_ccnt, 0);
6874         btrfs_device_data_ordered_init(dev);
6875         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6876         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6877         extent_io_tree_init(fs_info, &dev->alloc_state,
6878                             IO_TREE_DEVICE_ALLOC_STATE, NULL);
6879
6880         if (devid)
6881                 tmp = *devid;
6882         else {
6883                 int ret;
6884
6885                 ret = find_next_devid(fs_info, &tmp);
6886                 if (ret) {
6887                         btrfs_free_device(dev);
6888                         return ERR_PTR(ret);
6889                 }
6890         }
6891         dev->devid = tmp;
6892
6893         if (uuid)
6894                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6895         else
6896                 generate_random_uuid(dev->uuid);
6897
6898         return dev;
6899 }
6900
6901 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6902                                         u64 devid, u8 *uuid, bool error)
6903 {
6904         if (error)
6905                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6906                               devid, uuid);
6907         else
6908                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6909                               devid, uuid);
6910 }
6911
6912 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6913 {
6914         const int data_stripes = calc_data_stripes(type, num_stripes);
6915
6916         return div_u64(chunk_len, data_stripes);
6917 }
6918
6919 #if BITS_PER_LONG == 32
6920 /*
6921  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6922  * can't be accessed on 32bit systems.
6923  *
6924  * This function do mount time check to reject the fs if it already has
6925  * metadata chunk beyond that limit.
6926  */
6927 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6928                                   u64 logical, u64 length, u64 type)
6929 {
6930         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6931                 return 0;
6932
6933         if (logical + length < MAX_LFS_FILESIZE)
6934                 return 0;
6935
6936         btrfs_err_32bit_limit(fs_info);
6937         return -EOVERFLOW;
6938 }
6939
6940 /*
6941  * This is to give early warning for any metadata chunk reaching
6942  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6943  * Although we can still access the metadata, it's not going to be possible
6944  * once the limit is reached.
6945  */
6946 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6947                                   u64 logical, u64 length, u64 type)
6948 {
6949         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6950                 return;
6951
6952         if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6953                 return;
6954
6955         btrfs_warn_32bit_limit(fs_info);
6956 }
6957 #endif
6958
6959 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6960                           struct btrfs_chunk *chunk)
6961 {
6962         struct btrfs_fs_info *fs_info = leaf->fs_info;
6963         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6964         struct map_lookup *map;
6965         struct extent_map *em;
6966         u64 logical;
6967         u64 length;
6968         u64 devid;
6969         u64 type;
6970         u8 uuid[BTRFS_UUID_SIZE];
6971         int num_stripes;
6972         int ret;
6973         int i;
6974
6975         logical = key->offset;
6976         length = btrfs_chunk_length(leaf, chunk);
6977         type = btrfs_chunk_type(leaf, chunk);
6978         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6979
6980 #if BITS_PER_LONG == 32
6981         ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6982         if (ret < 0)
6983                 return ret;
6984         warn_32bit_meta_chunk(fs_info, logical, length, type);
6985 #endif
6986
6987         /*
6988          * Only need to verify chunk item if we're reading from sys chunk array,
6989          * as chunk item in tree block is already verified by tree-checker.
6990          */
6991         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6992                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6993                 if (ret)
6994                         return ret;
6995         }
6996
6997         read_lock(&map_tree->lock);
6998         em = lookup_extent_mapping(map_tree, logical, 1);
6999         read_unlock(&map_tree->lock);
7000
7001         /* already mapped? */
7002         if (em && em->start <= logical && em->start + em->len > logical) {
7003                 free_extent_map(em);
7004                 return 0;
7005         } else if (em) {
7006                 free_extent_map(em);
7007         }
7008
7009         em = alloc_extent_map();
7010         if (!em)
7011                 return -ENOMEM;
7012         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7013         if (!map) {
7014                 free_extent_map(em);
7015                 return -ENOMEM;
7016         }
7017
7018         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7019         em->map_lookup = map;
7020         em->start = logical;
7021         em->len = length;
7022         em->orig_start = 0;
7023         em->block_start = 0;
7024         em->block_len = em->len;
7025
7026         map->num_stripes = num_stripes;
7027         map->io_width = btrfs_chunk_io_width(leaf, chunk);
7028         map->io_align = btrfs_chunk_io_align(leaf, chunk);
7029         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7030         map->type = type;
7031         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7032         map->verified_stripes = 0;
7033         em->orig_block_len = calc_stripe_length(type, em->len,
7034                                                 map->num_stripes);
7035         for (i = 0; i < num_stripes; i++) {
7036                 map->stripes[i].physical =
7037                         btrfs_stripe_offset_nr(leaf, chunk, i);
7038                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7039                 read_extent_buffer(leaf, uuid, (unsigned long)
7040                                    btrfs_stripe_dev_uuid_nr(chunk, i),
7041                                    BTRFS_UUID_SIZE);
7042                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
7043                                                         devid, uuid, NULL);
7044                 if (!map->stripes[i].dev &&
7045                     !btrfs_test_opt(fs_info, DEGRADED)) {
7046                         free_extent_map(em);
7047                         btrfs_report_missing_device(fs_info, devid, uuid, true);
7048                         return -ENOENT;
7049                 }
7050                 if (!map->stripes[i].dev) {
7051                         map->stripes[i].dev =
7052                                 add_missing_dev(fs_info->fs_devices, devid,
7053                                                 uuid);
