1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
19 #include "extent_map.h"
21 #include "transaction.h"
22 #include "print-tree.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 [BTRFS_RAID_RAID10] = {
40 .devs_max = 0, /* 0 == as many as possible */
42 .tolerated_failures = 1,
46 .raid_name = "raid10",
47 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
48 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
50 [BTRFS_RAID_RAID1] = {
55 .tolerated_failures = 1,
60 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
61 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
63 [BTRFS_RAID_RAID1C3] = {
68 .tolerated_failures = 2,
72 .raid_name = "raid1c3",
73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
74 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
76 [BTRFS_RAID_RAID1C4] = {
81 .tolerated_failures = 3,
85 .raid_name = "raid1c4",
86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
87 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
94 .tolerated_failures = 0,
99 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
102 [BTRFS_RAID_RAID0] = {
107 .tolerated_failures = 0,
111 .raid_name = "raid0",
112 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
115 [BTRFS_RAID_SINGLE] = {
120 .tolerated_failures = 0,
124 .raid_name = "single",
128 [BTRFS_RAID_RAID5] = {
133 .tolerated_failures = 1,
137 .raid_name = "raid5",
138 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
139 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
141 [BTRFS_RAID_RAID6] = {
146 .tolerated_failures = 2,
150 .raid_name = "raid6",
151 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
152 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
157 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
158 * can be used as index to access btrfs_raid_array[].
160 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
162 if (flags & BTRFS_BLOCK_GROUP_RAID10)
163 return BTRFS_RAID_RAID10;
164 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
165 return BTRFS_RAID_RAID1;
166 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
167 return BTRFS_RAID_RAID1C3;
168 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
169 return BTRFS_RAID_RAID1C4;
170 else if (flags & BTRFS_BLOCK_GROUP_DUP)
171 return BTRFS_RAID_DUP;
172 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
173 return BTRFS_RAID_RAID0;
174 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
175 return BTRFS_RAID_RAID5;
176 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
177 return BTRFS_RAID_RAID6;
179 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
182 const char *btrfs_bg_type_to_raid_name(u64 flags)
184 const int index = btrfs_bg_flags_to_raid_index(flags);
186 if (index >= BTRFS_NR_RAID_TYPES)
189 return btrfs_raid_array[index].raid_name;
193 * Fill @buf with textual description of @bg_flags, no more than @size_buf
194 * bytes including terminating null byte.
196 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
201 u64 flags = bg_flags;
202 u32 size_bp = size_buf;
209 #define DESCRIBE_FLAG(flag, desc) \
211 if (flags & (flag)) { \
212 ret = snprintf(bp, size_bp, "%s|", (desc)); \
213 if (ret < 0 || ret >= size_bp) \
221 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
222 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
225 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
226 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
227 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
228 btrfs_raid_array[i].raid_name);
232 ret = snprintf(bp, size_bp, "0x%llx|", flags);
236 if (size_bp < size_buf)
237 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240 * The text is trimmed, it's up to the caller to provide sufficiently
246 static int init_first_rw_device(struct btrfs_trans_handle *trans);
247 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
248 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
249 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
250 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
251 enum btrfs_map_op op,
252 u64 logical, u64 *length,
253 struct btrfs_bio **bbio_ret,
254 int mirror_num, int need_raid_map);
260 * There are several mutexes that protect manipulation of devices and low-level
261 * structures like chunks but not block groups, extents or files
263 * uuid_mutex (global lock)
264 * ------------------------
265 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
266 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
267 * device) or requested by the device= mount option
269 * the mutex can be very coarse and can cover long-running operations
271 * protects: updates to fs_devices counters like missing devices, rw devices,
272 * seeding, structure cloning, opening/closing devices at mount/umount time
274 * global::fs_devs - add, remove, updates to the global list
276 * does not protect: manipulation of the fs_devices::devices list in general
277 * but in mount context it could be used to exclude list modifications by eg.
280 * btrfs_device::name - renames (write side), read is RCU
282 * fs_devices::device_list_mutex (per-fs, with RCU)
283 * ------------------------------------------------
284 * protects updates to fs_devices::devices, ie. adding and deleting
286 * simple list traversal with read-only actions can be done with RCU protection
288 * may be used to exclude some operations from running concurrently without any
289 * modifications to the list (see write_all_supers)
291 * Is not required at mount and close times, because our device list is
292 * protected by the uuid_mutex at that point.
296 * protects balance structures (status, state) and context accessed from
297 * several places (internally, ioctl)
301 * protects chunks, adding or removing during allocation, trim or when a new
302 * device is added/removed. Additionally it also protects post_commit_list of
303 * individual devices, since they can be added to the transaction's
304 * post_commit_list only with chunk_mutex held.
308 * a big lock that is held by the cleaner thread and prevents running subvolume
309 * cleaning together with relocation or delayed iputs
321 * Exclusive operations
322 * ====================
324 * Maintains the exclusivity of the following operations that apply to the
325 * whole filesystem and cannot run in parallel.
330 * - Device replace (*)
333 * The device operations (as above) can be in one of the following states:
339 * Only device operations marked with (*) can go into the Paused state for the
342 * - ioctl (only Balance can be Paused through ioctl)
343 * - filesystem remounted as read-only
344 * - filesystem unmounted and mounted as read-only
345 * - system power-cycle and filesystem mounted as read-only
346 * - filesystem or device errors leading to forced read-only
348 * The status of exclusive operation is set and cleared atomically.
349 * During the course of Paused state, fs_info::exclusive_operation remains set.
350 * A device operation in Paused or Running state can be canceled or resumed
351 * either by ioctl (Balance only) or when remounted as read-write.
352 * The exclusive status is cleared when the device operation is canceled or
356 DEFINE_MUTEX(uuid_mutex);
357 static LIST_HEAD(fs_uuids);
358 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
364 * alloc_fs_devices - allocate struct btrfs_fs_devices
365 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
366 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
368 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
369 * The returned struct is not linked onto any lists and can be destroyed with
370 * kfree() right away.
372 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
373 const u8 *metadata_fsid)
375 struct btrfs_fs_devices *fs_devs;
377 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
379 return ERR_PTR(-ENOMEM);
381 mutex_init(&fs_devs->device_list_mutex);
383 INIT_LIST_HEAD(&fs_devs->devices);
384 INIT_LIST_HEAD(&fs_devs->alloc_list);
385 INIT_LIST_HEAD(&fs_devs->fs_list);
386 INIT_LIST_HEAD(&fs_devs->seed_list);
388 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
391 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
393 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
398 void btrfs_free_device(struct btrfs_device *device)
400 WARN_ON(!list_empty(&device->post_commit_list));
401 rcu_string_free(device->name);
402 extent_io_tree_release(&device->alloc_state);
403 bio_put(device->flush_bio);
404 btrfs_destroy_dev_zone_info(device);
408 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
410 struct btrfs_device *device;
411 WARN_ON(fs_devices->opened);
412 while (!list_empty(&fs_devices->devices)) {
413 device = list_entry(fs_devices->devices.next,
414 struct btrfs_device, dev_list);
415 list_del(&device->dev_list);
416 btrfs_free_device(device);
421 void __exit btrfs_cleanup_fs_uuids(void)
423 struct btrfs_fs_devices *fs_devices;
425 while (!list_empty(&fs_uuids)) {
426 fs_devices = list_entry(fs_uuids.next,
427 struct btrfs_fs_devices, fs_list);
428 list_del(&fs_devices->fs_list);
429 free_fs_devices(fs_devices);
433 static noinline struct btrfs_fs_devices *find_fsid(
434 const u8 *fsid, const u8 *metadata_fsid)
436 struct btrfs_fs_devices *fs_devices;
440 /* Handle non-split brain cases */
441 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
444 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
445 BTRFS_FSID_SIZE) == 0)
448 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
455 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
456 struct btrfs_super_block *disk_super)
459 struct btrfs_fs_devices *fs_devices;
462 * Handle scanned device having completed its fsid change but
463 * belonging to a fs_devices that was created by first scanning
464 * a device which didn't have its fsid/metadata_uuid changed
465 * at all and the CHANGING_FSID_V2 flag set.
467 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
468 if (fs_devices->fsid_change &&
469 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
470 BTRFS_FSID_SIZE) == 0 &&
471 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
472 BTRFS_FSID_SIZE) == 0) {
477 * Handle scanned device having completed its fsid change but
478 * belonging to a fs_devices that was created by a device that
479 * has an outdated pair of fsid/metadata_uuid and
480 * CHANGING_FSID_V2 flag set.
482 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
483 if (fs_devices->fsid_change &&
484 memcmp(fs_devices->metadata_uuid,
485 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
486 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
487 BTRFS_FSID_SIZE) == 0) {
492 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
497 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
498 int flush, struct block_device **bdev,
499 struct btrfs_super_block **disk_super)
503 *bdev = blkdev_get_by_path(device_path, flags, holder);
506 ret = PTR_ERR(*bdev);
511 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
512 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
514 blkdev_put(*bdev, flags);
517 invalidate_bdev(*bdev);
518 *disk_super = btrfs_read_dev_super(*bdev);
519 if (IS_ERR(*disk_super)) {
520 ret = PTR_ERR(*disk_super);
521 blkdev_put(*bdev, flags);
532 static bool device_path_matched(const char *path, struct btrfs_device *device)
537 found = strcmp(rcu_str_deref(device->name), path);
544 * Search and remove all stale (devices which are not mounted) devices.
545 * When both inputs are NULL, it will search and release all stale devices.
546 * path: Optional. When provided will it release all unmounted devices
547 * matching this path only.
548 * skip_dev: Optional. Will skip this device when searching for the stale
550 * Return: 0 for success or if @path is NULL.
551 * -EBUSY if @path is a mounted device.
552 * -ENOENT if @path does not match any device in the list.
554 static int btrfs_free_stale_devices(const char *path,
555 struct btrfs_device *skip_device)
557 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
558 struct btrfs_device *device, *tmp_device;
561 lockdep_assert_held(&uuid_mutex);
566 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
568 mutex_lock(&fs_devices->device_list_mutex);
569 list_for_each_entry_safe(device, tmp_device,
570 &fs_devices->devices, dev_list) {
571 if (skip_device && skip_device == device)
573 if (path && !device->name)
575 if (path && !device_path_matched(path, device))
577 if (fs_devices->opened) {
578 /* for an already deleted device return 0 */
579 if (path && ret != 0)
584 /* delete the stale device */
585 fs_devices->num_devices--;
586 list_del(&device->dev_list);
587 btrfs_free_device(device);
591 mutex_unlock(&fs_devices->device_list_mutex);
593 if (fs_devices->num_devices == 0) {
594 btrfs_sysfs_remove_fsid(fs_devices);
595 list_del(&fs_devices->fs_list);
596 free_fs_devices(fs_devices);
604 * This is only used on mount, and we are protected from competing things
605 * messing with our fs_devices by the uuid_mutex, thus we do not need the
606 * fs_devices->device_list_mutex here.
608 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
609 struct btrfs_device *device, fmode_t flags,
612 struct request_queue *q;
613 struct block_device *bdev;
614 struct btrfs_super_block *disk_super;
623 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
628 devid = btrfs_stack_device_id(&disk_super->dev_item);
629 if (devid != device->devid)
630 goto error_free_page;
632 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
633 goto error_free_page;
635 device->generation = btrfs_super_generation(disk_super);
637 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
638 if (btrfs_super_incompat_flags(disk_super) &
639 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
641 "BTRFS: Invalid seeding and uuid-changed device detected\n");
642 goto error_free_page;
645 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
646 fs_devices->seeding = true;
648 if (bdev_read_only(bdev))
649 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
651 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654 q = bdev_get_queue(bdev);
655 if (!blk_queue_nonrot(q))
656 fs_devices->rotating = true;
659 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
660 device->mode = flags;
662 fs_devices->open_devices++;
663 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
664 device->devid != BTRFS_DEV_REPLACE_DEVID) {
665 fs_devices->rw_devices++;
666 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
668 btrfs_release_disk_super(disk_super);
673 btrfs_release_disk_super(disk_super);
674 blkdev_put(bdev, flags);
680 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
681 * being created with a disk that has already completed its fsid change. Such
682 * disk can belong to an fs which has its FSID changed or to one which doesn't.
683 * Handle both cases here.
685 static struct btrfs_fs_devices *find_fsid_inprogress(
686 struct btrfs_super_block *disk_super)
688 struct btrfs_fs_devices *fs_devices;
690 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
691 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
692 BTRFS_FSID_SIZE) != 0 &&
693 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
694 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
699 return find_fsid(disk_super->fsid, NULL);
703 static struct btrfs_fs_devices *find_fsid_changed(
704 struct btrfs_super_block *disk_super)
706 struct btrfs_fs_devices *fs_devices;
709 * Handles the case where scanned device is part of an fs that had
710 * multiple successful changes of FSID but currently device didn't
711 * observe it. Meaning our fsid will be different than theirs. We need
712 * to handle two subcases :
713 * 1 - The fs still continues to have different METADATA/FSID uuids.
714 * 2 - The fs is switched back to its original FSID (METADATA/FSID
717 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
719 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
720 BTRFS_FSID_SIZE) != 0 &&
721 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
722 BTRFS_FSID_SIZE) == 0 &&
723 memcmp(fs_devices->fsid, disk_super->fsid,
724 BTRFS_FSID_SIZE) != 0)
727 /* Unchanged UUIDs */
728 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
729 BTRFS_FSID_SIZE) == 0 &&
730 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
731 BTRFS_FSID_SIZE) == 0)
738 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
739 struct btrfs_super_block *disk_super)
741 struct btrfs_fs_devices *fs_devices;
744 * Handle the case where the scanned device is part of an fs whose last
745 * metadata UUID change reverted it to the original FSID. At the same
746 * time * fs_devices was first created by another constitutent device
747 * which didn't fully observe the operation. This results in an
748 * btrfs_fs_devices created with metadata/fsid different AND
749 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
750 * fs_devices equal to the FSID of the disk.
752 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
753 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
754 BTRFS_FSID_SIZE) != 0 &&
755 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
756 BTRFS_FSID_SIZE) == 0 &&
757 fs_devices->fsid_change)
764 * Add new device to list of registered devices
767 * device pointer which was just added or updated when successful
768 * error pointer when failed
770 static noinline struct btrfs_device *device_list_add(const char *path,
771 struct btrfs_super_block *disk_super,
772 bool *new_device_added)
774 struct btrfs_device *device;
775 struct btrfs_fs_devices *fs_devices = NULL;
776 struct rcu_string *name;
777 u64 found_transid = btrfs_super_generation(disk_super);
778 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
779 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
780 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
781 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
782 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
784 if (fsid_change_in_progress) {
785 if (!has_metadata_uuid)
786 fs_devices = find_fsid_inprogress(disk_super);
788 fs_devices = find_fsid_changed(disk_super);
789 } else if (has_metadata_uuid) {
790 fs_devices = find_fsid_with_metadata_uuid(disk_super);
792 fs_devices = find_fsid_reverted_metadata(disk_super);
794 fs_devices = find_fsid(disk_super->fsid, NULL);
799 if (has_metadata_uuid)
800 fs_devices = alloc_fs_devices(disk_super->fsid,
801 disk_super->metadata_uuid);
803 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
805 if (IS_ERR(fs_devices))
806 return ERR_CAST(fs_devices);
808 fs_devices->fsid_change = fsid_change_in_progress;
810 mutex_lock(&fs_devices->device_list_mutex);
811 list_add(&fs_devices->fs_list, &fs_uuids);
815 mutex_lock(&fs_devices->device_list_mutex);
816 device = btrfs_find_device(fs_devices, devid,
817 disk_super->dev_item.uuid, NULL);
820 * If this disk has been pulled into an fs devices created by
821 * a device which had the CHANGING_FSID_V2 flag then replace the
822 * metadata_uuid/fsid values of the fs_devices.
824 if (fs_devices->fsid_change &&
825 found_transid > fs_devices->latest_generation) {
826 memcpy(fs_devices->fsid, disk_super->fsid,
829 if (has_metadata_uuid)
830 memcpy(fs_devices->metadata_uuid,
831 disk_super->metadata_uuid,
834 memcpy(fs_devices->metadata_uuid,
835 disk_super->fsid, BTRFS_FSID_SIZE);
837 fs_devices->fsid_change = false;
842 if (fs_devices->opened) {
843 mutex_unlock(&fs_devices->device_list_mutex);
844 return ERR_PTR(-EBUSY);
847 device = btrfs_alloc_device(NULL, &devid,
848 disk_super->dev_item.uuid);
849 if (IS_ERR(device)) {
850 mutex_unlock(&fs_devices->device_list_mutex);
851 /* we can safely leave the fs_devices entry around */
855 name = rcu_string_strdup(path, GFP_NOFS);
857 btrfs_free_device(device);
858 mutex_unlock(&fs_devices->device_list_mutex);
859 return ERR_PTR(-ENOMEM);
861 rcu_assign_pointer(device->name, name);
863 list_add_rcu(&device->dev_list, &fs_devices->devices);
864 fs_devices->num_devices++;
866 device->fs_devices = fs_devices;
867 *new_device_added = true;
869 if (disk_super->label[0])
871 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
872 disk_super->label, devid, found_transid, path,
873 current->comm, task_pid_nr(current));
876 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
877 disk_super->fsid, devid, found_transid, path,
878 current->comm, task_pid_nr(current));
880 } else if (!device->name || strcmp(device->name->str, path)) {
882 * When FS is already mounted.
883 * 1. If you are here and if the device->name is NULL that
884 * means this device was missing at time of FS mount.
885 * 2. If you are here and if the device->name is different
886 * from 'path' that means either
887 * a. The same device disappeared and reappeared with
889 * b. The missing-disk-which-was-replaced, has
892 * We must allow 1 and 2a above. But 2b would be a spurious
895 * Further in case of 1 and 2a above, the disk at 'path'
896 * would have missed some transaction when it was away and
897 * in case of 2a the stale bdev has to be updated as well.
898 * 2b must not be allowed at all time.
902 * For now, we do allow update to btrfs_fs_device through the
903 * btrfs dev scan cli after FS has been mounted. We're still
904 * tracking a problem where systems fail mount by subvolume id
905 * when we reject replacement on a mounted FS.
907 if (!fs_devices->opened && found_transid < device->generation) {
909 * That is if the FS is _not_ mounted and if you
910 * are here, that means there is more than one
911 * disk with same uuid and devid.We keep the one
912 * with larger generation number or the last-in if
913 * generation are equal.
915 mutex_unlock(&fs_devices->device_list_mutex);
916 return ERR_PTR(-EEXIST);
920 * We are going to replace the device path for a given devid,
921 * make sure it's the same device if the device is mounted
927 error = lookup_bdev(path, &path_dev);
929 mutex_unlock(&fs_devices->device_list_mutex);
930 return ERR_PTR(error);
933 if (device->bdev->bd_dev != path_dev) {
934 mutex_unlock(&fs_devices->device_list_mutex);
936 * device->fs_info may not be reliable here, so
937 * pass in a NULL instead. This avoids a
938 * possible use-after-free when the fs_info and
939 * fs_info->sb are already torn down.
941 btrfs_warn_in_rcu(NULL,
942 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
943 path, devid, found_transid,
945 task_pid_nr(current));
946 return ERR_PTR(-EEXIST);
948 btrfs_info_in_rcu(device->fs_info,
949 "devid %llu device path %s changed to %s scanned by %s (%d)",
950 devid, rcu_str_deref(device->name),
952 task_pid_nr(current));
955 name = rcu_string_strdup(path, GFP_NOFS);
957 mutex_unlock(&fs_devices->device_list_mutex);
958 return ERR_PTR(-ENOMEM);
960 rcu_string_free(device->name);
961 rcu_assign_pointer(device->name, name);
962 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
963 fs_devices->missing_devices--;
964 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
969 * Unmount does not free the btrfs_device struct but would zero
970 * generation along with most of the other members. So just update
971 * it back. We need it to pick the disk with largest generation
974 if (!fs_devices->opened) {
975 device->generation = found_transid;
976 fs_devices->latest_generation = max_t(u64, found_transid,
977 fs_devices->latest_generation);
980 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
982 mutex_unlock(&fs_devices->device_list_mutex);
986 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
988 struct btrfs_fs_devices *fs_devices;
989 struct btrfs_device *device;
990 struct btrfs_device *orig_dev;
993 lockdep_assert_held(&uuid_mutex);
995 fs_devices = alloc_fs_devices(orig->fsid, NULL);
996 if (IS_ERR(fs_devices))
999 fs_devices->total_devices = orig->total_devices;
1001 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1002 struct rcu_string *name;
1004 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1006 if (IS_ERR(device)) {
1007 ret = PTR_ERR(device);
1012 * This is ok to do without rcu read locked because we hold the
1013 * uuid mutex so nothing we touch in here is going to disappear.
1015 if (orig_dev->name) {
1016 name = rcu_string_strdup(orig_dev->name->str,
1019 btrfs_free_device(device);
1023 rcu_assign_pointer(device->name, name);
1026 list_add(&device->dev_list, &fs_devices->devices);
1027 device->fs_devices = fs_devices;
1028 fs_devices->num_devices++;
1032 free_fs_devices(fs_devices);
1033 return ERR_PTR(ret);
1036 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1037 struct btrfs_device **latest_dev)
1039 struct btrfs_device *device, *next;
1041 /* This is the initialized path, it is safe to release the devices. */
1042 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1043 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1044 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1045 &device->dev_state) &&
1046 !test_bit(BTRFS_DEV_STATE_MISSING,
1047 &device->dev_state) &&
1049 device->generation > (*latest_dev)->generation)) {
1050 *latest_dev = device;
1056 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1057 * in btrfs_init_dev_replace() so just continue.
1059 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1063 blkdev_put(device->bdev, device->mode);
1064 device->bdev = NULL;
1065 fs_devices->open_devices--;
1067 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1068 list_del_init(&device->dev_alloc_list);
1069 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1070 fs_devices->rw_devices--;
1072 list_del_init(&device->dev_list);
1073 fs_devices->num_devices--;
1074 btrfs_free_device(device);
1080 * After we have read the system tree and know devids belonging to this
1081 * filesystem, remove the device which does not belong there.
