btrfs: update latest_dev when we create a sprout device
[platform/kernel/linux-rpi.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34 #include "discard.h"
35 #include "zoned.h"
36
37 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
38         [BTRFS_RAID_RAID10] = {
39                 .sub_stripes    = 2,
40                 .dev_stripes    = 1,
41                 .devs_max       = 0,    /* 0 == as many as possible */
42                 .devs_min       = 2,
43                 .tolerated_failures = 1,
44                 .devs_increment = 2,
45                 .ncopies        = 2,
46                 .nparity        = 0,
47                 .raid_name      = "raid10",
48                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
49                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
50         },
51         [BTRFS_RAID_RAID1] = {
52                 .sub_stripes    = 1,
53                 .dev_stripes    = 1,
54                 .devs_max       = 2,
55                 .devs_min       = 2,
56                 .tolerated_failures = 1,
57                 .devs_increment = 2,
58                 .ncopies        = 2,
59                 .nparity        = 0,
60                 .raid_name      = "raid1",
61                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
62                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
63         },
64         [BTRFS_RAID_RAID1C3] = {
65                 .sub_stripes    = 1,
66                 .dev_stripes    = 1,
67                 .devs_max       = 3,
68                 .devs_min       = 3,
69                 .tolerated_failures = 2,
70                 .devs_increment = 3,
71                 .ncopies        = 3,
72                 .nparity        = 0,
73                 .raid_name      = "raid1c3",
74                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
75                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
76         },
77         [BTRFS_RAID_RAID1C4] = {
78                 .sub_stripes    = 1,
79                 .dev_stripes    = 1,
80                 .devs_max       = 4,
81                 .devs_min       = 4,
82                 .tolerated_failures = 3,
83                 .devs_increment = 4,
84                 .ncopies        = 4,
85                 .nparity        = 0,
86                 .raid_name      = "raid1c4",
87                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
88                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
89         },
90         [BTRFS_RAID_DUP] = {
91                 .sub_stripes    = 1,
92                 .dev_stripes    = 2,
93                 .devs_max       = 1,
94                 .devs_min       = 1,
95                 .tolerated_failures = 0,
96                 .devs_increment = 1,
97                 .ncopies        = 2,
98                 .nparity        = 0,
99                 .raid_name      = "dup",
100                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
101                 .mindev_error   = 0,
102         },
103         [BTRFS_RAID_RAID0] = {
104                 .sub_stripes    = 1,
105                 .dev_stripes    = 1,
106                 .devs_max       = 0,
107                 .devs_min       = 1,
108                 .tolerated_failures = 0,
109                 .devs_increment = 1,
110                 .ncopies        = 1,
111                 .nparity        = 0,
112                 .raid_name      = "raid0",
113                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
114                 .mindev_error   = 0,
115         },
116         [BTRFS_RAID_SINGLE] = {
117                 .sub_stripes    = 1,
118                 .dev_stripes    = 1,
119                 .devs_max       = 1,
120                 .devs_min       = 1,
121                 .tolerated_failures = 0,
122                 .devs_increment = 1,
123                 .ncopies        = 1,
124                 .nparity        = 0,
125                 .raid_name      = "single",
126                 .bg_flag        = 0,
127                 .mindev_error   = 0,
128         },
129         [BTRFS_RAID_RAID5] = {
130                 .sub_stripes    = 1,
131                 .dev_stripes    = 1,
132                 .devs_max       = 0,
133                 .devs_min       = 2,
134                 .tolerated_failures = 1,
135                 .devs_increment = 1,
136                 .ncopies        = 1,
137                 .nparity        = 1,
138                 .raid_name      = "raid5",
139                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
140                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
141         },
142         [BTRFS_RAID_RAID6] = {
143                 .sub_stripes    = 1,
144                 .dev_stripes    = 1,
145                 .devs_max       = 0,
146                 .devs_min       = 3,
147                 .tolerated_failures = 2,
148                 .devs_increment = 1,
149                 .ncopies        = 1,
150                 .nparity        = 2,
151                 .raid_name      = "raid6",
152                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
153                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
154         },
155 };
156
157 /*
158  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
159  * can be used as index to access btrfs_raid_array[].
160  */
161 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
162 {
163         if (flags & BTRFS_BLOCK_GROUP_RAID10)
164                 return BTRFS_RAID_RAID10;
165         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
166                 return BTRFS_RAID_RAID1;
167         else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
168                 return BTRFS_RAID_RAID1C3;
169         else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
170                 return BTRFS_RAID_RAID1C4;
171         else if (flags & BTRFS_BLOCK_GROUP_DUP)
172                 return BTRFS_RAID_DUP;
173         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
174                 return BTRFS_RAID_RAID0;
175         else if (flags & BTRFS_BLOCK_GROUP_RAID5)
176                 return BTRFS_RAID_RAID5;
177         else if (flags & BTRFS_BLOCK_GROUP_RAID6)
178                 return BTRFS_RAID_RAID6;
179
180         return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
181 }
182
183 const char *btrfs_bg_type_to_raid_name(u64 flags)
184 {
185         const int index = btrfs_bg_flags_to_raid_index(flags);
186
187         if (index >= BTRFS_NR_RAID_TYPES)
188                 return NULL;
189
190         return btrfs_raid_array[index].raid_name;
191 }
192
193 /*
194  * Fill @buf with textual description of @bg_flags, no more than @size_buf
195  * bytes including terminating null byte.
196  */
197 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
198 {
199         int i;
200         int ret;
201         char *bp = buf;
202         u64 flags = bg_flags;
203         u32 size_bp = size_buf;
204
205         if (!flags) {
206                 strcpy(bp, "NONE");
207                 return;
208         }
209
210 #define DESCRIBE_FLAG(flag, desc)                                               \
211         do {                                                            \
212                 if (flags & (flag)) {                                   \
213                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
214                         if (ret < 0 || ret >= size_bp)                  \
215                                 goto out_overflow;                      \
216                         size_bp -= ret;                                 \
217                         bp += ret;                                      \
218                         flags &= ~(flag);                               \
219                 }                                                       \
220         } while (0)
221
222         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
223         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
224         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
225
226         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
227         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
228                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
229                               btrfs_raid_array[i].raid_name);
230 #undef DESCRIBE_FLAG
231
232         if (flags) {
233                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
234                 size_bp -= ret;
235         }
236
237         if (size_bp < size_buf)
238                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
239
240         /*
241          * The text is trimmed, it's up to the caller to provide sufficiently
242          * large buffer
243          */
244 out_overflow:;
245 }
246
247 static int init_first_rw_device(struct btrfs_trans_handle *trans);
248 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
249 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
252                              enum btrfs_map_op op,
253                              u64 logical, u64 *length,
254                              struct btrfs_bio **bbio_ret,
255                              int mirror_num, int need_raid_map);
256
257 /*
258  * Device locking
259  * ==============
260  *
261  * There are several mutexes that protect manipulation of devices and low-level
262  * structures like chunks but not block groups, extents or files
263  *
264  * uuid_mutex (global lock)
265  * ------------------------
266  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
267  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
268  * device) or requested by the device= mount option
269  *
270  * the mutex can be very coarse and can cover long-running operations
271  *
272  * protects: updates to fs_devices counters like missing devices, rw devices,
273  * seeding, structure cloning, opening/closing devices at mount/umount time
274  *
275  * global::fs_devs - add, remove, updates to the global list
276  *
277  * does not protect: manipulation of the fs_devices::devices list in general
278  * but in mount context it could be used to exclude list modifications by eg.
279  * scan ioctl
280  *
281  * btrfs_device::name - renames (write side), read is RCU
282  *
283  * fs_devices::device_list_mutex (per-fs, with RCU)
284  * ------------------------------------------------
285  * protects updates to fs_devices::devices, ie. adding and deleting
286  *
287  * simple list traversal with read-only actions can be done with RCU protection
288  *
289  * may be used to exclude some operations from running concurrently without any
290  * modifications to the list (see write_all_supers)
291  *
292  * Is not required at mount and close times, because our device list is
293  * protected by the uuid_mutex at that point.
294  *
295  * balance_mutex
296  * -------------
297  * protects balance structures (status, state) and context accessed from
298  * several places (internally, ioctl)
299  *
300  * chunk_mutex
301  * -----------
302  * protects chunks, adding or removing during allocation, trim or when a new
303  * device is added/removed. Additionally it also protects post_commit_list of
304  * individual devices, since they can be added to the transaction's
305  * post_commit_list only with chunk_mutex held.
306  *
307  * cleaner_mutex
308  * -------------
309  * a big lock that is held by the cleaner thread and prevents running subvolume
310  * cleaning together with relocation or delayed iputs
311  *
312  *
313  * Lock nesting
314  * ============
315  *
316  * uuid_mutex
317  *   device_list_mutex
318  *     chunk_mutex
319  *   balance_mutex
320  *
321  *
322  * Exclusive operations
323  * ====================
324  *
325  * Maintains the exclusivity of the following operations that apply to the
326  * whole filesystem and cannot run in parallel.
327  *
328  * - Balance (*)
329  * - Device add
330  * - Device remove
331  * - Device replace (*)
332  * - Resize
333  *
334  * The device operations (as above) can be in one of the following states:
335  *
336  * - Running state
337  * - Paused state
338  * - Completed state
339  *
340  * Only device operations marked with (*) can go into the Paused state for the
341  * following reasons:
342  *
343  * - ioctl (only Balance can be Paused through ioctl)
344  * - filesystem remounted as read-only
345  * - filesystem unmounted and mounted as read-only
346  * - system power-cycle and filesystem mounted as read-only
347  * - filesystem or device errors leading to forced read-only
348  *
349  * The status of exclusive operation is set and cleared atomically.
350  * During the course of Paused state, fs_info::exclusive_operation remains set.
351  * A device operation in Paused or Running state can be canceled or resumed
352  * either by ioctl (Balance only) or when remounted as read-write.
353  * The exclusive status is cleared when the device operation is canceled or
354  * completed.
355  */
356
357 DEFINE_MUTEX(uuid_mutex);
358 static LIST_HEAD(fs_uuids);
359 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
360 {
361         return &fs_uuids;
362 }
363
364 /*
365  * alloc_fs_devices - allocate struct btrfs_fs_devices
366  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
367  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
368  *
369  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
370  * The returned struct is not linked onto any lists and can be destroyed with
371  * kfree() right away.
372  */
373 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
374                                                  const u8 *metadata_fsid)
375 {
376         struct btrfs_fs_devices *fs_devs;
377
378         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
379         if (!fs_devs)
380                 return ERR_PTR(-ENOMEM);
381
382         mutex_init(&fs_devs->device_list_mutex);
383
384         INIT_LIST_HEAD(&fs_devs->devices);
385         INIT_LIST_HEAD(&fs_devs->alloc_list);
386         INIT_LIST_HEAD(&fs_devs->fs_list);
387         INIT_LIST_HEAD(&fs_devs->seed_list);
388         if (fsid)
389                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
390
391         if (metadata_fsid)
392                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
393         else if (fsid)
394                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
395
396         return fs_devs;
397 }
398
399 void btrfs_free_device(struct btrfs_device *device)
400 {
401         WARN_ON(!list_empty(&device->post_commit_list));
402         rcu_string_free(device->name);
403         extent_io_tree_release(&device->alloc_state);
404         bio_put(device->flush_bio);
405         btrfs_destroy_dev_zone_info(device);
406         kfree(device);
407 }
408
409 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
410 {
411         struct btrfs_device *device;
412         WARN_ON(fs_devices->opened);
413         while (!list_empty(&fs_devices->devices)) {
414                 device = list_entry(fs_devices->devices.next,
415                                     struct btrfs_device, dev_list);
416                 list_del(&device->dev_list);
417                 btrfs_free_device(device);
418         }
419         kfree(fs_devices);
420 }
421
422 void __exit btrfs_cleanup_fs_uuids(void)
423 {
424         struct btrfs_fs_devices *fs_devices;
425
426         while (!list_empty(&fs_uuids)) {
427                 fs_devices = list_entry(fs_uuids.next,
428                                         struct btrfs_fs_devices, fs_list);
429                 list_del(&fs_devices->fs_list);
430                 free_fs_devices(fs_devices);
431         }
432 }
433
434 static noinline struct btrfs_fs_devices *find_fsid(
435                 const u8 *fsid, const u8 *metadata_fsid)
436 {
437         struct btrfs_fs_devices *fs_devices;
438
439         ASSERT(fsid);
440
441         /* Handle non-split brain cases */
442         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
443                 if (metadata_fsid) {
444                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
445                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
446                                       BTRFS_FSID_SIZE) == 0)
447                                 return fs_devices;
448                 } else {
449                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
450                                 return fs_devices;
451                 }
452         }
453         return NULL;
454 }
455
456 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
457                                 struct btrfs_super_block *disk_super)
458 {
459
460         struct btrfs_fs_devices *fs_devices;
461
462         /*
463          * Handle scanned device having completed its fsid change but
464          * belonging to a fs_devices that was created by first scanning
465          * a device which didn't have its fsid/metadata_uuid changed
466          * at all and the CHANGING_FSID_V2 flag set.
467          */
468         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
469                 if (fs_devices->fsid_change &&
470                     memcmp(disk_super->metadata_uuid, fs_devices->fsid,
471                            BTRFS_FSID_SIZE) == 0 &&
472                     memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
473                            BTRFS_FSID_SIZE) == 0) {
474                         return fs_devices;
475                 }
476         }
477         /*
478          * Handle scanned device having completed its fsid change but
479          * belonging to a fs_devices that was created by a device that
480          * has an outdated pair of fsid/metadata_uuid and
481          * CHANGING_FSID_V2 flag set.
482          */
483         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
484                 if (fs_devices->fsid_change &&
485                     memcmp(fs_devices->metadata_uuid,
486                            fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
487                     memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
488                            BTRFS_FSID_SIZE) == 0) {
489                         return fs_devices;
490                 }
491         }
492
493         return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
494 }
495
496
497 static int
498 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
499                       int flush, struct block_device **bdev,
500                       struct btrfs_super_block **disk_super)
501 {
502         int ret;
503
504         *bdev = blkdev_get_by_path(device_path, flags, holder);
505
506         if (IS_ERR(*bdev)) {
507                 ret = PTR_ERR(*bdev);
508                 goto error;
509         }
510
511         if (flush)
512                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
513         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
514         if (ret) {
515                 blkdev_put(*bdev, flags);
516                 goto error;
517         }
518         invalidate_bdev(*bdev);
519         *disk_super = btrfs_read_dev_super(*bdev);
520         if (IS_ERR(*disk_super)) {
521                 ret = PTR_ERR(*disk_super);
522                 blkdev_put(*bdev, flags);
523                 goto error;
524         }
525
526         return 0;
527
528 error:
529         *bdev = NULL;
530         return ret;
531 }
532
533 static bool device_path_matched(const char *path, struct btrfs_device *device)
534 {
535         int found;
536
537         rcu_read_lock();
538         found = strcmp(rcu_str_deref(device->name), path);
539         rcu_read_unlock();
540
541         return found == 0;
542 }
543
544 /*
545  *  Search and remove all stale (devices which are not mounted) devices.
546  *  When both inputs are NULL, it will search and release all stale devices.
547  *  path:       Optional. When provided will it release all unmounted devices
548  *              matching this path only.
549  *  skip_dev:   Optional. Will skip this device when searching for the stale
550  *              devices.
551  *  Return:     0 for success or if @path is NULL.
552  *              -EBUSY if @path is a mounted device.
553  *              -ENOENT if @path does not match any device in the list.
554  */
555 static int btrfs_free_stale_devices(const char *path,
556                                      struct btrfs_device *skip_device)
557 {
558         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
559         struct btrfs_device *device, *tmp_device;
560         int ret = 0;
561
562         lockdep_assert_held(&uuid_mutex);
563
564         if (path)
565                 ret = -ENOENT;
566
567         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
568
569                 mutex_lock(&fs_devices->device_list_mutex);
570                 list_for_each_entry_safe(device, tmp_device,
571                                          &fs_devices->devices, dev_list) {
572                         if (skip_device && skip_device == device)
573                                 continue;
574                         if (path && !device->name)
575                                 continue;
576                         if (path && !device_path_matched(path, device))
577                                 continue;
578                         if (fs_devices->opened) {
579                                 /* for an already deleted device return 0 */
580                                 if (path && ret != 0)
581                                         ret = -EBUSY;
582                                 break;
583                         }
584
585                         /* delete the stale device */
586                         fs_devices->num_devices--;
587                         list_del(&device->dev_list);
588                         btrfs_free_device(device);
589
590                         ret = 0;
591                 }
592                 mutex_unlock(&fs_devices->device_list_mutex);
593
594                 if (fs_devices->num_devices == 0) {
595                         btrfs_sysfs_remove_fsid(fs_devices);
596                         list_del(&fs_devices->fs_list);
597                         free_fs_devices(fs_devices);
598                 }
599         }
600
601         return ret;
602 }
603
604 /*
605  * This is only used on mount, and we are protected from competing things
606  * messing with our fs_devices by the uuid_mutex, thus we do not need the
607  * fs_devices->device_list_mutex here.
608  */
609 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
610                         struct btrfs_device *device, fmode_t flags,
611                         void *holder)
612 {
613         struct request_queue *q;
614         struct block_device *bdev;
615         struct btrfs_super_block *disk_super;
616         u64 devid;
617         int ret;
618
619         if (device->bdev)
620                 return -EINVAL;
621         if (!device->name)
622                 return -EINVAL;
623
624         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
625                                     &bdev, &disk_super);
626         if (ret)
627                 return ret;
628
629         devid = btrfs_stack_device_id(&disk_super->dev_item);
630         if (devid != device->devid)
631                 goto error_free_page;
632
633         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
634                 goto error_free_page;
635
636         device->generation = btrfs_super_generation(disk_super);
637
638         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
639                 if (btrfs_super_incompat_flags(disk_super) &
640                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
641                         pr_err(
642                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
643                         goto error_free_page;
644                 }
645
646                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
647                 fs_devices->seeding = true;
648         } else {
649                 if (bdev_read_only(bdev))
650                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
651                 else
652                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653         }
654
655         q = bdev_get_queue(bdev);
656         if (!blk_queue_nonrot(q))
657                 fs_devices->rotating = true;
658
659         device->bdev = bdev;
660         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
661         device->mode = flags;
662
663         fs_devices->open_devices++;
664         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
665             device->devid != BTRFS_DEV_REPLACE_DEVID) {
666                 fs_devices->rw_devices++;
667                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
668         }
669         btrfs_release_disk_super(disk_super);
670
671         return 0;
672
673 error_free_page:
674         btrfs_release_disk_super(disk_super);
675         blkdev_put(bdev, flags);
676
677         return -EINVAL;
678 }
679
680 /*
681  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
682  * being created with a disk that has already completed its fsid change. Such
683  * disk can belong to an fs which has its FSID changed or to one which doesn't.
684  * Handle both cases here.
685  */
686 static struct btrfs_fs_devices *find_fsid_inprogress(
687                                         struct btrfs_super_block *disk_super)
688 {
689         struct btrfs_fs_devices *fs_devices;
690
691         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
692                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
693                            BTRFS_FSID_SIZE) != 0 &&
694                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
695                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
696                         return fs_devices;
697                 }
698         }
699
700         return find_fsid(disk_super->fsid, NULL);
701 }
702
703
704 static struct btrfs_fs_devices *find_fsid_changed(
705                                         struct btrfs_super_block *disk_super)
706 {
707         struct btrfs_fs_devices *fs_devices;
708
709         /*
710          * Handles the case where scanned device is part of an fs that had
711          * multiple successful changes of FSID but currently device didn't
712          * observe it. Meaning our fsid will be different than theirs. We need
713          * to handle two subcases :
714          *  1 - The fs still continues to have different METADATA/FSID uuids.
715          *  2 - The fs is switched back to its original FSID (METADATA/FSID
716          *  are equal).
717          */
718         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
719                 /* Changed UUIDs */
720                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
721                            BTRFS_FSID_SIZE) != 0 &&
722                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
723                            BTRFS_FSID_SIZE) == 0 &&
724                     memcmp(fs_devices->fsid, disk_super->fsid,
725                            BTRFS_FSID_SIZE) != 0)
726                         return fs_devices;
727
728                 /* Unchanged UUIDs */
729                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
730                            BTRFS_FSID_SIZE) == 0 &&
731                     memcmp(fs_devices->fsid, disk_super->metadata_uuid,
732                            BTRFS_FSID_SIZE) == 0)
733                         return fs_devices;
734         }
735
736         return NULL;
737 }
738
739 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
740                                 struct btrfs_super_block *disk_super)
741 {
742         struct btrfs_fs_devices *fs_devices;
743
744         /*
745          * Handle the case where the scanned device is part of an fs whose last
746          * metadata UUID change reverted it to the original FSID. At the same
747          * time * fs_devices was first created by another constitutent device
748          * which didn't fully observe the operation. This results in an
749          * btrfs_fs_devices created with metadata/fsid different AND
750          * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
751          * fs_devices equal to the FSID of the disk.
752          */
753         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
754                 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
755                            BTRFS_FSID_SIZE) != 0 &&
756                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
757                            BTRFS_FSID_SIZE) == 0 &&
758                     fs_devices->fsid_change)
759                         return fs_devices;
760         }
761
762         return NULL;
763 }
764 /*
765  * Add new device to list of registered devices
766  *
767  * Returns:
768  * device pointer which was just added or updated when successful
769  * error pointer when failed
770  */
771 static noinline struct btrfs_device *device_list_add(const char *path,
772                            struct btrfs_super_block *disk_super,
773                            bool *new_device_added)
774 {
775         struct btrfs_device *device;
776         struct btrfs_fs_devices *fs_devices = NULL;
777         struct rcu_string *name;
778         u64 found_transid = btrfs_super_generation(disk_super);
779         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
780         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
781                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
782         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
783                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
784
785         if (fsid_change_in_progress) {
786                 if (!has_metadata_uuid)
787                         fs_devices = find_fsid_inprogress(disk_super);
788                 else
789                         fs_devices = find_fsid_changed(disk_super);
790         } else if (has_metadata_uuid) {
791                 fs_devices = find_fsid_with_metadata_uuid(disk_super);
792         } else {
793                 fs_devices = find_fsid_reverted_metadata(disk_super);
794                 if (!fs_devices)
795                         fs_devices = find_fsid(disk_super->fsid, NULL);
796         }
797
798
799         if (!fs_devices) {
800                 if (has_metadata_uuid)
801                         fs_devices = alloc_fs_devices(disk_super->fsid,
802                                                       disk_super->metadata_uuid);
803                 else
804                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
805
806                 if (IS_ERR(fs_devices))
807                         return ERR_CAST(fs_devices);
808
809                 fs_devices->fsid_change = fsid_change_in_progress;
810
811                 mutex_lock(&fs_devices->device_list_mutex);
812                 list_add(&fs_devices->fs_list, &fs_uuids);
813
814                 device = NULL;
815         } else {
816                 mutex_lock(&fs_devices->device_list_mutex);
817                 device = btrfs_find_device(fs_devices, devid,
818                                 disk_super->dev_item.uuid, NULL);
819
820                 /*
821                  * If this disk has been pulled into an fs devices created by
822                  * a device which had the CHANGING_FSID_V2 flag then replace the
823                  * metadata_uuid/fsid values of the fs_devices.
824                  */
825                 if (fs_devices->fsid_change &&
826                     found_transid > fs_devices->latest_generation) {
827                         memcpy(fs_devices->fsid, disk_super->fsid,
828                                         BTRFS_FSID_SIZE);
829
830                         if (has_metadata_uuid)
831                                 memcpy(fs_devices->metadata_uuid,
832                                        disk_super->metadata_uuid,
833                                        BTRFS_FSID_SIZE);
834                         else
835                                 memcpy(fs_devices->metadata_uuid,
836                                        disk_super->fsid, BTRFS_FSID_SIZE);
837
838                         fs_devices->fsid_change = false;
839                 }
840         }
841
842         if (!device) {
843                 if (fs_devices->opened) {
844                         mutex_unlock(&fs_devices->device_list_mutex);
845                         return ERR_PTR(-EBUSY);
846                 }
847
848                 device = btrfs_alloc_device(NULL, &devid,
849                                             disk_super->dev_item.uuid);
850                 if (IS_ERR(device)) {
851                         mutex_unlock(&fs_devices->device_list_mutex);
852                         /* we can safely leave the fs_devices entry around */
853                         return device;
854                 }
855
856                 name = rcu_string_strdup(path, GFP_NOFS);
857                 if (!name) {
858                         btrfs_free_device(device);
859                         mutex_unlock(&fs_devices->device_list_mutex);
860                         return ERR_PTR(-ENOMEM);
861                 }
862                 rcu_assign_pointer(device->name, name);
863
864                 list_add_rcu(&device->dev_list, &fs_devices->devices);
865                 fs_devices->num_devices++;
866
867                 device->fs_devices = fs_devices;
868                 *new_device_added = true;
869
870                 if (disk_super->label[0])
871                         pr_info(
872         "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
873                                 disk_super->label, devid, found_transid, path,
874                                 current->comm, task_pid_nr(current));
875                 else
876                         pr_info(
877         "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
878                                 disk_super->fsid, devid, found_transid, path,
879                                 current->comm, task_pid_nr(current));
880
881         } else if (!device->name || strcmp(device->name->str, path)) {
882                 /*
883                  * When FS is already mounted.
884                  * 1. If you are here and if the device->name is NULL that
885                  *    means this device was missing at time of FS mount.
886                  * 2. If you are here and if the device->name is different
887                  *    from 'path' that means either
888                  *      a. The same device disappeared and reappeared with
889                  *         different name. or
890                  *      b. The missing-disk-which-was-replaced, has
891                  *         reappeared now.
892                  *
893                  * We must allow 1 and 2a above. But 2b would be a spurious
894                  * and unintentional.
895                  *
896                  * Further in case of 1 and 2a above, the disk at 'path'
897                  * would have missed some transaction when it was away and
898                  * in case of 2a the stale bdev has to be updated as well.
899                  * 2b must not be allowed at all time.
900                  */
901
902                 /*
903                  * For now, we do allow update to btrfs_fs_device through the
904                  * btrfs dev scan cli after FS has been mounted.  We're still
905                  * tracking a problem where systems fail mount by subvolume id
906                  * when we reject replacement on a mounted FS.
907                  */
908                 if (!fs_devices->opened && found_transid < device->generation) {
909                         /*
910                          * That is if the FS is _not_ mounted and if you
911                          * are here, that means there is more than one
912                          * disk with same uuid and devid.We keep the one
913                          * with larger generation number or the last-in if
914                          * generation are equal.
915                          */
916                         mutex_unlock(&fs_devices->device_list_mutex);
917                         return ERR_PTR(-EEXIST);
918                 }
919
920                 /*
921                  * We are going to replace the device path for a given devid,
922                  * make sure it's the same device if the device is mounted
923                  */
924                 if (device->bdev) {
925                         int error;
926                         dev_t path_dev;
927
928                         error = lookup_bdev(path, &path_dev);
929                         if (error) {
930                                 mutex_unlock(&fs_devices->device_list_mutex);
931                                 return ERR_PTR(error);
932                         }
933
934                         if (device->bdev->bd_dev != path_dev) {
935                                 mutex_unlock(&fs_devices->device_list_mutex);
936                                 /*
937                                  * device->fs_info may not be reliable here, so
938                                  * pass in a NULL instead. This avoids a
939                                  * possible use-after-free when the fs_info and
940                                  * fs_info->sb are already torn down.
941                                  */
942                                 btrfs_warn_in_rcu(NULL,
943         "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
944                                                   path, devid, found_transid,
945                                                   current->comm,
946                                                   task_pid_nr(current));
947                                 return ERR_PTR(-EEXIST);
948                         }
949                         btrfs_info_in_rcu(device->fs_info,
950         "devid %llu device path %s changed to %s scanned by %s (%d)",
951                                           devid, rcu_str_deref(device->name),
952                                           path, current->comm,
953                                           task_pid_nr(current));
954                 }
955
956                 name = rcu_string_strdup(path, GFP_NOFS);
957                 if (!name) {
958                         mutex_unlock(&fs_devices->device_list_mutex);
959                         return ERR_PTR(-ENOMEM);
960                 }
961                 rcu_string_free(device->name);
962                 rcu_assign_pointer(device->name, name);
963                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
964                         fs_devices->missing_devices--;
965                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
966                 }
967         }
968
969         /*
970          * Unmount does not free the btrfs_device struct but would zero
971          * generation along with most of the other members. So just update
972          * it back. We need it to pick the disk with largest generation
973          * (as above).
974          */
975         if (!fs_devices->opened) {
976                 device->generation = found_transid;
977                 fs_devices->latest_generation = max_t(u64, found_transid,
978                                                 fs_devices->latest_generation);
979         }
980
981         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
982
983         mutex_unlock(&fs_devices->device_list_mutex);
984         return device;
985 }
986
987 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
988 {
989         struct btrfs_fs_devices *fs_devices;
990         struct btrfs_device *device;
991         struct btrfs_device *orig_dev;
992         int ret = 0;
993
994         lockdep_assert_held(&uuid_mutex);
995
996         fs_devices = alloc_fs_devices(orig->fsid, NULL);
997         if (IS_ERR(fs_devices))
998                 return fs_devices;
999
1000         fs_devices->total_devices = orig->total_devices;
1001
1002         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1003                 struct rcu_string *name;
1004
1005                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1006                                             orig_dev->uuid);
1007                 if (IS_ERR(device)) {
1008                         ret = PTR_ERR(device);
1009                         goto error;
1010                 }
1011
1012                 /*
1013                  * This is ok to do without rcu read locked because we hold the
1014                  * uuid mutex so nothing we touch in here is going to disappear.
1015                  */
1016                 if (orig_dev->name) {
1017                         name = rcu_string_strdup(orig_dev->name->str,
1018                                         GFP_KERNEL);
1019                         if (!name) {
1020                                 btrfs_free_device(device);
1021                                 ret = -ENOMEM;
1022                                 goto error;
1023                         }
1024                         rcu_assign_pointer(device->name, name);
1025                 }
1026
1027                 list_add(&device->dev_list, &fs_devices->devices);
1028                 device->fs_devices = fs_devices;
1029                 fs_devices->num_devices++;
1030         }
1031         return fs_devices;
1032 error:
1033         free_fs_devices(fs_devices);
1034         return ERR_PTR(ret);
1035 }
1036
1037 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1038                                       struct btrfs_device **latest_dev)
1039 {
1040         struct btrfs_device *device, *next;
1041
1042         /* This is the initialized path, it is safe to release the devices. */
1043         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1044                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1045                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1046                                       &device->dev_state) &&
1047                             !test_bit(BTRFS_DEV_STATE_MISSING,
1048                                       &device->dev_state) &&
1049                             (!*latest_dev ||
1050                              device->generation > (*latest_dev)->generation)) {
1051                                 *latest_dev = device;
1052                         }
1053                         continue;
1054                 }
1055
1056                 /*
1057                  * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1058                  * in btrfs_init_dev_replace() so just continue.