7054                         if (IS_ERR(map->stripes[i].dev)) {
7055                                 free_extent_map(em);
7056                                 btrfs_err(fs_info,
7057                                         "failed to init missing dev %llu: %ld",
7058                                         devid, PTR_ERR(map->stripes[i].dev));
7059                                 return PTR_ERR(map->stripes[i].dev);
7060                         }
7061                         btrfs_report_missing_device(fs_info, devid, uuid, false);
7062                 }
7063                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7064                                 &(map->stripes[i].dev->dev_state));
7065
7066         }
7067
7068         write_lock(&map_tree->lock);
7069         ret = add_extent_mapping(map_tree, em, 0);
7070         write_unlock(&map_tree->lock);
7071         if (ret < 0) {
7072                 btrfs_err(fs_info,
7073                           "failed to add chunk map, start=%llu len=%llu: %d",
7074                           em->start, em->len, ret);
7075         }
7076         free_extent_map(em);
7077
7078         return ret;
7079 }
7080
7081 static void fill_device_from_item(struct extent_buffer *leaf,
7082                                  struct btrfs_dev_item *dev_item,
7083                                  struct btrfs_device *device)
7084 {
7085         unsigned long ptr;
7086
7087         device->devid = btrfs_device_id(leaf, dev_item);
7088         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7089         device->total_bytes = device->disk_total_bytes;
7090         device->commit_total_bytes = device->disk_total_bytes;
7091         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7092         device->commit_bytes_used = device->bytes_used;
7093         device->type = btrfs_device_type(leaf, dev_item);
7094         device->io_align = btrfs_device_io_align(leaf, dev_item);
7095         device->io_width = btrfs_device_io_width(leaf, dev_item);
7096         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7097         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7098         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7099
7100         ptr = btrfs_device_uuid(dev_item);
7101         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7102 }
7103
7104 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7105                                                   u8 *fsid)
7106 {
7107         struct btrfs_fs_devices *fs_devices;
7108         int ret;
7109
7110         lockdep_assert_held(&uuid_mutex);
7111         ASSERT(fsid);
7112
7113         /* This will match only for multi-device seed fs */
7114         list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7115                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7116                         return fs_devices;
7117
7118
7119         fs_devices = find_fsid(fsid, NULL);
7120         if (!fs_devices) {
7121                 if (!btrfs_test_opt(fs_info, DEGRADED))
7122                         return ERR_PTR(-ENOENT);
7123
7124                 fs_devices = alloc_fs_devices(fsid, NULL);
7125                 if (IS_ERR(fs_devices))
7126                         return fs_devices;
7127
7128                 fs_devices->seeding = true;
7129                 fs_devices->opened = 1;
7130                 return fs_devices;
7131         }
7132
7133         /*
7134          * Upon first call for a seed fs fsid, just create a private copy of the
7135          * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7136          */
7137         fs_devices = clone_fs_devices(fs_devices);
7138         if (IS_ERR(fs_devices))
7139                 return fs_devices;
7140
7141         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7142         if (ret) {
7143                 free_fs_devices(fs_devices);
7144                 return ERR_PTR(ret);
7145         }
7146
7147         if (!fs_devices->seeding) {
7148                 close_fs_devices(fs_devices);
7149                 free_fs_devices(fs_devices);
7150                 return ERR_PTR(-EINVAL);
7151         }
7152
7153         list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7154
7155         return fs_devices;
7156 }
7157
7158 static int read_one_dev(struct extent_buffer *leaf,
7159                         struct btrfs_dev_item *dev_item)
7160 {
7161         struct btrfs_fs_info *fs_info = leaf->fs_info;
7162         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7163         struct btrfs_device *device;
7164         u64 devid;
7165         int ret;
7166         u8 fs_uuid[BTRFS_FSID_SIZE];
7167         u8 dev_uuid[BTRFS_UUID_SIZE];
7168
7169         devid = btrfs_device_id(leaf, dev_item);
7170         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7171                            BTRFS_UUID_SIZE);
7172         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7173                            BTRFS_FSID_SIZE);
7174
7175         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7176                 fs_devices = open_seed_devices(fs_info, fs_uuid);
7177                 if (IS_ERR(fs_devices))
7178                         return PTR_ERR(fs_devices);
7179         }
7180
7181         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7182                                    fs_uuid);
7183         if (!device) {
7184                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7185                         btrfs_report_missing_device(fs_info, devid,
7186                                                         dev_uuid, true);
7187                         return -ENOENT;
7188                 }
7189
7190                 device = add_missing_dev(fs_devices, devid, dev_uuid);
7191                 if (IS_ERR(device)) {
7192                         btrfs_err(fs_info,
7193                                 "failed to add missing dev %llu: %ld",
7194                                 devid, PTR_ERR(device));
7195                         return PTR_ERR(device);
7196                 }
7197                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7198         } else {
7199                 if (!device->bdev) {
7200                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
7201                                 btrfs_report_missing_device(fs_info,
7202                                                 devid, dev_uuid, true);
7203                                 return -ENOENT;
7204                         }
7205                         btrfs_report_missing_device(fs_info, devid,
7206                                                         dev_uuid, false);
7207                 }
7208
7209                 if (!device->bdev &&
7210                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7211                         /*
7212                          * this happens when a device that was properly setup
7213                          * in the device info lists suddenly goes bad.
