Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[platform/kernel/linux-rpi.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 #include "zoned.h"
35
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37         [BTRFS_RAID_RAID10] = {
38                 .sub_stripes    = 2,
39                 .dev_stripes    = 1,
40                 .devs_max       = 0,    /* 0 == as many as possible */
41                 .devs_min       = 4,
42                 .tolerated_failures = 1,
43                 .devs_increment = 2,
44                 .ncopies        = 2,
45                 .nparity        = 0,
46                 .raid_name      = "raid10",
47                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
48                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49         },
50         [BTRFS_RAID_RAID1] = {
51                 .sub_stripes    = 1,
52                 .dev_stripes    = 1,
53                 .devs_max       = 2,
54                 .devs_min       = 2,
55                 .tolerated_failures = 1,
56                 .devs_increment = 2,
57                 .ncopies        = 2,
58                 .nparity        = 0,
59                 .raid_name      = "raid1",
60                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
61                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62         },
63         [BTRFS_RAID_RAID1C3] = {
64                 .sub_stripes    = 1,
65                 .dev_stripes    = 1,
66                 .devs_max       = 3,
67                 .devs_min       = 3,
68                 .tolerated_failures = 2,
69                 .devs_increment = 3,
70                 .ncopies        = 3,
71                 .nparity        = 0,
72                 .raid_name      = "raid1c3",
73                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
74                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75         },
76         [BTRFS_RAID_RAID1C4] = {
77                 .sub_stripes    = 1,
78                 .dev_stripes    = 1,
79                 .devs_max       = 4,
80                 .devs_min       = 4,
81                 .tolerated_failures = 3,
82                 .devs_increment = 4,
83                 .ncopies        = 4,
84                 .nparity        = 0,
85                 .raid_name      = "raid1c4",
86                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
87                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88         },
89         [BTRFS_RAID_DUP] = {
90                 .sub_stripes    = 1,
91                 .dev_stripes    = 2,
92                 .devs_max       = 1,
93                 .devs_min       = 1,
94                 .tolerated_failures = 0,
95                 .devs_increment = 1,
96                 .ncopies        = 2,
97                 .nparity        = 0,
98                 .raid_name      = "dup",
99                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
100                 .mindev_error   = 0,
101         },
102         [BTRFS_RAID_RAID0] = {
103                 .sub_stripes    = 1,
104                 .dev_stripes    = 1,
105                 .devs_max       = 0,
106                 .devs_min       = 2,
107                 .tolerated_failures = 0,
108                 .devs_increment = 1,
109                 .ncopies        = 1,
110                 .nparity        = 0,
111                 .raid_name      = "raid0",
112                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
113                 .mindev_error   = 0,
114         },
115         [BTRFS_RAID_SINGLE] = {
116                 .sub_stripes    = 1,
117                 .dev_stripes    = 1,
118                 .devs_max       = 1,
119                 .devs_min       = 1,
120                 .tolerated_failures = 0,
121                 .devs_increment = 1,
122                 .ncopies        = 1,
123                 .nparity        = 0,
124                 .raid_name      = "single",
125                 .bg_flag        = 0,
126                 .mindev_error   = 0,
127         },
128         [BTRFS_RAID_RAID5] = {
129                 .sub_stripes    = 1,
130                 .dev_stripes    = 1,
131                 .devs_max       = 0,
132                 .devs_min       = 2,
133                 .tolerated_failures = 1,
134                 .devs_increment = 1,
135                 .ncopies        = 1,
136                 .nparity        = 1,
137                 .raid_name      = "raid5",
138                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
139                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140         },
141         [BTRFS_RAID_RAID6] = {
142                 .sub_stripes    = 1,
143                 .dev_stripes    = 1,
144                 .devs_max       = 0,
145                 .devs_min       = 3,
146                 .tolerated_failures = 2,
147                 .devs_increment = 1,
148                 .ncopies        = 1,
149                 .nparity        = 2,
150                 .raid_name      = "raid6",
151                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
152                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153         },
154 };
155
156 const char *btrfs_bg_type_to_raid_name(u64 flags)
157 {
158         const int index = btrfs_bg_flags_to_raid_index(flags);
159
160         if (index >= BTRFS_NR_RAID_TYPES)
161                 return NULL;
162
163         return btrfs_raid_array[index].raid_name;
164 }
165
166 /*
167  * Fill @buf with textual description of @bg_flags, no more than @size_buf
168  * bytes including terminating null byte.
169  */
170 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
171 {
172         int i;
173         int ret;
174         char *bp = buf;
175         u64 flags = bg_flags;
176         u32 size_bp = size_buf;
177
178         if (!flags) {
179                 strcpy(bp, "NONE");
180                 return;
181         }
182
183 #define DESCRIBE_FLAG(flag, desc)                                               \
184         do {                                                            \
185                 if (flags & (flag)) {                                   \
186                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
187                         if (ret < 0 || ret >= size_bp)                  \
188                                 goto out_overflow;                      \
189                         size_bp -= ret;                                 \
190                         bp += ret;                                      \
191                         flags &= ~(flag);                               \
192                 }                                                       \
193         } while (0)
194
195         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
196         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
197         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
198
199         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
200         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
202                               btrfs_raid_array[i].raid_name);
203 #undef DESCRIBE_FLAG
204
205         if (flags) {
206                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
207                 size_bp -= ret;
208         }
209
210         if (size_bp < size_buf)
211                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
212
213         /*
214          * The text is trimmed, it's up to the caller to provide sufficiently
215          * large buffer
216          */
217 out_overflow:;
218 }
219
220 static int init_first_rw_device(struct btrfs_trans_handle *trans);
221 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
222 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
223 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
224 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
225                              enum btrfs_map_op op,
226                              u64 logical, u64 *length,
227                              struct btrfs_bio **bbio_ret,
228                              int mirror_num, int need_raid_map);
229
230 /*
231  * Device locking
232  * ==============
233  *
234  * There are several mutexes that protect manipulation of devices and low-level
235  * structures like chunks but not block groups, extents or files
236  *
237  * uuid_mutex (global lock)
238  * ------------------------
239  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
240  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
241  * device) or requested by the device= mount option
242  *
243  * the mutex can be very coarse and can cover long-running operations
244  *
245  * protects: updates to fs_devices counters like missing devices, rw devices,
246  * seeding, structure cloning, opening/closing devices at mount/umount time
247  *
248  * global::fs_devs - add, remove, updates to the global list
249  *
250  * does not protect: manipulation of the fs_devices::devices list in general
251  * but in mount context it could be used to exclude list modifications by eg.
252  * scan ioctl
253  *
254  * btrfs_device::name - renames (write side), read is RCU
255  *
256  * fs_devices::device_list_mutex (per-fs, with RCU)
257  * ------------------------------------------------
258  * protects updates to fs_devices::devices, ie. adding and deleting
259  *
260  * simple list traversal with read-only actions can be done with RCU protection
261  *
262  * may be used to exclude some operations from running concurrently without any
263  * modifications to the list (see write_all_supers)
264  *
265  * Is not required at mount and close times, because our device list is
266  * protected by the uuid_mutex at that point.
267  *
268  * balance_mutex
269  * -------------
270  * protects balance structures (status, state) and context accessed from
271  * several places (internally, ioctl)
272  *
273  * chunk_mutex
274  * -----------
275  * protects chunks, adding or removing during allocation, trim or when a new
276  * device is added/removed. Additionally it also protects post_commit_list of
277  * individual devices, since they can be added to the transaction's
278  * post_commit_list only with chunk_mutex held.
279  *
280  * cleaner_mutex
281  * -------------
282  * a big lock that is held by the cleaner thread and prevents running subvolume
283  * cleaning together with relocation or delayed iputs
284  *
285  *
286  * Lock nesting
287  * ============
288  *
289  * uuid_mutex
290  *   device_list_mutex
291  *     chunk_mutex
292  *   balance_mutex
293  *
294  *
295  * Exclusive operations
296  * ====================
297  *
298  * Maintains the exclusivity of the following operations that apply to the
299  * whole filesystem and cannot run in parallel.
300  *
301  * - Balance (*)
302  * - Device add
303  * - Device remove
304  * - Device replace (*)
305  * - Resize
306  *
307  * The device operations (as above) can be in one of the following states:
308  *
309  * - Running state
310  * - Paused state
311  * - Completed state
312  *
313  * Only device operations marked with (*) can go into the Paused state for the
314  * following reasons:
315  *
316  * - ioctl (only Balance can be Paused through ioctl)
317  * - filesystem remounted as read-only
318  * - filesystem unmounted and mounted as read-only
319  * - system power-cycle and filesystem mounted as read-only
320  * - filesystem or device errors leading to forced read-only
321  *
322  * The status of exclusive operation is set and cleared atomically.
323  * During the course of Paused state, fs_info::exclusive_operation remains set.
324  * A device operation in Paused or Running state can be canceled or resumed
325  * either by ioctl (Balance only) or when remounted as read-write.
326  * The exclusive status is cleared when the device operation is canceled or
327  * completed.
328  */
329
330 DEFINE_MUTEX(uuid_mutex);
331 static LIST_HEAD(fs_uuids);
332 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
333 {
334         return &fs_uuids;
335 }
336
337 /*
338  * alloc_fs_devices - allocate struct btrfs_fs_devices
339  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
340  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
341  *
342  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
343  * The returned struct is not linked onto any lists and can be destroyed with
344  * kfree() right away.
345  */
346 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
347                                                  const u8 *metadata_fsid)
348 {
349         struct btrfs_fs_devices *fs_devs;
350
351         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
352         if (!fs_devs)
353                 return ERR_PTR(-ENOMEM);
354
355         mutex_init(&fs_devs->device_list_mutex);
356
357         INIT_LIST_HEAD(&fs_devs->devices);
358         INIT_LIST_HEAD(&fs_devs->alloc_list);
359         INIT_LIST_HEAD(&fs_devs->fs_list);
360         INIT_LIST_HEAD(&fs_devs->seed_list);
361         if (fsid)
362                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
363
364         if (metadata_fsid)
365                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
366         else if (fsid)
367                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
368
369         return fs_devs;
370 }
371
372 void btrfs_free_device(struct btrfs_device *device)
373 {
374         WARN_ON(!list_empty(&device->post_commit_list));
375         rcu_string_free(device->name);
376         extent_io_tree_release(&device->alloc_state);
377         bio_put(device->flush_bio);
378         btrfs_destroy_dev_zone_info(device);
379         kfree(device);
380 }
381
382 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
383 {
384         struct btrfs_device *device;
385         WARN_ON(fs_devices->opened);
386         while (!list_empty(&fs_devices->devices)) {
387                 device = list_entry(fs_devices->devices.next,
388                                     struct btrfs_device, dev_list);
389                 list_del(&device->dev_list);
390                 btrfs_free_device(device);
391         }
392         kfree(fs_devices);
393 }
394
395 void __exit btrfs_cleanup_fs_uuids(void)
396 {
397         struct btrfs_fs_devices *fs_devices;
398
399         while (!list_empty(&fs_uuids)) {
400                 fs_devices = list_entry(fs_uuids.next,
401                                         struct btrfs_fs_devices, fs_list);
402                 list_del(&fs_devices->fs_list);
403                 free_fs_devices(fs_devices);
404         }
405 }
406
407 /*
408  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
409  * Returned struct is not linked onto any lists and must be destroyed using
410  * btrfs_free_device.
411  */
412 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
413 {
414         struct btrfs_device *dev;
415
416         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
417         if (!dev)
418                 return ERR_PTR(-ENOMEM);
419
420         /*
421          * Preallocate a bio that's always going to be used for flushing device
422          * barriers and matches the device lifespan
423          */
424         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
425         if (!dev->flush_bio) {
426                 kfree(dev);
427                 return ERR_PTR(-ENOMEM);
428         }
429
430         INIT_LIST_HEAD(&dev->dev_list);
431         INIT_LIST_HEAD(&dev->dev_alloc_list);
432         INIT_LIST_HEAD(&dev->post_commit_list);
433
434         atomic_set(&dev->reada_in_flight, 0);
435         atomic_set(&dev->dev_stats_ccnt, 0);
436         btrfs_device_data_ordered_init(dev, fs_info);
437         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
438         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
439         extent_io_tree_init(fs_info, &dev->alloc_state,
440                             IO_TREE_DEVICE_ALLOC_STATE, NULL);
441
442         return dev;
443 }
444
445 static noinline struct btrfs_fs_devices *find_fsid(
446                 const u8 *fsid, const u8 *metadata_fsid)
447 {
448         struct btrfs_fs_devices *fs_devices;
449
450         ASSERT(fsid);
451
452         /* Handle non-split brain cases */
453         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454                 if (metadata_fsid) {
455                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457                                       BTRFS_FSID_SIZE) == 0)
458                                 return fs_devices;
459                 } else {
460                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
461                                 return fs_devices;
462                 }
463         }
464         return NULL;
465 }
466
467 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
468                                 struct btrfs_super_block *disk_super)
469 {
470
471         struct btrfs_fs_devices *fs_devices;
472
473         /*
474          * Handle scanned device having completed its fsid change but
475          * belonging to a fs_devices that was created by first scanning
476          * a device which didn't have its fsid/metadata_uuid changed
477          * at all and the CHANGING_FSID_V2 flag set.
478          */
479         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
480                 if (fs_devices->fsid_change &&
481                     memcmp(disk_super->metadata_uuid, fs_devices->fsid,
482                            BTRFS_FSID_SIZE) == 0 &&
483                     memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
484                            BTRFS_FSID_SIZE) == 0) {
485                         return fs_devices;
486                 }
487         }
488         /*
489          * Handle scanned device having completed its fsid change but
490          * belonging to a fs_devices that was created by a device that
491          * has an outdated pair of fsid/metadata_uuid and
492          * CHANGING_FSID_V2 flag set.
493          */
494         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
495                 if (fs_devices->fsid_change &&
496                     memcmp(fs_devices->metadata_uuid,
497                            fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
498                     memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
499                            BTRFS_FSID_SIZE) == 0) {
500                         return fs_devices;
501                 }
502         }
503
504         return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
505 }
506
507
508 static int
509 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
510                       int flush, struct block_device **bdev,
511                       struct btrfs_super_block **disk_super)
512 {
513         int ret;
514
515         *bdev = blkdev_get_by_path(device_path, flags, holder);
516
517         if (IS_ERR(*bdev)) {
518                 ret = PTR_ERR(*bdev);
519                 goto error;
520         }
521
522         if (flush)
523                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
524         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
525         if (ret) {
526                 blkdev_put(*bdev, flags);
527                 goto error;
528         }
529         invalidate_bdev(*bdev);
530         *disk_super = btrfs_read_dev_super(*bdev);
531         if (IS_ERR(*disk_super)) {
532                 ret = PTR_ERR(*disk_super);
533                 blkdev_put(*bdev, flags);
534                 goto error;
535         }
536
537         return 0;
538
539 error:
540         *bdev = NULL;
541         return ret;
542 }
543
544 static bool device_path_matched(const char *path, struct btrfs_device *device)
545 {
546         int found;
547
548         rcu_read_lock();
549         found = strcmp(rcu_str_deref(device->name), path);
550         rcu_read_unlock();
551
552         return found == 0;
553 }
554
555 /*
556  *  Search and remove all stale (devices which are not mounted) devices.
557  *  When both inputs are NULL, it will search and release all stale devices.
558  *  path:       Optional. When provided will it release all unmounted devices
559  *              matching this path only.
560  *  skip_dev:   Optional. Will skip this device when searching for the stale
561  *              devices.
562  *  Return:     0 for success or if @path is NULL.
563  *              -EBUSY if @path is a mounted device.
564  *              -ENOENT if @path does not match any device in the list.
565  */
566 static int btrfs_free_stale_devices(const char *path,
567                                      struct btrfs_device *skip_device)
568 {
569         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
570         struct btrfs_device *device, *tmp_device;
571         int ret = 0;
572
573         if (path)
574                 ret = -ENOENT;
575
576         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
577
578                 mutex_lock(&fs_devices->device_list_mutex);
579                 list_for_each_entry_safe(device, tmp_device,
580                                          &fs_devices->devices, dev_list) {
581                         if (skip_device && skip_device == device)
582                                 continue;
583                         if (path && !device->name)
584                                 continue;
585                         if (path && !device_path_matched(path, device))
586                                 continue;
587                         if (fs_devices->opened) {
588                                 /* for an already deleted device return 0 */
589                                 if (path && ret != 0)
590                                         ret = -EBUSY;
591                                 break;
592                         }
593
594                         /* delete the stale device */
595                         fs_devices->num_devices--;
596                         list_del(&device->dev_list);
597                         btrfs_free_device(device);
598
599                         ret = 0;
600                 }
601                 mutex_unlock(&fs_devices->device_list_mutex);
602
603                 if (fs_devices->num_devices == 0) {
604                         btrfs_sysfs_remove_fsid(fs_devices);
605                         list_del(&fs_devices->fs_list);
606                         free_fs_devices(fs_devices);
607                 }
608         }
609
610         return ret;
611 }
612
613 /*
614  * This is only used on mount, and we are protected from competing things
615  * messing with our fs_devices by the uuid_mutex, thus we do not need the
616  * fs_devices->device_list_mutex here.
617  */
618 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
619                         struct btrfs_device *device, fmode_t flags,
620                         void *holder)
621 {
622         struct request_queue *q;
623         struct block_device *bdev;
624         struct btrfs_super_block *disk_super;
625         u64 devid;
626         int ret;
627
628         if (device->bdev)
629                 return -EINVAL;
630         if (!device->name)
631                 return -EINVAL;
632
633         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
634                                     &bdev, &disk_super);
635         if (ret)
636                 return ret;
637
638         devid = btrfs_stack_device_id(&disk_super->dev_item);
639         if (devid != device->devid)
640                 goto error_free_page;
641
642         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
643                 goto error_free_page;
644
645         device->generation = btrfs_super_generation(disk_super);
646
647         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
648                 if (btrfs_super_incompat_flags(disk_super) &
649                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
650                         pr_err(
651                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
652                         goto error_free_page;
653                 }
654
655                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
656                 fs_devices->seeding = true;
657         } else {
658                 if (bdev_read_only(bdev))
659                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660                 else
661                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
662         }
663
664         q = bdev_get_queue(bdev);
665         if (!blk_queue_nonrot(q))
666                 fs_devices->rotating = true;
667
668         device->bdev = bdev;
669         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
670         device->mode = flags;
671
672         ret = btrfs_get_dev_zone_info(device);
673         if (ret != 0)
674                 goto error_free_page;
675
676         fs_devices->open_devices++;
677         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
678             device->devid != BTRFS_DEV_REPLACE_DEVID) {
679                 fs_devices->rw_devices++;
680                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
681         }
682         btrfs_release_disk_super(disk_super);
683
684         return 0;
685
686 error_free_page:
687         btrfs_release_disk_super(disk_super);
688         blkdev_put(bdev, flags);
689
690         return -EINVAL;
691 }
692
693 /*
694  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
695  * being created with a disk that has already completed its fsid change. Such
696  * disk can belong to an fs which has its FSID changed or to one which doesn't.
697  * Handle both cases here.
698  */
699 static struct btrfs_fs_devices *find_fsid_inprogress(
700                                         struct btrfs_super_block *disk_super)
701 {
702         struct btrfs_fs_devices *fs_devices;
703
704         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
705                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
706                            BTRFS_FSID_SIZE) != 0 &&
707                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
708                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
709                         return fs_devices;
710                 }
711         }
712
713         return find_fsid(disk_super->fsid, NULL);
714 }
715
716
717 static struct btrfs_fs_devices *find_fsid_changed(
718                                         struct btrfs_super_block *disk_super)
719 {
720         struct btrfs_fs_devices *fs_devices;
721
722         /*
723          * Handles the case where scanned device is part of an fs that had
724          * multiple successful changes of FSID but curently device didn't
725          * observe it. Meaning our fsid will be different than theirs. We need
726          * to handle two subcases :
727          *  1 - The fs still continues to have different METADATA/FSID uuids.
728          *  2 - The fs is switched back to its original FSID (METADATA/FSID
729          *  are equal).
730          */
731         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
732                 /* Changed UUIDs */
733                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
734                            BTRFS_FSID_SIZE) != 0 &&
735                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
736                            BTRFS_FSID_SIZE) == 0 &&
737                     memcmp(fs_devices->fsid, disk_super->fsid,
738                            BTRFS_FSID_SIZE) != 0)
739                         return fs_devices;
740
741                 /* Unchanged UUIDs */
742                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
743                            BTRFS_FSID_SIZE) == 0 &&
744                     memcmp(fs_devices->fsid, disk_super->metadata_uuid,
745                            BTRFS_FSID_SIZE) == 0)
746                         return fs_devices;
747         }
748
749         return NULL;
750 }
751
752 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
753                                 struct btrfs_super_block *disk_super)
754 {
755         struct btrfs_fs_devices *fs_devices;
756
757         /*
758          * Handle the case where the scanned device is part of an fs whose last
759          * metadata UUID change reverted it to the original FSID. At the same
760          * time * fs_devices was first created by another constitutent device
761          * which didn't fully observe the operation. This results in an
762          * btrfs_fs_devices created with metadata/fsid different AND
763          * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
764          * fs_devices equal to the FSID of the disk.
765          */
766         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
767                 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
768                            BTRFS_FSID_SIZE) != 0 &&
769                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
770                            BTRFS_FSID_SIZE) == 0 &&
771                     fs_devices->fsid_change)
772                         return fs_devices;
773         }
774
775         return NULL;
776 }
777 /*
778  * Add new device to list of registered devices
779  *
780  * Returns:
781  * device pointer which was just added or updated when successful
782  * error pointer when failed
783  */
784 static noinline struct btrfs_device *device_list_add(const char *path,
785                            struct btrfs_super_block *disk_super,
786                            bool *new_device_added)
787 {
788         struct btrfs_device *device;
789         struct btrfs_fs_devices *fs_devices = NULL;
790         struct rcu_string *name;
791         u64 found_transid = btrfs_super_generation(disk_super);
792         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
793         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
794                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
795         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
796                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
797
798         if (fsid_change_in_progress) {
799                 if (!has_metadata_uuid)
800                         fs_devices = find_fsid_inprogress(disk_super);
801                 else
802                         fs_devices = find_fsid_changed(disk_super);
803         } else if (has_metadata_uuid) {
804                 fs_devices = find_fsid_with_metadata_uuid(disk_super);
805         } else {
806                 fs_devices = find_fsid_reverted_metadata(disk_super);
807                 if (!fs_devices)
808                         fs_devices = find_fsid(disk_super->fsid, NULL);
809         }
810
811
812         if (!fs_devices) {
813                 if (has_metadata_uuid)
814                         fs_devices = alloc_fs_devices(disk_super->fsid,
815                                                       disk_super->metadata_uuid);
816                 else
817                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
818
819                 if (IS_ERR(fs_devices))
820                         return ERR_CAST(fs_devices);
821
822                 fs_devices->fsid_change = fsid_change_in_progress;
823
824                 mutex_lock(&fs_devices->device_list_mutex);
825                 list_add(&fs_devices->fs_list, &fs_uuids);
826
827                 device = NULL;
828         } else {
829                 mutex_lock(&fs_devices->device_list_mutex);
830                 device = btrfs_find_device(fs_devices, devid,
831                                 disk_super->dev_item.uuid, NULL);
832
833                 /*
834                  * If this disk has been pulled into an fs devices created by
835                  * a device which had the CHANGING_FSID_V2 flag then replace the
836                  * metadata_uuid/fsid values of the fs_devices.
837                  */
838                 if (fs_devices->fsid_change &&
839                     found_transid > fs_devices->latest_generation) {
840                         memcpy(fs_devices->fsid, disk_super->fsid,
841                                         BTRFS_FSID_SIZE);
842
843                         if (has_metadata_uuid)
844                                 memcpy(fs_devices->metadata_uuid,
845                                        disk_super->metadata_uuid,
846                                        BTRFS_FSID_SIZE);
847                         else
848                                 memcpy(fs_devices->metadata_uuid,
849                                        disk_super->fsid, BTRFS_FSID_SIZE);
850
851                         fs_devices->fsid_change = false;
852                 }
853         }
854
855         if (!device) {
856                 if (fs_devices->opened) {
857                         mutex_unlock(&fs_devices->device_list_mutex);
858                         return ERR_PTR(-EBUSY);
859                 }
860
861                 device = btrfs_alloc_device(NULL, &devid,
862                                             disk_super->dev_item.uuid);
863                 if (IS_ERR(device)) {
864                         mutex_unlock(&fs_devices->device_list_mutex);
865                         /* we can safely leave the fs_devices entry around */
866                         return device;
867                 }
868
869                 name = rcu_string_strdup(path, GFP_NOFS);
870                 if (!name) {
871                         btrfs_free_device(device);
872                         mutex_unlock(&fs_devices->device_list_mutex);
873                         return ERR_PTR(-ENOMEM);
874                 }
875                 rcu_assign_pointer(device->name, name);
876
877                 list_add_rcu(&device->dev_list, &fs_devices->devices);
878                 fs_devices->num_devices++;
879
880                 device->fs_devices = fs_devices;
881                 *new_device_added = true;
882
883                 if (disk_super->label[0])
884                         pr_info(
885         "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
886                                 disk_super->label, devid, found_transid, path,
887                                 current->comm, task_pid_nr(current));
888                 else
889                         pr_info(
890         "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
891                                 disk_super->fsid, devid, found_transid, path,
892                                 current->comm, task_pid_nr(current));
893
894         } else if (!device->name || strcmp(device->name->str, path)) {
895                 /*
896                  * When FS is already mounted.
897                  * 1. If you are here and if the device->name is NULL that
898                  *    means this device was missing at time of FS mount.
899                  * 2. If you are here and if the device->name is different
900                  *    from 'path' that means either
901                  *      a. The same device disappeared and reappeared with
902                  *         different name. or
903                  *      b. The missing-disk-which-was-replaced, has
904                  *         reappeared now.
905                  *
906                  * We must allow 1 and 2a above. But 2b would be a spurious
907                  * and unintentional.
908                  *
909                  * Further in case of 1 and 2a above, the disk at 'path'
910                  * would have missed some transaction when it was away and
911                  * in case of 2a the stale bdev has to be updated as well.
912                  * 2b must not be allowed at all time.
913                  */
914
915                 /*
916                  * For now, we do allow update to btrfs_fs_device through the
917                  * btrfs dev scan cli after FS has been mounted.  We're still
918                  * tracking a problem where systems fail mount by subvolume id
919                  * when we reject replacement on a mounted FS.
920                  */
921                 if (!fs_devices->opened && found_transid < device->generation) {
922                         /*
923                          * That is if the FS is _not_ mounted and if you
924                          * are here, that means there is more than one
925                          * disk with same uuid and devid.We keep the one
926                          * with larger generation number or the last-in if
927                          * generation are equal.
928                          */
929                         mutex_unlock(&fs_devices->device_list_mutex);
930                         return ERR_PTR(-EEXIST);
931                 }
932
933                 /*
934                  * We are going to replace the device path for a given devid,
935                  * make sure it's the same device if the device is mounted
936                  */
937                 if (device->bdev) {
938                         int error;
939                         dev_t path_dev;
940
941                         error = lookup_bdev(path, &path_dev);
942                         if (error) {
943                                 mutex_unlock(&fs_devices->device_list_mutex);
944                                 return ERR_PTR(error);
945                         }
946
947                         if (device->bdev->bd_dev != path_dev) {
948                                 mutex_unlock(&fs_devices->device_list_mutex);
949                                 /*
950                                  * device->fs_info may not be reliable here, so
951                                  * pass in a NULL instead. This avoids a
952                                  * possible use-after-free when the fs_info and
953                                  * fs_info->sb are already torn down.
954                                  */
955                                 btrfs_warn_in_rcu(NULL,
956         "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
957                                                   path, devid, found_transid,
958                                                   current->comm,
959                                                   task_pid_nr(current));
960                                 return ERR_PTR(-EEXIST);
961                         }
962                         btrfs_info_in_rcu(device->fs_info,
963         "devid %llu device path %s changed to %s scanned by %s (%d)",
964                                           devid, rcu_str_deref(device->name),
965                                           path, current->comm,
966                                           task_pid_nr(current));
967                 }
968
969                 name = rcu_string_strdup(path, GFP_NOFS);
970                 if (!name) {
971                         mutex_unlock(&fs_devices->device_list_mutex);
972                         return ERR_PTR(-ENOMEM);
973                 }
974                 rcu_string_free(device->name);
975                 rcu_assign_pointer(device->name, name);
976                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
977                         fs_devices->missing_devices--;
978                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
979                 }
980         }
981
982         /*
983          * Unmount does not free the btrfs_device struct but would zero
984          * generation along with most of the other members. So just update
985          * it back. We need it to pick the disk with largest generation
986          * (as above).