1083 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1085 struct btrfs_device *latest_dev = NULL;
1086 struct btrfs_fs_devices *seed_dev;
1088 mutex_lock(&uuid_mutex);
1089 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1091 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1092 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1094 fs_devices->latest_bdev = latest_dev->bdev;
1096 mutex_unlock(&uuid_mutex);
1099 static void btrfs_close_bdev(struct btrfs_device *device)
1104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1105 sync_blockdev(device->bdev);
1106 invalidate_bdev(device->bdev);
1109 blkdev_put(device->bdev, device->mode);
1112 static void btrfs_close_one_device(struct btrfs_device *device)
1114 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1116 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1117 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1118 list_del_init(&device->dev_alloc_list);
1119 fs_devices->rw_devices--;
1122 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1123 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1125 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1126 fs_devices->missing_devices--;
1128 btrfs_close_bdev(device);
1130 fs_devices->open_devices--;
1131 device->bdev = NULL;
1133 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1134 btrfs_destroy_dev_zone_info(device);
1136 device->fs_info = NULL;
1137 atomic_set(&device->dev_stats_ccnt, 0);
1138 extent_io_tree_release(&device->alloc_state);
1140 /* Verify the device is back in a pristine state */
1141 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1142 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1143 ASSERT(list_empty(&device->dev_alloc_list));
1144 ASSERT(list_empty(&device->post_commit_list));
1145 ASSERT(atomic_read(&device->reada_in_flight) == 0);
1148 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1150 struct btrfs_device *device, *tmp;
1152 lockdep_assert_held(&uuid_mutex);
1154 if (--fs_devices->opened > 0)
1157 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1158 btrfs_close_one_device(device);
1160 WARN_ON(fs_devices->open_devices);
1161 WARN_ON(fs_devices->rw_devices);
1162 fs_devices->opened = 0;
1163 fs_devices->seeding = false;
1164 fs_devices->fs_info = NULL;
1167 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1170 struct btrfs_fs_devices *tmp;
1172 mutex_lock(&uuid_mutex);
1173 close_fs_devices(fs_devices);
1174 if (!fs_devices->opened)
1175 list_splice_init(&fs_devices->seed_list, &list);
1177 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1178 close_fs_devices(fs_devices);
1179 list_del(&fs_devices->seed_list);
1180 free_fs_devices(fs_devices);
1182 mutex_unlock(&uuid_mutex);
1185 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1186 fmode_t flags, void *holder)
1188 struct btrfs_device *device;
1189 struct btrfs_device *latest_dev = NULL;
1190 struct btrfs_device *tmp_device;
1192 flags |= FMODE_EXCL;
1194 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1198 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1200 (!latest_dev || device->generation > latest_dev->generation)) {
1201 latest_dev = device;
1202 } else if (ret == -ENODATA) {
1203 fs_devices->num_devices--;
1204 list_del(&device->dev_list);
1205 btrfs_free_device(device);
1208 if (fs_devices->open_devices == 0)
1211 fs_devices->opened = 1;
1212 fs_devices->latest_bdev = latest_dev->bdev;
1213 fs_devices->total_rw_bytes = 0;
1214 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1215 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1220 static int devid_cmp(void *priv, const struct list_head *a,
1221 const struct list_head *b)
1223 const struct btrfs_device *dev1, *dev2;
1225 dev1 = list_entry(a, struct btrfs_device, dev_list);
1226 dev2 = list_entry(b, struct btrfs_device, dev_list);
1228 if (dev1->devid < dev2->devid)
1230 else if (dev1->devid > dev2->devid)
1235 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1236 fmode_t flags, void *holder)
1240 lockdep_assert_held(&uuid_mutex);
1242 * The device_list_mutex cannot be taken here in case opening the
1243 * underlying device takes further locks like open_mutex.
1245 * We also don't need the lock here as this is called during mount and
1246 * exclusion is provided by uuid_mutex
1249 if (fs_devices->opened) {
1250 fs_devices->opened++;
1253 list_sort(NULL, &fs_devices->devices, devid_cmp);
1254 ret = open_fs_devices(fs_devices, flags, holder);
1260 void btrfs_release_disk_super(struct btrfs_super_block *super)
1262 struct page *page = virt_to_page(super);
1267 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1268 u64 bytenr, u64 bytenr_orig)
1270 struct btrfs_super_block *disk_super;
1275 /* make sure our super fits in the device */
1276 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1277 return ERR_PTR(-EINVAL);
1279 /* make sure our super fits in the page */
1280 if (sizeof(*disk_super) > PAGE_SIZE)
1281 return ERR_PTR(-EINVAL);
1283 /* make sure our super doesn't straddle pages on disk */
1284 index = bytenr >> PAGE_SHIFT;
1285 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1286 return ERR_PTR(-EINVAL);
1288 /* pull in the page with our super */
1289 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1292 return ERR_CAST(page);
1294 p = page_address(page);
1296 /* align our pointer to the offset of the super block */
1297 disk_super = p + offset_in_page(bytenr);
1299 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1300 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1301 btrfs_release_disk_super(p);
1302 return ERR_PTR(-EINVAL);
1305 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1306 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1311 int btrfs_forget_devices(const char *path)
1315 mutex_lock(&uuid_mutex);
1316 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1317 mutex_unlock(&uuid_mutex);
1323 * Look for a btrfs signature on a device. This may be called out of the mount path
1324 * and we are not allowed to call set_blocksize during the scan. The superblock
1325 * is read via pagecache
1327 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1330 struct btrfs_super_block *disk_super;
1331 bool new_device_added = false;
1332 struct btrfs_device *device = NULL;
1333 struct block_device *bdev;
1334 u64 bytenr, bytenr_orig;
1337 lockdep_assert_held(&uuid_mutex);
1340 * we would like to check all the supers, but that would make
1341 * a btrfs mount succeed after a mkfs from a different FS.
1342 * So, we need to add a special mount option to scan for
1343 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1345 flags |= FMODE_EXCL;
1347 bdev = blkdev_get_by_path(path, flags, holder);
1349 return ERR_CAST(bdev);
1351 bytenr_orig = btrfs_sb_offset(0);
1352 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1354 return ERR_PTR(ret);
1356 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1357 if (IS_ERR(disk_super)) {
1358 device = ERR_CAST(disk_super);
1359 goto error_bdev_put;
1362 device = device_list_add(path, disk_super, &new_device_added);
1363 if (!IS_ERR(device)) {
1364 if (new_device_added)
1365 btrfs_free_stale_devices(path, device);
1368 btrfs_release_disk_super(disk_super);
1371 blkdev_put(bdev, flags);
1377 * Try to find a chunk that intersects [start, start + len] range and when one
1378 * such is found, record the end of it in *start
1380 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1383 u64 physical_start, physical_end;
1385 lockdep_assert_held(&device->fs_info->chunk_mutex);
1387 if (!find_first_extent_bit(&device->alloc_state, *start,
1388 &physical_start, &physical_end,
1389 CHUNK_ALLOCATED, NULL)) {
1391 if (in_range(physical_start, *start, len) ||
1392 in_range(*start, physical_start,
1393 physical_end - physical_start)) {
1394 *start = physical_end + 1;
1401 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1403 switch (device->fs_devices->chunk_alloc_policy) {
1404 case BTRFS_CHUNK_ALLOC_REGULAR:
1406 * We don't want to overwrite the superblock on the drive nor
1407 * any area used by the boot loader (grub for example), so we
1408 * make sure to start at an offset of at least 1MB.
1410 return max_t(u64, start, SZ_1M);
1411 case BTRFS_CHUNK_ALLOC_ZONED:
1413 * We don't care about the starting region like regular
1414 * allocator, because we anyway use/reserve the first two zones
1415 * for superblock logging.
1417 return ALIGN(start, device->zone_info->zone_size);
1423 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1424 u64 *hole_start, u64 *hole_size,
1427 u64 zone_size = device->zone_info->zone_size;
1430 bool changed = false;
1432 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1434 while (*hole_size > 0) {
1435 pos = btrfs_find_allocatable_zones(device, *hole_start,
1436 *hole_start + *hole_size,
1438 if (pos != *hole_start) {
1439 *hole_size = *hole_start + *hole_size - pos;
1442 if (*hole_size < num_bytes)
1446 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1448 /* Range is ensured to be empty */
1452 /* Given hole range was invalid (outside of device) */
1453 if (ret == -ERANGE) {
1454 *hole_start += *hole_size;
1459 *hole_start += zone_size;
1460 *hole_size -= zone_size;
1468 * dev_extent_hole_check - check if specified hole is suitable for allocation
1469 * @device: the device which we have the hole
1470 * @hole_start: starting position of the hole
1471 * @hole_size: the size of the hole
1472 * @num_bytes: the size of the free space that we need
1474 * This function may modify @hole_start and @hole_size to reflect the suitable
1475 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1477 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1478 u64 *hole_size, u64 num_bytes)
1480 bool changed = false;
1481 u64 hole_end = *hole_start + *hole_size;
1485 * Check before we set max_hole_start, otherwise we could end up
1486 * sending back this offset anyway.
1488 if (contains_pending_extent(device, hole_start, *hole_size)) {
1489 if (hole_end >= *hole_start)
1490 *hole_size = hole_end - *hole_start;
1496 switch (device->fs_devices->chunk_alloc_policy) {
1497 case BTRFS_CHUNK_ALLOC_REGULAR:
1498 /* No extra check */
1500 case BTRFS_CHUNK_ALLOC_ZONED:
1501 if (dev_extent_hole_check_zoned(device, hole_start,
1502 hole_size, num_bytes)) {
1505 * The changed hole can contain pending extent.
1506 * Loop again to check that.
1522 * find_free_dev_extent_start - find free space in the specified device
1523 * @device: the device which we search the free space in
1524 * @num_bytes: the size of the free space that we need
1525 * @search_start: the position from which to begin the search
1526 * @start: store the start of the free space.
1527 * @len: the size of the free space. that we find, or the size
1528 * of the max free space if we don't find suitable free space
1530 * this uses a pretty simple search, the expectation is that it is
1531 * called very infrequently and that a given device has a small number
1534 * @start is used to store the start of the free space if we find. But if we
1535 * don't find suitable free space, it will be used to store the start position
1536 * of the max free space.
1538 * @len is used to store the size of the free space that we find.
1539 * But if we don't find suitable free space, it is used to store the size of
1540 * the max free space.
1542 * NOTE: This function will search *commit* root of device tree, and does extra
1543 * check to ensure dev extents are not double allocated.
1544 * This makes the function safe to allocate dev extents but may not report
1545 * correct usable device space, as device extent freed in current transaction
1546 * is not reported as available.
1548 static int find_free_dev_extent_start(struct btrfs_device *device,
1549 u64 num_bytes, u64 search_start, u64 *start,
1552 struct btrfs_fs_info *fs_info = device->fs_info;
1553 struct btrfs_root *root = fs_info->dev_root;
1554 struct btrfs_key key;
1555 struct btrfs_dev_extent *dev_extent;
1556 struct btrfs_path *path;
1561 u64 search_end = device->total_bytes;
1564 struct extent_buffer *l;
1566 search_start = dev_extent_search_start(device, search_start);
1568 WARN_ON(device->zone_info &&
1569 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1571 path = btrfs_alloc_path();
1575 max_hole_start = search_start;
1579 if (search_start >= search_end ||
1580 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1585 path->reada = READA_FORWARD;
1586 path->search_commit_root = 1;
1587 path->skip_locking = 1;
1589 key.objectid = device->devid;
1590 key.offset = search_start;
1591 key.type = BTRFS_DEV_EXTENT_KEY;
1593 ret = btrfs_search_backwards(root, &key, path);
1599 slot = path->slots[0];
1600 if (slot >= btrfs_header_nritems(l)) {
1601 ret = btrfs_next_leaf(root, path);
1609 btrfs_item_key_to_cpu(l, &key, slot);
1611 if (key.objectid < device->devid)
1614 if (key.objectid > device->devid)
1617 if (key.type != BTRFS_DEV_EXTENT_KEY)
1620 if (key.offset > search_start) {
1621 hole_size = key.offset - search_start;
1622 dev_extent_hole_check(device, &search_start, &hole_size,
1625 if (hole_size > max_hole_size) {
1626 max_hole_start = search_start;
1627 max_hole_size = hole_size;
1631 * If this free space is greater than which we need,
1632 * it must be the max free space that we have found
1633 * until now, so max_hole_start must point to the start
1634 * of this free space and the length of this free space
1635 * is stored in max_hole_size. Thus, we return
1636 * max_hole_start and max_hole_size and go back to the
1639 if (hole_size >= num_bytes) {
1645 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1646 extent_end = key.offset + btrfs_dev_extent_length(l,
1648 if (extent_end > search_start)
1649 search_start = extent_end;
1656 * At this point, search_start should be the end of
1657 * allocated dev extents, and when shrinking the device,
1658 * search_end may be smaller than search_start.
1660 if (search_end > search_start) {
1661 hole_size = search_end - search_start;
1662 if (dev_extent_hole_check(device, &search_start, &hole_size,
1664 btrfs_release_path(path);
1668 if (hole_size > max_hole_size) {
1669 max_hole_start = search_start;
1670 max_hole_size = hole_size;
1675 if (max_hole_size < num_bytes)
1681 btrfs_free_path(path);
1682 *start = max_hole_start;
1684 *len = max_hole_size;
1688 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1689 u64 *start, u64 *len)
1691 /* FIXME use last free of some kind */
1692 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1695 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1696 struct btrfs_device *device,
1697 u64 start, u64 *dev_extent_len)
1699 struct btrfs_fs_info *fs_info = device->fs_info;
1700 struct btrfs_root *root = fs_info->dev_root;
1702 struct btrfs_path *path;
1703 struct btrfs_key key;
1704 struct btrfs_key found_key;
1705 struct extent_buffer *leaf = NULL;
1706 struct btrfs_dev_extent *extent = NULL;
1708 path = btrfs_alloc_path();
1712 key.objectid = device->devid;
1714 key.type = BTRFS_DEV_EXTENT_KEY;
1716 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1718 ret = btrfs_previous_item(root, path, key.objectid,
1719 BTRFS_DEV_EXTENT_KEY);
1722 leaf = path->nodes[0];
1723 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1724 extent = btrfs_item_ptr(leaf, path->slots[0],
1725 struct btrfs_dev_extent);
1726 BUG_ON(found_key.offset > start || found_key.offset +
1727 btrfs_dev_extent_length(leaf, extent) < start);
1729 btrfs_release_path(path);
1731 } else if (ret == 0) {
1732 leaf = path->nodes[0];
1733 extent = btrfs_item_ptr(leaf, path->slots[0],
1734 struct btrfs_dev_extent);
1739 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1741 ret = btrfs_del_item(trans, root, path);
1743 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1745 btrfs_free_path(path);
1749 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1751 struct extent_map_tree *em_tree;
1752 struct extent_map *em;
1756 em_tree = &fs_info->mapping_tree;
1757 read_lock(&em_tree->lock);
1758 n = rb_last(&em_tree->map.rb_root);
1760 em = rb_entry(n, struct extent_map, rb_node);
1761 ret = em->start + em->len;
1763 read_unlock(&em_tree->lock);
1768 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1772 struct btrfs_key key;
1773 struct btrfs_key found_key;
1774 struct btrfs_path *path;
1776 path = btrfs_alloc_path();
1780 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1781 key.type = BTRFS_DEV_ITEM_KEY;
1782 key.offset = (u64)-1;
1784 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1790 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1795 ret = btrfs_previous_item(fs_info->chunk_root, path,
1796 BTRFS_DEV_ITEMS_OBJECTID,
1797 BTRFS_DEV_ITEM_KEY);
1801 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1803 *devid_ret = found_key.offset + 1;
1807 btrfs_free_path(path);
1812 * the device information is stored in the chunk root
1813 * the btrfs_device struct should be fully filled in
1815 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1816 struct btrfs_device *device)
1819 struct btrfs_path *path;
1820 struct btrfs_dev_item *dev_item;
1821 struct extent_buffer *leaf;
1822 struct btrfs_key key;
1825 path = btrfs_alloc_path();
1829 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1830 key.type = BTRFS_DEV_ITEM_KEY;
1831 key.offset = device->devid;
1833 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1834 &key, sizeof(*dev_item));
1838 leaf = path->nodes[0];
1839 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1841 btrfs_set_device_id(leaf, dev_item, device->devid);
1842 btrfs_set_device_generation(leaf, dev_item, 0);
1843 btrfs_set_device_type(leaf, dev_item, device->type);
1844 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1845 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1846 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1847 btrfs_set_device_total_bytes(leaf, dev_item,
1848 btrfs_device_get_disk_total_bytes(device));
1849 btrfs_set_device_bytes_used(leaf, dev_item,
1850 btrfs_device_get_bytes_used(device));
1851 btrfs_set_device_group(leaf, dev_item, 0);
1852 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1853 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1854 btrfs_set_device_start_offset(leaf, dev_item, 0);
1856 ptr = btrfs_device_uuid(dev_item);
1857 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1858 ptr = btrfs_device_fsid(dev_item);
1859 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1860 ptr, BTRFS_FSID_SIZE);
1861 btrfs_mark_buffer_dirty(leaf);
1865 btrfs_free_path(path);
1870 * Function to update ctime/mtime for a given device path.
1871 * Mainly used for ctime/mtime based probe like libblkid.
1873 static void update_dev_time(struct block_device *bdev)
1875 struct inode *inode = bdev->bd_inode;
1876 struct timespec64 now;
1878 /* Shouldn't happen but just in case. */
1882 now = current_time(inode);
1883 generic_update_time(inode, &now, S_MTIME | S_CTIME);
1886 static int btrfs_rm_dev_item(struct btrfs_device *device)
1888 struct btrfs_root *root = device->fs_info->chunk_root;
1890 struct btrfs_path *path;
1891 struct btrfs_key key;
1892 struct btrfs_trans_handle *trans;
1894 path = btrfs_alloc_path();
1898 trans = btrfs_start_transaction(root, 0);
1899 if (IS_ERR(trans)) {
1900 btrfs_free_path(path);
1901 return PTR_ERR(trans);
1903 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1904 key.type = BTRFS_DEV_ITEM_KEY;
1905 key.offset = device->devid;
1907 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1911 btrfs_abort_transaction(trans, ret);
1912 btrfs_end_transaction(trans);
1916 ret = btrfs_del_item(trans, root, path);
1918 btrfs_abort_transaction(trans, ret);
1919 btrfs_end_transaction(trans);
1923 btrfs_free_path(path);
1925 ret = btrfs_commit_transaction(trans);
1930 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1931 * filesystem. It's up to the caller to adjust that number regarding eg. device
1934 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1942 seq = read_seqbegin(&fs_info->profiles_lock);
1944 all_avail = fs_info->avail_data_alloc_bits |
1945 fs_info->avail_system_alloc_bits |
1946 fs_info->avail_metadata_alloc_bits;
1947 } while (read_seqretry(&fs_info->profiles_lock, seq));
1949 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1950 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1953 if (num_devices < btrfs_raid_array[i].devs_min)
1954 return btrfs_raid_array[i].mindev_error;
1960 static struct btrfs_device * btrfs_find_next_active_device(
1961 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1963 struct btrfs_device *next_device;
1965 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1966 if (next_device != device &&
1967 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1968 && next_device->bdev)
1976 * Helper function to check if the given device is part of s_bdev / latest_bdev
1977 * and replace it with the provided or the next active device, in the context
1978 * where this function called, there should be always be another device (or
1979 * this_dev) which is active.
1981 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1982 struct btrfs_device *next_device)
1984 struct btrfs_fs_info *fs_info = device->fs_info;
1987 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1989 ASSERT(next_device);
1991 if (fs_info->sb->s_bdev &&
1992 (fs_info->sb->s_bdev == device->bdev))
1993 fs_info->sb->s_bdev = next_device->bdev;
1995 if (fs_info->fs_devices->latest_bdev == device->bdev)
1996 fs_info->fs_devices->latest_bdev = next_device->bdev;
2000 * Return btrfs_fs_devices::num_devices excluding the device that's being
2001 * currently replaced.
2003 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2005 u64 num_devices = fs_info->fs_devices->num_devices;
2007 down_read(&fs_info->dev_replace.rwsem);
2008 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2009 ASSERT(num_devices > 1);
2012 up_read(&fs_info->dev_replace.rwsem);
2017 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2018 struct block_device *bdev,
2019 const char *device_path)
2021 struct btrfs_super_block *disk_super;
2027 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2031 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2032 if (IS_ERR(disk_super))
2035 if (bdev_is_zoned(bdev)) {
2036 btrfs_reset_sb_log_zones(bdev, copy_num);
2040 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2042 page = virt_to_page(disk_super);
2043 set_page_dirty(page);
2045 /* write_on_page() unlocks the page */
2046 ret = write_one_page(page);
2049 "error clearing superblock number %d (%d)",
2051 btrfs_release_disk_super(disk_super);
2055 /* Notify udev that device has changed */
2056 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2058 /* Update ctime/mtime for device path for libblkid */
2059 update_dev_time(bdev);
2062 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2063 u64 devid, struct block_device **bdev, fmode_t *mode)
2065 struct btrfs_device *device;
2066 struct btrfs_fs_devices *cur_devices;
2067 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2071 mutex_lock(&uuid_mutex);
2073 num_devices = btrfs_num_devices(fs_info);
2075 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2079 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2081 if (IS_ERR(device)) {
2082 if (PTR_ERR(device) == -ENOENT &&
2083 device_path && strcmp(device_path, "missing") == 0)
2084 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2086 ret = PTR_ERR(device);
2090 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2091 btrfs_warn_in_rcu(fs_info,
2092 "cannot remove device %s (devid %llu) due to active swapfile",
2093 rcu_str_deref(device->name), device->devid);
2098 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2099 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2103 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2104 fs_info->fs_devices->rw_devices == 1) {
2105 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2109 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2110 mutex_lock(&fs_info->chunk_mutex);
2111 list_del_init(&device->dev_alloc_list);
2112 device->fs_devices->rw_devices--;
2113 mutex_unlock(&fs_info->chunk_mutex);
2116 mutex_unlock(&uuid_mutex);
2117 ret = btrfs_shrink_device(device, 0);
2119 btrfs_reada_remove_dev(device);
2120 mutex_lock(&uuid_mutex);
2125 * TODO: the superblock still includes this device in its num_devices
2126 * counter although write_all_supers() is not locked out. This
2127 * could give a filesystem state which requires a degraded mount.
2129 ret = btrfs_rm_dev_item(device);
2133 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2134 btrfs_scrub_cancel_dev(device);
2137 * the device list mutex makes sure that we don't change
2138 * the device list while someone else is writing out all
2139 * the device supers. Whoever is writing all supers, should
2140 * lock the device list mutex before getting the number of
2141 * devices in the super block (super_copy). Conversely,
2142 * whoever updates the number of devices in the super block
2143 * (super_copy) should hold the device list mutex.