7214                          * device->bdev is NULL, and so we have to set
7215                          * device->missing to one here
7216                          */
7217                         device->fs_devices->missing_devices++;
7218                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7219                 }
7220
7221                 /* Move the device to its own fs_devices */
7222                 if (device->fs_devices != fs_devices) {
7223                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7224                                                         &device->dev_state));
7225
7226                         list_move(&device->dev_list, &fs_devices->devices);
7227                         device->fs_devices->num_devices--;
7228                         fs_devices->num_devices++;
7229
7230                         device->fs_devices->missing_devices--;
7231                         fs_devices->missing_devices++;
7232
7233                         device->fs_devices = fs_devices;
7234                 }
7235         }
7236
7237         if (device->fs_devices != fs_info->fs_devices) {
7238                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7239                 if (device->generation !=
7240                     btrfs_device_generation(leaf, dev_item))
7241                         return -EINVAL;
7242         }
7243
7244         fill_device_from_item(leaf, dev_item, device);
7245         if (device->bdev) {
7246                 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7247
7248                 if (device->total_bytes > max_total_bytes) {
7249                         btrfs_err(fs_info,
7250                         "device total_bytes should be at most %llu but found %llu",
7251                                   max_total_bytes, device->total_bytes);
7252                         return -EINVAL;
7253                 }
7254         }
7255         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7256         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7257            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7258                 device->fs_devices->total_rw_bytes += device->total_bytes;
7259                 atomic64_add(device->total_bytes - device->bytes_used,
7260                                 &fs_info->free_chunk_space);
7261         }
7262         ret = 0;
7263         return ret;
7264 }
7265
7266 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7267 {
7268         struct btrfs_root *root = fs_info->tree_root;
7269         struct btrfs_super_block *super_copy = fs_info->super_copy;
7270         struct extent_buffer *sb;
7271         struct btrfs_disk_key *disk_key;
7272         struct btrfs_chunk *chunk;
7273         u8 *array_ptr;
7274         unsigned long sb_array_offset;
7275         int ret = 0;
7276         u32 num_stripes;
7277         u32 array_size;
7278         u32 len = 0;
7279         u32 cur_offset;
7280         u64 type;
7281         struct btrfs_key key;
7282
7283         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7284         /*
7285          * This will create extent buffer of nodesize, superblock size is
7286          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7287          * overallocate but we can keep it as-is, only the first page is used.
7288          */
7289         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7290                                           root->root_key.objectid, 0);
7291         if (IS_ERR(sb))
7292                 return PTR_ERR(sb);
7293         set_extent_buffer_uptodate(sb);
7294         /*
7295          * The sb extent buffer is artificial and just used to read the system array.
7296          * set_extent_buffer_uptodate() call does not properly mark all it's
7297          * pages up-to-date when the page is larger: extent does not cover the
7298          * whole page and consequently check_page_uptodate does not find all
7299          * the page's extents up-to-date (the hole beyond sb),
7300          * write_extent_buffer then triggers a WARN_ON.
7301          *
7302          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7303          * but sb spans only this function. Add an explicit SetPageUptodate call
7304          * to silence the warning eg. on PowerPC 64.
7305          */
7306         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7307                 SetPageUptodate(sb->pages[0]);
7308
7309         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7310         array_size = btrfs_super_sys_array_size(super_copy);
7311
7312         array_ptr = super_copy->sys_chunk_array;
7313         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7314         cur_offset = 0;
7315
7316         while (cur_offset < array_size) {
7317                 disk_key = (struct btrfs_disk_key *)array_ptr;
7318                 len = sizeof(*disk_key);
7319                 if (cur_offset + len > array_size)
7320                         goto out_short_read;
7321
7322                 btrfs_disk_key_to_cpu(&key, disk_key);
7323
7324                 array_ptr += len;
7325                 sb_array_offset += len;
7326                 cur_offset += len;
7327
7328                 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7329                         btrfs_err(fs_info,
7330                             "unexpected item type %u in sys_array at offset %u",
7331                                   (u32)key.type, cur_offset);
7332                         ret = -EIO;
7333                         break;
7334                 }
7335
7336                 chunk = (struct btrfs_chunk *)sb_array_offset;
7337                 /*
7338                  * At least one btrfs_chunk with one stripe must be present,
7339                  * exact stripe count check comes afterwards
7340                  */
7341                 len = btrfs_chunk_item_size(1);
7342                 if (cur_offset + len > array_size)
7343                         goto out_short_read;
7344
7345                 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7346                 if (!num_stripes) {
7347                         btrfs_err(fs_info,
7348                         "invalid number of stripes %u in sys_array at offset %u",
7349                                   num_stripes, cur_offset);
7350                         ret = -EIO;
7351                         break;
7352                 }
7353
7354                 type = btrfs_chunk_type(sb, chunk);
7355                 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7356                         btrfs_err(fs_info,
7357                         "invalid chunk type %llu in sys_array at offset %u",
7358                                   type, cur_offset);
7359                         ret = -EIO;
7360                         break;
7361                 }
7362
7363                 len = btrfs_chunk_item_size(num_stripes);
7364                 if (cur_offset + len > array_size)
7365                         goto out_short_read;
7366
7367                 ret = read_one_chunk(&key, sb, chunk);
7368                 if (ret)
7369                         break;
7370
7371                 array_ptr += len;
7372                 sb_array_offset += len;
7373                 cur_offset += len;
7374         }
7375         clear_extent_buffer_uptodate(sb);
7376         free_extent_buffer_stale(sb);
7377         return ret;
7378
7379 out_short_read:
7380         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7381                         len, cur_offset);
7382         clear_extent_buffer_uptodate(sb);
7383         free_extent_buffer_stale(sb);
7384         return -EIO;
7385 }
7386
7387 /*
7388  * Check if all chunks in the fs are OK for read-write degraded mount
7389  *
7390  * If the @failing_dev is specified, it's accounted as missing.