987          */
988         if (!fs_devices->opened) {
989                 device->generation = found_transid;
990                 fs_devices->latest_generation = max_t(u64, found_transid,
991                                                 fs_devices->latest_generation);
992         }
993
994         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
995
996         mutex_unlock(&fs_devices->device_list_mutex);
997         return device;
998 }
999
1000 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1001 {
1002         struct btrfs_fs_devices *fs_devices;
1003         struct btrfs_device *device;
1004         struct btrfs_device *orig_dev;
1005         int ret = 0;
1006
1007         fs_devices = alloc_fs_devices(orig->fsid, NULL);
1008         if (IS_ERR(fs_devices))
1009                 return fs_devices;
1010
1011         mutex_lock(&orig->device_list_mutex);
1012         fs_devices->total_devices = orig->total_devices;
1013
1014         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1015                 struct rcu_string *name;
1016
1017                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1018                                             orig_dev->uuid);
1019                 if (IS_ERR(device)) {
1020                         ret = PTR_ERR(device);
1021                         goto error;
1022                 }
1023
1024                 /*
1025                  * This is ok to do without rcu read locked because we hold the
1026                  * uuid mutex so nothing we touch in here is going to disappear.
1027                  */
1028                 if (orig_dev->name) {
1029                         name = rcu_string_strdup(orig_dev->name->str,
1030                                         GFP_KERNEL);
1031                         if (!name) {
1032                                 btrfs_free_device(device);
1033                                 ret = -ENOMEM;
1034                                 goto error;
1035                         }
1036                         rcu_assign_pointer(device->name, name);
1037                 }
1038
1039                 list_add(&device->dev_list, &fs_devices->devices);
1040                 device->fs_devices = fs_devices;
1041                 fs_devices->num_devices++;
1042         }
1043         mutex_unlock(&orig->device_list_mutex);
1044         return fs_devices;
1045 error:
1046         mutex_unlock(&orig->device_list_mutex);
1047         free_fs_devices(fs_devices);
1048         return ERR_PTR(ret);
1049 }
1050
1051 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1052                                       struct btrfs_device **latest_dev)
1053 {
1054         struct btrfs_device *device, *next;
1055
1056         /* This is the initialized path, it is safe to release the devices. */
1057         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1058                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1059                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1060                                       &device->dev_state) &&
1061                             !test_bit(BTRFS_DEV_STATE_MISSING,
1062                                       &device->dev_state) &&
1063                             (!*latest_dev ||
1064                              device->generation > (*latest_dev)->generation)) {
1065                                 *latest_dev = device;
1066                         }
1067                         continue;
1068                 }
1069
1070                 /*
1071                  * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1072                  * in btrfs_init_dev_replace() so just continue.
1073                  */
1074                 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1075                         continue;
1076
1077                 if (device->bdev) {
1078                         blkdev_put(device->bdev, device->mode);
1079                         device->bdev = NULL;
1080                         fs_devices->open_devices--;
1081                 }
1082                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1083                         list_del_init(&device->dev_alloc_list);
1084                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1085                 }
1086                 list_del_init(&device->dev_list);
1087                 fs_devices->num_devices--;
1088                 btrfs_free_device(device);
1089         }
1090
1091 }
1092
1093 /*
1094  * After we have read the system tree and know devids belonging to this
1095  * filesystem, remove the device which does not belong there.
1096  */
1097 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1098 {
1099         struct btrfs_device *latest_dev = NULL;
1100         struct btrfs_fs_devices *seed_dev;
1101
1102         mutex_lock(&uuid_mutex);
1103         __btrfs_free_extra_devids(fs_devices, &latest_dev);
1104
1105         list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1106                 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1107
1108         fs_devices->latest_bdev = latest_dev->bdev;
1109
1110         mutex_unlock(&uuid_mutex);
1111 }
1112
1113 static void btrfs_close_bdev(struct btrfs_device *device)
1114 {
1115         if (!device->bdev)
1116                 return;
1117
1118         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1119                 sync_blockdev(device->bdev);
1120                 invalidate_bdev(device->bdev);
1121         }
1122
1123         blkdev_put(device->bdev, device->mode);
1124 }
1125
1126 static void btrfs_close_one_device(struct btrfs_device *device)
1127 {
1128         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1129
1130         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1131             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1132                 list_del_init(&device->dev_alloc_list);
1133                 fs_devices->rw_devices--;
1134         }
1135
1136         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1137                 fs_devices->missing_devices--;
1138
1139         btrfs_close_bdev(device);
1140         if (device->bdev) {
1141                 fs_devices->open_devices--;
1142                 device->bdev = NULL;
1143         }
1144         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1145         btrfs_destroy_dev_zone_info(device);
1146
1147         device->fs_info = NULL;
1148         atomic_set(&device->dev_stats_ccnt, 0);
1149         extent_io_tree_release(&device->alloc_state);
1150
1151         /* Verify the device is back in a pristine state  */
1152         ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1153         ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1154         ASSERT(list_empty(&device->dev_alloc_list));
1155         ASSERT(list_empty(&device->post_commit_list));
1156         ASSERT(atomic_read(&device->reada_in_flight) == 0);
1157 }
1158
1159 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160 {
1161         struct btrfs_device *device, *tmp;
1162
1163         lockdep_assert_held(&uuid_mutex);
1164
1165         if (--fs_devices->opened > 0)
1166                 return;
1167
1168         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169                 btrfs_close_one_device(device);
1170
1171         WARN_ON(fs_devices->open_devices);
1172         WARN_ON(fs_devices->rw_devices);
1173         fs_devices->opened = 0;
1174         fs_devices->seeding = false;
1175         fs_devices->fs_info = NULL;
1176 }
1177
1178 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1179 {
1180         LIST_HEAD(list);
1181         struct btrfs_fs_devices *tmp;
1182
1183         mutex_lock(&uuid_mutex);
1184         close_fs_devices(fs_devices);
1185         if (!fs_devices->opened)
1186                 list_splice_init(&fs_devices->seed_list, &list);
1187
1188         list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1189                 close_fs_devices(fs_devices);
1190                 list_del(&fs_devices->seed_list);
1191                 free_fs_devices(fs_devices);
1192         }
1193         mutex_unlock(&uuid_mutex);
1194 }
1195
1196 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1197                                 fmode_t flags, void *holder)
1198 {
1199         struct btrfs_device *device;
1200         struct btrfs_device *latest_dev = NULL;
1201         struct btrfs_device *tmp_device;
1202
1203         flags |= FMODE_EXCL;
1204
1205         list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1206                                  dev_list) {
1207                 int ret;
1208
1209                 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1210                 if (ret == 0 &&
1211                     (!latest_dev || device->generation > latest_dev->generation)) {
1212                         latest_dev = device;
1213                 } else if (ret == -ENODATA) {
1214                         fs_devices->num_devices--;
1215                         list_del(&device->dev_list);
1216                         btrfs_free_device(device);
1217                 }
1218         }
1219         if (fs_devices->open_devices == 0)
1220                 return -EINVAL;
1221
1222         fs_devices->opened = 1;
1223         fs_devices->latest_bdev = latest_dev->bdev;
1224         fs_devices->total_rw_bytes = 0;
1225         fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1226         fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1227
1228         return 0;
1229 }
1230
1231 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1232 {
1233         struct btrfs_device *dev1, *dev2;
1234
1235         dev1 = list_entry(a, struct btrfs_device, dev_list);
1236         dev2 = list_entry(b, struct btrfs_device, dev_list);
1237
1238         if (dev1->devid < dev2->devid)
1239                 return -1;
1240         else if (dev1->devid > dev2->devid)
1241                 return 1;
1242         return 0;
1243 }
1244
1245 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1246                        fmode_t flags, void *holder)
1247 {
1248         int ret;
1249
1250         lockdep_assert_held(&uuid_mutex);
1251         /*
1252          * The device_list_mutex cannot be taken here in case opening the
1253          * underlying device takes further locks like bd_mutex.
1254          *
1255          * We also don't need the lock here as this is called during mount and
1256          * exclusion is provided by uuid_mutex
1257          */
1258
1259         if (fs_devices->opened) {
1260                 fs_devices->opened++;
1261                 ret = 0;
1262         } else {
1263                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1264                 ret = open_fs_devices(fs_devices, flags, holder);
1265         }
1266
1267         return ret;
1268 }
1269
1270 void btrfs_release_disk_super(struct btrfs_super_block *super)
1271 {
1272         struct page *page = virt_to_page(super);
1273
1274         put_page(page);
1275 }
1276
1277 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1278                                                        u64 bytenr, u64 bytenr_orig)
1279 {
1280         struct btrfs_super_block *disk_super;
1281         struct page *page;
1282         void *p;
1283         pgoff_t index;
1284
1285         /* make sure our super fits in the device */
1286         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1287                 return ERR_PTR(-EINVAL);
1288
1289         /* make sure our super fits in the page */
1290         if (sizeof(*disk_super) > PAGE_SIZE)
1291                 return ERR_PTR(-EINVAL);
1292
1293         /* make sure our super doesn't straddle pages on disk */
1294         index = bytenr >> PAGE_SHIFT;
1295         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1296                 return ERR_PTR(-EINVAL);
1297
1298         /* pull in the page with our super */
1299         page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1300
1301         if (IS_ERR(page))
1302                 return ERR_CAST(page);
1303
1304         p = page_address(page);
1305
1306         /* align our pointer to the offset of the super block */
1307         disk_super = p + offset_in_page(bytenr);
1308
1309         if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1310             btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1311                 btrfs_release_disk_super(p);
1312                 return ERR_PTR(-EINVAL);
1313         }
1314
1315         if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1316                 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1317
1318         return disk_super;
1319 }
1320
1321 int btrfs_forget_devices(const char *path)
1322 {
1323         int ret;
1324
1325         mutex_lock(&uuid_mutex);
1326         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1327         mutex_unlock(&uuid_mutex);
1328
1329         return ret;
1330 }
1331
1332 /*
1333  * Look for a btrfs signature on a device. This may be called out of the mount path
1334  * and we are not allowed to call set_blocksize during the scan. The superblock
1335  * is read via pagecache
1336  */
1337 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1338                                            void *holder)
1339 {
1340         struct btrfs_super_block *disk_super;
1341         bool new_device_added = false;
1342         struct btrfs_device *device = NULL;
1343         struct block_device *bdev;
1344         u64 bytenr, bytenr_orig;
1345         int ret;
1346
1347         lockdep_assert_held(&uuid_mutex);
1348
1349         /*
1350          * we would like to check all the supers, but that would make
1351          * a btrfs mount succeed after a mkfs from a different FS.
1352          * So, we need to add a special mount option to scan for
1353          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1354          */
1355         flags |= FMODE_EXCL;
1356
1357         bdev = blkdev_get_by_path(path, flags, holder);
1358         if (IS_ERR(bdev))
1359                 return ERR_CAST(bdev);
1360
1361         bytenr_orig = btrfs_sb_offset(0);
1362         ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1363         if (ret)
1364                 return ERR_PTR(ret);
1365
1366         disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1367         if (IS_ERR(disk_super)) {
1368                 device = ERR_CAST(disk_super);
1369                 goto error_bdev_put;
1370         }
1371
1372         device = device_list_add(path, disk_super, &new_device_added);
1373         if (!IS_ERR(device)) {
1374                 if (new_device_added)
1375                         btrfs_free_stale_devices(path, device);
1376         }
1377
1378         btrfs_release_disk_super(disk_super);
1379
1380 error_bdev_put:
1381         blkdev_put(bdev, flags);
1382
1383         return device;
1384 }
1385
1386 /*
1387  * Try to find a chunk that intersects [start, start + len] range and when one
1388  * such is found, record the end of it in *start
1389  */
1390 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1391                                     u64 len)
1392 {
1393         u64 physical_start, physical_end;
1394
1395         lockdep_assert_held(&device->fs_info->chunk_mutex);
1396
1397         if (!find_first_extent_bit(&device->alloc_state, *start,
1398                                    &physical_start, &physical_end,
1399                                    CHUNK_ALLOCATED, NULL)) {
1400
1401                 if (in_range(physical_start, *start, len) ||
1402                     in_range(*start, physical_start,
1403                              physical_end - physical_start)) {
1404                         *start = physical_end + 1;
1405                         return true;
1406                 }
1407         }
1408         return false;
1409 }
1410
1411 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1412 {
1413         switch (device->fs_devices->chunk_alloc_policy) {
1414         case BTRFS_CHUNK_ALLOC_REGULAR:
1415                 /*
1416                  * We don't want to overwrite the superblock on the drive nor
1417                  * any area used by the boot loader (grub for example), so we
1418                  * make sure to start at an offset of at least 1MB.
1419                  */
1420                 return max_t(u64, start, SZ_1M);
1421         default:
1422                 BUG();
1423         }
1424 }
1425
1426 /**
1427  * dev_extent_hole_check - check if specified hole is suitable for allocation
1428  * @device:     the device which we have the hole
1429  * @hole_start: starting position of the hole
1430  * @hole_size:  the size of the hole
1431  * @num_bytes:  the size of the free space that we need
1432  *
1433  * This function may modify @hole_start and @hole_end to reflect the suitable
1434  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1435  */
1436 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1437                                   u64 *hole_size, u64 num_bytes)
1438 {
1439         bool changed = false;
1440         u64 hole_end = *hole_start + *hole_size;
1441
1442         /*
1443          * Check before we set max_hole_start, otherwise we could end up
1444          * sending back this offset anyway.
1445          */
1446         if (contains_pending_extent(device, hole_start, *hole_size)) {
1447                 if (hole_end >= *hole_start)
1448                         *hole_size = hole_end - *hole_start;
1449                 else
1450                         *hole_size = 0;
1451                 changed = true;
1452         }
1453
1454         switch (device->fs_devices->chunk_alloc_policy) {
1455         case BTRFS_CHUNK_ALLOC_REGULAR:
1456                 /* No extra check */
1457                 break;
1458         default:
1459                 BUG();
1460         }
1461
1462         return changed;
1463 }
1464
1465 /*
1466  * find_free_dev_extent_start - find free space in the specified device
1467  * @device:       the device which we search the free space in
1468  * @num_bytes:    the size of the free space that we need
1469  * @search_start: the position from which to begin the search
1470  * @start:        store the start of the free space.
1471  * @len:          the size of the free space. that we find, or the size
1472  *                of the max free space if we don't find suitable free space
1473  *
1474  * this uses a pretty simple search, the expectation is that it is
1475  * called very infrequently and that a given device has a small number
1476  * of extents
1477  *
1478  * @start is used to store the start of the free space if we find. But if we
1479  * don't find suitable free space, it will be used to store the start position
1480  * of the max free space.
1481  *
1482  * @len is used to store the size of the free space that we find.
1483  * But if we don't find suitable free space, it is used to store the size of
1484  * the max free space.
1485  *
1486  * NOTE: This function will search *commit* root of device tree, and does extra
1487  * check to ensure dev extents are not double allocated.
1488  * This makes the function safe to allocate dev extents but may not report
1489  * correct usable device space, as device extent freed in current transaction
1490  * is not reported as avaiable.
1491  */
1492 static int find_free_dev_extent_start(struct btrfs_device *device,
1493                                 u64 num_bytes, u64 search_start, u64 *start,
1494                                 u64 *len)
1495 {
1496         struct btrfs_fs_info *fs_info = device->fs_info;
1497         struct btrfs_root *root = fs_info->dev_root;
1498         struct btrfs_key key;
1499         struct btrfs_dev_extent *dev_extent;
1500         struct btrfs_path *path;
1501         u64 hole_size;
1502         u64 max_hole_start;
1503         u64 max_hole_size;
1504         u64 extent_end;
1505         u64 search_end = device->total_bytes;
1506         int ret;
1507         int slot;
1508         struct extent_buffer *l;
1509
1510         search_start = dev_extent_search_start(device, search_start);
1511
1512         path = btrfs_alloc_path();
1513         if (!path)
1514                 return -ENOMEM;
1515
1516         max_hole_start = search_start;
1517         max_hole_size = 0;
1518
1519 again:
1520         if (search_start >= search_end ||
1521                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1522                 ret = -ENOSPC;
1523                 goto out;
1524         }
1525
1526         path->reada = READA_FORWARD;
1527         path->search_commit_root = 1;
1528         path->skip_locking = 1;
1529
1530         key.objectid = device->devid;
1531         key.offset = search_start;
1532         key.type = BTRFS_DEV_EXTENT_KEY;
1533
1534         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1535         if (ret < 0)
1536                 goto out;
1537         if (ret > 0) {
1538                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1539                 if (ret < 0)
1540                         goto out;
1541         }
1542
1543         while (1) {
1544                 l = path->nodes[0];
1545                 slot = path->slots[0];
1546                 if (slot >= btrfs_header_nritems(l)) {
1547                         ret = btrfs_next_leaf(root, path);
1548                         if (ret == 0)
1549                                 continue;
1550                         if (ret < 0)
1551                                 goto out;
1552
1553                         break;
1554                 }
1555                 btrfs_item_key_to_cpu(l, &key, slot);
1556
1557                 if (key.objectid < device->devid)
1558                         goto next;
1559
1560                 if (key.objectid > device->devid)
1561                         break;
1562
1563                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1564                         goto next;
1565
1566                 if (key.offset > search_start) {
1567                         hole_size = key.offset - search_start;
1568                         dev_extent_hole_check(device, &search_start, &hole_size,
1569                                               num_bytes);
1570
1571                         if (hole_size > max_hole_size) {
1572                                 max_hole_start = search_start;
1573                                 max_hole_size = hole_size;
1574                         }
1575
1576                         /*
1577                          * If this free space is greater than which we need,
1578                          * it must be the max free space that we have found
1579                          * until now, so max_hole_start must point to the start
1580                          * of this free space and the length of this free space
1581                          * is stored in max_hole_size. Thus, we return
1582                          * max_hole_start and max_hole_size and go back to the
1583                          * caller.
1584                          */
1585                         if (hole_size >= num_bytes) {
1586                                 ret = 0;
1587                                 goto out;
1588                         }
1589                 }
1590
1591                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1592                 extent_end = key.offset + btrfs_dev_extent_length(l,
1593                                                                   dev_extent);
1594                 if (extent_end > search_start)
1595                         search_start = extent_end;
1596 next:
1597                 path->slots[0]++;
1598                 cond_resched();
1599         }
1600
1601         /*
1602          * At this point, search_start should be the end of
1603          * allocated dev extents, and when shrinking the device,
1604          * search_end may be smaller than search_start.
1605          */
1606         if (search_end > search_start) {
1607                 hole_size = search_end - search_start;
1608                 if (dev_extent_hole_check(device, &search_start, &hole_size,
1609                                           num_bytes)) {
1610                         btrfs_release_path(path);
1611                         goto again;
1612                 }
1613
1614                 if (hole_size > max_hole_size) {
1615                         max_hole_start = search_start;
1616                         max_hole_size = hole_size;
1617                 }
1618         }
1619
1620         /* See above. */
1621         if (max_hole_size < num_bytes)
1622                 ret = -ENOSPC;
1623         else
1624                 ret = 0;
1625
1626 out:
1627         btrfs_free_path(path);
1628         *start = max_hole_start;
1629         if (len)
1630                 *len = max_hole_size;
1631         return ret;
1632 }
1633
1634 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1635                          u64 *start, u64 *len)
1636 {
1637         /* FIXME use last free of some kind */
1638         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1639 }
1640
1641 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1642                           struct btrfs_device *device,
1643                           u64 start, u64 *dev_extent_len)
1644 {
1645         struct btrfs_fs_info *fs_info = device->fs_info;
1646         struct btrfs_root *root = fs_info->dev_root;
1647         int ret;
1648         struct btrfs_path *path;
1649         struct btrfs_key key;
1650         struct btrfs_key found_key;
1651         struct extent_buffer *leaf = NULL;
1652         struct btrfs_dev_extent *extent = NULL;
1653
1654         path = btrfs_alloc_path();
1655         if (!path)
1656                 return -ENOMEM;
1657
1658         key.objectid = device->devid;
1659         key.offset = start;
1660         key.type = BTRFS_DEV_EXTENT_KEY;
1661 again:
1662         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1663         if (ret > 0) {
1664                 ret = btrfs_previous_item(root, path, key.objectid,
1665                                           BTRFS_DEV_EXTENT_KEY);
1666                 if (ret)
1667                         goto out;
1668                 leaf = path->nodes[0];
1669                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1670                 extent = btrfs_item_ptr(leaf, path->slots[0],
1671                                         struct btrfs_dev_extent);
1672                 BUG_ON(found_key.offset > start || found_key.offset +
1673                        btrfs_dev_extent_length(leaf, extent) < start);
1674                 key = found_key;
1675                 btrfs_release_path(path);
1676                 goto again;
1677         } else if (ret == 0) {
1678                 leaf = path->nodes[0];
1679                 extent = btrfs_item_ptr(leaf, path->slots[0],
1680                                         struct btrfs_dev_extent);
1681         } else {
1682                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1683                 goto out;
1684         }
1685
1686         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1687
1688         ret = btrfs_del_item(trans, root, path);
1689         if (ret) {
1690                 btrfs_handle_fs_error(fs_info, ret,
1691                                       "Failed to remove dev extent item");
1692         } else {
1693                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1694         }
1695 out:
1696         btrfs_free_path(path);
1697         return ret;
1698 }
1699
1700 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1701                                   struct btrfs_device *device,
1702                                   u64 chunk_offset, u64 start, u64 num_bytes)
1703 {
1704         int ret;
1705         struct btrfs_path *path;
1706         struct btrfs_fs_info *fs_info = device->fs_info;
1707         struct btrfs_root *root = fs_info->dev_root;
1708         struct btrfs_dev_extent *extent;
1709         struct extent_buffer *leaf;
1710         struct btrfs_key key;
1711
1712         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1713         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1714         path = btrfs_alloc_path();
1715         if (!path)
1716                 return -ENOMEM;
1717
1718         key.objectid = device->devid;
1719         key.offset = start;
1720         key.type = BTRFS_DEV_EXTENT_KEY;
1721         ret = btrfs_insert_empty_item(trans, root, path, &key,
1722                                       sizeof(*extent));
1723         if (ret)
1724                 goto out;
1725
1726         leaf = path->nodes[0];
1727         extent = btrfs_item_ptr(leaf, path->slots[0],
1728                                 struct btrfs_dev_extent);
1729         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1730                                         BTRFS_CHUNK_TREE_OBJECTID);
1731         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1732                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1733         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1734
1735         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1736         btrfs_mark_buffer_dirty(leaf);
1737 out:
1738         btrfs_free_path(path);
1739         return ret;
1740 }
1741
1742 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1743 {
1744         struct extent_map_tree *em_tree;
1745         struct extent_map *em;
1746         struct rb_node *n;
1747         u64 ret = 0;
1748
1749         em_tree = &fs_info->mapping_tree;
1750         read_lock(&em_tree->lock);
1751         n = rb_last(&em_tree->map.rb_root);
1752         if (n) {
1753                 em = rb_entry(n, struct extent_map, rb_node);
1754                 ret = em->start + em->len;
1755         }
1756         read_unlock(&em_tree->lock);
1757
1758         return ret;
1759 }
1760
1761 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1762                                     u64 *devid_ret)
1763 {
1764         int ret;
1765         struct btrfs_key key;
1766         struct btrfs_key found_key;
1767         struct btrfs_path *path;
1768
1769         path = btrfs_alloc_path();
1770         if (!path)
1771                 return -ENOMEM;
1772
1773         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1774         key.type = BTRFS_DEV_ITEM_KEY;
1775         key.offset = (u64)-1;
1776
1777         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1778         if (ret < 0)
1779                 goto error;
1780
1781         if (ret == 0) {
1782                 /* Corruption */
1783                 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1784                 ret = -EUCLEAN;
1785                 goto error;
1786         }
1787
1788         ret = btrfs_previous_item(fs_info->chunk_root, path,
1789                                   BTRFS_DEV_ITEMS_OBJECTID,
1790                                   BTRFS_DEV_ITEM_KEY);
1791         if (ret) {
1792                 *devid_ret = 1;
1793         } else {
1794                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1795                                       path->slots[0]);
1796                 *devid_ret = found_key.offset + 1;
1797         }
1798         ret = 0;
1799 error:
1800         btrfs_free_path(path);
1801         return ret;
1802 }
1803
1804 /*
1805  * the device information is stored in the chunk root
1806  * the btrfs_device struct should be fully filled in
1807  */
1808 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1809                             struct btrfs_device *device)
1810 {
1811         int ret;
1812         struct btrfs_path *path;
1813         struct btrfs_dev_item *dev_item;
1814         struct extent_buffer *leaf;
1815         struct btrfs_key key;
1816         unsigned long ptr;
1817
1818         path = btrfs_alloc_path();
1819         if (!path)
1820                 return -ENOMEM;
1821
1822         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1823         key.type = BTRFS_DEV_ITEM_KEY;
1824         key.offset = device->devid;
1825
1826         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1827                                       &key, sizeof(*dev_item));
1828         if (ret)
1829                 goto out;
1830
1831         leaf = path->nodes[0];
1832         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1833
1834         btrfs_set_device_id(leaf, dev_item, device->devid);
1835         btrfs_set_device_generation(leaf, dev_item, 0);
1836         btrfs_set_device_type(leaf, dev_item, device->type);
1837         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1838         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1839         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1840         btrfs_set_device_total_bytes(leaf, dev_item,
1841                                      btrfs_device_get_disk_total_bytes(device));
1842         btrfs_set_device_bytes_used(leaf, dev_item,
1843                                     btrfs_device_get_bytes_used(device));
1844         btrfs_set_device_group(leaf, dev_item, 0);
1845         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1846         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1847         btrfs_set_device_start_offset(leaf, dev_item, 0);
1848
1849         ptr = btrfs_device_uuid(dev_item);
1850         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1851         ptr = btrfs_device_fsid(dev_item);
1852         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1853                             ptr, BTRFS_FSID_SIZE);
1854         btrfs_mark_buffer_dirty(leaf);
1855
1856         ret = 0;
1857 out:
1858         btrfs_free_path(path);
1859         return ret;
1860 }
1861
1862 /*
1863  * Function to update ctime/mtime for a given device path.
1864  * Mainly used for ctime/mtime based probe like libblkid.
1865  */
1866 static void update_dev_time(const char *path_name)
1867 {
1868         struct file *filp;
1869
1870         filp = filp_open(path_name, O_RDWR, 0);
1871         if (IS_ERR(filp))
1872                 return;
1873         file_update_time(filp);
1874         filp_close(filp, NULL);
1875 }
1876
1877 static int btrfs_rm_dev_item(struct btrfs_device *device)
1878 {
1879         struct btrfs_root *root = device->fs_info->chunk_root;
1880         int ret;
1881         struct btrfs_path *path;
1882         struct btrfs_key key;
1883         struct btrfs_trans_handle *trans;
1884
1885         path = btrfs_alloc_path();
1886         if (!path)
1887                 return -ENOMEM;
1888
1889         trans = btrfs_start_transaction(root, 0);
1890         if (IS_ERR(trans)) {
1891                 btrfs_free_path(path);
1892                 return PTR_ERR(trans);
1893         }
1894         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1895         key.type = BTRFS_DEV_ITEM_KEY;
1896         key.offset = device->devid;
1897
1898         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1899         if (ret) {
1900                 if (ret > 0)
1901                         ret = -ENOENT;
1902                 btrfs_abort_transaction(trans, ret);
1903                 btrfs_end_transaction(trans);
1904                 goto out;
1905         }
1906
1907         ret = btrfs_del_item(trans, root, path);
1908         if (ret) {
1909                 btrfs_abort_transaction(trans, ret);
1910                 btrfs_end_transaction(trans);
1911         }
1912
1913 out:
1914         btrfs_free_path(path);
1915         if (!ret)
1916                 ret = btrfs_commit_transaction(trans);
1917         return ret;
1918 }
1919
1920 /*
1921  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1922  * filesystem. It's up to the caller to adjust that number regarding eg. device
1923  * replace.
1924  */
1925 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1926                 u64 num_devices)
1927 {
1928         u64 all_avail;
1929         unsigned seq;
1930         int i;
1931
1932         do {
1933                 seq = read_seqbegin(&fs_info->profiles_lock);
1934
1935                 all_avail = fs_info->avail_data_alloc_bits |
1936                             fs_info->avail_system_alloc_bits |
1937                             fs_info->avail_metadata_alloc_bits;
1938         } while (read_seqretry(&fs_info->profiles_lock, seq));
1939
1940         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1941                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1942                         continue;
1943
1944                 if (num_devices < btrfs_raid_array[i].devs_min) {
1945                         int ret = btrfs_raid_array[i].mindev_error;
1946
1947                         if (ret)
1948                                 return ret;
1949                 }
1950         }
1951
1952         return 0;
1953 }
1954
1955 static struct btrfs_device * btrfs_find_next_active_device(
1956                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1957 {
1958         struct btrfs_device *next_device;
1959
1960         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1961                 if (next_device != device &&
1962                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1963                     && next_device->bdev)
1964                         return next_device;
1965         }
1966
1967         return NULL;
1968 }
1969
1970 /*
1971  * Helper function to check if the given device is part of s_bdev / latest_bdev
1972  * and replace it with the provided or the next active device, in the context
1973  * where this function called, there should be always be another device (or
1974  * this_dev) which is active.
1975  */
1976 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1977                                             struct btrfs_device *next_device)
1978 {
1979         struct btrfs_fs_info *fs_info = device->fs_info;
1980
1981         if (!next_device)
1982                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1983                                                             device);
1984         ASSERT(next_device);
1985
1986         if (fs_info->sb->s_bdev &&
1987                         (fs_info->sb->s_bdev == device->bdev))
1988                 fs_info->sb->s_bdev = next_device->bdev;
1989
1990         if (fs_info->fs_devices->latest_bdev == device->bdev)
1991                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1992 }
1993
1994 /*
1995  * Return btrfs_fs_devices::num_devices excluding the device that's being
1996  * currently replaced.