2147 * In normal cases the cur_devices == fs_devices. But in case
2148 * of deleting a seed device, the cur_devices should point to
2149 * its own fs_devices listed under the fs_devices->seed.
2151 cur_devices = device->fs_devices;
2152 mutex_lock(&fs_devices->device_list_mutex);
2153 list_del_rcu(&device->dev_list);
2155 cur_devices->num_devices--;
2156 cur_devices->total_devices--;
2157 /* Update total_devices of the parent fs_devices if it's seed */
2158 if (cur_devices != fs_devices)
2159 fs_devices->total_devices--;
2161 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2162 cur_devices->missing_devices--;
2164 btrfs_assign_next_active_device(device, NULL);
2167 cur_devices->open_devices--;
2168 /* remove sysfs entry */
2169 btrfs_sysfs_remove_device(device);
2172 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2173 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2174 mutex_unlock(&fs_devices->device_list_mutex);
2177 * At this point, the device is zero sized and detached from the
2178 * devices list. All that's left is to zero out the old supers and
2181 * We cannot call btrfs_close_bdev() here because we're holding the sb
2182 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2183 * block device and it's dependencies. Instead just flush the device
2184 * and let the caller do the final blkdev_put.
2186 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2187 btrfs_scratch_superblocks(fs_info, device->bdev,
2190 sync_blockdev(device->bdev);
2191 invalidate_bdev(device->bdev);
2195 *bdev = device->bdev;
2196 *mode = device->mode;
2198 btrfs_free_device(device);
2200 if (cur_devices->open_devices == 0) {
2201 list_del_init(&cur_devices->seed_list);
2202 close_fs_devices(cur_devices);
2203 free_fs_devices(cur_devices);
2207 mutex_unlock(&uuid_mutex);
2211 btrfs_reada_undo_remove_dev(device);
2212 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2213 mutex_lock(&fs_info->chunk_mutex);
2214 list_add(&device->dev_alloc_list,
2215 &fs_devices->alloc_list);
2216 device->fs_devices->rw_devices++;
2217 mutex_unlock(&fs_info->chunk_mutex);
2222 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2224 struct btrfs_fs_devices *fs_devices;
2226 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2229 * in case of fs with no seed, srcdev->fs_devices will point
2230 * to fs_devices of fs_info. However when the dev being replaced is
2231 * a seed dev it will point to the seed's local fs_devices. In short
2232 * srcdev will have its correct fs_devices in both the cases.
2234 fs_devices = srcdev->fs_devices;
2236 list_del_rcu(&srcdev->dev_list);
2237 list_del(&srcdev->dev_alloc_list);
2238 fs_devices->num_devices--;
2239 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2240 fs_devices->missing_devices--;
2242 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2243 fs_devices->rw_devices--;
2246 fs_devices->open_devices--;
2249 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2251 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2253 mutex_lock(&uuid_mutex);
2255 btrfs_close_bdev(srcdev);
2257 btrfs_free_device(srcdev);
2259 /* if this is no devs we rather delete the fs_devices */
2260 if (!fs_devices->num_devices) {
2262 * On a mounted FS, num_devices can't be zero unless it's a
2263 * seed. In case of a seed device being replaced, the replace
2264 * target added to the sprout FS, so there will be no more
2265 * device left under the seed FS.
2267 ASSERT(fs_devices->seeding);
2269 list_del_init(&fs_devices->seed_list);
2270 close_fs_devices(fs_devices);
2271 free_fs_devices(fs_devices);
2273 mutex_unlock(&uuid_mutex);
2276 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2278 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2280 mutex_lock(&fs_devices->device_list_mutex);
2282 btrfs_sysfs_remove_device(tgtdev);
2285 fs_devices->open_devices--;
2287 fs_devices->num_devices--;
2289 btrfs_assign_next_active_device(tgtdev, NULL);
2291 list_del_rcu(&tgtdev->dev_list);
2293 mutex_unlock(&fs_devices->device_list_mutex);
2296 * The update_dev_time() with in btrfs_scratch_superblocks()
2297 * may lead to a call to btrfs_show_devname() which will try
2298 * to hold device_list_mutex. And here this device
2299 * is already out of device list, so we don't have to hold
2300 * the device_list_mutex lock.
2302 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2305 btrfs_close_bdev(tgtdev);
2307 btrfs_free_device(tgtdev);
2310 static struct btrfs_device *btrfs_find_device_by_path(
2311 struct btrfs_fs_info *fs_info, const char *device_path)
2314 struct btrfs_super_block *disk_super;
2317 struct block_device *bdev;
2318 struct btrfs_device *device;
2320 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2321 fs_info->bdev_holder, 0, &bdev, &disk_super);
2323 return ERR_PTR(ret);
2325 devid = btrfs_stack_device_id(&disk_super->dev_item);
2326 dev_uuid = disk_super->dev_item.uuid;
2327 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2328 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2329 disk_super->metadata_uuid);
2331 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2334 btrfs_release_disk_super(disk_super);
2336 device = ERR_PTR(-ENOENT);
2337 blkdev_put(bdev, FMODE_READ);
2342 * Lookup a device given by device id, or the path if the id is 0.
2344 struct btrfs_device *btrfs_find_device_by_devspec(
2345 struct btrfs_fs_info *fs_info, u64 devid,
2346 const char *device_path)
2348 struct btrfs_device *device;
2351 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2354 return ERR_PTR(-ENOENT);
2358 if (!device_path || !device_path[0])
2359 return ERR_PTR(-EINVAL);
2361 if (strcmp(device_path, "missing") == 0) {
2362 /* Find first missing device */
2363 list_for_each_entry(device, &fs_info->fs_devices->devices,
2365 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2366 &device->dev_state) && !device->bdev)
2369 return ERR_PTR(-ENOENT);
2372 return btrfs_find_device_by_path(fs_info, device_path);
2376 * does all the dirty work required for changing file system's UUID.
2378 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2380 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2381 struct btrfs_fs_devices *old_devices;
2382 struct btrfs_fs_devices *seed_devices;
2383 struct btrfs_super_block *disk_super = fs_info->super_copy;
2384 struct btrfs_device *device;
2387 lockdep_assert_held(&uuid_mutex);
2388 if (!fs_devices->seeding)
2392 * Private copy of the seed devices, anchored at
2393 * fs_info->fs_devices->seed_list
2395 seed_devices = alloc_fs_devices(NULL, NULL);
2396 if (IS_ERR(seed_devices))
2397 return PTR_ERR(seed_devices);
2400 * It's necessary to retain a copy of the original seed fs_devices in
2401 * fs_uuids so that filesystems which have been seeded can successfully
2402 * reference the seed device from open_seed_devices. This also supports
2405 old_devices = clone_fs_devices(fs_devices);
2406 if (IS_ERR(old_devices)) {
2407 kfree(seed_devices);
2408 return PTR_ERR(old_devices);
2411 list_add(&old_devices->fs_list, &fs_uuids);
2413 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2414 seed_devices->opened = 1;
2415 INIT_LIST_HEAD(&seed_devices->devices);
2416 INIT_LIST_HEAD(&seed_devices->alloc_list);
2417 mutex_init(&seed_devices->device_list_mutex);
2419 mutex_lock(&fs_devices->device_list_mutex);
2420 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2422 list_for_each_entry(device, &seed_devices->devices, dev_list)
2423 device->fs_devices = seed_devices;
2425 fs_devices->seeding = false;
2426 fs_devices->num_devices = 0;
2427 fs_devices->open_devices = 0;
2428 fs_devices->missing_devices = 0;
2429 fs_devices->rotating = false;
2430 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2432 generate_random_uuid(fs_devices->fsid);
2433 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2434 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2435 mutex_unlock(&fs_devices->device_list_mutex);
2437 super_flags = btrfs_super_flags(disk_super) &
2438 ~BTRFS_SUPER_FLAG_SEEDING;
2439 btrfs_set_super_flags(disk_super, super_flags);
2445 * Store the expected generation for seed devices in device items.
2447 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2449 struct btrfs_fs_info *fs_info = trans->fs_info;
2450 struct btrfs_root *root = fs_info->chunk_root;
2451 struct btrfs_path *path;
2452 struct extent_buffer *leaf;
2453 struct btrfs_dev_item *dev_item;
2454 struct btrfs_device *device;
2455 struct btrfs_key key;
2456 u8 fs_uuid[BTRFS_FSID_SIZE];
2457 u8 dev_uuid[BTRFS_UUID_SIZE];
2461 path = btrfs_alloc_path();
2465 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2467 key.type = BTRFS_DEV_ITEM_KEY;
2470 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2474 leaf = path->nodes[0];
2476 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2477 ret = btrfs_next_leaf(root, path);
2482 leaf = path->nodes[0];
2483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2484 btrfs_release_path(path);
2488 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2489 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2490 key.type != BTRFS_DEV_ITEM_KEY)
2493 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2494 struct btrfs_dev_item);
2495 devid = btrfs_device_id(leaf, dev_item);
2496 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2498 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2500 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2502 BUG_ON(!device); /* Logic error */
2504 if (device->fs_devices->seeding) {
2505 btrfs_set_device_generation(leaf, dev_item,
2506 device->generation);
2507 btrfs_mark_buffer_dirty(leaf);
2515 btrfs_free_path(path);
2519 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2521 struct btrfs_root *root = fs_info->dev_root;
2522 struct request_queue *q;
2523 struct btrfs_trans_handle *trans;
2524 struct btrfs_device *device;
2525 struct block_device *bdev;
2526 struct super_block *sb = fs_info->sb;
2527 struct rcu_string *name;
2528 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2529 u64 orig_super_total_bytes;
2530 u64 orig_super_num_devices;
2531 int seeding_dev = 0;
2533 bool locked = false;
2535 if (sb_rdonly(sb) && !fs_devices->seeding)
2538 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2539 fs_info->bdev_holder);
2541 return PTR_ERR(bdev);
2543 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2548 if (fs_devices->seeding) {
2550 down_write(&sb->s_umount);
2551 mutex_lock(&uuid_mutex);
2555 sync_blockdev(bdev);
2558 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2559 if (device->bdev == bdev) {
2567 device = btrfs_alloc_device(fs_info, NULL, NULL);
2568 if (IS_ERR(device)) {
2569 /* we can safely leave the fs_devices entry around */
2570 ret = PTR_ERR(device);
2574 name = rcu_string_strdup(device_path, GFP_KERNEL);
2577 goto error_free_device;
2579 rcu_assign_pointer(device->name, name);
2581 device->fs_info = fs_info;
2582 device->bdev = bdev;
2584 ret = btrfs_get_dev_zone_info(device);
2586 goto error_free_device;
2588 trans = btrfs_start_transaction(root, 0);
2589 if (IS_ERR(trans)) {
2590 ret = PTR_ERR(trans);
2591 goto error_free_zone;
2594 q = bdev_get_queue(bdev);
2595 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2596 device->generation = trans->transid;
2597 device->io_width = fs_info->sectorsize;
2598 device->io_align = fs_info->sectorsize;
2599 device->sector_size = fs_info->sectorsize;
2600 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2601 fs_info->sectorsize);
2602 device->disk_total_bytes = device->total_bytes;
2603 device->commit_total_bytes = device->total_bytes;
2604 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2605 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2606 device->mode = FMODE_EXCL;
2607 device->dev_stats_valid = 1;
2608 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2611 btrfs_clear_sb_rdonly(sb);
2612 ret = btrfs_prepare_sprout(fs_info);
2614 btrfs_abort_transaction(trans, ret);
2619 device->fs_devices = fs_devices;
2621 mutex_lock(&fs_devices->device_list_mutex);
2622 mutex_lock(&fs_info->chunk_mutex);
2623 list_add_rcu(&device->dev_list, &fs_devices->devices);
2624 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2625 fs_devices->num_devices++;
2626 fs_devices->open_devices++;
2627 fs_devices->rw_devices++;
2628 fs_devices->total_devices++;
2629 fs_devices->total_rw_bytes += device->total_bytes;
2631 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2633 if (!blk_queue_nonrot(q))
2634 fs_devices->rotating = true;
2636 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2637 btrfs_set_super_total_bytes(fs_info->super_copy,
2638 round_down(orig_super_total_bytes + device->total_bytes,
2639 fs_info->sectorsize));
2641 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2642 btrfs_set_super_num_devices(fs_info->super_copy,
2643 orig_super_num_devices + 1);
2646 * we've got more storage, clear any full flags on the space
2649 btrfs_clear_space_info_full(fs_info);
2651 mutex_unlock(&fs_info->chunk_mutex);
2653 /* Add sysfs device entry */
2654 btrfs_sysfs_add_device(device);
2656 mutex_unlock(&fs_devices->device_list_mutex);
2659 mutex_lock(&fs_info->chunk_mutex);
2660 ret = init_first_rw_device(trans);
2661 mutex_unlock(&fs_info->chunk_mutex);
2663 btrfs_abort_transaction(trans, ret);
2668 ret = btrfs_add_dev_item(trans, device);
2670 btrfs_abort_transaction(trans, ret);
2675 ret = btrfs_finish_sprout(trans);
2677 btrfs_abort_transaction(trans, ret);
2682 * fs_devices now represents the newly sprouted filesystem and
2683 * its fsid has been changed by btrfs_prepare_sprout
2685 btrfs_sysfs_update_sprout_fsid(fs_devices);
2688 ret = btrfs_commit_transaction(trans);
2691 mutex_unlock(&uuid_mutex);
2692 up_write(&sb->s_umount);
2695 if (ret) /* transaction commit */
2698 ret = btrfs_relocate_sys_chunks(fs_info);
2700 btrfs_handle_fs_error(fs_info, ret,
2701 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2702 trans = btrfs_attach_transaction(root);
2703 if (IS_ERR(trans)) {
2704 if (PTR_ERR(trans) == -ENOENT)
2706 ret = PTR_ERR(trans);
2710 ret = btrfs_commit_transaction(trans);
2714 * Now that we have written a new super block to this device, check all
2715 * other fs_devices list if device_path alienates any other scanned
2717 * We can ignore the return value as it typically returns -EINVAL and
2718 * only succeeds if the device was an alien.
2720 btrfs_forget_devices(device_path);
2722 /* Update ctime/mtime for blkid or udev */
2723 update_dev_time(bdev);
2728 btrfs_sysfs_remove_device(device);
2729 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2730 mutex_lock(&fs_info->chunk_mutex);
2731 list_del_rcu(&device->dev_list);
2732 list_del(&device->dev_alloc_list);
2733 fs_info->fs_devices->num_devices--;
2734 fs_info->fs_devices->open_devices--;
2735 fs_info->fs_devices->rw_devices--;
2736 fs_info->fs_devices->total_devices--;
2737 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2738 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2739 btrfs_set_super_total_bytes(fs_info->super_copy,
2740 orig_super_total_bytes);
2741 btrfs_set_super_num_devices(fs_info->super_copy,
2742 orig_super_num_devices);
2743 mutex_unlock(&fs_info->chunk_mutex);
2744 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2747 btrfs_set_sb_rdonly(sb);
2749 btrfs_end_transaction(trans);
2751 btrfs_destroy_dev_zone_info(device);
2753 btrfs_free_device(device);
2755 blkdev_put(bdev, FMODE_EXCL);
2757 mutex_unlock(&uuid_mutex);
2758 up_write(&sb->s_umount);
2763 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2764 struct btrfs_device *device)
2767 struct btrfs_path *path;
2768 struct btrfs_root *root = device->fs_info->chunk_root;
2769 struct btrfs_dev_item *dev_item;
2770 struct extent_buffer *leaf;
2771 struct btrfs_key key;
2773 path = btrfs_alloc_path();
2777 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2778 key.type = BTRFS_DEV_ITEM_KEY;
2779 key.offset = device->devid;
2781 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2790 leaf = path->nodes[0];
2791 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2793 btrfs_set_device_id(leaf, dev_item, device->devid);
2794 btrfs_set_device_type(leaf, dev_item, device->type);
2795 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2796 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2797 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2798 btrfs_set_device_total_bytes(leaf, dev_item,
2799 btrfs_device_get_disk_total_bytes(device));
2800 btrfs_set_device_bytes_used(leaf, dev_item,
2801 btrfs_device_get_bytes_used(device));
2802 btrfs_mark_buffer_dirty(leaf);
2805 btrfs_free_path(path);
2809 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2810 struct btrfs_device *device, u64 new_size)
2812 struct btrfs_fs_info *fs_info = device->fs_info;
2813 struct btrfs_super_block *super_copy = fs_info->super_copy;
2817 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2820 new_size = round_down(new_size, fs_info->sectorsize);
2822 mutex_lock(&fs_info->chunk_mutex);
2823 old_total = btrfs_super_total_bytes(super_copy);
2824 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2826 if (new_size <= device->total_bytes ||
2827 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2828 mutex_unlock(&fs_info->chunk_mutex);
2832 btrfs_set_super_total_bytes(super_copy,
2833 round_down(old_total + diff, fs_info->sectorsize));
2834 device->fs_devices->total_rw_bytes += diff;
2836 btrfs_device_set_total_bytes(device, new_size);
2837 btrfs_device_set_disk_total_bytes(device, new_size);
2838 btrfs_clear_space_info_full(device->fs_info);
2839 if (list_empty(&device->post_commit_list))
2840 list_add_tail(&device->post_commit_list,
2841 &trans->transaction->dev_update_list);
2842 mutex_unlock(&fs_info->chunk_mutex);
2844 return btrfs_update_device(trans, device);
2847 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2849 struct btrfs_fs_info *fs_info = trans->fs_info;
2850 struct btrfs_root *root = fs_info->chunk_root;
2852 struct btrfs_path *path;
2853 struct btrfs_key key;
2855 path = btrfs_alloc_path();
2859 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2860 key.offset = chunk_offset;
2861 key.type = BTRFS_CHUNK_ITEM_KEY;
2863 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2866 else if (ret > 0) { /* Logic error or corruption */
2867 btrfs_handle_fs_error(fs_info, -ENOENT,
2868 "Failed lookup while freeing chunk.");
2873 ret = btrfs_del_item(trans, root, path);
2875 btrfs_handle_fs_error(fs_info, ret,
2876 "Failed to delete chunk item.");
2878 btrfs_free_path(path);
2882 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2884 struct btrfs_super_block *super_copy = fs_info->super_copy;
2885 struct btrfs_disk_key *disk_key;
2886 struct btrfs_chunk *chunk;
2893 struct btrfs_key key;
2895 lockdep_assert_held(&fs_info->chunk_mutex);
2896 array_size = btrfs_super_sys_array_size(super_copy);
2898 ptr = super_copy->sys_chunk_array;
2901 while (cur < array_size) {
2902 disk_key = (struct btrfs_disk_key *)ptr;
2903 btrfs_disk_key_to_cpu(&key, disk_key);
2905 len = sizeof(*disk_key);
2907 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2908 chunk = (struct btrfs_chunk *)(ptr + len);
2909 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2910 len += btrfs_chunk_item_size(num_stripes);
2915 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2916 key.offset == chunk_offset) {
2917 memmove(ptr, ptr + len, array_size - (cur + len));
2919 btrfs_set_super_sys_array_size(super_copy, array_size);
2929 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2930 * @logical: Logical block offset in bytes.
2931 * @length: Length of extent in bytes.
2933 * Return: Chunk mapping or ERR_PTR.
2935 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2936 u64 logical, u64 length)
2938 struct extent_map_tree *em_tree;
2939 struct extent_map *em;
2941 em_tree = &fs_info->mapping_tree;
2942 read_lock(&em_tree->lock);
2943 em = lookup_extent_mapping(em_tree, logical, length);
2944 read_unlock(&em_tree->lock);
2947 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2949 return ERR_PTR(-EINVAL);
2952 if (em->start > logical || em->start + em->len < logical) {
2954 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2955 logical, length, em->start, em->start + em->len);
2956 free_extent_map(em);
2957 return ERR_PTR(-EINVAL);
2960 /* callers are responsible for dropping em's ref. */
2964 static int remove_chunk_item(struct btrfs_trans_handle *trans,
2965 struct map_lookup *map, u64 chunk_offset)
2970 * Removing chunk items and updating the device items in the chunks btree
2971 * requires holding the chunk_mutex.
2972 * See the comment at btrfs_chunk_alloc() for the details.
2974 lockdep_assert_held(&trans->fs_info->chunk_mutex);
2976 for (i = 0; i < map->num_stripes; i++) {
2979 ret = btrfs_update_device(trans, map->stripes[i].dev);
2984 return btrfs_free_chunk(trans, chunk_offset);
2987 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2989 struct btrfs_fs_info *fs_info = trans->fs_info;
2990 struct extent_map *em;
2991 struct map_lookup *map;
2992 u64 dev_extent_len = 0;
2994 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2996 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2999 * This is a logic error, but we don't want to just rely on the
3000 * user having built with ASSERT enabled, so if ASSERT doesn't
3001 * do anything we still error out.
3006 map = em->map_lookup;
3009 * First delete the device extent items from the devices btree.
3010 * We take the device_list_mutex to avoid racing with the finishing phase
3011 * of a device replace operation. See the comment below before acquiring
3012 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3013 * because that can result in a deadlock when deleting the device extent
3014 * items from the devices btree - COWing an extent buffer from the btree
3015 * may result in allocating a new metadata chunk, which would attempt to
3016 * lock again fs_info->chunk_mutex.
3018 mutex_lock(&fs_devices->device_list_mutex);
3019 for (i = 0; i < map->num_stripes; i++) {
3020 struct btrfs_device *device = map->stripes[i].dev;
3021 ret = btrfs_free_dev_extent(trans, device,
3022 map->stripes[i].physical,
3025 mutex_unlock(&fs_devices->device_list_mutex);
3026 btrfs_abort_transaction(trans, ret);
3030 if (device->bytes_used > 0) {
3031 mutex_lock(&fs_info->chunk_mutex);
3032 btrfs_device_set_bytes_used(device,
3033 device->bytes_used - dev_extent_len);
3034 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3035 btrfs_clear_space_info_full(fs_info);
3036 mutex_unlock(&fs_info->chunk_mutex);
3039 mutex_unlock(&fs_devices->device_list_mutex);
3042 * We acquire fs_info->chunk_mutex for 2 reasons:
3044 * 1) Just like with the first phase of the chunk allocation, we must
3045 * reserve system space, do all chunk btree updates and deletions, and
3046 * update the system chunk array in the superblock while holding this
3047 * mutex. This is for similar reasons as explained on the comment at
3048 * the top of btrfs_chunk_alloc();
3050 * 2) Prevent races with the final phase of a device replace operation
3051 * that replaces the device object associated with the map's stripes,
3052 * because the device object's id can change at any time during that
3053 * final phase of the device replace operation
3054 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3055 * replaced device and then see it with an ID of
3056 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3057 * the device item, which does not exists on the chunk btree.