7391  *
7392  * Return true if all chunks meet the minimal RW mount requirements.
7393  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7394  */
7395 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7396                                         struct btrfs_device *failing_dev)
7397 {
7398         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7399         struct extent_map *em;
7400         u64 next_start = 0;
7401         bool ret = true;
7402
7403         read_lock(&map_tree->lock);
7404         em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7405         read_unlock(&map_tree->lock);
7406         /* No chunk at all? Return false anyway */
7407         if (!em) {
7408                 ret = false;
7409                 goto out;
7410         }
7411         while (em) {
7412                 struct map_lookup *map;
7413                 int missing = 0;
7414                 int max_tolerated;
7415                 int i;
7416
7417                 map = em->map_lookup;
7418                 max_tolerated =
7419                         btrfs_get_num_tolerated_disk_barrier_failures(
7420                                         map->type);
7421                 for (i = 0; i < map->num_stripes; i++) {
7422                         struct btrfs_device *dev = map->stripes[i].dev;
7423
7424                         if (!dev || !dev->bdev ||
7425                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7426                             dev->last_flush_error)
7427                                 missing++;
7428                         else if (failing_dev && failing_dev == dev)
7429                                 missing++;
7430                 }
7431                 if (missing > max_tolerated) {
7432                         if (!failing_dev)
7433                                 btrfs_warn(fs_info,
7434         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7435                                    em->start, missing, max_tolerated);
7436                         free_extent_map(em);
7437                         ret = false;
7438                         goto out;
7439                 }
7440                 next_start = extent_map_end(em);
7441                 free_extent_map(em);
7442
7443                 read_lock(&map_tree->lock);
7444                 em = lookup_extent_mapping(map_tree, next_start,
7445                                            (u64)(-1) - next_start);
7446                 read_unlock(&map_tree->lock);
7447         }
7448 out:
7449         return ret;
7450 }
7451
7452 static void readahead_tree_node_children(struct extent_buffer *node)
7453 {
7454         int i;
7455         const int nr_items = btrfs_header_nritems(node);
7456
7457         for (i = 0; i < nr_items; i++)
7458                 btrfs_readahead_node_child(node, i);
7459 }
7460
7461 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7462 {
7463         struct btrfs_root *root = fs_info->chunk_root;
7464         struct btrfs_path *path;
7465         struct extent_buffer *leaf;
7466         struct btrfs_key key;
7467         struct btrfs_key found_key;
7468         int ret;
7469         int slot;
7470         u64 total_dev = 0;
7471         u64 last_ra_node = 0;
7472
7473         path = btrfs_alloc_path();
7474         if (!path)
7475                 return -ENOMEM;
7476
7477         /*
7478          * uuid_mutex is needed only if we are mounting a sprout FS
7479          * otherwise we don't need it.
7480          */
7481         mutex_lock(&uuid_mutex);
7482
7483         /*
7484          * It is possible for mount and umount to race in such a way that
7485          * we execute this code path, but open_fs_devices failed to clear
7486          * total_rw_bytes. We certainly want it cleared before reading the
7487          * device items, so clear it here.
7488          */
7489         fs_info->fs_devices->total_rw_bytes = 0;
7490
7491         /*
7492          * Read all device items, and then all the chunk items. All
7493          * device items are found before any chunk item (their object id
7494          * is smaller than the lowest possible object id for a chunk
7495          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7496          */
7497         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7498         key.offset = 0;
7499         key.type = 0;
7500         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7501         if (ret < 0)
7502                 goto error;
7503         while (1) {
7504                 struct extent_buffer *node;
7505
7506                 leaf = path->nodes[0];
7507                 slot = path->slots[0];
7508                 if (slot >= btrfs_header_nritems(leaf)) {
7509                         ret = btrfs_next_leaf(root, path);
7510                         if (ret == 0)
7511                                 continue;
7512                         if (ret < 0)
7513                                 goto error;
7514                         break;
7515                 }
7516                 /*
7517                  * The nodes on level 1 are not locked but we don't need to do
7518                  * that during mount time as nothing else can access the tree
7519                  */
7520                 node = path->nodes[1];
7521                 if (node) {
7522                         if (last_ra_node != node->start) {
7523                                 readahead_tree_node_children(node);
7524                                 last_ra_node = node->start;
7525                         }
7526                 }
7527                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7528                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7529                         struct btrfs_dev_item *dev_item;
7530                         dev_item = btrfs_item_ptr(leaf, slot,
7531                                                   struct btrfs_dev_item);
7532                         ret = read_one_dev(leaf, dev_item);
7533                         if (ret)
7534                                 goto error;
7535                         total_dev++;
7536                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7537                         struct btrfs_chunk *chunk;
7538
7539                         /*
7540                          * We are only called at mount time, so no need to take
7541                          * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7542                          * we always lock first fs_info->chunk_mutex before
7543                          * acquiring any locks on the chunk tree. This is a
7544                          * requirement for chunk allocation, see the comment on
7545                          * top of btrfs_chunk_alloc() for details.