1997  */
1998 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1999 {
2000         u64 num_devices = fs_info->fs_devices->num_devices;
2001
2002         down_read(&fs_info->dev_replace.rwsem);
2003         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2004                 ASSERT(num_devices > 1);
2005                 num_devices--;
2006         }
2007         up_read(&fs_info->dev_replace.rwsem);
2008
2009         return num_devices;
2010 }
2011
2012 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2013                                struct block_device *bdev,
2014                                const char *device_path)
2015 {
2016         struct btrfs_super_block *disk_super;
2017         int copy_num;
2018
2019         if (!bdev)
2020                 return;
2021
2022         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2023                 struct page *page;
2024                 int ret;
2025
2026                 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2027                 if (IS_ERR(disk_super))
2028                         continue;
2029
2030                 if (bdev_is_zoned(bdev)) {
2031                         btrfs_reset_sb_log_zones(bdev, copy_num);
2032                         continue;
2033                 }
2034
2035                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2036
2037                 page = virt_to_page(disk_super);
2038                 set_page_dirty(page);
2039                 lock_page(page);
2040                 /* write_on_page() unlocks the page */
2041                 ret = write_one_page(page);
2042                 if (ret)
2043                         btrfs_warn(fs_info,
2044                                 "error clearing superblock number %d (%d)",
2045                                 copy_num, ret);
2046                 btrfs_release_disk_super(disk_super);
2047
2048         }
2049
2050         /* Notify udev that device has changed */
2051         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2052
2053         /* Update ctime/mtime for device path for libblkid */
2054         update_dev_time(device_path);
2055 }
2056
2057 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2058                     u64 devid)
2059 {
2060         struct btrfs_device *device;
2061         struct btrfs_fs_devices *cur_devices;
2062         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2063         u64 num_devices;
2064         int ret = 0;
2065
2066         mutex_lock(&uuid_mutex);
2067
2068         num_devices = btrfs_num_devices(fs_info);
2069
2070         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2071         if (ret)
2072                 goto out;
2073
2074         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2075
2076         if (IS_ERR(device)) {
2077                 if (PTR_ERR(device) == -ENOENT &&
2078                     strcmp(device_path, "missing") == 0)
2079                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2080                 else
2081                         ret = PTR_ERR(device);
2082                 goto out;
2083         }
2084
2085         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2086                 btrfs_warn_in_rcu(fs_info,
2087                   "cannot remove device %s (devid %llu) due to active swapfile",
2088                                   rcu_str_deref(device->name), device->devid);
2089                 ret = -ETXTBSY;
2090                 goto out;
2091         }
2092
2093         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2094                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2095                 goto out;
2096         }
2097
2098         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2099             fs_info->fs_devices->rw_devices == 1) {
2100                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2101                 goto out;
2102         }
2103
2104         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2105                 mutex_lock(&fs_info->chunk_mutex);
2106                 list_del_init(&device->dev_alloc_list);
2107                 device->fs_devices->rw_devices--;
2108                 mutex_unlock(&fs_info->chunk_mutex);
2109         }
2110
2111         mutex_unlock(&uuid_mutex);
2112         ret = btrfs_shrink_device(device, 0);
2113         if (!ret)
2114                 btrfs_reada_remove_dev(device);
2115         mutex_lock(&uuid_mutex);
2116         if (ret)
2117                 goto error_undo;
2118
2119         /*
2120          * TODO: the superblock still includes this device in its num_devices
2121          * counter although write_all_supers() is not locked out. This
2122          * could give a filesystem state which requires a degraded mount.
2123          */
2124         ret = btrfs_rm_dev_item(device);
2125         if (ret)
2126                 goto error_undo;
2127
2128         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2129         btrfs_scrub_cancel_dev(device);
2130
2131         /*
2132          * the device list mutex makes sure that we don't change
2133          * the device list while someone else is writing out all
2134          * the device supers. Whoever is writing all supers, should
2135          * lock the device list mutex before getting the number of
2136          * devices in the super block (super_copy). Conversely,
2137          * whoever updates the number of devices in the super block
2138          * (super_copy) should hold the device list mutex.
2139          */
2140
2141         /*
2142          * In normal cases the cur_devices == fs_devices. But in case
2143          * of deleting a seed device, the cur_devices should point to
2144          * its own fs_devices listed under the fs_devices->seed.
2145          */
2146         cur_devices = device->fs_devices;
2147         mutex_lock(&fs_devices->device_list_mutex);
2148         list_del_rcu(&device->dev_list);
2149
2150         cur_devices->num_devices--;
2151         cur_devices->total_devices--;
2152         /* Update total_devices of the parent fs_devices if it's seed */
2153         if (cur_devices != fs_devices)
2154                 fs_devices->total_devices--;
2155
2156         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2157                 cur_devices->missing_devices--;
2158
2159         btrfs_assign_next_active_device(device, NULL);
2160
2161         if (device->bdev) {
2162                 cur_devices->open_devices--;
2163                 /* remove sysfs entry */
2164                 btrfs_sysfs_remove_device(device);
2165         }
2166
2167         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2168         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2169         mutex_unlock(&fs_devices->device_list_mutex);
2170
2171         /*
2172          * at this point, the device is zero sized and detached from
2173          * the devices list.  All that's left is to zero out the old
2174          * supers and free the device.
2175          */
2176         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2177                 btrfs_scratch_superblocks(fs_info, device->bdev,
2178                                           device->name->str);
2179
2180         btrfs_close_bdev(device);
2181         synchronize_rcu();
2182         btrfs_free_device(device);
2183
2184         if (cur_devices->open_devices == 0) {
2185                 list_del_init(&cur_devices->seed_list);
2186                 close_fs_devices(cur_devices);
2187                 free_fs_devices(cur_devices);
2188         }
2189
2190 out:
2191         mutex_unlock(&uuid_mutex);
2192         return ret;
2193
2194 error_undo:
2195         btrfs_reada_undo_remove_dev(device);
2196         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2197                 mutex_lock(&fs_info->chunk_mutex);
2198                 list_add(&device->dev_alloc_list,
2199                          &fs_devices->alloc_list);
2200                 device->fs_devices->rw_devices++;
2201                 mutex_unlock(&fs_info->chunk_mutex);
2202         }
2203         goto out;
2204 }
2205
2206 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2207 {
2208         struct btrfs_fs_devices *fs_devices;
2209
2210         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2211
2212         /*
2213          * in case of fs with no seed, srcdev->fs_devices will point
2214          * to fs_devices of fs_info. However when the dev being replaced is
2215          * a seed dev it will point to the seed's local fs_devices. In short
2216          * srcdev will have its correct fs_devices in both the cases.
2217          */
2218         fs_devices = srcdev->fs_devices;
2219
2220         list_del_rcu(&srcdev->dev_list);
2221         list_del(&srcdev->dev_alloc_list);
2222         fs_devices->num_devices--;
2223         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2224                 fs_devices->missing_devices--;
2225
2226         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2227                 fs_devices->rw_devices--;
2228
2229         if (srcdev->bdev)
2230                 fs_devices->open_devices--;
2231 }
2232
2233 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2234 {
2235         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2236
2237         mutex_lock(&uuid_mutex);
2238
2239         btrfs_close_bdev(srcdev);
2240         synchronize_rcu();
2241         btrfs_free_device(srcdev);
2242
2243         /* if this is no devs we rather delete the fs_devices */
2244         if (!fs_devices->num_devices) {
2245                 /*
2246                  * On a mounted FS, num_devices can't be zero unless it's a
2247                  * seed. In case of a seed device being replaced, the replace
2248                  * target added to the sprout FS, so there will be no more
2249                  * device left under the seed FS.
2250                  */
2251                 ASSERT(fs_devices->seeding);
2252
2253                 list_del_init(&fs_devices->seed_list);
2254                 close_fs_devices(fs_devices);
2255                 free_fs_devices(fs_devices);
2256         }
2257         mutex_unlock(&uuid_mutex);
2258 }
2259
2260 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2261 {
2262         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2263
2264         mutex_lock(&fs_devices->device_list_mutex);
2265
2266         btrfs_sysfs_remove_device(tgtdev);
2267
2268         if (tgtdev->bdev)
2269                 fs_devices->open_devices--;
2270
2271         fs_devices->num_devices--;
2272
2273         btrfs_assign_next_active_device(tgtdev, NULL);
2274
2275         list_del_rcu(&tgtdev->dev_list);
2276
2277         mutex_unlock(&fs_devices->device_list_mutex);
2278
2279         /*
2280          * The update_dev_time() with in btrfs_scratch_superblocks()
2281          * may lead to a call to btrfs_show_devname() which will try
2282          * to hold device_list_mutex. And here this device
2283          * is already out of device list, so we don't have to hold
2284          * the device_list_mutex lock.
2285          */
2286         btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2287                                   tgtdev->name->str);
2288
2289         btrfs_close_bdev(tgtdev);
2290         synchronize_rcu();
2291         btrfs_free_device(tgtdev);
2292 }
2293
2294 static struct btrfs_device *btrfs_find_device_by_path(
2295                 struct btrfs_fs_info *fs_info, const char *device_path)
2296 {
2297         int ret = 0;
2298         struct btrfs_super_block *disk_super;
2299         u64 devid;
2300         u8 *dev_uuid;
2301         struct block_device *bdev;
2302         struct btrfs_device *device;
2303
2304         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2305                                     fs_info->bdev_holder, 0, &bdev, &disk_super);
2306         if (ret)
2307                 return ERR_PTR(ret);
2308
2309         devid = btrfs_stack_device_id(&disk_super->dev_item);
2310         dev_uuid = disk_super->dev_item.uuid;
2311         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2312                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2313                                            disk_super->metadata_uuid);
2314         else
2315                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2316                                            disk_super->fsid);
2317
2318         btrfs_release_disk_super(disk_super);
2319         if (!device)
2320                 device = ERR_PTR(-ENOENT);
2321         blkdev_put(bdev, FMODE_READ);
2322         return device;
2323 }
2324
2325 /*
2326  * Lookup a device given by device id, or the path if the id is 0.
2327  */
2328 struct btrfs_device *btrfs_find_device_by_devspec(
2329                 struct btrfs_fs_info *fs_info, u64 devid,
2330                 const char *device_path)
2331 {
2332         struct btrfs_device *device;
2333
2334         if (devid) {
2335                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2336                                            NULL);
2337                 if (!device)
2338                         return ERR_PTR(-ENOENT);
2339                 return device;
2340         }
2341
2342         if (!device_path || !device_path[0])
2343                 return ERR_PTR(-EINVAL);
2344
2345         if (strcmp(device_path, "missing") == 0) {
2346                 /* Find first missing device */
2347                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2348                                     dev_list) {
2349                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2350                                      &device->dev_state) && !device->bdev)
2351                                 return device;
2352                 }
2353                 return ERR_PTR(-ENOENT);
2354         }
2355
2356         return btrfs_find_device_by_path(fs_info, device_path);
2357 }
2358
2359 /*
2360  * does all the dirty work required for changing file system's UUID.
2361  */
2362 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2363 {
2364         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2365         struct btrfs_fs_devices *old_devices;
2366         struct btrfs_fs_devices *seed_devices;
2367         struct btrfs_super_block *disk_super = fs_info->super_copy;
2368         struct btrfs_device *device;
2369         u64 super_flags;
2370
2371         lockdep_assert_held(&uuid_mutex);
2372         if (!fs_devices->seeding)
2373                 return -EINVAL;
2374
2375         /*
2376          * Private copy of the seed devices, anchored at
2377          * fs_info->fs_devices->seed_list
2378          */
2379         seed_devices = alloc_fs_devices(NULL, NULL);
2380         if (IS_ERR(seed_devices))
2381                 return PTR_ERR(seed_devices);
2382
2383         /*
2384          * It's necessary to retain a copy of the original seed fs_devices in
2385          * fs_uuids so that filesystems which have been seeded can successfully
2386          * reference the seed device from open_seed_devices. This also supports
2387          * multiple fs seed.
2388          */
2389         old_devices = clone_fs_devices(fs_devices);
2390         if (IS_ERR(old_devices)) {
2391                 kfree(seed_devices);
2392                 return PTR_ERR(old_devices);
2393         }
2394
2395         list_add(&old_devices->fs_list, &fs_uuids);
2396
2397         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2398         seed_devices->opened = 1;
2399         INIT_LIST_HEAD(&seed_devices->devices);
2400         INIT_LIST_HEAD(&seed_devices->alloc_list);
2401         mutex_init(&seed_devices->device_list_mutex);
2402
2403         mutex_lock(&fs_devices->device_list_mutex);
2404         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2405                               synchronize_rcu);
2406         list_for_each_entry(device, &seed_devices->devices, dev_list)
2407                 device->fs_devices = seed_devices;
2408
2409         fs_devices->seeding = false;
2410         fs_devices->num_devices = 0;
2411         fs_devices->open_devices = 0;
2412         fs_devices->missing_devices = 0;
2413         fs_devices->rotating = false;
2414         list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2415
2416         generate_random_uuid(fs_devices->fsid);
2417         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2418         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2419         mutex_unlock(&fs_devices->device_list_mutex);
2420
2421         super_flags = btrfs_super_flags(disk_super) &
2422                       ~BTRFS_SUPER_FLAG_SEEDING;
2423         btrfs_set_super_flags(disk_super, super_flags);
2424
2425         return 0;
2426 }
2427
2428 /*
2429  * Store the expected generation for seed devices in device items.
2430  */
2431 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2432 {
2433         struct btrfs_fs_info *fs_info = trans->fs_info;
2434         struct btrfs_root *root = fs_info->chunk_root;
2435         struct btrfs_path *path;
2436         struct extent_buffer *leaf;
2437         struct btrfs_dev_item *dev_item;
2438         struct btrfs_device *device;
2439         struct btrfs_key key;
2440         u8 fs_uuid[BTRFS_FSID_SIZE];
2441         u8 dev_uuid[BTRFS_UUID_SIZE];
2442         u64 devid;
2443         int ret;
2444
2445         path = btrfs_alloc_path();
2446         if (!path)
2447                 return -ENOMEM;
2448
2449         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2450         key.offset = 0;
2451         key.type = BTRFS_DEV_ITEM_KEY;
2452
2453         while (1) {
2454                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2455                 if (ret < 0)
2456                         goto error;
2457
2458                 leaf = path->nodes[0];
2459 next_slot:
2460                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2461                         ret = btrfs_next_leaf(root, path);
2462                         if (ret > 0)
2463                                 break;
2464                         if (ret < 0)
2465                                 goto error;
2466                         leaf = path->nodes[0];
2467                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2468                         btrfs_release_path(path);
2469                         continue;
2470                 }
2471
2472                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2473                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2474                     key.type != BTRFS_DEV_ITEM_KEY)
2475                         break;
2476
2477                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2478                                           struct btrfs_dev_item);
2479                 devid = btrfs_device_id(leaf, dev_item);
2480                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2481                                    BTRFS_UUID_SIZE);
2482                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2483                                    BTRFS_FSID_SIZE);
2484                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2485                                            fs_uuid);
2486                 BUG_ON(!device); /* Logic error */
2487
2488                 if (device->fs_devices->seeding) {
2489                         btrfs_set_device_generation(leaf, dev_item,
2490                                                     device->generation);
2491                         btrfs_mark_buffer_dirty(leaf);
2492                 }
2493
2494                 path->slots[0]++;
2495                 goto next_slot;
2496         }
2497         ret = 0;
2498 error:
2499         btrfs_free_path(path);
2500         return ret;
2501 }
2502
2503 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2504 {
2505         struct btrfs_root *root = fs_info->dev_root;
2506         struct request_queue *q;
2507         struct btrfs_trans_handle *trans;
2508         struct btrfs_device *device;
2509         struct block_device *bdev;
2510         struct super_block *sb = fs_info->sb;
2511         struct rcu_string *name;
2512         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2513         u64 orig_super_total_bytes;
2514         u64 orig_super_num_devices;
2515         int seeding_dev = 0;
2516         int ret = 0;
2517         bool locked = false;
2518
2519         if (sb_rdonly(sb) && !fs_devices->seeding)
2520                 return -EROFS;
2521
2522         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2523                                   fs_info->bdev_holder);
2524         if (IS_ERR(bdev))
2525                 return PTR_ERR(bdev);
2526
2527         if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2528                 ret = -EINVAL;
2529                 goto error;
2530         }
2531
2532         if (fs_devices->seeding) {
2533                 seeding_dev = 1;
2534                 down_write(&sb->s_umount);
2535                 mutex_lock(&uuid_mutex);
2536                 locked = true;
2537         }
2538
2539         sync_blockdev(bdev);
2540
2541         rcu_read_lock();
2542         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2543                 if (device->bdev == bdev) {
2544                         ret = -EEXIST;
2545                         rcu_read_unlock();
2546                         goto error;
2547                 }
2548         }
2549         rcu_read_unlock();
2550
2551         device = btrfs_alloc_device(fs_info, NULL, NULL);
2552         if (IS_ERR(device)) {
2553                 /* we can safely leave the fs_devices entry around */
2554                 ret = PTR_ERR(device);
2555                 goto error;
2556         }
2557
2558         name = rcu_string_strdup(device_path, GFP_KERNEL);
2559         if (!name) {
2560                 ret = -ENOMEM;
2561                 goto error_free_device;
2562         }
2563         rcu_assign_pointer(device->name, name);
2564
2565         device->fs_info = fs_info;
2566         device->bdev = bdev;
2567
2568         ret = btrfs_get_dev_zone_info(device);
2569         if (ret)
2570                 goto error_free_device;
2571
2572         trans = btrfs_start_transaction(root, 0);
2573         if (IS_ERR(trans)) {
2574                 ret = PTR_ERR(trans);
2575                 goto error_free_zone;
2576         }
2577
2578         q = bdev_get_queue(bdev);
2579         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2580         device->generation = trans->transid;
2581         device->io_width = fs_info->sectorsize;
2582         device->io_align = fs_info->sectorsize;
2583         device->sector_size = fs_info->sectorsize;
2584         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2585                                          fs_info->sectorsize);
2586         device->disk_total_bytes = device->total_bytes;
2587         device->commit_total_bytes = device->total_bytes;
2588         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2589         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2590         device->mode = FMODE_EXCL;
2591         device->dev_stats_valid = 1;
2592         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2593
2594         if (seeding_dev) {
2595                 btrfs_clear_sb_rdonly(sb);
2596                 ret = btrfs_prepare_sprout(fs_info);
2597                 if (ret) {
2598                         btrfs_abort_transaction(trans, ret);
2599                         goto error_trans;
2600                 }
2601         }
2602
2603         device->fs_devices = fs_devices;
2604
2605         mutex_lock(&fs_devices->device_list_mutex);
2606         mutex_lock(&fs_info->chunk_mutex);
2607         list_add_rcu(&device->dev_list, &fs_devices->devices);
2608         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2609         fs_devices->num_devices++;
2610         fs_devices->open_devices++;
2611         fs_devices->rw_devices++;
2612         fs_devices->total_devices++;
2613         fs_devices->total_rw_bytes += device->total_bytes;
2614
2615         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2616
2617         if (!blk_queue_nonrot(q))
2618                 fs_devices->rotating = true;
2619
2620         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2621         btrfs_set_super_total_bytes(fs_info->super_copy,
2622                 round_down(orig_super_total_bytes + device->total_bytes,
2623                            fs_info->sectorsize));
2624
2625         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2626         btrfs_set_super_num_devices(fs_info->super_copy,
2627                                     orig_super_num_devices + 1);
2628
2629         /*
2630          * we've got more storage, clear any full flags on the space
2631          * infos
2632          */
2633         btrfs_clear_space_info_full(fs_info);
2634
2635         mutex_unlock(&fs_info->chunk_mutex);
2636
2637         /* Add sysfs device entry */
2638         btrfs_sysfs_add_device(device);
2639
2640         mutex_unlock(&fs_devices->device_list_mutex);
2641
2642         if (seeding_dev) {
2643                 mutex_lock(&fs_info->chunk_mutex);
2644                 ret = init_first_rw_device(trans);
2645                 mutex_unlock(&fs_info->chunk_mutex);
2646                 if (ret) {
2647                         btrfs_abort_transaction(trans, ret);
2648                         goto error_sysfs;
2649                 }
2650         }
2651
2652         ret = btrfs_add_dev_item(trans, device);
2653         if (ret) {
2654                 btrfs_abort_transaction(trans, ret);
2655                 goto error_sysfs;
2656         }
2657
2658         if (seeding_dev) {
2659                 ret = btrfs_finish_sprout(trans);
2660                 if (ret) {
2661                         btrfs_abort_transaction(trans, ret);
2662                         goto error_sysfs;
2663                 }
2664
2665                 /*
2666                  * fs_devices now represents the newly sprouted filesystem and
2667                  * its fsid has been changed by btrfs_prepare_sprout
2668                  */
2669                 btrfs_sysfs_update_sprout_fsid(fs_devices);
2670         }
2671
2672         ret = btrfs_commit_transaction(trans);
2673
2674         if (seeding_dev) {
2675                 mutex_unlock(&uuid_mutex);
2676                 up_write(&sb->s_umount);
2677                 locked = false;
2678
2679                 if (ret) /* transaction commit */
2680                         return ret;
2681
2682                 ret = btrfs_relocate_sys_chunks(fs_info);
2683                 if (ret < 0)
2684                         btrfs_handle_fs_error(fs_info, ret,
2685                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2686                 trans = btrfs_attach_transaction(root);
2687                 if (IS_ERR(trans)) {
2688                         if (PTR_ERR(trans) == -ENOENT)
2689                                 return 0;
2690                         ret = PTR_ERR(trans);
2691                         trans = NULL;
2692                         goto error_sysfs;
2693                 }
2694                 ret = btrfs_commit_transaction(trans);
2695         }
2696
2697         /*
2698          * Now that we have written a new super block to this device, check all
2699          * other fs_devices list if device_path alienates any other scanned
2700          * device.
2701          * We can ignore the return value as it typically returns -EINVAL and
2702          * only succeeds if the device was an alien.
2703          */
2704         btrfs_forget_devices(device_path);
2705
2706         /* Update ctime/mtime for blkid or udev */
2707         update_dev_time(device_path);
2708
2709         return ret;
2710
2711 error_sysfs:
2712         btrfs_sysfs_remove_device(device);
2713         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2714         mutex_lock(&fs_info->chunk_mutex);
2715         list_del_rcu(&device->dev_list);
2716         list_del(&device->dev_alloc_list);
2717         fs_info->fs_devices->num_devices--;
2718         fs_info->fs_devices->open_devices--;
2719         fs_info->fs_devices->rw_devices--;
2720         fs_info->fs_devices->total_devices--;
2721         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2722         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2723         btrfs_set_super_total_bytes(fs_info->super_copy,
2724                                     orig_super_total_bytes);
2725         btrfs_set_super_num_devices(fs_info->super_copy,
2726                                     orig_super_num_devices);
2727         mutex_unlock(&fs_info->chunk_mutex);
2728         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2729 error_trans:
2730         if (seeding_dev)
2731                 btrfs_set_sb_rdonly(sb);
2732         if (trans)
2733                 btrfs_end_transaction(trans);
2734 error_free_zone:
2735         btrfs_destroy_dev_zone_info(device);
2736 error_free_device:
2737         btrfs_free_device(device);
2738 error:
2739         blkdev_put(bdev, FMODE_EXCL);
2740         if (locked) {
2741                 mutex_unlock(&uuid_mutex);
2742                 up_write(&sb->s_umount);
2743         }
2744         return ret;
2745 }
2746
2747 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2748                                         struct btrfs_device *device)
2749 {
2750         int ret;
2751         struct btrfs_path *path;
2752         struct btrfs_root *root = device->fs_info->chunk_root;
2753         struct btrfs_dev_item *dev_item;
2754         struct extent_buffer *leaf;
2755         struct btrfs_key key;
2756
2757         path = btrfs_alloc_path();
2758         if (!path)
2759                 return -ENOMEM;
2760
2761         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2762         key.type = BTRFS_DEV_ITEM_KEY;
2763         key.offset = device->devid;
2764
2765         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2766         if (ret < 0)
2767                 goto out;
2768
2769         if (ret > 0) {
2770                 ret = -ENOENT;
2771                 goto out;
2772         }
2773
2774         leaf = path->nodes[0];
2775         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2776
2777         btrfs_set_device_id(leaf, dev_item, device->devid);
2778         btrfs_set_device_type(leaf, dev_item, device->type);
2779         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2780         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2781         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2782         btrfs_set_device_total_bytes(leaf, dev_item,
2783                                      btrfs_device_get_disk_total_bytes(device));
2784         btrfs_set_device_bytes_used(leaf, dev_item,
2785                                     btrfs_device_get_bytes_used(device));
2786         btrfs_mark_buffer_dirty(leaf);
2787
2788 out:
2789         btrfs_free_path(path);
2790         return ret;
2791 }
2792
2793 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2794                       struct btrfs_device *device, u64 new_size)
2795 {
2796         struct btrfs_fs_info *fs_info = device->fs_info;
2797         struct btrfs_super_block *super_copy = fs_info->super_copy;
2798         u64 old_total;
2799         u64 diff;
2800
2801         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2802                 return -EACCES;
2803
2804         new_size = round_down(new_size, fs_info->sectorsize);
2805
2806         mutex_lock(&fs_info->chunk_mutex);
2807         old_total = btrfs_super_total_bytes(super_copy);
2808         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2809
2810         if (new_size <= device->total_bytes ||
2811             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2812                 mutex_unlock(&fs_info->chunk_mutex);
2813                 return -EINVAL;
2814         }
2815
2816         btrfs_set_super_total_bytes(super_copy,
2817                         round_down(old_total + diff, fs_info->sectorsize));
2818         device->fs_devices->total_rw_bytes += diff;
2819
2820         btrfs_device_set_total_bytes(device, new_size);
2821         btrfs_device_set_disk_total_bytes(device, new_size);
2822         btrfs_clear_space_info_full(device->fs_info);
2823         if (list_empty(&device->post_commit_list))
2824                 list_add_tail(&device->post_commit_list,
2825                               &trans->transaction->dev_update_list);
2826         mutex_unlock(&fs_info->chunk_mutex);
2827
2828         return btrfs_update_device(trans, device);
2829 }
2830
2831 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2832 {
2833         struct btrfs_fs_info *fs_info = trans->fs_info;
2834         struct btrfs_root *root = fs_info->chunk_root;
2835         int ret;
2836         struct btrfs_path *path;
2837         struct btrfs_key key;
2838
2839         path = btrfs_alloc_path();
2840         if (!path)
2841                 return -ENOMEM;
2842
2843         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2844         key.offset = chunk_offset;
2845         key.type = BTRFS_CHUNK_ITEM_KEY;
2846
2847         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2848         if (ret < 0)
2849                 goto out;
2850         else if (ret > 0) { /* Logic error or corruption */
2851                 btrfs_handle_fs_error(fs_info, -ENOENT,
2852                                       "Failed lookup while freeing chunk.");
2853                 ret = -ENOENT;
2854                 goto out;
2855         }
2856
2857         ret = btrfs_del_item(trans, root, path);
2858         if (ret < 0)
2859                 btrfs_handle_fs_error(fs_info, ret,
2860                                       "Failed to delete chunk item.");
2861 out:
2862         btrfs_free_path(path);
2863         return ret;
2864 }
2865
2866 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2867 {
2868         struct btrfs_super_block *super_copy = fs_info->super_copy;
2869         struct btrfs_disk_key *disk_key;
2870         struct btrfs_chunk *chunk;
2871         u8 *ptr;
2872         int ret = 0;
2873         u32 num_stripes;
2874         u32 array_size;
2875         u32 len = 0;
2876         u32 cur;
2877         struct btrfs_key key;
2878
2879         mutex_lock(&fs_info->chunk_mutex);
2880         array_size = btrfs_super_sys_array_size(super_copy);
2881
2882         ptr = super_copy->sys_chunk_array;
2883         cur = 0;
2884
2885         while (cur < array_size) {
2886                 disk_key = (struct btrfs_disk_key *)ptr;
2887                 btrfs_disk_key_to_cpu(&key, disk_key);
2888
2889                 len = sizeof(*disk_key);
2890
2891                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2892                         chunk = (struct btrfs_chunk *)(ptr + len);
2893                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2894                         len += btrfs_chunk_item_size(num_stripes);
2895                 } else {
2896                         ret = -EIO;
2897                         break;
2898                 }
2899                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2900                     key.offset == chunk_offset) {
2901                         memmove(ptr, ptr + len, array_size - (cur + len));
2902                         array_size -= len;
2903                         btrfs_set_super_sys_array_size(super_copy, array_size);
2904                 } else {
2905                         ptr += len;
2906                         cur += len;
2907                 }
2908         }
2909         mutex_unlock(&fs_info->chunk_mutex);
2910         return ret;
2911 }
2912
2913 /*
2914  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2915  * @logical: Logical block offset in bytes.
2916  * @length: Length of extent in bytes.
2917  *
2918  * Return: Chunk mapping or ERR_PTR.