1059                  */
1060                 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1061                         continue;
1062
1063                 if (device->bdev) {
1064                         blkdev_put(device->bdev, device->mode);
1065                         device->bdev = NULL;
1066                         fs_devices->open_devices--;
1067                 }
1068                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1069                         list_del_init(&device->dev_alloc_list);
1070                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1071                         fs_devices->rw_devices--;
1072                 }
1073                 list_del_init(&device->dev_list);
1074                 fs_devices->num_devices--;
1075                 btrfs_free_device(device);
1076         }
1077
1078 }
1079
1080 /*
1081  * After we have read the system tree and know devids belonging to this
1082  * filesystem, remove the device which does not belong there.
1083  */
1084 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1085 {
1086         struct btrfs_device *latest_dev = NULL;
1087         struct btrfs_fs_devices *seed_dev;
1088
1089         mutex_lock(&uuid_mutex);
1090         __btrfs_free_extra_devids(fs_devices, &latest_dev);
1091
1092         list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1093                 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1094
1095         fs_devices->latest_dev = latest_dev;
1096
1097         mutex_unlock(&uuid_mutex);
1098 }
1099
1100 static void btrfs_close_bdev(struct btrfs_device *device)
1101 {
1102         if (!device->bdev)
1103                 return;
1104
1105         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1106                 sync_blockdev(device->bdev);
1107                 invalidate_bdev(device->bdev);
1108         }
1109
1110         blkdev_put(device->bdev, device->mode);
1111 }
1112
1113 static void btrfs_close_one_device(struct btrfs_device *device)
1114 {
1115         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1116
1117         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1118             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1119                 list_del_init(&device->dev_alloc_list);
1120                 fs_devices->rw_devices--;
1121         }
1122
1123         if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1124                 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1125
1126         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1127                 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1128                 fs_devices->missing_devices--;
1129         }
1130
1131         btrfs_close_bdev(device);
1132         if (device->bdev) {
1133                 fs_devices->open_devices--;
1134                 device->bdev = NULL;
1135         }
1136         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1137         btrfs_destroy_dev_zone_info(device);
1138
1139         device->fs_info = NULL;
1140         atomic_set(&device->dev_stats_ccnt, 0);
1141         extent_io_tree_release(&device->alloc_state);
1142
1143         /*
1144          * Reset the flush error record. We might have a transient flush error
1145          * in this mount, and if so we aborted the current transaction and set
1146          * the fs to an error state, guaranteeing no super blocks can be further
1147          * committed. However that error might be transient and if we unmount the
1148          * filesystem and mount it again, we should allow the mount to succeed
1149          * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1150          * filesystem again we still get flush errors, then we will again abort
1151          * any transaction and set the error state, guaranteeing no commits of
1152          * unsafe super blocks.
1153          */
1154         device->last_flush_error = 0;
1155
1156         /* Verify the device is back in a pristine state  */
1157         ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1158         ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1159         ASSERT(list_empty(&device->dev_alloc_list));
1160         ASSERT(list_empty(&device->post_commit_list));
1161         ASSERT(atomic_read(&device->reada_in_flight) == 0);
1162 }
1163
1164 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1165 {
1166         struct btrfs_device *device, *tmp;
1167
1168         lockdep_assert_held(&uuid_mutex);
1169
1170         if (--fs_devices->opened > 0)
1171                 return;
1172
1173         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1174                 btrfs_close_one_device(device);
1175
1176         WARN_ON(fs_devices->open_devices);
1177         WARN_ON(fs_devices->rw_devices);
1178         fs_devices->opened = 0;
1179         fs_devices->seeding = false;
1180         fs_devices->fs_info = NULL;
1181 }
1182
1183 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1184 {
1185         LIST_HEAD(list);
1186         struct btrfs_fs_devices *tmp;
1187
1188         mutex_lock(&uuid_mutex);
1189         close_fs_devices(fs_devices);
1190         if (!fs_devices->opened)
1191                 list_splice_init(&fs_devices->seed_list, &list);
1192
1193         list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1194                 close_fs_devices(fs_devices);
1195                 list_del(&fs_devices->seed_list);
1196                 free_fs_devices(fs_devices);
1197         }
1198         mutex_unlock(&uuid_mutex);
1199 }
1200
1201 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1202                                 fmode_t flags, void *holder)
1203 {
1204         struct btrfs_device *device;
1205         struct btrfs_device *latest_dev = NULL;
1206         struct btrfs_device *tmp_device;
1207
1208         flags |= FMODE_EXCL;
1209
1210         list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1211                                  dev_list) {
1212                 int ret;
1213
1214                 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1215                 if (ret == 0 &&
1216                     (!latest_dev || device->generation > latest_dev->generation)) {
1217                         latest_dev = device;
1218                 } else if (ret == -ENODATA) {
1219                         fs_devices->num_devices--;
1220                         list_del(&device->dev_list);
1221                         btrfs_free_device(device);
1222                 }
1223         }
1224         if (fs_devices->open_devices == 0)
1225                 return -EINVAL;
1226
1227         fs_devices->opened = 1;
1228         fs_devices->latest_dev = latest_dev;
1229         fs_devices->total_rw_bytes = 0;
1230         fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1231         fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1232
1233         return 0;
1234 }
1235
1236 static int devid_cmp(void *priv, const struct list_head *a,
1237                      const struct list_head *b)
1238 {
1239         const struct btrfs_device *dev1, *dev2;
1240
1241         dev1 = list_entry(a, struct btrfs_device, dev_list);
1242         dev2 = list_entry(b, struct btrfs_device, dev_list);
1243
1244         if (dev1->devid < dev2->devid)
1245                 return -1;
1246         else if (dev1->devid > dev2->devid)
1247                 return 1;
1248         return 0;
1249 }
1250
1251 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1252                        fmode_t flags, void *holder)
1253 {
1254         int ret;
1255
1256         lockdep_assert_held(&uuid_mutex);
1257         /*
1258          * The device_list_mutex cannot be taken here in case opening the
1259          * underlying device takes further locks like open_mutex.
1260          *
1261          * We also don't need the lock here as this is called during mount and
1262          * exclusion is provided by uuid_mutex
1263          */
1264
1265         if (fs_devices->opened) {
1266                 fs_devices->opened++;
1267                 ret = 0;
1268         } else {
1269                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1270                 ret = open_fs_devices(fs_devices, flags, holder);
1271         }
1272
1273         return ret;
1274 }
1275
1276 void btrfs_release_disk_super(struct btrfs_super_block *super)
1277 {
1278         struct page *page = virt_to_page(super);
1279
1280         put_page(page);
1281 }
1282
1283 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1284                                                        u64 bytenr, u64 bytenr_orig)
1285 {
1286         struct btrfs_super_block *disk_super;
1287         struct page *page;
1288         void *p;
1289         pgoff_t index;
1290
1291         /* make sure our super fits in the device */
1292         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1293                 return ERR_PTR(-EINVAL);
1294
1295         /* make sure our super fits in the page */
1296         if (sizeof(*disk_super) > PAGE_SIZE)
1297                 return ERR_PTR(-EINVAL);
1298
1299         /* make sure our super doesn't straddle pages on disk */
1300         index = bytenr >> PAGE_SHIFT;
1301         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1302                 return ERR_PTR(-EINVAL);
1303
1304         /* pull in the page with our super */
1305         page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1306
1307         if (IS_ERR(page))
1308                 return ERR_CAST(page);
1309
1310         p = page_address(page);
1311
1312         /* align our pointer to the offset of the super block */
1313         disk_super = p + offset_in_page(bytenr);
1314
1315         if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1316             btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1317                 btrfs_release_disk_super(p);
1318                 return ERR_PTR(-EINVAL);
1319         }
1320
1321         if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1322                 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1323
1324         return disk_super;
1325 }
1326
1327 int btrfs_forget_devices(const char *path)
1328 {
1329         int ret;
1330
1331         mutex_lock(&uuid_mutex);
1332         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1333         mutex_unlock(&uuid_mutex);
1334
1335         return ret;
1336 }
1337
1338 /*
1339  * Look for a btrfs signature on a device. This may be called out of the mount path
1340  * and we are not allowed to call set_blocksize during the scan. The superblock
1341  * is read via pagecache
1342  */
1343 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1344                                            void *holder)
1345 {
1346         struct btrfs_super_block *disk_super;
1347         bool new_device_added = false;
1348         struct btrfs_device *device = NULL;
1349         struct block_device *bdev;
1350         u64 bytenr, bytenr_orig;
1351         int ret;
1352
1353         lockdep_assert_held(&uuid_mutex);
1354
1355         /*
1356          * we would like to check all the supers, but that would make
1357          * a btrfs mount succeed after a mkfs from a different FS.
1358          * So, we need to add a special mount option to scan for
1359          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1360          */
1361         flags |= FMODE_EXCL;
1362
1363         bdev = blkdev_get_by_path(path, flags, holder);
1364         if (IS_ERR(bdev))
1365                 return ERR_CAST(bdev);
1366
1367         bytenr_orig = btrfs_sb_offset(0);
1368         ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1369         if (ret)
1370                 return ERR_PTR(ret);
1371
1372         disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1373         if (IS_ERR(disk_super)) {
1374                 device = ERR_CAST(disk_super);
1375                 goto error_bdev_put;
1376         }
1377
1378         device = device_list_add(path, disk_super, &new_device_added);
1379         if (!IS_ERR(device)) {
1380                 if (new_device_added)
1381                         btrfs_free_stale_devices(path, device);
1382         }
1383
1384         btrfs_release_disk_super(disk_super);
1385
1386 error_bdev_put:
1387         blkdev_put(bdev, flags);
1388
1389         return device;
1390 }
1391
1392 /*
1393  * Try to find a chunk that intersects [start, start + len] range and when one
1394  * such is found, record the end of it in *start
1395  */
1396 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1397                                     u64 len)
1398 {
1399         u64 physical_start, physical_end;
1400
1401         lockdep_assert_held(&device->fs_info->chunk_mutex);
1402
1403         if (!find_first_extent_bit(&device->alloc_state, *start,
1404                                    &physical_start, &physical_end,
1405                                    CHUNK_ALLOCATED, NULL)) {
1406
1407                 if (in_range(physical_start, *start, len) ||
1408                     in_range(*start, physical_start,
1409                              physical_end - physical_start)) {
1410                         *start = physical_end + 1;
1411                         return true;
1412                 }
1413         }
1414         return false;
1415 }
1416
1417 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1418 {
1419         switch (device->fs_devices->chunk_alloc_policy) {
1420         case BTRFS_CHUNK_ALLOC_REGULAR:
1421                 /*
1422                  * We don't want to overwrite the superblock on the drive nor
1423                  * any area used by the boot loader (grub for example), so we
1424                  * make sure to start at an offset of at least 1MB.
1425                  */
1426                 return max_t(u64, start, SZ_1M);
1427         case BTRFS_CHUNK_ALLOC_ZONED:
1428                 /*
1429                  * We don't care about the starting region like regular
1430                  * allocator, because we anyway use/reserve the first two zones
1431                  * for superblock logging.
1432                  */
1433                 return ALIGN(start, device->zone_info->zone_size);
1434         default:
1435                 BUG();
1436         }
1437 }
1438
1439 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1440                                         u64 *hole_start, u64 *hole_size,
1441                                         u64 num_bytes)
1442 {
1443         u64 zone_size = device->zone_info->zone_size;
1444         u64 pos;
1445         int ret;
1446         bool changed = false;
1447
1448         ASSERT(IS_ALIGNED(*hole_start, zone_size));
1449
1450         while (*hole_size > 0) {
1451                 pos = btrfs_find_allocatable_zones(device, *hole_start,
1452                                                    *hole_start + *hole_size,
1453                                                    num_bytes);
1454                 if (pos != *hole_start) {
1455                         *hole_size = *hole_start + *hole_size - pos;
1456                         *hole_start = pos;
1457                         changed = true;
1458                         if (*hole_size < num_bytes)
1459                                 break;
1460                 }
1461
1462                 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1463
1464                 /* Range is ensured to be empty */
1465                 if (!ret)
1466                         return changed;
1467
1468                 /* Given hole range was invalid (outside of device) */
1469                 if (ret == -ERANGE) {
1470                         *hole_start += *hole_size;
1471                         *hole_size = 0;
1472                         return true;
1473                 }
1474
1475                 *hole_start += zone_size;
1476                 *hole_size -= zone_size;
1477                 changed = true;
1478         }
1479
1480         return changed;
1481 }
1482
1483 /**
1484  * dev_extent_hole_check - check if specified hole is suitable for allocation
1485  * @device:     the device which we have the hole
1486  * @hole_start: starting position of the hole
1487  * @hole_size:  the size of the hole
1488  * @num_bytes:  the size of the free space that we need
1489  *
1490  * This function may modify @hole_start and @hole_size to reflect the suitable
1491  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1492  */
1493 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1494                                   u64 *hole_size, u64 num_bytes)
1495 {
1496         bool changed = false;
1497         u64 hole_end = *hole_start + *hole_size;
1498
1499         for (;;) {
1500                 /*
1501                  * Check before we set max_hole_start, otherwise we could end up
1502                  * sending back this offset anyway.
1503                  */
1504                 if (contains_pending_extent(device, hole_start, *hole_size)) {
1505                         if (hole_end >= *hole_start)
1506                                 *hole_size = hole_end - *hole_start;
1507                         else
1508                                 *hole_size = 0;
1509                         changed = true;
1510                 }
1511
1512                 switch (device->fs_devices->chunk_alloc_policy) {
1513                 case BTRFS_CHUNK_ALLOC_REGULAR:
1514                         /* No extra check */
1515                         break;
1516                 case BTRFS_CHUNK_ALLOC_ZONED:
1517                         if (dev_extent_hole_check_zoned(device, hole_start,
1518                                                         hole_size, num_bytes)) {
1519                                 changed = true;
1520                                 /*
1521                                  * The changed hole can contain pending extent.
1522                                  * Loop again to check that.
1523                                  */
1524                                 continue;
1525                         }
1526                         break;
1527                 default:
1528                         BUG();
1529                 }
1530
1531                 break;
1532         }
1533
1534         return changed;
1535 }
1536
1537 /*
1538  * find_free_dev_extent_start - find free space in the specified device
1539  * @device:       the device which we search the free space in
1540  * @num_bytes:    the size of the free space that we need
1541  * @search_start: the position from which to begin the search
1542  * @start:        store the start of the free space.
1543  * @len:          the size of the free space. that we find, or the size
1544  *                of the max free space if we don't find suitable free space
1545  *
1546  * this uses a pretty simple search, the expectation is that it is
1547  * called very infrequently and that a given device has a small number
1548  * of extents
1549  *
1550  * @start is used to store the start of the free space if we find. But if we
1551  * don't find suitable free space, it will be used to store the start position
1552  * of the max free space.
1553  *
1554  * @len is used to store the size of the free space that we find.
1555  * But if we don't find suitable free space, it is used to store the size of
1556  * the max free space.
1557  *
1558  * NOTE: This function will search *commit* root of device tree, and does extra
1559  * check to ensure dev extents are not double allocated.
1560  * This makes the function safe to allocate dev extents but may not report
1561  * correct usable device space, as device extent freed in current transaction
1562  * is not reported as available.
1563  */
1564 static int find_free_dev_extent_start(struct btrfs_device *device,
1565                                 u64 num_bytes, u64 search_start, u64 *start,
1566                                 u64 *len)
1567 {
1568         struct btrfs_fs_info *fs_info = device->fs_info;
1569         struct btrfs_root *root = fs_info->dev_root;
1570         struct btrfs_key key;
1571         struct btrfs_dev_extent *dev_extent;
1572         struct btrfs_path *path;
1573         u64 hole_size;
1574         u64 max_hole_start;
1575         u64 max_hole_size;
1576         u64 extent_end;
1577         u64 search_end = device->total_bytes;
1578         int ret;
1579         int slot;
1580         struct extent_buffer *l;
1581
1582         search_start = dev_extent_search_start(device, search_start);
1583
1584         WARN_ON(device->zone_info &&
1585                 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1586
1587         path = btrfs_alloc_path();
1588         if (!path)
1589                 return -ENOMEM;
1590
1591         max_hole_start = search_start;
1592         max_hole_size = 0;
1593
1594 again:
1595         if (search_start >= search_end ||
1596                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1597                 ret = -ENOSPC;
1598                 goto out;
1599         }
1600
1601         path->reada = READA_FORWARD;
1602         path->search_commit_root = 1;
1603         path->skip_locking = 1;
1604
1605         key.objectid = device->devid;
1606         key.offset = search_start;
1607         key.type = BTRFS_DEV_EXTENT_KEY;
1608
1609         ret = btrfs_search_backwards(root, &key, path);
1610         if (ret < 0)
1611                 goto out;
1612
1613         while (1) {
1614                 l = path->nodes[0];
1615                 slot = path->slots[0];
1616                 if (slot >= btrfs_header_nritems(l)) {
1617                         ret = btrfs_next_leaf(root, path);
1618                         if (ret == 0)
1619                                 continue;
1620                         if (ret < 0)
1621                                 goto out;
1622
1623                         break;
1624                 }
1625                 btrfs_item_key_to_cpu(l, &key, slot);
1626
1627                 if (key.objectid < device->devid)
1628                         goto next;
1629
1630                 if (key.objectid > device->devid)
1631                         break;
1632
1633                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1634                         goto next;
1635
1636                 if (key.offset > search_start) {
1637                         hole_size = key.offset - search_start;
1638                         dev_extent_hole_check(device, &search_start, &hole_size,
1639                                               num_bytes);
1640
1641                         if (hole_size > max_hole_size) {
1642                                 max_hole_start = search_start;
1643                                 max_hole_size = hole_size;
1644                         }
1645
1646                         /*
1647                          * If this free space is greater than which we need,
1648                          * it must be the max free space that we have found
1649                          * until now, so max_hole_start must point to the start
1650                          * of this free space and the length of this free space
1651                          * is stored in max_hole_size. Thus, we return
1652                          * max_hole_start and max_hole_size and go back to the
1653                          * caller.
1654                          */
1655                         if (hole_size >= num_bytes) {
1656                                 ret = 0;
1657                                 goto out;
1658                         }
1659                 }
1660
1661                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1662                 extent_end = key.offset + btrfs_dev_extent_length(l,
1663                                                                   dev_extent);
1664                 if (extent_end > search_start)
1665                         search_start = extent_end;
1666 next:
1667                 path->slots[0]++;
1668                 cond_resched();
1669         }
1670
1671         /*
1672          * At this point, search_start should be the end of
1673          * allocated dev extents, and when shrinking the device,
1674          * search_end may be smaller than search_start.
1675          */
1676         if (search_end > search_start) {
1677                 hole_size = search_end - search_start;
1678                 if (dev_extent_hole_check(device, &search_start, &hole_size,
1679                                           num_bytes)) {
1680                         btrfs_release_path(path);
1681                         goto again;
1682                 }
1683
1684                 if (hole_size > max_hole_size) {
1685                         max_hole_start = search_start;
1686                         max_hole_size = hole_size;
1687                 }
1688         }
1689
1690         /* See above. */
1691         if (max_hole_size < num_bytes)
1692                 ret = -ENOSPC;
1693         else
1694                 ret = 0;
1695
1696 out:
1697         btrfs_free_path(path);
1698         *start = max_hole_start;
1699         if (len)
1700                 *len = max_hole_size;
1701         return ret;
1702 }
1703
1704 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1705                          u64 *start, u64 *len)
1706 {
1707         /* FIXME use last free of some kind */
1708         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1709 }
1710
1711 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1712                           struct btrfs_device *device,
1713                           u64 start, u64 *dev_extent_len)
1714 {
1715         struct btrfs_fs_info *fs_info = device->fs_info;
1716         struct btrfs_root *root = fs_info->dev_root;
1717         int ret;
1718         struct btrfs_path *path;
1719         struct btrfs_key key;
1720         struct btrfs_key found_key;
1721         struct extent_buffer *leaf = NULL;
1722         struct btrfs_dev_extent *extent = NULL;
1723
1724         path = btrfs_alloc_path();
1725         if (!path)
1726                 return -ENOMEM;
1727
1728         key.objectid = device->devid;
1729         key.offset = start;
1730         key.type = BTRFS_DEV_EXTENT_KEY;
1731 again:
1732         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1733         if (ret > 0) {
1734                 ret = btrfs_previous_item(root, path, key.objectid,
1735                                           BTRFS_DEV_EXTENT_KEY);
1736                 if (ret)
1737                         goto out;
1738                 leaf = path->nodes[0];
1739                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1740                 extent = btrfs_item_ptr(leaf, path->slots[0],
1741                                         struct btrfs_dev_extent);
1742                 BUG_ON(found_key.offset > start || found_key.offset +
1743                        btrfs_dev_extent_length(leaf, extent) < start);
1744                 key = found_key;
1745                 btrfs_release_path(path);
1746                 goto again;
1747         } else if (ret == 0) {
1748                 leaf = path->nodes[0];
1749                 extent = btrfs_item_ptr(leaf, path->slots[0],
1750                                         struct btrfs_dev_extent);
1751         } else {
1752                 goto out;
1753         }
1754
1755         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1756
1757         ret = btrfs_del_item(trans, root, path);
1758         if (ret == 0)
1759                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1760 out:
1761         btrfs_free_path(path);
1762         return ret;
1763 }
1764
1765 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1766 {
1767         struct extent_map_tree *em_tree;
1768         struct extent_map *em;
1769         struct rb_node *n;
1770         u64 ret = 0;
1771
1772         em_tree = &fs_info->mapping_tree;
1773         read_lock(&em_tree->lock);
1774         n = rb_last(&em_tree->map.rb_root);
1775         if (n) {
1776                 em = rb_entry(n, struct extent_map, rb_node);
1777                 ret = em->start + em->len;
1778         }
1779         read_unlock(&em_tree->lock);
1780
1781         return ret;
1782 }
1783
1784 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1785                                     u64 *devid_ret)
1786 {
1787         int ret;
1788         struct btrfs_key key;
1789         struct btrfs_key found_key;
1790         struct btrfs_path *path;
1791
1792         path = btrfs_alloc_path();
1793         if (!path)
1794                 return -ENOMEM;
1795
1796         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1797         key.type = BTRFS_DEV_ITEM_KEY;
1798         key.offset = (u64)-1;
1799
1800         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1801         if (ret < 0)
1802                 goto error;
1803
1804         if (ret == 0) {
1805                 /* Corruption */
1806                 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1807                 ret = -EUCLEAN;
1808                 goto error;
1809         }
1810
1811         ret = btrfs_previous_item(fs_info->chunk_root, path,
1812                                   BTRFS_DEV_ITEMS_OBJECTID,
1813                                   BTRFS_DEV_ITEM_KEY);
1814         if (ret) {
1815                 *devid_ret = 1;
1816         } else {
1817                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1818                                       path->slots[0]);
1819                 *devid_ret = found_key.offset + 1;
1820         }
1821         ret = 0;
1822 error:
1823         btrfs_free_path(path);
1824         return ret;
1825 }
1826
1827 /*
1828  * the device information is stored in the chunk root
1829  * the btrfs_device struct should be fully filled in
1830  */
1831 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1832                             struct btrfs_device *device)
1833 {
1834         int ret;
1835         struct btrfs_path *path;
1836         struct btrfs_dev_item *dev_item;
1837         struct extent_buffer *leaf;
1838         struct btrfs_key key;
1839         unsigned long ptr;
1840
1841         path = btrfs_alloc_path();
1842         if (!path)
1843                 return -ENOMEM;
1844
1845         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1846         key.type = BTRFS_DEV_ITEM_KEY;
1847         key.offset = device->devid;
1848
1849         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1850                                       &key, sizeof(*dev_item));
1851         if (ret)
1852                 goto out;
1853
1854         leaf = path->nodes[0];
1855         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1856
1857         btrfs_set_device_id(leaf, dev_item, device->devid);
1858         btrfs_set_device_generation(leaf, dev_item, 0);
1859         btrfs_set_device_type(leaf, dev_item, device->type);
1860         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1861         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1862         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1863         btrfs_set_device_total_bytes(leaf, dev_item,
1864                                      btrfs_device_get_disk_total_bytes(device));
1865         btrfs_set_device_bytes_used(leaf, dev_item,
1866                                     btrfs_device_get_bytes_used(device));
1867         btrfs_set_device_group(leaf, dev_item, 0);
1868         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1869         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1870         btrfs_set_device_start_offset(leaf, dev_item, 0);
1871
1872         ptr = btrfs_device_uuid(dev_item);
1873         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1874         ptr = btrfs_device_fsid(dev_item);
1875         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1876                             ptr, BTRFS_FSID_SIZE);
1877         btrfs_mark_buffer_dirty(leaf);
1878
1879         ret = 0;
1880 out:
1881         btrfs_free_path(path);
1882         return ret;
1883 }
1884
1885 /*
1886  * Function to update ctime/mtime for a given device path.
1887  * Mainly used for ctime/mtime based probe like libblkid.
1888  *
1889  * We don't care about errors here, this is just to be kind to userspace.
1890  */
1891 static void update_dev_time(const char *device_path)
1892 {
1893         struct path path;
1894         struct timespec64 now;
1895         int ret;
1896
1897         ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1898         if (ret)
1899                 return;
1900
1901         now = current_time(d_inode(path.dentry));
1902         inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1903         path_put(&path);
1904 }
1905
1906 static int btrfs_rm_dev_item(struct btrfs_device *device)
1907 {
1908         struct btrfs_root *root = device->fs_info->chunk_root;
1909         int ret;
1910         struct btrfs_path *path;
1911         struct btrfs_key key;
1912         struct btrfs_trans_handle *trans;
1913
1914         path = btrfs_alloc_path();
1915         if (!path)
1916                 return -ENOMEM;
1917
1918         trans = btrfs_start_transaction(root, 0);
1919         if (IS_ERR(trans)) {
1920                 btrfs_free_path(path);
1921                 return PTR_ERR(trans);
1922         }
1923         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1924         key.type = BTRFS_DEV_ITEM_KEY;
1925         key.offset = device->devid;
1926
1927         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1928         if (ret) {
1929                 if (ret > 0)
1930                         ret = -ENOENT;
1931                 btrfs_abort_transaction(trans, ret);
1932                 btrfs_end_transaction(trans);
1933                 goto out;
1934         }
1935
1936         ret = btrfs_del_item(trans, root, path);
1937         if (ret) {
1938                 btrfs_abort_transaction(trans, ret);
1939                 btrfs_end_transaction(trans);
1940         }
1941
1942 out:
1943         btrfs_free_path(path);
1944         if (!ret)
1945                 ret = btrfs_commit_transaction(trans);
1946         return ret;
1947 }
1948
1949 /*
1950  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1951  * filesystem. It's up to the caller to adjust that number regarding eg. device
1952  * replace.
1953  */
1954 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1955                 u64 num_devices)
1956 {
1957         u64 all_avail;
1958         unsigned seq;
1959         int i;
1960
1961         do {
1962                 seq = read_seqbegin(&fs_info->profiles_lock);
1963
1964                 all_avail = fs_info->avail_data_alloc_bits |
1965                             fs_info->avail_system_alloc_bits |
1966                             fs_info->avail_metadata_alloc_bits;
1967         } while (read_seqretry(&fs_info->profiles_lock, seq));
1968
1969         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1970                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1971                         continue;
1972
1973                 if (num_devices < btrfs_raid_array[i].devs_min)
1974                         return btrfs_raid_array[i].mindev_error;
1975         }
1976
1977         return 0;
1978 }
1979
1980 static struct btrfs_device * btrfs_find_next_active_device(
1981                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1982 {
1983         struct btrfs_device *next_device;
1984
1985         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1986                 if (next_device != device &&
1987                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1988                     && next_device->bdev)
1989                         return next_device;
1990         }
1991
1992         return NULL;
1993 }
1994
1995 /*
1996  * Helper function to check if the given device is part of s_bdev / latest_dev
1997  * and replace it with the provided or the next active device, in the context
1998  * where this function called, there should be always be another device (or
1999  * this_dev) which is active.
2000  */
2001 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2002                                             struct btrfs_device *next_device)
2003 {
2004         struct btrfs_fs_info *fs_info = device->fs_info;
2005
2006         if (!next_device)
2007                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2008                                                             device);
2009         ASSERT(next_device);
2010
2011         if (fs_info->sb->s_bdev &&
2012                         (fs_info->sb->s_bdev == device->bdev))
2013                 fs_info->sb->s_bdev = next_device->bdev;
2014
2015         if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2016                 fs_info->fs_devices->latest_dev = next_device;
2017 }
2018
2019 /*
2020  * Return btrfs_fs_devices::num_devices excluding the device that's being
2021  * currently replaced.
2022  */
2023 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2024 {
2025         u64 num_devices = fs_info->fs_devices->num_devices;
2026
2027         down_read(&fs_info->dev_replace.rwsem);
2028         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2029                 ASSERT(num_devices > 1);
2030                 num_devices--;
2031         }
2032         up_read(&fs_info->dev_replace.rwsem);
2033
2034         return num_devices;
2035 }
2036
2037 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2038                                struct block_device *bdev,
2039                                const char *device_path)
2040 {
2041         struct btrfs_super_block *disk_super;
2042         int copy_num;
2043
2044         if (!bdev)
2045                 return;
2046
2047         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2048                 struct page *page;
2049                 int ret;
2050
2051                 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2052                 if (IS_ERR(disk_super))
2053                         continue;
2054
2055                 if (bdev_is_zoned(bdev)) {
2056                         btrfs_reset_sb_log_zones(bdev, copy_num);
2057                         continue;
2058                 }
2059
2060                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2061
2062                 page = virt_to_page(disk_super);
2063                 set_page_dirty(page);
2064                 lock_page(page);
2065                 /* write_on_page() unlocks the page */
2066                 ret = write_one_page(page);
2067                 if (ret)
2068                         btrfs_warn(fs_info,
2069                                 "error clearing superblock number %d (%d)",
2070                                 copy_num, ret);
2071                 btrfs_release_disk_super(disk_super);
2072
2073         }
2074
2075         /* Notify udev that device has changed */
2076         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2077
2078         /* Update ctime/mtime for device path for libblkid */
2079         update_dev_time(device_path);
2080 }
2081
2082 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2083                     u64 devid, struct block_device **bdev, fmode_t *mode)
2084 {
2085         struct btrfs_device *device;
2086         struct btrfs_fs_devices *cur_devices;
2087         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2088         u64 num_devices;
2089         int ret = 0;
2090
2091         /*
2092          * The device list in fs_devices is accessed without locks (neither
2093          * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2094          * filesystem and another device rm cannot run.