7546                          */
7547                         ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7548                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7549                         ret = read_one_chunk(&found_key, leaf, chunk);
7550                         if (ret)
7551                                 goto error;
7552                 }
7553                 path->slots[0]++;
7554         }
7555
7556         /*
7557          * After loading chunk tree, we've got all device information,
7558          * do another round of validation checks.
7559          */
7560         if (total_dev != fs_info->fs_devices->total_devices) {
7561                 btrfs_err(fs_info,
7562            "super_num_devices %llu mismatch with num_devices %llu found here",
7563                           btrfs_super_num_devices(fs_info->super_copy),
7564                           total_dev);
7565                 ret = -EINVAL;
7566                 goto error;
7567         }
7568         if (btrfs_super_total_bytes(fs_info->super_copy) <
7569             fs_info->fs_devices->total_rw_bytes) {
7570                 btrfs_err(fs_info,
7571         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7572                           btrfs_super_total_bytes(fs_info->super_copy),
7573                           fs_info->fs_devices->total_rw_bytes);
7574                 ret = -EINVAL;
7575                 goto error;
7576         }
7577         ret = 0;
7578 error:
7579         mutex_unlock(&uuid_mutex);
7580
7581         btrfs_free_path(path);
7582         return ret;
7583 }
7584
7585 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7586 {
7587         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7588         struct btrfs_device *device;
7589
7590         fs_devices->fs_info = fs_info;
7591
7592         mutex_lock(&fs_devices->device_list_mutex);
7593         list_for_each_entry(device, &fs_devices->devices, dev_list)
7594                 device->fs_info = fs_info;
7595
7596         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7597                 list_for_each_entry(device, &seed_devs->devices, dev_list)
7598                         device->fs_info = fs_info;
7599
7600                 seed_devs->fs_info = fs_info;
7601         }
7602         mutex_unlock(&fs_devices->device_list_mutex);
7603 }
7604
7605 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7606                                  const struct btrfs_dev_stats_item *ptr,
7607                                  int index)
7608 {
7609         u64 val;
7610
7611         read_extent_buffer(eb, &val,
7612                            offsetof(struct btrfs_dev_stats_item, values) +
7613                             ((unsigned long)ptr) + (index * sizeof(u64)),
7614                            sizeof(val));
7615         return val;
7616 }
7617
7618 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7619                                       struct btrfs_dev_stats_item *ptr,
7620                                       int index, u64 val)
7621 {
7622         write_extent_buffer(eb, &val,
7623                             offsetof(struct btrfs_dev_stats_item, values) +
7624                              ((unsigned long)ptr) + (index * sizeof(u64)),
7625                             sizeof(val));
7626 }
7627
7628 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7629                                        struct btrfs_path *path)
7630 {
7631         struct btrfs_dev_stats_item *ptr;
7632         struct extent_buffer *eb;
7633         struct btrfs_key key;
7634         int item_size;
7635         int i, ret, slot;
7636
7637         if (!device->fs_info->dev_root)
7638                 return 0;
7639
7640         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7641         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7642         key.offset = device->devid;
7643         ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7644         if (ret) {
7645                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7646                         btrfs_dev_stat_set(device, i, 0);
7647                 device->dev_stats_valid = 1;
7648                 btrfs_release_path(path);
7649                 return ret < 0 ? ret : 0;
7650         }
7651         slot = path->slots[0];
7652         eb = path->nodes[0];
7653         item_size = btrfs_item_size_nr(eb, slot);
7654
7655         ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7656
7657         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7658                 if (item_size >= (1 + i) * sizeof(__le64))
7659                         btrfs_dev_stat_set(device, i,
7660                                            btrfs_dev_stats_value(eb, ptr, i));
7661                 else
7662                         btrfs_dev_stat_set(device, i, 0);
7663         }
7664
7665         device->dev_stats_valid = 1;
7666         btrfs_dev_stat_print_on_load(device);
7667         btrfs_release_path(path);
7668
7669         return 0;
7670 }
7671
7672 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7673 {
7674         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7675         struct btrfs_device *device;
7676         struct btrfs_path *path = NULL;
7677         int ret = 0;
7678
7679         path = btrfs_alloc_path();
7680         if (!path)
7681                 return -ENOMEM;
7682
7683         mutex_lock(&fs_devices->device_list_mutex);
7684         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7685                 ret = btrfs_device_init_dev_stats(device, path);
7686                 if (ret)
7687                         goto out;
7688         }
7689         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7690                 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7691                         ret = btrfs_device_init_dev_stats(device, path);
7692                         if (ret)
7693                                 goto out;
7694                 }
7695         }
7696 out:
7697         mutex_unlock(&fs_devices->device_list_mutex);
7698
7699         btrfs_free_path(path);
7700         return ret;
7701 }
7702
7703 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7704                                 struct btrfs_device *device)
7705 {
7706         struct btrfs_fs_info *fs_info = trans->fs_info;
7707         struct btrfs_root *dev_root = fs_info->dev_root;
7708         struct btrfs_path *path;
7709         struct btrfs_key key;
7710         struct extent_buffer *eb;
7711         struct btrfs_dev_stats_item *ptr;
7712         int ret;
7713         int i;
7714
7715         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7716         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7717         key.offset = device->devid;
7718
7719         path = btrfs_alloc_path();
7720         if (!path)
7721                 return -ENOMEM;
7722         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7723         if (ret < 0) {
7724                 btrfs_warn_in_rcu(fs_info,
7725                         "error %d while searching for dev_stats item for device %s",
7726                               ret, rcu_str_deref(device->name));
7727                 goto out;
7728         }
7729
7730         if (ret == 0 &&
7731             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7732                 /* need to delete old one and insert a new one */