2919  */
2920 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2921                                        u64 logical, u64 length)
2922 {
2923         struct extent_map_tree *em_tree;
2924         struct extent_map *em;
2925
2926         em_tree = &fs_info->mapping_tree;
2927         read_lock(&em_tree->lock);
2928         em = lookup_extent_mapping(em_tree, logical, length);
2929         read_unlock(&em_tree->lock);
2930
2931         if (!em) {
2932                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2933                            logical, length);
2934                 return ERR_PTR(-EINVAL);
2935         }
2936
2937         if (em->start > logical || em->start + em->len < logical) {
2938                 btrfs_crit(fs_info,
2939                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2940                            logical, length, em->start, em->start + em->len);
2941                 free_extent_map(em);
2942                 return ERR_PTR(-EINVAL);
2943         }
2944
2945         /* callers are responsible for dropping em's ref. */
2946         return em;
2947 }
2948
2949 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2950 {
2951         struct btrfs_fs_info *fs_info = trans->fs_info;
2952         struct extent_map *em;
2953         struct map_lookup *map;
2954         u64 dev_extent_len = 0;
2955         int i, ret = 0;
2956         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2957
2958         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2959         if (IS_ERR(em)) {
2960                 /*
2961                  * This is a logic error, but we don't want to just rely on the
2962                  * user having built with ASSERT enabled, so if ASSERT doesn't
2963                  * do anything we still error out.
2964                  */
2965                 ASSERT(0);
2966                 return PTR_ERR(em);
2967         }
2968         map = em->map_lookup;
2969         mutex_lock(&fs_info->chunk_mutex);
2970         check_system_chunk(trans, map->type);
2971         mutex_unlock(&fs_info->chunk_mutex);
2972
2973         /*
2974          * Take the device list mutex to prevent races with the final phase of
2975          * a device replace operation that replaces the device object associated
2976          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2977          */
2978         mutex_lock(&fs_devices->device_list_mutex);
2979         for (i = 0; i < map->num_stripes; i++) {
2980                 struct btrfs_device *device = map->stripes[i].dev;
2981                 ret = btrfs_free_dev_extent(trans, device,
2982                                             map->stripes[i].physical,
2983                                             &dev_extent_len);
2984                 if (ret) {
2985                         mutex_unlock(&fs_devices->device_list_mutex);
2986                         btrfs_abort_transaction(trans, ret);
2987                         goto out;
2988                 }
2989
2990                 if (device->bytes_used > 0) {
2991                         mutex_lock(&fs_info->chunk_mutex);
2992                         btrfs_device_set_bytes_used(device,
2993                                         device->bytes_used - dev_extent_len);
2994                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2995                         btrfs_clear_space_info_full(fs_info);
2996                         mutex_unlock(&fs_info->chunk_mutex);
2997                 }
2998
2999                 ret = btrfs_update_device(trans, device);
3000                 if (ret) {
3001                         mutex_unlock(&fs_devices->device_list_mutex);
3002                         btrfs_abort_transaction(trans, ret);
3003                         goto out;
3004                 }
3005         }
3006         mutex_unlock(&fs_devices->device_list_mutex);
3007
3008         ret = btrfs_free_chunk(trans, chunk_offset);
3009         if (ret) {
3010                 btrfs_abort_transaction(trans, ret);
3011                 goto out;
3012         }
3013
3014         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3015
3016         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3017                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3018                 if (ret) {
3019                         btrfs_abort_transaction(trans, ret);
3020                         goto out;
3021                 }
3022         }
3023
3024         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3025         if (ret) {
3026                 btrfs_abort_transaction(trans, ret);
3027                 goto out;
3028         }
3029
3030 out:
3031         /* once for us */
3032         free_extent_map(em);
3033         return ret;
3034 }
3035
3036 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3037 {
3038         struct btrfs_root *root = fs_info->chunk_root;
3039         struct btrfs_trans_handle *trans;
3040         struct btrfs_block_group *block_group;
3041         int ret;
3042
3043         /*
3044          * Prevent races with automatic removal of unused block groups.
3045          * After we relocate and before we remove the chunk with offset
3046          * chunk_offset, automatic removal of the block group can kick in,
3047          * resulting in a failure when calling btrfs_remove_chunk() below.
3048          *
3049          * Make sure to acquire this mutex before doing a tree search (dev
3050          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3051          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3052          * we release the path used to search the chunk/dev tree and before
3053          * the current task acquires this mutex and calls us.
3054          */
3055         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3056
3057         /* step one, relocate all the extents inside this chunk */
3058         btrfs_scrub_pause(fs_info);
3059         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3060         btrfs_scrub_continue(fs_info);
3061         if (ret)
3062                 return ret;
3063
3064         block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3065         if (!block_group)
3066                 return -ENOENT;
3067         btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3068         btrfs_put_block_group(block_group);
3069
3070         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3071                                                      chunk_offset);
3072         if (IS_ERR(trans)) {
3073                 ret = PTR_ERR(trans);
3074                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3075                 return ret;
3076         }
3077
3078         /*
3079          * step two, delete the device extents and the
3080          * chunk tree entries
3081          */
3082         ret = btrfs_remove_chunk(trans, chunk_offset);
3083         btrfs_end_transaction(trans);
3084         return ret;
3085 }
3086
3087 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3088 {
3089         struct btrfs_root *chunk_root = fs_info->chunk_root;
3090         struct btrfs_path *path;
3091         struct extent_buffer *leaf;
3092         struct btrfs_chunk *chunk;
3093         struct btrfs_key key;
3094         struct btrfs_key found_key;
3095         u64 chunk_type;
3096         bool retried = false;
3097         int failed = 0;
3098         int ret;
3099
3100         path = btrfs_alloc_path();
3101         if (!path)
3102                 return -ENOMEM;
3103
3104 again:
3105         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3106         key.offset = (u64)-1;
3107         key.type = BTRFS_CHUNK_ITEM_KEY;
3108
3109         while (1) {
3110                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3111                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3112                 if (ret < 0) {
3113                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3114                         goto error;
3115                 }
3116                 BUG_ON(ret == 0); /* Corruption */
3117
3118                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3119                                           key.type);
3120                 if (ret)
3121                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3122                 if (ret < 0)
3123                         goto error;
3124                 if (ret > 0)
3125                         break;
3126
3127                 leaf = path->nodes[0];
3128                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3129
3130                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3131                                        struct btrfs_chunk);
3132                 chunk_type = btrfs_chunk_type(leaf, chunk);
3133                 btrfs_release_path(path);
3134
3135                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3136                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3137                         if (ret == -ENOSPC)
3138                                 failed++;
3139                         else
3140                                 BUG_ON(ret);
3141                 }
3142                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3143
3144                 if (found_key.offset == 0)
3145                         break;
3146                 key.offset = found_key.offset - 1;
3147         }
3148         ret = 0;
3149         if (failed && !retried) {
3150                 failed = 0;
3151                 retried = true;
3152                 goto again;
3153         } else if (WARN_ON(failed && retried)) {
3154                 ret = -ENOSPC;
3155         }
3156 error:
3157         btrfs_free_path(path);
3158         return ret;
3159 }
3160
3161 /*
3162  * return 1 : allocate a data chunk successfully,
3163  * return <0: errors during allocating a data chunk,
3164  * return 0 : no need to allocate a data chunk.
3165  */
3166 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3167                                       u64 chunk_offset)
3168 {
3169         struct btrfs_block_group *cache;
3170         u64 bytes_used;
3171         u64 chunk_type;
3172
3173         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3174         ASSERT(cache);
3175         chunk_type = cache->flags;
3176         btrfs_put_block_group(cache);
3177
3178         if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3179                 return 0;
3180
3181         spin_lock(&fs_info->data_sinfo->lock);
3182         bytes_used = fs_info->data_sinfo->bytes_used;
3183         spin_unlock(&fs_info->data_sinfo->lock);
3184
3185         if (!bytes_used) {
3186                 struct btrfs_trans_handle *trans;
3187                 int ret;
3188
3189                 trans = btrfs_join_transaction(fs_info->tree_root);
3190                 if (IS_ERR(trans))
3191                         return PTR_ERR(trans);
3192
3193                 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3194                 btrfs_end_transaction(trans);
3195                 if (ret < 0)
3196                         return ret;
3197                 return 1;
3198         }
3199
3200         return 0;
3201 }
3202
3203 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3204                                struct btrfs_balance_control *bctl)
3205 {
3206         struct btrfs_root *root = fs_info->tree_root;
3207         struct btrfs_trans_handle *trans;
3208         struct btrfs_balance_item *item;
3209         struct btrfs_disk_balance_args disk_bargs;
3210         struct btrfs_path *path;
3211         struct extent_buffer *leaf;
3212         struct btrfs_key key;
3213         int ret, err;
3214
3215         path = btrfs_alloc_path();
3216         if (!path)
3217                 return -ENOMEM;
3218
3219         trans = btrfs_start_transaction(root, 0);
3220         if (IS_ERR(trans)) {
3221                 btrfs_free_path(path);
3222                 return PTR_ERR(trans);
3223         }
3224
3225         key.objectid = BTRFS_BALANCE_OBJECTID;
3226         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3227         key.offset = 0;
3228
3229         ret = btrfs_insert_empty_item(trans, root, path, &key,
3230                                       sizeof(*item));
3231         if (ret)
3232                 goto out;
3233
3234         leaf = path->nodes[0];
3235         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3236
3237         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3238
3239         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3240         btrfs_set_balance_data(leaf, item, &disk_bargs);
3241         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3242         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3243         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3244         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3245
3246         btrfs_set_balance_flags(leaf, item, bctl->flags);
3247
3248         btrfs_mark_buffer_dirty(leaf);
3249 out:
3250         btrfs_free_path(path);
3251         err = btrfs_commit_transaction(trans);
3252         if (err && !ret)
3253                 ret = err;
3254         return ret;
3255 }
3256
3257 static int del_balance_item(struct btrfs_fs_info *fs_info)
3258 {
3259         struct btrfs_root *root = fs_info->tree_root;
3260         struct btrfs_trans_handle *trans;
3261         struct btrfs_path *path;
3262         struct btrfs_key key;
3263         int ret, err;
3264
3265         path = btrfs_alloc_path();
3266         if (!path)
3267                 return -ENOMEM;
3268
3269         trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3270         if (IS_ERR(trans)) {
3271                 btrfs_free_path(path);
3272                 return PTR_ERR(trans);
3273         }
3274
3275         key.objectid = BTRFS_BALANCE_OBJECTID;
3276         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3277         key.offset = 0;
3278
3279         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3280         if (ret < 0)
3281                 goto out;
3282         if (ret > 0) {
3283                 ret = -ENOENT;
3284                 goto out;
3285         }
3286
3287         ret = btrfs_del_item(trans, root, path);
3288 out:
3289         btrfs_free_path(path);
3290         err = btrfs_commit_transaction(trans);
3291         if (err && !ret)
3292                 ret = err;
3293         return ret;
3294 }
3295
3296 /*
3297  * This is a heuristic used to reduce the number of chunks balanced on
3298  * resume after balance was interrupted.
3299  */
3300 static void update_balance_args(struct btrfs_balance_control *bctl)
3301 {
3302         /*
3303          * Turn on soft mode for chunk types that were being converted.
3304          */
3305         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3306                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3307         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3308                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3309         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3310                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3311
3312         /*
3313          * Turn on usage filter if is not already used.  The idea is
3314          * that chunks that we have already balanced should be
3315          * reasonably full.  Don't do it for chunks that are being
3316          * converted - that will keep us from relocating unconverted
3317          * (albeit full) chunks.
3318          */
3319         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3320             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3321             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3322                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3323                 bctl->data.usage = 90;
3324         }
3325         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3326             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3327             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3328                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3329                 bctl->sys.usage = 90;
3330         }
3331         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3332             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3333             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3334                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3335                 bctl->meta.usage = 90;
3336         }
3337 }
3338
3339 /*
3340  * Clear the balance status in fs_info and delete the balance item from disk.
3341  */
3342 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3343 {
3344         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3345         int ret;
3346
3347         BUG_ON(!fs_info->balance_ctl);
3348
3349         spin_lock(&fs_info->balance_lock);
3350         fs_info->balance_ctl = NULL;
3351         spin_unlock(&fs_info->balance_lock);
3352
3353         kfree(bctl);
3354         ret = del_balance_item(fs_info);
3355         if (ret)
3356                 btrfs_handle_fs_error(fs_info, ret, NULL);
3357 }
3358
3359 /*
3360  * Balance filters.  Return 1 if chunk should be filtered out
3361  * (should not be balanced).
3362  */
3363 static int chunk_profiles_filter(u64 chunk_type,
3364                                  struct btrfs_balance_args *bargs)
3365 {
3366         chunk_type = chunk_to_extended(chunk_type) &
3367                                 BTRFS_EXTENDED_PROFILE_MASK;
3368
3369         if (bargs->profiles & chunk_type)
3370                 return 0;
3371
3372         return 1;
3373 }
3374
3375 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3376                               struct btrfs_balance_args *bargs)
3377 {
3378         struct btrfs_block_group *cache;
3379         u64 chunk_used;
3380         u64 user_thresh_min;
3381         u64 user_thresh_max;
3382         int ret = 1;
3383
3384         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3385         chunk_used = cache->used;
3386
3387         if (bargs->usage_min == 0)
3388                 user_thresh_min = 0;
3389         else
3390                 user_thresh_min = div_factor_fine(cache->length,
3391                                                   bargs->usage_min);
3392
3393         if (bargs->usage_max == 0)
3394                 user_thresh_max = 1;
3395         else if (bargs->usage_max > 100)
3396                 user_thresh_max = cache->length;
3397         else
3398                 user_thresh_max = div_factor_fine(cache->length,
3399                                                   bargs->usage_max);
3400
3401         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3402                 ret = 0;
3403
3404         btrfs_put_block_group(cache);
3405         return ret;
3406 }
3407
3408 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3409                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3410 {
3411         struct btrfs_block_group *cache;
3412         u64 chunk_used, user_thresh;
3413         int ret = 1;
3414
3415         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3416         chunk_used = cache->used;
3417
3418         if (bargs->usage_min == 0)
3419                 user_thresh = 1;
3420         else if (bargs->usage > 100)
3421                 user_thresh = cache->length;
3422         else
3423                 user_thresh = div_factor_fine(cache->length, bargs->usage);
3424
3425         if (chunk_used < user_thresh)
3426                 ret = 0;
3427
3428         btrfs_put_block_group(cache);
3429         return ret;
3430 }
3431
3432 static int chunk_devid_filter(struct extent_buffer *leaf,
3433                               struct btrfs_chunk *chunk,
3434                               struct btrfs_balance_args *bargs)
3435 {
3436         struct btrfs_stripe *stripe;
3437         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3438         int i;
3439
3440         for (i = 0; i < num_stripes; i++) {
3441                 stripe = btrfs_stripe_nr(chunk, i);
3442                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3443                         return 0;
3444         }
3445
3446         return 1;
3447 }
3448
3449 static u64 calc_data_stripes(u64 type, int num_stripes)
3450 {
3451         const int index = btrfs_bg_flags_to_raid_index(type);
3452         const int ncopies = btrfs_raid_array[index].ncopies;
3453         const int nparity = btrfs_raid_array[index].nparity;
3454
3455         if (nparity)
3456                 return num_stripes - nparity;
3457         else
3458                 return num_stripes / ncopies;
3459 }
3460
3461 /* [pstart, pend) */
3462 static int chunk_drange_filter(struct extent_buffer *leaf,
3463                                struct btrfs_chunk *chunk,
3464                                struct btrfs_balance_args *bargs)
3465 {
3466         struct btrfs_stripe *stripe;
3467         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3468         u64 stripe_offset;
3469         u64 stripe_length;
3470         u64 type;
3471         int factor;
3472         int i;
3473
3474         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3475                 return 0;
3476
3477         type = btrfs_chunk_type(leaf, chunk);
3478         factor = calc_data_stripes(type, num_stripes);
3479
3480         for (i = 0; i < num_stripes; i++) {
3481                 stripe = btrfs_stripe_nr(chunk, i);
3482                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3483                         continue;
3484
3485                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3486                 stripe_length = btrfs_chunk_length(leaf, chunk);
3487                 stripe_length = div_u64(stripe_length, factor);
3488
3489                 if (stripe_offset < bargs->pend &&
3490                     stripe_offset + stripe_length > bargs->pstart)
3491                         return 0;
3492         }
3493
3494         return 1;
3495 }
3496
3497 /* [vstart, vend) */
3498 static int chunk_vrange_filter(struct extent_buffer *leaf,
3499                                struct btrfs_chunk *chunk,
3500                                u64 chunk_offset,
3501                                struct btrfs_balance_args *bargs)
3502 {
3503         if (chunk_offset < bargs->vend &&
3504             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3505                 /* at least part of the chunk is inside this vrange */
3506                 return 0;
3507
3508         return 1;
3509 }
3510
3511 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3512                                struct btrfs_chunk *chunk,
3513                                struct btrfs_balance_args *bargs)
3514 {
3515         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3516
3517         if (bargs->stripes_min <= num_stripes
3518                         && num_stripes <= bargs->stripes_max)
3519                 return 0;
3520
3521         return 1;
3522 }
3523
3524 static int chunk_soft_convert_filter(u64 chunk_type,
3525                                      struct btrfs_balance_args *bargs)
3526 {
3527         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3528                 return 0;
3529
3530         chunk_type = chunk_to_extended(chunk_type) &
3531                                 BTRFS_EXTENDED_PROFILE_MASK;
3532
3533         if (bargs->target == chunk_type)
3534                 return 1;
3535
3536         return 0;
3537 }
3538
3539 static int should_balance_chunk(struct extent_buffer *leaf,
3540                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3541 {
3542         struct btrfs_fs_info *fs_info = leaf->fs_info;
3543         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3544         struct btrfs_balance_args *bargs = NULL;
3545         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3546
3547         /* type filter */
3548         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3549               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3550                 return 0;
3551         }
3552
3553         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3554                 bargs = &bctl->data;
3555         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3556                 bargs = &bctl->sys;
3557         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3558                 bargs = &bctl->meta;
3559
3560         /* profiles filter */
3561         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3562             chunk_profiles_filter(chunk_type, bargs)) {
3563                 return 0;
3564         }
3565
3566         /* usage filter */
3567         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3568             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3569                 return 0;
3570         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3571             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3572                 return 0;
3573         }
3574
3575         /* devid filter */
3576         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3577             chunk_devid_filter(leaf, chunk, bargs)) {
3578                 return 0;
3579         }
3580
3581         /* drange filter, makes sense only with devid filter */
3582         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3583             chunk_drange_filter(leaf, chunk, bargs)) {
3584                 return 0;
3585         }
3586
3587         /* vrange filter */
3588         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3589             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3590                 return 0;
3591         }
3592
3593         /* stripes filter */
3594         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3595             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3596                 return 0;
3597         }
3598
3599         /* soft profile changing mode */
3600         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3601             chunk_soft_convert_filter(chunk_type, bargs)) {
3602                 return 0;
3603         }
3604
3605         /*
3606          * limited by count, must be the last filter
3607          */
3608         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3609                 if (bargs->limit == 0)
3610                         return 0;
3611                 else
3612                         bargs->limit--;
3613         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3614                 /*
3615                  * Same logic as the 'limit' filter; the minimum cannot be
3616                  * determined here because we do not have the global information
3617                  * about the count of all chunks that satisfy the filters.
3618                  */
3619                 if (bargs->limit_max == 0)
3620                         return 0;
3621                 else
3622                         bargs->limit_max--;
3623         }
3624
3625         return 1;
3626 }
3627
3628 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3629 {
3630         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3631         struct btrfs_root *chunk_root = fs_info->chunk_root;
3632         u64 chunk_type;
3633         struct btrfs_chunk *chunk;
3634         struct btrfs_path *path = NULL;
3635         struct btrfs_key key;
3636         struct btrfs_key found_key;
3637         struct extent_buffer *leaf;
3638         int slot;
3639         int ret;
3640         int enospc_errors = 0;
3641         bool counting = true;
3642         /* The single value limit and min/max limits use the same bytes in the */
3643         u64 limit_data = bctl->data.limit;
3644         u64 limit_meta = bctl->meta.limit;
3645         u64 limit_sys = bctl->sys.limit;
3646         u32 count_data = 0;
3647         u32 count_meta = 0;
3648         u32 count_sys = 0;
3649         int chunk_reserved = 0;
3650
3651         path = btrfs_alloc_path();
3652         if (!path) {
3653                 ret = -ENOMEM;
3654                 goto error;
3655         }
3656
3657         /* zero out stat counters */
3658         spin_lock(&fs_info->balance_lock);
3659         memset(&bctl->stat, 0, sizeof(bctl->stat));
3660         spin_unlock(&fs_info->balance_lock);
3661 again:
3662         if (!counting) {
3663                 /*
3664                  * The single value limit and min/max limits use the same bytes
3665                  * in the
3666                  */
3667                 bctl->data.limit = limit_data;
3668                 bctl->meta.limit = limit_meta;
3669                 bctl->sys.limit = limit_sys;
3670         }
3671         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3672         key.offset = (u64)-1;
3673         key.type = BTRFS_CHUNK_ITEM_KEY;
3674
3675         while (1) {
3676                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3677                     atomic_read(&fs_info->balance_cancel_req)) {
3678                         ret = -ECANCELED;
3679                         goto error;
3680                 }
3681
3682                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3683                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3684                 if (ret < 0) {
3685                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3686                         goto error;
3687                 }
3688
3689                 /*
3690                  * this shouldn't happen, it means the last relocate
3691                  * failed
3692                  */
3693                 if (ret == 0)
3694                         BUG(); /* FIXME break ? */
3695
3696                 ret = btrfs_previous_item(chunk_root, path, 0,
3697                                           BTRFS_CHUNK_ITEM_KEY);
3698                 if (ret) {
3699                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3700                         ret = 0;
3701                         break;
3702                 }
3703
3704                 leaf = path->nodes[0];
3705                 slot = path->slots[0];
3706                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3707
3708                 if (found_key.objectid != key.objectid) {
3709                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3710                         break;
3711                 }
3712
3713                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3714                 chunk_type = btrfs_chunk_type(leaf, chunk);
3715
3716                 if (!counting) {
3717                         spin_lock(&fs_info->balance_lock);
3718                         bctl->stat.considered++;
3719                         spin_unlock(&fs_info->balance_lock);
3720                 }
3721
3722                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3723
3724                 btrfs_release_path(path);
3725                 if (!ret) {
3726                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3727                         goto loop;
3728                 }
3729
3730                 if (counting) {
3731                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3732                         spin_lock(&fs_info->balance_lock);
3733                         bctl->stat.expected++;
3734                         spin_unlock(&fs_info->balance_lock);
3735
3736                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3737                                 count_data++;
3738                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3739                                 count_sys++;
3740                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3741                                 count_meta++;
3742
3743                         goto loop;
3744                 }
3745
3746                 /*
3747                  * Apply limit_min filter, no need to check if the LIMITS
3748                  * filter is used, limit_min is 0 by default
3749                  */
3750                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3751                                         count_data < bctl->data.limit_min)
3752                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3753                                         count_meta < bctl->meta.limit_min)
3754                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3755                                         count_sys < bctl->sys.limit_min)) {
3756                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3757                         goto loop;
3758                 }
3759
3760                 if (!chunk_reserved) {
3761                         /*
3762                          * We may be relocating the only data chunk we have,
3763                          * which could potentially end up with losing data's
3764                          * raid profile, so lets allocate an empty one in
3765                          * advance.
3766                          */
3767                         ret = btrfs_may_alloc_data_chunk(fs_info,
3768                                                          found_key.offset);
3769                         if (ret < 0) {
3770                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3771                                 goto error;
3772                         } else if (ret == 1) {
3773                                 chunk_reserved = 1;
3774                         }
3775                 }
3776
3777                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3778                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3779                 if (ret == -ENOSPC) {
3780                         enospc_errors++;
3781                 } else if (ret == -ETXTBSY) {
3782                         btrfs_info(fs_info,
3783            "skipping relocation of block group %llu due to active swapfile",
3784                                    found_key.offset);
3785                         ret = 0;
3786                 } else if (ret) {
3787                         goto error;
3788                 } else {
3789                         spin_lock(&fs_info->balance_lock);
3790                         bctl->stat.completed++;
3791                         spin_unlock(&fs_info->balance_lock);
3792                 }
3793 loop:
3794                 if (found_key.offset == 0)
3795                         break;
3796                 key.offset = found_key.offset - 1;
3797         }
3798
3799         if (counting) {
3800                 btrfs_release_path(path);
3801                 counting = false;
3802                 goto again;
3803         }
3804 error:
3805         btrfs_free_path(path);
3806         if (enospc_errors) {
3807                 btrfs_info(fs_info, "%d enospc errors during balance",
3808                            enospc_errors);
3809                 if (!ret)
3810                         ret = -ENOSPC;
3811         }
3812
3813         return ret;
3814 }
3815
3816 /**
3817  * alloc_profile_is_valid - see if a given profile is valid and reduced
3818  * @flags: profile to validate
3819  * @extended: if true @flags is treated as an extended profile
3820  */
3821 static int alloc_profile_is_valid(u64 flags, int extended)
3822 {
3823         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3824                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3825
3826         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3827
3828         /* 1) check that all other bits are zeroed */
3829         if (flags & ~mask)
3830                 return 0;
3831
3832         /* 2) see if profile is reduced */
3833         if (flags == 0)
3834                 return !extended; /* "0" is valid for usual profiles */
3835
3836         return has_single_bit_set(flags);
3837 }
3838
3839 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3840 {
3841         /* cancel requested || normal exit path */
3842         return atomic_read(&fs_info->balance_cancel_req) ||
3843                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3844                  atomic_read(&fs_info->balance_cancel_req) == 0);
3845 }
3846
3847 /*
3848  * Validate target profile against allowed profiles and return true if it's OK.
3849  * Otherwise print the error message and return false.
3850  */
3851 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3852                 const struct btrfs_balance_args *bargs,
3853                 u64 allowed, const char *type)
3854 {
3855         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3856                 return true;
3857
3858         /* Profile is valid and does not have bits outside of the allowed set */
3859         if (alloc_profile_is_valid(bargs->target, 1) &&
3860             (bargs->target & ~allowed) == 0)
3861                 return true;
3862
3863         btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3864                         type, btrfs_bg_type_to_raid_name(bargs->target));
3865         return false;
3866 }
3867
3868 /*
3869  * Fill @buf with textual description of balance filter flags @bargs, up to
3870  * @size_buf including the terminating null. The output may be trimmed if it
3871  * does not fit into the provided buffer.
3872  */
3873 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3874                                  u32 size_buf)
3875 {
3876         int ret;
3877         u32 size_bp = size_buf;
3878         char *bp = buf;
3879         u64 flags = bargs->flags;
3880         char tmp_buf[128] = {'\0'};
3881
3882         if (!flags)
3883                 return;
3884
3885 #define CHECK_APPEND_NOARG(a)                                           \
3886         do {                                                            \
3887                 ret = snprintf(bp, size_bp, (a));                       \
3888                 if (ret < 0 || ret >= size_bp)                          \
3889                         goto out_overflow;                              \
3890                 size_bp -= ret;                                         \
3891                 bp += ret;                                              \
3892         } while (0)
3893
3894 #define CHECK_APPEND_1ARG(a, v1)                                        \
3895         do {                                                            \
3896                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3897                 if (ret < 0 || ret >= size_bp)                          \
3898                         goto out_overflow;                              \
3899                 size_bp -= ret;                                         \
3900                 bp += ret;                                              \
3901         } while (0)
3902
3903 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
3904         do {                                                            \
3905                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
3906                 if (ret < 0 || ret >= size_bp)                          \
3907                         goto out_overflow;                              \
3908                 size_bp -= ret;                                         \
3909                 bp += ret;                                              \
3910         } while (0)
3911
3912         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3913                 CHECK_APPEND_1ARG("convert=%s,",
3914                                   btrfs_bg_type_to_raid_name(bargs->target));
3915
3916         if (flags & BTRFS_BALANCE_ARGS_SOFT)
3917                 CHECK_APPEND_NOARG("soft,");
3918
3919         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3920                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3921                                             sizeof(tmp_buf));
3922                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3923         }
3924
3925         if (flags & BTRFS_BALANCE_ARGS_USAGE)
3926                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3927
3928         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3929                 CHECK_APPEND_2ARG("usage=%u..%u,",
3930                                   bargs->usage_min, bargs->usage_max);
3931
3932         if (flags & BTRFS_BALANCE_ARGS_DEVID)
3933                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3934
3935         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3936                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3937                                   bargs->pstart, bargs->pend);
3938
3939         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3940                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3941                                   bargs->vstart, bargs->vend);
3942
3943         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3944                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3945
3946         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3947                 CHECK_APPEND_2ARG("limit=%u..%u,",
3948                                 bargs->limit_min, bargs->limit_max);
3949
3950         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3951                 CHECK_APPEND_2ARG("stripes=%u..%u,",
3952                                   bargs->stripes_min, bargs->stripes_max);
3953
3954 #undef CHECK_APPEND_2ARG
3955 #undef CHECK_APPEND_1ARG
3956 #undef CHECK_APPEND_NOARG
3957
3958 out_overflow:
3959
3960         if (size_bp < size_buf)
3961                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3962         else
3963                 buf[0] = '\0';
3964 }
3965
3966 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3967 {
3968         u32 size_buf = 1024;
3969         char tmp_buf[192] = {'\0'};
3970         char *buf;
3971         char *bp;
3972         u32 size_bp = size_buf;
3973         int ret;
3974         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3975
3976         buf = kzalloc(size_buf, GFP_KERNEL);
3977         if (!buf)
3978                 return;
3979
3980         bp = buf;
3981
3982 #define CHECK_APPEND_1ARG(a, v1)                                        \
3983         do {                                                            \
3984                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3985                 if (ret < 0 || ret >= size_bp)                          \
3986                         goto out_overflow;                              \
3987                 size_bp -= ret;                                         \
3988                 bp += ret;                                              \
3989         } while (0)
3990
3991         if (bctl->flags & BTRFS_BALANCE_FORCE)
3992                 CHECK_APPEND_1ARG("%s", "-f ");
3993
3994         if (bctl->flags & BTRFS_BALANCE_DATA) {
3995                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3996                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3997         }
3998
3999         if (bctl->flags & BTRFS_BALANCE_METADATA) {
4000                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4001                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4002         }
4003
4004         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4005                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4006                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4007         }
4008
4009 #undef CHECK_APPEND_1ARG
4010
4011 out_overflow:
4012
4013         if (size_bp < size_buf)
4014                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4015         btrfs_info(fs_info, "balance: %s %s",
4016                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
4017                    "resume" : "start", buf);
4018
4019         kfree(buf);
4020 }
4021
4022 /*
4023  * Should be called with balance mutexe held
4024  */
4025 int btrfs_balance(struct btrfs_fs_info *fs_info,
4026                   struct btrfs_balance_control *bctl,
4027                   struct btrfs_ioctl_balance_args *bargs)
4028 {
4029         u64 meta_target, data_target;
4030         u64 allowed;
4031         int mixed = 0;
4032         int ret;
4033         u64 num_devices;
4034         unsigned seq;
4035         bool reducing_redundancy;
4036         int i;
4037
4038         if (btrfs_fs_closing(fs_info) ||
4039             atomic_read(&fs_info->balance_pause_req) ||
4040             btrfs_should_cancel_balance(fs_info)) {
4041                 ret = -EINVAL;
4042                 goto out;
4043         }
4044
4045         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4046         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4047                 mixed = 1;
4048
4049         /*
4050          * In case of mixed groups both data and meta should be picked,
4051          * and identical options should be given for both of them.