2095          */
2096         num_devices = btrfs_num_devices(fs_info);
2097
2098         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2099         if (ret)
2100                 goto out;
2101
2102         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2103
2104         if (IS_ERR(device)) {
2105                 if (PTR_ERR(device) == -ENOENT &&
2106                     device_path && strcmp(device_path, "missing") == 0)
2107                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2108                 else
2109                         ret = PTR_ERR(device);
2110                 goto out;
2111         }
2112
2113         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2114                 btrfs_warn_in_rcu(fs_info,
2115                   "cannot remove device %s (devid %llu) due to active swapfile",
2116                                   rcu_str_deref(device->name), device->devid);
2117                 ret = -ETXTBSY;
2118                 goto out;
2119         }
2120
2121         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2122                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2123                 goto out;
2124         }
2125
2126         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2127             fs_info->fs_devices->rw_devices == 1) {
2128                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2129                 goto out;
2130         }
2131
2132         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2133                 mutex_lock(&fs_info->chunk_mutex);
2134                 list_del_init(&device->dev_alloc_list);
2135                 device->fs_devices->rw_devices--;
2136                 mutex_unlock(&fs_info->chunk_mutex);
2137         }
2138
2139         ret = btrfs_shrink_device(device, 0);
2140         if (!ret)
2141                 btrfs_reada_remove_dev(device);
2142         if (ret)
2143                 goto error_undo;
2144
2145         /*
2146          * TODO: the superblock still includes this device in its num_devices
2147          * counter although write_all_supers() is not locked out. This
2148          * could give a filesystem state which requires a degraded mount.
2149          */
2150         ret = btrfs_rm_dev_item(device);
2151         if (ret)
2152                 goto error_undo;
2153
2154         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2155         btrfs_scrub_cancel_dev(device);
2156
2157         /*
2158          * the device list mutex makes sure that we don't change
2159          * the device list while someone else is writing out all
2160          * the device supers. Whoever is writing all supers, should
2161          * lock the device list mutex before getting the number of
2162          * devices in the super block (super_copy). Conversely,
2163          * whoever updates the number of devices in the super block
2164          * (super_copy) should hold the device list mutex.
2165          */
2166
2167         /*
2168          * In normal cases the cur_devices == fs_devices. But in case
2169          * of deleting a seed device, the cur_devices should point to
2170          * its own fs_devices listed under the fs_devices->seed.
2171          */
2172         cur_devices = device->fs_devices;
2173         mutex_lock(&fs_devices->device_list_mutex);
2174         list_del_rcu(&device->dev_list);
2175
2176         cur_devices->num_devices--;
2177         cur_devices->total_devices--;
2178         /* Update total_devices of the parent fs_devices if it's seed */
2179         if (cur_devices != fs_devices)
2180                 fs_devices->total_devices--;
2181
2182         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2183                 cur_devices->missing_devices--;
2184
2185         btrfs_assign_next_active_device(device, NULL);
2186
2187         if (device->bdev) {
2188                 cur_devices->open_devices--;
2189                 /* remove sysfs entry */
2190                 btrfs_sysfs_remove_device(device);
2191         }
2192
2193         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2194         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2195         mutex_unlock(&fs_devices->device_list_mutex);
2196
2197         /*
2198          * At this point, the device is zero sized and detached from the
2199          * devices list.  All that's left is to zero out the old supers and
2200          * free the device.
2201          *
2202          * We cannot call btrfs_close_bdev() here because we're holding the sb
2203          * write lock, and blkdev_put() will pull in the ->open_mutex on the
2204          * block device and it's dependencies.  Instead just flush the device
2205          * and let the caller do the final blkdev_put.
2206          */
2207         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2208                 btrfs_scratch_superblocks(fs_info, device->bdev,
2209                                           device->name->str);
2210                 if (device->bdev) {
2211                         sync_blockdev(device->bdev);
2212                         invalidate_bdev(device->bdev);
2213                 }
2214         }
2215
2216         *bdev = device->bdev;
2217         *mode = device->mode;
2218         synchronize_rcu();
2219         btrfs_free_device(device);
2220
2221         if (cur_devices->open_devices == 0) {
2222                 list_del_init(&cur_devices->seed_list);
2223                 close_fs_devices(cur_devices);
2224                 free_fs_devices(cur_devices);
2225         }
2226
2227 out:
2228         return ret;
2229
2230 error_undo:
2231         btrfs_reada_undo_remove_dev(device);
2232         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2233                 mutex_lock(&fs_info->chunk_mutex);
2234                 list_add(&device->dev_alloc_list,
2235                          &fs_devices->alloc_list);
2236                 device->fs_devices->rw_devices++;
2237                 mutex_unlock(&fs_info->chunk_mutex);
2238         }
2239         goto out;
2240 }
2241
2242 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2243 {
2244         struct btrfs_fs_devices *fs_devices;
2245
2246         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2247
2248         /*
2249          * in case of fs with no seed, srcdev->fs_devices will point
2250          * to fs_devices of fs_info. However when the dev being replaced is
2251          * a seed dev it will point to the seed's local fs_devices. In short
2252          * srcdev will have its correct fs_devices in both the cases.
2253          */
2254         fs_devices = srcdev->fs_devices;
2255
2256         list_del_rcu(&srcdev->dev_list);
2257         list_del(&srcdev->dev_alloc_list);
2258         fs_devices->num_devices--;
2259         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2260                 fs_devices->missing_devices--;
2261
2262         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2263                 fs_devices->rw_devices--;
2264
2265         if (srcdev->bdev)
2266                 fs_devices->open_devices--;
2267 }
2268
2269 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2270 {
2271         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2272
2273         mutex_lock(&uuid_mutex);
2274
2275         btrfs_close_bdev(srcdev);
2276         synchronize_rcu();
2277         btrfs_free_device(srcdev);
2278
2279         /* if this is no devs we rather delete the fs_devices */
2280         if (!fs_devices->num_devices) {
2281                 /*
2282                  * On a mounted FS, num_devices can't be zero unless it's a
2283                  * seed. In case of a seed device being replaced, the replace
2284                  * target added to the sprout FS, so there will be no more
2285                  * device left under the seed FS.
2286                  */
2287                 ASSERT(fs_devices->seeding);
2288
2289                 list_del_init(&fs_devices->seed_list);
2290                 close_fs_devices(fs_devices);
2291                 free_fs_devices(fs_devices);
2292         }
2293         mutex_unlock(&uuid_mutex);
2294 }
2295
2296 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2297 {
2298         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2299
2300         mutex_lock(&fs_devices->device_list_mutex);
2301
2302         btrfs_sysfs_remove_device(tgtdev);
2303
2304         if (tgtdev->bdev)
2305                 fs_devices->open_devices--;
2306
2307         fs_devices->num_devices--;
2308
2309         btrfs_assign_next_active_device(tgtdev, NULL);
2310
2311         list_del_rcu(&tgtdev->dev_list);
2312
2313         mutex_unlock(&fs_devices->device_list_mutex);
2314
2315         /*
2316          * The update_dev_time() with in btrfs_scratch_superblocks()
2317          * may lead to a call to btrfs_show_devname() which will try
2318          * to hold device_list_mutex. And here this device
2319          * is already out of device list, so we don't have to hold
2320          * the device_list_mutex lock.
2321          */
2322         btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2323                                   tgtdev->name->str);
2324
2325         btrfs_close_bdev(tgtdev);
2326         synchronize_rcu();
2327         btrfs_free_device(tgtdev);
2328 }
2329
2330 static struct btrfs_device *btrfs_find_device_by_path(
2331                 struct btrfs_fs_info *fs_info, const char *device_path)
2332 {
2333         int ret = 0;
2334         struct btrfs_super_block *disk_super;
2335         u64 devid;
2336         u8 *dev_uuid;
2337         struct block_device *bdev;
2338         struct btrfs_device *device;
2339
2340         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2341                                     fs_info->bdev_holder, 0, &bdev, &disk_super);
2342         if (ret)
2343                 return ERR_PTR(ret);
2344
2345         devid = btrfs_stack_device_id(&disk_super->dev_item);
2346         dev_uuid = disk_super->dev_item.uuid;
2347         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2348                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2349                                            disk_super->metadata_uuid);
2350         else
2351                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2352                                            disk_super->fsid);
2353
2354         btrfs_release_disk_super(disk_super);
2355         if (!device)
2356                 device = ERR_PTR(-ENOENT);
2357         blkdev_put(bdev, FMODE_READ);
2358         return device;
2359 }
2360
2361 /*
2362  * Lookup a device given by device id, or the path if the id is 0.
2363  */
2364 struct btrfs_device *btrfs_find_device_by_devspec(
2365                 struct btrfs_fs_info *fs_info, u64 devid,
2366                 const char *device_path)
2367 {
2368         struct btrfs_device *device;
2369
2370         if (devid) {
2371                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2372                                            NULL);
2373                 if (!device)
2374                         return ERR_PTR(-ENOENT);
2375                 return device;
2376         }
2377
2378         if (!device_path || !device_path[0])
2379                 return ERR_PTR(-EINVAL);
2380
2381         if (strcmp(device_path, "missing") == 0) {
2382                 /* Find first missing device */
2383                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2384                                     dev_list) {
2385                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2386                                      &device->dev_state) && !device->bdev)
2387                                 return device;
2388                 }
2389                 return ERR_PTR(-ENOENT);
2390         }
2391
2392         return btrfs_find_device_by_path(fs_info, device_path);
2393 }
2394
2395 /*
2396  * does all the dirty work required for changing file system's UUID.
2397  */
2398 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2399 {
2400         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2401         struct btrfs_fs_devices *old_devices;
2402         struct btrfs_fs_devices *seed_devices;
2403         struct btrfs_super_block *disk_super = fs_info->super_copy;
2404         struct btrfs_device *device;
2405         u64 super_flags;
2406
2407         lockdep_assert_held(&uuid_mutex);
2408         if (!fs_devices->seeding)
2409                 return -EINVAL;
2410
2411         /*
2412          * Private copy of the seed devices, anchored at
2413          * fs_info->fs_devices->seed_list
2414          */
2415         seed_devices = alloc_fs_devices(NULL, NULL);
2416         if (IS_ERR(seed_devices))
2417                 return PTR_ERR(seed_devices);
2418
2419         /*
2420          * It's necessary to retain a copy of the original seed fs_devices in
2421          * fs_uuids so that filesystems which have been seeded can successfully
2422          * reference the seed device from open_seed_devices. This also supports
2423          * multiple fs seed.
2424          */
2425         old_devices = clone_fs_devices(fs_devices);
2426         if (IS_ERR(old_devices)) {
2427                 kfree(seed_devices);
2428                 return PTR_ERR(old_devices);
2429         }
2430
2431         list_add(&old_devices->fs_list, &fs_uuids);
2432
2433         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2434         seed_devices->opened = 1;
2435         INIT_LIST_HEAD(&seed_devices->devices);
2436         INIT_LIST_HEAD(&seed_devices->alloc_list);
2437         mutex_init(&seed_devices->device_list_mutex);
2438
2439         mutex_lock(&fs_devices->device_list_mutex);
2440         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2441                               synchronize_rcu);
2442         list_for_each_entry(device, &seed_devices->devices, dev_list)
2443                 device->fs_devices = seed_devices;
2444
2445         fs_devices->seeding = false;
2446         fs_devices->num_devices = 0;
2447         fs_devices->open_devices = 0;
2448         fs_devices->missing_devices = 0;
2449         fs_devices->rotating = false;
2450         list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2451
2452         generate_random_uuid(fs_devices->fsid);
2453         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2454         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2455         mutex_unlock(&fs_devices->device_list_mutex);
2456
2457         super_flags = btrfs_super_flags(disk_super) &
2458                       ~BTRFS_SUPER_FLAG_SEEDING;
2459         btrfs_set_super_flags(disk_super, super_flags);
2460
2461         return 0;
2462 }
2463
2464 /*
2465  * Store the expected generation for seed devices in device items.
2466  */
2467 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2468 {
2469         struct btrfs_fs_info *fs_info = trans->fs_info;
2470         struct btrfs_root *root = fs_info->chunk_root;
2471         struct btrfs_path *path;
2472         struct extent_buffer *leaf;
2473         struct btrfs_dev_item *dev_item;
2474         struct btrfs_device *device;
2475         struct btrfs_key key;
2476         u8 fs_uuid[BTRFS_FSID_SIZE];
2477         u8 dev_uuid[BTRFS_UUID_SIZE];
2478         u64 devid;
2479         int ret;
2480
2481         path = btrfs_alloc_path();
2482         if (!path)
2483                 return -ENOMEM;
2484
2485         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2486         key.offset = 0;
2487         key.type = BTRFS_DEV_ITEM_KEY;
2488
2489         while (1) {
2490                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2491                 if (ret < 0)
2492                         goto error;
2493
2494                 leaf = path->nodes[0];
2495 next_slot:
2496                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2497                         ret = btrfs_next_leaf(root, path);
2498                         if (ret > 0)
2499                                 break;
2500                         if (ret < 0)
2501                                 goto error;
2502                         leaf = path->nodes[0];
2503                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2504                         btrfs_release_path(path);
2505                         continue;
2506                 }
2507
2508                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2509                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2510                     key.type != BTRFS_DEV_ITEM_KEY)
2511                         break;
2512
2513                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2514                                           struct btrfs_dev_item);
2515                 devid = btrfs_device_id(leaf, dev_item);
2516                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2517                                    BTRFS_UUID_SIZE);
2518                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2519                                    BTRFS_FSID_SIZE);
2520                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2521                                            fs_uuid);
2522                 BUG_ON(!device); /* Logic error */
2523
2524                 if (device->fs_devices->seeding) {
2525                         btrfs_set_device_generation(leaf, dev_item,
2526                                                     device->generation);
2527                         btrfs_mark_buffer_dirty(leaf);
2528                 }
2529
2530                 path->slots[0]++;
2531                 goto next_slot;
2532         }
2533         ret = 0;
2534 error:
2535         btrfs_free_path(path);
2536         return ret;
2537 }
2538
2539 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2540 {
2541         struct btrfs_root *root = fs_info->dev_root;
2542         struct request_queue *q;
2543         struct btrfs_trans_handle *trans;
2544         struct btrfs_device *device;
2545         struct block_device *bdev;
2546         struct super_block *sb = fs_info->sb;
2547         struct rcu_string *name;
2548         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2549         u64 orig_super_total_bytes;
2550         u64 orig_super_num_devices;
2551         int seeding_dev = 0;
2552         int ret = 0;
2553         bool locked = false;
2554
2555         if (sb_rdonly(sb) && !fs_devices->seeding)
2556                 return -EROFS;
2557
2558         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2559                                   fs_info->bdev_holder);
2560         if (IS_ERR(bdev))
2561                 return PTR_ERR(bdev);
2562
2563         if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2564                 ret = -EINVAL;
2565                 goto error;
2566         }
2567
2568         if (fs_devices->seeding) {
2569                 seeding_dev = 1;
2570                 down_write(&sb->s_umount);
2571                 mutex_lock(&uuid_mutex);
2572                 locked = true;
2573         }
2574
2575         sync_blockdev(bdev);
2576
2577         rcu_read_lock();
2578         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2579                 if (device->bdev == bdev) {
2580                         ret = -EEXIST;
2581                         rcu_read_unlock();
2582                         goto error;
2583                 }
2584         }
2585         rcu_read_unlock();
2586
2587         device = btrfs_alloc_device(fs_info, NULL, NULL);
2588         if (IS_ERR(device)) {
2589                 /* we can safely leave the fs_devices entry around */
2590                 ret = PTR_ERR(device);
2591                 goto error;
2592         }
2593
2594         name = rcu_string_strdup(device_path, GFP_KERNEL);
2595         if (!name) {
2596                 ret = -ENOMEM;
2597                 goto error_free_device;
2598         }
2599         rcu_assign_pointer(device->name, name);
2600
2601         device->fs_info = fs_info;
2602         device->bdev = bdev;
2603
2604         ret = btrfs_get_dev_zone_info(device);
2605         if (ret)
2606                 goto error_free_device;
2607
2608         trans = btrfs_start_transaction(root, 0);
2609         if (IS_ERR(trans)) {
2610                 ret = PTR_ERR(trans);
2611                 goto error_free_zone;
2612         }
2613
2614         q = bdev_get_queue(bdev);
2615         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2616         device->generation = trans->transid;
2617         device->io_width = fs_info->sectorsize;
2618         device->io_align = fs_info->sectorsize;
2619         device->sector_size = fs_info->sectorsize;
2620         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2621                                          fs_info->sectorsize);
2622         device->disk_total_bytes = device->total_bytes;
2623         device->commit_total_bytes = device->total_bytes;
2624         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2625         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2626         device->mode = FMODE_EXCL;
2627         device->dev_stats_valid = 1;
2628         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2629
2630         if (seeding_dev) {
2631                 btrfs_clear_sb_rdonly(sb);
2632                 ret = btrfs_prepare_sprout(fs_info);
2633                 if (ret) {
2634                         btrfs_abort_transaction(trans, ret);
2635                         goto error_trans;
2636                 }
2637                 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2638                                                 device);
2639         }
2640
2641         device->fs_devices = fs_devices;
2642
2643         mutex_lock(&fs_devices->device_list_mutex);
2644         mutex_lock(&fs_info->chunk_mutex);
2645         list_add_rcu(&device->dev_list, &fs_devices->devices);
2646         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2647         fs_devices->num_devices++;
2648         fs_devices->open_devices++;
2649         fs_devices->rw_devices++;
2650         fs_devices->total_devices++;
2651         fs_devices->total_rw_bytes += device->total_bytes;
2652
2653         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2654
2655         if (!blk_queue_nonrot(q))
2656                 fs_devices->rotating = true;
2657
2658         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2659         btrfs_set_super_total_bytes(fs_info->super_copy,
2660                 round_down(orig_super_total_bytes + device->total_bytes,
2661                            fs_info->sectorsize));
2662
2663         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2664         btrfs_set_super_num_devices(fs_info->super_copy,
2665                                     orig_super_num_devices + 1);
2666
2667         /*
2668          * we've got more storage, clear any full flags on the space
2669          * infos
2670          */
2671         btrfs_clear_space_info_full(fs_info);
2672
2673         mutex_unlock(&fs_info->chunk_mutex);
2674
2675         /* Add sysfs device entry */
2676         btrfs_sysfs_add_device(device);
2677
2678         mutex_unlock(&fs_devices->device_list_mutex);
2679
2680         if (seeding_dev) {
2681                 mutex_lock(&fs_info->chunk_mutex);
2682                 ret = init_first_rw_device(trans);
2683                 mutex_unlock(&fs_info->chunk_mutex);
2684                 if (ret) {
2685                         btrfs_abort_transaction(trans, ret);
2686                         goto error_sysfs;
2687                 }
2688         }
2689
2690         ret = btrfs_add_dev_item(trans, device);
2691         if (ret) {
2692                 btrfs_abort_transaction(trans, ret);
2693                 goto error_sysfs;
2694         }
2695
2696         if (seeding_dev) {
2697                 ret = btrfs_finish_sprout(trans);
2698                 if (ret) {
2699                         btrfs_abort_transaction(trans, ret);
2700                         goto error_sysfs;
2701                 }
2702
2703                 /*
2704                  * fs_devices now represents the newly sprouted filesystem and
2705                  * its fsid has been changed by btrfs_prepare_sprout
2706                  */
2707                 btrfs_sysfs_update_sprout_fsid(fs_devices);
2708         }
2709
2710         ret = btrfs_commit_transaction(trans);
2711
2712         if (seeding_dev) {
2713                 mutex_unlock(&uuid_mutex);
2714                 up_write(&sb->s_umount);
2715                 locked = false;
2716
2717                 if (ret) /* transaction commit */
2718                         return ret;
2719
2720                 ret = btrfs_relocate_sys_chunks(fs_info);
2721                 if (ret < 0)
2722                         btrfs_handle_fs_error(fs_info, ret,
2723                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2724                 trans = btrfs_attach_transaction(root);
2725                 if (IS_ERR(trans)) {
2726                         if (PTR_ERR(trans) == -ENOENT)
2727                                 return 0;
2728                         ret = PTR_ERR(trans);
2729                         trans = NULL;
2730                         goto error_sysfs;
2731                 }
2732                 ret = btrfs_commit_transaction(trans);
2733         }
2734
2735         /*
2736          * Now that we have written a new super block to this device, check all
2737          * other fs_devices list if device_path alienates any other scanned
2738          * device.
2739          * We can ignore the return value as it typically returns -EINVAL and
2740          * only succeeds if the device was an alien.
2741          */
2742         btrfs_forget_devices(device_path);
2743
2744         /* Update ctime/mtime for blkid or udev */
2745         update_dev_time(device_path);
2746
2747         return ret;
2748
2749 error_sysfs:
2750         btrfs_sysfs_remove_device(device);
2751         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2752         mutex_lock(&fs_info->chunk_mutex);
2753         list_del_rcu(&device->dev_list);
2754         list_del(&device->dev_alloc_list);
2755         fs_info->fs_devices->num_devices--;
2756         fs_info->fs_devices->open_devices--;
2757         fs_info->fs_devices->rw_devices--;
2758         fs_info->fs_devices->total_devices--;
2759         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2760         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2761         btrfs_set_super_total_bytes(fs_info->super_copy,
2762                                     orig_super_total_bytes);
2763         btrfs_set_super_num_devices(fs_info->super_copy,
2764                                     orig_super_num_devices);
2765         mutex_unlock(&fs_info->chunk_mutex);
2766         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2767 error_trans:
2768         if (seeding_dev)
2769                 btrfs_set_sb_rdonly(sb);
2770         if (trans)
2771                 btrfs_end_transaction(trans);
2772 error_free_zone:
2773         btrfs_destroy_dev_zone_info(device);
2774 error_free_device:
2775         btrfs_free_device(device);
2776 error:
2777         blkdev_put(bdev, FMODE_EXCL);
2778         if (locked) {
2779                 mutex_unlock(&uuid_mutex);
2780                 up_write(&sb->s_umount);
2781         }
2782         return ret;
2783 }
2784
2785 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2786                                         struct btrfs_device *device)
2787 {
2788         int ret;
2789         struct btrfs_path *path;
2790         struct btrfs_root *root = device->fs_info->chunk_root;
2791         struct btrfs_dev_item *dev_item;
2792         struct extent_buffer *leaf;
2793         struct btrfs_key key;
2794
2795         path = btrfs_alloc_path();
2796         if (!path)
2797                 return -ENOMEM;
2798
2799         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2800         key.type = BTRFS_DEV_ITEM_KEY;
2801         key.offset = device->devid;
2802
2803         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2804         if (ret < 0)
2805                 goto out;
2806
2807         if (ret > 0) {
2808                 ret = -ENOENT;
2809                 goto out;
2810         }
2811
2812         leaf = path->nodes[0];
2813         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2814
2815         btrfs_set_device_id(leaf, dev_item, device->devid);
2816         btrfs_set_device_type(leaf, dev_item, device->type);
2817         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2818         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2819         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2820         btrfs_set_device_total_bytes(leaf, dev_item,
2821                                      btrfs_device_get_disk_total_bytes(device));
2822         btrfs_set_device_bytes_used(leaf, dev_item,
2823                                     btrfs_device_get_bytes_used(device));
2824         btrfs_mark_buffer_dirty(leaf);
2825
2826 out:
2827         btrfs_free_path(path);
2828         return ret;
2829 }
2830
2831 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2832                       struct btrfs_device *device, u64 new_size)
2833 {
2834         struct btrfs_fs_info *fs_info = device->fs_info;
2835         struct btrfs_super_block *super_copy = fs_info->super_copy;
2836         u64 old_total;
2837         u64 diff;
2838
2839         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2840                 return -EACCES;
2841
2842         new_size = round_down(new_size, fs_info->sectorsize);
2843
2844         mutex_lock(&fs_info->chunk_mutex);
2845         old_total = btrfs_super_total_bytes(super_copy);
2846         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2847
2848         if (new_size <= device->total_bytes ||
2849             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2850                 mutex_unlock(&fs_info->chunk_mutex);
2851                 return -EINVAL;
2852         }
2853
2854         btrfs_set_super_total_bytes(super_copy,
2855                         round_down(old_total + diff, fs_info->sectorsize));
2856         device->fs_devices->total_rw_bytes += diff;
2857
2858         btrfs_device_set_total_bytes(device, new_size);
2859         btrfs_device_set_disk_total_bytes(device, new_size);
2860         btrfs_clear_space_info_full(device->fs_info);
2861         if (list_empty(&device->post_commit_list))
2862                 list_add_tail(&device->post_commit_list,
2863                               &trans->transaction->dev_update_list);
2864         mutex_unlock(&fs_info->chunk_mutex);
2865
2866         return btrfs_update_device(trans, device);
2867 }
2868
2869 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2870 {
2871         struct btrfs_fs_info *fs_info = trans->fs_info;
2872         struct btrfs_root *root = fs_info->chunk_root;
2873         int ret;
2874         struct btrfs_path *path;
2875         struct btrfs_key key;
2876
2877         path = btrfs_alloc_path();
2878         if (!path)
2879                 return -ENOMEM;
2880
2881         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2882         key.offset = chunk_offset;
2883         key.type = BTRFS_CHUNK_ITEM_KEY;
2884
2885         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2886         if (ret < 0)
2887                 goto out;
2888         else if (ret > 0) { /* Logic error or corruption */
2889                 btrfs_handle_fs_error(fs_info, -ENOENT,
2890                                       "Failed lookup while freeing chunk.");
2891                 ret = -ENOENT;
2892                 goto out;
2893         }
2894
2895         ret = btrfs_del_item(trans, root, path);
2896         if (ret < 0)
2897                 btrfs_handle_fs_error(fs_info, ret,
2898                                       "Failed to delete chunk item.");
2899 out:
2900         btrfs_free_path(path);
2901         return ret;
2902 }
2903
2904 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2905 {
2906         struct btrfs_super_block *super_copy = fs_info->super_copy;
2907         struct btrfs_disk_key *disk_key;
2908         struct btrfs_chunk *chunk;
2909         u8 *ptr;
2910         int ret = 0;
2911         u32 num_stripes;
2912         u32 array_size;
2913         u32 len = 0;
2914         u32 cur;
2915         struct btrfs_key key;
2916
2917         lockdep_assert_held(&fs_info->chunk_mutex);
2918         array_size = btrfs_super_sys_array_size(super_copy);
2919
2920         ptr = super_copy->sys_chunk_array;
2921         cur = 0;
2922
2923         while (cur < array_size) {
2924                 disk_key = (struct btrfs_disk_key *)ptr;
2925                 btrfs_disk_key_to_cpu(&key, disk_key);
2926
2927                 len = sizeof(*disk_key);
2928
2929                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2930                         chunk = (struct btrfs_chunk *)(ptr + len);
2931                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2932                         len += btrfs_chunk_item_size(num_stripes);
2933                 } else {
2934                         ret = -EIO;
2935                         break;
2936                 }
2937                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2938                     key.offset == chunk_offset) {
2939                         memmove(ptr, ptr + len, array_size - (cur + len));
2940                         array_size -= len;
2941                         btrfs_set_super_sys_array_size(super_copy, array_size);
2942                 } else {
2943                         ptr += len;
2944                         cur += len;
2945                 }
2946         }
2947         return ret;
2948 }
2949
2950 /*
2951  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2952  * @logical: Logical block offset in bytes.
2953  * @length: Length of extent in bytes.
2954  *
2955  * Return: Chunk mapping or ERR_PTR.
2956  */
2957 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2958                                        u64 logical, u64 length)
2959 {
2960         struct extent_map_tree *em_tree;
2961         struct extent_map *em;
2962
2963         em_tree = &fs_info->mapping_tree;
2964         read_lock(&em_tree->lock);
2965         em = lookup_extent_mapping(em_tree, logical, length);
2966         read_unlock(&em_tree->lock);
2967
2968         if (!em) {
2969                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2970                            logical, length);
2971                 return ERR_PTR(-EINVAL);
2972         }
2973
2974         if (em->start > logical || em->start + em->len < logical) {
2975                 btrfs_crit(fs_info,
2976                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2977                            logical, length, em->start, em->start + em->len);
2978                 free_extent_map(em);
2979                 return ERR_PTR(-EINVAL);
2980         }
2981
2982         /* callers are responsible for dropping em's ref. */
2983         return em;
2984 }
2985
2986 static int remove_chunk_item(struct btrfs_trans_handle *trans,
2987                              struct map_lookup *map, u64 chunk_offset)
2988 {
2989         int i;
2990
2991         /*
2992          * Removing chunk items and updating the device items in the chunks btree
2993          * requires holding the chunk_mutex.
2994          * See the comment at btrfs_chunk_alloc() for the details.
2995          */
2996         lockdep_assert_held(&trans->fs_info->chunk_mutex);
2997
2998         for (i = 0; i < map->num_stripes; i++) {
2999                 int ret;
3000
3001                 ret = btrfs_update_device(trans, map->stripes[i].dev);
3002                 if (ret)
3003                         return ret;
3004         }
3005
3006         return btrfs_free_chunk(trans, chunk_offset);
3007 }
3008
3009 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3010 {
3011         struct btrfs_fs_info *fs_info = trans->fs_info;
3012         struct extent_map *em;
3013         struct map_lookup *map;
3014         u64 dev_extent_len = 0;
3015         int i, ret = 0;
3016         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3017
3018         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3019         if (IS_ERR(em)) {
3020                 /*
3021                  * This is a logic error, but we don't want to just rely on the
3022                  * user having built with ASSERT enabled, so if ASSERT doesn't
3023                  * do anything we still error out.
3024                  */
3025                 ASSERT(0);
3026                 return PTR_ERR(em);
3027         }
3028         map = em->map_lookup;
3029
3030         /*
3031          * First delete the device extent items from the devices btree.
3032          * We take the device_list_mutex to avoid racing with the finishing phase
3033          * of a device replace operation. See the comment below before acquiring
3034          * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3035          * because that can result in a deadlock when deleting the device extent
3036          * items from the devices btree - COWing an extent buffer from the btree
3037          * may result in allocating a new metadata chunk, which would attempt to
3038          * lock again fs_info->chunk_mutex.