3058 * The finishing phase of device replace acquires both the
3059 * device_list_mutex and the chunk_mutex, in that order, so we are
3060 * safe by just acquiring the chunk_mutex.
3062 trans->removing_chunk = true;
3063 mutex_lock(&fs_info->chunk_mutex);
3065 check_system_chunk(trans, map->type);
3067 ret = remove_chunk_item(trans, map, chunk_offset);
3069 * Normally we should not get -ENOSPC since we reserved space before
3070 * through the call to check_system_chunk().
3072 * Despite our system space_info having enough free space, we may not
3073 * be able to allocate extents from its block groups, because all have
3074 * an incompatible profile, which will force us to allocate a new system
3075 * block group with the right profile, or right after we called
3076 * check_system_space() above, a scrub turned the only system block group
3077 * with enough free space into RO mode.
3078 * This is explained with more detail at do_chunk_alloc().
3080 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3082 if (ret == -ENOSPC) {
3083 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3084 struct btrfs_block_group *sys_bg;
3086 sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3087 if (IS_ERR(sys_bg)) {
3088 ret = PTR_ERR(sys_bg);
3089 btrfs_abort_transaction(trans, ret);
3093 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3095 btrfs_abort_transaction(trans, ret);
3099 ret = remove_chunk_item(trans, map, chunk_offset);
3101 btrfs_abort_transaction(trans, ret);
3105 btrfs_abort_transaction(trans, ret);
3109 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3111 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3112 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3114 btrfs_abort_transaction(trans, ret);
3119 mutex_unlock(&fs_info->chunk_mutex);
3120 trans->removing_chunk = false;
3123 * We are done with chunk btree updates and deletions, so release the
3124 * system space we previously reserved (with check_system_chunk()).
3126 btrfs_trans_release_chunk_metadata(trans);
3128 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3130 btrfs_abort_transaction(trans, ret);
3135 if (trans->removing_chunk) {
3136 mutex_unlock(&fs_info->chunk_mutex);
3137 trans->removing_chunk = false;
3140 free_extent_map(em);
3144 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3146 struct btrfs_root *root = fs_info->chunk_root;
3147 struct btrfs_trans_handle *trans;
3148 struct btrfs_block_group *block_group;
3153 * Prevent races with automatic removal of unused block groups.
3154 * After we relocate and before we remove the chunk with offset
3155 * chunk_offset, automatic removal of the block group can kick in,
3156 * resulting in a failure when calling btrfs_remove_chunk() below.
3158 * Make sure to acquire this mutex before doing a tree search (dev
3159 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3160 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3161 * we release the path used to search the chunk/dev tree and before
3162 * the current task acquires this mutex and calls us.
3164 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3166 /* step one, relocate all the extents inside this chunk */
3167 btrfs_scrub_pause(fs_info);
3168 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3169 btrfs_scrub_continue(fs_info);
3173 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3176 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3177 length = block_group->length;
3178 btrfs_put_block_group(block_group);
3181 * On a zoned file system, discard the whole block group, this will
3182 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3183 * resetting the zone fails, don't treat it as a fatal problem from the
3184 * filesystem's point of view.
3186 if (btrfs_is_zoned(fs_info)) {
3187 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3190 "failed to reset zone %llu after relocation",
3194 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3196 if (IS_ERR(trans)) {
3197 ret = PTR_ERR(trans);
3198 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3203 * step two, delete the device extents and the
3204 * chunk tree entries
3206 ret = btrfs_remove_chunk(trans, chunk_offset);
3207 btrfs_end_transaction(trans);
3211 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3213 struct btrfs_root *chunk_root = fs_info->chunk_root;
3214 struct btrfs_path *path;
3215 struct extent_buffer *leaf;
3216 struct btrfs_chunk *chunk;
3217 struct btrfs_key key;
3218 struct btrfs_key found_key;
3220 bool retried = false;
3224 path = btrfs_alloc_path();
3229 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3230 key.offset = (u64)-1;
3231 key.type = BTRFS_CHUNK_ITEM_KEY;
3234 mutex_lock(&fs_info->reclaim_bgs_lock);
3235 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3237 mutex_unlock(&fs_info->reclaim_bgs_lock);
3240 BUG_ON(ret == 0); /* Corruption */
3242 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3245 mutex_unlock(&fs_info->reclaim_bgs_lock);
3251 leaf = path->nodes[0];
3252 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3254 chunk = btrfs_item_ptr(leaf, path->slots[0],
3255 struct btrfs_chunk);
3256 chunk_type = btrfs_chunk_type(leaf, chunk);
3257 btrfs_release_path(path);
3259 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3260 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3266 mutex_unlock(&fs_info->reclaim_bgs_lock);
3268 if (found_key.offset == 0)
3270 key.offset = found_key.offset - 1;
3273 if (failed && !retried) {
3277 } else if (WARN_ON(failed && retried)) {
3281 btrfs_free_path(path);
3286 * return 1 : allocate a data chunk successfully,
3287 * return <0: errors during allocating a data chunk,
3288 * return 0 : no need to allocate a data chunk.
3290 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3293 struct btrfs_block_group *cache;
3297 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3299 chunk_type = cache->flags;
3300 btrfs_put_block_group(cache);
3302 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3305 spin_lock(&fs_info->data_sinfo->lock);
3306 bytes_used = fs_info->data_sinfo->bytes_used;
3307 spin_unlock(&fs_info->data_sinfo->lock);
3310 struct btrfs_trans_handle *trans;
3313 trans = btrfs_join_transaction(fs_info->tree_root);
3315 return PTR_ERR(trans);
3317 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3318 btrfs_end_transaction(trans);
3327 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3328 struct btrfs_balance_control *bctl)
3330 struct btrfs_root *root = fs_info->tree_root;
3331 struct btrfs_trans_handle *trans;
3332 struct btrfs_balance_item *item;
3333 struct btrfs_disk_balance_args disk_bargs;
3334 struct btrfs_path *path;
3335 struct extent_buffer *leaf;
3336 struct btrfs_key key;
3339 path = btrfs_alloc_path();
3343 trans = btrfs_start_transaction(root, 0);
3344 if (IS_ERR(trans)) {
3345 btrfs_free_path(path);
3346 return PTR_ERR(trans);
3349 key.objectid = BTRFS_BALANCE_OBJECTID;
3350 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3353 ret = btrfs_insert_empty_item(trans, root, path, &key,
3358 leaf = path->nodes[0];
3359 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3361 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3363 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3364 btrfs_set_balance_data(leaf, item, &disk_bargs);
3365 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3366 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3367 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3368 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3370 btrfs_set_balance_flags(leaf, item, bctl->flags);
3372 btrfs_mark_buffer_dirty(leaf);
3374 btrfs_free_path(path);
3375 err = btrfs_commit_transaction(trans);
3381 static int del_balance_item(struct btrfs_fs_info *fs_info)
3383 struct btrfs_root *root = fs_info->tree_root;
3384 struct btrfs_trans_handle *trans;
3385 struct btrfs_path *path;
3386 struct btrfs_key key;
3389 path = btrfs_alloc_path();
3393 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3394 if (IS_ERR(trans)) {
3395 btrfs_free_path(path);
3396 return PTR_ERR(trans);
3399 key.objectid = BTRFS_BALANCE_OBJECTID;
3400 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3403 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3411 ret = btrfs_del_item(trans, root, path);
3413 btrfs_free_path(path);
3414 err = btrfs_commit_transaction(trans);
3421 * This is a heuristic used to reduce the number of chunks balanced on
3422 * resume after balance was interrupted.
3424 static void update_balance_args(struct btrfs_balance_control *bctl)
3427 * Turn on soft mode for chunk types that were being converted.
3429 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3430 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3431 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3432 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3433 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3434 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3437 * Turn on usage filter if is not already used. The idea is
3438 * that chunks that we have already balanced should be
3439 * reasonably full. Don't do it for chunks that are being
3440 * converted - that will keep us from relocating unconverted
3441 * (albeit full) chunks.
3443 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3444 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3445 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3446 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3447 bctl->data.usage = 90;
3449 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3450 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3451 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3452 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3453 bctl->sys.usage = 90;
3455 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3456 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3457 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3458 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3459 bctl->meta.usage = 90;
3464 * Clear the balance status in fs_info and delete the balance item from disk.
3466 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3468 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3471 BUG_ON(!fs_info->balance_ctl);
3473 spin_lock(&fs_info->balance_lock);
3474 fs_info->balance_ctl = NULL;
3475 spin_unlock(&fs_info->balance_lock);
3478 ret = del_balance_item(fs_info);
3480 btrfs_handle_fs_error(fs_info, ret, NULL);
3484 * Balance filters. Return 1 if chunk should be filtered out
3485 * (should not be balanced).
3487 static int chunk_profiles_filter(u64 chunk_type,
3488 struct btrfs_balance_args *bargs)
3490 chunk_type = chunk_to_extended(chunk_type) &
3491 BTRFS_EXTENDED_PROFILE_MASK;
3493 if (bargs->profiles & chunk_type)
3499 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3500 struct btrfs_balance_args *bargs)
3502 struct btrfs_block_group *cache;
3504 u64 user_thresh_min;
3505 u64 user_thresh_max;
3508 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3509 chunk_used = cache->used;
3511 if (bargs->usage_min == 0)
3512 user_thresh_min = 0;
3514 user_thresh_min = div_factor_fine(cache->length,
3517 if (bargs->usage_max == 0)
3518 user_thresh_max = 1;
3519 else if (bargs->usage_max > 100)
3520 user_thresh_max = cache->length;
3522 user_thresh_max = div_factor_fine(cache->length,
3525 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3528 btrfs_put_block_group(cache);
3532 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3533 u64 chunk_offset, struct btrfs_balance_args *bargs)
3535 struct btrfs_block_group *cache;
3536 u64 chunk_used, user_thresh;
3539 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3540 chunk_used = cache->used;
3542 if (bargs->usage_min == 0)
3544 else if (bargs->usage > 100)
3545 user_thresh = cache->length;
3547 user_thresh = div_factor_fine(cache->length, bargs->usage);
3549 if (chunk_used < user_thresh)
3552 btrfs_put_block_group(cache);
3556 static int chunk_devid_filter(struct extent_buffer *leaf,
3557 struct btrfs_chunk *chunk,
3558 struct btrfs_balance_args *bargs)
3560 struct btrfs_stripe *stripe;
3561 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3564 for (i = 0; i < num_stripes; i++) {
3565 stripe = btrfs_stripe_nr(chunk, i);
3566 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3573 static u64 calc_data_stripes(u64 type, int num_stripes)
3575 const int index = btrfs_bg_flags_to_raid_index(type);
3576 const int ncopies = btrfs_raid_array[index].ncopies;
3577 const int nparity = btrfs_raid_array[index].nparity;
3579 return (num_stripes - nparity) / ncopies;
3582 /* [pstart, pend) */
3583 static int chunk_drange_filter(struct extent_buffer *leaf,
3584 struct btrfs_chunk *chunk,
3585 struct btrfs_balance_args *bargs)
3587 struct btrfs_stripe *stripe;
3588 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3595 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3598 type = btrfs_chunk_type(leaf, chunk);
3599 factor = calc_data_stripes(type, num_stripes);
3601 for (i = 0; i < num_stripes; i++) {
3602 stripe = btrfs_stripe_nr(chunk, i);
3603 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3606 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3607 stripe_length = btrfs_chunk_length(leaf, chunk);
3608 stripe_length = div_u64(stripe_length, factor);
3610 if (stripe_offset < bargs->pend &&
3611 stripe_offset + stripe_length > bargs->pstart)
3618 /* [vstart, vend) */
3619 static int chunk_vrange_filter(struct extent_buffer *leaf,
3620 struct btrfs_chunk *chunk,
3622 struct btrfs_balance_args *bargs)
3624 if (chunk_offset < bargs->vend &&
3625 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3626 /* at least part of the chunk is inside this vrange */
3632 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3633 struct btrfs_chunk *chunk,
3634 struct btrfs_balance_args *bargs)
3636 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3638 if (bargs->stripes_min <= num_stripes
3639 && num_stripes <= bargs->stripes_max)
3645 static int chunk_soft_convert_filter(u64 chunk_type,
3646 struct btrfs_balance_args *bargs)
3648 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3651 chunk_type = chunk_to_extended(chunk_type) &
3652 BTRFS_EXTENDED_PROFILE_MASK;
3654 if (bargs->target == chunk_type)
3660 static int should_balance_chunk(struct extent_buffer *leaf,
3661 struct btrfs_chunk *chunk, u64 chunk_offset)
3663 struct btrfs_fs_info *fs_info = leaf->fs_info;
3664 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3665 struct btrfs_balance_args *bargs = NULL;
3666 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3669 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3670 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3674 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3675 bargs = &bctl->data;
3676 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3678 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3679 bargs = &bctl->meta;
3681 /* profiles filter */
3682 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3683 chunk_profiles_filter(chunk_type, bargs)) {
3688 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3689 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3691 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3692 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3697 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3698 chunk_devid_filter(leaf, chunk, bargs)) {
3702 /* drange filter, makes sense only with devid filter */
3703 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3704 chunk_drange_filter(leaf, chunk, bargs)) {
3709 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3710 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3714 /* stripes filter */
3715 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3716 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3720 /* soft profile changing mode */
3721 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3722 chunk_soft_convert_filter(chunk_type, bargs)) {
3727 * limited by count, must be the last filter
3729 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3730 if (bargs->limit == 0)
3734 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3736 * Same logic as the 'limit' filter; the minimum cannot be
3737 * determined here because we do not have the global information
3738 * about the count of all chunks that satisfy the filters.
3740 if (bargs->limit_max == 0)
3749 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3751 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3752 struct btrfs_root *chunk_root = fs_info->chunk_root;
3754 struct btrfs_chunk *chunk;
3755 struct btrfs_path *path = NULL;
3756 struct btrfs_key key;
3757 struct btrfs_key found_key;
3758 struct extent_buffer *leaf;
3761 int enospc_errors = 0;
3762 bool counting = true;
3763 /* The single value limit and min/max limits use the same bytes in the */
3764 u64 limit_data = bctl->data.limit;
3765 u64 limit_meta = bctl->meta.limit;
3766 u64 limit_sys = bctl->sys.limit;
3770 int chunk_reserved = 0;
3772 path = btrfs_alloc_path();
3778 /* zero out stat counters */
3779 spin_lock(&fs_info->balance_lock);
3780 memset(&bctl->stat, 0, sizeof(bctl->stat));
3781 spin_unlock(&fs_info->balance_lock);
3785 * The single value limit and min/max limits use the same bytes
3788 bctl->data.limit = limit_data;
3789 bctl->meta.limit = limit_meta;
3790 bctl->sys.limit = limit_sys;
3792 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3793 key.offset = (u64)-1;
3794 key.type = BTRFS_CHUNK_ITEM_KEY;
3797 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3798 atomic_read(&fs_info->balance_cancel_req)) {
3803 mutex_lock(&fs_info->reclaim_bgs_lock);
3804 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3806 mutex_unlock(&fs_info->reclaim_bgs_lock);
3811 * this shouldn't happen, it means the last relocate
3815 BUG(); /* FIXME break ? */
3817 ret = btrfs_previous_item(chunk_root, path, 0,
3818 BTRFS_CHUNK_ITEM_KEY);
3820 mutex_unlock(&fs_info->reclaim_bgs_lock);
3825 leaf = path->nodes[0];
3826 slot = path->slots[0];
3827 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3829 if (found_key.objectid != key.objectid) {
3830 mutex_unlock(&fs_info->reclaim_bgs_lock);
3834 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3835 chunk_type = btrfs_chunk_type(leaf, chunk);
3838 spin_lock(&fs_info->balance_lock);
3839 bctl->stat.considered++;
3840 spin_unlock(&fs_info->balance_lock);
3843 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3845 btrfs_release_path(path);
3847 mutex_unlock(&fs_info->reclaim_bgs_lock);
3852 mutex_unlock(&fs_info->reclaim_bgs_lock);
3853 spin_lock(&fs_info->balance_lock);
3854 bctl->stat.expected++;
3855 spin_unlock(&fs_info->balance_lock);
3857 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3859 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3861 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3868 * Apply limit_min filter, no need to check if the LIMITS
3869 * filter is used, limit_min is 0 by default
3871 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3872 count_data < bctl->data.limit_min)
3873 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3874 count_meta < bctl->meta.limit_min)
3875 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3876 count_sys < bctl->sys.limit_min)) {
3877 mutex_unlock(&fs_info->reclaim_bgs_lock);
3881 if (!chunk_reserved) {
3883 * We may be relocating the only data chunk we have,
3884 * which could potentially end up with losing data's
3885 * raid profile, so lets allocate an empty one in
3888 ret = btrfs_may_alloc_data_chunk(fs_info,
3891 mutex_unlock(&fs_info->reclaim_bgs_lock);
3893 } else if (ret == 1) {
3898 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3899 mutex_unlock(&fs_info->reclaim_bgs_lock);
3900 if (ret == -ENOSPC) {
3902 } else if (ret == -ETXTBSY) {
3904 "skipping relocation of block group %llu due to active swapfile",
3910 spin_lock(&fs_info->balance_lock);
3911 bctl->stat.completed++;
3912 spin_unlock(&fs_info->balance_lock);
3915 if (found_key.offset == 0)
3917 key.offset = found_key.offset - 1;
3921 btrfs_release_path(path);
3926 btrfs_free_path(path);
3927 if (enospc_errors) {
3928 btrfs_info(fs_info, "%d enospc errors during balance",
3938 * alloc_profile_is_valid - see if a given profile is valid and reduced
3939 * @flags: profile to validate
3940 * @extended: if true @flags is treated as an extended profile
3942 static int alloc_profile_is_valid(u64 flags, int extended)
3944 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3945 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3947 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3949 /* 1) check that all other bits are zeroed */
3953 /* 2) see if profile is reduced */
3955 return !extended; /* "0" is valid for usual profiles */
3957 return has_single_bit_set(flags);
3960 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3962 /* cancel requested || normal exit path */
3963 return atomic_read(&fs_info->balance_cancel_req) ||
3964 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3965 atomic_read(&fs_info->balance_cancel_req) == 0);
3969 * Validate target profile against allowed profiles and return true if it's OK.
3970 * Otherwise print the error message and return false.
3972 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3973 const struct btrfs_balance_args *bargs,
3974 u64 allowed, const char *type)
3976 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3979 if (fs_info->sectorsize < PAGE_SIZE &&
3980 bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3982 "RAID56 is not yet supported for sectorsize %u with page size %lu",
3983 fs_info->sectorsize, PAGE_SIZE);
3986 /* Profile is valid and does not have bits outside of the allowed set */
3987 if (alloc_profile_is_valid(bargs->target, 1) &&
3988 (bargs->target & ~allowed) == 0)
3991 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3992 type, btrfs_bg_type_to_raid_name(bargs->target));
3997 * Fill @buf with textual description of balance filter flags @bargs, up to
3998 * @size_buf including the terminating null. The output may be trimmed if it
3999 * does not fit into the provided buffer.
4001 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4005 u32 size_bp = size_buf;
4007 u64 flags = bargs->flags;
4008 char tmp_buf[128] = {'\0'};
4013 #define CHECK_APPEND_NOARG(a) \
4015 ret = snprintf(bp, size_bp, (a)); \
4016 if (ret < 0 || ret >= size_bp) \
4017 goto out_overflow; \
4022 #define CHECK_APPEND_1ARG(a, v1) \
4024 ret = snprintf(bp, size_bp, (a), (v1)); \
4025 if (ret < 0 || ret >= size_bp) \
4026 goto out_overflow; \
4031 #define CHECK_APPEND_2ARG(a, v1, v2) \
4033 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4034 if (ret < 0 || ret >= size_bp) \
4035 goto out_overflow; \
4040 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4041 CHECK_APPEND_1ARG("convert=%s,",
4042 btrfs_bg_type_to_raid_name(bargs->target));
4044 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4045 CHECK_APPEND_NOARG("soft,");
4047 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4048 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4050 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4053 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4054 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4056 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4057 CHECK_APPEND_2ARG("usage=%u..%u,",
4058 bargs->usage_min, bargs->usage_max);
4060 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4061 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4063 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4064 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4065 bargs->pstart, bargs->pend);
4067 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4068 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4069 bargs->vstart, bargs->vend);
4071 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4072 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4074 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4075 CHECK_APPEND_2ARG("limit=%u..%u,",
4076 bargs->limit_min, bargs->limit_max);
4078 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4079 CHECK_APPEND_2ARG("stripes=%u..%u,",
4080 bargs->stripes_min, bargs->stripes_max);
4082 #undef CHECK_APPEND_2ARG
4083 #undef CHECK_APPEND_1ARG
4084 #undef CHECK_APPEND_NOARG
4088 if (size_bp < size_buf)
4089 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4094 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4096 u32 size_buf = 1024;
4097 char tmp_buf[192] = {'\0'};
4100 u32 size_bp = size_buf;
4102 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4104 buf = kzalloc(size_buf, GFP_KERNEL);
4110 #define CHECK_APPEND_1ARG(a, v1) \
4112 ret = snprintf(bp, size_bp, (a), (v1)); \
4113 if (ret < 0 || ret >= size_bp) \
4114 goto out_overflow; \
4119 if (bctl->flags & BTRFS_BALANCE_FORCE)
4120 CHECK_APPEND_1ARG("%s", "-f ");
4122 if (bctl->flags & BTRFS_BALANCE_DATA) {
4123 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4124 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4127 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4128 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4129 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4132 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4133 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4134 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4137 #undef CHECK_APPEND_1ARG
4141 if (size_bp < size_buf)
4142 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4143 btrfs_info(fs_info, "balance: %s %s",
4144 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4145 "resume" : "start", buf);
4151 * Should be called with balance mutexe held
4153 int btrfs_balance(struct btrfs_fs_info *fs_info,
4154 struct btrfs_balance_control *bctl,
4155 struct btrfs_ioctl_balance_args *bargs)
4157 u64 meta_target, data_target;
4163 bool reducing_redundancy;
4166 if (btrfs_fs_closing(fs_info) ||
4167 atomic_read(&fs_info->balance_pause_req) ||
4168 btrfs_should_cancel_balance(fs_info)) {
4173 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4174 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4178 * In case of mixed groups both data and meta should be picked,
4179 * and identical options should be given for both of them.