4052          */
4053         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4054         if (mixed && (bctl->flags & allowed)) {
4055                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4056                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4057                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4058                         btrfs_err(fs_info,
4059           "balance: mixed groups data and metadata options must be the same");
4060                         ret = -EINVAL;
4061                         goto out;
4062                 }
4063         }
4064
4065         /*
4066          * rw_devices will not change at the moment, device add/delete/replace
4067          * are exclusive
4068          */
4069         num_devices = fs_info->fs_devices->rw_devices;
4070
4071         /*
4072          * SINGLE profile on-disk has no profile bit, but in-memory we have a
4073          * special bit for it, to make it easier to distinguish.  Thus we need
4074          * to set it manually, or balance would refuse the profile.
4075          */
4076         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4077         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4078                 if (num_devices >= btrfs_raid_array[i].devs_min)
4079                         allowed |= btrfs_raid_array[i].bg_flag;
4080
4081         if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4082             !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4083             !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4084                 ret = -EINVAL;
4085                 goto out;
4086         }
4087
4088         /*
4089          * Allow to reduce metadata or system integrity only if force set for
4090          * profiles with redundancy (copies, parity)
4091          */
4092         allowed = 0;
4093         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4094                 if (btrfs_raid_array[i].ncopies >= 2 ||
4095                     btrfs_raid_array[i].tolerated_failures >= 1)
4096                         allowed |= btrfs_raid_array[i].bg_flag;
4097         }
4098         do {
4099                 seq = read_seqbegin(&fs_info->profiles_lock);
4100
4101                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4102                      (fs_info->avail_system_alloc_bits & allowed) &&
4103                      !(bctl->sys.target & allowed)) ||
4104                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4105                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4106                      !(bctl->meta.target & allowed)))
4107                         reducing_redundancy = true;
4108                 else
4109                         reducing_redundancy = false;
4110
4111                 /* if we're not converting, the target field is uninitialized */
4112                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4113                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4114                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4115                         bctl->data.target : fs_info->avail_data_alloc_bits;
4116         } while (read_seqretry(&fs_info->profiles_lock, seq));
4117
4118         if (reducing_redundancy) {
4119                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4120                         btrfs_info(fs_info,
4121                            "balance: force reducing metadata redundancy");
4122                 } else {
4123                         btrfs_err(fs_info,
4124         "balance: reduces metadata redundancy, use --force if you want this");
4125                         ret = -EINVAL;
4126                         goto out;
4127                 }
4128         }
4129
4130         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4131                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4132                 btrfs_warn(fs_info,
4133         "balance: metadata profile %s has lower redundancy than data profile %s",
4134                                 btrfs_bg_type_to_raid_name(meta_target),
4135                                 btrfs_bg_type_to_raid_name(data_target));
4136         }
4137
4138         if (fs_info->send_in_progress) {
4139                 btrfs_warn_rl(fs_info,
4140 "cannot run balance while send operations are in progress (%d in progress)",
4141                               fs_info->send_in_progress);
4142                 ret = -EAGAIN;
4143                 goto out;
4144         }
4145
4146         ret = insert_balance_item(fs_info, bctl);
4147         if (ret && ret != -EEXIST)
4148                 goto out;
4149
4150         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4151                 BUG_ON(ret == -EEXIST);
4152                 BUG_ON(fs_info->balance_ctl);
4153                 spin_lock(&fs_info->balance_lock);
4154                 fs_info->balance_ctl = bctl;
4155                 spin_unlock(&fs_info->balance_lock);
4156         } else {
4157                 BUG_ON(ret != -EEXIST);
4158                 spin_lock(&fs_info->balance_lock);
4159                 update_balance_args(bctl);
4160                 spin_unlock(&fs_info->balance_lock);
4161         }
4162
4163         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4164         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4165         describe_balance_start_or_resume(fs_info);
4166         mutex_unlock(&fs_info->balance_mutex);
4167
4168         ret = __btrfs_balance(fs_info);
4169
4170         mutex_lock(&fs_info->balance_mutex);
4171         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4172                 btrfs_info(fs_info, "balance: paused");
4173         /*
4174          * Balance can be canceled by:
4175          *
4176          * - Regular cancel request
4177          *   Then ret == -ECANCELED and balance_cancel_req > 0
4178          *
4179          * - Fatal signal to "btrfs" process
4180          *   Either the signal caught by wait_reserve_ticket() and callers
4181          *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4182          *   got -ECANCELED.
4183          *   Either way, in this case balance_cancel_req = 0, and
4184          *   ret == -EINTR or ret == -ECANCELED.
4185          *
4186          * So here we only check the return value to catch canceled balance.
4187          */
4188         else if (ret == -ECANCELED || ret == -EINTR)
4189                 btrfs_info(fs_info, "balance: canceled");
4190         else
4191                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4192
4193         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4194
4195         if (bargs) {
4196                 memset(bargs, 0, sizeof(*bargs));
4197                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4198         }
4199
4200         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4201             balance_need_close(fs_info)) {
4202                 reset_balance_state(fs_info);
4203                 btrfs_exclop_finish(fs_info);
4204         }
4205
4206         wake_up(&fs_info->balance_wait_q);
4207
4208         return ret;
4209 out:
4210         if (bctl->flags & BTRFS_BALANCE_RESUME)
4211                 reset_balance_state(fs_info);
4212         else
4213                 kfree(bctl);
4214         btrfs_exclop_finish(fs_info);
4215
4216         return ret;
4217 }
4218
4219 static int balance_kthread(void *data)
4220 {
4221         struct btrfs_fs_info *fs_info = data;
4222         int ret = 0;
4223
4224         mutex_lock(&fs_info->balance_mutex);
4225         if (fs_info->balance_ctl)
4226                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4227         mutex_unlock(&fs_info->balance_mutex);
4228
4229         return ret;
4230 }
4231
4232 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4233 {
4234         struct task_struct *tsk;
4235
4236         mutex_lock(&fs_info->balance_mutex);
4237         if (!fs_info->balance_ctl) {
4238                 mutex_unlock(&fs_info->balance_mutex);
4239                 return 0;
4240         }
4241         mutex_unlock(&fs_info->balance_mutex);
4242
4243         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4244                 btrfs_info(fs_info, "balance: resume skipped");
4245                 return 0;
4246         }
4247
4248         /*
4249          * A ro->rw remount sequence should continue with the paused balance
4250          * regardless of who pauses it, system or the user as of now, so set
4251          * the resume flag.
4252          */
4253         spin_lock(&fs_info->balance_lock);
4254         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4255         spin_unlock(&fs_info->balance_lock);
4256
4257         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4258         return PTR_ERR_OR_ZERO(tsk);
4259 }
4260
4261 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4262 {
4263         struct btrfs_balance_control *bctl;
4264         struct btrfs_balance_item *item;
4265         struct btrfs_disk_balance_args disk_bargs;
4266         struct btrfs_path *path;
4267         struct extent_buffer *leaf;
4268         struct btrfs_key key;
4269         int ret;
4270
4271         path = btrfs_alloc_path();
4272         if (!path)
4273                 return -ENOMEM;
4274
4275         key.objectid = BTRFS_BALANCE_OBJECTID;
4276         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4277         key.offset = 0;
4278
4279         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4280         if (ret < 0)
4281                 goto out;
4282         if (ret > 0) { /* ret = -ENOENT; */
4283                 ret = 0;
4284                 goto out;
4285         }
4286
4287         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4288         if (!bctl) {
4289                 ret = -ENOMEM;
4290                 goto out;
4291         }
4292
4293         leaf = path->nodes[0];
4294         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4295
4296         bctl->flags = btrfs_balance_flags(leaf, item);
4297         bctl->flags |= BTRFS_BALANCE_RESUME;
4298
4299         btrfs_balance_data(leaf, item, &disk_bargs);
4300         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4301         btrfs_balance_meta(leaf, item, &disk_bargs);
4302         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4303         btrfs_balance_sys(leaf, item, &disk_bargs);
4304         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4305
4306         /*
4307          * This should never happen, as the paused balance state is recovered
4308          * during mount without any chance of other exclusive ops to collide.
4309          *
4310          * This gives the exclusive op status to balance and keeps in paused
4311          * state until user intervention (cancel or umount). If the ownership
4312          * cannot be assigned, show a message but do not fail. The balance
4313          * is in a paused state and must have fs_info::balance_ctl properly
4314          * set up.
4315          */
4316         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4317                 btrfs_warn(fs_info,
4318         "balance: cannot set exclusive op status, resume manually");
4319
4320         btrfs_release_path(path);
4321
4322         mutex_lock(&fs_info->balance_mutex);
4323         BUG_ON(fs_info->balance_ctl);
4324         spin_lock(&fs_info->balance_lock);
4325         fs_info->balance_ctl = bctl;
4326         spin_unlock(&fs_info->balance_lock);
4327         mutex_unlock(&fs_info->balance_mutex);
4328 out:
4329         btrfs_free_path(path);
4330         return ret;
4331 }
4332
4333 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4334 {
4335         int ret = 0;
4336
4337         mutex_lock(&fs_info->balance_mutex);
4338         if (!fs_info->balance_ctl) {
4339                 mutex_unlock(&fs_info->balance_mutex);
4340                 return -ENOTCONN;
4341         }
4342
4343         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4344                 atomic_inc(&fs_info->balance_pause_req);
4345                 mutex_unlock(&fs_info->balance_mutex);
4346
4347                 wait_event(fs_info->balance_wait_q,
4348                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4349
4350                 mutex_lock(&fs_info->balance_mutex);
4351                 /* we are good with balance_ctl ripped off from under us */
4352                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4353                 atomic_dec(&fs_info->balance_pause_req);
4354         } else {
4355                 ret = -ENOTCONN;
4356         }
4357
4358         mutex_unlock(&fs_info->balance_mutex);
4359         return ret;
4360 }
4361
4362 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4363 {
4364         mutex_lock(&fs_info->balance_mutex);
4365         if (!fs_info->balance_ctl) {
4366                 mutex_unlock(&fs_info->balance_mutex);
4367                 return -ENOTCONN;
4368         }
4369
4370         /*
4371          * A paused balance with the item stored on disk can be resumed at
4372          * mount time if the mount is read-write. Otherwise it's still paused
4373          * and we must not allow cancelling as it deletes the item.
4374          */
4375         if (sb_rdonly(fs_info->sb)) {
4376                 mutex_unlock(&fs_info->balance_mutex);
4377                 return -EROFS;
4378         }
4379
4380         atomic_inc(&fs_info->balance_cancel_req);
4381         /*
4382          * if we are running just wait and return, balance item is
4383          * deleted in btrfs_balance in this case
4384          */
4385         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4386                 mutex_unlock(&fs_info->balance_mutex);
4387                 wait_event(fs_info->balance_wait_q,
4388                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4389                 mutex_lock(&fs_info->balance_mutex);
4390         } else {
4391                 mutex_unlock(&fs_info->balance_mutex);
4392                 /*
4393                  * Lock released to allow other waiters to continue, we'll
4394                  * reexamine the status again.
4395                  */
4396                 mutex_lock(&fs_info->balance_mutex);
4397
4398                 if (fs_info->balance_ctl) {
4399                         reset_balance_state(fs_info);
4400                         btrfs_exclop_finish(fs_info);
4401                         btrfs_info(fs_info, "balance: canceled");
4402                 }
4403         }
4404
4405         BUG_ON(fs_info->balance_ctl ||
4406                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4407         atomic_dec(&fs_info->balance_cancel_req);
4408         mutex_unlock(&fs_info->balance_mutex);
4409         return 0;
4410 }
4411
4412 int btrfs_uuid_scan_kthread(void *data)
4413 {
4414         struct btrfs_fs_info *fs_info = data;
4415         struct btrfs_root *root = fs_info->tree_root;
4416         struct btrfs_key key;
4417         struct btrfs_path *path = NULL;
4418         int ret = 0;
4419         struct extent_buffer *eb;
4420         int slot;
4421         struct btrfs_root_item root_item;
4422         u32 item_size;
4423         struct btrfs_trans_handle *trans = NULL;
4424         bool closing = false;
4425
4426         path = btrfs_alloc_path();
4427         if (!path) {
4428                 ret = -ENOMEM;
4429                 goto out;
4430         }
4431
4432         key.objectid = 0;
4433         key.type = BTRFS_ROOT_ITEM_KEY;
4434         key.offset = 0;
4435
4436         while (1) {
4437                 if (btrfs_fs_closing(fs_info)) {
4438                         closing = true;
4439                         break;
4440                 }
4441                 ret = btrfs_search_forward(root, &key, path,
4442                                 BTRFS_OLDEST_GENERATION);
4443                 if (ret) {
4444                         if (ret > 0)
4445                                 ret = 0;
4446                         break;
4447                 }
4448
4449                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4450                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4451                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4452                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4453                         goto skip;
4454
4455                 eb = path->nodes[0];
4456                 slot = path->slots[0];
4457                 item_size = btrfs_item_size_nr(eb, slot);
4458                 if (item_size < sizeof(root_item))
4459                         goto skip;
4460
4461                 read_extent_buffer(eb, &root_item,
4462                                    btrfs_item_ptr_offset(eb, slot),
4463                                    (int)sizeof(root_item));
4464                 if (btrfs_root_refs(&root_item) == 0)
4465                         goto skip;
4466
4467                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4468                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4469                         if (trans)
4470                                 goto update_tree;
4471
4472                         btrfs_release_path(path);
4473                         /*
4474                          * 1 - subvol uuid item
4475                          * 1 - received_subvol uuid item
4476                          */
4477                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4478                         if (IS_ERR(trans)) {
4479                                 ret = PTR_ERR(trans);
4480                                 break;
4481                         }
4482                         continue;
4483                 } else {
4484                         goto skip;
4485                 }
4486 update_tree:
4487                 btrfs_release_path(path);
4488                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4489                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4490                                                   BTRFS_UUID_KEY_SUBVOL,
4491                                                   key.objectid);
4492                         if (ret < 0) {
4493                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4494                                         ret);
4495                                 break;
4496                         }
4497                 }
4498
4499                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4500                         ret = btrfs_uuid_tree_add(trans,
4501                                                   root_item.received_uuid,
4502                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4503                                                   key.objectid);
4504                         if (ret < 0) {
4505                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4506                                         ret);
4507                                 break;
4508                         }
4509                 }
4510
4511 skip:
4512                 btrfs_release_path(path);
4513                 if (trans) {
4514                         ret = btrfs_end_transaction(trans);
4515                         trans = NULL;
4516                         if (ret)
4517                                 break;
4518                 }
4519
4520                 if (key.offset < (u64)-1) {
4521                         key.offset++;
4522                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4523                         key.offset = 0;
4524                         key.type = BTRFS_ROOT_ITEM_KEY;
4525                 } else if (key.objectid < (u64)-1) {
4526                         key.offset = 0;
4527                         key.type = BTRFS_ROOT_ITEM_KEY;
4528                         key.objectid++;
4529                 } else {
4530                         break;
4531                 }
4532                 cond_resched();
4533         }
4534
4535 out:
4536         btrfs_free_path(path);
4537         if (trans && !IS_ERR(trans))
4538                 btrfs_end_transaction(trans);
4539         if (ret)
4540                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4541         else if (!closing)
4542                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4543         up(&fs_info->uuid_tree_rescan_sem);
4544         return 0;
4545 }
4546
4547 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4548 {
4549         struct btrfs_trans_handle *trans;
4550         struct btrfs_root *tree_root = fs_info->tree_root;
4551         struct btrfs_root *uuid_root;
4552         struct task_struct *task;
4553         int ret;
4554
4555         /*
4556          * 1 - root node
4557          * 1 - root item
4558          */
4559         trans = btrfs_start_transaction(tree_root, 2);
4560         if (IS_ERR(trans))
4561                 return PTR_ERR(trans);
4562
4563         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4564         if (IS_ERR(uuid_root)) {
4565                 ret = PTR_ERR(uuid_root);
4566                 btrfs_abort_transaction(trans, ret);
4567                 btrfs_end_transaction(trans);
4568                 return ret;
4569         }
4570
4571         fs_info->uuid_root = uuid_root;
4572
4573         ret = btrfs_commit_transaction(trans);
4574         if (ret)
4575                 return ret;
4576
4577         down(&fs_info->uuid_tree_rescan_sem);
4578         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4579         if (IS_ERR(task)) {
4580                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4581                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4582                 up(&fs_info->uuid_tree_rescan_sem);
4583                 return PTR_ERR(task);
4584         }
4585
4586         return 0;
4587 }
4588
4589 /*
4590  * shrinking a device means finding all of the device extents past
4591  * the new size, and then following the back refs to the chunks.
4592  * The chunk relocation code actually frees the device extent
4593  */
4594 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4595 {
4596         struct btrfs_fs_info *fs_info = device->fs_info;
4597         struct btrfs_root *root = fs_info->dev_root;
4598         struct btrfs_trans_handle *trans;
4599         struct btrfs_dev_extent *dev_extent = NULL;
4600         struct btrfs_path *path;
4601         u64 length;
4602         u64 chunk_offset;
4603         int ret;
4604         int slot;
4605         int failed = 0;
4606         bool retried = false;
4607         struct extent_buffer *l;
4608         struct btrfs_key key;
4609         struct btrfs_super_block *super_copy = fs_info->super_copy;
4610         u64 old_total = btrfs_super_total_bytes(super_copy);
4611         u64 old_size = btrfs_device_get_total_bytes(device);
4612         u64 diff;
4613         u64 start;
4614
4615         new_size = round_down(new_size, fs_info->sectorsize);
4616         start = new_size;
4617         diff = round_down(old_size - new_size, fs_info->sectorsize);
4618
4619         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4620                 return -EINVAL;
4621
4622         path = btrfs_alloc_path();
4623         if (!path)
4624                 return -ENOMEM;
4625
4626         path->reada = READA_BACK;
4627
4628         trans = btrfs_start_transaction(root, 0);
4629         if (IS_ERR(trans)) {
4630                 btrfs_free_path(path);
4631                 return PTR_ERR(trans);
4632         }
4633
4634         mutex_lock(&fs_info->chunk_mutex);
4635
4636         btrfs_device_set_total_bytes(device, new_size);
4637         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4638                 device->fs_devices->total_rw_bytes -= diff;
4639                 atomic64_sub(diff, &fs_info->free_chunk_space);
4640         }
4641
4642         /*
4643          * Once the device's size has been set to the new size, ensure all
4644          * in-memory chunks are synced to disk so that the loop below sees them
4645          * and relocates them accordingly.
4646          */
4647         if (contains_pending_extent(device, &start, diff)) {
4648                 mutex_unlock(&fs_info->chunk_mutex);
4649                 ret = btrfs_commit_transaction(trans);
4650                 if (ret)
4651                         goto done;
4652         } else {
4653                 mutex_unlock(&fs_info->chunk_mutex);
4654                 btrfs_end_transaction(trans);
4655         }
4656
4657 again:
4658         key.objectid = device->devid;
4659         key.offset = (u64)-1;
4660         key.type = BTRFS_DEV_EXTENT_KEY;
4661
4662         do {
4663                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4664                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4665                 if (ret < 0) {
4666                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4667                         goto done;
4668                 }
4669
4670                 ret = btrfs_previous_item(root, path, 0, key.type);
4671                 if (ret)
4672                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4673                 if (ret < 0)
4674                         goto done;
4675                 if (ret) {
4676                         ret = 0;
4677                         btrfs_release_path(path);
4678                         break;
4679                 }
4680
4681                 l = path->nodes[0];
4682                 slot = path->slots[0];
4683                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4684
4685                 if (key.objectid != device->devid) {
4686                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4687                         btrfs_release_path(path);
4688                         break;
4689                 }
4690
4691                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4692                 length = btrfs_dev_extent_length(l, dev_extent);
4693
4694                 if (key.offset + length <= new_size) {
4695                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4696                         btrfs_release_path(path);
4697                         break;
4698                 }
4699
4700                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4701                 btrfs_release_path(path);
4702
4703                 /*
4704                  * We may be relocating the only data chunk we have,
4705                  * which could potentially end up with losing data's
4706                  * raid profile, so lets allocate an empty one in
4707                  * advance.
4708                  */
4709                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4710                 if (ret < 0) {
4711                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4712                         goto done;
4713                 }
4714
4715                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4716                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4717                 if (ret == -ENOSPC) {
4718                         failed++;
4719                 } else if (ret) {
4720                         if (ret == -ETXTBSY) {
4721                                 btrfs_warn(fs_info,
4722                    "could not shrink block group %llu due to active swapfile",
4723                                            chunk_offset);
4724                         }
4725                         goto done;
4726                 }
4727         } while (key.offset-- > 0);
4728
4729         if (failed && !retried) {
4730                 failed = 0;
4731                 retried = true;
4732                 goto again;
4733         } else if (failed && retried) {
4734                 ret = -ENOSPC;
4735                 goto done;
4736         }
4737
4738         /* Shrinking succeeded, else we would be at "done". */
4739         trans = btrfs_start_transaction(root, 0);
4740         if (IS_ERR(trans)) {
4741                 ret = PTR_ERR(trans);
4742                 goto done;
4743         }
4744
4745         mutex_lock(&fs_info->chunk_mutex);
4746         /* Clear all state bits beyond the shrunk device size */
4747         clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4748                           CHUNK_STATE_MASK);
4749
4750         btrfs_device_set_disk_total_bytes(device, new_size);
4751         if (list_empty(&device->post_commit_list))
4752                 list_add_tail(&device->post_commit_list,
4753                               &trans->transaction->dev_update_list);
4754
4755         WARN_ON(diff > old_total);
4756         btrfs_set_super_total_bytes(super_copy,
4757                         round_down(old_total - diff, fs_info->sectorsize));
4758         mutex_unlock(&fs_info->chunk_mutex);
4759
4760         /* Now btrfs_update_device() will change the on-disk size. */
4761         ret = btrfs_update_device(trans, device);
4762         if (ret < 0) {
4763                 btrfs_abort_transaction(trans, ret);
4764                 btrfs_end_transaction(trans);
4765         } else {
4766                 ret = btrfs_commit_transaction(trans);
4767         }
4768 done:
4769         btrfs_free_path(path);
4770         if (ret) {
4771                 mutex_lock(&fs_info->chunk_mutex);
4772                 btrfs_device_set_total_bytes(device, old_size);
4773                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4774                         device->fs_devices->total_rw_bytes += diff;
4775                 atomic64_add(diff, &fs_info->free_chunk_space);
4776                 mutex_unlock(&fs_info->chunk_mutex);
4777         }
4778         return ret;
4779 }
4780
4781 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4782                            struct btrfs_key *key,
4783                            struct btrfs_chunk *chunk, int item_size)
4784 {
4785         struct btrfs_super_block *super_copy = fs_info->super_copy;
4786         struct btrfs_disk_key disk_key;
4787         u32 array_size;
4788         u8 *ptr;
4789
4790         mutex_lock(&fs_info->chunk_mutex);
4791         array_size = btrfs_super_sys_array_size(super_copy);
4792         if (array_size + item_size + sizeof(disk_key)
4793                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4794                 mutex_unlock(&fs_info->chunk_mutex);
4795                 return -EFBIG;
4796         }
4797
4798         ptr = super_copy->sys_chunk_array + array_size;
4799         btrfs_cpu_key_to_disk(&disk_key, key);
4800         memcpy(ptr, &disk_key, sizeof(disk_key));
4801         ptr += sizeof(disk_key);
4802         memcpy(ptr, chunk, item_size);
4803         item_size += sizeof(disk_key);
4804         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4805         mutex_unlock(&fs_info->chunk_mutex);
4806
4807         return 0;
4808 }
4809
4810 /*
4811  * sort the devices in descending order by max_avail, total_avail
4812  */
4813 static int btrfs_cmp_device_info(const void *a, const void *b)
4814 {
4815         const struct btrfs_device_info *di_a = a;
4816         const struct btrfs_device_info *di_b = b;
4817
4818         if (di_a->max_avail > di_b->max_avail)
4819                 return -1;
4820         if (di_a->max_avail < di_b->max_avail)
4821                 return 1;
4822         if (di_a->total_avail > di_b->total_avail)
4823                 return -1;
4824         if (di_a->total_avail < di_b->total_avail)
4825                 return 1;
4826         return 0;
4827 }
4828
4829 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4830 {
4831         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4832                 return;
4833
4834         btrfs_set_fs_incompat(info, RAID56);
4835 }
4836
4837 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4838 {
4839         if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4840                 return;
4841
4842         btrfs_set_fs_incompat(info, RAID1C34);
4843 }
4844
4845 /*
4846  * Structure used internally for __btrfs_alloc_chunk() function.
4847  * Wraps needed parameters.
4848  */
4849 struct alloc_chunk_ctl {
4850         u64 start;
4851         u64 type;
4852         /* Total number of stripes to allocate */
4853         int num_stripes;
4854         /* sub_stripes info for map */
4855         int sub_stripes;
4856         /* Stripes per device */
4857         int dev_stripes;
4858         /* Maximum number of devices to use */
4859         int devs_max;
4860         /* Minimum number of devices to use */
4861         int devs_min;
4862         /* ndevs has to be a multiple of this */
4863         int devs_increment;
4864         /* Number of copies */
4865         int ncopies;
4866         /* Number of stripes worth of bytes to store parity information */
4867         int nparity;
4868         u64 max_stripe_size;
4869         u64 max_chunk_size;
4870         u64 dev_extent_min;
4871         u64 stripe_size;
4872         u64 chunk_size;
4873         int ndevs;
4874 };
4875
4876 static void init_alloc_chunk_ctl_policy_regular(
4877                                 struct btrfs_fs_devices *fs_devices,
4878                                 struct alloc_chunk_ctl *ctl)
4879 {
4880         u64 type = ctl->type;
4881
4882         if (type & BTRFS_BLOCK_GROUP_DATA) {
4883                 ctl->max_stripe_size = SZ_1G;
4884                 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4885         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4886                 /* For larger filesystems, use larger metadata chunks */
4887                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4888                         ctl->max_stripe_size = SZ_1G;
4889                 else
4890                         ctl->max_stripe_size = SZ_256M;
4891                 ctl->max_chunk_size = ctl->max_stripe_size;
4892         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4893                 ctl->max_stripe_size = SZ_32M;
4894                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4895                 ctl->devs_max = min_t(int, ctl->devs_max,
4896                                       BTRFS_MAX_DEVS_SYS_CHUNK);
4897         } else {
4898                 BUG();
4899         }
4900
4901         /* We don't want a chunk larger than 10% of writable space */
4902         ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4903                                   ctl->max_chunk_size);
4904         ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4905 }
4906
4907 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4908                                  struct alloc_chunk_ctl *ctl)
4909 {
4910         int index = btrfs_bg_flags_to_raid_index(ctl->type);
4911
4912         ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4913         ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4914         ctl->devs_max = btrfs_raid_array[index].devs_max;
4915         if (!ctl->devs_max)
4916                 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4917         ctl->devs_min = btrfs_raid_array[index].devs_min;
4918         ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4919         ctl->ncopies = btrfs_raid_array[index].ncopies;
4920         ctl->nparity = btrfs_raid_array[index].nparity;
4921         ctl->ndevs = 0;
4922
4923         switch (fs_devices->chunk_alloc_policy) {
4924         case BTRFS_CHUNK_ALLOC_REGULAR:
4925                 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4926                 break;
4927         default:
4928                 BUG();
4929         }
4930 }
4931
4932 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4933                               struct alloc_chunk_ctl *ctl,
4934                               struct btrfs_device_info *devices_info)
4935 {
4936         struct btrfs_fs_info *info = fs_devices->fs_info;
4937         struct btrfs_device *device;
4938         u64 total_avail;
4939         u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4940         int ret;
4941         int ndevs = 0;
4942         u64 max_avail;
4943         u64 dev_offset;
4944
4945         /*
4946          * in the first pass through the devices list, we gather information
4947          * about the available holes on each device.