3039          */
3040         mutex_lock(&fs_devices->device_list_mutex);
3041         for (i = 0; i < map->num_stripes; i++) {
3042                 struct btrfs_device *device = map->stripes[i].dev;
3043                 ret = btrfs_free_dev_extent(trans, device,
3044                                             map->stripes[i].physical,
3045                                             &dev_extent_len);
3046                 if (ret) {
3047                         mutex_unlock(&fs_devices->device_list_mutex);
3048                         btrfs_abort_transaction(trans, ret);
3049                         goto out;
3050                 }
3051
3052                 if (device->bytes_used > 0) {
3053                         mutex_lock(&fs_info->chunk_mutex);
3054                         btrfs_device_set_bytes_used(device,
3055                                         device->bytes_used - dev_extent_len);
3056                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3057                         btrfs_clear_space_info_full(fs_info);
3058                         mutex_unlock(&fs_info->chunk_mutex);
3059                 }
3060         }
3061         mutex_unlock(&fs_devices->device_list_mutex);
3062
3063         /*
3064          * We acquire fs_info->chunk_mutex for 2 reasons:
3065          *
3066          * 1) Just like with the first phase of the chunk allocation, we must
3067          *    reserve system space, do all chunk btree updates and deletions, and
3068          *    update the system chunk array in the superblock while holding this
3069          *    mutex. This is for similar reasons as explained on the comment at
3070          *    the top of btrfs_chunk_alloc();
3071          *
3072          * 2) Prevent races with the final phase of a device replace operation
3073          *    that replaces the device object associated with the map's stripes,
3074          *    because the device object's id can change at any time during that
3075          *    final phase of the device replace operation
3076          *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3077          *    replaced device and then see it with an ID of
3078          *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3079          *    the device item, which does not exists on the chunk btree.
3080          *    The finishing phase of device replace acquires both the
3081          *    device_list_mutex and the chunk_mutex, in that order, so we are
3082          *    safe by just acquiring the chunk_mutex.
3083          */
3084         trans->removing_chunk = true;
3085         mutex_lock(&fs_info->chunk_mutex);
3086
3087         check_system_chunk(trans, map->type);
3088
3089         ret = remove_chunk_item(trans, map, chunk_offset);
3090         /*
3091          * Normally we should not get -ENOSPC since we reserved space before
3092          * through the call to check_system_chunk().
3093          *
3094          * Despite our system space_info having enough free space, we may not
3095          * be able to allocate extents from its block groups, because all have
3096          * an incompatible profile, which will force us to allocate a new system
3097          * block group with the right profile, or right after we called
3098          * check_system_space() above, a scrub turned the only system block group
3099          * with enough free space into RO mode.
3100          * This is explained with more detail at do_chunk_alloc().
3101          *
3102          * So if we get -ENOSPC, allocate a new system chunk and retry once.
3103          */
3104         if (ret == -ENOSPC) {
3105                 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3106                 struct btrfs_block_group *sys_bg;
3107
3108                 sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3109                 if (IS_ERR(sys_bg)) {
3110                         ret = PTR_ERR(sys_bg);
3111                         btrfs_abort_transaction(trans, ret);
3112                         goto out;
3113                 }
3114
3115                 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3116                 if (ret) {
3117                         btrfs_abort_transaction(trans, ret);
3118                         goto out;
3119                 }
3120
3121                 ret = remove_chunk_item(trans, map, chunk_offset);
3122                 if (ret) {
3123                         btrfs_abort_transaction(trans, ret);
3124                         goto out;
3125                 }
3126         } else if (ret) {
3127                 btrfs_abort_transaction(trans, ret);
3128                 goto out;
3129         }
3130
3131         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3132
3133         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3134                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3135                 if (ret) {
3136                         btrfs_abort_transaction(trans, ret);
3137                         goto out;
3138                 }
3139         }
3140
3141         mutex_unlock(&fs_info->chunk_mutex);
3142         trans->removing_chunk = false;
3143
3144         /*
3145          * We are done with chunk btree updates and deletions, so release the
3146          * system space we previously reserved (with check_system_chunk()).
3147          */
3148         btrfs_trans_release_chunk_metadata(trans);
3149
3150         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3151         if (ret) {
3152                 btrfs_abort_transaction(trans, ret);
3153                 goto out;
3154         }
3155
3156 out:
3157         if (trans->removing_chunk) {
3158                 mutex_unlock(&fs_info->chunk_mutex);
3159                 trans->removing_chunk = false;
3160         }
3161         /* once for us */
3162         free_extent_map(em);
3163         return ret;
3164 }
3165
3166 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3167 {
3168         struct btrfs_root *root = fs_info->chunk_root;
3169         struct btrfs_trans_handle *trans;
3170         struct btrfs_block_group *block_group;
3171         u64 length;
3172         int ret;
3173
3174         /*
3175          * Prevent races with automatic removal of unused block groups.
3176          * After we relocate and before we remove the chunk with offset
3177          * chunk_offset, automatic removal of the block group can kick in,
3178          * resulting in a failure when calling btrfs_remove_chunk() below.
3179          *
3180          * Make sure to acquire this mutex before doing a tree search (dev
3181          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3182          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3183          * we release the path used to search the chunk/dev tree and before
3184          * the current task acquires this mutex and calls us.
3185          */
3186         lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3187
3188         /* step one, relocate all the extents inside this chunk */
3189         btrfs_scrub_pause(fs_info);
3190         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3191         btrfs_scrub_continue(fs_info);
3192         if (ret)
3193                 return ret;
3194
3195         block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3196         if (!block_group)
3197                 return -ENOENT;
3198         btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3199         length = block_group->length;
3200         btrfs_put_block_group(block_group);
3201
3202         /*
3203          * On a zoned file system, discard the whole block group, this will
3204          * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3205          * resetting the zone fails, don't treat it as a fatal problem from the
3206          * filesystem's point of view.
3207          */
3208         if (btrfs_is_zoned(fs_info)) {
3209                 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3210                 if (ret)
3211                         btrfs_info(fs_info,
3212                                 "failed to reset zone %llu after relocation",
3213                                 chunk_offset);
3214         }
3215
3216         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3217                                                      chunk_offset);
3218         if (IS_ERR(trans)) {
3219                 ret = PTR_ERR(trans);
3220                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3221                 return ret;
3222         }
3223
3224         /*
3225          * step two, delete the device extents and the
3226          * chunk tree entries
3227          */
3228         ret = btrfs_remove_chunk(trans, chunk_offset);
3229         btrfs_end_transaction(trans);
3230         return ret;
3231 }
3232
3233 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3234 {
3235         struct btrfs_root *chunk_root = fs_info->chunk_root;
3236         struct btrfs_path *path;
3237         struct extent_buffer *leaf;
3238         struct btrfs_chunk *chunk;
3239         struct btrfs_key key;
3240         struct btrfs_key found_key;
3241         u64 chunk_type;
3242         bool retried = false;
3243         int failed = 0;
3244         int ret;
3245
3246         path = btrfs_alloc_path();
3247         if (!path)
3248                 return -ENOMEM;
3249
3250 again:
3251         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3252         key.offset = (u64)-1;
3253         key.type = BTRFS_CHUNK_ITEM_KEY;
3254
3255         while (1) {
3256                 mutex_lock(&fs_info->reclaim_bgs_lock);
3257                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3258                 if (ret < 0) {
3259                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3260                         goto error;
3261                 }
3262                 BUG_ON(ret == 0); /* Corruption */
3263
3264                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3265                                           key.type);
3266                 if (ret)
3267                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3268                 if (ret < 0)
3269                         goto error;
3270                 if (ret > 0)
3271                         break;
3272
3273                 leaf = path->nodes[0];
3274                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3275
3276                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3277                                        struct btrfs_chunk);
3278                 chunk_type = btrfs_chunk_type(leaf, chunk);
3279                 btrfs_release_path(path);
3280
3281                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3282                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3283                         if (ret == -ENOSPC)
3284                                 failed++;
3285                         else
3286                                 BUG_ON(ret);
3287                 }
3288                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3289
3290                 if (found_key.offset == 0)
3291                         break;
3292                 key.offset = found_key.offset - 1;
3293         }
3294         ret = 0;
3295         if (failed && !retried) {
3296                 failed = 0;
3297                 retried = true;
3298                 goto again;
3299         } else if (WARN_ON(failed && retried)) {
3300                 ret = -ENOSPC;
3301         }
3302 error:
3303         btrfs_free_path(path);
3304         return ret;
3305 }
3306
3307 /*
3308  * return 1 : allocate a data chunk successfully,
3309  * return <0: errors during allocating a data chunk,
3310  * return 0 : no need to allocate a data chunk.
3311  */
3312 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3313                                       u64 chunk_offset)
3314 {
3315         struct btrfs_block_group *cache;
3316         u64 bytes_used;
3317         u64 chunk_type;
3318
3319         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3320         ASSERT(cache);
3321         chunk_type = cache->flags;
3322         btrfs_put_block_group(cache);
3323
3324         if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3325                 return 0;
3326
3327         spin_lock(&fs_info->data_sinfo->lock);
3328         bytes_used = fs_info->data_sinfo->bytes_used;
3329         spin_unlock(&fs_info->data_sinfo->lock);
3330
3331         if (!bytes_used) {
3332                 struct btrfs_trans_handle *trans;
3333                 int ret;
3334
3335                 trans = btrfs_join_transaction(fs_info->tree_root);
3336                 if (IS_ERR(trans))
3337                         return PTR_ERR(trans);
3338
3339                 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3340                 btrfs_end_transaction(trans);
3341                 if (ret < 0)
3342                         return ret;
3343                 return 1;
3344         }
3345
3346         return 0;
3347 }
3348
3349 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3350                                struct btrfs_balance_control *bctl)
3351 {
3352         struct btrfs_root *root = fs_info->tree_root;
3353         struct btrfs_trans_handle *trans;
3354         struct btrfs_balance_item *item;
3355         struct btrfs_disk_balance_args disk_bargs;
3356         struct btrfs_path *path;
3357         struct extent_buffer *leaf;
3358         struct btrfs_key key;
3359         int ret, err;
3360
3361         path = btrfs_alloc_path();
3362         if (!path)
3363                 return -ENOMEM;
3364
3365         trans = btrfs_start_transaction(root, 0);
3366         if (IS_ERR(trans)) {
3367                 btrfs_free_path(path);
3368                 return PTR_ERR(trans);
3369         }
3370
3371         key.objectid = BTRFS_BALANCE_OBJECTID;
3372         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3373         key.offset = 0;
3374
3375         ret = btrfs_insert_empty_item(trans, root, path, &key,
3376                                       sizeof(*item));
3377         if (ret)
3378                 goto out;
3379
3380         leaf = path->nodes[0];
3381         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3382
3383         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3384
3385         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3386         btrfs_set_balance_data(leaf, item, &disk_bargs);
3387         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3388         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3389         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3390         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3391
3392         btrfs_set_balance_flags(leaf, item, bctl->flags);
3393
3394         btrfs_mark_buffer_dirty(leaf);
3395 out:
3396         btrfs_free_path(path);
3397         err = btrfs_commit_transaction(trans);
3398         if (err && !ret)
3399                 ret = err;
3400         return ret;
3401 }
3402
3403 static int del_balance_item(struct btrfs_fs_info *fs_info)
3404 {
3405         struct btrfs_root *root = fs_info->tree_root;
3406         struct btrfs_trans_handle *trans;
3407         struct btrfs_path *path;
3408         struct btrfs_key key;
3409         int ret, err;
3410
3411         path = btrfs_alloc_path();
3412         if (!path)
3413                 return -ENOMEM;
3414
3415         trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3416         if (IS_ERR(trans)) {
3417                 btrfs_free_path(path);
3418                 return PTR_ERR(trans);
3419         }
3420
3421         key.objectid = BTRFS_BALANCE_OBJECTID;
3422         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3423         key.offset = 0;
3424
3425         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3426         if (ret < 0)
3427                 goto out;
3428         if (ret > 0) {
3429                 ret = -ENOENT;
3430                 goto out;
3431         }
3432
3433         ret = btrfs_del_item(trans, root, path);
3434 out:
3435         btrfs_free_path(path);
3436         err = btrfs_commit_transaction(trans);
3437         if (err && !ret)
3438                 ret = err;
3439         return ret;
3440 }
3441
3442 /*
3443  * This is a heuristic used to reduce the number of chunks balanced on
3444  * resume after balance was interrupted.
3445  */
3446 static void update_balance_args(struct btrfs_balance_control *bctl)
3447 {
3448         /*
3449          * Turn on soft mode for chunk types that were being converted.
3450          */
3451         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3452                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3453         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3454                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3455         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3456                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3457
3458         /*
3459          * Turn on usage filter if is not already used.  The idea is
3460          * that chunks that we have already balanced should be
3461          * reasonably full.  Don't do it for chunks that are being
3462          * converted - that will keep us from relocating unconverted
3463          * (albeit full) chunks.
3464          */
3465         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3466             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3467             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3468                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3469                 bctl->data.usage = 90;
3470         }
3471         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3472             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3473             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3474                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3475                 bctl->sys.usage = 90;
3476         }
3477         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3478             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3479             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3480                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3481                 bctl->meta.usage = 90;
3482         }
3483 }
3484
3485 /*
3486  * Clear the balance status in fs_info and delete the balance item from disk.
3487  */
3488 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3489 {
3490         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3491         int ret;
3492
3493         BUG_ON(!fs_info->balance_ctl);
3494
3495         spin_lock(&fs_info->balance_lock);
3496         fs_info->balance_ctl = NULL;
3497         spin_unlock(&fs_info->balance_lock);
3498
3499         kfree(bctl);
3500         ret = del_balance_item(fs_info);
3501         if (ret)
3502                 btrfs_handle_fs_error(fs_info, ret, NULL);
3503 }
3504
3505 /*
3506  * Balance filters.  Return 1 if chunk should be filtered out
3507  * (should not be balanced).
3508  */
3509 static int chunk_profiles_filter(u64 chunk_type,
3510                                  struct btrfs_balance_args *bargs)
3511 {
3512         chunk_type = chunk_to_extended(chunk_type) &
3513                                 BTRFS_EXTENDED_PROFILE_MASK;
3514
3515         if (bargs->profiles & chunk_type)
3516                 return 0;
3517
3518         return 1;
3519 }
3520
3521 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3522                               struct btrfs_balance_args *bargs)
3523 {
3524         struct btrfs_block_group *cache;
3525         u64 chunk_used;
3526         u64 user_thresh_min;
3527         u64 user_thresh_max;
3528         int ret = 1;
3529
3530         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3531         chunk_used = cache->used;
3532
3533         if (bargs->usage_min == 0)
3534                 user_thresh_min = 0;
3535         else
3536                 user_thresh_min = div_factor_fine(cache->length,
3537                                                   bargs->usage_min);
3538
3539         if (bargs->usage_max == 0)
3540                 user_thresh_max = 1;
3541         else if (bargs->usage_max > 100)
3542                 user_thresh_max = cache->length;
3543         else
3544                 user_thresh_max = div_factor_fine(cache->length,
3545                                                   bargs->usage_max);
3546
3547         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3548                 ret = 0;
3549
3550         btrfs_put_block_group(cache);
3551         return ret;
3552 }
3553
3554 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3555                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3556 {
3557         struct btrfs_block_group *cache;
3558         u64 chunk_used, user_thresh;
3559         int ret = 1;
3560
3561         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3562         chunk_used = cache->used;
3563
3564         if (bargs->usage_min == 0)
3565                 user_thresh = 1;
3566         else if (bargs->usage > 100)
3567                 user_thresh = cache->length;
3568         else
3569                 user_thresh = div_factor_fine(cache->length, bargs->usage);
3570
3571         if (chunk_used < user_thresh)
3572                 ret = 0;
3573
3574         btrfs_put_block_group(cache);
3575         return ret;
3576 }
3577
3578 static int chunk_devid_filter(struct extent_buffer *leaf,
3579                               struct btrfs_chunk *chunk,
3580                               struct btrfs_balance_args *bargs)
3581 {
3582         struct btrfs_stripe *stripe;
3583         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3584         int i;
3585
3586         for (i = 0; i < num_stripes; i++) {
3587                 stripe = btrfs_stripe_nr(chunk, i);
3588                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3589                         return 0;
3590         }
3591
3592         return 1;
3593 }
3594
3595 static u64 calc_data_stripes(u64 type, int num_stripes)
3596 {
3597         const int index = btrfs_bg_flags_to_raid_index(type);
3598         const int ncopies = btrfs_raid_array[index].ncopies;
3599         const int nparity = btrfs_raid_array[index].nparity;
3600
3601         return (num_stripes - nparity) / ncopies;
3602 }
3603
3604 /* [pstart, pend) */
3605 static int chunk_drange_filter(struct extent_buffer *leaf,
3606                                struct btrfs_chunk *chunk,
3607                                struct btrfs_balance_args *bargs)
3608 {
3609         struct btrfs_stripe *stripe;
3610         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3611         u64 stripe_offset;
3612         u64 stripe_length;
3613         u64 type;
3614         int factor;
3615         int i;
3616
3617         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3618                 return 0;
3619
3620         type = btrfs_chunk_type(leaf, chunk);
3621         factor = calc_data_stripes(type, num_stripes);
3622
3623         for (i = 0; i < num_stripes; i++) {
3624                 stripe = btrfs_stripe_nr(chunk, i);
3625                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3626                         continue;
3627
3628                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3629                 stripe_length = btrfs_chunk_length(leaf, chunk);
3630                 stripe_length = div_u64(stripe_length, factor);
3631
3632                 if (stripe_offset < bargs->pend &&
3633                     stripe_offset + stripe_length > bargs->pstart)
3634                         return 0;
3635         }
3636
3637         return 1;
3638 }
3639
3640 /* [vstart, vend) */
3641 static int chunk_vrange_filter(struct extent_buffer *leaf,
3642                                struct btrfs_chunk *chunk,
3643                                u64 chunk_offset,
3644                                struct btrfs_balance_args *bargs)
3645 {
3646         if (chunk_offset < bargs->vend &&
3647             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3648                 /* at least part of the chunk is inside this vrange */
3649                 return 0;
3650
3651         return 1;
3652 }
3653
3654 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3655                                struct btrfs_chunk *chunk,
3656                                struct btrfs_balance_args *bargs)
3657 {
3658         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3659
3660         if (bargs->stripes_min <= num_stripes
3661                         && num_stripes <= bargs->stripes_max)
3662                 return 0;
3663
3664         return 1;
3665 }
3666
3667 static int chunk_soft_convert_filter(u64 chunk_type,
3668                                      struct btrfs_balance_args *bargs)
3669 {
3670         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3671                 return 0;
3672
3673         chunk_type = chunk_to_extended(chunk_type) &
3674                                 BTRFS_EXTENDED_PROFILE_MASK;
3675
3676         if (bargs->target == chunk_type)
3677                 return 1;
3678
3679         return 0;
3680 }
3681
3682 static int should_balance_chunk(struct extent_buffer *leaf,
3683                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3684 {
3685         struct btrfs_fs_info *fs_info = leaf->fs_info;
3686         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3687         struct btrfs_balance_args *bargs = NULL;
3688         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3689
3690         /* type filter */
3691         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3692               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3693                 return 0;
3694         }
3695
3696         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3697                 bargs = &bctl->data;
3698         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3699                 bargs = &bctl->sys;
3700         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3701                 bargs = &bctl->meta;
3702
3703         /* profiles filter */
3704         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3705             chunk_profiles_filter(chunk_type, bargs)) {
3706                 return 0;
3707         }
3708
3709         /* usage filter */
3710         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3711             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3712                 return 0;
3713         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3714             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3715                 return 0;
3716         }
3717
3718         /* devid filter */
3719         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3720             chunk_devid_filter(leaf, chunk, bargs)) {
3721                 return 0;
3722         }
3723
3724         /* drange filter, makes sense only with devid filter */
3725         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3726             chunk_drange_filter(leaf, chunk, bargs)) {
3727                 return 0;
3728         }
3729
3730         /* vrange filter */
3731         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3732             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3733                 return 0;
3734         }
3735
3736         /* stripes filter */
3737         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3738             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3739                 return 0;
3740         }
3741
3742         /* soft profile changing mode */
3743         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3744             chunk_soft_convert_filter(chunk_type, bargs)) {
3745                 return 0;
3746         }
3747
3748         /*
3749          * limited by count, must be the last filter
3750          */
3751         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3752                 if (bargs->limit == 0)
3753                         return 0;
3754                 else
3755                         bargs->limit--;
3756         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3757                 /*
3758                  * Same logic as the 'limit' filter; the minimum cannot be
3759                  * determined here because we do not have the global information
3760                  * about the count of all chunks that satisfy the filters.
3761                  */
3762                 if (bargs->limit_max == 0)
3763                         return 0;
3764                 else
3765                         bargs->limit_max--;
3766         }
3767
3768         return 1;
3769 }
3770
3771 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3772 {
3773         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3774         struct btrfs_root *chunk_root = fs_info->chunk_root;
3775         u64 chunk_type;
3776         struct btrfs_chunk *chunk;
3777         struct btrfs_path *path = NULL;
3778         struct btrfs_key key;
3779         struct btrfs_key found_key;
3780         struct extent_buffer *leaf;
3781         int slot;
3782         int ret;
3783         int enospc_errors = 0;
3784         bool counting = true;
3785         /* The single value limit and min/max limits use the same bytes in the */
3786         u64 limit_data = bctl->data.limit;
3787         u64 limit_meta = bctl->meta.limit;
3788         u64 limit_sys = bctl->sys.limit;
3789         u32 count_data = 0;
3790         u32 count_meta = 0;
3791         u32 count_sys = 0;
3792         int chunk_reserved = 0;
3793
3794         path = btrfs_alloc_path();
3795         if (!path) {
3796                 ret = -ENOMEM;
3797                 goto error;
3798         }
3799
3800         /* zero out stat counters */
3801         spin_lock(&fs_info->balance_lock);
3802         memset(&bctl->stat, 0, sizeof(bctl->stat));
3803         spin_unlock(&fs_info->balance_lock);
3804 again:
3805         if (!counting) {
3806                 /*
3807                  * The single value limit and min/max limits use the same bytes
3808                  * in the
3809                  */
3810                 bctl->data.limit = limit_data;
3811                 bctl->meta.limit = limit_meta;
3812                 bctl->sys.limit = limit_sys;
3813         }
3814         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3815         key.offset = (u64)-1;
3816         key.type = BTRFS_CHUNK_ITEM_KEY;
3817
3818         while (1) {
3819                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3820                     atomic_read(&fs_info->balance_cancel_req)) {
3821                         ret = -ECANCELED;
3822                         goto error;
3823                 }
3824
3825                 mutex_lock(&fs_info->reclaim_bgs_lock);
3826                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3827                 if (ret < 0) {
3828                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3829                         goto error;
3830                 }
3831
3832                 /*
3833                  * this shouldn't happen, it means the last relocate
3834                  * failed
3835                  */
3836                 if (ret == 0)
3837                         BUG(); /* FIXME break ? */
3838
3839                 ret = btrfs_previous_item(chunk_root, path, 0,
3840                                           BTRFS_CHUNK_ITEM_KEY);
3841                 if (ret) {
3842                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3843                         ret = 0;
3844                         break;
3845                 }
3846
3847                 leaf = path->nodes[0];
3848                 slot = path->slots[0];
3849                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3850
3851                 if (found_key.objectid != key.objectid) {
3852                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3853                         break;
3854                 }
3855
3856                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3857                 chunk_type = btrfs_chunk_type(leaf, chunk);
3858
3859                 if (!counting) {
3860                         spin_lock(&fs_info->balance_lock);
3861                         bctl->stat.considered++;
3862                         spin_unlock(&fs_info->balance_lock);
3863                 }
3864
3865                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3866
3867                 btrfs_release_path(path);
3868                 if (!ret) {
3869                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3870                         goto loop;
3871                 }
3872
3873                 if (counting) {
3874                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3875                         spin_lock(&fs_info->balance_lock);
3876                         bctl->stat.expected++;
3877                         spin_unlock(&fs_info->balance_lock);
3878
3879                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3880                                 count_data++;
3881                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3882                                 count_sys++;
3883                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3884                                 count_meta++;
3885
3886                         goto loop;
3887                 }
3888
3889                 /*
3890                  * Apply limit_min filter, no need to check if the LIMITS
3891                  * filter is used, limit_min is 0 by default
3892                  */
3893                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3894                                         count_data < bctl->data.limit_min)
3895                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3896                                         count_meta < bctl->meta.limit_min)
3897                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3898                                         count_sys < bctl->sys.limit_min)) {
3899                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3900                         goto loop;
3901                 }
3902
3903                 if (!chunk_reserved) {
3904                         /*
3905                          * We may be relocating the only data chunk we have,
3906                          * which could potentially end up with losing data's
3907                          * raid profile, so lets allocate an empty one in
3908                          * advance.
3909                          */
3910                         ret = btrfs_may_alloc_data_chunk(fs_info,
3911                                                          found_key.offset);
3912                         if (ret < 0) {
3913                                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3914                                 goto error;
3915                         } else if (ret == 1) {
3916                                 chunk_reserved = 1;
3917                         }
3918                 }
3919
3920                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3921                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3922                 if (ret == -ENOSPC) {
3923                         enospc_errors++;
3924                 } else if (ret == -ETXTBSY) {
3925                         btrfs_info(fs_info,
3926            "skipping relocation of block group %llu due to active swapfile",
3927                                    found_key.offset);
3928                         ret = 0;
3929                 } else if (ret) {
3930                         goto error;
3931                 } else {
3932                         spin_lock(&fs_info->balance_lock);
3933                         bctl->stat.completed++;
3934                         spin_unlock(&fs_info->balance_lock);
3935                 }
3936 loop:
3937                 if (found_key.offset == 0)
3938                         break;
3939                 key.offset = found_key.offset - 1;
3940         }
3941
3942         if (counting) {
3943                 btrfs_release_path(path);
3944                 counting = false;
3945                 goto again;
3946         }
3947 error:
3948         btrfs_free_path(path);
3949         if (enospc_errors) {
3950                 btrfs_info(fs_info, "%d enospc errors during balance",
3951                            enospc_errors);
3952                 if (!ret)
3953                         ret = -ENOSPC;
3954         }
3955
3956         return ret;
3957 }
3958
3959 /**
3960  * alloc_profile_is_valid - see if a given profile is valid and reduced
3961  * @flags: profile to validate
3962  * @extended: if true @flags is treated as an extended profile
3963  */
3964 static int alloc_profile_is_valid(u64 flags, int extended)
3965 {
3966         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3967                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3968
3969         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3970
3971         /* 1) check that all other bits are zeroed */
3972         if (flags & ~mask)
3973                 return 0;
3974
3975         /* 2) see if profile is reduced */
3976         if (flags == 0)
3977                 return !extended; /* "0" is valid for usual profiles */
3978
3979         return has_single_bit_set(flags);
3980 }
3981
3982 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3983 {
3984         /* cancel requested || normal exit path */
3985         return atomic_read(&fs_info->balance_cancel_req) ||
3986                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3987                  atomic_read(&fs_info->balance_cancel_req) == 0);
3988 }
3989
3990 /*
3991  * Validate target profile against allowed profiles and return true if it's OK.
3992  * Otherwise print the error message and return false.
3993  */
3994 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3995                 const struct btrfs_balance_args *bargs,
3996                 u64 allowed, const char *type)
3997 {
3998         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3999                 return true;
4000
4001         if (fs_info->sectorsize < PAGE_SIZE &&
4002                 bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
4003                 btrfs_err(fs_info,
4004                 "RAID56 is not yet supported for sectorsize %u with page size %lu",
4005                           fs_info->sectorsize, PAGE_SIZE);
4006                 return false;
4007         }
4008         /* Profile is valid and does not have bits outside of the allowed set */
4009         if (alloc_profile_is_valid(bargs->target, 1) &&
4010             (bargs->target & ~allowed) == 0)
4011                 return true;
4012
4013         btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4014                         type, btrfs_bg_type_to_raid_name(bargs->target));
4015         return false;
4016 }
4017
4018 /*
4019  * Fill @buf with textual description of balance filter flags @bargs, up to
4020  * @size_buf including the terminating null. The output may be trimmed if it
4021  * does not fit into the provided buffer.
4022  */
4023 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4024                                  u32 size_buf)
4025 {
4026         int ret;
4027         u32 size_bp = size_buf;
4028         char *bp = buf;
4029         u64 flags = bargs->flags;
4030         char tmp_buf[128] = {'\0'};
4031
4032         if (!flags)
4033                 return;
4034
4035 #define CHECK_APPEND_NOARG(a)                                           \
4036         do {                                                            \
4037                 ret = snprintf(bp, size_bp, (a));                       \
4038                 if (ret < 0 || ret >= size_bp)                          \
4039                         goto out_overflow;                              \
4040                 size_bp -= ret;                                         \
4041                 bp += ret;                                              \
4042         } while (0)
4043
4044 #define CHECK_APPEND_1ARG(a, v1)                                        \
4045         do {                                                            \
4046                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4047                 if (ret < 0 || ret >= size_bp)                          \
4048                         goto out_overflow;                              \
4049                 size_bp -= ret;                                         \
4050                 bp += ret;                                              \
4051         } while (0)
4052
4053 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
4054         do {                                                            \
4055                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
4056                 if (ret < 0 || ret >= size_bp)                          \
4057                         goto out_overflow;                              \
4058                 size_bp -= ret;                                         \
4059                 bp += ret;                                              \
4060         } while (0)
4061
4062         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4063                 CHECK_APPEND_1ARG("convert=%s,",
4064                                   btrfs_bg_type_to_raid_name(bargs->target));
4065
4066         if (flags & BTRFS_BALANCE_ARGS_SOFT)
4067                 CHECK_APPEND_NOARG("soft,");
4068
4069         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4070                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4071                                             sizeof(tmp_buf));
4072                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4073         }
4074
4075         if (flags & BTRFS_BALANCE_ARGS_USAGE)
4076                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4077
4078         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4079                 CHECK_APPEND_2ARG("usage=%u..%u,",
4080                                   bargs->usage_min, bargs->usage_max);
4081
4082         if (flags & BTRFS_BALANCE_ARGS_DEVID)
4083                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4084
4085         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4086                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4087                                   bargs->pstart, bargs->pend);
4088
4089         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4090                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4091                                   bargs->vstart, bargs->vend);
4092
4093         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4094                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4095
4096         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4097                 CHECK_APPEND_2ARG("limit=%u..%u,",
4098                                 bargs->limit_min, bargs->limit_max);
4099
4100         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4101                 CHECK_APPEND_2ARG("stripes=%u..%u,",
4102                                   bargs->stripes_min, bargs->stripes_max);
4103
4104 #undef CHECK_APPEND_2ARG
4105 #undef CHECK_APPEND_1ARG
4106 #undef CHECK_APPEND_NOARG
4107
4108 out_overflow:
4109
4110         if (size_bp < size_buf)
4111                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4112         else
4113                 buf[0] = '\0';
4114 }
4115
4116 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4117 {
4118         u32 size_buf = 1024;
4119         char tmp_buf[192] = {'\0'};
4120         char *buf;
4121         char *bp;
4122         u32 size_bp = size_buf;
4123         int ret;
4124         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4125
4126         buf = kzalloc(size_buf, GFP_KERNEL);
4127         if (!buf)
4128                 return;
4129
4130         bp = buf;
4131
4132 #define CHECK_APPEND_1ARG(a, v1)                                        \
4133         do {                                                            \
4134                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4135                 if (ret < 0 || ret >= size_bp)                          \
4136                         goto out_overflow;                              \
4137                 size_bp -= ret;                                         \
4138                 bp += ret;                                              \
4139         } while (0)
4140
4141         if (bctl->flags & BTRFS_BALANCE_FORCE)
4142                 CHECK_APPEND_1ARG("%s", "-f ");
4143
4144         if (bctl->flags & BTRFS_BALANCE_DATA) {
4145                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4146                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4147         }
4148
4149         if (bctl->flags & BTRFS_BALANCE_METADATA) {
4150                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4151                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4152         }
4153
4154         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4155                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4156                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4157         }
4158
4159 #undef CHECK_APPEND_1ARG
4160
4161 out_overflow:
4162
4163         if (size_bp < size_buf)
4164                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4165         btrfs_info(fs_info, "balance: %s %s",
4166                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
4167                    "resume" : "start", buf);
4168
4169         kfree(buf);
4170 }
4171
4172 /*
4173  * Should be called with balance mutexe held
4174  */
4175 int btrfs_balance(struct btrfs_fs_info *fs_info,
4176                   struct btrfs_balance_control *bctl,
4177                   struct btrfs_ioctl_balance_args *bargs)
4178 {
4179         u64 meta_target, data_target;
4180         u64 allowed;
4181         int mixed = 0;
4182         int ret;
4183         u64 num_devices;
4184         unsigned seq;
4185         bool reducing_redundancy;
4186         int i;
4187
4188         if (btrfs_fs_closing(fs_info) ||
4189             atomic_read(&fs_info->balance_pause_req) ||
4190             btrfs_should_cancel_balance(fs_info)) {
4191                 ret = -EINVAL;
4192                 goto out;
4193         }
4194
4195         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4196         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4197                 mixed = 1;
4198
4199         /*
4200          * In case of mixed groups both data and meta should be picked,
4201          * and identical options should be given for both of them.