4181 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4182 if (mixed && (bctl->flags & allowed)) {
4183 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4184 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4185 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4187 "balance: mixed groups data and metadata options must be the same");
4194 * rw_devices will not change at the moment, device add/delete/replace
4197 num_devices = fs_info->fs_devices->rw_devices;
4200 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4201 * special bit for it, to make it easier to distinguish. Thus we need
4202 * to set it manually, or balance would refuse the profile.
4204 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4205 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4206 if (num_devices >= btrfs_raid_array[i].devs_min)
4207 allowed |= btrfs_raid_array[i].bg_flag;
4209 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4210 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4211 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4217 * Allow to reduce metadata or system integrity only if force set for
4218 * profiles with redundancy (copies, parity)
4221 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4222 if (btrfs_raid_array[i].ncopies >= 2 ||
4223 btrfs_raid_array[i].tolerated_failures >= 1)
4224 allowed |= btrfs_raid_array[i].bg_flag;
4227 seq = read_seqbegin(&fs_info->profiles_lock);
4229 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4230 (fs_info->avail_system_alloc_bits & allowed) &&
4231 !(bctl->sys.target & allowed)) ||
4232 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4233 (fs_info->avail_metadata_alloc_bits & allowed) &&
4234 !(bctl->meta.target & allowed)))
4235 reducing_redundancy = true;
4237 reducing_redundancy = false;
4239 /* if we're not converting, the target field is uninitialized */
4240 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4241 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4242 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4243 bctl->data.target : fs_info->avail_data_alloc_bits;
4244 } while (read_seqretry(&fs_info->profiles_lock, seq));
4246 if (reducing_redundancy) {
4247 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4249 "balance: force reducing metadata redundancy");
4252 "balance: reduces metadata redundancy, use --force if you want this");
4258 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4259 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4261 "balance: metadata profile %s has lower redundancy than data profile %s",
4262 btrfs_bg_type_to_raid_name(meta_target),
4263 btrfs_bg_type_to_raid_name(data_target));
4266 ret = insert_balance_item(fs_info, bctl);
4267 if (ret && ret != -EEXIST)
4270 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4271 BUG_ON(ret == -EEXIST);
4272 BUG_ON(fs_info->balance_ctl);
4273 spin_lock(&fs_info->balance_lock);
4274 fs_info->balance_ctl = bctl;
4275 spin_unlock(&fs_info->balance_lock);
4277 BUG_ON(ret != -EEXIST);
4278 spin_lock(&fs_info->balance_lock);
4279 update_balance_args(bctl);
4280 spin_unlock(&fs_info->balance_lock);
4283 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4284 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4285 describe_balance_start_or_resume(fs_info);
4286 mutex_unlock(&fs_info->balance_mutex);
4288 ret = __btrfs_balance(fs_info);
4290 mutex_lock(&fs_info->balance_mutex);
4291 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4292 btrfs_info(fs_info, "balance: paused");
4294 * Balance can be canceled by:
4296 * - Regular cancel request
4297 * Then ret == -ECANCELED and balance_cancel_req > 0
4299 * - Fatal signal to "btrfs" process
4300 * Either the signal caught by wait_reserve_ticket() and callers
4301 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4303 * Either way, in this case balance_cancel_req = 0, and
4304 * ret == -EINTR or ret == -ECANCELED.
4306 * So here we only check the return value to catch canceled balance.
4308 else if (ret == -ECANCELED || ret == -EINTR)
4309 btrfs_info(fs_info, "balance: canceled");
4311 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4313 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4316 memset(bargs, 0, sizeof(*bargs));
4317 btrfs_update_ioctl_balance_args(fs_info, bargs);
4320 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4321 balance_need_close(fs_info)) {
4322 reset_balance_state(fs_info);
4323 btrfs_exclop_finish(fs_info);
4326 wake_up(&fs_info->balance_wait_q);
4330 if (bctl->flags & BTRFS_BALANCE_RESUME)
4331 reset_balance_state(fs_info);
4334 btrfs_exclop_finish(fs_info);
4339 static int balance_kthread(void *data)
4341 struct btrfs_fs_info *fs_info = data;
4344 mutex_lock(&fs_info->balance_mutex);
4345 if (fs_info->balance_ctl)
4346 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4347 mutex_unlock(&fs_info->balance_mutex);
4352 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4354 struct task_struct *tsk;
4356 mutex_lock(&fs_info->balance_mutex);
4357 if (!fs_info->balance_ctl) {
4358 mutex_unlock(&fs_info->balance_mutex);
4361 mutex_unlock(&fs_info->balance_mutex);
4363 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4364 btrfs_info(fs_info, "balance: resume skipped");
4369 * A ro->rw remount sequence should continue with the paused balance
4370 * regardless of who pauses it, system or the user as of now, so set
4373 spin_lock(&fs_info->balance_lock);
4374 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4375 spin_unlock(&fs_info->balance_lock);
4377 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4378 return PTR_ERR_OR_ZERO(tsk);
4381 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4383 struct btrfs_balance_control *bctl;
4384 struct btrfs_balance_item *item;
4385 struct btrfs_disk_balance_args disk_bargs;
4386 struct btrfs_path *path;
4387 struct extent_buffer *leaf;
4388 struct btrfs_key key;
4391 path = btrfs_alloc_path();
4395 key.objectid = BTRFS_BALANCE_OBJECTID;
4396 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4399 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4402 if (ret > 0) { /* ret = -ENOENT; */
4407 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4413 leaf = path->nodes[0];
4414 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4416 bctl->flags = btrfs_balance_flags(leaf, item);
4417 bctl->flags |= BTRFS_BALANCE_RESUME;
4419 btrfs_balance_data(leaf, item, &disk_bargs);
4420 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4421 btrfs_balance_meta(leaf, item, &disk_bargs);
4422 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4423 btrfs_balance_sys(leaf, item, &disk_bargs);
4424 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4427 * This should never happen, as the paused balance state is recovered
4428 * during mount without any chance of other exclusive ops to collide.
4430 * This gives the exclusive op status to balance and keeps in paused
4431 * state until user intervention (cancel or umount). If the ownership
4432 * cannot be assigned, show a message but do not fail. The balance
4433 * is in a paused state and must have fs_info::balance_ctl properly
4436 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4438 "balance: cannot set exclusive op status, resume manually");
4440 btrfs_release_path(path);
4442 mutex_lock(&fs_info->balance_mutex);
4443 BUG_ON(fs_info->balance_ctl);
4444 spin_lock(&fs_info->balance_lock);
4445 fs_info->balance_ctl = bctl;
4446 spin_unlock(&fs_info->balance_lock);
4447 mutex_unlock(&fs_info->balance_mutex);
4449 btrfs_free_path(path);
4453 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4457 mutex_lock(&fs_info->balance_mutex);
4458 if (!fs_info->balance_ctl) {
4459 mutex_unlock(&fs_info->balance_mutex);
4463 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4464 atomic_inc(&fs_info->balance_pause_req);
4465 mutex_unlock(&fs_info->balance_mutex);
4467 wait_event(fs_info->balance_wait_q,
4468 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4470 mutex_lock(&fs_info->balance_mutex);
4471 /* we are good with balance_ctl ripped off from under us */
4472 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4473 atomic_dec(&fs_info->balance_pause_req);
4478 mutex_unlock(&fs_info->balance_mutex);
4482 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4484 mutex_lock(&fs_info->balance_mutex);
4485 if (!fs_info->balance_ctl) {
4486 mutex_unlock(&fs_info->balance_mutex);
4491 * A paused balance with the item stored on disk can be resumed at
4492 * mount time if the mount is read-write. Otherwise it's still paused
4493 * and we must not allow cancelling as it deletes the item.
4495 if (sb_rdonly(fs_info->sb)) {
4496 mutex_unlock(&fs_info->balance_mutex);
4500 atomic_inc(&fs_info->balance_cancel_req);
4502 * if we are running just wait and return, balance item is
4503 * deleted in btrfs_balance in this case
4505 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4506 mutex_unlock(&fs_info->balance_mutex);
4507 wait_event(fs_info->balance_wait_q,
4508 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4509 mutex_lock(&fs_info->balance_mutex);
4511 mutex_unlock(&fs_info->balance_mutex);
4513 * Lock released to allow other waiters to continue, we'll
4514 * reexamine the status again.
4516 mutex_lock(&fs_info->balance_mutex);
4518 if (fs_info->balance_ctl) {
4519 reset_balance_state(fs_info);
4520 btrfs_exclop_finish(fs_info);
4521 btrfs_info(fs_info, "balance: canceled");
4525 BUG_ON(fs_info->balance_ctl ||
4526 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4527 atomic_dec(&fs_info->balance_cancel_req);
4528 mutex_unlock(&fs_info->balance_mutex);
4532 int btrfs_uuid_scan_kthread(void *data)
4534 struct btrfs_fs_info *fs_info = data;
4535 struct btrfs_root *root = fs_info->tree_root;
4536 struct btrfs_key key;
4537 struct btrfs_path *path = NULL;
4539 struct extent_buffer *eb;
4541 struct btrfs_root_item root_item;
4543 struct btrfs_trans_handle *trans = NULL;
4544 bool closing = false;
4546 path = btrfs_alloc_path();
4553 key.type = BTRFS_ROOT_ITEM_KEY;
4557 if (btrfs_fs_closing(fs_info)) {
4561 ret = btrfs_search_forward(root, &key, path,
4562 BTRFS_OLDEST_GENERATION);
4569 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4570 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4571 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4572 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4575 eb = path->nodes[0];
4576 slot = path->slots[0];
4577 item_size = btrfs_item_size_nr(eb, slot);
4578 if (item_size < sizeof(root_item))
4581 read_extent_buffer(eb, &root_item,
4582 btrfs_item_ptr_offset(eb, slot),
4583 (int)sizeof(root_item));
4584 if (btrfs_root_refs(&root_item) == 0)
4587 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4588 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4592 btrfs_release_path(path);
4594 * 1 - subvol uuid item
4595 * 1 - received_subvol uuid item
4597 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4598 if (IS_ERR(trans)) {
4599 ret = PTR_ERR(trans);
4607 btrfs_release_path(path);
4608 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4609 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4610 BTRFS_UUID_KEY_SUBVOL,
4613 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4619 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4620 ret = btrfs_uuid_tree_add(trans,
4621 root_item.received_uuid,
4622 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4625 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4632 btrfs_release_path(path);
4634 ret = btrfs_end_transaction(trans);
4640 if (key.offset < (u64)-1) {
4642 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4644 key.type = BTRFS_ROOT_ITEM_KEY;
4645 } else if (key.objectid < (u64)-1) {
4647 key.type = BTRFS_ROOT_ITEM_KEY;
4656 btrfs_free_path(path);
4657 if (trans && !IS_ERR(trans))
4658 btrfs_end_transaction(trans);
4660 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4662 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4663 up(&fs_info->uuid_tree_rescan_sem);
4667 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4669 struct btrfs_trans_handle *trans;
4670 struct btrfs_root *tree_root = fs_info->tree_root;
4671 struct btrfs_root *uuid_root;
4672 struct task_struct *task;
4679 trans = btrfs_start_transaction(tree_root, 2);
4681 return PTR_ERR(trans);
4683 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4684 if (IS_ERR(uuid_root)) {
4685 ret = PTR_ERR(uuid_root);
4686 btrfs_abort_transaction(trans, ret);
4687 btrfs_end_transaction(trans);
4691 fs_info->uuid_root = uuid_root;
4693 ret = btrfs_commit_transaction(trans);
4697 down(&fs_info->uuid_tree_rescan_sem);
4698 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4700 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4701 btrfs_warn(fs_info, "failed to start uuid_scan task");
4702 up(&fs_info->uuid_tree_rescan_sem);
4703 return PTR_ERR(task);
4710 * shrinking a device means finding all of the device extents past
4711 * the new size, and then following the back refs to the chunks.
4712 * The chunk relocation code actually frees the device extent
4714 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4716 struct btrfs_fs_info *fs_info = device->fs_info;
4717 struct btrfs_root *root = fs_info->dev_root;
4718 struct btrfs_trans_handle *trans;
4719 struct btrfs_dev_extent *dev_extent = NULL;
4720 struct btrfs_path *path;
4726 bool retried = false;
4727 struct extent_buffer *l;
4728 struct btrfs_key key;
4729 struct btrfs_super_block *super_copy = fs_info->super_copy;
4730 u64 old_total = btrfs_super_total_bytes(super_copy);
4731 u64 old_size = btrfs_device_get_total_bytes(device);
4735 new_size = round_down(new_size, fs_info->sectorsize);
4737 diff = round_down(old_size - new_size, fs_info->sectorsize);
4739 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4742 path = btrfs_alloc_path();
4746 path->reada = READA_BACK;
4748 trans = btrfs_start_transaction(root, 0);
4749 if (IS_ERR(trans)) {
4750 btrfs_free_path(path);
4751 return PTR_ERR(trans);
4754 mutex_lock(&fs_info->chunk_mutex);
4756 btrfs_device_set_total_bytes(device, new_size);
4757 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4758 device->fs_devices->total_rw_bytes -= diff;
4759 atomic64_sub(diff, &fs_info->free_chunk_space);
4763 * Once the device's size has been set to the new size, ensure all
4764 * in-memory chunks are synced to disk so that the loop below sees them
4765 * and relocates them accordingly.
4767 if (contains_pending_extent(device, &start, diff)) {
4768 mutex_unlock(&fs_info->chunk_mutex);
4769 ret = btrfs_commit_transaction(trans);
4773 mutex_unlock(&fs_info->chunk_mutex);
4774 btrfs_end_transaction(trans);
4778 key.objectid = device->devid;
4779 key.offset = (u64)-1;
4780 key.type = BTRFS_DEV_EXTENT_KEY;
4783 mutex_lock(&fs_info->reclaim_bgs_lock);
4784 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4786 mutex_unlock(&fs_info->reclaim_bgs_lock);
4790 ret = btrfs_previous_item(root, path, 0, key.type);
4792 mutex_unlock(&fs_info->reclaim_bgs_lock);
4796 btrfs_release_path(path);
4801 slot = path->slots[0];
4802 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4804 if (key.objectid != device->devid) {
4805 mutex_unlock(&fs_info->reclaim_bgs_lock);
4806 btrfs_release_path(path);
4810 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4811 length = btrfs_dev_extent_length(l, dev_extent);
4813 if (key.offset + length <= new_size) {
4814 mutex_unlock(&fs_info->reclaim_bgs_lock);
4815 btrfs_release_path(path);
4819 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4820 btrfs_release_path(path);
4823 * We may be relocating the only data chunk we have,
4824 * which could potentially end up with losing data's
4825 * raid profile, so lets allocate an empty one in
4828 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4830 mutex_unlock(&fs_info->reclaim_bgs_lock);
4834 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4835 mutex_unlock(&fs_info->reclaim_bgs_lock);
4836 if (ret == -ENOSPC) {
4839 if (ret == -ETXTBSY) {
4841 "could not shrink block group %llu due to active swapfile",
4846 } while (key.offset-- > 0);
4848 if (failed && !retried) {
4852 } else if (failed && retried) {
4857 /* Shrinking succeeded, else we would be at "done". */
4858 trans = btrfs_start_transaction(root, 0);
4859 if (IS_ERR(trans)) {
4860 ret = PTR_ERR(trans);
4864 mutex_lock(&fs_info->chunk_mutex);
4865 /* Clear all state bits beyond the shrunk device size */
4866 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4869 btrfs_device_set_disk_total_bytes(device, new_size);
4870 if (list_empty(&device->post_commit_list))
4871 list_add_tail(&device->post_commit_list,
4872 &trans->transaction->dev_update_list);
4874 WARN_ON(diff > old_total);
4875 btrfs_set_super_total_bytes(super_copy,
4876 round_down(old_total - diff, fs_info->sectorsize));
4877 mutex_unlock(&fs_info->chunk_mutex);
4879 /* Now btrfs_update_device() will change the on-disk size. */
4880 ret = btrfs_update_device(trans, device);
4882 btrfs_abort_transaction(trans, ret);
4883 btrfs_end_transaction(trans);
4885 ret = btrfs_commit_transaction(trans);
4888 btrfs_free_path(path);
4890 mutex_lock(&fs_info->chunk_mutex);
4891 btrfs_device_set_total_bytes(device, old_size);
4892 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4893 device->fs_devices->total_rw_bytes += diff;
4894 atomic64_add(diff, &fs_info->free_chunk_space);
4895 mutex_unlock(&fs_info->chunk_mutex);
4900 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4901 struct btrfs_key *key,
4902 struct btrfs_chunk *chunk, int item_size)
4904 struct btrfs_super_block *super_copy = fs_info->super_copy;
4905 struct btrfs_disk_key disk_key;
4909 lockdep_assert_held(&fs_info->chunk_mutex);
4911 array_size = btrfs_super_sys_array_size(super_copy);
4912 if (array_size + item_size + sizeof(disk_key)
4913 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4916 ptr = super_copy->sys_chunk_array + array_size;
4917 btrfs_cpu_key_to_disk(&disk_key, key);
4918 memcpy(ptr, &disk_key, sizeof(disk_key));
4919 ptr += sizeof(disk_key);
4920 memcpy(ptr, chunk, item_size);
4921 item_size += sizeof(disk_key);
4922 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4928 * sort the devices in descending order by max_avail, total_avail
4930 static int btrfs_cmp_device_info(const void *a, const void *b)
4932 const struct btrfs_device_info *di_a = a;
4933 const struct btrfs_device_info *di_b = b;
4935 if (di_a->max_avail > di_b->max_avail)
4937 if (di_a->max_avail < di_b->max_avail)
4939 if (di_a->total_avail > di_b->total_avail)
4941 if (di_a->total_avail < di_b->total_avail)
4946 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4948 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4951 btrfs_set_fs_incompat(info, RAID56);
4954 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4956 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4959 btrfs_set_fs_incompat(info, RAID1C34);
4963 * Structure used internally for __btrfs_alloc_chunk() function.
4964 * Wraps needed parameters.
4966 struct alloc_chunk_ctl {
4969 /* Total number of stripes to allocate */
4971 /* sub_stripes info for map */
4973 /* Stripes per device */
4975 /* Maximum number of devices to use */
4977 /* Minimum number of devices to use */
4979 /* ndevs has to be a multiple of this */
4981 /* Number of copies */
4983 /* Number of stripes worth of bytes to store parity information */
4985 u64 max_stripe_size;
4993 static void init_alloc_chunk_ctl_policy_regular(
4994 struct btrfs_fs_devices *fs_devices,
4995 struct alloc_chunk_ctl *ctl)
4997 u64 type = ctl->type;
4999 if (type & BTRFS_BLOCK_GROUP_DATA) {
5000 ctl->max_stripe_size = SZ_1G;
5001 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5002 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5003 /* For larger filesystems, use larger metadata chunks */
5004 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5005 ctl->max_stripe_size = SZ_1G;
5007 ctl->max_stripe_size = SZ_256M;
5008 ctl->max_chunk_size = ctl->max_stripe_size;
5009 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5010 ctl->max_stripe_size = SZ_32M;
5011 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5012 ctl->devs_max = min_t(int, ctl->devs_max,
5013 BTRFS_MAX_DEVS_SYS_CHUNK);
5018 /* We don't want a chunk larger than 10% of writable space */
5019 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5020 ctl->max_chunk_size);
5021 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5024 static void init_alloc_chunk_ctl_policy_zoned(
5025 struct btrfs_fs_devices *fs_devices,
5026 struct alloc_chunk_ctl *ctl)
5028 u64 zone_size = fs_devices->fs_info->zone_size;
5030 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5031 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5032 u64 min_chunk_size = min_data_stripes * zone_size;
5033 u64 type = ctl->type;
5035 ctl->max_stripe_size = zone_size;
5036 if (type & BTRFS_BLOCK_GROUP_DATA) {
5037 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5039 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5040 ctl->max_chunk_size = ctl->max_stripe_size;
5041 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5042 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5043 ctl->devs_max = min_t(int, ctl->devs_max,
5044 BTRFS_MAX_DEVS_SYS_CHUNK);
5049 /* We don't want a chunk larger than 10% of writable space */
5050 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5053 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5054 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5057 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5058 struct alloc_chunk_ctl *ctl)
5060 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5062 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5063 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5064 ctl->devs_max = btrfs_raid_array[index].devs_max;
5066 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5067 ctl->devs_min = btrfs_raid_array[index].devs_min;
5068 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5069 ctl->ncopies = btrfs_raid_array[index].ncopies;
5070 ctl->nparity = btrfs_raid_array[index].nparity;
5073 switch (fs_devices->chunk_alloc_policy) {
5074 case BTRFS_CHUNK_ALLOC_REGULAR:
5075 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5077 case BTRFS_CHUNK_ALLOC_ZONED:
5078 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5085 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5086 struct alloc_chunk_ctl *ctl,
5087 struct btrfs_device_info *devices_info)
5089 struct btrfs_fs_info *info = fs_devices->fs_info;
5090 struct btrfs_device *device;
5092 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5099 * in the first pass through the devices list, we gather information
5100 * about the available holes on each device.
5102 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5103 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5105 "BTRFS: read-only device in alloc_list\n");
5109 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5110 &device->dev_state) ||
5111 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5114 if (device->total_bytes > device->bytes_used)
5115 total_avail = device->total_bytes - device->bytes_used;
5119 /* If there is no space on this device, skip it. */
5120 if (total_avail < ctl->dev_extent_min)
5123 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5125 if (ret && ret != -ENOSPC)
5129 max_avail = dev_extent_want;
5131 if (max_avail < ctl->dev_extent_min) {
5132 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5134 "%s: devid %llu has no free space, have=%llu want=%llu",
5135 __func__, device->devid, max_avail,
5136 ctl->dev_extent_min);
5140 if (ndevs == fs_devices->rw_devices) {
5141 WARN(1, "%s: found more than %llu devices\n",
5142 __func__, fs_devices->rw_devices);
5145 devices_info[ndevs].dev_offset = dev_offset;
5146 devices_info[ndevs].max_avail = max_avail;
5147 devices_info[ndevs].total_avail = total_avail;
5148 devices_info[ndevs].dev = device;
5154 * now sort the devices by hole size / available space
5156 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5157 btrfs_cmp_device_info, NULL);
5162 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5163 struct btrfs_device_info *devices_info)
5165 /* Number of stripes that count for block group size */
5169 * The primary goal is to maximize the number of stripes, so use as
5170 * many devices as possible, even if the stripes are not maximum sized.