7733                 ret = btrfs_del_item(trans, dev_root, path);
7734                 if (ret != 0) {
7735                         btrfs_warn_in_rcu(fs_info,
7736                                 "delete too small dev_stats item for device %s failed %d",
7737                                       rcu_str_deref(device->name), ret);
7738                         goto out;
7739                 }
7740                 ret = 1;
7741         }
7742
7743         if (ret == 1) {
7744                 /* need to insert a new item */
7745                 btrfs_release_path(path);
7746                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7747                                               &key, sizeof(*ptr));
7748                 if (ret < 0) {
7749                         btrfs_warn_in_rcu(fs_info,
7750                                 "insert dev_stats item for device %s failed %d",
7751                                 rcu_str_deref(device->name), ret);
7752                         goto out;
7753                 }
7754         }
7755
7756         eb = path->nodes[0];
7757         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7758         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7759                 btrfs_set_dev_stats_value(eb, ptr, i,
7760                                           btrfs_dev_stat_read(device, i));
7761         btrfs_mark_buffer_dirty(eb);
7762
7763 out:
7764         btrfs_free_path(path);
7765         return ret;
7766 }
7767
7768 /*
7769  * called from commit_transaction. Writes all changed device stats to disk.
7770  */
7771 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7772 {
7773         struct btrfs_fs_info *fs_info = trans->fs_info;
7774         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7775         struct btrfs_device *device;
7776         int stats_cnt;
7777         int ret = 0;
7778
7779         mutex_lock(&fs_devices->device_list_mutex);
7780         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7781                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7782                 if (!device->dev_stats_valid || stats_cnt == 0)
7783                         continue;
7784
7785
7786                 /*
7787                  * There is a LOAD-LOAD control dependency between the value of
7788                  * dev_stats_ccnt and updating the on-disk values which requires
7789                  * reading the in-memory counters. Such control dependencies
7790                  * require explicit read memory barriers.
7791                  *
7792                  * This memory barriers pairs with smp_mb__before_atomic in
7793                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7794                  * barrier implied by atomic_xchg in
7795                  * btrfs_dev_stats_read_and_reset
7796                  */
7797                 smp_rmb();
7798
7799                 ret = update_dev_stat_item(trans, device);
7800                 if (!ret)
7801                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7802         }
7803         mutex_unlock(&fs_devices->device_list_mutex);
7804
7805         return ret;
7806 }
7807
7808 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7809 {
7810         btrfs_dev_stat_inc(dev, index);
7811         btrfs_dev_stat_print_on_error(dev);
7812 }
7813
7814 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7815 {
7816         if (!dev->dev_stats_valid)
7817                 return;
7818         btrfs_err_rl_in_rcu(dev->fs_info,
7819                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7820                            rcu_str_deref(dev->name),
7821                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7822                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7823                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7824                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7825                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7826 }
7827
7828 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7829 {
7830         int i;
7831
7832         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7833                 if (btrfs_dev_stat_read(dev, i) != 0)
7834                         break;
7835         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7836                 return; /* all values == 0, suppress message */
7837
7838         btrfs_info_in_rcu(dev->fs_info,
7839                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7840                rcu_str_deref(dev->name),
7841                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7842                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7843                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7844                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7845                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7846 }
7847
7848 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7849                         struct btrfs_ioctl_get_dev_stats *stats)
7850 {
7851         struct btrfs_device *dev;
7852         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7853         int i;
7854
7855         mutex_lock(&fs_devices->device_list_mutex);
7856         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7857         mutex_unlock(&fs_devices->device_list_mutex);
7858
7859         if (!dev) {
7860                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7861                 return -ENODEV;
7862         } else if (!dev->dev_stats_valid) {
7863                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7864                 return -ENODEV;
7865         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7866                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7867                         if (stats->nr_items > i)
7868                                 stats->values[i] =
7869                                         btrfs_dev_stat_read_and_reset(dev, i);
7870                         else
7871                                 btrfs_dev_stat_set(dev, i, 0);
7872                 }
7873                 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7874                            current->comm, task_pid_nr(current));
7875         } else {
7876                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7877                         if (stats->nr_items > i)
7878                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7879         }
7880         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7881                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7882         return 0;
7883 }
7884
7885 /*
7886  * Update the size and bytes used for each device where it changed.  This is
7887  * delayed since we would otherwise get errors while writing out the
7888  * superblocks.
7889  *
7890  * Must be invoked during transaction commit.
7891  */
7892 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7893 {
7894         struct btrfs_device *curr, *next;
7895
7896         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7897
7898         if (list_empty(&trans->dev_update_list))
7899                 return;
7900
7901         /*
7902          * We don't need the device_list_mutex here.  This list is owned by the
7903          * transaction and the transaction must complete before the device is
7904          * released.