4202          */
4203         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4204         if (mixed && (bctl->flags & allowed)) {
4205                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4206                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4207                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4208                         btrfs_err(fs_info,
4209           "balance: mixed groups data and metadata options must be the same");
4210                         ret = -EINVAL;
4211                         goto out;
4212                 }
4213         }
4214
4215         /*
4216          * rw_devices will not change at the moment, device add/delete/replace
4217          * are exclusive
4218          */
4219         num_devices = fs_info->fs_devices->rw_devices;
4220
4221         /*
4222          * SINGLE profile on-disk has no profile bit, but in-memory we have a
4223          * special bit for it, to make it easier to distinguish.  Thus we need
4224          * to set it manually, or balance would refuse the profile.
4225          */
4226         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4227         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4228                 if (num_devices >= btrfs_raid_array[i].devs_min)
4229                         allowed |= btrfs_raid_array[i].bg_flag;
4230
4231         if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4232             !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4233             !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4234                 ret = -EINVAL;
4235                 goto out;
4236         }
4237
4238         /*
4239          * Allow to reduce metadata or system integrity only if force set for
4240          * profiles with redundancy (copies, parity)
4241          */
4242         allowed = 0;
4243         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4244                 if (btrfs_raid_array[i].ncopies >= 2 ||
4245                     btrfs_raid_array[i].tolerated_failures >= 1)
4246                         allowed |= btrfs_raid_array[i].bg_flag;
4247         }
4248         do {
4249                 seq = read_seqbegin(&fs_info->profiles_lock);
4250
4251                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4252                      (fs_info->avail_system_alloc_bits & allowed) &&
4253                      !(bctl->sys.target & allowed)) ||
4254                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4255                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4256                      !(bctl->meta.target & allowed)))
4257                         reducing_redundancy = true;
4258                 else
4259                         reducing_redundancy = false;
4260
4261                 /* if we're not converting, the target field is uninitialized */
4262                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4263                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4264                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4265                         bctl->data.target : fs_info->avail_data_alloc_bits;
4266         } while (read_seqretry(&fs_info->profiles_lock, seq));
4267
4268         if (reducing_redundancy) {
4269                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4270                         btrfs_info(fs_info,
4271                            "balance: force reducing metadata redundancy");
4272                 } else {
4273                         btrfs_err(fs_info,
4274         "balance: reduces metadata redundancy, use --force if you want this");
4275                         ret = -EINVAL;
4276                         goto out;
4277                 }
4278         }
4279
4280         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4281                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4282                 btrfs_warn(fs_info,
4283         "balance: metadata profile %s has lower redundancy than data profile %s",
4284                                 btrfs_bg_type_to_raid_name(meta_target),
4285                                 btrfs_bg_type_to_raid_name(data_target));
4286         }
4287
4288         ret = insert_balance_item(fs_info, bctl);
4289         if (ret && ret != -EEXIST)
4290                 goto out;
4291
4292         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4293                 BUG_ON(ret == -EEXIST);
4294                 BUG_ON(fs_info->balance_ctl);
4295                 spin_lock(&fs_info->balance_lock);
4296                 fs_info->balance_ctl = bctl;
4297                 spin_unlock(&fs_info->balance_lock);
4298         } else {
4299                 BUG_ON(ret != -EEXIST);
4300                 spin_lock(&fs_info->balance_lock);
4301                 update_balance_args(bctl);
4302                 spin_unlock(&fs_info->balance_lock);
4303         }
4304
4305         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4306         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4307         describe_balance_start_or_resume(fs_info);
4308         mutex_unlock(&fs_info->balance_mutex);
4309
4310         ret = __btrfs_balance(fs_info);
4311
4312         mutex_lock(&fs_info->balance_mutex);
4313         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4314                 btrfs_info(fs_info, "balance: paused");
4315         /*
4316          * Balance can be canceled by:
4317          *
4318          * - Regular cancel request
4319          *   Then ret == -ECANCELED and balance_cancel_req > 0
4320          *
4321          * - Fatal signal to "btrfs" process
4322          *   Either the signal caught by wait_reserve_ticket() and callers
4323          *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4324          *   got -ECANCELED.
4325          *   Either way, in this case balance_cancel_req = 0, and
4326          *   ret == -EINTR or ret == -ECANCELED.
4327          *
4328          * So here we only check the return value to catch canceled balance.
4329          */
4330         else if (ret == -ECANCELED || ret == -EINTR)
4331                 btrfs_info(fs_info, "balance: canceled");
4332         else
4333                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4334
4335         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4336
4337         if (bargs) {
4338                 memset(bargs, 0, sizeof(*bargs));
4339                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4340         }
4341
4342         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4343             balance_need_close(fs_info)) {
4344                 reset_balance_state(fs_info);
4345                 btrfs_exclop_finish(fs_info);
4346         }
4347
4348         wake_up(&fs_info->balance_wait_q);
4349
4350         return ret;
4351 out:
4352         if (bctl->flags & BTRFS_BALANCE_RESUME)
4353                 reset_balance_state(fs_info);
4354         else
4355                 kfree(bctl);
4356         btrfs_exclop_finish(fs_info);
4357
4358         return ret;
4359 }
4360
4361 static int balance_kthread(void *data)
4362 {
4363         struct btrfs_fs_info *fs_info = data;
4364         int ret = 0;
4365
4366         mutex_lock(&fs_info->balance_mutex);
4367         if (fs_info->balance_ctl)
4368                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4369         mutex_unlock(&fs_info->balance_mutex);
4370
4371         return ret;
4372 }
4373
4374 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4375 {
4376         struct task_struct *tsk;
4377
4378         mutex_lock(&fs_info->balance_mutex);
4379         if (!fs_info->balance_ctl) {
4380                 mutex_unlock(&fs_info->balance_mutex);
4381                 return 0;
4382         }
4383         mutex_unlock(&fs_info->balance_mutex);
4384
4385         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4386                 btrfs_info(fs_info, "balance: resume skipped");
4387                 return 0;
4388         }
4389
4390         /*
4391          * A ro->rw remount sequence should continue with the paused balance
4392          * regardless of who pauses it, system or the user as of now, so set
4393          * the resume flag.
4394          */
4395         spin_lock(&fs_info->balance_lock);
4396         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4397         spin_unlock(&fs_info->balance_lock);
4398
4399         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4400         return PTR_ERR_OR_ZERO(tsk);
4401 }
4402
4403 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4404 {
4405         struct btrfs_balance_control *bctl;
4406         struct btrfs_balance_item *item;
4407         struct btrfs_disk_balance_args disk_bargs;
4408         struct btrfs_path *path;
4409         struct extent_buffer *leaf;
4410         struct btrfs_key key;
4411         int ret;
4412
4413         path = btrfs_alloc_path();
4414         if (!path)
4415                 return -ENOMEM;
4416
4417         key.objectid = BTRFS_BALANCE_OBJECTID;
4418         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4419         key.offset = 0;
4420
4421         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4422         if (ret < 0)
4423                 goto out;
4424         if (ret > 0) { /* ret = -ENOENT; */
4425                 ret = 0;
4426                 goto out;
4427         }
4428
4429         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4430         if (!bctl) {
4431                 ret = -ENOMEM;
4432                 goto out;
4433         }
4434
4435         leaf = path->nodes[0];
4436         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4437
4438         bctl->flags = btrfs_balance_flags(leaf, item);
4439         bctl->flags |= BTRFS_BALANCE_RESUME;
4440
4441         btrfs_balance_data(leaf, item, &disk_bargs);
4442         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4443         btrfs_balance_meta(leaf, item, &disk_bargs);
4444         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4445         btrfs_balance_sys(leaf, item, &disk_bargs);
4446         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4447
4448         /*
4449          * This should never happen, as the paused balance state is recovered
4450          * during mount without any chance of other exclusive ops to collide.
4451          *
4452          * This gives the exclusive op status to balance and keeps in paused
4453          * state until user intervention (cancel or umount). If the ownership
4454          * cannot be assigned, show a message but do not fail. The balance
4455          * is in a paused state and must have fs_info::balance_ctl properly
4456          * set up.
4457          */
4458         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4459                 btrfs_warn(fs_info,
4460         "balance: cannot set exclusive op status, resume manually");
4461
4462         btrfs_release_path(path);
4463
4464         mutex_lock(&fs_info->balance_mutex);
4465         BUG_ON(fs_info->balance_ctl);
4466         spin_lock(&fs_info->balance_lock);
4467         fs_info->balance_ctl = bctl;
4468         spin_unlock(&fs_info->balance_lock);
4469         mutex_unlock(&fs_info->balance_mutex);
4470 out:
4471         btrfs_free_path(path);
4472         return ret;
4473 }
4474
4475 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4476 {
4477         int ret = 0;
4478
4479         mutex_lock(&fs_info->balance_mutex);
4480         if (!fs_info->balance_ctl) {
4481                 mutex_unlock(&fs_info->balance_mutex);
4482                 return -ENOTCONN;
4483         }
4484
4485         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4486                 atomic_inc(&fs_info->balance_pause_req);
4487                 mutex_unlock(&fs_info->balance_mutex);
4488
4489                 wait_event(fs_info->balance_wait_q,
4490                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4491
4492                 mutex_lock(&fs_info->balance_mutex);
4493                 /* we are good with balance_ctl ripped off from under us */
4494                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4495                 atomic_dec(&fs_info->balance_pause_req);
4496         } else {
4497                 ret = -ENOTCONN;
4498         }
4499
4500         mutex_unlock(&fs_info->balance_mutex);
4501         return ret;
4502 }
4503
4504 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4505 {
4506         mutex_lock(&fs_info->balance_mutex);
4507         if (!fs_info->balance_ctl) {
4508                 mutex_unlock(&fs_info->balance_mutex);
4509                 return -ENOTCONN;
4510         }
4511
4512         /*
4513          * A paused balance with the item stored on disk can be resumed at
4514          * mount time if the mount is read-write. Otherwise it's still paused
4515          * and we must not allow cancelling as it deletes the item.
4516          */
4517         if (sb_rdonly(fs_info->sb)) {
4518                 mutex_unlock(&fs_info->balance_mutex);
4519                 return -EROFS;
4520         }
4521
4522         atomic_inc(&fs_info->balance_cancel_req);
4523         /*
4524          * if we are running just wait and return, balance item is
4525          * deleted in btrfs_balance in this case
4526          */
4527         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4528                 mutex_unlock(&fs_info->balance_mutex);
4529                 wait_event(fs_info->balance_wait_q,
4530                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4531                 mutex_lock(&fs_info->balance_mutex);
4532         } else {
4533                 mutex_unlock(&fs_info->balance_mutex);
4534                 /*
4535                  * Lock released to allow other waiters to continue, we'll
4536                  * reexamine the status again.
4537                  */
4538                 mutex_lock(&fs_info->balance_mutex);
4539
4540                 if (fs_info->balance_ctl) {
4541                         reset_balance_state(fs_info);
4542                         btrfs_exclop_finish(fs_info);
4543                         btrfs_info(fs_info, "balance: canceled");
4544                 }
4545         }
4546
4547         BUG_ON(fs_info->balance_ctl ||
4548                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4549         atomic_dec(&fs_info->balance_cancel_req);
4550         mutex_unlock(&fs_info->balance_mutex);
4551         return 0;
4552 }
4553
4554 int btrfs_uuid_scan_kthread(void *data)
4555 {
4556         struct btrfs_fs_info *fs_info = data;
4557         struct btrfs_root *root = fs_info->tree_root;
4558         struct btrfs_key key;
4559         struct btrfs_path *path = NULL;
4560         int ret = 0;
4561         struct extent_buffer *eb;
4562         int slot;
4563         struct btrfs_root_item root_item;
4564         u32 item_size;
4565         struct btrfs_trans_handle *trans = NULL;
4566         bool closing = false;
4567
4568         path = btrfs_alloc_path();
4569         if (!path) {
4570                 ret = -ENOMEM;
4571                 goto out;
4572         }
4573
4574         key.objectid = 0;
4575         key.type = BTRFS_ROOT_ITEM_KEY;
4576         key.offset = 0;
4577
4578         while (1) {
4579                 if (btrfs_fs_closing(fs_info)) {
4580                         closing = true;
4581                         break;
4582                 }
4583                 ret = btrfs_search_forward(root, &key, path,
4584                                 BTRFS_OLDEST_GENERATION);
4585                 if (ret) {
4586                         if (ret > 0)
4587                                 ret = 0;
4588                         break;
4589                 }
4590
4591                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4592                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4593                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4594                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4595                         goto skip;
4596
4597                 eb = path->nodes[0];
4598                 slot = path->slots[0];
4599                 item_size = btrfs_item_size_nr(eb, slot);
4600                 if (item_size < sizeof(root_item))
4601                         goto skip;
4602
4603                 read_extent_buffer(eb, &root_item,
4604                                    btrfs_item_ptr_offset(eb, slot),
4605                                    (int)sizeof(root_item));
4606                 if (btrfs_root_refs(&root_item) == 0)
4607                         goto skip;
4608
4609                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4610                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4611                         if (trans)
4612                                 goto update_tree;
4613
4614                         btrfs_release_path(path);
4615                         /*
4616                          * 1 - subvol uuid item
4617                          * 1 - received_subvol uuid item
4618                          */
4619                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4620                         if (IS_ERR(trans)) {
4621                                 ret = PTR_ERR(trans);
4622                                 break;
4623                         }
4624                         continue;
4625                 } else {
4626                         goto skip;
4627                 }
4628 update_tree:
4629                 btrfs_release_path(path);
4630                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4631                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4632                                                   BTRFS_UUID_KEY_SUBVOL,
4633                                                   key.objectid);
4634                         if (ret < 0) {
4635                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4636                                         ret);
4637                                 break;
4638                         }
4639                 }
4640
4641                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4642                         ret = btrfs_uuid_tree_add(trans,
4643                                                   root_item.received_uuid,
4644                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4645                                                   key.objectid);
4646                         if (ret < 0) {
4647                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4648                                         ret);
4649                                 break;
4650                         }
4651                 }
4652
4653 skip:
4654                 btrfs_release_path(path);
4655                 if (trans) {
4656                         ret = btrfs_end_transaction(trans);
4657                         trans = NULL;
4658                         if (ret)
4659                                 break;
4660                 }
4661
4662                 if (key.offset < (u64)-1) {
4663                         key.offset++;
4664                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4665                         key.offset = 0;
4666                         key.type = BTRFS_ROOT_ITEM_KEY;
4667                 } else if (key.objectid < (u64)-1) {
4668                         key.offset = 0;
4669                         key.type = BTRFS_ROOT_ITEM_KEY;
4670                         key.objectid++;
4671                 } else {
4672                         break;
4673                 }
4674                 cond_resched();
4675         }
4676
4677 out:
4678         btrfs_free_path(path);
4679         if (trans && !IS_ERR(trans))
4680                 btrfs_end_transaction(trans);
4681         if (ret)
4682                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4683         else if (!closing)
4684                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4685         up(&fs_info->uuid_tree_rescan_sem);
4686         return 0;
4687 }
4688
4689 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4690 {
4691         struct btrfs_trans_handle *trans;
4692         struct btrfs_root *tree_root = fs_info->tree_root;
4693         struct btrfs_root *uuid_root;
4694         struct task_struct *task;
4695         int ret;
4696
4697         /*
4698          * 1 - root node
4699          * 1 - root item
4700          */
4701         trans = btrfs_start_transaction(tree_root, 2);
4702         if (IS_ERR(trans))
4703                 return PTR_ERR(trans);
4704
4705         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4706         if (IS_ERR(uuid_root)) {
4707                 ret = PTR_ERR(uuid_root);
4708                 btrfs_abort_transaction(trans, ret);
4709                 btrfs_end_transaction(trans);
4710                 return ret;
4711         }
4712
4713         fs_info->uuid_root = uuid_root;
4714
4715         ret = btrfs_commit_transaction(trans);
4716         if (ret)
4717                 return ret;
4718
4719         down(&fs_info->uuid_tree_rescan_sem);
4720         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4721         if (IS_ERR(task)) {
4722                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4723                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4724                 up(&fs_info->uuid_tree_rescan_sem);
4725                 return PTR_ERR(task);
4726         }
4727
4728         return 0;
4729 }
4730
4731 /*
4732  * shrinking a device means finding all of the device extents past
4733  * the new size, and then following the back refs to the chunks.
4734  * The chunk relocation code actually frees the device extent
4735  */
4736 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4737 {
4738         struct btrfs_fs_info *fs_info = device->fs_info;
4739         struct btrfs_root *root = fs_info->dev_root;
4740         struct btrfs_trans_handle *trans;
4741         struct btrfs_dev_extent *dev_extent = NULL;
4742         struct btrfs_path *path;
4743         u64 length;
4744         u64 chunk_offset;
4745         int ret;
4746         int slot;
4747         int failed = 0;
4748         bool retried = false;
4749         struct extent_buffer *l;
4750         struct btrfs_key key;
4751         struct btrfs_super_block *super_copy = fs_info->super_copy;
4752         u64 old_total = btrfs_super_total_bytes(super_copy);
4753         u64 old_size = btrfs_device_get_total_bytes(device);
4754         u64 diff;
4755         u64 start;
4756
4757         new_size = round_down(new_size, fs_info->sectorsize);
4758         start = new_size;
4759         diff = round_down(old_size - new_size, fs_info->sectorsize);
4760
4761         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4762                 return -EINVAL;
4763
4764         path = btrfs_alloc_path();
4765         if (!path)
4766                 return -ENOMEM;
4767
4768         path->reada = READA_BACK;
4769
4770         trans = btrfs_start_transaction(root, 0);
4771         if (IS_ERR(trans)) {
4772                 btrfs_free_path(path);
4773                 return PTR_ERR(trans);
4774         }
4775
4776         mutex_lock(&fs_info->chunk_mutex);
4777
4778         btrfs_device_set_total_bytes(device, new_size);
4779         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4780                 device->fs_devices->total_rw_bytes -= diff;
4781                 atomic64_sub(diff, &fs_info->free_chunk_space);
4782         }
4783
4784         /*
4785          * Once the device's size has been set to the new size, ensure all
4786          * in-memory chunks are synced to disk so that the loop below sees them
4787          * and relocates them accordingly.
4788          */
4789         if (contains_pending_extent(device, &start, diff)) {
4790                 mutex_unlock(&fs_info->chunk_mutex);
4791                 ret = btrfs_commit_transaction(trans);
4792                 if (ret)
4793                         goto done;
4794         } else {
4795                 mutex_unlock(&fs_info->chunk_mutex);
4796                 btrfs_end_transaction(trans);
4797         }
4798
4799 again:
4800         key.objectid = device->devid;
4801         key.offset = (u64)-1;
4802         key.type = BTRFS_DEV_EXTENT_KEY;
4803
4804         do {
4805                 mutex_lock(&fs_info->reclaim_bgs_lock);
4806                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4807                 if (ret < 0) {
4808                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4809                         goto done;
4810                 }
4811
4812                 ret = btrfs_previous_item(root, path, 0, key.type);
4813                 if (ret) {
4814                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4815                         if (ret < 0)
4816                                 goto done;
4817                         ret = 0;
4818                         btrfs_release_path(path);
4819                         break;
4820                 }
4821
4822                 l = path->nodes[0];
4823                 slot = path->slots[0];
4824                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4825
4826                 if (key.objectid != device->devid) {
4827                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4828                         btrfs_release_path(path);
4829                         break;
4830                 }
4831
4832                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4833                 length = btrfs_dev_extent_length(l, dev_extent);
4834
4835                 if (key.offset + length <= new_size) {
4836                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4837                         btrfs_release_path(path);
4838                         break;
4839                 }
4840
4841                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4842                 btrfs_release_path(path);
4843
4844                 /*
4845                  * We may be relocating the only data chunk we have,
4846                  * which could potentially end up with losing data's
4847                  * raid profile, so lets allocate an empty one in
4848                  * advance.
4849                  */
4850                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4851                 if (ret < 0) {
4852                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4853                         goto done;
4854                 }
4855
4856                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4857                 mutex_unlock(&fs_info->reclaim_bgs_lock);
4858                 if (ret == -ENOSPC) {
4859                         failed++;
4860                 } else if (ret) {
4861                         if (ret == -ETXTBSY) {
4862                                 btrfs_warn(fs_info,
4863                    "could not shrink block group %llu due to active swapfile",
4864                                            chunk_offset);
4865                         }
4866                         goto done;
4867                 }
4868         } while (key.offset-- > 0);
4869
4870         if (failed && !retried) {
4871                 failed = 0;
4872                 retried = true;
4873                 goto again;
4874         } else if (failed && retried) {
4875                 ret = -ENOSPC;
4876                 goto done;
4877         }
4878
4879         /* Shrinking succeeded, else we would be at "done". */
4880         trans = btrfs_start_transaction(root, 0);
4881         if (IS_ERR(trans)) {
4882                 ret = PTR_ERR(trans);
4883                 goto done;
4884         }
4885
4886         mutex_lock(&fs_info->chunk_mutex);
4887         /* Clear all state bits beyond the shrunk device size */
4888         clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4889                           CHUNK_STATE_MASK);
4890
4891         btrfs_device_set_disk_total_bytes(device, new_size);
4892         if (list_empty(&device->post_commit_list))
4893                 list_add_tail(&device->post_commit_list,
4894                               &trans->transaction->dev_update_list);
4895
4896         WARN_ON(diff > old_total);
4897         btrfs_set_super_total_bytes(super_copy,
4898                         round_down(old_total - diff, fs_info->sectorsize));
4899         mutex_unlock(&fs_info->chunk_mutex);
4900
4901         /* Now btrfs_update_device() will change the on-disk size. */
4902         ret = btrfs_update_device(trans, device);
4903         if (ret < 0) {
4904                 btrfs_abort_transaction(trans, ret);
4905                 btrfs_end_transaction(trans);
4906         } else {
4907                 ret = btrfs_commit_transaction(trans);
4908         }
4909 done:
4910         btrfs_free_path(path);
4911         if (ret) {
4912                 mutex_lock(&fs_info->chunk_mutex);
4913                 btrfs_device_set_total_bytes(device, old_size);
4914                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4915                         device->fs_devices->total_rw_bytes += diff;
4916                 atomic64_add(diff, &fs_info->free_chunk_space);
4917                 mutex_unlock(&fs_info->chunk_mutex);
4918         }
4919         return ret;
4920 }
4921
4922 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4923                            struct btrfs_key *key,
4924                            struct btrfs_chunk *chunk, int item_size)
4925 {
4926         struct btrfs_super_block *super_copy = fs_info->super_copy;
4927         struct btrfs_disk_key disk_key;
4928         u32 array_size;
4929         u8 *ptr;
4930
4931         lockdep_assert_held(&fs_info->chunk_mutex);
4932
4933         array_size = btrfs_super_sys_array_size(super_copy);
4934         if (array_size + item_size + sizeof(disk_key)
4935                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4936                 return -EFBIG;
4937
4938         ptr = super_copy->sys_chunk_array + array_size;
4939         btrfs_cpu_key_to_disk(&disk_key, key);
4940         memcpy(ptr, &disk_key, sizeof(disk_key));
4941         ptr += sizeof(disk_key);
4942         memcpy(ptr, chunk, item_size);
4943         item_size += sizeof(disk_key);
4944         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4945
4946         return 0;
4947 }
4948
4949 /*
4950  * sort the devices in descending order by max_avail, total_avail
4951  */
4952 static int btrfs_cmp_device_info(const void *a, const void *b)
4953 {
4954         const struct btrfs_device_info *di_a = a;
4955         const struct btrfs_device_info *di_b = b;
4956
4957         if (di_a->max_avail > di_b->max_avail)
4958                 return -1;
4959         if (di_a->max_avail < di_b->max_avail)
4960                 return 1;
4961         if (di_a->total_avail > di_b->total_avail)
4962                 return -1;
4963         if (di_a->total_avail < di_b->total_avail)
4964                 return 1;
4965         return 0;
4966 }
4967
4968 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4969 {
4970         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4971                 return;
4972
4973         btrfs_set_fs_incompat(info, RAID56);
4974 }
4975
4976 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4977 {
4978         if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4979                 return;
4980
4981         btrfs_set_fs_incompat(info, RAID1C34);
4982 }
4983
4984 /*
4985  * Structure used internally for __btrfs_alloc_chunk() function.
4986  * Wraps needed parameters.
4987  */
4988 struct alloc_chunk_ctl {
4989         u64 start;
4990         u64 type;
4991         /* Total number of stripes to allocate */
4992         int num_stripes;
4993         /* sub_stripes info for map */
4994         int sub_stripes;
4995         /* Stripes per device */
4996         int dev_stripes;
4997         /* Maximum number of devices to use */
4998         int devs_max;
4999         /* Minimum number of devices to use */
5000         int devs_min;
5001         /* ndevs has to be a multiple of this */
5002         int devs_increment;
5003         /* Number of copies */
5004         int ncopies;
5005         /* Number of stripes worth of bytes to store parity information */
5006         int nparity;
5007         u64 max_stripe_size;
5008         u64 max_chunk_size;
5009         u64 dev_extent_min;
5010         u64 stripe_size;
5011         u64 chunk_size;
5012         int ndevs;
5013 };
5014
5015 static void init_alloc_chunk_ctl_policy_regular(
5016                                 struct btrfs_fs_devices *fs_devices,
5017                                 struct alloc_chunk_ctl *ctl)
5018 {
5019         u64 type = ctl->type;
5020
5021         if (type & BTRFS_BLOCK_GROUP_DATA) {
5022                 ctl->max_stripe_size = SZ_1G;
5023                 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5024         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5025                 /* For larger filesystems, use larger metadata chunks */
5026                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5027                         ctl->max_stripe_size = SZ_1G;
5028                 else
5029                         ctl->max_stripe_size = SZ_256M;
5030                 ctl->max_chunk_size = ctl->max_stripe_size;
5031         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5032                 ctl->max_stripe_size = SZ_32M;
5033                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5034                 ctl->devs_max = min_t(int, ctl->devs_max,
5035                                       BTRFS_MAX_DEVS_SYS_CHUNK);
5036         } else {
5037                 BUG();
5038         }
5039
5040         /* We don't want a chunk larger than 10% of writable space */
5041         ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5042                                   ctl->max_chunk_size);
5043         ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5044 }
5045
5046 static void init_alloc_chunk_ctl_policy_zoned(
5047                                       struct btrfs_fs_devices *fs_devices,
5048                                       struct alloc_chunk_ctl *ctl)
5049 {
5050         u64 zone_size = fs_devices->fs_info->zone_size;
5051         u64 limit;
5052         int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5053         int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5054         u64 min_chunk_size = min_data_stripes * zone_size;
5055         u64 type = ctl->type;
5056
5057         ctl->max_stripe_size = zone_size;
5058         if (type & BTRFS_BLOCK_GROUP_DATA) {
5059                 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5060                                                  zone_size);
5061         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5062                 ctl->max_chunk_size = ctl->max_stripe_size;
5063         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5064                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5065                 ctl->devs_max = min_t(int, ctl->devs_max,
5066                                       BTRFS_MAX_DEVS_SYS_CHUNK);
5067         } else {
5068                 BUG();
5069         }
5070
5071         /* We don't want a chunk larger than 10% of writable space */
5072         limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5073                                zone_size),
5074                     min_chunk_size);
5075         ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5076         ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5077 }
5078
5079 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5080                                  struct alloc_chunk_ctl *ctl)
5081 {
5082         int index = btrfs_bg_flags_to_raid_index(ctl->type);
5083
5084         ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5085         ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5086         ctl->devs_max = btrfs_raid_array[index].devs_max;
5087         if (!ctl->devs_max)
5088                 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5089         ctl->devs_min = btrfs_raid_array[index].devs_min;
5090         ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5091         ctl->ncopies = btrfs_raid_array[index].ncopies;
5092         ctl->nparity = btrfs_raid_array[index].nparity;
5093         ctl->ndevs = 0;
5094
5095         switch (fs_devices->chunk_alloc_policy) {
5096         case BTRFS_CHUNK_ALLOC_REGULAR:
5097                 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5098                 break;
5099         case BTRFS_CHUNK_ALLOC_ZONED:
5100                 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5101                 break;
5102         default:
5103                 BUG();
5104         }
5105 }
5106
5107 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5108                               struct alloc_chunk_ctl *ctl,
5109                               struct btrfs_device_info *devices_info)
5110 {
5111         struct btrfs_fs_info *info = fs_devices->fs_info;
5112         struct btrfs_device *device;
5113         u64 total_avail;
5114         u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5115         int ret;
5116         int ndevs = 0;
5117         u64 max_avail;
5118         u64 dev_offset;
5119
5120         /*
5121          * in the first pass through the devices list, we gather information
5122          * about the available holes on each device.