5172 * The DUP profile stores more than one stripe per device, the
5173 * max_avail is the total size so we have to adjust.
5175 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5177 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5179 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5180 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5183 * Use the number of data stripes to figure out how big this chunk is
5184 * really going to be in terms of logical address space, and compare
5185 * that answer with the max chunk size. If it's higher, we try to
5186 * reduce stripe_size.
5188 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5190 * Reduce stripe_size, round it up to a 16MB boundary again and
5191 * then use it, unless it ends up being even bigger than the
5192 * previous value we had already.
5194 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5195 data_stripes), SZ_16M),
5199 /* Align to BTRFS_STRIPE_LEN */
5200 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5201 ctl->chunk_size = ctl->stripe_size * data_stripes;
5206 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5207 struct btrfs_device_info *devices_info)
5209 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5210 /* Number of stripes that count for block group size */
5214 * It should hold because:
5215 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5217 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5219 ctl->stripe_size = zone_size;
5220 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5221 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5223 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5224 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5225 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5226 ctl->stripe_size) + ctl->nparity,
5228 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5229 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5230 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5233 ctl->chunk_size = ctl->stripe_size * data_stripes;
5238 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5239 struct alloc_chunk_ctl *ctl,
5240 struct btrfs_device_info *devices_info)
5242 struct btrfs_fs_info *info = fs_devices->fs_info;
5245 * Round down to number of usable stripes, devs_increment can be any
5246 * number so we can't use round_down() that requires power of 2, while
5247 * rounddown is safe.
5249 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5251 if (ctl->ndevs < ctl->devs_min) {
5252 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5254 "%s: not enough devices with free space: have=%d minimum required=%d",
5255 __func__, ctl->ndevs, ctl->devs_min);
5260 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5262 switch (fs_devices->chunk_alloc_policy) {
5263 case BTRFS_CHUNK_ALLOC_REGULAR:
5264 return decide_stripe_size_regular(ctl, devices_info);
5265 case BTRFS_CHUNK_ALLOC_ZONED:
5266 return decide_stripe_size_zoned(ctl, devices_info);
5272 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5273 struct alloc_chunk_ctl *ctl,
5274 struct btrfs_device_info *devices_info)
5276 struct btrfs_fs_info *info = trans->fs_info;
5277 struct map_lookup *map = NULL;
5278 struct extent_map_tree *em_tree;
5279 struct btrfs_block_group *block_group;
5280 struct extent_map *em;
5281 u64 start = ctl->start;
5282 u64 type = ctl->type;
5287 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5289 return ERR_PTR(-ENOMEM);
5290 map->num_stripes = ctl->num_stripes;
5292 for (i = 0; i < ctl->ndevs; ++i) {
5293 for (j = 0; j < ctl->dev_stripes; ++j) {
5294 int s = i * ctl->dev_stripes + j;
5295 map->stripes[s].dev = devices_info[i].dev;
5296 map->stripes[s].physical = devices_info[i].dev_offset +
5297 j * ctl->stripe_size;
5300 map->stripe_len = BTRFS_STRIPE_LEN;
5301 map->io_align = BTRFS_STRIPE_LEN;
5302 map->io_width = BTRFS_STRIPE_LEN;
5304 map->sub_stripes = ctl->sub_stripes;
5306 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5308 em = alloc_extent_map();
5311 return ERR_PTR(-ENOMEM);
5313 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5314 em->map_lookup = map;
5316 em->len = ctl->chunk_size;
5317 em->block_start = 0;
5318 em->block_len = em->len;
5319 em->orig_block_len = ctl->stripe_size;
5321 em_tree = &info->mapping_tree;
5322 write_lock(&em_tree->lock);
5323 ret = add_extent_mapping(em_tree, em, 0);
5325 write_unlock(&em_tree->lock);
5326 free_extent_map(em);
5327 return ERR_PTR(ret);
5329 write_unlock(&em_tree->lock);
5331 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5332 if (IS_ERR(block_group))
5333 goto error_del_extent;
5335 for (i = 0; i < map->num_stripes; i++) {
5336 struct btrfs_device *dev = map->stripes[i].dev;
5338 btrfs_device_set_bytes_used(dev,
5339 dev->bytes_used + ctl->stripe_size);
5340 if (list_empty(&dev->post_commit_list))
5341 list_add_tail(&dev->post_commit_list,
5342 &trans->transaction->dev_update_list);
5345 atomic64_sub(ctl->stripe_size * map->num_stripes,
5346 &info->free_chunk_space);
5348 free_extent_map(em);
5349 check_raid56_incompat_flag(info, type);
5350 check_raid1c34_incompat_flag(info, type);
5355 write_lock(&em_tree->lock);
5356 remove_extent_mapping(em_tree, em);
5357 write_unlock(&em_tree->lock);
5359 /* One for our allocation */
5360 free_extent_map(em);
5361 /* One for the tree reference */
5362 free_extent_map(em);
5367 struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5370 struct btrfs_fs_info *info = trans->fs_info;
5371 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5372 struct btrfs_device_info *devices_info = NULL;
5373 struct alloc_chunk_ctl ctl;
5374 struct btrfs_block_group *block_group;
5377 lockdep_assert_held(&info->chunk_mutex);
5379 if (!alloc_profile_is_valid(type, 0)) {
5381 return ERR_PTR(-EINVAL);
5384 if (list_empty(&fs_devices->alloc_list)) {
5385 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5386 btrfs_debug(info, "%s: no writable device", __func__);
5387 return ERR_PTR(-ENOSPC);
5390 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5391 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5393 return ERR_PTR(-EINVAL);
5396 ctl.start = find_next_chunk(info);
5398 init_alloc_chunk_ctl(fs_devices, &ctl);
5400 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5403 return ERR_PTR(-ENOMEM);
5405 ret = gather_device_info(fs_devices, &ctl, devices_info);
5407 block_group = ERR_PTR(ret);
5411 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5413 block_group = ERR_PTR(ret);
5417 block_group = create_chunk(trans, &ctl, devices_info);
5420 kfree(devices_info);
5425 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5426 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5429 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5432 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5433 struct btrfs_block_group *bg)
5435 struct btrfs_fs_info *fs_info = trans->fs_info;
5436 struct btrfs_root *extent_root = fs_info->extent_root;
5437 struct btrfs_root *chunk_root = fs_info->chunk_root;
5438 struct btrfs_key key;
5439 struct btrfs_chunk *chunk;
5440 struct btrfs_stripe *stripe;
5441 struct extent_map *em;
5442 struct map_lookup *map;
5448 * We take the chunk_mutex for 2 reasons:
5450 * 1) Updates and insertions in the chunk btree must be done while holding
5451 * the chunk_mutex, as well as updating the system chunk array in the
5452 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5455 * 2) To prevent races with the final phase of a device replace operation
5456 * that replaces the device object associated with the map's stripes,
5457 * because the device object's id can change at any time during that
5458 * final phase of the device replace operation
5459 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5460 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5461 * which would cause a failure when updating the device item, which does
5462 * not exists, or persisting a stripe of the chunk item with such ID.
5463 * Here we can't use the device_list_mutex because our caller already
5464 * has locked the chunk_mutex, and the final phase of device replace
5465 * acquires both mutexes - first the device_list_mutex and then the
5466 * chunk_mutex. Using any of those two mutexes protects us from a
5467 * concurrent device replace.
5469 lockdep_assert_held(&fs_info->chunk_mutex);
5471 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5474 btrfs_abort_transaction(trans, ret);
5478 map = em->map_lookup;
5479 item_size = btrfs_chunk_item_size(map->num_stripes);
5481 chunk = kzalloc(item_size, GFP_NOFS);
5484 btrfs_abort_transaction(trans, ret);
5488 for (i = 0; i < map->num_stripes; i++) {
5489 struct btrfs_device *device = map->stripes[i].dev;
5491 ret = btrfs_update_device(trans, device);
5496 stripe = &chunk->stripe;
5497 for (i = 0; i < map->num_stripes; i++) {
5498 struct btrfs_device *device = map->stripes[i].dev;
5499 const u64 dev_offset = map->stripes[i].physical;
5501 btrfs_set_stack_stripe_devid(stripe, device->devid);
5502 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5503 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5507 btrfs_set_stack_chunk_length(chunk, bg->length);
5508 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5509 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5510 btrfs_set_stack_chunk_type(chunk, map->type);
5511 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5512 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5513 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5514 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5515 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5517 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5518 key.type = BTRFS_CHUNK_ITEM_KEY;
5519 key.offset = bg->start;
5521 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5525 bg->chunk_item_inserted = 1;
5527 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5528 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5535 free_extent_map(em);
5539 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5541 struct btrfs_fs_info *fs_info = trans->fs_info;
5543 struct btrfs_block_group *meta_bg;
5544 struct btrfs_block_group *sys_bg;
5547 * When adding a new device for sprouting, the seed device is read-only
5548 * so we must first allocate a metadata and a system chunk. But before
5549 * adding the block group items to the extent, device and chunk btrees,
5552 * 1) Create both chunks without doing any changes to the btrees, as
5553 * otherwise we would get -ENOSPC since the block groups from the
5554 * seed device are read-only;
5556 * 2) Add the device item for the new sprout device - finishing the setup
5557 * of a new block group requires updating the device item in the chunk
5558 * btree, so it must exist when we attempt to do it. The previous step
5559 * ensures this does not fail with -ENOSPC.
5561 * After that we can add the block group items to their btrees:
5562 * update existing device item in the chunk btree, add a new block group
5563 * item to the extent btree, add a new chunk item to the chunk btree and
5564 * finally add the new device extent items to the devices btree.
5567 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5568 meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5569 if (IS_ERR(meta_bg))
5570 return PTR_ERR(meta_bg);
5572 alloc_profile = btrfs_system_alloc_profile(fs_info);
5573 sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5575 return PTR_ERR(sys_bg);
5580 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5582 const int index = btrfs_bg_flags_to_raid_index(map->type);
5584 return btrfs_raid_array[index].tolerated_failures;
5587 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5589 struct extent_map *em;
5590 struct map_lookup *map;
5595 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5599 map = em->map_lookup;
5600 for (i = 0; i < map->num_stripes; i++) {
5601 if (test_bit(BTRFS_DEV_STATE_MISSING,
5602 &map->stripes[i].dev->dev_state)) {
5606 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5607 &map->stripes[i].dev->dev_state)) {
5614 * If the number of missing devices is larger than max errors,
5615 * we can not write the data into that chunk successfully, so
5618 if (miss_ndevs > btrfs_chunk_max_errors(map))
5621 free_extent_map(em);
5625 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5627 struct extent_map *em;
5630 write_lock(&tree->lock);
5631 em = lookup_extent_mapping(tree, 0, (u64)-1);
5633 remove_extent_mapping(tree, em);
5634 write_unlock(&tree->lock);
5638 free_extent_map(em);
5639 /* once for the tree */
5640 free_extent_map(em);
5644 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5646 struct extent_map *em;
5647 struct map_lookup *map;
5650 em = btrfs_get_chunk_map(fs_info, logical, len);
5653 * We could return errors for these cases, but that could get
5654 * ugly and we'd probably do the same thing which is just not do
5655 * anything else and exit, so return 1 so the callers don't try
5656 * to use other copies.
5660 map = em->map_lookup;
5661 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5662 ret = map->num_stripes;
5663 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5664 ret = map->sub_stripes;
5665 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5667 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5669 * There could be two corrupted data stripes, we need
5670 * to loop retry in order to rebuild the correct data.
5672 * Fail a stripe at a time on every retry except the
5673 * stripe under reconstruction.
5675 ret = map->num_stripes;
5678 free_extent_map(em);
5680 down_read(&fs_info->dev_replace.rwsem);
5681 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5682 fs_info->dev_replace.tgtdev)
5684 up_read(&fs_info->dev_replace.rwsem);
5689 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5692 struct extent_map *em;
5693 struct map_lookup *map;
5694 unsigned long len = fs_info->sectorsize;
5696 em = btrfs_get_chunk_map(fs_info, logical, len);
5698 if (!WARN_ON(IS_ERR(em))) {
5699 map = em->map_lookup;
5700 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5701 len = map->stripe_len * nr_data_stripes(map);
5702 free_extent_map(em);
5707 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5709 struct extent_map *em;
5710 struct map_lookup *map;
5713 em = btrfs_get_chunk_map(fs_info, logical, len);
5715 if(!WARN_ON(IS_ERR(em))) {
5716 map = em->map_lookup;
5717 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5719 free_extent_map(em);
5724 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5725 struct map_lookup *map, int first,
5726 int dev_replace_is_ongoing)
5730 int preferred_mirror;
5732 struct btrfs_device *srcdev;
5735 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5737 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5738 num_stripes = map->sub_stripes;
5740 num_stripes = map->num_stripes;
5742 switch (fs_info->fs_devices->read_policy) {
5744 /* Shouldn't happen, just warn and use pid instead of failing */
5745 btrfs_warn_rl(fs_info,
5746 "unknown read_policy type %u, reset to pid",
5747 fs_info->fs_devices->read_policy);
5748 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5750 case BTRFS_READ_POLICY_PID:
5751 preferred_mirror = first + (current->pid % num_stripes);
5755 if (dev_replace_is_ongoing &&
5756 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5757 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5758 srcdev = fs_info->dev_replace.srcdev;
5763 * try to avoid the drive that is the source drive for a
5764 * dev-replace procedure, only choose it if no other non-missing
5765 * mirror is available
5767 for (tolerance = 0; tolerance < 2; tolerance++) {
5768 if (map->stripes[preferred_mirror].dev->bdev &&
5769 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5770 return preferred_mirror;
5771 for (i = first; i < first + num_stripes; i++) {
5772 if (map->stripes[i].dev->bdev &&
5773 (tolerance || map->stripes[i].dev != srcdev))
5778 /* we couldn't find one that doesn't fail. Just return something
5779 * and the io error handling code will clean up eventually
5781 return preferred_mirror;
5784 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5785 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5792 for (i = 0; i < num_stripes - 1; i++) {
5793 /* Swap if parity is on a smaller index */
5794 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5795 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5796 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5803 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5805 struct btrfs_bio *bbio = kzalloc(
5806 /* the size of the btrfs_bio */
5807 sizeof(struct btrfs_bio) +
5808 /* plus the variable array for the stripes */
5809 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5810 /* plus the variable array for the tgt dev */
5811 sizeof(int) * (real_stripes) +
5813 * plus the raid_map, which includes both the tgt dev
5816 sizeof(u64) * (total_stripes),
5817 GFP_NOFS|__GFP_NOFAIL);
5819 atomic_set(&bbio->error, 0);
5820 refcount_set(&bbio->refs, 1);
5822 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5823 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5828 void btrfs_get_bbio(struct btrfs_bio *bbio)
5830 WARN_ON(!refcount_read(&bbio->refs));
5831 refcount_inc(&bbio->refs);
5834 void btrfs_put_bbio(struct btrfs_bio *bbio)
5838 if (refcount_dec_and_test(&bbio->refs))
5842 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5844 * Please note that, discard won't be sent to target device of device
5847 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5848 u64 logical, u64 *length_ret,
5849 struct btrfs_bio **bbio_ret)
5851 struct extent_map *em;
5852 struct map_lookup *map;
5853 struct btrfs_bio *bbio;
5854 u64 length = *length_ret;
5858 u64 stripe_end_offset;
5865 u32 sub_stripes = 0;
5866 u64 stripes_per_dev = 0;
5867 u32 remaining_stripes = 0;
5868 u32 last_stripe = 0;
5872 /* discard always return a bbio */
5875 em = btrfs_get_chunk_map(fs_info, logical, length);
5879 map = em->map_lookup;
5880 /* we don't discard raid56 yet */
5881 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5886 offset = logical - em->start;
5887 length = min_t(u64, em->start + em->len - logical, length);
5888 *length_ret = length;
5890 stripe_len = map->stripe_len;
5892 * stripe_nr counts the total number of stripes we have to stride
5893 * to get to this block
5895 stripe_nr = div64_u64(offset, stripe_len);
5897 /* stripe_offset is the offset of this block in its stripe */
5898 stripe_offset = offset - stripe_nr * stripe_len;
5900 stripe_nr_end = round_up(offset + length, map->stripe_len);
5901 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5902 stripe_cnt = stripe_nr_end - stripe_nr;
5903 stripe_end_offset = stripe_nr_end * map->stripe_len -
5906 * after this, stripe_nr is the number of stripes on this
5907 * device we have to walk to find the data, and stripe_index is
5908 * the number of our device in the stripe array
5912 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5913 BTRFS_BLOCK_GROUP_RAID10)) {
5914 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5917 sub_stripes = map->sub_stripes;
5919 factor = map->num_stripes / sub_stripes;
5920 num_stripes = min_t(u64, map->num_stripes,
5921 sub_stripes * stripe_cnt);
5922 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5923 stripe_index *= sub_stripes;
5924 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5925 &remaining_stripes);
5926 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5927 last_stripe *= sub_stripes;
5928 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5929 BTRFS_BLOCK_GROUP_DUP)) {
5930 num_stripes = map->num_stripes;
5932 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5936 bbio = alloc_btrfs_bio(num_stripes, 0);
5942 for (i = 0; i < num_stripes; i++) {
5943 bbio->stripes[i].physical =
5944 map->stripes[stripe_index].physical +
5945 stripe_offset + stripe_nr * map->stripe_len;
5946 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5948 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5949 BTRFS_BLOCK_GROUP_RAID10)) {
5950 bbio->stripes[i].length = stripes_per_dev *
5953 if (i / sub_stripes < remaining_stripes)
5954 bbio->stripes[i].length +=
5958 * Special for the first stripe and
5961 * |-------|...|-------|
5965 if (i < sub_stripes)
5966 bbio->stripes[i].length -=
5969 if (stripe_index >= last_stripe &&
5970 stripe_index <= (last_stripe +
5972 bbio->stripes[i].length -=
5975 if (i == sub_stripes - 1)
5978 bbio->stripes[i].length = length;
5982 if (stripe_index == map->num_stripes) {
5989 bbio->map_type = map->type;
5990 bbio->num_stripes = num_stripes;
5992 free_extent_map(em);
5997 * In dev-replace case, for repair case (that's the only case where the mirror
5998 * is selected explicitly when calling btrfs_map_block), blocks left of the
5999 * left cursor can also be read from the target drive.
6001 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6003 * For READ, it also needs to be supported using the same mirror number.
6005 * If the requested block is not left of the left cursor, EIO is returned. This
6006 * can happen because btrfs_num_copies() returns one more in the dev-replace
6009 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6010 u64 logical, u64 length,
6011 u64 srcdev_devid, int *mirror_num,
6014 struct btrfs_bio *bbio = NULL;
6016 int index_srcdev = 0;
6018 u64 physical_of_found = 0;
6022 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6023 logical, &length, &bbio, 0, 0);
6025 ASSERT(bbio == NULL);
6029 num_stripes = bbio->num_stripes;
6030 if (*mirror_num > num_stripes) {
6032 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6033 * that means that the requested area is not left of the left
6036 btrfs_put_bbio(bbio);
6041 * process the rest of the function using the mirror_num of the source
6042 * drive. Therefore look it up first. At the end, patch the device
6043 * pointer to the one of the target drive.
6045 for (i = 0; i < num_stripes; i++) {
6046 if (bbio->stripes[i].dev->devid != srcdev_devid)
6050 * In case of DUP, in order to keep it simple, only add the
6051 * mirror with the lowest physical address
6054 physical_of_found <= bbio->stripes[i].physical)
6059 physical_of_found = bbio->stripes[i].physical;
6062 btrfs_put_bbio(bbio);
6068 *mirror_num = index_srcdev + 1;
6069 *physical = physical_of_found;
6073 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6075 struct btrfs_block_group *cache;
6078 /* Non zoned filesystem does not use "to_copy" flag */
6079 if (!btrfs_is_zoned(fs_info))
6082 cache = btrfs_lookup_block_group(fs_info, logical);
6084 spin_lock(&cache->lock);
6085 ret = cache->to_copy;
6086 spin_unlock(&cache->lock);
6088 btrfs_put_block_group(cache);
6092 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6093 struct btrfs_bio **bbio_ret,
6094 struct btrfs_dev_replace *dev_replace,
6096 int *num_stripes_ret, int *max_errors_ret)
6098 struct btrfs_bio *bbio = *bbio_ret;
6099 u64 srcdev_devid = dev_replace->srcdev->devid;
6100 int tgtdev_indexes = 0;
6101 int num_stripes = *num_stripes_ret;
6102 int max_errors = *max_errors_ret;
6105 if (op == BTRFS_MAP_WRITE) {
6106 int index_where_to_add;
6109 * A block group which have "to_copy" set will eventually
6110 * copied by dev-replace process. We can avoid cloning IO here.
6112 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6116 * duplicate the write operations while the dev replace
6117 * procedure is running. Since the copying of the old disk to
6118 * the new disk takes place at run time while the filesystem is
6119 * mounted writable, the regular write operations to the old
6120 * disk have to be duplicated to go to the new disk as well.
6122 * Note that device->missing is handled by the caller, and that
6123 * the write to the old disk is already set up in the stripes
6126 index_where_to_add = num_stripes;
6127 for (i = 0; i < num_stripes; i++) {
6128 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6129 /* write to new disk, too */
6130 struct btrfs_bio_stripe *new =
6131 bbio->stripes + index_where_to_add;
6132 struct btrfs_bio_stripe *old =
6135 new->physical = old->physical;
6136 new->length = old->length;
6137 new->dev = dev_replace->tgtdev;
6138 bbio->tgtdev_map[i] = index_where_to_add;
6139 index_where_to_add++;
6144 num_stripes = index_where_to_add;
6145 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6146 int index_srcdev = 0;
6148 u64 physical_of_found = 0;
6151 * During the dev-replace procedure, the target drive can also
6152 * be used to read data in case it is needed to repair a corrupt
6153 * block elsewhere. This is possible if the requested area is
6154 * left of the left cursor. In this area, the target drive is a
6155 * full copy of the source drive.