4948          */
4949         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4950                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4951                         WARN(1, KERN_ERR
4952                                "BTRFS: read-only device in alloc_list\n");
4953                         continue;
4954                 }
4955
4956                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4957                                         &device->dev_state) ||
4958                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4959                         continue;
4960
4961                 if (device->total_bytes > device->bytes_used)
4962                         total_avail = device->total_bytes - device->bytes_used;
4963                 else
4964                         total_avail = 0;
4965
4966                 /* If there is no space on this device, skip it. */
4967                 if (total_avail < ctl->dev_extent_min)
4968                         continue;
4969
4970                 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4971                                            &max_avail);
4972                 if (ret && ret != -ENOSPC)
4973                         return ret;
4974
4975                 if (ret == 0)
4976                         max_avail = dev_extent_want;
4977
4978                 if (max_avail < ctl->dev_extent_min) {
4979                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
4980                                 btrfs_debug(info,
4981                         "%s: devid %llu has no free space, have=%llu want=%llu",
4982                                             __func__, device->devid, max_avail,
4983                                             ctl->dev_extent_min);
4984                         continue;
4985                 }
4986
4987                 if (ndevs == fs_devices->rw_devices) {
4988                         WARN(1, "%s: found more than %llu devices\n",
4989                              __func__, fs_devices->rw_devices);
4990                         break;
4991                 }
4992                 devices_info[ndevs].dev_offset = dev_offset;
4993                 devices_info[ndevs].max_avail = max_avail;
4994                 devices_info[ndevs].total_avail = total_avail;
4995                 devices_info[ndevs].dev = device;
4996                 ++ndevs;
4997         }
4998         ctl->ndevs = ndevs;
4999
5000         /*
5001          * now sort the devices by hole size / available space
5002          */
5003         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5004              btrfs_cmp_device_info, NULL);
5005
5006         return 0;
5007 }
5008
5009 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5010                                       struct btrfs_device_info *devices_info)
5011 {
5012         /* Number of stripes that count for block group size */
5013         int data_stripes;
5014
5015         /*
5016          * The primary goal is to maximize the number of stripes, so use as
5017          * many devices as possible, even if the stripes are not maximum sized.
5018          *
5019          * The DUP profile stores more than one stripe per device, the
5020          * max_avail is the total size so we have to adjust.
5021          */
5022         ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5023                                    ctl->dev_stripes);
5024         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5025
5026         /* This will have to be fixed for RAID1 and RAID10 over more drives */
5027         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5028
5029         /*
5030          * Use the number of data stripes to figure out how big this chunk is
5031          * really going to be in terms of logical address space, and compare
5032          * that answer with the max chunk size. If it's higher, we try to
5033          * reduce stripe_size.
5034          */
5035         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5036                 /*
5037                  * Reduce stripe_size, round it up to a 16MB boundary again and
5038                  * then use it, unless it ends up being even bigger than the
5039                  * previous value we had already.
5040                  */
5041                 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5042                                                         data_stripes), SZ_16M),
5043                                        ctl->stripe_size);
5044         }
5045
5046         /* Align to BTRFS_STRIPE_LEN */
5047         ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5048         ctl->chunk_size = ctl->stripe_size * data_stripes;
5049
5050         return 0;
5051 }
5052
5053 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5054                               struct alloc_chunk_ctl *ctl,
5055                               struct btrfs_device_info *devices_info)
5056 {
5057         struct btrfs_fs_info *info = fs_devices->fs_info;
5058
5059         /*
5060          * Round down to number of usable stripes, devs_increment can be any
5061          * number so we can't use round_down() that requires power of 2, while
5062          * rounddown is safe.
5063          */
5064         ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5065
5066         if (ctl->ndevs < ctl->devs_min) {
5067                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5068                         btrfs_debug(info,
5069         "%s: not enough devices with free space: have=%d minimum required=%d",
5070                                     __func__, ctl->ndevs, ctl->devs_min);
5071                 }
5072                 return -ENOSPC;
5073         }
5074
5075         ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5076
5077         switch (fs_devices->chunk_alloc_policy) {
5078         case BTRFS_CHUNK_ALLOC_REGULAR:
5079                 return decide_stripe_size_regular(ctl, devices_info);
5080         default:
5081                 BUG();
5082         }
5083 }
5084
5085 static int create_chunk(struct btrfs_trans_handle *trans,
5086                         struct alloc_chunk_ctl *ctl,
5087                         struct btrfs_device_info *devices_info)
5088 {
5089         struct btrfs_fs_info *info = trans->fs_info;
5090         struct map_lookup *map = NULL;
5091         struct extent_map_tree *em_tree;
5092         struct extent_map *em;
5093         u64 start = ctl->start;
5094         u64 type = ctl->type;
5095         int ret;
5096         int i;
5097         int j;
5098
5099         map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5100         if (!map)
5101                 return -ENOMEM;
5102         map->num_stripes = ctl->num_stripes;
5103
5104         for (i = 0; i < ctl->ndevs; ++i) {
5105                 for (j = 0; j < ctl->dev_stripes; ++j) {
5106                         int s = i * ctl->dev_stripes + j;
5107                         map->stripes[s].dev = devices_info[i].dev;
5108                         map->stripes[s].physical = devices_info[i].dev_offset +
5109                                                    j * ctl->stripe_size;
5110                 }
5111         }
5112         map->stripe_len = BTRFS_STRIPE_LEN;
5113         map->io_align = BTRFS_STRIPE_LEN;
5114         map->io_width = BTRFS_STRIPE_LEN;
5115         map->type = type;
5116         map->sub_stripes = ctl->sub_stripes;
5117
5118         trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5119
5120         em = alloc_extent_map();
5121         if (!em) {
5122                 kfree(map);
5123                 return -ENOMEM;
5124         }
5125         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5126         em->map_lookup = map;
5127         em->start = start;
5128         em->len = ctl->chunk_size;
5129         em->block_start = 0;
5130         em->block_len = em->len;
5131         em->orig_block_len = ctl->stripe_size;
5132
5133         em_tree = &info->mapping_tree;
5134         write_lock(&em_tree->lock);
5135         ret = add_extent_mapping(em_tree, em, 0);
5136         if (ret) {
5137                 write_unlock(&em_tree->lock);
5138                 free_extent_map(em);
5139                 return ret;
5140         }
5141         write_unlock(&em_tree->lock);
5142
5143         ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5144         if (ret)
5145                 goto error_del_extent;
5146
5147         for (i = 0; i < map->num_stripes; i++) {
5148                 struct btrfs_device *dev = map->stripes[i].dev;
5149
5150                 btrfs_device_set_bytes_used(dev,
5151                                             dev->bytes_used + ctl->stripe_size);
5152                 if (list_empty(&dev->post_commit_list))
5153                         list_add_tail(&dev->post_commit_list,
5154                                       &trans->transaction->dev_update_list);
5155         }
5156
5157         atomic64_sub(ctl->stripe_size * map->num_stripes,
5158                      &info->free_chunk_space);
5159
5160         free_extent_map(em);
5161         check_raid56_incompat_flag(info, type);
5162         check_raid1c34_incompat_flag(info, type);
5163
5164         return 0;
5165
5166 error_del_extent:
5167         write_lock(&em_tree->lock);
5168         remove_extent_mapping(em_tree, em);
5169         write_unlock(&em_tree->lock);
5170
5171         /* One for our allocation */
5172         free_extent_map(em);
5173         /* One for the tree reference */
5174         free_extent_map(em);
5175
5176         return ret;
5177 }
5178
5179 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5180 {
5181         struct btrfs_fs_info *info = trans->fs_info;
5182         struct btrfs_fs_devices *fs_devices = info->fs_devices;
5183         struct btrfs_device_info *devices_info = NULL;
5184         struct alloc_chunk_ctl ctl;
5185         int ret;
5186
5187         lockdep_assert_held(&info->chunk_mutex);
5188
5189         if (!alloc_profile_is_valid(type, 0)) {
5190                 ASSERT(0);
5191                 return -EINVAL;
5192         }
5193
5194         if (list_empty(&fs_devices->alloc_list)) {
5195                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5196                         btrfs_debug(info, "%s: no writable device", __func__);
5197                 return -ENOSPC;
5198         }
5199
5200         if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5201                 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5202                 ASSERT(0);
5203                 return -EINVAL;
5204         }
5205
5206         ctl.start = find_next_chunk(info);
5207         ctl.type = type;
5208         init_alloc_chunk_ctl(fs_devices, &ctl);
5209
5210         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5211                                GFP_NOFS);
5212         if (!devices_info)
5213                 return -ENOMEM;
5214
5215         ret = gather_device_info(fs_devices, &ctl, devices_info);
5216         if (ret < 0)
5217                 goto out;
5218
5219         ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5220         if (ret < 0)
5221                 goto out;
5222
5223         ret = create_chunk(trans, &ctl, devices_info);
5224
5225 out:
5226         kfree(devices_info);
5227         return ret;
5228 }
5229
5230 /*
5231  * Chunk allocation falls into two parts. The first part does work
5232  * that makes the new allocated chunk usable, but does not do any operation
5233  * that modifies the chunk tree. The second part does the work that
5234  * requires modifying the chunk tree. This division is important for the
5235  * bootstrap process of adding storage to a seed btrfs.
5236  */
5237 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5238                              u64 chunk_offset, u64 chunk_size)
5239 {
5240         struct btrfs_fs_info *fs_info = trans->fs_info;
5241         struct btrfs_root *extent_root = fs_info->extent_root;
5242         struct btrfs_root *chunk_root = fs_info->chunk_root;
5243         struct btrfs_key key;
5244         struct btrfs_device *device;
5245         struct btrfs_chunk *chunk;
5246         struct btrfs_stripe *stripe;
5247         struct extent_map *em;
5248         struct map_lookup *map;
5249         size_t item_size;
5250         u64 dev_offset;
5251         u64 stripe_size;
5252         int i = 0;
5253         int ret = 0;
5254
5255         em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5256         if (IS_ERR(em))
5257                 return PTR_ERR(em);
5258
5259         map = em->map_lookup;
5260         item_size = btrfs_chunk_item_size(map->num_stripes);
5261         stripe_size = em->orig_block_len;
5262
5263         chunk = kzalloc(item_size, GFP_NOFS);
5264         if (!chunk) {
5265                 ret = -ENOMEM;
5266                 goto out;
5267         }
5268
5269         /*
5270          * Take the device list mutex to prevent races with the final phase of
5271          * a device replace operation that replaces the device object associated
5272          * with the map's stripes, because the device object's id can change
5273          * at any time during that final phase of the device replace operation
5274          * (dev-replace.c:btrfs_dev_replace_finishing()).
5275          */
5276         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5277         for (i = 0; i < map->num_stripes; i++) {
5278                 device = map->stripes[i].dev;
5279                 dev_offset = map->stripes[i].physical;
5280
5281                 ret = btrfs_update_device(trans, device);
5282                 if (ret)
5283                         break;
5284                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5285                                              dev_offset, stripe_size);
5286                 if (ret)
5287                         break;
5288         }
5289         if (ret) {
5290                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5291                 goto out;
5292         }
5293
5294         stripe = &chunk->stripe;
5295         for (i = 0; i < map->num_stripes; i++) {
5296                 device = map->stripes[i].dev;
5297                 dev_offset = map->stripes[i].physical;
5298
5299                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5300                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5301                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5302                 stripe++;
5303         }
5304         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5305
5306         btrfs_set_stack_chunk_length(chunk, chunk_size);
5307         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5308         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5309         btrfs_set_stack_chunk_type(chunk, map->type);
5310         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5311         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5312         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5313         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5314         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5315
5316         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5317         key.type = BTRFS_CHUNK_ITEM_KEY;
5318         key.offset = chunk_offset;
5319
5320         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5321         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5322                 /*
5323                  * TODO: Cleanup of inserted chunk root in case of
5324                  * failure.
5325                  */
5326                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5327         }
5328
5329 out:
5330         kfree(chunk);
5331         free_extent_map(em);
5332         return ret;
5333 }
5334
5335 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5336 {
5337         struct btrfs_fs_info *fs_info = trans->fs_info;
5338         u64 alloc_profile;
5339         int ret;
5340
5341         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5342         ret = btrfs_alloc_chunk(trans, alloc_profile);
5343         if (ret)
5344                 return ret;
5345
5346         alloc_profile = btrfs_system_alloc_profile(fs_info);
5347         ret = btrfs_alloc_chunk(trans, alloc_profile);
5348         return ret;
5349 }
5350
5351 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5352 {
5353         const int index = btrfs_bg_flags_to_raid_index(map->type);
5354
5355         return btrfs_raid_array[index].tolerated_failures;
5356 }
5357
5358 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5359 {
5360         struct extent_map *em;
5361         struct map_lookup *map;
5362         int readonly = 0;
5363         int miss_ndevs = 0;
5364         int i;
5365
5366         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5367         if (IS_ERR(em))
5368                 return 1;
5369
5370         map = em->map_lookup;
5371         for (i = 0; i < map->num_stripes; i++) {
5372                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5373                                         &map->stripes[i].dev->dev_state)) {
5374                         miss_ndevs++;
5375                         continue;
5376                 }
5377                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5378                                         &map->stripes[i].dev->dev_state)) {
5379                         readonly = 1;
5380                         goto end;
5381                 }
5382         }
5383
5384         /*
5385          * If the number of missing devices is larger than max errors,
5386          * we can not write the data into that chunk successfully, so
5387          * set it readonly.
5388          */
5389         if (miss_ndevs > btrfs_chunk_max_errors(map))
5390                 readonly = 1;
5391 end:
5392         free_extent_map(em);
5393         return readonly;
5394 }
5395
5396 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5397 {
5398         struct extent_map *em;
5399
5400         while (1) {
5401                 write_lock(&tree->lock);
5402                 em = lookup_extent_mapping(tree, 0, (u64)-1);
5403                 if (em)
5404                         remove_extent_mapping(tree, em);
5405                 write_unlock(&tree->lock);
5406                 if (!em)
5407                         break;
5408                 /* once for us */
5409                 free_extent_map(em);
5410                 /* once for the tree */
5411                 free_extent_map(em);
5412         }
5413 }
5414
5415 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5416 {
5417         struct extent_map *em;
5418         struct map_lookup *map;
5419         int ret;
5420
5421         em = btrfs_get_chunk_map(fs_info, logical, len);
5422         if (IS_ERR(em))
5423                 /*
5424                  * We could return errors for these cases, but that could get
5425                  * ugly and we'd probably do the same thing which is just not do
5426                  * anything else and exit, so return 1 so the callers don't try
5427                  * to use other copies.
5428                  */
5429                 return 1;
5430
5431         map = em->map_lookup;
5432         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5433                 ret = map->num_stripes;
5434         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5435                 ret = map->sub_stripes;
5436         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5437                 ret = 2;
5438         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5439                 /*
5440                  * There could be two corrupted data stripes, we need
5441                  * to loop retry in order to rebuild the correct data.
5442                  *
5443                  * Fail a stripe at a time on every retry except the
5444                  * stripe under reconstruction.
5445                  */
5446                 ret = map->num_stripes;
5447         else
5448                 ret = 1;
5449         free_extent_map(em);
5450
5451         down_read(&fs_info->dev_replace.rwsem);
5452         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5453             fs_info->dev_replace.tgtdev)
5454                 ret++;
5455         up_read(&fs_info->dev_replace.rwsem);
5456
5457         return ret;
5458 }
5459
5460 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5461                                     u64 logical)
5462 {
5463         struct extent_map *em;
5464         struct map_lookup *map;
5465         unsigned long len = fs_info->sectorsize;
5466
5467         em = btrfs_get_chunk_map(fs_info, logical, len);
5468
5469         if (!WARN_ON(IS_ERR(em))) {
5470                 map = em->map_lookup;
5471                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5472                         len = map->stripe_len * nr_data_stripes(map);
5473                 free_extent_map(em);
5474         }
5475         return len;
5476 }
5477
5478 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5479 {
5480         struct extent_map *em;
5481         struct map_lookup *map;
5482         int ret = 0;
5483
5484         em = btrfs_get_chunk_map(fs_info, logical, len);
5485
5486         if(!WARN_ON(IS_ERR(em))) {
5487                 map = em->map_lookup;
5488                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5489                         ret = 1;
5490                 free_extent_map(em);
5491         }
5492         return ret;
5493 }
5494
5495 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5496                             struct map_lookup *map, int first,
5497                             int dev_replace_is_ongoing)
5498 {
5499         int i;
5500         int num_stripes;
5501         int preferred_mirror;
5502         int tolerance;
5503         struct btrfs_device *srcdev;
5504
5505         ASSERT((map->type &
5506                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5507
5508         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5509                 num_stripes = map->sub_stripes;
5510         else
5511                 num_stripes = map->num_stripes;
5512
5513         switch (fs_info->fs_devices->read_policy) {
5514         default:
5515                 /* Shouldn't happen, just warn and use pid instead of failing */
5516                 btrfs_warn_rl(fs_info,
5517                               "unknown read_policy type %u, reset to pid",
5518                               fs_info->fs_devices->read_policy);
5519                 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5520                 fallthrough;
5521         case BTRFS_READ_POLICY_PID:
5522                 preferred_mirror = first + (current->pid % num_stripes);
5523                 break;
5524         }
5525
5526         if (dev_replace_is_ongoing &&
5527             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5528              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5529                 srcdev = fs_info->dev_replace.srcdev;
5530         else
5531                 srcdev = NULL;
5532
5533         /*
5534          * try to avoid the drive that is the source drive for a
5535          * dev-replace procedure, only choose it if no other non-missing
5536          * mirror is available
5537          */
5538         for (tolerance = 0; tolerance < 2; tolerance++) {
5539                 if (map->stripes[preferred_mirror].dev->bdev &&
5540                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5541                         return preferred_mirror;
5542                 for (i = first; i < first + num_stripes; i++) {
5543                         if (map->stripes[i].dev->bdev &&
5544                             (tolerance || map->stripes[i].dev != srcdev))
5545                                 return i;
5546                 }
5547         }
5548
5549         /* we couldn't find one that doesn't fail.  Just return something
5550          * and the io error handling code will clean up eventually
5551          */
5552         return preferred_mirror;
5553 }
5554
5555 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5556 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5557 {
5558         int i;
5559         int again = 1;
5560
5561         while (again) {
5562                 again = 0;
5563                 for (i = 0; i < num_stripes - 1; i++) {
5564                         /* Swap if parity is on a smaller index */
5565                         if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5566                                 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5567                                 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5568                                 again = 1;
5569                         }
5570                 }
5571         }
5572 }
5573
5574 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5575 {
5576         struct btrfs_bio *bbio = kzalloc(
5577                  /* the size of the btrfs_bio */
5578                 sizeof(struct btrfs_bio) +
5579                 /* plus the variable array for the stripes */
5580                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5581                 /* plus the variable array for the tgt dev */
5582                 sizeof(int) * (real_stripes) +
5583                 /*
5584                  * plus the raid_map, which includes both the tgt dev
5585                  * and the stripes
5586                  */
5587                 sizeof(u64) * (total_stripes),
5588                 GFP_NOFS|__GFP_NOFAIL);
5589
5590         atomic_set(&bbio->error, 0);
5591         refcount_set(&bbio->refs, 1);
5592
5593         bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5594         bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5595
5596         return bbio;
5597 }
5598
5599 void btrfs_get_bbio(struct btrfs_bio *bbio)
5600 {
5601         WARN_ON(!refcount_read(&bbio->refs));
5602         refcount_inc(&bbio->refs);
5603 }
5604
5605 void btrfs_put_bbio(struct btrfs_bio *bbio)
5606 {
5607         if (!bbio)
5608                 return;
5609         if (refcount_dec_and_test(&bbio->refs))
5610                 kfree(bbio);
5611 }
5612
5613 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5614 /*
5615  * Please note that, discard won't be sent to target device of device
5616  * replace.
5617  */
5618 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5619                                          u64 logical, u64 *length_ret,
5620                                          struct btrfs_bio **bbio_ret)
5621 {
5622         struct extent_map *em;
5623         struct map_lookup *map;
5624         struct btrfs_bio *bbio;
5625         u64 length = *length_ret;
5626         u64 offset;
5627         u64 stripe_nr;
5628         u64 stripe_nr_end;
5629         u64 stripe_end_offset;
5630         u64 stripe_cnt;
5631         u64 stripe_len;
5632         u64 stripe_offset;
5633         u64 num_stripes;
5634         u32 stripe_index;
5635         u32 factor = 0;
5636         u32 sub_stripes = 0;
5637         u64 stripes_per_dev = 0;
5638         u32 remaining_stripes = 0;
5639         u32 last_stripe = 0;
5640         int ret = 0;
5641         int i;
5642
5643         /* discard always return a bbio */
5644         ASSERT(bbio_ret);
5645
5646         em = btrfs_get_chunk_map(fs_info, logical, length);
5647         if (IS_ERR(em))
5648                 return PTR_ERR(em);
5649
5650         map = em->map_lookup;
5651         /* we don't discard raid56 yet */
5652         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5653                 ret = -EOPNOTSUPP;
5654                 goto out;
5655         }
5656
5657         offset = logical - em->start;
5658         length = min_t(u64, em->start + em->len - logical, length);
5659         *length_ret = length;
5660
5661         stripe_len = map->stripe_len;
5662         /*
5663          * stripe_nr counts the total number of stripes we have to stride
5664          * to get to this block
5665          */
5666         stripe_nr = div64_u64(offset, stripe_len);
5667
5668         /* stripe_offset is the offset of this block in its stripe */
5669         stripe_offset = offset - stripe_nr * stripe_len;
5670
5671         stripe_nr_end = round_up(offset + length, map->stripe_len);
5672         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5673         stripe_cnt = stripe_nr_end - stripe_nr;
5674         stripe_end_offset = stripe_nr_end * map->stripe_len -
5675                             (offset + length);
5676         /*
5677          * after this, stripe_nr is the number of stripes on this
5678          * device we have to walk to find the data, and stripe_index is
5679          * the number of our device in the stripe array
5680          */
5681         num_stripes = 1;
5682         stripe_index = 0;
5683         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5684                          BTRFS_BLOCK_GROUP_RAID10)) {
5685                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5686                         sub_stripes = 1;
5687                 else
5688                         sub_stripes = map->sub_stripes;
5689
5690                 factor = map->num_stripes / sub_stripes;
5691                 num_stripes = min_t(u64, map->num_stripes,
5692                                     sub_stripes * stripe_cnt);
5693                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5694                 stripe_index *= sub_stripes;
5695                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5696                                               &remaining_stripes);
5697                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5698                 last_stripe *= sub_stripes;
5699         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5700                                 BTRFS_BLOCK_GROUP_DUP)) {
5701                 num_stripes = map->num_stripes;
5702         } else {
5703                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5704                                         &stripe_index);
5705         }
5706
5707         bbio = alloc_btrfs_bio(num_stripes, 0);
5708         if (!bbio) {
5709                 ret = -ENOMEM;
5710                 goto out;
5711         }
5712
5713         for (i = 0; i < num_stripes; i++) {
5714                 bbio->stripes[i].physical =
5715                         map->stripes[stripe_index].physical +
5716                         stripe_offset + stripe_nr * map->stripe_len;
5717                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5718
5719                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5720                                  BTRFS_BLOCK_GROUP_RAID10)) {
5721                         bbio->stripes[i].length = stripes_per_dev *
5722                                 map->stripe_len;
5723
5724                         if (i / sub_stripes < remaining_stripes)
5725                                 bbio->stripes[i].length +=
5726                                         map->stripe_len;
5727
5728                         /*
5729                          * Special for the first stripe and
5730                          * the last stripe:
5731                          *
5732                          * |-------|...|-------|
5733                          *     |----------|
5734                          *    off     end_off
5735                          */
5736                         if (i < sub_stripes)
5737                                 bbio->stripes[i].length -=
5738                                         stripe_offset;
5739
5740                         if (stripe_index >= last_stripe &&
5741                             stripe_index <= (last_stripe +
5742                                              sub_stripes - 1))
5743                                 bbio->stripes[i].length -=
5744                                         stripe_end_offset;
5745
5746                         if (i == sub_stripes - 1)
5747                                 stripe_offset = 0;
5748                 } else {
5749                         bbio->stripes[i].length = length;
5750                 }
5751
5752                 stripe_index++;
5753                 if (stripe_index == map->num_stripes) {
5754                         stripe_index = 0;
5755                         stripe_nr++;
5756                 }
5757         }
5758
5759         *bbio_ret = bbio;
5760         bbio->map_type = map->type;
5761         bbio->num_stripes = num_stripes;
5762 out:
5763         free_extent_map(em);
5764         return ret;
5765 }
5766
5767 /*
5768  * In dev-replace case, for repair case (that's the only case where the mirror
5769  * is selected explicitly when calling btrfs_map_block), blocks left of the
5770  * left cursor can also be read from the target drive.
5771  *
5772  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5773  * array of stripes.
5774  * For READ, it also needs to be supported using the same mirror number.
5775  *
5776  * If the requested block is not left of the left cursor, EIO is returned. This
5777  * can happen because btrfs_num_copies() returns one more in the dev-replace
5778  * case.
5779  */
5780 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5781                                          u64 logical, u64 length,
5782                                          u64 srcdev_devid, int *mirror_num,
5783                                          u64 *physical)
5784 {
5785         struct btrfs_bio *bbio = NULL;
5786         int num_stripes;
5787         int index_srcdev = 0;
5788         int found = 0;
5789         u64 physical_of_found = 0;
5790         int i;
5791         int ret = 0;
5792
5793         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5794                                 logical, &length, &bbio, 0, 0);
5795         if (ret) {
5796                 ASSERT(bbio == NULL);
5797                 return ret;
5798         }
5799
5800         num_stripes = bbio->num_stripes;
5801         if (*mirror_num > num_stripes) {
5802                 /*
5803                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5804                  * that means that the requested area is not left of the left
5805                  * cursor
5806                  */
5807                 btrfs_put_bbio(bbio);
5808                 return -EIO;
5809         }
5810
5811         /*
5812          * process the rest of the function using the mirror_num of the source
5813          * drive. Therefore look it up first.  At the end, patch the device
5814          * pointer to the one of the target drive.
5815          */
5816         for (i = 0; i < num_stripes; i++) {
5817                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5818                         continue;
5819
5820                 /*
5821                  * In case of DUP, in order to keep it simple, only add the
5822                  * mirror with the lowest physical address
5823                  */
5824                 if (found &&
5825                     physical_of_found <= bbio->stripes[i].physical)
5826                         continue;
5827
5828                 index_srcdev = i;
5829                 found = 1;
5830                 physical_of_found = bbio->stripes[i].physical;
5831         }
5832
5833         btrfs_put_bbio(bbio);
5834
5835         ASSERT(found);
5836         if (!found)
5837                 return -EIO;
5838
5839         *mirror_num = index_srcdev + 1;
5840         *physical = physical_of_found;
5841         return ret;
5842 }
5843
5844 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5845                                       struct btrfs_bio **bbio_ret,
5846                                       struct btrfs_dev_replace *dev_replace,
5847                                       int *num_stripes_ret, int *max_errors_ret)
5848 {
5849         struct btrfs_bio *bbio = *bbio_ret;
5850         u64 srcdev_devid = dev_replace->srcdev->devid;
5851         int tgtdev_indexes = 0;
5852         int num_stripes = *num_stripes_ret;
5853         int max_errors = *max_errors_ret;
5854         int i;
5855
5856         if (op == BTRFS_MAP_WRITE) {
5857                 int index_where_to_add;
5858
5859                 /*
5860                  * duplicate the write operations while the dev replace
5861                  * procedure is running. Since the copying of the old disk to
5862                  * the new disk takes place at run time while the filesystem is
5863                  * mounted writable, the regular write operations to the old
5864                  * disk have to be duplicated to go to the new disk as well.
5865                  *
5866                  * Note that device->missing is handled by the caller, and that
5867                  * the write to the old disk is already set up in the stripes
5868                  * array.
5869                  */
5870                 index_where_to_add = num_stripes;
5871                 for (i = 0; i < num_stripes; i++) {
5872                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5873                                 /* write to new disk, too */
5874                                 struct btrfs_bio_stripe *new =
5875                                         bbio->stripes + index_where_to_add;
5876                                 struct btrfs_bio_stripe *old =
5877                                         bbio->stripes + i;
5878
5879                                 new->physical = old->physical;
5880                                 new->length = old->length;
5881                                 new->dev = dev_replace->tgtdev;
5882                                 bbio->tgtdev_map[i] = index_where_to_add;
5883                                 index_where_to_add++;
5884                                 max_errors++;
5885                                 tgtdev_indexes++;
5886                         }
5887                 }
5888                 num_stripes = index_where_to_add;
5889         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5890                 int index_srcdev = 0;
5891                 int found = 0;
5892                 u64 physical_of_found = 0;
5893
5894                 /*
5895                  * During the dev-replace procedure, the target drive can also
5896                  * be used to read data in case it is needed to repair a corrupt
5897                  * block elsewhere. This is possible if the requested area is
5898                  * left of the left cursor. In this area, the target drive is a
5899                  * full copy of the source drive.