7905          */
7906         mutex_lock(&trans->fs_info->chunk_mutex);
7907         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7908                                  post_commit_list) {
7909                 list_del_init(&curr->post_commit_list);
7910                 curr->commit_total_bytes = curr->disk_total_bytes;
7911                 curr->commit_bytes_used = curr->bytes_used;
7912         }
7913         mutex_unlock(&trans->fs_info->chunk_mutex);
7914 }
7915
7916 /*
7917  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7918  */
7919 int btrfs_bg_type_to_factor(u64 flags)
7920 {
7921         const int index = btrfs_bg_flags_to_raid_index(flags);
7922
7923         return btrfs_raid_array[index].ncopies;
7924 }
7925
7926
7927
7928 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7929                                  u64 chunk_offset, u64 devid,
7930                                  u64 physical_offset, u64 physical_len)
7931 {
7932         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7933         struct extent_map *em;
7934         struct map_lookup *map;
7935         struct btrfs_device *dev;
7936         u64 stripe_len;
7937         bool found = false;
7938         int ret = 0;
7939         int i;
7940
7941         read_lock(&em_tree->lock);
7942         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7943         read_unlock(&em_tree->lock);
7944
7945         if (!em) {
7946                 btrfs_err(fs_info,
7947 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7948                           physical_offset, devid);
7949                 ret = -EUCLEAN;
7950                 goto out;
7951         }
7952
7953         map = em->map_lookup;
7954         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7955         if (physical_len != stripe_len) {
7956                 btrfs_err(fs_info,
7957 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7958                           physical_offset, devid, em->start, physical_len,
7959                           stripe_len);
7960                 ret = -EUCLEAN;
7961                 goto out;
7962         }
7963
7964         for (i = 0; i < map->num_stripes; i++) {
7965                 if (map->stripes[i].dev->devid == devid &&
7966                     map->stripes[i].physical == physical_offset) {
7967                         found = true;
7968                         if (map->verified_stripes >= map->num_stripes) {
7969                                 btrfs_err(fs_info,
7970                                 "too many dev extents for chunk %llu found",
7971                                           em->start);
7972                                 ret = -EUCLEAN;
7973                                 goto out;
7974                         }
7975                         map->verified_stripes++;
7976                         break;
7977                 }
7978         }
7979         if (!found) {
7980                 btrfs_err(fs_info,
7981         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7982                         physical_offset, devid);
7983                 ret = -EUCLEAN;
7984         }
7985
7986         /* Make sure no dev extent is beyond device boundary */
7987         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7988         if (!dev) {
7989                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7990                 ret = -EUCLEAN;
7991                 goto out;
7992         }
7993
7994         if (physical_offset + physical_len > dev->disk_total_bytes) {
7995                 btrfs_err(fs_info,
7996 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7997                           devid, physical_offset, physical_len,
7998                           dev->disk_total_bytes);
7999                 ret = -EUCLEAN;
8000                 goto out;
8001         }
8002
8003         if (dev->zone_info) {
8004                 u64 zone_size = dev->zone_info->zone_size;
8005
8006                 if (!IS_ALIGNED(physical_offset, zone_size) ||
8007                     !IS_ALIGNED(physical_len, zone_size)) {
8008                         btrfs_err(fs_info,
8009 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8010                                   devid, physical_offset, physical_len);
8011                         ret = -EUCLEAN;
8012                         goto out;
8013                 }
8014         }
8015
8016 out:
8017         free_extent_map(em);
8018         return ret;
8019 }
8020
8021 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8022 {
8023         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8024         struct extent_map *em;
8025         struct rb_node *node;
8026         int ret = 0;
8027
8028         read_lock(&em_tree->lock);
8029         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8030                 em = rb_entry(node, struct extent_map, rb_node);
8031                 if (em->map_lookup->num_stripes !=
8032                     em->map_lookup->verified_stripes) {
8033                         btrfs_err(fs_info,
8034                         "chunk %llu has missing dev extent, have %d expect %d",
8035                                   em->start, em->map_lookup->verified_stripes,
8036                                   em->map_lookup->num_stripes);
8037                         ret = -EUCLEAN;
8038                         goto out;
8039                 }
8040         }
8041 out:
8042         read_unlock(&em_tree->lock);
8043         return ret;
8044 }
8045
8046 /*
8047  * Ensure that all dev extents are mapped to correct chunk, otherwise
8048  * later chunk allocation/free would cause unexpected behavior.
8049  *
8050  * NOTE: This will iterate through the whole device tree, which should be of
8051  * the same size level as the chunk tree.  This slightly increases mount time.
8052  */
8053 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8054 {
8055         struct btrfs_path *path;
8056         struct btrfs_root *root = fs_info->dev_root;
8057         struct btrfs_key key;
8058         u64 prev_devid = 0;
8059         u64 prev_dev_ext_end = 0;
8060         int ret = 0;
8061
8062         /*
8063          * We don't have a dev_root because we mounted with ignorebadroots and
8064          * failed to load the root, so we want to skip the verification in this
8065          * case for sure.
8066          *
8067          * However if the dev root is fine, but the tree itself is corrupted
8068          * we'd still fail to mount.  This verification is only to make sure
8069          * writes can happen safely, so instead just bypass this check
8070          * completely in the case of IGNOREBADROOTS.