6157 for (i = 0; i < num_stripes; i++) {
6158 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6160 * In case of DUP, in order to keep it simple,
6161 * only add the mirror with the lowest physical
6165 physical_of_found <=
6166 bbio->stripes[i].physical)
6170 physical_of_found = bbio->stripes[i].physical;
6174 struct btrfs_bio_stripe *tgtdev_stripe =
6175 bbio->stripes + num_stripes;
6177 tgtdev_stripe->physical = physical_of_found;
6178 tgtdev_stripe->length =
6179 bbio->stripes[index_srcdev].length;
6180 tgtdev_stripe->dev = dev_replace->tgtdev;
6181 bbio->tgtdev_map[index_srcdev] = num_stripes;
6188 *num_stripes_ret = num_stripes;
6189 *max_errors_ret = max_errors;
6190 bbio->num_tgtdevs = tgtdev_indexes;
6194 static bool need_full_stripe(enum btrfs_map_op op)
6196 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6200 * Calculate the geometry of a particular (address, len) tuple. This
6201 * information is used to calculate how big a particular bio can get before it
6202 * straddles a stripe.
6204 * @fs_info: the filesystem
6205 * @em: mapping containing the logical extent
6206 * @op: type of operation - write or read
6207 * @logical: address that we want to figure out the geometry of
6208 * @io_geom: pointer used to return values
6210 * Returns < 0 in case a chunk for the given logical address cannot be found,
6211 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6213 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6214 enum btrfs_map_op op, u64 logical,
6215 struct btrfs_io_geometry *io_geom)
6217 struct map_lookup *map;
6223 u64 raid56_full_stripe_start = (u64)-1;
6226 ASSERT(op != BTRFS_MAP_DISCARD);
6228 map = em->map_lookup;
6229 /* Offset of this logical address in the chunk */
6230 offset = logical - em->start;
6231 /* Len of a stripe in a chunk */
6232 stripe_len = map->stripe_len;
6233 /* Stripe where this block falls in */
6234 stripe_nr = div64_u64(offset, stripe_len);
6235 /* Offset of stripe in the chunk */
6236 stripe_offset = stripe_nr * stripe_len;
6237 if (offset < stripe_offset) {
6239 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6240 stripe_offset, offset, em->start, logical, stripe_len);
6244 /* stripe_offset is the offset of this block in its stripe */
6245 stripe_offset = offset - stripe_offset;
6246 data_stripes = nr_data_stripes(map);
6248 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6249 u64 max_len = stripe_len - stripe_offset;
6252 * In case of raid56, we need to know the stripe aligned start
6254 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6255 unsigned long full_stripe_len = stripe_len * data_stripes;
6256 raid56_full_stripe_start = offset;
6259 * Allow a write of a full stripe, but make sure we
6260 * don't allow straddling of stripes
6262 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6264 raid56_full_stripe_start *= full_stripe_len;
6267 * For writes to RAID[56], allow a full stripeset across
6268 * all disks. For other RAID types and for RAID[56]
6269 * reads, just allow a single stripe (on a single disk).
6271 if (op == BTRFS_MAP_WRITE) {
6272 max_len = stripe_len * data_stripes -
6273 (offset - raid56_full_stripe_start);
6276 len = min_t(u64, em->len - offset, max_len);
6278 len = em->len - offset;
6282 io_geom->offset = offset;
6283 io_geom->stripe_len = stripe_len;
6284 io_geom->stripe_nr = stripe_nr;
6285 io_geom->stripe_offset = stripe_offset;
6286 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6291 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6292 enum btrfs_map_op op,
6293 u64 logical, u64 *length,
6294 struct btrfs_bio **bbio_ret,
6295 int mirror_num, int need_raid_map)
6297 struct extent_map *em;
6298 struct map_lookup *map;
6308 int tgtdev_indexes = 0;
6309 struct btrfs_bio *bbio = NULL;
6310 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6311 int dev_replace_is_ongoing = 0;
6312 int num_alloc_stripes;
6313 int patch_the_first_stripe_for_dev_replace = 0;
6314 u64 physical_to_patch_in_first_stripe = 0;
6315 u64 raid56_full_stripe_start = (u64)-1;
6316 struct btrfs_io_geometry geom;
6319 ASSERT(op != BTRFS_MAP_DISCARD);
6321 em = btrfs_get_chunk_map(fs_info, logical, *length);
6322 ASSERT(!IS_ERR(em));
6324 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6328 map = em->map_lookup;
6331 stripe_len = geom.stripe_len;
6332 stripe_nr = geom.stripe_nr;
6333 stripe_offset = geom.stripe_offset;
6334 raid56_full_stripe_start = geom.raid56_stripe_offset;
6335 data_stripes = nr_data_stripes(map);
6337 down_read(&dev_replace->rwsem);
6338 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6340 * Hold the semaphore for read during the whole operation, write is
6341 * requested at commit time but must wait.
6343 if (!dev_replace_is_ongoing)
6344 up_read(&dev_replace->rwsem);
6346 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6347 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6348 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6349 dev_replace->srcdev->devid,
6351 &physical_to_patch_in_first_stripe);
6355 patch_the_first_stripe_for_dev_replace = 1;
6356 } else if (mirror_num > map->num_stripes) {
6362 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6363 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6365 if (!need_full_stripe(op))
6367 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6368 if (need_full_stripe(op))
6369 num_stripes = map->num_stripes;
6370 else if (mirror_num)
6371 stripe_index = mirror_num - 1;
6373 stripe_index = find_live_mirror(fs_info, map, 0,
6374 dev_replace_is_ongoing);
6375 mirror_num = stripe_index + 1;
6378 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6379 if (need_full_stripe(op)) {
6380 num_stripes = map->num_stripes;
6381 } else if (mirror_num) {
6382 stripe_index = mirror_num - 1;
6387 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6388 u32 factor = map->num_stripes / map->sub_stripes;
6390 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6391 stripe_index *= map->sub_stripes;
6393 if (need_full_stripe(op))
6394 num_stripes = map->sub_stripes;
6395 else if (mirror_num)
6396 stripe_index += mirror_num - 1;
6398 int old_stripe_index = stripe_index;
6399 stripe_index = find_live_mirror(fs_info, map,
6401 dev_replace_is_ongoing);
6402 mirror_num = stripe_index - old_stripe_index + 1;
6405 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6406 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6407 /* push stripe_nr back to the start of the full stripe */
6408 stripe_nr = div64_u64(raid56_full_stripe_start,
6409 stripe_len * data_stripes);
6411 /* RAID[56] write or recovery. Return all stripes */
6412 num_stripes = map->num_stripes;
6413 max_errors = nr_parity_stripes(map);
6415 *length = map->stripe_len;
6420 * Mirror #0 or #1 means the original data block.
6421 * Mirror #2 is RAID5 parity block.
6422 * Mirror #3 is RAID6 Q block.
6424 stripe_nr = div_u64_rem(stripe_nr,
6425 data_stripes, &stripe_index);
6427 stripe_index = data_stripes + mirror_num - 2;
6429 /* We distribute the parity blocks across stripes */
6430 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6432 if (!need_full_stripe(op) && mirror_num <= 1)
6437 * after this, stripe_nr is the number of stripes on this
6438 * device we have to walk to find the data, and stripe_index is
6439 * the number of our device in the stripe array
6441 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6443 mirror_num = stripe_index + 1;
6445 if (stripe_index >= map->num_stripes) {
6447 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6448 stripe_index, map->num_stripes);
6453 num_alloc_stripes = num_stripes;
6454 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6455 if (op == BTRFS_MAP_WRITE)
6456 num_alloc_stripes <<= 1;
6457 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6458 num_alloc_stripes++;
6459 tgtdev_indexes = num_stripes;
6462 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6468 for (i = 0; i < num_stripes; i++) {
6469 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6470 stripe_offset + stripe_nr * map->stripe_len;
6471 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6475 /* build raid_map */
6476 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6477 (need_full_stripe(op) || mirror_num > 1)) {
6481 /* Work out the disk rotation on this stripe-set */
6482 div_u64_rem(stripe_nr, num_stripes, &rot);
6484 /* Fill in the logical address of each stripe */
6485 tmp = stripe_nr * data_stripes;
6486 for (i = 0; i < data_stripes; i++)
6487 bbio->raid_map[(i+rot) % num_stripes] =
6488 em->start + (tmp + i) * map->stripe_len;
6490 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6491 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6492 bbio->raid_map[(i+rot+1) % num_stripes] =
6495 sort_parity_stripes(bbio, num_stripes);
6498 if (need_full_stripe(op))
6499 max_errors = btrfs_chunk_max_errors(map);
6501 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6502 need_full_stripe(op)) {
6503 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6504 &num_stripes, &max_errors);
6508 bbio->map_type = map->type;
6509 bbio->num_stripes = num_stripes;
6510 bbio->max_errors = max_errors;
6511 bbio->mirror_num = mirror_num;
6514 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6515 * mirror_num == num_stripes + 1 && dev_replace target drive is
6516 * available as a mirror
6518 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6519 WARN_ON(num_stripes > 1);
6520 bbio->stripes[0].dev = dev_replace->tgtdev;
6521 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6522 bbio->mirror_num = map->num_stripes + 1;
6525 if (dev_replace_is_ongoing) {
6526 lockdep_assert_held(&dev_replace->rwsem);
6527 /* Unlock and let waiting writers proceed */
6528 up_read(&dev_replace->rwsem);
6530 free_extent_map(em);
6534 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6535 u64 logical, u64 *length,
6536 struct btrfs_bio **bbio_ret, int mirror_num)
6538 if (op == BTRFS_MAP_DISCARD)
6539 return __btrfs_map_block_for_discard(fs_info, logical,
6542 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6546 /* For Scrub/replace */
6547 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6548 u64 logical, u64 *length,
6549 struct btrfs_bio **bbio_ret)
6551 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6554 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6556 bio->bi_private = bbio->private;
6557 bio->bi_end_io = bbio->end_io;
6560 btrfs_put_bbio(bbio);
6563 static void btrfs_end_bio(struct bio *bio)
6565 struct btrfs_bio *bbio = bio->bi_private;
6566 int is_orig_bio = 0;
6568 if (bio->bi_status) {
6569 atomic_inc(&bbio->error);
6570 if (bio->bi_status == BLK_STS_IOERR ||
6571 bio->bi_status == BLK_STS_TARGET) {
6572 struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6575 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6576 btrfs_dev_stat_inc_and_print(dev,
6577 BTRFS_DEV_STAT_WRITE_ERRS);
6578 else if (!(bio->bi_opf & REQ_RAHEAD))
6579 btrfs_dev_stat_inc_and_print(dev,
6580 BTRFS_DEV_STAT_READ_ERRS);
6581 if (bio->bi_opf & REQ_PREFLUSH)
6582 btrfs_dev_stat_inc_and_print(dev,
6583 BTRFS_DEV_STAT_FLUSH_ERRS);
6587 if (bio == bbio->orig_bio)
6590 btrfs_bio_counter_dec(bbio->fs_info);
6592 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6595 bio = bbio->orig_bio;
6598 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6599 /* only send an error to the higher layers if it is
6600 * beyond the tolerance of the btrfs bio
6602 if (atomic_read(&bbio->error) > bbio->max_errors) {
6603 bio->bi_status = BLK_STS_IOERR;
6606 * this bio is actually up to date, we didn't
6607 * go over the max number of errors
6609 bio->bi_status = BLK_STS_OK;
6612 btrfs_end_bbio(bbio, bio);
6613 } else if (!is_orig_bio) {
6618 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6619 u64 physical, struct btrfs_device *dev)
6621 struct btrfs_fs_info *fs_info = bbio->fs_info;
6623 bio->bi_private = bbio;
6624 btrfs_io_bio(bio)->device = dev;
6625 bio->bi_end_io = btrfs_end_bio;
6626 bio->bi_iter.bi_sector = physical >> 9;
6628 * For zone append writing, bi_sector must point the beginning of the
6631 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6632 if (btrfs_dev_is_sequential(dev, physical)) {
6633 u64 zone_start = round_down(physical, fs_info->zone_size);
6635 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6637 bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6638 bio->bi_opf |= REQ_OP_WRITE;
6641 btrfs_debug_in_rcu(fs_info,
6642 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6643 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6644 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6645 dev->devid, bio->bi_iter.bi_size);
6646 bio_set_dev(bio, dev->bdev);
6648 btrfs_bio_counter_inc_noblocked(fs_info);
6650 btrfsic_submit_bio(bio);
6653 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6655 atomic_inc(&bbio->error);
6656 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6657 /* Should be the original bio. */
6658 WARN_ON(bio != bbio->orig_bio);
6660 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6661 bio->bi_iter.bi_sector = logical >> 9;
6662 if (atomic_read(&bbio->error) > bbio->max_errors)
6663 bio->bi_status = BLK_STS_IOERR;
6665 bio->bi_status = BLK_STS_OK;
6666 btrfs_end_bbio(bbio, bio);
6670 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6673 struct btrfs_device *dev;
6674 struct bio *first_bio = bio;
6675 u64 logical = bio->bi_iter.bi_sector << 9;
6681 struct btrfs_bio *bbio = NULL;
6683 length = bio->bi_iter.bi_size;
6684 map_length = length;
6686 btrfs_bio_counter_inc_blocked(fs_info);
6687 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6688 &map_length, &bbio, mirror_num, 1);
6690 btrfs_bio_counter_dec(fs_info);
6691 return errno_to_blk_status(ret);
6694 total_devs = bbio->num_stripes;
6695 bbio->orig_bio = first_bio;
6696 bbio->private = first_bio->bi_private;
6697 bbio->end_io = first_bio->bi_end_io;
6698 bbio->fs_info = fs_info;
6699 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6701 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6702 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6703 /* In this case, map_length has been set to the length of
6704 a single stripe; not the whole write */
6705 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6706 ret = raid56_parity_write(fs_info, bio, bbio,
6709 ret = raid56_parity_recover(fs_info, bio, bbio,
6710 map_length, mirror_num, 1);
6713 btrfs_bio_counter_dec(fs_info);
6714 return errno_to_blk_status(ret);
6717 if (map_length < length) {
6719 "mapping failed logical %llu bio len %llu len %llu",
6720 logical, length, map_length);
6724 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6725 dev = bbio->stripes[dev_nr].dev;
6726 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6728 (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6729 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6730 bbio_error(bbio, first_bio, logical);
6734 if (dev_nr < total_devs - 1)
6735 bio = btrfs_bio_clone(first_bio);
6739 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6741 btrfs_bio_counter_dec(fs_info);
6746 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6749 * If devid and uuid are both specified, the match must be exact, otherwise
6750 * only devid is used.
6752 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6753 u64 devid, u8 *uuid, u8 *fsid)
6755 struct btrfs_device *device;
6756 struct btrfs_fs_devices *seed_devs;
6758 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6759 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6760 if (device->devid == devid &&
6761 (!uuid || memcmp(device->uuid, uuid,
6762 BTRFS_UUID_SIZE) == 0))
6767 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6769 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6770 list_for_each_entry(device, &seed_devs->devices,
6772 if (device->devid == devid &&
6773 (!uuid || memcmp(device->uuid, uuid,
6774 BTRFS_UUID_SIZE) == 0))
6783 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6784 u64 devid, u8 *dev_uuid)
6786 struct btrfs_device *device;
6787 unsigned int nofs_flag;
6790 * We call this under the chunk_mutex, so we want to use NOFS for this
6791 * allocation, however we don't want to change btrfs_alloc_device() to
6792 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6795 nofs_flag = memalloc_nofs_save();
6796 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6797 memalloc_nofs_restore(nofs_flag);
6801 list_add(&device->dev_list, &fs_devices->devices);
6802 device->fs_devices = fs_devices;
6803 fs_devices->num_devices++;
6805 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6806 fs_devices->missing_devices++;
6812 * btrfs_alloc_device - allocate struct btrfs_device
6813 * @fs_info: used only for generating a new devid, can be NULL if
6814 * devid is provided (i.e. @devid != NULL).
6815 * @devid: a pointer to devid for this device. If NULL a new devid
6817 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6820 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6821 * on error. Returned struct is not linked onto any lists and must be
6822 * destroyed with btrfs_free_device.
6824 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6828 struct btrfs_device *dev;
6831 if (WARN_ON(!devid && !fs_info))
6832 return ERR_PTR(-EINVAL);
6834 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6836 return ERR_PTR(-ENOMEM);
6839 * Preallocate a bio that's always going to be used for flushing device
6840 * barriers and matches the device lifespan
6842 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6843 if (!dev->flush_bio) {
6845 return ERR_PTR(-ENOMEM);
6848 INIT_LIST_HEAD(&dev->dev_list);
6849 INIT_LIST_HEAD(&dev->dev_alloc_list);
6850 INIT_LIST_HEAD(&dev->post_commit_list);
6852 atomic_set(&dev->reada_in_flight, 0);
6853 atomic_set(&dev->dev_stats_ccnt, 0);
6854 btrfs_device_data_ordered_init(dev);
6855 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6856 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6857 extent_io_tree_init(fs_info, &dev->alloc_state,
6858 IO_TREE_DEVICE_ALLOC_STATE, NULL);
6865 ret = find_next_devid(fs_info, &tmp);
6867 btrfs_free_device(dev);
6868 return ERR_PTR(ret);
6874 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6876 generate_random_uuid(dev->uuid);
6881 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6882 u64 devid, u8 *uuid, bool error)
6885 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6888 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6892 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6894 const int data_stripes = calc_data_stripes(type, num_stripes);
6896 return div_u64(chunk_len, data_stripes);
6899 #if BITS_PER_LONG == 32
6901 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6902 * can't be accessed on 32bit systems.
6904 * This function do mount time check to reject the fs if it already has
6905 * metadata chunk beyond that limit.
6907 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6908 u64 logical, u64 length, u64 type)
6910 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6913 if (logical + length < MAX_LFS_FILESIZE)
6916 btrfs_err_32bit_limit(fs_info);
6921 * This is to give early warning for any metadata chunk reaching
6922 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6923 * Although we can still access the metadata, it's not going to be possible
6924 * once the limit is reached.
6926 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6927 u64 logical, u64 length, u64 type)
6929 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6932 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6935 btrfs_warn_32bit_limit(fs_info);
6939 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6940 struct btrfs_chunk *chunk)
6942 struct btrfs_fs_info *fs_info = leaf->fs_info;
6943 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6944 struct map_lookup *map;
6945 struct extent_map *em;
6950 u8 uuid[BTRFS_UUID_SIZE];
6955 logical = key->offset;
6956 length = btrfs_chunk_length(leaf, chunk);
6957 type = btrfs_chunk_type(leaf, chunk);
6958 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6960 #if BITS_PER_LONG == 32
6961 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6964 warn_32bit_meta_chunk(fs_info, logical, length, type);
6968 * Only need to verify chunk item if we're reading from sys chunk array,
6969 * as chunk item in tree block is already verified by tree-checker.
6971 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6972 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6977 read_lock(&map_tree->lock);
6978 em = lookup_extent_mapping(map_tree, logical, 1);
6979 read_unlock(&map_tree->lock);
6981 /* already mapped? */
6982 if (em && em->start <= logical && em->start + em->len > logical) {
6983 free_extent_map(em);
6986 free_extent_map(em);
6989 em = alloc_extent_map();
6992 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6994 free_extent_map(em);
6998 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6999 em->map_lookup = map;
7000 em->start = logical;
7003 em->block_start = 0;
7004 em->block_len = em->len;
7006 map->num_stripes = num_stripes;
7007 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7008 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7009 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7011 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7012 map->verified_stripes = 0;
7013 em->orig_block_len = calc_stripe_length(type, em->len,
7015 for (i = 0; i < num_stripes; i++) {
7016 map->stripes[i].physical =
7017 btrfs_stripe_offset_nr(leaf, chunk, i);
7018 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7019 read_extent_buffer(leaf, uuid, (unsigned long)
7020 btrfs_stripe_dev_uuid_nr(chunk, i),
7022 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
7024 if (!map->stripes[i].dev &&
7025 !btrfs_test_opt(fs_info, DEGRADED)) {
7026 free_extent_map(em);
7027 btrfs_report_missing_device(fs_info, devid, uuid, true);
7030 if (!map->stripes[i].dev) {
7031 map->stripes[i].dev =
7032 add_missing_dev(fs_info->fs_devices, devid,
7034 if (IS_ERR(map->stripes[i].dev)) {
7035 free_extent_map(em);
7037 "failed to init missing dev %llu: %ld",
7038 devid, PTR_ERR(map->stripes[i].dev));
7039 return PTR_ERR(map->stripes[i].dev);
7041 btrfs_report_missing_device(fs_info, devid, uuid, false);
7043 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7044 &(map->stripes[i].dev->dev_state));
7048 write_lock(&map_tree->lock);
7049 ret = add_extent_mapping(map_tree, em, 0);
7050 write_unlock(&map_tree->lock);
7053 "failed to add chunk map, start=%llu len=%llu: %d",
7054 em->start, em->len, ret);
7056 free_extent_map(em);
7061 static void fill_device_from_item(struct extent_buffer *leaf,
7062 struct btrfs_dev_item *dev_item,
7063 struct btrfs_device *device)
7067 device->devid = btrfs_device_id(leaf, dev_item);
7068 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7069 device->total_bytes = device->disk_total_bytes;
7070 device->commit_total_bytes = device->disk_total_bytes;
7071 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7072 device->commit_bytes_used = device->bytes_used;
7073 device->type = btrfs_device_type(leaf, dev_item);
7074 device->io_align = btrfs_device_io_align(leaf, dev_item);
7075 device->io_width = btrfs_device_io_width(leaf, dev_item);
7076 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7077 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7078 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7080 ptr = btrfs_device_uuid(dev_item);
7081 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7084 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7087 struct btrfs_fs_devices *fs_devices;
7090 lockdep_assert_held(&uuid_mutex);
7093 /* This will match only for multi-device seed fs */
7094 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7095 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7099 fs_devices = find_fsid(fsid, NULL);
7101 if (!btrfs_test_opt(fs_info, DEGRADED))
7102 return ERR_PTR(-ENOENT);
7104 fs_devices = alloc_fs_devices(fsid, NULL);
7105 if (IS_ERR(fs_devices))
7108 fs_devices->seeding = true;
7109 fs_devices->opened = 1;
7114 * Upon first call for a seed fs fsid, just create a private copy of the
7115 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7117 fs_devices = clone_fs_devices(fs_devices);
7118 if (IS_ERR(fs_devices))
7121 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7123 free_fs_devices(fs_devices);
7124 return ERR_PTR(ret);
7127 if (!fs_devices->seeding) {
7128 close_fs_devices(fs_devices);
7129 free_fs_devices(fs_devices);
7130 return ERR_PTR(-EINVAL);
7133 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7138 static int read_one_dev(struct extent_buffer *leaf,
7139 struct btrfs_dev_item *dev_item)
7141 struct btrfs_fs_info *fs_info = leaf->fs_info;
7142 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7143 struct btrfs_device *device;
7146 u8 fs_uuid[BTRFS_FSID_SIZE];
7147 u8 dev_uuid[BTRFS_UUID_SIZE];
7149 devid = btrfs_device_id(leaf, dev_item);
7150 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7152 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7155 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7156 fs_devices = open_seed_devices(fs_info, fs_uuid);
7157 if (IS_ERR(fs_devices))
7158 return PTR_ERR(fs_devices);
7161 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7164 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7165 btrfs_report_missing_device(fs_info, devid,
7170 device = add_missing_dev(fs_devices, devid, dev_uuid);
7171 if (IS_ERR(device)) {
7173 "failed to add missing dev %llu: %ld",
7174 devid, PTR_ERR(device));
7175 return PTR_ERR(device);
7177 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7179 if (!device->bdev) {
7180 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7181 btrfs_report_missing_device(fs_info,
7182 devid, dev_uuid, true);
7185 btrfs_report_missing_device(fs_info, devid,
7189 if (!device->bdev &&
7190 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7192 * this happens when a device that was properly setup
7193 * in the device info lists suddenly goes bad.