5900                  */
5901                 for (i = 0; i < num_stripes; i++) {
5902                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5903                                 /*
5904                                  * In case of DUP, in order to keep it simple,
5905                                  * only add the mirror with the lowest physical
5906                                  * address
5907                                  */
5908                                 if (found &&
5909                                     physical_of_found <=
5910                                      bbio->stripes[i].physical)
5911                                         continue;
5912                                 index_srcdev = i;
5913                                 found = 1;
5914                                 physical_of_found = bbio->stripes[i].physical;
5915                         }
5916                 }
5917                 if (found) {
5918                         struct btrfs_bio_stripe *tgtdev_stripe =
5919                                 bbio->stripes + num_stripes;
5920
5921                         tgtdev_stripe->physical = physical_of_found;
5922                         tgtdev_stripe->length =
5923                                 bbio->stripes[index_srcdev].length;
5924                         tgtdev_stripe->dev = dev_replace->tgtdev;
5925                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5926
5927                         tgtdev_indexes++;
5928                         num_stripes++;
5929                 }
5930         }
5931
5932         *num_stripes_ret = num_stripes;
5933         *max_errors_ret = max_errors;
5934         bbio->num_tgtdevs = tgtdev_indexes;
5935         *bbio_ret = bbio;
5936 }
5937
5938 static bool need_full_stripe(enum btrfs_map_op op)
5939 {
5940         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5941 }
5942
5943 /*
5944  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5945  *                     tuple. This information is used to calculate how big a
5946  *                     particular bio can get before it straddles a stripe.
5947  *
5948  * @fs_info - the filesystem
5949  * @logical - address that we want to figure out the geometry of
5950  * @len     - the length of IO we are going to perform, starting at @logical
5951  * @op      - type of operation - write or read
5952  * @io_geom - pointer used to return values
5953  *
5954  * Returns < 0 in case a chunk for the given logical address cannot be found,
5955  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5956  */
5957 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5958                         u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5959 {
5960         struct extent_map *em;
5961         struct map_lookup *map;
5962         u64 offset;
5963         u64 stripe_offset;
5964         u64 stripe_nr;
5965         u64 stripe_len;
5966         u64 raid56_full_stripe_start = (u64)-1;
5967         int data_stripes;
5968         int ret = 0;
5969
5970         ASSERT(op != BTRFS_MAP_DISCARD);
5971
5972         em = btrfs_get_chunk_map(fs_info, logical, len);
5973         if (IS_ERR(em))
5974                 return PTR_ERR(em);
5975
5976         map = em->map_lookup;
5977         /* Offset of this logical address in the chunk */
5978         offset = logical - em->start;
5979         /* Len of a stripe in a chunk */
5980         stripe_len = map->stripe_len;
5981         /* Stripe wher this block falls in */
5982         stripe_nr = div64_u64(offset, stripe_len);
5983         /* Offset of stripe in the chunk */
5984         stripe_offset = stripe_nr * stripe_len;
5985         if (offset < stripe_offset) {
5986                 btrfs_crit(fs_info,
5987 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5988                         stripe_offset, offset, em->start, logical, stripe_len);
5989                 ret = -EINVAL;
5990                 goto out;
5991         }
5992
5993         /* stripe_offset is the offset of this block in its stripe */
5994         stripe_offset = offset - stripe_offset;
5995         data_stripes = nr_data_stripes(map);
5996
5997         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5998                 u64 max_len = stripe_len - stripe_offset;
5999
6000                 /*
6001                  * In case of raid56, we need to know the stripe aligned start
6002                  */
6003                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6004                         unsigned long full_stripe_len = stripe_len * data_stripes;
6005                         raid56_full_stripe_start = offset;
6006
6007                         /*
6008                          * Allow a write of a full stripe, but make sure we
6009                          * don't allow straddling of stripes
6010                          */
6011                         raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6012                                         full_stripe_len);
6013                         raid56_full_stripe_start *= full_stripe_len;
6014
6015                         /*
6016                          * For writes to RAID[56], allow a full stripeset across
6017                          * all disks. For other RAID types and for RAID[56]
6018                          * reads, just allow a single stripe (on a single disk).
6019                          */
6020                         if (op == BTRFS_MAP_WRITE) {
6021                                 max_len = stripe_len * data_stripes -
6022                                           (offset - raid56_full_stripe_start);
6023                         }
6024                 }
6025                 len = min_t(u64, em->len - offset, max_len);
6026         } else {
6027                 len = em->len - offset;
6028         }
6029
6030         io_geom->len = len;
6031         io_geom->offset = offset;
6032         io_geom->stripe_len = stripe_len;
6033         io_geom->stripe_nr = stripe_nr;
6034         io_geom->stripe_offset = stripe_offset;
6035         io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6036
6037 out:
6038         /* once for us */
6039         free_extent_map(em);
6040         return ret;
6041 }
6042
6043 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6044                              enum btrfs_map_op op,
6045                              u64 logical, u64 *length,
6046                              struct btrfs_bio **bbio_ret,
6047                              int mirror_num, int need_raid_map)
6048 {
6049         struct extent_map *em;
6050         struct map_lookup *map;
6051         u64 stripe_offset;
6052         u64 stripe_nr;
6053         u64 stripe_len;
6054         u32 stripe_index;
6055         int data_stripes;
6056         int i;
6057         int ret = 0;
6058         int num_stripes;
6059         int max_errors = 0;
6060         int tgtdev_indexes = 0;
6061         struct btrfs_bio *bbio = NULL;
6062         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6063         int dev_replace_is_ongoing = 0;
6064         int num_alloc_stripes;
6065         int patch_the_first_stripe_for_dev_replace = 0;
6066         u64 physical_to_patch_in_first_stripe = 0;
6067         u64 raid56_full_stripe_start = (u64)-1;
6068         struct btrfs_io_geometry geom;
6069
6070         ASSERT(bbio_ret);
6071         ASSERT(op != BTRFS_MAP_DISCARD);
6072
6073         ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6074         if (ret < 0)
6075                 return ret;
6076
6077         em = btrfs_get_chunk_map(fs_info, logical, *length);
6078         ASSERT(!IS_ERR(em));
6079         map = em->map_lookup;
6080
6081         *length = geom.len;
6082         stripe_len = geom.stripe_len;
6083         stripe_nr = geom.stripe_nr;
6084         stripe_offset = geom.stripe_offset;
6085         raid56_full_stripe_start = geom.raid56_stripe_offset;
6086         data_stripes = nr_data_stripes(map);
6087
6088         down_read(&dev_replace->rwsem);
6089         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6090         /*
6091          * Hold the semaphore for read during the whole operation, write is
6092          * requested at commit time but must wait.
6093          */
6094         if (!dev_replace_is_ongoing)
6095                 up_read(&dev_replace->rwsem);
6096
6097         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6098             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6099                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6100                                                     dev_replace->srcdev->devid,
6101                                                     &mirror_num,
6102                                             &physical_to_patch_in_first_stripe);
6103                 if (ret)
6104                         goto out;
6105                 else
6106                         patch_the_first_stripe_for_dev_replace = 1;
6107         } else if (mirror_num > map->num_stripes) {
6108                 mirror_num = 0;
6109         }
6110
6111         num_stripes = 1;
6112         stripe_index = 0;
6113         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6114                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6115                                 &stripe_index);
6116                 if (!need_full_stripe(op))
6117                         mirror_num = 1;
6118         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6119                 if (need_full_stripe(op))
6120                         num_stripes = map->num_stripes;
6121                 else if (mirror_num)
6122                         stripe_index = mirror_num - 1;
6123                 else {
6124                         stripe_index = find_live_mirror(fs_info, map, 0,
6125                                             dev_replace_is_ongoing);
6126                         mirror_num = stripe_index + 1;
6127                 }
6128
6129         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6130                 if (need_full_stripe(op)) {
6131                         num_stripes = map->num_stripes;
6132                 } else if (mirror_num) {
6133                         stripe_index = mirror_num - 1;
6134                 } else {
6135                         mirror_num = 1;
6136                 }
6137
6138         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6139                 u32 factor = map->num_stripes / map->sub_stripes;
6140
6141                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6142                 stripe_index *= map->sub_stripes;
6143
6144                 if (need_full_stripe(op))
6145                         num_stripes = map->sub_stripes;
6146                 else if (mirror_num)
6147                         stripe_index += mirror_num - 1;
6148                 else {
6149                         int old_stripe_index = stripe_index;
6150                         stripe_index = find_live_mirror(fs_info, map,
6151                                               stripe_index,
6152                                               dev_replace_is_ongoing);
6153                         mirror_num = stripe_index - old_stripe_index + 1;
6154                 }
6155
6156         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6157                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6158                         /* push stripe_nr back to the start of the full stripe */
6159                         stripe_nr = div64_u64(raid56_full_stripe_start,
6160                                         stripe_len * data_stripes);
6161
6162                         /* RAID[56] write or recovery. Return all stripes */
6163                         num_stripes = map->num_stripes;
6164                         max_errors = nr_parity_stripes(map);
6165
6166                         *length = map->stripe_len;
6167                         stripe_index = 0;
6168                         stripe_offset = 0;
6169                 } else {
6170                         /*
6171                          * Mirror #0 or #1 means the original data block.
6172                          * Mirror #2 is RAID5 parity block.
6173                          * Mirror #3 is RAID6 Q block.
6174                          */
6175                         stripe_nr = div_u64_rem(stripe_nr,
6176                                         data_stripes, &stripe_index);
6177                         if (mirror_num > 1)
6178                                 stripe_index = data_stripes + mirror_num - 2;
6179
6180                         /* We distribute the parity blocks across stripes */
6181                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6182                                         &stripe_index);
6183                         if (!need_full_stripe(op) && mirror_num <= 1)
6184                                 mirror_num = 1;
6185                 }
6186         } else {
6187                 /*
6188                  * after this, stripe_nr is the number of stripes on this
6189                  * device we have to walk to find the data, and stripe_index is
6190                  * the number of our device in the stripe array
6191                  */
6192                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6193                                 &stripe_index);
6194                 mirror_num = stripe_index + 1;
6195         }
6196         if (stripe_index >= map->num_stripes) {
6197                 btrfs_crit(fs_info,
6198                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6199                            stripe_index, map->num_stripes);
6200                 ret = -EINVAL;
6201                 goto out;
6202         }
6203
6204         num_alloc_stripes = num_stripes;
6205         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6206                 if (op == BTRFS_MAP_WRITE)
6207                         num_alloc_stripes <<= 1;
6208                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6209                         num_alloc_stripes++;
6210                 tgtdev_indexes = num_stripes;
6211         }
6212
6213         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6214         if (!bbio) {
6215                 ret = -ENOMEM;
6216                 goto out;
6217         }
6218
6219         for (i = 0; i < num_stripes; i++) {
6220                 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6221                         stripe_offset + stripe_nr * map->stripe_len;
6222                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6223                 stripe_index++;
6224         }
6225
6226         /* build raid_map */
6227         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6228             (need_full_stripe(op) || mirror_num > 1)) {
6229                 u64 tmp;
6230                 unsigned rot;
6231
6232                 /* Work out the disk rotation on this stripe-set */
6233                 div_u64_rem(stripe_nr, num_stripes, &rot);
6234
6235                 /* Fill in the logical address of each stripe */
6236                 tmp = stripe_nr * data_stripes;
6237                 for (i = 0; i < data_stripes; i++)
6238                         bbio->raid_map[(i+rot) % num_stripes] =
6239                                 em->start + (tmp + i) * map->stripe_len;
6240
6241                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6242                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6243                         bbio->raid_map[(i+rot+1) % num_stripes] =
6244                                 RAID6_Q_STRIPE;
6245
6246                 sort_parity_stripes(bbio, num_stripes);
6247         }
6248
6249         if (need_full_stripe(op))
6250                 max_errors = btrfs_chunk_max_errors(map);
6251
6252         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6253             need_full_stripe(op)) {
6254                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6255                                           &max_errors);
6256         }
6257
6258         *bbio_ret = bbio;
6259         bbio->map_type = map->type;
6260         bbio->num_stripes = num_stripes;
6261         bbio->max_errors = max_errors;
6262         bbio->mirror_num = mirror_num;
6263
6264         /*
6265          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6266          * mirror_num == num_stripes + 1 && dev_replace target drive is
6267          * available as a mirror
6268          */
6269         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6270                 WARN_ON(num_stripes > 1);
6271                 bbio->stripes[0].dev = dev_replace->tgtdev;
6272                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6273                 bbio->mirror_num = map->num_stripes + 1;
6274         }
6275 out:
6276         if (dev_replace_is_ongoing) {
6277                 lockdep_assert_held(&dev_replace->rwsem);
6278                 /* Unlock and let waiting writers proceed */
6279                 up_read(&dev_replace->rwsem);
6280         }
6281         free_extent_map(em);
6282         return ret;
6283 }
6284
6285 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6286                       u64 logical, u64 *length,
6287                       struct btrfs_bio **bbio_ret, int mirror_num)
6288 {
6289         if (op == BTRFS_MAP_DISCARD)
6290                 return __btrfs_map_block_for_discard(fs_info, logical,
6291                                                      length, bbio_ret);
6292
6293         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6294                                  mirror_num, 0);
6295 }
6296
6297 /* For Scrub/replace */
6298 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6299                      u64 logical, u64 *length,
6300                      struct btrfs_bio **bbio_ret)
6301 {
6302         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6303 }
6304
6305 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6306 {
6307         bio->bi_private = bbio->private;
6308         bio->bi_end_io = bbio->end_io;
6309         bio_endio(bio);
6310
6311         btrfs_put_bbio(bbio);
6312 }
6313
6314 static void btrfs_end_bio(struct bio *bio)
6315 {
6316         struct btrfs_bio *bbio = bio->bi_private;
6317         int is_orig_bio = 0;
6318
6319         if (bio->bi_status) {
6320                 atomic_inc(&bbio->error);
6321                 if (bio->bi_status == BLK_STS_IOERR ||
6322                     bio->bi_status == BLK_STS_TARGET) {
6323                         struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6324
6325                         ASSERT(dev->bdev);
6326                         if (bio_op(bio) == REQ_OP_WRITE)
6327                                 btrfs_dev_stat_inc_and_print(dev,
6328                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6329                         else if (!(bio->bi_opf & REQ_RAHEAD))
6330                                 btrfs_dev_stat_inc_and_print(dev,
6331                                                 BTRFS_DEV_STAT_READ_ERRS);
6332                         if (bio->bi_opf & REQ_PREFLUSH)
6333                                 btrfs_dev_stat_inc_and_print(dev,
6334                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6335                 }
6336         }
6337
6338         if (bio == bbio->orig_bio)
6339                 is_orig_bio = 1;
6340
6341         btrfs_bio_counter_dec(bbio->fs_info);
6342
6343         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6344                 if (!is_orig_bio) {
6345                         bio_put(bio);
6346                         bio = bbio->orig_bio;
6347                 }
6348
6349                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6350                 /* only send an error to the higher layers if it is
6351                  * beyond the tolerance of the btrfs bio
6352                  */
6353                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6354                         bio->bi_status = BLK_STS_IOERR;
6355                 } else {
6356                         /*
6357                          * this bio is actually up to date, we didn't
6358                          * go over the max number of errors
6359                          */
6360                         bio->bi_status = BLK_STS_OK;
6361                 }
6362
6363                 btrfs_end_bbio(bbio, bio);
6364         } else if (!is_orig_bio) {
6365                 bio_put(bio);
6366         }
6367 }
6368
6369 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6370                               u64 physical, struct btrfs_device *dev)
6371 {
6372         struct btrfs_fs_info *fs_info = bbio->fs_info;
6373
6374         bio->bi_private = bbio;
6375         btrfs_io_bio(bio)->device = dev;
6376         bio->bi_end_io = btrfs_end_bio;
6377         bio->bi_iter.bi_sector = physical >> 9;
6378         btrfs_debug_in_rcu(fs_info,
6379         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6380                 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6381                 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6382                 dev->devid, bio->bi_iter.bi_size);
6383         bio_set_dev(bio, dev->bdev);
6384
6385         btrfs_bio_counter_inc_noblocked(fs_info);
6386
6387         btrfsic_submit_bio(bio);
6388 }
6389
6390 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6391 {
6392         atomic_inc(&bbio->error);
6393         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6394                 /* Should be the original bio. */
6395                 WARN_ON(bio != bbio->orig_bio);
6396
6397                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6398                 bio->bi_iter.bi_sector = logical >> 9;
6399                 if (atomic_read(&bbio->error) > bbio->max_errors)
6400                         bio->bi_status = BLK_STS_IOERR;
6401                 else
6402                         bio->bi_status = BLK_STS_OK;
6403                 btrfs_end_bbio(bbio, bio);
6404         }
6405 }
6406
6407 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6408                            int mirror_num)
6409 {
6410         struct btrfs_device *dev;
6411         struct bio *first_bio = bio;
6412         u64 logical = bio->bi_iter.bi_sector << 9;
6413         u64 length = 0;
6414         u64 map_length;
6415         int ret;
6416         int dev_nr;
6417         int total_devs;
6418         struct btrfs_bio *bbio = NULL;
6419
6420         length = bio->bi_iter.bi_size;
6421         map_length = length;
6422
6423         btrfs_bio_counter_inc_blocked(fs_info);
6424         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6425                                 &map_length, &bbio, mirror_num, 1);
6426         if (ret) {
6427                 btrfs_bio_counter_dec(fs_info);
6428                 return errno_to_blk_status(ret);
6429         }
6430
6431         total_devs = bbio->num_stripes;
6432         bbio->orig_bio = first_bio;
6433         bbio->private = first_bio->bi_private;
6434         bbio->end_io = first_bio->bi_end_io;
6435         bbio->fs_info = fs_info;
6436         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6437
6438         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6439             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6440                 /* In this case, map_length has been set to the length of
6441                    a single stripe; not the whole write */
6442                 if (bio_op(bio) == REQ_OP_WRITE) {
6443                         ret = raid56_parity_write(fs_info, bio, bbio,
6444                                                   map_length);
6445                 } else {
6446                         ret = raid56_parity_recover(fs_info, bio, bbio,
6447                                                     map_length, mirror_num, 1);
6448                 }
6449
6450                 btrfs_bio_counter_dec(fs_info);
6451                 return errno_to_blk_status(ret);
6452         }
6453
6454         if (map_length < length) {
6455                 btrfs_crit(fs_info,
6456                            "mapping failed logical %llu bio len %llu len %llu",
6457                            logical, length, map_length);
6458                 BUG();
6459         }
6460
6461         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6462                 dev = bbio->stripes[dev_nr].dev;
6463                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6464                                                    &dev->dev_state) ||
6465                     (bio_op(first_bio) == REQ_OP_WRITE &&
6466                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6467                         bbio_error(bbio, first_bio, logical);
6468                         continue;
6469                 }
6470
6471                 if (dev_nr < total_devs - 1)
6472                         bio = btrfs_bio_clone(first_bio);
6473                 else
6474                         bio = first_bio;
6475
6476                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6477         }
6478         btrfs_bio_counter_dec(fs_info);
6479         return BLK_STS_OK;
6480 }
6481
6482 /*
6483  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6484  * return NULL.
6485  *
6486  * If devid and uuid are both specified, the match must be exact, otherwise
6487  * only devid is used.
6488  *
6489  * If @seed is true, traverse through the seed devices.
6490  */
6491 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6492                                        u64 devid, u8 *uuid, u8 *fsid)
6493 {
6494         struct btrfs_device *device;
6495         struct btrfs_fs_devices *seed_devs;
6496
6497         if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6498                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6499                         if (device->devid == devid &&
6500                             (!uuid || memcmp(device->uuid, uuid,
6501                                              BTRFS_UUID_SIZE) == 0))
6502                                 return device;
6503                 }
6504         }
6505
6506         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6507                 if (!fsid ||
6508                     !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6509                         list_for_each_entry(device, &seed_devs->devices,
6510                                             dev_list) {
6511                                 if (device->devid == devid &&
6512                                     (!uuid || memcmp(device->uuid, uuid,
6513                                                      BTRFS_UUID_SIZE) == 0))
6514                                         return device;
6515                         }
6516                 }
6517         }
6518
6519         return NULL;
6520 }
6521
6522 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6523                                             u64 devid, u8 *dev_uuid)
6524 {
6525         struct btrfs_device *device;
6526         unsigned int nofs_flag;
6527
6528         /*
6529          * We call this under the chunk_mutex, so we want to use NOFS for this
6530          * allocation, however we don't want to change btrfs_alloc_device() to
6531          * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6532          * places.
6533          */
6534         nofs_flag = memalloc_nofs_save();
6535         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6536         memalloc_nofs_restore(nofs_flag);
6537         if (IS_ERR(device))
6538                 return device;
6539
6540         list_add(&device->dev_list, &fs_devices->devices);
6541         device->fs_devices = fs_devices;
6542         fs_devices->num_devices++;
6543
6544         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6545         fs_devices->missing_devices++;
6546
6547         return device;
6548 }
6549
6550 /**
6551  * btrfs_alloc_device - allocate struct btrfs_device
6552  * @fs_info:    used only for generating a new devid, can be NULL if
6553  *              devid is provided (i.e. @devid != NULL).
6554  * @devid:      a pointer to devid for this device.  If NULL a new devid
6555  *              is generated.
6556  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6557  *              is generated.
6558  *
6559  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6560  * on error.  Returned struct is not linked onto any lists and must be
6561  * destroyed with btrfs_free_device.
6562  */
6563 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6564                                         const u64 *devid,
6565                                         const u8 *uuid)
6566 {
6567         struct btrfs_device *dev;
6568         u64 tmp;
6569
6570         if (WARN_ON(!devid && !fs_info))
6571                 return ERR_PTR(-EINVAL);
6572
6573         dev = __alloc_device(fs_info);
6574         if (IS_ERR(dev))
6575                 return dev;
6576
6577         if (devid)
6578                 tmp = *devid;
6579         else {
6580                 int ret;
6581
6582                 ret = find_next_devid(fs_info, &tmp);
6583                 if (ret) {
6584                         btrfs_free_device(dev);
6585                         return ERR_PTR(ret);
6586                 }
6587         }
6588         dev->devid = tmp;
6589
6590         if (uuid)
6591                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6592         else
6593                 generate_random_uuid(dev->uuid);
6594
6595         return dev;
6596 }
6597
6598 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6599                                         u64 devid, u8 *uuid, bool error)
6600 {
6601         if (error)
6602                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6603                               devid, uuid);
6604         else
6605                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6606                               devid, uuid);
6607 }
6608
6609 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6610 {
6611         int index = btrfs_bg_flags_to_raid_index(type);
6612         int ncopies = btrfs_raid_array[index].ncopies;
6613         const int nparity = btrfs_raid_array[index].nparity;
6614         int data_stripes;
6615
6616         if (nparity)
6617                 data_stripes = num_stripes - nparity;
6618         else
6619                 data_stripes = num_stripes / ncopies;
6620
6621         return div_u64(chunk_len, data_stripes);
6622 }
6623
6624 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6625                           struct btrfs_chunk *chunk)
6626 {
6627         struct btrfs_fs_info *fs_info = leaf->fs_info;
6628         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6629         struct map_lookup *map;
6630         struct extent_map *em;
6631         u64 logical;
6632         u64 length;
6633         u64 devid;
6634         u8 uuid[BTRFS_UUID_SIZE];
6635         int num_stripes;
6636         int ret;
6637         int i;
6638
6639         logical = key->offset;
6640         length = btrfs_chunk_length(leaf, chunk);
6641         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6642
6643         /*
6644          * Only need to verify chunk item if we're reading from sys chunk array,
6645          * as chunk item in tree block is already verified by tree-checker.
6646          */
6647         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6648                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6649                 if (ret)
6650                         return ret;
6651         }
6652
6653         read_lock(&map_tree->lock);
6654         em = lookup_extent_mapping(map_tree, logical, 1);
6655         read_unlock(&map_tree->lock);
6656
6657         /* already mapped? */
6658         if (em && em->start <= logical && em->start + em->len > logical) {
6659                 free_extent_map(em);
6660                 return 0;
6661         } else if (em) {
6662                 free_extent_map(em);
6663         }
6664
6665         em = alloc_extent_map();
6666         if (!em)
6667                 return -ENOMEM;
6668         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6669         if (!map) {
6670                 free_extent_map(em);
6671                 return -ENOMEM;
6672         }
6673
6674         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6675         em->map_lookup = map;
6676         em->start = logical;
6677         em->len = length;
6678         em->orig_start = 0;
6679         em->block_start = 0;
6680         em->block_len = em->len;
6681
6682         map->num_stripes = num_stripes;
6683         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6684         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6685         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6686         map->type = btrfs_chunk_type(leaf, chunk);
6687         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6688         map->verified_stripes = 0;
6689         em->orig_block_len = calc_stripe_length(map->type, em->len,
6690                                                 map->num_stripes);
6691         for (i = 0; i < num_stripes; i++) {
6692                 map->stripes[i].physical =
6693                         btrfs_stripe_offset_nr(leaf, chunk, i);
6694                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6695                 read_extent_buffer(leaf, uuid, (unsigned long)
6696                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6697                                    BTRFS_UUID_SIZE);
6698                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6699                                                         devid, uuid, NULL);
6700                 if (!map->stripes[i].dev &&
6701                     !btrfs_test_opt(fs_info, DEGRADED)) {
6702                         free_extent_map(em);
6703                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6704                         return -ENOENT;
6705                 }
6706                 if (!map->stripes[i].dev) {
6707                         map->stripes[i].dev =
6708                                 add_missing_dev(fs_info->fs_devices, devid,
6709                                                 uuid);
6710                         if (IS_ERR(map->stripes[i].dev)) {
6711                                 free_extent_map(em);
6712                                 btrfs_err(fs_info,
6713                                         "failed to init missing dev %llu: %ld",
6714                                         devid, PTR_ERR(map->stripes[i].dev));
6715                                 return PTR_ERR(map->stripes[i].dev);
6716                         }
6717                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6718                 }
6719                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6720                                 &(map->stripes[i].dev->dev_state));
6721
6722         }
6723
6724         write_lock(&map_tree->lock);
6725         ret = add_extent_mapping(map_tree, em, 0);
6726         write_unlock(&map_tree->lock);
6727         if (ret < 0) {
6728                 btrfs_err(fs_info,
6729                           "failed to add chunk map, start=%llu len=%llu: %d",
6730                           em->start, em->len, ret);
6731         }
6732         free_extent_map(em);
6733
6734         return ret;
6735 }
6736
6737 static void fill_device_from_item(struct extent_buffer *leaf,
6738                                  struct btrfs_dev_item *dev_item,
6739                                  struct btrfs_device *device)
6740 {
6741         unsigned long ptr;
6742
6743         device->devid = btrfs_device_id(leaf, dev_item);
6744         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6745         device->total_bytes = device->disk_total_bytes;
6746         device->commit_total_bytes = device->disk_total_bytes;
6747         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6748         device->commit_bytes_used = device->bytes_used;
6749         device->type = btrfs_device_type(leaf, dev_item);
6750         device->io_align = btrfs_device_io_align(leaf, dev_item);
6751         device->io_width = btrfs_device_io_width(leaf, dev_item);
6752         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6753         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6754         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6755
6756         ptr = btrfs_device_uuid(dev_item);
6757         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6758 }
6759
6760 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6761                                                   u8 *fsid)
6762 {
6763         struct btrfs_fs_devices *fs_devices;
6764         int ret;
6765
6766         lockdep_assert_held(&uuid_mutex);
6767         ASSERT(fsid);
6768
6769         /* This will match only for multi-device seed fs */
6770         list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6771                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6772                         return fs_devices;
6773
6774
6775         fs_devices = find_fsid(fsid, NULL);
6776         if (!fs_devices) {
6777                 if (!btrfs_test_opt(fs_info, DEGRADED))
6778                         return ERR_PTR(-ENOENT);
6779
6780                 fs_devices = alloc_fs_devices(fsid, NULL);
6781                 if (IS_ERR(fs_devices))
6782                         return fs_devices;
6783
6784                 fs_devices->seeding = true;
6785                 fs_devices->opened = 1;
6786                 return fs_devices;
6787         }
6788
6789         /*
6790          * Upon first call for a seed fs fsid, just create a private copy of the
6791          * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6792          */
6793         fs_devices = clone_fs_devices(fs_devices);
6794         if (IS_ERR(fs_devices))
6795                 return fs_devices;
6796
6797         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6798         if (ret) {
6799                 free_fs_devices(fs_devices);
6800                 return ERR_PTR(ret);
6801         }
6802
6803         if (!fs_devices->seeding) {
6804                 close_fs_devices(fs_devices);
6805                 free_fs_devices(fs_devices);
6806                 return ERR_PTR(-EINVAL);
6807         }
6808
6809         list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6810
6811         return fs_devices;
6812 }
6813
6814 static int read_one_dev(struct extent_buffer *leaf,
6815                         struct btrfs_dev_item *dev_item)
6816 {
6817         struct btrfs_fs_info *fs_info = leaf->fs_info;
6818         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6819         struct btrfs_device *device;
6820         u64 devid;
6821         int ret;
6822         u8 fs_uuid[BTRFS_FSID_SIZE];
6823         u8 dev_uuid[BTRFS_UUID_SIZE];
6824
6825         devid = btrfs_device_id(leaf, dev_item);
6826         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6827                            BTRFS_UUID_SIZE);
6828         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6829                            BTRFS_FSID_SIZE);
6830
6831         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6832                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6833                 if (IS_ERR(fs_devices))
6834                         return PTR_ERR(fs_devices);
6835         }
6836
6837         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6838                                    fs_uuid);
6839         if (!device) {
6840                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6841                         btrfs_report_missing_device(fs_info, devid,
6842                                                         dev_uuid, true);
6843                         return -ENOENT;
6844                 }
6845
6846                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6847                 if (IS_ERR(device)) {
6848                         btrfs_err(fs_info,
6849                                 "failed to add missing dev %llu: %ld",
6850                                 devid, PTR_ERR(device));
6851                         return PTR_ERR(device);
6852                 }
6853                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6854         } else {
6855                 if (!device->bdev) {
6856                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6857                                 btrfs_report_missing_device(fs_info,
6858                                                 devid, dev_uuid, true);
6859                                 return -ENOENT;
6860                         }
6861                         btrfs_report_missing_device(fs_info, devid,
6862                                                         dev_uuid, false);
6863                 }
6864
6865                 if (!device->bdev &&
6866                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6867                         /*
6868                          * this happens when a device that was properly setup
6869                          * in the device info lists suddenly goes bad.