5123          */
5124         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5125                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5126                         WARN(1, KERN_ERR
5127                                "BTRFS: read-only device in alloc_list\n");
5128                         continue;
5129                 }
5130
5131                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5132                                         &device->dev_state) ||
5133                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5134                         continue;
5135
5136                 if (device->total_bytes > device->bytes_used)
5137                         total_avail = device->total_bytes - device->bytes_used;
5138                 else
5139                         total_avail = 0;
5140
5141                 /* If there is no space on this device, skip it. */
5142                 if (total_avail < ctl->dev_extent_min)
5143                         continue;
5144
5145                 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5146                                            &max_avail);
5147                 if (ret && ret != -ENOSPC)
5148                         return ret;
5149
5150                 if (ret == 0)
5151                         max_avail = dev_extent_want;
5152
5153                 if (max_avail < ctl->dev_extent_min) {
5154                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
5155                                 btrfs_debug(info,
5156                         "%s: devid %llu has no free space, have=%llu want=%llu",
5157                                             __func__, device->devid, max_avail,
5158                                             ctl->dev_extent_min);
5159                         continue;
5160                 }
5161
5162                 if (ndevs == fs_devices->rw_devices) {
5163                         WARN(1, "%s: found more than %llu devices\n",
5164                              __func__, fs_devices->rw_devices);
5165                         break;
5166                 }
5167                 devices_info[ndevs].dev_offset = dev_offset;
5168                 devices_info[ndevs].max_avail = max_avail;
5169                 devices_info[ndevs].total_avail = total_avail;
5170                 devices_info[ndevs].dev = device;
5171                 ++ndevs;
5172         }
5173         ctl->ndevs = ndevs;
5174
5175         /*
5176          * now sort the devices by hole size / available space
5177          */
5178         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5179              btrfs_cmp_device_info, NULL);
5180
5181         return 0;
5182 }
5183
5184 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5185                                       struct btrfs_device_info *devices_info)
5186 {
5187         /* Number of stripes that count for block group size */
5188         int data_stripes;
5189
5190         /*
5191          * The primary goal is to maximize the number of stripes, so use as
5192          * many devices as possible, even if the stripes are not maximum sized.
5193          *
5194          * The DUP profile stores more than one stripe per device, the
5195          * max_avail is the total size so we have to adjust.
5196          */
5197         ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5198                                    ctl->dev_stripes);
5199         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5200
5201         /* This will have to be fixed for RAID1 and RAID10 over more drives */
5202         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5203
5204         /*
5205          * Use the number of data stripes to figure out how big this chunk is
5206          * really going to be in terms of logical address space, and compare
5207          * that answer with the max chunk size. If it's higher, we try to
5208          * reduce stripe_size.
5209          */
5210         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5211                 /*
5212                  * Reduce stripe_size, round it up to a 16MB boundary again and
5213                  * then use it, unless it ends up being even bigger than the
5214                  * previous value we had already.
5215                  */
5216                 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5217                                                         data_stripes), SZ_16M),
5218                                        ctl->stripe_size);
5219         }
5220
5221         /* Align to BTRFS_STRIPE_LEN */
5222         ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5223         ctl->chunk_size = ctl->stripe_size * data_stripes;
5224
5225         return 0;
5226 }
5227
5228 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5229                                     struct btrfs_device_info *devices_info)
5230 {
5231         u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5232         /* Number of stripes that count for block group size */
5233         int data_stripes;
5234
5235         /*
5236          * It should hold because:
5237          *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5238          */
5239         ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5240
5241         ctl->stripe_size = zone_size;
5242         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5243         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5244
5245         /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5246         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5247                 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5248                                              ctl->stripe_size) + ctl->nparity,
5249                                      ctl->dev_stripes);
5250                 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5251                 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5252                 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5253         }
5254
5255         ctl->chunk_size = ctl->stripe_size * data_stripes;
5256
5257         return 0;
5258 }
5259
5260 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5261                               struct alloc_chunk_ctl *ctl,
5262                               struct btrfs_device_info *devices_info)
5263 {
5264         struct btrfs_fs_info *info = fs_devices->fs_info;
5265
5266         /*
5267          * Round down to number of usable stripes, devs_increment can be any
5268          * number so we can't use round_down() that requires power of 2, while
5269          * rounddown is safe.
5270          */
5271         ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5272
5273         if (ctl->ndevs < ctl->devs_min) {
5274                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5275                         btrfs_debug(info,
5276         "%s: not enough devices with free space: have=%d minimum required=%d",
5277                                     __func__, ctl->ndevs, ctl->devs_min);
5278                 }
5279                 return -ENOSPC;
5280         }
5281
5282         ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5283
5284         switch (fs_devices->chunk_alloc_policy) {
5285         case BTRFS_CHUNK_ALLOC_REGULAR:
5286                 return decide_stripe_size_regular(ctl, devices_info);
5287         case BTRFS_CHUNK_ALLOC_ZONED:
5288                 return decide_stripe_size_zoned(ctl, devices_info);
5289         default:
5290                 BUG();
5291         }
5292 }
5293
5294 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5295                         struct alloc_chunk_ctl *ctl,
5296                         struct btrfs_device_info *devices_info)
5297 {
5298         struct btrfs_fs_info *info = trans->fs_info;
5299         struct map_lookup *map = NULL;
5300         struct extent_map_tree *em_tree;
5301         struct btrfs_block_group *block_group;
5302         struct extent_map *em;
5303         u64 start = ctl->start;
5304         u64 type = ctl->type;
5305         int ret;
5306         int i;
5307         int j;
5308
5309         map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5310         if (!map)
5311                 return ERR_PTR(-ENOMEM);
5312         map->num_stripes = ctl->num_stripes;
5313
5314         for (i = 0; i < ctl->ndevs; ++i) {
5315                 for (j = 0; j < ctl->dev_stripes; ++j) {
5316                         int s = i * ctl->dev_stripes + j;
5317                         map->stripes[s].dev = devices_info[i].dev;
5318                         map->stripes[s].physical = devices_info[i].dev_offset +
5319                                                    j * ctl->stripe_size;
5320                 }
5321         }
5322         map->stripe_len = BTRFS_STRIPE_LEN;
5323         map->io_align = BTRFS_STRIPE_LEN;
5324         map->io_width = BTRFS_STRIPE_LEN;
5325         map->type = type;
5326         map->sub_stripes = ctl->sub_stripes;
5327
5328         trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5329
5330         em = alloc_extent_map();
5331         if (!em) {
5332                 kfree(map);
5333                 return ERR_PTR(-ENOMEM);
5334         }
5335         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5336         em->map_lookup = map;
5337         em->start = start;
5338         em->len = ctl->chunk_size;
5339         em->block_start = 0;
5340         em->block_len = em->len;
5341         em->orig_block_len = ctl->stripe_size;
5342
5343         em_tree = &info->mapping_tree;
5344         write_lock(&em_tree->lock);
5345         ret = add_extent_mapping(em_tree, em, 0);
5346         if (ret) {
5347                 write_unlock(&em_tree->lock);
5348                 free_extent_map(em);
5349                 return ERR_PTR(ret);
5350         }
5351         write_unlock(&em_tree->lock);
5352
5353         block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5354         if (IS_ERR(block_group))
5355                 goto error_del_extent;
5356
5357         for (i = 0; i < map->num_stripes; i++) {
5358                 struct btrfs_device *dev = map->stripes[i].dev;
5359
5360                 btrfs_device_set_bytes_used(dev,
5361                                             dev->bytes_used + ctl->stripe_size);
5362                 if (list_empty(&dev->post_commit_list))
5363                         list_add_tail(&dev->post_commit_list,
5364                                       &trans->transaction->dev_update_list);
5365         }
5366
5367         atomic64_sub(ctl->stripe_size * map->num_stripes,
5368                      &info->free_chunk_space);
5369
5370         free_extent_map(em);
5371         check_raid56_incompat_flag(info, type);
5372         check_raid1c34_incompat_flag(info, type);
5373
5374         return block_group;
5375
5376 error_del_extent:
5377         write_lock(&em_tree->lock);
5378         remove_extent_mapping(em_tree, em);
5379         write_unlock(&em_tree->lock);
5380
5381         /* One for our allocation */
5382         free_extent_map(em);
5383         /* One for the tree reference */
5384         free_extent_map(em);
5385
5386         return block_group;
5387 }
5388
5389 struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5390                                             u64 type)
5391 {
5392         struct btrfs_fs_info *info = trans->fs_info;
5393         struct btrfs_fs_devices *fs_devices = info->fs_devices;
5394         struct btrfs_device_info *devices_info = NULL;
5395         struct alloc_chunk_ctl ctl;
5396         struct btrfs_block_group *block_group;
5397         int ret;
5398
5399         lockdep_assert_held(&info->chunk_mutex);
5400
5401         if (!alloc_profile_is_valid(type, 0)) {
5402                 ASSERT(0);
5403                 return ERR_PTR(-EINVAL);
5404         }
5405
5406         if (list_empty(&fs_devices->alloc_list)) {
5407                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5408                         btrfs_debug(info, "%s: no writable device", __func__);
5409                 return ERR_PTR(-ENOSPC);
5410         }
5411
5412         if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5413                 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5414                 ASSERT(0);
5415                 return ERR_PTR(-EINVAL);
5416         }
5417
5418         ctl.start = find_next_chunk(info);
5419         ctl.type = type;
5420         init_alloc_chunk_ctl(fs_devices, &ctl);
5421
5422         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5423                                GFP_NOFS);
5424         if (!devices_info)
5425                 return ERR_PTR(-ENOMEM);
5426
5427         ret = gather_device_info(fs_devices, &ctl, devices_info);
5428         if (ret < 0) {
5429                 block_group = ERR_PTR(ret);
5430                 goto out;
5431         }
5432
5433         ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5434         if (ret < 0) {
5435                 block_group = ERR_PTR(ret);
5436                 goto out;
5437         }
5438
5439         block_group = create_chunk(trans, &ctl, devices_info);
5440
5441 out:
5442         kfree(devices_info);
5443         return block_group;
5444 }
5445
5446 /*
5447  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5448  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5449  * chunks.
5450  *
5451  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5452  * phases.
5453  */
5454 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5455                                      struct btrfs_block_group *bg)
5456 {
5457         struct btrfs_fs_info *fs_info = trans->fs_info;
5458         struct btrfs_root *extent_root = fs_info->extent_root;
5459         struct btrfs_root *chunk_root = fs_info->chunk_root;
5460         struct btrfs_key key;
5461         struct btrfs_chunk *chunk;
5462         struct btrfs_stripe *stripe;
5463         struct extent_map *em;
5464         struct map_lookup *map;
5465         size_t item_size;
5466         int i;
5467         int ret;
5468
5469         /*
5470          * We take the chunk_mutex for 2 reasons:
5471          *
5472          * 1) Updates and insertions in the chunk btree must be done while holding
5473          *    the chunk_mutex, as well as updating the system chunk array in the
5474          *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5475          *    details;
5476          *
5477          * 2) To prevent races with the final phase of a device replace operation
5478          *    that replaces the device object associated with the map's stripes,
5479          *    because the device object's id can change at any time during that
5480          *    final phase of the device replace operation
5481          *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5482          *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5483          *    which would cause a failure when updating the device item, which does
5484          *    not exists, or persisting a stripe of the chunk item with such ID.
5485          *    Here we can't use the device_list_mutex because our caller already
5486          *    has locked the chunk_mutex, and the final phase of device replace
5487          *    acquires both mutexes - first the device_list_mutex and then the
5488          *    chunk_mutex. Using any of those two mutexes protects us from a
5489          *    concurrent device replace.
5490          */
5491         lockdep_assert_held(&fs_info->chunk_mutex);
5492
5493         em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5494         if (IS_ERR(em)) {
5495                 ret = PTR_ERR(em);
5496                 btrfs_abort_transaction(trans, ret);
5497                 return ret;
5498         }
5499
5500         map = em->map_lookup;
5501         item_size = btrfs_chunk_item_size(map->num_stripes);
5502
5503         chunk = kzalloc(item_size, GFP_NOFS);
5504         if (!chunk) {
5505                 ret = -ENOMEM;
5506                 btrfs_abort_transaction(trans, ret);
5507                 goto out;
5508         }
5509
5510         for (i = 0; i < map->num_stripes; i++) {
5511                 struct btrfs_device *device = map->stripes[i].dev;
5512
5513                 ret = btrfs_update_device(trans, device);
5514                 if (ret)
5515                         goto out;
5516         }
5517
5518         stripe = &chunk->stripe;
5519         for (i = 0; i < map->num_stripes; i++) {
5520                 struct btrfs_device *device = map->stripes[i].dev;
5521                 const u64 dev_offset = map->stripes[i].physical;
5522
5523                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5524                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5525                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5526                 stripe++;
5527         }
5528
5529         btrfs_set_stack_chunk_length(chunk, bg->length);
5530         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5531         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5532         btrfs_set_stack_chunk_type(chunk, map->type);
5533         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5534         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5535         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5536         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5537         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5538
5539         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5540         key.type = BTRFS_CHUNK_ITEM_KEY;
5541         key.offset = bg->start;
5542
5543         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5544         if (ret)
5545                 goto out;
5546
5547         bg->chunk_item_inserted = 1;
5548
5549         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5550                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5551                 if (ret)
5552                         goto out;
5553         }
5554
5555 out:
5556         kfree(chunk);
5557         free_extent_map(em);
5558         return ret;
5559 }
5560
5561 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5562 {
5563         struct btrfs_fs_info *fs_info = trans->fs_info;
5564         u64 alloc_profile;
5565         struct btrfs_block_group *meta_bg;
5566         struct btrfs_block_group *sys_bg;
5567
5568         /*
5569          * When adding a new device for sprouting, the seed device is read-only
5570          * so we must first allocate a metadata and a system chunk. But before
5571          * adding the block group items to the extent, device and chunk btrees,
5572          * we must first:
5573          *
5574          * 1) Create both chunks without doing any changes to the btrees, as
5575          *    otherwise we would get -ENOSPC since the block groups from the
5576          *    seed device are read-only;
5577          *
5578          * 2) Add the device item for the new sprout device - finishing the setup
5579          *    of a new block group requires updating the device item in the chunk
5580          *    btree, so it must exist when we attempt to do it. The previous step
5581          *    ensures this does not fail with -ENOSPC.
5582          *
5583          * After that we can add the block group items to their btrees:
5584          * update existing device item in the chunk btree, add a new block group
5585          * item to the extent btree, add a new chunk item to the chunk btree and
5586          * finally add the new device extent items to the devices btree.
5587          */
5588
5589         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5590         meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5591         if (IS_ERR(meta_bg))
5592                 return PTR_ERR(meta_bg);
5593
5594         alloc_profile = btrfs_system_alloc_profile(fs_info);
5595         sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5596         if (IS_ERR(sys_bg))
5597                 return PTR_ERR(sys_bg);
5598
5599         return 0;
5600 }
5601
5602 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5603 {
5604         const int index = btrfs_bg_flags_to_raid_index(map->type);
5605
5606         return btrfs_raid_array[index].tolerated_failures;
5607 }
5608
5609 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5610 {
5611         struct extent_map *em;
5612         struct map_lookup *map;
5613         int readonly = 0;
5614         int miss_ndevs = 0;
5615         int i;
5616
5617         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5618         if (IS_ERR(em))
5619                 return 1;
5620
5621         map = em->map_lookup;
5622         for (i = 0; i < map->num_stripes; i++) {
5623                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5624                                         &map->stripes[i].dev->dev_state)) {
5625                         miss_ndevs++;
5626                         continue;
5627                 }
5628                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5629                                         &map->stripes[i].dev->dev_state)) {
5630                         readonly = 1;
5631                         goto end;
5632                 }
5633         }
5634
5635         /*
5636          * If the number of missing devices is larger than max errors,
5637          * we can not write the data into that chunk successfully, so
5638          * set it readonly.
5639          */
5640         if (miss_ndevs > btrfs_chunk_max_errors(map))
5641                 readonly = 1;
5642 end:
5643         free_extent_map(em);
5644         return readonly;
5645 }
5646
5647 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5648 {
5649         struct extent_map *em;
5650
5651         while (1) {
5652                 write_lock(&tree->lock);
5653                 em = lookup_extent_mapping(tree, 0, (u64)-1);
5654                 if (em)
5655                         remove_extent_mapping(tree, em);
5656                 write_unlock(&tree->lock);
5657                 if (!em)
5658                         break;
5659                 /* once for us */
5660                 free_extent_map(em);
5661                 /* once for the tree */
5662                 free_extent_map(em);
5663         }
5664 }
5665
5666 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5667 {
5668         struct extent_map *em;
5669         struct map_lookup *map;
5670         int ret;
5671
5672         em = btrfs_get_chunk_map(fs_info, logical, len);
5673         if (IS_ERR(em))
5674                 /*
5675                  * We could return errors for these cases, but that could get
5676                  * ugly and we'd probably do the same thing which is just not do
5677                  * anything else and exit, so return 1 so the callers don't try
5678                  * to use other copies.
5679                  */
5680                 return 1;
5681
5682         map = em->map_lookup;
5683         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5684                 ret = map->num_stripes;
5685         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5686                 ret = map->sub_stripes;
5687         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5688                 ret = 2;
5689         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5690                 /*
5691                  * There could be two corrupted data stripes, we need
5692                  * to loop retry in order to rebuild the correct data.
5693                  *
5694                  * Fail a stripe at a time on every retry except the
5695                  * stripe under reconstruction.
5696                  */
5697                 ret = map->num_stripes;
5698         else
5699                 ret = 1;
5700         free_extent_map(em);
5701
5702         down_read(&fs_info->dev_replace.rwsem);
5703         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5704             fs_info->dev_replace.tgtdev)
5705                 ret++;
5706         up_read(&fs_info->dev_replace.rwsem);
5707
5708         return ret;
5709 }
5710
5711 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5712                                     u64 logical)
5713 {
5714         struct extent_map *em;
5715         struct map_lookup *map;
5716         unsigned long len = fs_info->sectorsize;
5717
5718         em = btrfs_get_chunk_map(fs_info, logical, len);
5719
5720         if (!WARN_ON(IS_ERR(em))) {
5721                 map = em->map_lookup;
5722                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5723                         len = map->stripe_len * nr_data_stripes(map);
5724                 free_extent_map(em);
5725         }
5726         return len;
5727 }
5728
5729 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5730 {
5731         struct extent_map *em;
5732         struct map_lookup *map;
5733         int ret = 0;
5734
5735         em = btrfs_get_chunk_map(fs_info, logical, len);
5736
5737         if(!WARN_ON(IS_ERR(em))) {
5738                 map = em->map_lookup;
5739                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5740                         ret = 1;
5741                 free_extent_map(em);
5742         }
5743         return ret;
5744 }
5745
5746 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5747                             struct map_lookup *map, int first,
5748                             int dev_replace_is_ongoing)
5749 {
5750         int i;
5751         int num_stripes;
5752         int preferred_mirror;
5753         int tolerance;
5754         struct btrfs_device *srcdev;
5755
5756         ASSERT((map->type &
5757                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5758
5759         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5760                 num_stripes = map->sub_stripes;
5761         else
5762                 num_stripes = map->num_stripes;
5763
5764         switch (fs_info->fs_devices->read_policy) {
5765         default:
5766                 /* Shouldn't happen, just warn and use pid instead of failing */
5767                 btrfs_warn_rl(fs_info,
5768                               "unknown read_policy type %u, reset to pid",
5769                               fs_info->fs_devices->read_policy);
5770                 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5771                 fallthrough;
5772         case BTRFS_READ_POLICY_PID:
5773                 preferred_mirror = first + (current->pid % num_stripes);
5774                 break;
5775         }
5776
5777         if (dev_replace_is_ongoing &&
5778             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5779              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5780                 srcdev = fs_info->dev_replace.srcdev;
5781         else
5782                 srcdev = NULL;
5783
5784         /*
5785          * try to avoid the drive that is the source drive for a
5786          * dev-replace procedure, only choose it if no other non-missing
5787          * mirror is available
5788          */
5789         for (tolerance = 0; tolerance < 2; tolerance++) {
5790                 if (map->stripes[preferred_mirror].dev->bdev &&
5791                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5792                         return preferred_mirror;
5793                 for (i = first; i < first + num_stripes; i++) {
5794                         if (map->stripes[i].dev->bdev &&
5795                             (tolerance || map->stripes[i].dev != srcdev))
5796                                 return i;
5797                 }
5798         }
5799
5800         /* we couldn't find one that doesn't fail.  Just return something
5801          * and the io error handling code will clean up eventually
5802          */
5803         return preferred_mirror;
5804 }
5805
5806 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5807 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5808 {
5809         int i;
5810         int again = 1;
5811
5812         while (again) {
5813                 again = 0;
5814                 for (i = 0; i < num_stripes - 1; i++) {
5815                         /* Swap if parity is on a smaller index */
5816                         if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5817                                 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5818                                 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5819                                 again = 1;
5820                         }
5821                 }
5822         }
5823 }
5824
5825 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5826 {
5827         struct btrfs_bio *bbio = kzalloc(
5828                  /* the size of the btrfs_bio */
5829                 sizeof(struct btrfs_bio) +
5830                 /* plus the variable array for the stripes */
5831                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5832                 /* plus the variable array for the tgt dev */
5833                 sizeof(int) * (real_stripes) +
5834                 /*
5835                  * plus the raid_map, which includes both the tgt dev
5836                  * and the stripes
5837                  */
5838                 sizeof(u64) * (total_stripes),
5839                 GFP_NOFS|__GFP_NOFAIL);
5840
5841         atomic_set(&bbio->error, 0);
5842         refcount_set(&bbio->refs, 1);
5843
5844         bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5845         bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5846
5847         return bbio;
5848 }
5849
5850 void btrfs_get_bbio(struct btrfs_bio *bbio)
5851 {
5852         WARN_ON(!refcount_read(&bbio->refs));
5853         refcount_inc(&bbio->refs);
5854 }
5855
5856 void btrfs_put_bbio(struct btrfs_bio *bbio)
5857 {
5858         if (!bbio)
5859                 return;
5860         if (refcount_dec_and_test(&bbio->refs))
5861                 kfree(bbio);
5862 }
5863
5864 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5865 /*
5866  * Please note that, discard won't be sent to target device of device
5867  * replace.
5868  */
5869 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5870                                          u64 logical, u64 *length_ret,
5871                                          struct btrfs_bio **bbio_ret)
5872 {
5873         struct extent_map *em;
5874         struct map_lookup *map;
5875         struct btrfs_bio *bbio;
5876         u64 length = *length_ret;
5877         u64 offset;
5878         u64 stripe_nr;
5879         u64 stripe_nr_end;
5880         u64 stripe_end_offset;
5881         u64 stripe_cnt;
5882         u64 stripe_len;
5883         u64 stripe_offset;
5884         u64 num_stripes;
5885         u32 stripe_index;
5886         u32 factor = 0;
5887         u32 sub_stripes = 0;
5888         u64 stripes_per_dev = 0;
5889         u32 remaining_stripes = 0;
5890         u32 last_stripe = 0;
5891         int ret = 0;
5892         int i;
5893
5894         /* discard always return a bbio */
5895         ASSERT(bbio_ret);
5896
5897         em = btrfs_get_chunk_map(fs_info, logical, length);
5898         if (IS_ERR(em))
5899                 return PTR_ERR(em);
5900
5901         map = em->map_lookup;
5902         /* we don't discard raid56 yet */
5903         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5904                 ret = -EOPNOTSUPP;
5905                 goto out;
5906         }
5907
5908         offset = logical - em->start;
5909         length = min_t(u64, em->start + em->len - logical, length);
5910         *length_ret = length;
5911
5912         stripe_len = map->stripe_len;
5913         /*
5914          * stripe_nr counts the total number of stripes we have to stride
5915          * to get to this block
5916          */
5917         stripe_nr = div64_u64(offset, stripe_len);
5918
5919         /* stripe_offset is the offset of this block in its stripe */
5920         stripe_offset = offset - stripe_nr * stripe_len;
5921
5922         stripe_nr_end = round_up(offset + length, map->stripe_len);
5923         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5924         stripe_cnt = stripe_nr_end - stripe_nr;
5925         stripe_end_offset = stripe_nr_end * map->stripe_len -
5926                             (offset + length);
5927         /*
5928          * after this, stripe_nr is the number of stripes on this
5929          * device we have to walk to find the data, and stripe_index is
5930          * the number of our device in the stripe array
5931          */
5932         num_stripes = 1;
5933         stripe_index = 0;
5934         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5935                          BTRFS_BLOCK_GROUP_RAID10)) {
5936                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5937                         sub_stripes = 1;
5938                 else
5939                         sub_stripes = map->sub_stripes;
5940
5941                 factor = map->num_stripes / sub_stripes;
5942                 num_stripes = min_t(u64, map->num_stripes,
5943                                     sub_stripes * stripe_cnt);
5944                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5945                 stripe_index *= sub_stripes;
5946                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5947                                               &remaining_stripes);
5948                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5949                 last_stripe *= sub_stripes;
5950         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5951                                 BTRFS_BLOCK_GROUP_DUP)) {
5952                 num_stripes = map->num_stripes;
5953         } else {
5954                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5955                                         &stripe_index);
5956         }
5957
5958         bbio = alloc_btrfs_bio(num_stripes, 0);
5959         if (!bbio) {
5960                 ret = -ENOMEM;
5961                 goto out;
5962         }
5963
5964         for (i = 0; i < num_stripes; i++) {
5965                 bbio->stripes[i].physical =
5966                         map->stripes[stripe_index].physical +
5967                         stripe_offset + stripe_nr * map->stripe_len;
5968                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5969
5970                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5971                                  BTRFS_BLOCK_GROUP_RAID10)) {
5972                         bbio->stripes[i].length = stripes_per_dev *
5973                                 map->stripe_len;
5974
5975                         if (i / sub_stripes < remaining_stripes)
5976                                 bbio->stripes[i].length +=
5977                                         map->stripe_len;
5978
5979                         /*
5980                          * Special for the first stripe and
5981                          * the last stripe:
5982                          *
5983                          * |-------|...|-------|
5984                          *     |----------|
5985                          *    off     end_off
5986                          */
5987                         if (i < sub_stripes)
5988                                 bbio->stripes[i].length -=
5989                                         stripe_offset;
5990
5991                         if (stripe_index >= last_stripe &&
5992                             stripe_index <= (last_stripe +
5993                                              sub_stripes - 1))
5994                                 bbio->stripes[i].length -=
5995                                         stripe_end_offset;
5996
5997                         if (i == sub_stripes - 1)
5998                                 stripe_offset = 0;
5999                 } else {
6000                         bbio->stripes[i].length = length;
6001                 }
6002
6003                 stripe_index++;
6004                 if (stripe_index == map->num_stripes) {
6005                         stripe_index = 0;
6006                         stripe_nr++;
6007                 }
6008         }
6009
6010         *bbio_ret = bbio;
6011         bbio->map_type = map->type;
6012         bbio->num_stripes = num_stripes;
6013 out:
6014         free_extent_map(em);
6015         return ret;
6016 }
6017
6018 /*
6019  * In dev-replace case, for repair case (that's the only case where the mirror
6020  * is selected explicitly when calling btrfs_map_block), blocks left of the
6021  * left cursor can also be read from the target drive.
6022  *
6023  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6024  * array of stripes.
6025  * For READ, it also needs to be supported using the same mirror number.
6026  *
6027  * If the requested block is not left of the left cursor, EIO is returned. This
6028  * can happen because btrfs_num_copies() returns one more in the dev-replace
6029  * case.
6030  */
6031 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6032                                          u64 logical, u64 length,
6033                                          u64 srcdev_devid, int *mirror_num,
6034                                          u64 *physical)
6035 {
6036         struct btrfs_bio *bbio = NULL;
6037         int num_stripes;
6038         int index_srcdev = 0;
6039         int found = 0;
6040         u64 physical_of_found = 0;
6041         int i;
6042         int ret = 0;
6043
6044         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6045                                 logical, &length, &bbio, 0, 0);
6046         if (ret) {
6047                 ASSERT(bbio == NULL);
6048                 return ret;
6049         }
6050
6051         num_stripes = bbio->num_stripes;
6052         if (*mirror_num > num_stripes) {
6053                 /*
6054                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6055                  * that means that the requested area is not left of the left
6056                  * cursor
6057                  */
6058                 btrfs_put_bbio(bbio);
6059                 return -EIO;
6060         }
6061
6062         /*
6063          * process the rest of the function using the mirror_num of the source
6064          * drive. Therefore look it up first.  At the end, patch the device
6065          * pointer to the one of the target drive.
6066          */
6067         for (i = 0; i < num_stripes; i++) {
6068                 if (bbio->stripes[i].dev->devid != srcdev_devid)
6069                         continue;
6070
6071                 /*
6072                  * In case of DUP, in order to keep it simple, only add the
6073                  * mirror with the lowest physical address
6074                  */
6075                 if (found &&
6076                     physical_of_found <= bbio->stripes[i].physical)
6077                         continue;
6078
6079                 index_srcdev = i;
6080                 found = 1;
6081                 physical_of_found = bbio->stripes[i].physical;
6082         }
6083
6084         btrfs_put_bbio(bbio);
6085
6086         ASSERT(found);
6087         if (!found)
6088                 return -EIO;
6089
6090         *mirror_num = index_srcdev + 1;
6091         *physical = physical_of_found;
6092         return ret;
6093 }
6094
6095 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6096 {
6097         struct btrfs_block_group *cache;
6098         bool ret;
6099
6100         /* Non zoned filesystem does not use "to_copy" flag */
6101         if (!btrfs_is_zoned(fs_info))
6102                 return false;
6103
6104         cache = btrfs_lookup_block_group(fs_info, logical);
6105
6106         spin_lock(&cache->lock);
6107         ret = cache->to_copy;
6108         spin_unlock(&cache->lock);
6109
6110         btrfs_put_block_group(cache);
6111         return ret;
6112 }
6113
6114 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6115                                       struct btrfs_bio **bbio_ret,
6116                                       struct btrfs_dev_replace *dev_replace,
6117                                       u64 logical,
6118                                       int *num_stripes_ret, int *max_errors_ret)
6119 {
6120         struct btrfs_bio *bbio = *bbio_ret;
6121         u64 srcdev_devid = dev_replace->srcdev->devid;
6122         int tgtdev_indexes = 0;
6123         int num_stripes = *num_stripes_ret;
6124         int max_errors = *max_errors_ret;
6125         int i;
6126
6127         if (op == BTRFS_MAP_WRITE) {
6128                 int index_where_to_add;
6129
6130                 /*
6131                  * A block group which have "to_copy" set will eventually
6132                  * copied by dev-replace process. We can avoid cloning IO here.
6133                  */
6134                 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6135                         return;
6136
6137                 /*
6138                  * duplicate the write operations while the dev replace
6139                  * procedure is running. Since the copying of the old disk to
6140                  * the new disk takes place at run time while the filesystem is
6141                  * mounted writable, the regular write operations to the old
6142                  * disk have to be duplicated to go to the new disk as well.
6143                  *
6144                  * Note that device->missing is handled by the caller, and that
6145                  * the write to the old disk is already set up in the stripes
6146                  * array.