7194 * device->bdev is NULL, and so we have to set
7195 * device->missing to one here
7197 device->fs_devices->missing_devices++;
7198 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7201 /* Move the device to its own fs_devices */
7202 if (device->fs_devices != fs_devices) {
7203 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7204 &device->dev_state));
7206 list_move(&device->dev_list, &fs_devices->devices);
7207 device->fs_devices->num_devices--;
7208 fs_devices->num_devices++;
7210 device->fs_devices->missing_devices--;
7211 fs_devices->missing_devices++;
7213 device->fs_devices = fs_devices;
7217 if (device->fs_devices != fs_info->fs_devices) {
7218 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7219 if (device->generation !=
7220 btrfs_device_generation(leaf, dev_item))
7224 fill_device_from_item(leaf, dev_item, device);
7226 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7228 if (device->total_bytes > max_total_bytes) {
7230 "device total_bytes should be at most %llu but found %llu",
7231 max_total_bytes, device->total_bytes);
7235 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7236 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7237 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7238 device->fs_devices->total_rw_bytes += device->total_bytes;
7239 atomic64_add(device->total_bytes - device->bytes_used,
7240 &fs_info->free_chunk_space);
7246 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7248 struct btrfs_root *root = fs_info->tree_root;
7249 struct btrfs_super_block *super_copy = fs_info->super_copy;
7250 struct extent_buffer *sb;
7251 struct btrfs_disk_key *disk_key;
7252 struct btrfs_chunk *chunk;
7254 unsigned long sb_array_offset;
7261 struct btrfs_key key;
7263 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7265 * This will create extent buffer of nodesize, superblock size is
7266 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7267 * overallocate but we can keep it as-is, only the first page is used.
7269 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7270 root->root_key.objectid, 0);
7273 set_extent_buffer_uptodate(sb);
7275 * The sb extent buffer is artificial and just used to read the system array.
7276 * set_extent_buffer_uptodate() call does not properly mark all it's
7277 * pages up-to-date when the page is larger: extent does not cover the
7278 * whole page and consequently check_page_uptodate does not find all
7279 * the page's extents up-to-date (the hole beyond sb),
7280 * write_extent_buffer then triggers a WARN_ON.
7282 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7283 * but sb spans only this function. Add an explicit SetPageUptodate call
7284 * to silence the warning eg. on PowerPC 64.
7286 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7287 SetPageUptodate(sb->pages[0]);
7289 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7290 array_size = btrfs_super_sys_array_size(super_copy);
7292 array_ptr = super_copy->sys_chunk_array;
7293 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7296 while (cur_offset < array_size) {
7297 disk_key = (struct btrfs_disk_key *)array_ptr;
7298 len = sizeof(*disk_key);
7299 if (cur_offset + len > array_size)
7300 goto out_short_read;
7302 btrfs_disk_key_to_cpu(&key, disk_key);
7305 sb_array_offset += len;
7308 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7310 "unexpected item type %u in sys_array at offset %u",
7311 (u32)key.type, cur_offset);
7316 chunk = (struct btrfs_chunk *)sb_array_offset;
7318 * At least one btrfs_chunk with one stripe must be present,
7319 * exact stripe count check comes afterwards
7321 len = btrfs_chunk_item_size(1);
7322 if (cur_offset + len > array_size)
7323 goto out_short_read;
7325 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7328 "invalid number of stripes %u in sys_array at offset %u",
7329 num_stripes, cur_offset);
7334 type = btrfs_chunk_type(sb, chunk);
7335 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7337 "invalid chunk type %llu in sys_array at offset %u",
7343 len = btrfs_chunk_item_size(num_stripes);
7344 if (cur_offset + len > array_size)
7345 goto out_short_read;
7347 ret = read_one_chunk(&key, sb, chunk);
7352 sb_array_offset += len;
7355 clear_extent_buffer_uptodate(sb);
7356 free_extent_buffer_stale(sb);
7360 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7362 clear_extent_buffer_uptodate(sb);
7363 free_extent_buffer_stale(sb);
7368 * Check if all chunks in the fs are OK for read-write degraded mount
7370 * If the @failing_dev is specified, it's accounted as missing.
7372 * Return true if all chunks meet the minimal RW mount requirements.
7373 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7375 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7376 struct btrfs_device *failing_dev)
7378 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7379 struct extent_map *em;
7383 read_lock(&map_tree->lock);
7384 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7385 read_unlock(&map_tree->lock);
7386 /* No chunk at all? Return false anyway */
7392 struct map_lookup *map;
7397 map = em->map_lookup;
7399 btrfs_get_num_tolerated_disk_barrier_failures(
7401 for (i = 0; i < map->num_stripes; i++) {
7402 struct btrfs_device *dev = map->stripes[i].dev;
7404 if (!dev || !dev->bdev ||
7405 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7406 dev->last_flush_error)
7408 else if (failing_dev && failing_dev == dev)
7411 if (missing > max_tolerated) {
7414 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7415 em->start, missing, max_tolerated);
7416 free_extent_map(em);
7420 next_start = extent_map_end(em);
7421 free_extent_map(em);
7423 read_lock(&map_tree->lock);
7424 em = lookup_extent_mapping(map_tree, next_start,
7425 (u64)(-1) - next_start);
7426 read_unlock(&map_tree->lock);
7432 static void readahead_tree_node_children(struct extent_buffer *node)
7435 const int nr_items = btrfs_header_nritems(node);
7437 for (i = 0; i < nr_items; i++)
7438 btrfs_readahead_node_child(node, i);
7441 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7443 struct btrfs_root *root = fs_info->chunk_root;
7444 struct btrfs_path *path;
7445 struct extent_buffer *leaf;
7446 struct btrfs_key key;
7447 struct btrfs_key found_key;
7451 u64 last_ra_node = 0;
7453 path = btrfs_alloc_path();
7458 * uuid_mutex is needed only if we are mounting a sprout FS
7459 * otherwise we don't need it.
7461 mutex_lock(&uuid_mutex);
7464 * It is possible for mount and umount to race in such a way that
7465 * we execute this code path, but open_fs_devices failed to clear
7466 * total_rw_bytes. We certainly want it cleared before reading the
7467 * device items, so clear it here.
7469 fs_info->fs_devices->total_rw_bytes = 0;
7472 * Read all device items, and then all the chunk items. All
7473 * device items are found before any chunk item (their object id
7474 * is smaller than the lowest possible object id for a chunk
7475 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7477 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7480 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7484 struct extent_buffer *node;
7486 leaf = path->nodes[0];
7487 slot = path->slots[0];
7488 if (slot >= btrfs_header_nritems(leaf)) {
7489 ret = btrfs_next_leaf(root, path);
7497 * The nodes on level 1 are not locked but we don't need to do
7498 * that during mount time as nothing else can access the tree
7500 node = path->nodes[1];
7502 if (last_ra_node != node->start) {
7503 readahead_tree_node_children(node);
7504 last_ra_node = node->start;
7507 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7508 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7509 struct btrfs_dev_item *dev_item;
7510 dev_item = btrfs_item_ptr(leaf, slot,
7511 struct btrfs_dev_item);
7512 ret = read_one_dev(leaf, dev_item);
7516 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7517 struct btrfs_chunk *chunk;
7520 * We are only called at mount time, so no need to take
7521 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7522 * we always lock first fs_info->chunk_mutex before
7523 * acquiring any locks on the chunk tree. This is a
7524 * requirement for chunk allocation, see the comment on
7525 * top of btrfs_chunk_alloc() for details.
7527 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7528 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7529 ret = read_one_chunk(&found_key, leaf, chunk);
7537 * After loading chunk tree, we've got all device information,
7538 * do another round of validation checks.
7540 if (total_dev != fs_info->fs_devices->total_devices) {
7542 "super_num_devices %llu mismatch with num_devices %llu found here",
7543 btrfs_super_num_devices(fs_info->super_copy),
7548 if (btrfs_super_total_bytes(fs_info->super_copy) <
7549 fs_info->fs_devices->total_rw_bytes) {
7551 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7552 btrfs_super_total_bytes(fs_info->super_copy),
7553 fs_info->fs_devices->total_rw_bytes);
7559 mutex_unlock(&uuid_mutex);
7561 btrfs_free_path(path);
7565 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7567 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7568 struct btrfs_device *device;
7570 fs_devices->fs_info = fs_info;
7572 mutex_lock(&fs_devices->device_list_mutex);
7573 list_for_each_entry(device, &fs_devices->devices, dev_list)
7574 device->fs_info = fs_info;
7576 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7577 list_for_each_entry(device, &seed_devs->devices, dev_list)
7578 device->fs_info = fs_info;
7580 seed_devs->fs_info = fs_info;
7582 mutex_unlock(&fs_devices->device_list_mutex);
7585 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7586 const struct btrfs_dev_stats_item *ptr,
7591 read_extent_buffer(eb, &val,
7592 offsetof(struct btrfs_dev_stats_item, values) +
7593 ((unsigned long)ptr) + (index * sizeof(u64)),
7598 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7599 struct btrfs_dev_stats_item *ptr,
7602 write_extent_buffer(eb, &val,
7603 offsetof(struct btrfs_dev_stats_item, values) +
7604 ((unsigned long)ptr) + (index * sizeof(u64)),
7608 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7609 struct btrfs_path *path)
7611 struct btrfs_dev_stats_item *ptr;
7612 struct extent_buffer *eb;
7613 struct btrfs_key key;
7617 if (!device->fs_info->dev_root)
7620 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7621 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7622 key.offset = device->devid;
7623 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7625 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7626 btrfs_dev_stat_set(device, i, 0);
7627 device->dev_stats_valid = 1;
7628 btrfs_release_path(path);
7629 return ret < 0 ? ret : 0;
7631 slot = path->slots[0];
7632 eb = path->nodes[0];
7633 item_size = btrfs_item_size_nr(eb, slot);
7635 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7637 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7638 if (item_size >= (1 + i) * sizeof(__le64))
7639 btrfs_dev_stat_set(device, i,
7640 btrfs_dev_stats_value(eb, ptr, i));
7642 btrfs_dev_stat_set(device, i, 0);
7645 device->dev_stats_valid = 1;
7646 btrfs_dev_stat_print_on_load(device);
7647 btrfs_release_path(path);
7652 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7654 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7655 struct btrfs_device *device;
7656 struct btrfs_path *path = NULL;
7659 path = btrfs_alloc_path();
7663 mutex_lock(&fs_devices->device_list_mutex);
7664 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7665 ret = btrfs_device_init_dev_stats(device, path);
7669 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7670 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7671 ret = btrfs_device_init_dev_stats(device, path);
7677 mutex_unlock(&fs_devices->device_list_mutex);
7679 btrfs_free_path(path);
7683 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7684 struct btrfs_device *device)
7686 struct btrfs_fs_info *fs_info = trans->fs_info;
7687 struct btrfs_root *dev_root = fs_info->dev_root;
7688 struct btrfs_path *path;
7689 struct btrfs_key key;
7690 struct extent_buffer *eb;
7691 struct btrfs_dev_stats_item *ptr;
7695 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7696 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7697 key.offset = device->devid;
7699 path = btrfs_alloc_path();
7702 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7704 btrfs_warn_in_rcu(fs_info,
7705 "error %d while searching for dev_stats item for device %s",
7706 ret, rcu_str_deref(device->name));
7711 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7712 /* need to delete old one and insert a new one */
7713 ret = btrfs_del_item(trans, dev_root, path);
7715 btrfs_warn_in_rcu(fs_info,
7716 "delete too small dev_stats item for device %s failed %d",
7717 rcu_str_deref(device->name), ret);
7724 /* need to insert a new item */
7725 btrfs_release_path(path);
7726 ret = btrfs_insert_empty_item(trans, dev_root, path,
7727 &key, sizeof(*ptr));
7729 btrfs_warn_in_rcu(fs_info,
7730 "insert dev_stats item for device %s failed %d",
7731 rcu_str_deref(device->name), ret);
7736 eb = path->nodes[0];
7737 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7738 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7739 btrfs_set_dev_stats_value(eb, ptr, i,
7740 btrfs_dev_stat_read(device, i));
7741 btrfs_mark_buffer_dirty(eb);
7744 btrfs_free_path(path);
7749 * called from commit_transaction. Writes all changed device stats to disk.
7751 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7753 struct btrfs_fs_info *fs_info = trans->fs_info;
7754 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7755 struct btrfs_device *device;
7759 mutex_lock(&fs_devices->device_list_mutex);
7760 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7761 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7762 if (!device->dev_stats_valid || stats_cnt == 0)
7767 * There is a LOAD-LOAD control dependency between the value of
7768 * dev_stats_ccnt and updating the on-disk values which requires
7769 * reading the in-memory counters. Such control dependencies
7770 * require explicit read memory barriers.
7772 * This memory barriers pairs with smp_mb__before_atomic in
7773 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7774 * barrier implied by atomic_xchg in
7775 * btrfs_dev_stats_read_and_reset
7779 ret = update_dev_stat_item(trans, device);
7781 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7783 mutex_unlock(&fs_devices->device_list_mutex);
7788 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7790 btrfs_dev_stat_inc(dev, index);
7791 btrfs_dev_stat_print_on_error(dev);
7794 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7796 if (!dev->dev_stats_valid)
7798 btrfs_err_rl_in_rcu(dev->fs_info,
7799 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7800 rcu_str_deref(dev->name),
7801 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7802 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7803 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7804 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7805 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7808 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7812 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7813 if (btrfs_dev_stat_read(dev, i) != 0)
7815 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7816 return; /* all values == 0, suppress message */
7818 btrfs_info_in_rcu(dev->fs_info,
7819 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7820 rcu_str_deref(dev->name),
7821 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7822 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7823 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7824 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7825 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7828 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7829 struct btrfs_ioctl_get_dev_stats *stats)
7831 struct btrfs_device *dev;
7832 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7835 mutex_lock(&fs_devices->device_list_mutex);
7836 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7837 mutex_unlock(&fs_devices->device_list_mutex);
7840 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7842 } else if (!dev->dev_stats_valid) {
7843 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7845 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7846 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7847 if (stats->nr_items > i)
7849 btrfs_dev_stat_read_and_reset(dev, i);
7851 btrfs_dev_stat_set(dev, i, 0);
7853 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7854 current->comm, task_pid_nr(current));
7856 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7857 if (stats->nr_items > i)
7858 stats->values[i] = btrfs_dev_stat_read(dev, i);
7860 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7861 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7866 * Update the size and bytes used for each device where it changed. This is
7867 * delayed since we would otherwise get errors while writing out the
7870 * Must be invoked during transaction commit.
7872 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7874 struct btrfs_device *curr, *next;
7876 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7878 if (list_empty(&trans->dev_update_list))
7882 * We don't need the device_list_mutex here. This list is owned by the
7883 * transaction and the transaction must complete before the device is
7886 mutex_lock(&trans->fs_info->chunk_mutex);
7887 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7889 list_del_init(&curr->post_commit_list);
7890 curr->commit_total_bytes = curr->disk_total_bytes;
7891 curr->commit_bytes_used = curr->bytes_used;
7893 mutex_unlock(&trans->fs_info->chunk_mutex);
7897 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7899 int btrfs_bg_type_to_factor(u64 flags)
7901 const int index = btrfs_bg_flags_to_raid_index(flags);
7903 return btrfs_raid_array[index].ncopies;
7908 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7909 u64 chunk_offset, u64 devid,
7910 u64 physical_offset, u64 physical_len)
7912 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7913 struct extent_map *em;
7914 struct map_lookup *map;
7915 struct btrfs_device *dev;
7921 read_lock(&em_tree->lock);
7922 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7923 read_unlock(&em_tree->lock);
7927 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7928 physical_offset, devid);
7933 map = em->map_lookup;
7934 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7935 if (physical_len != stripe_len) {
7937 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7938 physical_offset, devid, em->start, physical_len,
7944 for (i = 0; i < map->num_stripes; i++) {
7945 if (map->stripes[i].dev->devid == devid &&
7946 map->stripes[i].physical == physical_offset) {
7948 if (map->verified_stripes >= map->num_stripes) {
7950 "too many dev extents for chunk %llu found",
7955 map->verified_stripes++;
7961 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7962 physical_offset, devid);
7966 /* Make sure no dev extent is beyond device boundary */
7967 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7969 btrfs_err(fs_info, "failed to find devid %llu", devid);
7974 if (physical_offset + physical_len > dev->disk_total_bytes) {
7976 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7977 devid, physical_offset, physical_len,
7978 dev->disk_total_bytes);
7983 if (dev->zone_info) {
7984 u64 zone_size = dev->zone_info->zone_size;
7986 if (!IS_ALIGNED(physical_offset, zone_size) ||
7987 !IS_ALIGNED(physical_len, zone_size)) {
7989 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7990 devid, physical_offset, physical_len);
7997 free_extent_map(em);
8001 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8003 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8004 struct extent_map *em;
8005 struct rb_node *node;
8008 read_lock(&em_tree->lock);
8009 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8010 em = rb_entry(node, struct extent_map, rb_node);
8011 if (em->map_lookup->num_stripes !=
8012 em->map_lookup->verified_stripes) {
8014 "chunk %llu has missing dev extent, have %d expect %d",
8015 em->start, em->map_lookup->verified_stripes,
8016 em->map_lookup->num_stripes);
8022 read_unlock(&em_tree->lock);
8027 * Ensure that all dev extents are mapped to correct chunk, otherwise
8028 * later chunk allocation/free would cause unexpected behavior.
8030 * NOTE: This will iterate through the whole device tree, which should be of
8031 * the same size level as the chunk tree. This slightly increases mount time.
8033 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8035 struct btrfs_path *path;
8036 struct btrfs_root *root = fs_info->dev_root;
8037 struct btrfs_key key;
8039 u64 prev_dev_ext_end = 0;
8043 * We don't have a dev_root because we mounted with ignorebadroots and
8044 * failed to load the root, so we want to skip the verification in this
8047 * However if the dev root is fine, but the tree itself is corrupted
8048 * we'd still fail to mount. This verification is only to make sure
8049 * writes can happen safely, so instead just bypass this check
8050 * completely in the case of IGNOREBADROOTS.
8052 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8056 key.type = BTRFS_DEV_EXTENT_KEY;
8059 path = btrfs_alloc_path();
8063 path->reada = READA_FORWARD;
8064 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8068 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8069 ret = btrfs_next_leaf(root, path);
8072 /* No dev extents at all? Not good */
8079 struct extent_buffer *leaf = path->nodes[0];
8080 struct btrfs_dev_extent *dext;
8081 int slot = path->slots[0];
8083 u64 physical_offset;
8087 btrfs_item_key_to_cpu(leaf, &key, slot);
8088 if (key.type != BTRFS_DEV_EXTENT_KEY)
8090 devid = key.objectid;
8091 physical_offset = key.offset;
8093 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8094 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8095 physical_len = btrfs_dev_extent_length(leaf, dext);
8097 /* Check if this dev extent overlaps with the previous one */
8098 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8100 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8101 devid, physical_offset, prev_dev_ext_end);
8106 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8107 physical_offset, physical_len);
8111 prev_dev_ext_end = physical_offset + physical_len;
8113 ret = btrfs_next_item(root, path);
8122 /* Ensure all chunks have corresponding dev extents */
8123 ret = verify_chunk_dev_extent_mapping(fs_info);
8125 btrfs_free_path(path);
8130 * Check whether the given block group or device is pinned by any inode being
8131 * used as a swapfile.
8133 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8135 struct btrfs_swapfile_pin *sp;
8136 struct rb_node *node;
8138 spin_lock(&fs_info->swapfile_pins_lock);
8139 node = fs_info->swapfile_pins.rb_node;
8141 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8143 node = node->rb_left;
8144 else if (ptr > sp->ptr)
8145 node = node->rb_right;
8149 spin_unlock(&fs_info->swapfile_pins_lock);
8150 return node != NULL;
8153 static int relocating_repair_kthread(void *data)
8155 struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8156 struct btrfs_fs_info *fs_info = cache->fs_info;
8160 target = cache->start;
8161 btrfs_put_block_group(cache);
8163 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8165 "zoned: skip relocating block group %llu to repair: EBUSY",
8170 mutex_lock(&fs_info->reclaim_bgs_lock);
8172 /* Ensure block group still exists */
8173 cache = btrfs_lookup_block_group(fs_info, target);
8177 if (!cache->relocating_repair)
8180 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8185 "zoned: relocating block group %llu to repair IO failure",
8187 ret = btrfs_relocate_chunk(fs_info, target);
8191 btrfs_put_block_group(cache);
8192 mutex_unlock(&fs_info->reclaim_bgs_lock);
8193 btrfs_exclop_finish(fs_info);
8198 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8200 struct btrfs_block_group *cache;
8202 /* Do not attempt to repair in degraded state */
8203 if (btrfs_test_opt(fs_info, DEGRADED))
8206 cache = btrfs_lookup_block_group(fs_info, logical);
8210 spin_lock(&cache->lock);
8211 if (cache->relocating_repair) {
8212 spin_unlock(&cache->lock);
8213 btrfs_put_block_group(cache);
8216 cache->relocating_repair = 1;
8217 spin_unlock(&cache->lock);
8219 kthread_run(relocating_repair_kthread, cache,
8220 "btrfs-relocating-repair");