6870                          * device->bdev is NULL, and so we have to set
6871                          * device->missing to one here
6872                          */
6873                         device->fs_devices->missing_devices++;
6874                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6875                 }
6876
6877                 /* Move the device to its own fs_devices */
6878                 if (device->fs_devices != fs_devices) {
6879                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6880                                                         &device->dev_state));
6881
6882                         list_move(&device->dev_list, &fs_devices->devices);
6883                         device->fs_devices->num_devices--;
6884                         fs_devices->num_devices++;
6885
6886                         device->fs_devices->missing_devices--;
6887                         fs_devices->missing_devices++;
6888
6889                         device->fs_devices = fs_devices;
6890                 }
6891         }
6892
6893         if (device->fs_devices != fs_info->fs_devices) {
6894                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6895                 if (device->generation !=
6896                     btrfs_device_generation(leaf, dev_item))
6897                         return -EINVAL;
6898         }
6899
6900         fill_device_from_item(leaf, dev_item, device);
6901         if (device->bdev) {
6902                 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
6903
6904                 if (device->total_bytes > max_total_bytes) {
6905                         btrfs_err(fs_info,
6906                         "device total_bytes should be at most %llu but found %llu",
6907                                   max_total_bytes, device->total_bytes);
6908                         return -EINVAL;
6909                 }
6910         }
6911         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6912         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6913            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6914                 device->fs_devices->total_rw_bytes += device->total_bytes;
6915                 atomic64_add(device->total_bytes - device->bytes_used,
6916                                 &fs_info->free_chunk_space);
6917         }
6918         ret = 0;
6919         return ret;
6920 }
6921
6922 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6923 {
6924         struct btrfs_root *root = fs_info->tree_root;
6925         struct btrfs_super_block *super_copy = fs_info->super_copy;
6926         struct extent_buffer *sb;
6927         struct btrfs_disk_key *disk_key;
6928         struct btrfs_chunk *chunk;
6929         u8 *array_ptr;
6930         unsigned long sb_array_offset;
6931         int ret = 0;
6932         u32 num_stripes;
6933         u32 array_size;
6934         u32 len = 0;
6935         u32 cur_offset;
6936         u64 type;
6937         struct btrfs_key key;
6938
6939         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6940         /*
6941          * This will create extent buffer of nodesize, superblock size is
6942          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6943          * overallocate but we can keep it as-is, only the first page is used.
6944          */
6945         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
6946                                           root->root_key.objectid, 0);
6947         if (IS_ERR(sb))
6948                 return PTR_ERR(sb);
6949         set_extent_buffer_uptodate(sb);
6950         /*
6951          * The sb extent buffer is artificial and just used to read the system array.
6952          * set_extent_buffer_uptodate() call does not properly mark all it's
6953          * pages up-to-date when the page is larger: extent does not cover the
6954          * whole page and consequently check_page_uptodate does not find all
6955          * the page's extents up-to-date (the hole beyond sb),
6956          * write_extent_buffer then triggers a WARN_ON.
6957          *
6958          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6959          * but sb spans only this function. Add an explicit SetPageUptodate call
6960          * to silence the warning eg. on PowerPC 64.
6961          */
6962         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6963                 SetPageUptodate(sb->pages[0]);
6964
6965         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6966         array_size = btrfs_super_sys_array_size(super_copy);
6967
6968         array_ptr = super_copy->sys_chunk_array;
6969         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6970         cur_offset = 0;
6971
6972         while (cur_offset < array_size) {
6973                 disk_key = (struct btrfs_disk_key *)array_ptr;
6974                 len = sizeof(*disk_key);
6975                 if (cur_offset + len > array_size)
6976                         goto out_short_read;
6977
6978                 btrfs_disk_key_to_cpu(&key, disk_key);
6979
6980                 array_ptr += len;
6981                 sb_array_offset += len;
6982                 cur_offset += len;
6983
6984                 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6985                         btrfs_err(fs_info,
6986                             "unexpected item type %u in sys_array at offset %u",
6987                                   (u32)key.type, cur_offset);
6988                         ret = -EIO;
6989                         break;
6990                 }
6991
6992                 chunk = (struct btrfs_chunk *)sb_array_offset;
6993                 /*
6994                  * At least one btrfs_chunk with one stripe must be present,
6995                  * exact stripe count check comes afterwards
6996                  */
6997                 len = btrfs_chunk_item_size(1);
6998                 if (cur_offset + len > array_size)
6999                         goto out_short_read;
7000
7001                 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7002                 if (!num_stripes) {
7003                         btrfs_err(fs_info,
7004                         "invalid number of stripes %u in sys_array at offset %u",
7005                                   num_stripes, cur_offset);
7006                         ret = -EIO;
7007                         break;
7008                 }
7009
7010                 type = btrfs_chunk_type(sb, chunk);
7011                 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7012                         btrfs_err(fs_info,
7013                         "invalid chunk type %llu in sys_array at offset %u",
7014                                   type, cur_offset);
7015                         ret = -EIO;
7016                         break;
7017                 }
7018
7019                 len = btrfs_chunk_item_size(num_stripes);
7020                 if (cur_offset + len > array_size)
7021                         goto out_short_read;
7022
7023                 ret = read_one_chunk(&key, sb, chunk);
7024                 if (ret)
7025                         break;
7026
7027                 array_ptr += len;
7028                 sb_array_offset += len;
7029                 cur_offset += len;
7030         }
7031         clear_extent_buffer_uptodate(sb);
7032         free_extent_buffer_stale(sb);
7033         return ret;
7034
7035 out_short_read:
7036         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7037                         len, cur_offset);
7038         clear_extent_buffer_uptodate(sb);
7039         free_extent_buffer_stale(sb);
7040         return -EIO;
7041 }
7042
7043 /*
7044  * Check if all chunks in the fs are OK for read-write degraded mount
7045  *
7046  * If the @failing_dev is specified, it's accounted as missing.
7047  *
7048  * Return true if all chunks meet the minimal RW mount requirements.
7049  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7050  */
7051 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7052                                         struct btrfs_device *failing_dev)
7053 {
7054         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7055         struct extent_map *em;
7056         u64 next_start = 0;
7057         bool ret = true;
7058
7059         read_lock(&map_tree->lock);
7060         em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7061         read_unlock(&map_tree->lock);
7062         /* No chunk at all? Return false anyway */
7063         if (!em) {
7064                 ret = false;
7065                 goto out;
7066         }
7067         while (em) {
7068                 struct map_lookup *map;
7069                 int missing = 0;
7070                 int max_tolerated;
7071                 int i;
7072
7073                 map = em->map_lookup;
7074                 max_tolerated =
7075                         btrfs_get_num_tolerated_disk_barrier_failures(
7076                                         map->type);
7077                 for (i = 0; i < map->num_stripes; i++) {
7078                         struct btrfs_device *dev = map->stripes[i].dev;
7079
7080                         if (!dev || !dev->bdev ||
7081                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7082                             dev->last_flush_error)
7083                                 missing++;
7084                         else if (failing_dev && failing_dev == dev)
7085                                 missing++;
7086                 }
7087                 if (missing > max_tolerated) {
7088                         if (!failing_dev)
7089                                 btrfs_warn(fs_info,
7090         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7091                                    em->start, missing, max_tolerated);
7092                         free_extent_map(em);
7093                         ret = false;
7094                         goto out;
7095                 }
7096                 next_start = extent_map_end(em);
7097                 free_extent_map(em);
7098
7099                 read_lock(&map_tree->lock);
7100                 em = lookup_extent_mapping(map_tree, next_start,
7101                                            (u64)(-1) - next_start);
7102                 read_unlock(&map_tree->lock);
7103         }
7104 out:
7105         return ret;
7106 }
7107
7108 static void readahead_tree_node_children(struct extent_buffer *node)
7109 {
7110         int i;
7111         const int nr_items = btrfs_header_nritems(node);
7112
7113         for (i = 0; i < nr_items; i++)
7114                 btrfs_readahead_node_child(node, i);
7115 }
7116
7117 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7118 {
7119         struct btrfs_root *root = fs_info->chunk_root;
7120         struct btrfs_path *path;
7121         struct extent_buffer *leaf;
7122         struct btrfs_key key;
7123         struct btrfs_key found_key;
7124         int ret;
7125         int slot;
7126         u64 total_dev = 0;
7127         u64 last_ra_node = 0;
7128
7129         path = btrfs_alloc_path();
7130         if (!path)
7131                 return -ENOMEM;
7132
7133         /*
7134          * uuid_mutex is needed only if we are mounting a sprout FS
7135          * otherwise we don't need it.
7136          */
7137         mutex_lock(&uuid_mutex);
7138
7139         /*
7140          * It is possible for mount and umount to race in such a way that
7141          * we execute this code path, but open_fs_devices failed to clear
7142          * total_rw_bytes. We certainly want it cleared before reading the
7143          * device items, so clear it here.
7144          */
7145         fs_info->fs_devices->total_rw_bytes = 0;
7146
7147         /*
7148          * Read all device items, and then all the chunk items. All
7149          * device items are found before any chunk item (their object id
7150          * is smaller than the lowest possible object id for a chunk
7151          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7152          */
7153         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7154         key.offset = 0;
7155         key.type = 0;
7156         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7157         if (ret < 0)
7158                 goto error;
7159         while (1) {
7160                 struct extent_buffer *node;
7161
7162                 leaf = path->nodes[0];
7163                 slot = path->slots[0];
7164                 if (slot >= btrfs_header_nritems(leaf)) {
7165                         ret = btrfs_next_leaf(root, path);
7166                         if (ret == 0)
7167                                 continue;
7168                         if (ret < 0)
7169                                 goto error;
7170                         break;
7171                 }
7172                 /*
7173                  * The nodes on level 1 are not locked but we don't need to do
7174                  * that during mount time as nothing else can access the tree
7175                  */
7176                 node = path->nodes[1];
7177                 if (node) {
7178                         if (last_ra_node != node->start) {
7179                                 readahead_tree_node_children(node);
7180                                 last_ra_node = node->start;
7181                         }
7182                 }
7183                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7184                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7185                         struct btrfs_dev_item *dev_item;
7186                         dev_item = btrfs_item_ptr(leaf, slot,
7187                                                   struct btrfs_dev_item);
7188                         ret = read_one_dev(leaf, dev_item);
7189                         if (ret)
7190                                 goto error;
7191                         total_dev++;
7192                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7193                         struct btrfs_chunk *chunk;
7194                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7195                         mutex_lock(&fs_info->chunk_mutex);
7196                         ret = read_one_chunk(&found_key, leaf, chunk);
7197                         mutex_unlock(&fs_info->chunk_mutex);
7198                         if (ret)
7199                                 goto error;
7200                 }
7201                 path->slots[0]++;
7202         }
7203
7204         /*
7205          * After loading chunk tree, we've got all device information,
7206          * do another round of validation checks.
7207          */
7208         if (total_dev != fs_info->fs_devices->total_devices) {
7209                 btrfs_err(fs_info,
7210            "super_num_devices %llu mismatch with num_devices %llu found here",
7211                           btrfs_super_num_devices(fs_info->super_copy),
7212                           total_dev);
7213                 ret = -EINVAL;
7214                 goto error;
7215         }
7216         if (btrfs_super_total_bytes(fs_info->super_copy) <
7217             fs_info->fs_devices->total_rw_bytes) {
7218                 btrfs_err(fs_info,
7219         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7220                           btrfs_super_total_bytes(fs_info->super_copy),
7221                           fs_info->fs_devices->total_rw_bytes);
7222                 ret = -EINVAL;
7223                 goto error;
7224         }
7225         ret = 0;
7226 error:
7227         mutex_unlock(&uuid_mutex);
7228
7229         btrfs_free_path(path);
7230         return ret;
7231 }
7232
7233 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7234 {
7235         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7236         struct btrfs_device *device;
7237
7238         fs_devices->fs_info = fs_info;
7239
7240         mutex_lock(&fs_devices->device_list_mutex);
7241         list_for_each_entry(device, &fs_devices->devices, dev_list)
7242                 device->fs_info = fs_info;
7243
7244         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7245                 list_for_each_entry(device, &seed_devs->devices, dev_list)
7246                         device->fs_info = fs_info;
7247
7248                 seed_devs->fs_info = fs_info;
7249         }
7250         mutex_unlock(&fs_devices->device_list_mutex);
7251 }
7252
7253 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7254                                  const struct btrfs_dev_stats_item *ptr,
7255                                  int index)
7256 {
7257         u64 val;
7258
7259         read_extent_buffer(eb, &val,
7260                            offsetof(struct btrfs_dev_stats_item, values) +
7261                             ((unsigned long)ptr) + (index * sizeof(u64)),
7262                            sizeof(val));
7263         return val;
7264 }
7265
7266 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7267                                       struct btrfs_dev_stats_item *ptr,
7268                                       int index, u64 val)
7269 {
7270         write_extent_buffer(eb, &val,
7271                             offsetof(struct btrfs_dev_stats_item, values) +
7272                              ((unsigned long)ptr) + (index * sizeof(u64)),
7273                             sizeof(val));
7274 }
7275
7276 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7277                                        struct btrfs_path *path)
7278 {
7279         struct btrfs_dev_stats_item *ptr;
7280         struct extent_buffer *eb;
7281         struct btrfs_key key;
7282         int item_size;
7283         int i, ret, slot;
7284
7285         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7286         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7287         key.offset = device->devid;
7288         ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7289         if (ret) {
7290                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7291                         btrfs_dev_stat_set(device, i, 0);
7292                 device->dev_stats_valid = 1;
7293                 btrfs_release_path(path);
7294                 return ret < 0 ? ret : 0;
7295         }
7296         slot = path->slots[0];
7297         eb = path->nodes[0];
7298         item_size = btrfs_item_size_nr(eb, slot);
7299
7300         ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7301
7302         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7303                 if (item_size >= (1 + i) * sizeof(__le64))
7304                         btrfs_dev_stat_set(device, i,
7305                                            btrfs_dev_stats_value(eb, ptr, i));
7306                 else
7307                         btrfs_dev_stat_set(device, i, 0);
7308         }
7309
7310         device->dev_stats_valid = 1;
7311         btrfs_dev_stat_print_on_load(device);
7312         btrfs_release_path(path);
7313
7314         return 0;
7315 }
7316
7317 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7318 {
7319         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7320         struct btrfs_device *device;
7321         struct btrfs_path *path = NULL;
7322         int ret = 0;
7323
7324         path = btrfs_alloc_path();
7325         if (!path)
7326                 return -ENOMEM;
7327
7328         mutex_lock(&fs_devices->device_list_mutex);
7329         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7330                 ret = btrfs_device_init_dev_stats(device, path);
7331                 if (ret)
7332                         goto out;
7333         }
7334         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7335                 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7336                         ret = btrfs_device_init_dev_stats(device, path);
7337                         if (ret)
7338                                 goto out;
7339                 }
7340         }
7341 out:
7342         mutex_unlock(&fs_devices->device_list_mutex);
7343
7344         btrfs_free_path(path);
7345         return ret;
7346 }
7347
7348 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7349                                 struct btrfs_device *device)
7350 {
7351         struct btrfs_fs_info *fs_info = trans->fs_info;
7352         struct btrfs_root *dev_root = fs_info->dev_root;
7353         struct btrfs_path *path;
7354         struct btrfs_key key;
7355         struct extent_buffer *eb;
7356         struct btrfs_dev_stats_item *ptr;
7357         int ret;
7358         int i;
7359
7360         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7361         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7362         key.offset = device->devid;
7363
7364         path = btrfs_alloc_path();
7365         if (!path)
7366                 return -ENOMEM;
7367         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7368         if (ret < 0) {
7369                 btrfs_warn_in_rcu(fs_info,
7370                         "error %d while searching for dev_stats item for device %s",
7371                               ret, rcu_str_deref(device->name));
7372                 goto out;
7373         }
7374
7375         if (ret == 0 &&
7376             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7377                 /* need to delete old one and insert a new one */
7378                 ret = btrfs_del_item(trans, dev_root, path);
7379                 if (ret != 0) {
7380                         btrfs_warn_in_rcu(fs_info,
7381                                 "delete too small dev_stats item for device %s failed %d",
7382                                       rcu_str_deref(device->name), ret);
7383                         goto out;
7384                 }
7385                 ret = 1;
7386         }
7387
7388         if (ret == 1) {
7389                 /* need to insert a new item */
7390                 btrfs_release_path(path);
7391                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7392                                               &key, sizeof(*ptr));
7393                 if (ret < 0) {
7394                         btrfs_warn_in_rcu(fs_info,
7395                                 "insert dev_stats item for device %s failed %d",
7396                                 rcu_str_deref(device->name), ret);
7397                         goto out;
7398                 }
7399         }
7400
7401         eb = path->nodes[0];
7402         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7403         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7404                 btrfs_set_dev_stats_value(eb, ptr, i,
7405                                           btrfs_dev_stat_read(device, i));
7406         btrfs_mark_buffer_dirty(eb);
7407
7408 out:
7409         btrfs_free_path(path);
7410         return ret;
7411 }
7412
7413 /*
7414  * called from commit_transaction. Writes all changed device stats to disk.
7415  */
7416 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7417 {
7418         struct btrfs_fs_info *fs_info = trans->fs_info;
7419         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7420         struct btrfs_device *device;
7421         int stats_cnt;
7422         int ret = 0;
7423
7424         mutex_lock(&fs_devices->device_list_mutex);
7425         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7426                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7427                 if (!device->dev_stats_valid || stats_cnt == 0)
7428                         continue;
7429
7430
7431                 /*
7432                  * There is a LOAD-LOAD control dependency between the value of
7433                  * dev_stats_ccnt and updating the on-disk values which requires
7434                  * reading the in-memory counters. Such control dependencies
7435                  * require explicit read memory barriers.
7436                  *
7437                  * This memory barriers pairs with smp_mb__before_atomic in
7438                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7439                  * barrier implied by atomic_xchg in
7440                  * btrfs_dev_stats_read_and_reset
7441                  */
7442                 smp_rmb();
7443
7444                 ret = update_dev_stat_item(trans, device);
7445                 if (!ret)
7446                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7447         }
7448         mutex_unlock(&fs_devices->device_list_mutex);
7449
7450         return ret;
7451 }
7452
7453 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7454 {
7455         btrfs_dev_stat_inc(dev, index);
7456         btrfs_dev_stat_print_on_error(dev);
7457 }
7458
7459 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7460 {
7461         if (!dev->dev_stats_valid)
7462                 return;
7463         btrfs_err_rl_in_rcu(dev->fs_info,
7464                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7465                            rcu_str_deref(dev->name),
7466                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7467                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7468                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7469                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7470                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7471 }
7472
7473 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7474 {
7475         int i;
7476
7477         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7478                 if (btrfs_dev_stat_read(dev, i) != 0)
7479                         break;
7480         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7481                 return; /* all values == 0, suppress message */
7482
7483         btrfs_info_in_rcu(dev->fs_info,
7484                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7485                rcu_str_deref(dev->name),
7486                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7487                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7488                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7489                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7490                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7491 }
7492
7493 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7494                         struct btrfs_ioctl_get_dev_stats *stats)
7495 {
7496         struct btrfs_device *dev;
7497         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7498         int i;
7499
7500         mutex_lock(&fs_devices->device_list_mutex);
7501         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7502         mutex_unlock(&fs_devices->device_list_mutex);
7503
7504         if (!dev) {
7505                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7506                 return -ENODEV;
7507         } else if (!dev->dev_stats_valid) {
7508                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7509                 return -ENODEV;
7510         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7511                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7512                         if (stats->nr_items > i)
7513                                 stats->values[i] =
7514                                         btrfs_dev_stat_read_and_reset(dev, i);
7515                         else
7516                                 btrfs_dev_stat_set(dev, i, 0);
7517                 }
7518                 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7519                            current->comm, task_pid_nr(current));
7520         } else {
7521                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7522                         if (stats->nr_items > i)
7523                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7524         }
7525         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7526                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7527         return 0;
7528 }
7529
7530 /*
7531  * Update the size and bytes used for each device where it changed.  This is
7532  * delayed since we would otherwise get errors while writing out the
7533  * superblocks.
7534  *
7535  * Must be invoked during transaction commit.
7536  */
7537 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7538 {
7539         struct btrfs_device *curr, *next;
7540
7541         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7542
7543         if (list_empty(&trans->dev_update_list))
7544                 return;
7545
7546         /*
7547          * We don't need the device_list_mutex here.  This list is owned by the
7548          * transaction and the transaction must complete before the device is
7549          * released.
7550          */
7551         mutex_lock(&trans->fs_info->chunk_mutex);
7552         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7553                                  post_commit_list) {
7554                 list_del_init(&curr->post_commit_list);
7555                 curr->commit_total_bytes = curr->disk_total_bytes;
7556                 curr->commit_bytes_used = curr->bytes_used;
7557         }
7558         mutex_unlock(&trans->fs_info->chunk_mutex);
7559 }
7560
7561 /*
7562  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7563  */
7564 int btrfs_bg_type_to_factor(u64 flags)
7565 {
7566         const int index = btrfs_bg_flags_to_raid_index(flags);
7567
7568         return btrfs_raid_array[index].ncopies;
7569 }
7570
7571
7572
7573 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7574                                  u64 chunk_offset, u64 devid,
7575                                  u64 physical_offset, u64 physical_len)
7576 {
7577         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7578         struct extent_map *em;
7579         struct map_lookup *map;
7580         struct btrfs_device *dev;
7581         u64 stripe_len;
7582         bool found = false;
7583         int ret = 0;
7584         int i;
7585
7586         read_lock(&em_tree->lock);
7587         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7588         read_unlock(&em_tree->lock);
7589
7590         if (!em) {
7591                 btrfs_err(fs_info,
7592 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7593                           physical_offset, devid);
7594                 ret = -EUCLEAN;
7595                 goto out;
7596         }
7597
7598         map = em->map_lookup;
7599         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7600         if (physical_len != stripe_len) {
7601                 btrfs_err(fs_info,
7602 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7603                           physical_offset, devid, em->start, physical_len,
7604                           stripe_len);
7605                 ret = -EUCLEAN;
7606                 goto out;
7607         }
7608
7609         for (i = 0; i < map->num_stripes; i++) {
7610                 if (map->stripes[i].dev->devid == devid &&
7611                     map->stripes[i].physical == physical_offset) {
7612                         found = true;
7613                         if (map->verified_stripes >= map->num_stripes) {
7614                                 btrfs_err(fs_info,
7615                                 "too many dev extents for chunk %llu found",
7616                                           em->start);
7617                                 ret = -EUCLEAN;
7618                                 goto out;
7619                         }
7620                         map->verified_stripes++;
7621                         break;
7622                 }
7623         }
7624         if (!found) {
7625                 btrfs_err(fs_info,
7626         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7627                         physical_offset, devid);
7628                 ret = -EUCLEAN;
7629         }
7630
7631         /* Make sure no dev extent is beyond device bondary */
7632         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7633         if (!dev) {
7634                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7635                 ret = -EUCLEAN;
7636                 goto out;
7637         }
7638
7639         if (physical_offset + physical_len > dev->disk_total_bytes) {
7640                 btrfs_err(fs_info,
7641 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7642                           devid, physical_offset, physical_len,
7643                           dev->disk_total_bytes);
7644                 ret = -EUCLEAN;
7645                 goto out;
7646         }
7647 out:
7648         free_extent_map(em);
7649         return ret;
7650 }
7651
7652 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7653 {
7654         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7655         struct extent_map *em;
7656         struct rb_node *node;
7657         int ret = 0;
7658
7659         read_lock(&em_tree->lock);
7660         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7661                 em = rb_entry(node, struct extent_map, rb_node);
7662                 if (em->map_lookup->num_stripes !=
7663                     em->map_lookup->verified_stripes) {
7664                         btrfs_err(fs_info,
7665                         "chunk %llu has missing dev extent, have %d expect %d",
7666                                   em->start, em->map_lookup->verified_stripes,
7667                                   em->map_lookup->num_stripes);
7668                         ret = -EUCLEAN;
7669                         goto out;
7670                 }
7671         }
7672 out:
7673         read_unlock(&em_tree->lock);
7674         return ret;
7675 }
7676
7677 /*
7678  * Ensure that all dev extents are mapped to correct chunk, otherwise
7679  * later chunk allocation/free would cause unexpected behavior.
7680  *
7681  * NOTE: This will iterate through the whole device tree, which should be of
7682  * the same size level as the chunk tree.  This slightly increases mount time.
7683  */
7684 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7685 {
7686         struct btrfs_path *path;
7687         struct btrfs_root *root = fs_info->dev_root;
7688         struct btrfs_key key;
7689         u64 prev_devid = 0;
7690         u64 prev_dev_ext_end = 0;
7691         int ret = 0;
7692
7693         /*
7694          * We don't have a dev_root because we mounted with ignorebadroots and
7695          * failed to load the root, so we want to skip the verification in this
7696          * case for sure.
7697          *
7698          * However if the dev root is fine, but the tree itself is corrupted
7699          * we'd still fail to mount.  This verification is only to make sure
7700          * writes can happen safely, so instead just bypass this check
7701          * completely in the case of IGNOREBADROOTS.
7702          */
7703         if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7704                 return 0;
7705
7706         key.objectid = 1;
7707         key.type = BTRFS_DEV_EXTENT_KEY;
7708         key.offset = 0;
7709
7710         path = btrfs_alloc_path();
7711         if (!path)
7712                 return -ENOMEM;
7713
7714         path->reada = READA_FORWARD;
7715         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7716         if (ret < 0)
7717                 goto out;
7718
7719         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7720                 ret = btrfs_next_item(root, path);
7721                 if (ret < 0)
7722                         goto out;
7723                 /* No dev extents at all? Not good */
7724                 if (ret > 0) {
7725                         ret = -EUCLEAN;
7726                         goto out;
7727                 }
7728         }
7729         while (1) {
7730                 struct extent_buffer *leaf = path->nodes[0];
7731                 struct btrfs_dev_extent *dext;
7732                 int slot = path->slots[0];
7733                 u64 chunk_offset;
7734                 u64 physical_offset;
7735                 u64 physical_len;
7736                 u64 devid;
7737
7738                 btrfs_item_key_to_cpu(leaf, &key, slot);
7739                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7740                         break;
7741                 devid = key.objectid;
7742                 physical_offset = key.offset;
7743
7744                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7745                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7746                 physical_len = btrfs_dev_extent_length(leaf, dext);
7747
7748                 /* Check if this dev extent overlaps with the previous one */
7749                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7750                         btrfs_err(fs_info,
7751 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7752                                   devid, physical_offset, prev_dev_ext_end);
7753                         ret = -EUCLEAN;
7754                         goto out;
7755                 }
7756
7757                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7758                                             physical_offset, physical_len);
7759                 if (ret < 0)
7760                         goto out;
7761                 prev_devid = devid;
7762                 prev_dev_ext_end = physical_offset + physical_len;
7763
7764                 ret = btrfs_next_item(root, path);
7765                 if (ret < 0)
7766                         goto out;
7767                 if (ret > 0) {
7768                         ret = 0;
7769                         break;
7770                 }
7771         }
7772
7773         /* Ensure all chunks have corresponding dev extents */
7774         ret = verify_chunk_dev_extent_mapping(fs_info);
7775 out:
7776         btrfs_free_path(path);
7777         return ret;
7778 }
7779
7780 /*
7781  * Check whether the given block group or device is pinned by any inode being
7782  * used as a swapfile.
7783  */
7784 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7785 {
7786         struct btrfs_swapfile_pin *sp;
7787         struct rb_node *node;
7788
7789         spin_lock(&fs_info->swapfile_pins_lock);
7790         node = fs_info->swapfile_pins.rb_node;
7791         while (node) {
7792                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7793                 if (ptr < sp->ptr)
7794                         node = node->rb_left;
7795                 else if (ptr > sp->ptr)
7796                         node = node->rb_right;
7797                 else
7798                         break;
7799         }
7800         spin_unlock(&fs_info->swapfile_pins_lock);
7801         return node != NULL;
7802 }