6147                  */
6148                 index_where_to_add = num_stripes;
6149                 for (i = 0; i < num_stripes; i++) {
6150                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
6151                                 /* write to new disk, too */
6152                                 struct btrfs_bio_stripe *new =
6153                                         bbio->stripes + index_where_to_add;
6154                                 struct btrfs_bio_stripe *old =
6155                                         bbio->stripes + i;
6156
6157                                 new->physical = old->physical;
6158                                 new->length = old->length;
6159                                 new->dev = dev_replace->tgtdev;
6160                                 bbio->tgtdev_map[i] = index_where_to_add;
6161                                 index_where_to_add++;
6162                                 max_errors++;
6163                                 tgtdev_indexes++;
6164                         }
6165                 }
6166                 num_stripes = index_where_to_add;
6167         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6168                 int index_srcdev = 0;
6169                 int found = 0;
6170                 u64 physical_of_found = 0;
6171
6172                 /*
6173                  * During the dev-replace procedure, the target drive can also
6174                  * be used to read data in case it is needed to repair a corrupt
6175                  * block elsewhere. This is possible if the requested area is
6176                  * left of the left cursor. In this area, the target drive is a
6177                  * full copy of the source drive.
6178                  */
6179                 for (i = 0; i < num_stripes; i++) {
6180                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
6181                                 /*
6182                                  * In case of DUP, in order to keep it simple,
6183                                  * only add the mirror with the lowest physical
6184                                  * address
6185                                  */
6186                                 if (found &&
6187                                     physical_of_found <=
6188                                      bbio->stripes[i].physical)
6189                                         continue;
6190                                 index_srcdev = i;
6191                                 found = 1;
6192                                 physical_of_found = bbio->stripes[i].physical;
6193                         }
6194                 }
6195                 if (found) {
6196                         struct btrfs_bio_stripe *tgtdev_stripe =
6197                                 bbio->stripes + num_stripes;
6198
6199                         tgtdev_stripe->physical = physical_of_found;
6200                         tgtdev_stripe->length =
6201                                 bbio->stripes[index_srcdev].length;
6202                         tgtdev_stripe->dev = dev_replace->tgtdev;
6203                         bbio->tgtdev_map[index_srcdev] = num_stripes;
6204
6205                         tgtdev_indexes++;
6206                         num_stripes++;
6207                 }
6208         }
6209
6210         *num_stripes_ret = num_stripes;
6211         *max_errors_ret = max_errors;
6212         bbio->num_tgtdevs = tgtdev_indexes;
6213         *bbio_ret = bbio;
6214 }
6215
6216 static bool need_full_stripe(enum btrfs_map_op op)
6217 {
6218         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6219 }
6220
6221 /*
6222  * Calculate the geometry of a particular (address, len) tuple. This
6223  * information is used to calculate how big a particular bio can get before it
6224  * straddles a stripe.
6225  *
6226  * @fs_info: the filesystem
6227  * @em:      mapping containing the logical extent
6228  * @op:      type of operation - write or read
6229  * @logical: address that we want to figure out the geometry of
6230  * @io_geom: pointer used to return values
6231  *
6232  * Returns < 0 in case a chunk for the given logical address cannot be found,
6233  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6234  */
6235 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6236                           enum btrfs_map_op op, u64 logical,
6237                           struct btrfs_io_geometry *io_geom)
6238 {
6239         struct map_lookup *map;
6240         u64 len;
6241         u64 offset;
6242         u64 stripe_offset;
6243         u64 stripe_nr;
6244         u64 stripe_len;
6245         u64 raid56_full_stripe_start = (u64)-1;
6246         int data_stripes;
6247
6248         ASSERT(op != BTRFS_MAP_DISCARD);
6249
6250         map = em->map_lookup;
6251         /* Offset of this logical address in the chunk */
6252         offset = logical - em->start;
6253         /* Len of a stripe in a chunk */
6254         stripe_len = map->stripe_len;
6255         /* Stripe where this block falls in */
6256         stripe_nr = div64_u64(offset, stripe_len);
6257         /* Offset of stripe in the chunk */
6258         stripe_offset = stripe_nr * stripe_len;
6259         if (offset < stripe_offset) {
6260                 btrfs_crit(fs_info,
6261 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6262                         stripe_offset, offset, em->start, logical, stripe_len);
6263                 return -EINVAL;
6264         }
6265
6266         /* stripe_offset is the offset of this block in its stripe */
6267         stripe_offset = offset - stripe_offset;
6268         data_stripes = nr_data_stripes(map);
6269
6270         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6271                 u64 max_len = stripe_len - stripe_offset;
6272
6273                 /*
6274                  * In case of raid56, we need to know the stripe aligned start
6275                  */
6276                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6277                         unsigned long full_stripe_len = stripe_len * data_stripes;
6278                         raid56_full_stripe_start = offset;
6279
6280                         /*
6281                          * Allow a write of a full stripe, but make sure we
6282                          * don't allow straddling of stripes
6283                          */
6284                         raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6285                                         full_stripe_len);
6286                         raid56_full_stripe_start *= full_stripe_len;
6287
6288                         /*
6289                          * For writes to RAID[56], allow a full stripeset across
6290                          * all disks. For other RAID types and for RAID[56]
6291                          * reads, just allow a single stripe (on a single disk).
6292                          */
6293                         if (op == BTRFS_MAP_WRITE) {
6294                                 max_len = stripe_len * data_stripes -
6295                                           (offset - raid56_full_stripe_start);
6296                         }
6297                 }
6298                 len = min_t(u64, em->len - offset, max_len);
6299         } else {
6300                 len = em->len - offset;
6301         }
6302
6303         io_geom->len = len;
6304         io_geom->offset = offset;
6305         io_geom->stripe_len = stripe_len;
6306         io_geom->stripe_nr = stripe_nr;
6307         io_geom->stripe_offset = stripe_offset;
6308         io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6309
6310         return 0;
6311 }
6312
6313 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6314                              enum btrfs_map_op op,
6315                              u64 logical, u64 *length,
6316                              struct btrfs_bio **bbio_ret,
6317                              int mirror_num, int need_raid_map)
6318 {
6319         struct extent_map *em;
6320         struct map_lookup *map;
6321         u64 stripe_offset;
6322         u64 stripe_nr;
6323         u64 stripe_len;
6324         u32 stripe_index;
6325         int data_stripes;
6326         int i;
6327         int ret = 0;
6328         int num_stripes;
6329         int max_errors = 0;
6330         int tgtdev_indexes = 0;
6331         struct btrfs_bio *bbio = NULL;
6332         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6333         int dev_replace_is_ongoing = 0;
6334         int num_alloc_stripes;
6335         int patch_the_first_stripe_for_dev_replace = 0;
6336         u64 physical_to_patch_in_first_stripe = 0;
6337         u64 raid56_full_stripe_start = (u64)-1;
6338         struct btrfs_io_geometry geom;
6339
6340         ASSERT(bbio_ret);
6341         ASSERT(op != BTRFS_MAP_DISCARD);
6342
6343         em = btrfs_get_chunk_map(fs_info, logical, *length);
6344         ASSERT(!IS_ERR(em));
6345
6346         ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6347         if (ret < 0)
6348                 return ret;
6349
6350         map = em->map_lookup;
6351
6352         *length = geom.len;
6353         stripe_len = geom.stripe_len;
6354         stripe_nr = geom.stripe_nr;
6355         stripe_offset = geom.stripe_offset;
6356         raid56_full_stripe_start = geom.raid56_stripe_offset;
6357         data_stripes = nr_data_stripes(map);
6358
6359         down_read(&dev_replace->rwsem);
6360         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6361         /*
6362          * Hold the semaphore for read during the whole operation, write is
6363          * requested at commit time but must wait.
6364          */
6365         if (!dev_replace_is_ongoing)
6366                 up_read(&dev_replace->rwsem);
6367
6368         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6369             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6370                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6371                                                     dev_replace->srcdev->devid,
6372                                                     &mirror_num,
6373                                             &physical_to_patch_in_first_stripe);
6374                 if (ret)
6375                         goto out;
6376                 else
6377                         patch_the_first_stripe_for_dev_replace = 1;
6378         } else if (mirror_num > map->num_stripes) {
6379                 mirror_num = 0;
6380         }
6381
6382         num_stripes = 1;
6383         stripe_index = 0;
6384         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6385                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6386                                 &stripe_index);
6387                 if (!need_full_stripe(op))
6388                         mirror_num = 1;
6389         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6390                 if (need_full_stripe(op))
6391                         num_stripes = map->num_stripes;
6392                 else if (mirror_num)
6393                         stripe_index = mirror_num - 1;
6394                 else {
6395                         stripe_index = find_live_mirror(fs_info, map, 0,
6396                                             dev_replace_is_ongoing);
6397                         mirror_num = stripe_index + 1;
6398                 }
6399
6400         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6401                 if (need_full_stripe(op)) {
6402                         num_stripes = map->num_stripes;
6403                 } else if (mirror_num) {
6404                         stripe_index = mirror_num - 1;
6405                 } else {
6406                         mirror_num = 1;
6407                 }
6408
6409         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6410                 u32 factor = map->num_stripes / map->sub_stripes;
6411
6412                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6413                 stripe_index *= map->sub_stripes;
6414
6415                 if (need_full_stripe(op))
6416                         num_stripes = map->sub_stripes;
6417                 else if (mirror_num)
6418                         stripe_index += mirror_num - 1;
6419                 else {
6420                         int old_stripe_index = stripe_index;
6421                         stripe_index = find_live_mirror(fs_info, map,
6422                                               stripe_index,
6423                                               dev_replace_is_ongoing);
6424                         mirror_num = stripe_index - old_stripe_index + 1;
6425                 }
6426
6427         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6428                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6429                         /* push stripe_nr back to the start of the full stripe */
6430                         stripe_nr = div64_u64(raid56_full_stripe_start,
6431                                         stripe_len * data_stripes);
6432
6433                         /* RAID[56] write or recovery. Return all stripes */
6434                         num_stripes = map->num_stripes;
6435                         max_errors = nr_parity_stripes(map);
6436
6437                         *length = map->stripe_len;
6438                         stripe_index = 0;
6439                         stripe_offset = 0;
6440                 } else {
6441                         /*
6442                          * Mirror #0 or #1 means the original data block.
6443                          * Mirror #2 is RAID5 parity block.
6444                          * Mirror #3 is RAID6 Q block.
6445                          */
6446                         stripe_nr = div_u64_rem(stripe_nr,
6447                                         data_stripes, &stripe_index);
6448                         if (mirror_num > 1)
6449                                 stripe_index = data_stripes + mirror_num - 2;
6450
6451                         /* We distribute the parity blocks across stripes */
6452                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6453                                         &stripe_index);
6454                         if (!need_full_stripe(op) && mirror_num <= 1)
6455                                 mirror_num = 1;
6456                 }
6457         } else {
6458                 /*
6459                  * after this, stripe_nr is the number of stripes on this
6460                  * device we have to walk to find the data, and stripe_index is
6461                  * the number of our device in the stripe array
6462                  */
6463                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6464                                 &stripe_index);
6465                 mirror_num = stripe_index + 1;
6466         }
6467         if (stripe_index >= map->num_stripes) {
6468                 btrfs_crit(fs_info,
6469                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6470                            stripe_index, map->num_stripes);
6471                 ret = -EINVAL;
6472                 goto out;
6473         }
6474
6475         num_alloc_stripes = num_stripes;
6476         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6477                 if (op == BTRFS_MAP_WRITE)
6478                         num_alloc_stripes <<= 1;
6479                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6480                         num_alloc_stripes++;
6481                 tgtdev_indexes = num_stripes;
6482         }
6483
6484         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6485         if (!bbio) {
6486                 ret = -ENOMEM;
6487                 goto out;
6488         }
6489
6490         for (i = 0; i < num_stripes; i++) {
6491                 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6492                         stripe_offset + stripe_nr * map->stripe_len;
6493                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6494                 stripe_index++;
6495         }
6496
6497         /* build raid_map */
6498         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6499             (need_full_stripe(op) || mirror_num > 1)) {
6500                 u64 tmp;
6501                 unsigned rot;
6502
6503                 /* Work out the disk rotation on this stripe-set */
6504                 div_u64_rem(stripe_nr, num_stripes, &rot);
6505
6506                 /* Fill in the logical address of each stripe */
6507                 tmp = stripe_nr * data_stripes;
6508                 for (i = 0; i < data_stripes; i++)
6509                         bbio->raid_map[(i+rot) % num_stripes] =
6510                                 em->start + (tmp + i) * map->stripe_len;
6511
6512                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6513                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6514                         bbio->raid_map[(i+rot+1) % num_stripes] =
6515                                 RAID6_Q_STRIPE;
6516
6517                 sort_parity_stripes(bbio, num_stripes);
6518         }
6519
6520         if (need_full_stripe(op))
6521                 max_errors = btrfs_chunk_max_errors(map);
6522
6523         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6524             need_full_stripe(op)) {
6525                 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6526                                           &num_stripes, &max_errors);
6527         }
6528
6529         *bbio_ret = bbio;
6530         bbio->map_type = map->type;
6531         bbio->num_stripes = num_stripes;
6532         bbio->max_errors = max_errors;
6533         bbio->mirror_num = mirror_num;
6534
6535         /*
6536          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6537          * mirror_num == num_stripes + 1 && dev_replace target drive is
6538          * available as a mirror
6539          */
6540         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6541                 WARN_ON(num_stripes > 1);
6542                 bbio->stripes[0].dev = dev_replace->tgtdev;
6543                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6544                 bbio->mirror_num = map->num_stripes + 1;
6545         }
6546 out:
6547         if (dev_replace_is_ongoing) {
6548                 lockdep_assert_held(&dev_replace->rwsem);
6549                 /* Unlock and let waiting writers proceed */
6550                 up_read(&dev_replace->rwsem);
6551         }
6552         free_extent_map(em);
6553         return ret;
6554 }
6555
6556 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6557                       u64 logical, u64 *length,
6558                       struct btrfs_bio **bbio_ret, int mirror_num)
6559 {
6560         if (op == BTRFS_MAP_DISCARD)
6561                 return __btrfs_map_block_for_discard(fs_info, logical,
6562                                                      length, bbio_ret);
6563
6564         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6565                                  mirror_num, 0);
6566 }
6567
6568 /* For Scrub/replace */
6569 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6570                      u64 logical, u64 *length,
6571                      struct btrfs_bio **bbio_ret)
6572 {
6573         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6574 }
6575
6576 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6577 {
6578         bio->bi_private = bbio->private;
6579         bio->bi_end_io = bbio->end_io;
6580         bio_endio(bio);
6581
6582         btrfs_put_bbio(bbio);
6583 }
6584
6585 static void btrfs_end_bio(struct bio *bio)
6586 {
6587         struct btrfs_bio *bbio = bio->bi_private;
6588         int is_orig_bio = 0;
6589
6590         if (bio->bi_status) {
6591                 atomic_inc(&bbio->error);
6592                 if (bio->bi_status == BLK_STS_IOERR ||
6593                     bio->bi_status == BLK_STS_TARGET) {
6594                         struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6595
6596                         ASSERT(dev->bdev);
6597                         if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6598                                 btrfs_dev_stat_inc_and_print(dev,
6599                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6600                         else if (!(bio->bi_opf & REQ_RAHEAD))
6601                                 btrfs_dev_stat_inc_and_print(dev,
6602                                                 BTRFS_DEV_STAT_READ_ERRS);
6603                         if (bio->bi_opf & REQ_PREFLUSH)
6604                                 btrfs_dev_stat_inc_and_print(dev,
6605                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6606                 }
6607         }
6608
6609         if (bio == bbio->orig_bio)
6610                 is_orig_bio = 1;
6611
6612         btrfs_bio_counter_dec(bbio->fs_info);
6613
6614         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6615                 if (!is_orig_bio) {
6616                         bio_put(bio);
6617                         bio = bbio->orig_bio;
6618                 }
6619
6620                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6621                 /* only send an error to the higher layers if it is
6622                  * beyond the tolerance of the btrfs bio
6623                  */
6624                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6625                         bio->bi_status = BLK_STS_IOERR;
6626                 } else {
6627                         /*
6628                          * this bio is actually up to date, we didn't
6629                          * go over the max number of errors
6630                          */
6631                         bio->bi_status = BLK_STS_OK;
6632                 }
6633
6634                 btrfs_end_bbio(bbio, bio);
6635         } else if (!is_orig_bio) {
6636                 bio_put(bio);
6637         }
6638 }
6639
6640 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6641                               u64 physical, struct btrfs_device *dev)
6642 {
6643         struct btrfs_fs_info *fs_info = bbio->fs_info;
6644
6645         bio->bi_private = bbio;
6646         btrfs_io_bio(bio)->device = dev;
6647         bio->bi_end_io = btrfs_end_bio;
6648         bio->bi_iter.bi_sector = physical >> 9;
6649         /*
6650          * For zone append writing, bi_sector must point the beginning of the
6651          * zone
6652          */
6653         if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6654                 if (btrfs_dev_is_sequential(dev, physical)) {
6655                         u64 zone_start = round_down(physical, fs_info->zone_size);
6656
6657                         bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6658                 } else {
6659                         bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6660                         bio->bi_opf |= REQ_OP_WRITE;
6661                 }
6662         }
6663         btrfs_debug_in_rcu(fs_info,
6664         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6665                 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6666                 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6667                 dev->devid, bio->bi_iter.bi_size);
6668         bio_set_dev(bio, dev->bdev);
6669
6670         btrfs_bio_counter_inc_noblocked(fs_info);
6671
6672         btrfsic_submit_bio(bio);
6673 }
6674
6675 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6676 {
6677         atomic_inc(&bbio->error);
6678         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6679                 /* Should be the original bio. */
6680                 WARN_ON(bio != bbio->orig_bio);
6681
6682                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6683                 bio->bi_iter.bi_sector = logical >> 9;
6684                 if (atomic_read(&bbio->error) > bbio->max_errors)
6685                         bio->bi_status = BLK_STS_IOERR;
6686                 else
6687                         bio->bi_status = BLK_STS_OK;
6688                 btrfs_end_bbio(bbio, bio);
6689         }
6690 }
6691
6692 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6693                            int mirror_num)
6694 {
6695         struct btrfs_device *dev;
6696         struct bio *first_bio = bio;
6697         u64 logical = bio->bi_iter.bi_sector << 9;
6698         u64 length = 0;
6699         u64 map_length;
6700         int ret;
6701         int dev_nr;
6702         int total_devs;
6703         struct btrfs_bio *bbio = NULL;
6704
6705         length = bio->bi_iter.bi_size;
6706         map_length = length;
6707
6708         btrfs_bio_counter_inc_blocked(fs_info);
6709         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6710                                 &map_length, &bbio, mirror_num, 1);
6711         if (ret) {
6712                 btrfs_bio_counter_dec(fs_info);
6713                 return errno_to_blk_status(ret);
6714         }
6715
6716         total_devs = bbio->num_stripes;
6717         bbio->orig_bio = first_bio;
6718         bbio->private = first_bio->bi_private;
6719         bbio->end_io = first_bio->bi_end_io;
6720         bbio->fs_info = fs_info;
6721         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6722
6723         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6724             ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6725                 /* In this case, map_length has been set to the length of
6726                    a single stripe; not the whole write */
6727                 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6728                         ret = raid56_parity_write(fs_info, bio, bbio,
6729                                                   map_length);
6730                 } else {
6731                         ret = raid56_parity_recover(fs_info, bio, bbio,
6732                                                     map_length, mirror_num, 1);
6733                 }
6734
6735                 btrfs_bio_counter_dec(fs_info);
6736                 return errno_to_blk_status(ret);
6737         }
6738
6739         if (map_length < length) {
6740                 btrfs_crit(fs_info,
6741                            "mapping failed logical %llu bio len %llu len %llu",
6742                            logical, length, map_length);
6743                 BUG();
6744         }
6745
6746         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6747                 dev = bbio->stripes[dev_nr].dev;
6748                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6749                                                    &dev->dev_state) ||
6750                     (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6751                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6752                         bbio_error(bbio, first_bio, logical);
6753                         continue;
6754                 }
6755
6756                 if (dev_nr < total_devs - 1)
6757                         bio = btrfs_bio_clone(first_bio);
6758                 else
6759                         bio = first_bio;
6760
6761                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6762         }
6763         btrfs_bio_counter_dec(fs_info);
6764         return BLK_STS_OK;
6765 }
6766
6767 /*
6768  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6769  * return NULL.
6770  *
6771  * If devid and uuid are both specified, the match must be exact, otherwise
6772  * only devid is used.
6773  */
6774 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6775                                        u64 devid, u8 *uuid, u8 *fsid)
6776 {
6777         struct btrfs_device *device;
6778         struct btrfs_fs_devices *seed_devs;
6779
6780         if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6781                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6782                         if (device->devid == devid &&
6783                             (!uuid || memcmp(device->uuid, uuid,
6784                                              BTRFS_UUID_SIZE) == 0))
6785                                 return device;
6786                 }
6787         }
6788
6789         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6790                 if (!fsid ||
6791                     !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6792                         list_for_each_entry(device, &seed_devs->devices,
6793                                             dev_list) {
6794                                 if (device->devid == devid &&
6795                                     (!uuid || memcmp(device->uuid, uuid,
6796                                                      BTRFS_UUID_SIZE) == 0))
6797                                         return device;
6798                         }
6799                 }
6800         }
6801
6802         return NULL;
6803 }
6804
6805 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6806                                             u64 devid, u8 *dev_uuid)
6807 {
6808         struct btrfs_device *device;
6809         unsigned int nofs_flag;
6810
6811         /*
6812          * We call this under the chunk_mutex, so we want to use NOFS for this
6813          * allocation, however we don't want to change btrfs_alloc_device() to
6814          * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6815          * places.
6816          */
6817         nofs_flag = memalloc_nofs_save();
6818         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6819         memalloc_nofs_restore(nofs_flag);
6820         if (IS_ERR(device))
6821                 return device;
6822
6823         list_add(&device->dev_list, &fs_devices->devices);
6824         device->fs_devices = fs_devices;
6825         fs_devices->num_devices++;
6826
6827         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6828         fs_devices->missing_devices++;
6829
6830         return device;
6831 }
6832
6833 /**
6834  * btrfs_alloc_device - allocate struct btrfs_device
6835  * @fs_info:    used only for generating a new devid, can be NULL if
6836  *              devid is provided (i.e. @devid != NULL).
6837  * @devid:      a pointer to devid for this device.  If NULL a new devid
6838  *              is generated.
6839  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6840  *              is generated.
6841  *
6842  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6843  * on error.  Returned struct is not linked onto any lists and must be
6844  * destroyed with btrfs_free_device.
6845  */
6846 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6847                                         const u64 *devid,
6848                                         const u8 *uuid)
6849 {
6850         struct btrfs_device *dev;
6851         u64 tmp;
6852
6853         if (WARN_ON(!devid && !fs_info))
6854                 return ERR_PTR(-EINVAL);
6855
6856         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6857         if (!dev)
6858                 return ERR_PTR(-ENOMEM);
6859
6860         /*
6861          * Preallocate a bio that's always going to be used for flushing device
6862          * barriers and matches the device lifespan
6863          */
6864         dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6865         if (!dev->flush_bio) {
6866                 kfree(dev);
6867                 return ERR_PTR(-ENOMEM);
6868         }
6869
6870         INIT_LIST_HEAD(&dev->dev_list);
6871         INIT_LIST_HEAD(&dev->dev_alloc_list);
6872         INIT_LIST_HEAD(&dev->post_commit_list);
6873
6874         atomic_set(&dev->reada_in_flight, 0);
6875         atomic_set(&dev->dev_stats_ccnt, 0);
6876         btrfs_device_data_ordered_init(dev);
6877         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6878         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6879         extent_io_tree_init(fs_info, &dev->alloc_state,
6880                             IO_TREE_DEVICE_ALLOC_STATE, NULL);
6881
6882         if (devid)
6883                 tmp = *devid;
6884         else {
6885                 int ret;
6886
6887                 ret = find_next_devid(fs_info, &tmp);
6888                 if (ret) {
6889                         btrfs_free_device(dev);
6890                         return ERR_PTR(ret);
6891                 }
6892         }
6893         dev->devid = tmp;
6894
6895         if (uuid)
6896                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6897         else
6898                 generate_random_uuid(dev->uuid);
6899
6900         return dev;
6901 }
6902
6903 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6904                                         u64 devid, u8 *uuid, bool error)
6905 {
6906         if (error)
6907                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6908                               devid, uuid);
6909         else
6910                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6911                               devid, uuid);
6912 }
6913
6914 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6915 {
6916         const int data_stripes = calc_data_stripes(type, num_stripes);
6917
6918         return div_u64(chunk_len, data_stripes);
6919 }
6920
6921 #if BITS_PER_LONG == 32
6922 /*
6923  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6924  * can't be accessed on 32bit systems.
6925  *
6926  * This function do mount time check to reject the fs if it already has
6927  * metadata chunk beyond that limit.
6928  */
6929 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6930                                   u64 logical, u64 length, u64 type)
6931 {
6932         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6933                 return 0;
6934
6935         if (logical + length < MAX_LFS_FILESIZE)
6936                 return 0;
6937
6938         btrfs_err_32bit_limit(fs_info);
6939         return -EOVERFLOW;
6940 }
6941
6942 /*
6943  * This is to give early warning for any metadata chunk reaching
6944  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6945  * Although we can still access the metadata, it's not going to be possible
6946  * once the limit is reached.
6947  */
6948 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6949                                   u64 logical, u64 length, u64 type)
6950 {
6951         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6952                 return;
6953
6954         if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6955                 return;
6956
6957         btrfs_warn_32bit_limit(fs_info);
6958 }
6959 #endif
6960
6961 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6962                           struct btrfs_chunk *chunk)
6963 {
6964         struct btrfs_fs_info *fs_info = leaf->fs_info;
6965         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6966         struct map_lookup *map;
6967         struct extent_map *em;
6968         u64 logical;
6969         u64 length;
6970         u64 devid;
6971         u64 type;
6972         u8 uuid[BTRFS_UUID_SIZE];
6973         int num_stripes;
6974         int ret;
6975         int i;
6976
6977         logical = key->offset;
6978         length = btrfs_chunk_length(leaf, chunk);
6979         type = btrfs_chunk_type(leaf, chunk);
6980         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6981
6982 #if BITS_PER_LONG == 32
6983         ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6984         if (ret < 0)
6985                 return ret;
6986         warn_32bit_meta_chunk(fs_info, logical, length, type);
6987 #endif
6988
6989         /*
6990          * Only need to verify chunk item if we're reading from sys chunk array,
6991          * as chunk item in tree block is already verified by tree-checker.
6992          */
6993         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6994                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6995                 if (ret)
6996                         return ret;
6997         }
6998
6999         read_lock(&map_tree->lock);
7000         em = lookup_extent_mapping(map_tree, logical, 1);
7001         read_unlock(&map_tree->lock);
7002
7003         /* already mapped? */
7004         if (em && em->start <= logical && em->start + em->len > logical) {
7005                 free_extent_map(em);
7006                 return 0;
7007         } else if (em) {
7008                 free_extent_map(em);
7009         }
7010
7011         em = alloc_extent_map();
7012         if (!em)
7013                 return -ENOMEM;
7014         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7015         if (!map) {
7016                 free_extent_map(em);
7017                 return -ENOMEM;
7018         }
7019
7020         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7021         em->map_lookup = map;
7022         em->start = logical;
7023         em->len = length;
7024         em->orig_start = 0;
7025         em->block_start = 0;
7026         em->block_len = em->len;
7027
7028         map->num_stripes = num_stripes;
7029         map->io_width = btrfs_chunk_io_width(leaf, chunk);
7030         map->io_align = btrfs_chunk_io_align(leaf, chunk);
7031         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7032         map->type = type;
7033         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7034         map->verified_stripes = 0;
7035         em->orig_block_len = calc_stripe_length(type, em->len,
7036                                                 map->num_stripes);
7037         for (i = 0; i < num_stripes; i++) {
7038                 map->stripes[i].physical =
7039                         btrfs_stripe_offset_nr(leaf, chunk, i);
7040                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7041                 read_extent_buffer(leaf, uuid, (unsigned long)
7042                                    btrfs_stripe_dev_uuid_nr(chunk, i),
7043                                    BTRFS_UUID_SIZE);
7044                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
7045                                                         devid, uuid, NULL);
7046                 if (!map->stripes[i].dev &&
7047                     !btrfs_test_opt(fs_info, DEGRADED)) {
7048                         free_extent_map(em);
7049                         btrfs_report_missing_device(fs_info, devid, uuid, true);
7050                         return -ENOENT;
7051                 }
7052                 if (!map->stripes[i].dev) {
7053                         map->stripes[i].dev =
7054                                 add_missing_dev(fs_info->fs_devices, devid,
7055                                                 uuid);
7056                         if (IS_ERR(map->stripes[i].dev)) {
7057                                 free_extent_map(em);
7058                                 btrfs_err(fs_info,
7059                                         "failed to init missing dev %llu: %ld",
7060                                         devid, PTR_ERR(map->stripes[i].dev));
7061                                 return PTR_ERR(map->stripes[i].dev);
7062                         }
7063                         btrfs_report_missing_device(fs_info, devid, uuid, false);
7064                 }
7065                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7066                                 &(map->stripes[i].dev->dev_state));
7067
7068         }
7069
7070         write_lock(&map_tree->lock);
7071         ret = add_extent_mapping(map_tree, em, 0);
7072         write_unlock(&map_tree->lock);
7073         if (ret < 0) {
7074                 btrfs_err(fs_info,
7075                           "failed to add chunk map, start=%llu len=%llu: %d",
7076                           em->start, em->len, ret);
7077         }
7078         free_extent_map(em);
7079
7080         return ret;
7081 }
7082
7083 static void fill_device_from_item(struct extent_buffer *leaf,
7084                                  struct btrfs_dev_item *dev_item,
7085                                  struct btrfs_device *device)
7086 {
7087         unsigned long ptr;
7088
7089         device->devid = btrfs_device_id(leaf, dev_item);
7090         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7091         device->total_bytes = device->disk_total_bytes;
7092         device->commit_total_bytes = device->disk_total_bytes;
7093         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7094         device->commit_bytes_used = device->bytes_used;
7095         device->type = btrfs_device_type(leaf, dev_item);
7096         device->io_align = btrfs_device_io_align(leaf, dev_item);
7097         device->io_width = btrfs_device_io_width(leaf, dev_item);
7098         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7099         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7100         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7101
7102         ptr = btrfs_device_uuid(dev_item);
7103         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7104 }
7105
7106 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7107                                                   u8 *fsid)
7108 {
7109         struct btrfs_fs_devices *fs_devices;
7110         int ret;
7111
7112         lockdep_assert_held(&uuid_mutex);
7113         ASSERT(fsid);
7114
7115         /* This will match only for multi-device seed fs */
7116         list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7117                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7118                         return fs_devices;
7119
7120
7121         fs_devices = find_fsid(fsid, NULL);
7122         if (!fs_devices) {
7123                 if (!btrfs_test_opt(fs_info, DEGRADED))
7124                         return ERR_PTR(-ENOENT);
7125
7126                 fs_devices = alloc_fs_devices(fsid, NULL);
7127                 if (IS_ERR(fs_devices))
7128                         return fs_devices;
7129
7130                 fs_devices->seeding = true;
7131                 fs_devices->opened = 1;
7132                 return fs_devices;
7133         }
7134
7135         /*
7136          * Upon first call for a seed fs fsid, just create a private copy of the
7137          * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7138          */
7139         fs_devices = clone_fs_devices(fs_devices);
7140         if (IS_ERR(fs_devices))
7141                 return fs_devices;
7142
7143         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7144         if (ret) {
7145                 free_fs_devices(fs_devices);
7146                 return ERR_PTR(ret);
7147         }
7148
7149         if (!fs_devices->seeding) {
7150                 close_fs_devices(fs_devices);
7151                 free_fs_devices(fs_devices);
7152                 return ERR_PTR(-EINVAL);
7153         }
7154
7155         list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7156
7157         return fs_devices;
7158 }
7159
7160 static int read_one_dev(struct extent_buffer *leaf,
7161                         struct btrfs_dev_item *dev_item)
7162 {
7163         struct btrfs_fs_info *fs_info = leaf->fs_info;
7164         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7165         struct btrfs_device *device;
7166         u64 devid;
7167         int ret;
7168         u8 fs_uuid[BTRFS_FSID_SIZE];
7169         u8 dev_uuid[BTRFS_UUID_SIZE];
7170
7171         devid = btrfs_device_id(leaf, dev_item);
7172         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7173                            BTRFS_UUID_SIZE);
7174         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7175                            BTRFS_FSID_SIZE);
7176
7177         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7178                 fs_devices = open_seed_devices(fs_info, fs_uuid);
7179                 if (IS_ERR(fs_devices))
7180                         return PTR_ERR(fs_devices);
7181         }
7182
7183         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7184                                    fs_uuid);
7185         if (!device) {
7186                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7187                         btrfs_report_missing_device(fs_info, devid,
7188                                                         dev_uuid, true);
7189                         return -ENOENT;
7190                 }
7191
7192                 device = add_missing_dev(fs_devices, devid, dev_uuid);
7193                 if (IS_ERR(device)) {
7194                         btrfs_err(fs_info,
7195                                 "failed to add missing dev %llu: %ld",
7196                                 devid, PTR_ERR(device));
7197                         return PTR_ERR(device);
7198                 }
7199                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7200         } else {
7201                 if (!device->bdev) {
7202                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
7203                                 btrfs_report_missing_device(fs_info,
7204                                                 devid, dev_uuid, true);
7205                                 return -ENOENT;
7206                         }
7207                         btrfs_report_missing_device(fs_info, devid,
7208                                                         dev_uuid, false);
7209                 }
7210
7211                 if (!device->bdev &&
7212                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7213                         /*
7214                          * this happens when a device that was properly setup
7215                          * in the device info lists suddenly goes bad.