8071          */
8072         if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8073                 return 0;
8074
8075         key.objectid = 1;
8076         key.type = BTRFS_DEV_EXTENT_KEY;
8077         key.offset = 0;
8078
8079         path = btrfs_alloc_path();
8080         if (!path)
8081                 return -ENOMEM;
8082
8083         path->reada = READA_FORWARD;
8084         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8085         if (ret < 0)
8086                 goto out;
8087
8088         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8089                 ret = btrfs_next_leaf(root, path);
8090                 if (ret < 0)
8091                         goto out;
8092                 /* No dev extents at all? Not good */
8093                 if (ret > 0) {
8094                         ret = -EUCLEAN;
8095                         goto out;
8096                 }
8097         }
8098         while (1) {
8099                 struct extent_buffer *leaf = path->nodes[0];
8100                 struct btrfs_dev_extent *dext;
8101                 int slot = path->slots[0];
8102                 u64 chunk_offset;
8103                 u64 physical_offset;
8104                 u64 physical_len;
8105                 u64 devid;
8106
8107                 btrfs_item_key_to_cpu(leaf, &key, slot);
8108                 if (key.type != BTRFS_DEV_EXTENT_KEY)
8109                         break;
8110                 devid = key.objectid;
8111                 physical_offset = key.offset;
8112
8113                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8114                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8115                 physical_len = btrfs_dev_extent_length(leaf, dext);
8116
8117                 /* Check if this dev extent overlaps with the previous one */
8118                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8119                         btrfs_err(fs_info,
8120 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8121                                   devid, physical_offset, prev_dev_ext_end);
8122                         ret = -EUCLEAN;
8123                         goto out;
8124                 }
8125
8126                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8127                                             physical_offset, physical_len);
8128                 if (ret < 0)
8129                         goto out;
8130                 prev_devid = devid;
8131                 prev_dev_ext_end = physical_offset + physical_len;
8132
8133                 ret = btrfs_next_item(root, path);
8134                 if (ret < 0)
8135                         goto out;
8136                 if (ret > 0) {
8137                         ret = 0;
8138                         break;
8139                 }
8140         }
8141
8142         /* Ensure all chunks have corresponding dev extents */
8143         ret = verify_chunk_dev_extent_mapping(fs_info);
8144 out:
8145         btrfs_free_path(path);
8146         return ret;
8147 }
8148
8149 /*
8150  * Check whether the given block group or device is pinned by any inode being
8151  * used as a swapfile.
8152  */
8153 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8154 {
8155         struct btrfs_swapfile_pin *sp;
8156         struct rb_node *node;
8157
8158         spin_lock(&fs_info->swapfile_pins_lock);
8159         node = fs_info->swapfile_pins.rb_node;
8160         while (node) {
8161                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8162                 if (ptr < sp->ptr)
8163                         node = node->rb_left;
8164                 else if (ptr > sp->ptr)
8165                         node = node->rb_right;
8166                 else
8167                         break;
8168         }
8169         spin_unlock(&fs_info->swapfile_pins_lock);
8170         return node != NULL;
8171 }
8172
8173 static int relocating_repair_kthread(void *data)
8174 {
8175         struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8176         struct btrfs_fs_info *fs_info = cache->fs_info;
8177         u64 target;
8178         int ret = 0;
8179
8180         target = cache->start;
8181         btrfs_put_block_group(cache);
8182
8183         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8184                 btrfs_info(fs_info,
8185                            "zoned: skip relocating block group %llu to repair: EBUSY",
8186                            target);
8187                 return -EBUSY;
8188         }
8189
8190         mutex_lock(&fs_info->reclaim_bgs_lock);
8191
8192         /* Ensure block group still exists */
8193         cache = btrfs_lookup_block_group(fs_info, target);
8194         if (!cache)
8195                 goto out;
8196
8197         if (!cache->relocating_repair)
8198                 goto out;
8199
8200         ret = btrfs_may_alloc_data_chunk(fs_info, target);
8201         if (ret < 0)
8202                 goto out;
8203
8204         btrfs_info(fs_info,
8205                    "zoned: relocating block group %llu to repair IO failure",
8206                    target);
8207         ret = btrfs_relocate_chunk(fs_info, target);
8208
8209 out:
8210         if (cache)
8211                 btrfs_put_block_group(cache);
8212         mutex_unlock(&fs_info->reclaim_bgs_lock);
8213         btrfs_exclop_finish(fs_info);
8214
8215         return ret;
8216 }
8217
8218 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8219 {
8220         struct btrfs_block_group *cache;
8221
8222         /* Do not attempt to repair in degraded state */
8223         if (btrfs_test_opt(fs_info, DEGRADED))
8224                 return 0;
8225
8226         cache = btrfs_lookup_block_group(fs_info, logical);
8227         if (!cache)
8228                 return 0;
8229
8230         spin_lock(&cache->lock);
8231         if (cache->relocating_repair) {
8232                 spin_unlock(&cache->lock);
8233                 btrfs_put_block_group(cache);
8234                 return 0;
8235         }
8236         cache->relocating_repair = 1;
8237         spin_unlock(&cache->lock);
8238
8239         kthread_run(relocating_repair_kthread, cache,
8240                     "btrfs-relocating-repair");
8241
8242         return 0;
8243 }