7216                          * device->bdev is NULL, and so we have to set
7217                          * device->missing to one here
7218                          */
7219                         device->fs_devices->missing_devices++;
7220                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7221                 }
7222
7223                 /* Move the device to its own fs_devices */
7224                 if (device->fs_devices != fs_devices) {
7225                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7226                                                         &device->dev_state));
7227
7228                         list_move(&device->dev_list, &fs_devices->devices);
7229                         device->fs_devices->num_devices--;
7230                         fs_devices->num_devices++;
7231
7232                         device->fs_devices->missing_devices--;
7233                         fs_devices->missing_devices++;
7234
7235                         device->fs_devices = fs_devices;
7236                 }
7237         }
7238
7239         if (device->fs_devices != fs_info->fs_devices) {
7240                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7241                 if (device->generation !=
7242                     btrfs_device_generation(leaf, dev_item))
7243                         return -EINVAL;
7244         }
7245
7246         fill_device_from_item(leaf, dev_item, device);
7247         if (device->bdev) {
7248                 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7249
7250                 if (device->total_bytes > max_total_bytes) {
7251                         btrfs_err(fs_info,
7252                         "device total_bytes should be at most %llu but found %llu",
7253                                   max_total_bytes, device->total_bytes);
7254                         return -EINVAL;
7255                 }
7256         }
7257         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7258         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7259            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7260                 device->fs_devices->total_rw_bytes += device->total_bytes;
7261                 atomic64_add(device->total_bytes - device->bytes_used,
7262                                 &fs_info->free_chunk_space);
7263         }
7264         ret = 0;
7265         return ret;
7266 }
7267
7268 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7269 {
7270         struct btrfs_root *root = fs_info->tree_root;
7271         struct btrfs_super_block *super_copy = fs_info->super_copy;
7272         struct extent_buffer *sb;
7273         struct btrfs_disk_key *disk_key;
7274         struct btrfs_chunk *chunk;
7275         u8 *array_ptr;
7276         unsigned long sb_array_offset;
7277         int ret = 0;
7278         u32 num_stripes;
7279         u32 array_size;
7280         u32 len = 0;
7281         u32 cur_offset;
7282         u64 type;
7283         struct btrfs_key key;
7284
7285         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7286         /*
7287          * This will create extent buffer of nodesize, superblock size is
7288          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7289          * overallocate but we can keep it as-is, only the first page is used.
7290          */
7291         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7292                                           root->root_key.objectid, 0);
7293         if (IS_ERR(sb))
7294                 return PTR_ERR(sb);
7295         set_extent_buffer_uptodate(sb);
7296         /*
7297          * The sb extent buffer is artificial and just used to read the system array.
7298          * set_extent_buffer_uptodate() call does not properly mark all it's
7299          * pages up-to-date when the page is larger: extent does not cover the
7300          * whole page and consequently check_page_uptodate does not find all
7301          * the page's extents up-to-date (the hole beyond sb),
7302          * write_extent_buffer then triggers a WARN_ON.
7303          *
7304          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7305          * but sb spans only this function. Add an explicit SetPageUptodate call
7306          * to silence the warning eg. on PowerPC 64.
7307          */
7308         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7309                 SetPageUptodate(sb->pages[0]);
7310
7311         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7312         array_size = btrfs_super_sys_array_size(super_copy);
7313
7314         array_ptr = super_copy->sys_chunk_array;
7315         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7316         cur_offset = 0;
7317
7318         while (cur_offset < array_size) {
7319                 disk_key = (struct btrfs_disk_key *)array_ptr;
7320                 len = sizeof(*disk_key);
7321                 if (cur_offset + len > array_size)
7322                         goto out_short_read;
7323
7324                 btrfs_disk_key_to_cpu(&key, disk_key);
7325
7326                 array_ptr += len;
7327                 sb_array_offset += len;
7328                 cur_offset += len;
7329
7330                 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7331                         btrfs_err(fs_info,
7332                             "unexpected item type %u in sys_array at offset %u",
7333                                   (u32)key.type, cur_offset);
7334                         ret = -EIO;
7335                         break;
7336                 }
7337
7338                 chunk = (struct btrfs_chunk *)sb_array_offset;
7339                 /*
7340                  * At least one btrfs_chunk with one stripe must be present,
7341                  * exact stripe count check comes afterwards
7342                  */
7343                 len = btrfs_chunk_item_size(1);
7344                 if (cur_offset + len > array_size)
7345                         goto out_short_read;
7346
7347                 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7348                 if (!num_stripes) {
7349                         btrfs_err(fs_info,
7350                         "invalid number of stripes %u in sys_array at offset %u",
7351                                   num_stripes, cur_offset);
7352                         ret = -EIO;
7353                         break;
7354                 }
7355
7356                 type = btrfs_chunk_type(sb, chunk);
7357                 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7358                         btrfs_err(fs_info,
7359                         "invalid chunk type %llu in sys_array at offset %u",
7360                                   type, cur_offset);
7361                         ret = -EIO;
7362                         break;
7363                 }
7364
7365                 len = btrfs_chunk_item_size(num_stripes);
7366                 if (cur_offset + len > array_size)
7367                         goto out_short_read;
7368
7369                 ret = read_one_chunk(&key, sb, chunk);
7370                 if (ret)
7371                         break;
7372
7373                 array_ptr += len;
7374                 sb_array_offset += len;
7375                 cur_offset += len;
7376         }
7377         clear_extent_buffer_uptodate(sb);
7378         free_extent_buffer_stale(sb);
7379         return ret;
7380
7381 out_short_read:
7382         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7383                         len, cur_offset);
7384         clear_extent_buffer_uptodate(sb);
7385         free_extent_buffer_stale(sb);
7386         return -EIO;
7387 }
7388
7389 /*
7390  * Check if all chunks in the fs are OK for read-write degraded mount
7391  *
7392  * If the @failing_dev is specified, it's accounted as missing.
7393  *
7394  * Return true if all chunks meet the minimal RW mount requirements.
7395  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7396  */
7397 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7398                                         struct btrfs_device *failing_dev)
7399 {
7400         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7401         struct extent_map *em;
7402         u64 next_start = 0;
7403         bool ret = true;
7404
7405         read_lock(&map_tree->lock);
7406         em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7407         read_unlock(&map_tree->lock);
7408         /* No chunk at all? Return false anyway */
7409         if (!em) {
7410                 ret = false;
7411                 goto out;
7412         }
7413         while (em) {
7414                 struct map_lookup *map;
7415                 int missing = 0;
7416                 int max_tolerated;
7417                 int i;
7418
7419                 map = em->map_lookup;
7420                 max_tolerated =
7421                         btrfs_get_num_tolerated_disk_barrier_failures(
7422                                         map->type);
7423                 for (i = 0; i < map->num_stripes; i++) {
7424                         struct btrfs_device *dev = map->stripes[i].dev;
7425
7426                         if (!dev || !dev->bdev ||
7427                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7428                             dev->last_flush_error)
7429                                 missing++;
7430                         else if (failing_dev && failing_dev == dev)
7431                                 missing++;
7432                 }
7433                 if (missing > max_tolerated) {
7434                         if (!failing_dev)
7435                                 btrfs_warn(fs_info,
7436         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7437                                    em->start, missing, max_tolerated);
7438                         free_extent_map(em);
7439                         ret = false;
7440                         goto out;
7441                 }
7442                 next_start = extent_map_end(em);
7443                 free_extent_map(em);
7444
7445                 read_lock(&map_tree->lock);
7446                 em = lookup_extent_mapping(map_tree, next_start,
7447                                            (u64)(-1) - next_start);
7448                 read_unlock(&map_tree->lock);
7449         }
7450 out:
7451         return ret;
7452 }
7453
7454 static void readahead_tree_node_children(struct extent_buffer *node)
7455 {
7456         int i;
7457         const int nr_items = btrfs_header_nritems(node);
7458
7459         for (i = 0; i < nr_items; i++)
7460                 btrfs_readahead_node_child(node, i);
7461 }
7462
7463 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7464 {
7465         struct btrfs_root *root = fs_info->chunk_root;
7466         struct btrfs_path *path;
7467         struct extent_buffer *leaf;
7468         struct btrfs_key key;
7469         struct btrfs_key found_key;
7470         int ret;
7471         int slot;
7472         u64 total_dev = 0;
7473         u64 last_ra_node = 0;
7474
7475         path = btrfs_alloc_path();
7476         if (!path)
7477                 return -ENOMEM;
7478
7479         /*
7480          * uuid_mutex is needed only if we are mounting a sprout FS
7481          * otherwise we don't need it.
7482          */
7483         mutex_lock(&uuid_mutex);
7484
7485         /*
7486          * It is possible for mount and umount to race in such a way that
7487          * we execute this code path, but open_fs_devices failed to clear
7488          * total_rw_bytes. We certainly want it cleared before reading the
7489          * device items, so clear it here.
7490          */
7491         fs_info->fs_devices->total_rw_bytes = 0;
7492
7493         /*
7494          * Lockdep complains about possible circular locking dependency between
7495          * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7496          * used for freeze procection of a fs (struct super_block.s_writers),
7497          * which we take when starting a transaction, and extent buffers of the
7498          * chunk tree if we call read_one_dev() while holding a lock on an
7499          * extent buffer of the chunk tree. Since we are mounting the filesystem
7500          * and at this point there can't be any concurrent task modifying the
7501          * chunk tree, to keep it simple, just skip locking on the chunk tree.
7502          */
7503         ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7504         path->skip_locking = 1;
7505
7506         /*
7507          * Read all device items, and then all the chunk items. All
7508          * device items are found before any chunk item (their object id
7509          * is smaller than the lowest possible object id for a chunk
7510          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7511          */
7512         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7513         key.offset = 0;
7514         key.type = 0;
7515         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7516         if (ret < 0)
7517                 goto error;
7518         while (1) {
7519                 struct extent_buffer *node;
7520
7521                 leaf = path->nodes[0];
7522                 slot = path->slots[0];
7523                 if (slot >= btrfs_header_nritems(leaf)) {
7524                         ret = btrfs_next_leaf(root, path);
7525                         if (ret == 0)
7526                                 continue;
7527                         if (ret < 0)
7528                                 goto error;
7529                         break;
7530                 }
7531                 node = path->nodes[1];
7532                 if (node) {
7533                         if (last_ra_node != node->start) {
7534                                 readahead_tree_node_children(node);
7535                                 last_ra_node = node->start;
7536                         }
7537                 }
7538                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7539                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7540                         struct btrfs_dev_item *dev_item;
7541                         dev_item = btrfs_item_ptr(leaf, slot,
7542                                                   struct btrfs_dev_item);
7543                         ret = read_one_dev(leaf, dev_item);
7544                         if (ret)
7545                                 goto error;
7546                         total_dev++;
7547                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7548                         struct btrfs_chunk *chunk;
7549
7550                         /*
7551                          * We are only called at mount time, so no need to take
7552                          * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7553                          * we always lock first fs_info->chunk_mutex before
7554                          * acquiring any locks on the chunk tree. This is a
7555                          * requirement for chunk allocation, see the comment on
7556                          * top of btrfs_chunk_alloc() for details.
7557                          */
7558                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7559                         ret = read_one_chunk(&found_key, leaf, chunk);
7560                         if (ret)
7561                                 goto error;
7562                 }
7563                 path->slots[0]++;
7564         }
7565
7566         /*
7567          * After loading chunk tree, we've got all device information,
7568          * do another round of validation checks.
7569          */
7570         if (total_dev != fs_info->fs_devices->total_devices) {
7571                 btrfs_err(fs_info,
7572            "super_num_devices %llu mismatch with num_devices %llu found here",
7573                           btrfs_super_num_devices(fs_info->super_copy),
7574                           total_dev);
7575                 ret = -EINVAL;
7576                 goto error;
7577         }
7578         if (btrfs_super_total_bytes(fs_info->super_copy) <
7579             fs_info->fs_devices->total_rw_bytes) {
7580                 btrfs_err(fs_info,
7581         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7582                           btrfs_super_total_bytes(fs_info->super_copy),
7583                           fs_info->fs_devices->total_rw_bytes);
7584                 ret = -EINVAL;
7585                 goto error;
7586         }
7587         ret = 0;
7588 error:
7589         mutex_unlock(&uuid_mutex);
7590
7591         btrfs_free_path(path);
7592         return ret;
7593 }
7594
7595 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7596 {
7597         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7598         struct btrfs_device *device;
7599
7600         fs_devices->fs_info = fs_info;
7601
7602         mutex_lock(&fs_devices->device_list_mutex);
7603         list_for_each_entry(device, &fs_devices->devices, dev_list)
7604                 device->fs_info = fs_info;
7605
7606         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7607                 list_for_each_entry(device, &seed_devs->devices, dev_list)
7608                         device->fs_info = fs_info;
7609
7610                 seed_devs->fs_info = fs_info;
7611         }
7612         mutex_unlock(&fs_devices->device_list_mutex);
7613 }
7614
7615 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7616                                  const struct btrfs_dev_stats_item *ptr,
7617                                  int index)
7618 {
7619         u64 val;
7620
7621         read_extent_buffer(eb, &val,
7622                            offsetof(struct btrfs_dev_stats_item, values) +
7623                             ((unsigned long)ptr) + (index * sizeof(u64)),
7624                            sizeof(val));
7625         return val;
7626 }
7627
7628 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7629                                       struct btrfs_dev_stats_item *ptr,
7630                                       int index, u64 val)
7631 {
7632         write_extent_buffer(eb, &val,
7633                             offsetof(struct btrfs_dev_stats_item, values) +
7634                              ((unsigned long)ptr) + (index * sizeof(u64)),
7635                             sizeof(val));
7636 }
7637
7638 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7639                                        struct btrfs_path *path)
7640 {
7641         struct btrfs_dev_stats_item *ptr;
7642         struct extent_buffer *eb;
7643         struct btrfs_key key;
7644         int item_size;
7645         int i, ret, slot;
7646
7647         if (!device->fs_info->dev_root)
7648                 return 0;
7649
7650         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7651         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7652         key.offset = device->devid;
7653         ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7654         if (ret) {
7655                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7656                         btrfs_dev_stat_set(device, i, 0);
7657                 device->dev_stats_valid = 1;
7658                 btrfs_release_path(path);
7659                 return ret < 0 ? ret : 0;
7660         }
7661         slot = path->slots[0];
7662         eb = path->nodes[0];
7663         item_size = btrfs_item_size_nr(eb, slot);
7664
7665         ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7666
7667         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7668                 if (item_size >= (1 + i) * sizeof(__le64))
7669                         btrfs_dev_stat_set(device, i,
7670                                            btrfs_dev_stats_value(eb, ptr, i));
7671                 else
7672                         btrfs_dev_stat_set(device, i, 0);
7673         }
7674
7675         device->dev_stats_valid = 1;
7676         btrfs_dev_stat_print_on_load(device);
7677         btrfs_release_path(path);
7678
7679         return 0;
7680 }
7681
7682 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7683 {
7684         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7685         struct btrfs_device *device;
7686         struct btrfs_path *path = NULL;
7687         int ret = 0;
7688
7689         path = btrfs_alloc_path();
7690         if (!path)
7691                 return -ENOMEM;
7692
7693         mutex_lock(&fs_devices->device_list_mutex);
7694         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7695                 ret = btrfs_device_init_dev_stats(device, path);
7696                 if (ret)
7697                         goto out;
7698         }
7699         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7700                 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7701                         ret = btrfs_device_init_dev_stats(device, path);
7702                         if (ret)
7703                                 goto out;
7704                 }
7705         }
7706 out:
7707         mutex_unlock(&fs_devices->device_list_mutex);
7708
7709         btrfs_free_path(path);
7710         return ret;
7711 }
7712
7713 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7714                                 struct btrfs_device *device)
7715 {
7716         struct btrfs_fs_info *fs_info = trans->fs_info;
7717         struct btrfs_root *dev_root = fs_info->dev_root;
7718         struct btrfs_path *path;
7719         struct btrfs_key key;
7720         struct extent_buffer *eb;
7721         struct btrfs_dev_stats_item *ptr;
7722         int ret;
7723         int i;
7724
7725         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7726         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7727         key.offset = device->devid;
7728
7729         path = btrfs_alloc_path();
7730         if (!path)
7731                 return -ENOMEM;
7732         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7733         if (ret < 0) {
7734                 btrfs_warn_in_rcu(fs_info,
7735                         "error %d while searching for dev_stats item for device %s",
7736                               ret, rcu_str_deref(device->name));
7737                 goto out;
7738         }
7739
7740         if (ret == 0 &&
7741             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7742                 /* need to delete old one and insert a new one */
7743                 ret = btrfs_del_item(trans, dev_root, path);
7744                 if (ret != 0) {
7745                         btrfs_warn_in_rcu(fs_info,
7746                                 "delete too small dev_stats item for device %s failed %d",
7747                                       rcu_str_deref(device->name), ret);
7748                         goto out;
7749                 }
7750                 ret = 1;
7751         }
7752
7753         if (ret == 1) {
7754                 /* need to insert a new item */
7755                 btrfs_release_path(path);
7756                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7757                                               &key, sizeof(*ptr));
7758                 if (ret < 0) {
7759                         btrfs_warn_in_rcu(fs_info,
7760                                 "insert dev_stats item for device %s failed %d",
7761                                 rcu_str_deref(device->name), ret);
7762                         goto out;
7763                 }
7764         }
7765
7766         eb = path->nodes[0];
7767         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7768         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7769                 btrfs_set_dev_stats_value(eb, ptr, i,
7770                                           btrfs_dev_stat_read(device, i));
7771         btrfs_mark_buffer_dirty(eb);
7772
7773 out:
7774         btrfs_free_path(path);
7775         return ret;
7776 }
7777
7778 /*
7779  * called from commit_transaction. Writes all changed device stats to disk.
7780  */
7781 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7782 {
7783         struct btrfs_fs_info *fs_info = trans->fs_info;
7784         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7785         struct btrfs_device *device;
7786         int stats_cnt;
7787         int ret = 0;
7788
7789         mutex_lock(&fs_devices->device_list_mutex);
7790         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7791                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7792                 if (!device->dev_stats_valid || stats_cnt == 0)
7793                         continue;
7794
7795
7796                 /*
7797                  * There is a LOAD-LOAD control dependency between the value of
7798                  * dev_stats_ccnt and updating the on-disk values which requires
7799                  * reading the in-memory counters. Such control dependencies
7800                  * require explicit read memory barriers.
7801                  *
7802                  * This memory barriers pairs with smp_mb__before_atomic in
7803                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7804                  * barrier implied by atomic_xchg in
7805                  * btrfs_dev_stats_read_and_reset
7806                  */
7807                 smp_rmb();
7808
7809                 ret = update_dev_stat_item(trans, device);
7810                 if (!ret)
7811                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7812         }
7813         mutex_unlock(&fs_devices->device_list_mutex);
7814
7815         return ret;
7816 }
7817
7818 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7819 {
7820         btrfs_dev_stat_inc(dev, index);
7821         btrfs_dev_stat_print_on_error(dev);
7822 }
7823
7824 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7825 {
7826         if (!dev->dev_stats_valid)
7827                 return;
7828         btrfs_err_rl_in_rcu(dev->fs_info,
7829                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7830                            rcu_str_deref(dev->name),
7831                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7832                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7833                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7834                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7835                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7836 }
7837
7838 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7839 {
7840         int i;
7841
7842         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7843                 if (btrfs_dev_stat_read(dev, i) != 0)
7844                         break;
7845         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7846                 return; /* all values == 0, suppress message */
7847
7848         btrfs_info_in_rcu(dev->fs_info,
7849                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7850                rcu_str_deref(dev->name),
7851                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7852                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7853                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7854                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7855                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7856 }
7857
7858 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7859                         struct btrfs_ioctl_get_dev_stats *stats)
7860 {
7861         struct btrfs_device *dev;
7862         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7863         int i;
7864
7865         mutex_lock(&fs_devices->device_list_mutex);
7866         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7867         mutex_unlock(&fs_devices->device_list_mutex);
7868
7869         if (!dev) {
7870                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7871                 return -ENODEV;
7872         } else if (!dev->dev_stats_valid) {
7873                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7874                 return -ENODEV;
7875         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7876                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7877                         if (stats->nr_items > i)
7878                                 stats->values[i] =
7879                                         btrfs_dev_stat_read_and_reset(dev, i);
7880                         else
7881                                 btrfs_dev_stat_set(dev, i, 0);
7882                 }
7883                 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7884                            current->comm, task_pid_nr(current));
7885         } else {
7886                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7887                         if (stats->nr_items > i)
7888                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7889         }
7890         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7891                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7892         return 0;
7893 }
7894
7895 /*
7896  * Update the size and bytes used for each device where it changed.  This is
7897  * delayed since we would otherwise get errors while writing out the
7898  * superblocks.
7899  *
7900  * Must be invoked during transaction commit.
7901  */
7902 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7903 {
7904         struct btrfs_device *curr, *next;
7905
7906         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7907
7908         if (list_empty(&trans->dev_update_list))
7909                 return;
7910
7911         /*
7912          * We don't need the device_list_mutex here.  This list is owned by the
7913          * transaction and the transaction must complete before the device is
7914          * released.
7915          */
7916         mutex_lock(&trans->fs_info->chunk_mutex);
7917         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7918                                  post_commit_list) {
7919                 list_del_init(&curr->post_commit_list);
7920                 curr->commit_total_bytes = curr->disk_total_bytes;
7921                 curr->commit_bytes_used = curr->bytes_used;
7922         }
7923         mutex_unlock(&trans->fs_info->chunk_mutex);
7924 }
7925
7926 /*
7927  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7928  */
7929 int btrfs_bg_type_to_factor(u64 flags)
7930 {
7931         const int index = btrfs_bg_flags_to_raid_index(flags);
7932
7933         return btrfs_raid_array[index].ncopies;
7934 }
7935
7936
7937
7938 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7939                                  u64 chunk_offset, u64 devid,
7940                                  u64 physical_offset, u64 physical_len)
7941 {
7942         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7943         struct extent_map *em;
7944         struct map_lookup *map;
7945         struct btrfs_device *dev;
7946         u64 stripe_len;
7947         bool found = false;
7948         int ret = 0;
7949         int i;
7950
7951         read_lock(&em_tree->lock);
7952         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7953         read_unlock(&em_tree->lock);
7954
7955         if (!em) {
7956                 btrfs_err(fs_info,
7957 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7958                           physical_offset, devid);
7959                 ret = -EUCLEAN;
7960                 goto out;
7961         }
7962
7963         map = em->map_lookup;
7964         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7965         if (physical_len != stripe_len) {
7966                 btrfs_err(fs_info,
7967 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7968                           physical_offset, devid, em->start, physical_len,
7969                           stripe_len);
7970                 ret = -EUCLEAN;
7971                 goto out;
7972         }
7973
7974         for (i = 0; i < map->num_stripes; i++) {
7975                 if (map->stripes[i].dev->devid == devid &&
7976                     map->stripes[i].physical == physical_offset) {
7977                         found = true;
7978                         if (map->verified_stripes >= map->num_stripes) {
7979                                 btrfs_err(fs_info,
7980                                 "too many dev extents for chunk %llu found",
7981                                           em->start);
7982                                 ret = -EUCLEAN;
7983                                 goto out;
7984                         }
7985                         map->verified_stripes++;
7986                         break;
7987                 }
7988         }
7989         if (!found) {
7990                 btrfs_err(fs_info,
7991         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7992                         physical_offset, devid);
7993                 ret = -EUCLEAN;
7994         }
7995
7996         /* Make sure no dev extent is beyond device boundary */
7997         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7998         if (!dev) {
7999                 btrfs_err(fs_info, "failed to find devid %llu", devid);
8000                 ret = -EUCLEAN;
8001                 goto out;
8002         }
8003
8004         if (physical_offset + physical_len > dev->disk_total_bytes) {
8005                 btrfs_err(fs_info,
8006 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8007                           devid, physical_offset, physical_len,
8008                           dev->disk_total_bytes);
8009                 ret = -EUCLEAN;
8010                 goto out;
8011         }
8012
8013         if (dev->zone_info) {
8014                 u64 zone_size = dev->zone_info->zone_size;
8015
8016                 if (!IS_ALIGNED(physical_offset, zone_size) ||
8017                     !IS_ALIGNED(physical_len, zone_size)) {
8018                         btrfs_err(fs_info,
8019 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8020                                   devid, physical_offset, physical_len);
8021                         ret = -EUCLEAN;
8022                         goto out;
8023                 }
8024         }
8025
8026 out:
8027         free_extent_map(em);
8028         return ret;
8029 }
8030
8031 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8032 {
8033         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8034         struct extent_map *em;
8035         struct rb_node *node;
8036         int ret = 0;
8037
8038         read_lock(&em_tree->lock);
8039         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8040                 em = rb_entry(node, struct extent_map, rb_node);
8041                 if (em->map_lookup->num_stripes !=
8042                     em->map_lookup->verified_stripes) {
8043                         btrfs_err(fs_info,
8044                         "chunk %llu has missing dev extent, have %d expect %d",
8045                                   em->start, em->map_lookup->verified_stripes,
8046                                   em->map_lookup->num_stripes);
8047                         ret = -EUCLEAN;
8048                         goto out;
8049                 }
8050         }
8051 out:
8052         read_unlock(&em_tree->lock);
8053         return ret;
8054 }
8055
8056 /*
8057  * Ensure that all dev extents are mapped to correct chunk, otherwise
8058  * later chunk allocation/free would cause unexpected behavior.
8059  *
8060  * NOTE: This will iterate through the whole device tree, which should be of
8061  * the same size level as the chunk tree.  This slightly increases mount time.
8062  */
8063 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8064 {
8065         struct btrfs_path *path;
8066         struct btrfs_root *root = fs_info->dev_root;
8067         struct btrfs_key key;
8068         u64 prev_devid = 0;
8069         u64 prev_dev_ext_end = 0;
8070         int ret = 0;
8071
8072         /*
8073          * We don't have a dev_root because we mounted with ignorebadroots and
8074          * failed to load the root, so we want to skip the verification in this
8075          * case for sure.
8076          *
8077          * However if the dev root is fine, but the tree itself is corrupted
8078          * we'd still fail to mount.  This verification is only to make sure
8079          * writes can happen safely, so instead just bypass this check
8080          * completely in the case of IGNOREBADROOTS.
8081          */
8082         if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8083                 return 0;
8084
8085         key.objectid = 1;
8086         key.type = BTRFS_DEV_EXTENT_KEY;
8087         key.offset = 0;
8088
8089         path = btrfs_alloc_path();
8090         if (!path)
8091                 return -ENOMEM;
8092
8093         path->reada = READA_FORWARD;
8094         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8095         if (ret < 0)
8096                 goto out;
8097
8098         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8099                 ret = btrfs_next_leaf(root, path);
8100                 if (ret < 0)
8101                         goto out;
8102                 /* No dev extents at all? Not good */
8103                 if (ret > 0) {
8104                         ret = -EUCLEAN;
8105                         goto out;
8106                 }
8107         }
8108         while (1) {
8109                 struct extent_buffer *leaf = path->nodes[0];
8110                 struct btrfs_dev_extent *dext;
8111                 int slot = path->slots[0];
8112                 u64 chunk_offset;
8113                 u64 physical_offset;
8114                 u64 physical_len;
8115                 u64 devid;
8116
8117                 btrfs_item_key_to_cpu(leaf, &key, slot);
8118                 if (key.type != BTRFS_DEV_EXTENT_KEY)
8119                         break;
8120                 devid = key.objectid;
8121                 physical_offset = key.offset;
8122
8123                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8124                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8125                 physical_len = btrfs_dev_extent_length(leaf, dext);
8126
8127                 /* Check if this dev extent overlaps with the previous one */
8128                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8129                         btrfs_err(fs_info,
8130 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8131                                   devid, physical_offset, prev_dev_ext_end);
8132                         ret = -EUCLEAN;
8133                         goto out;
8134                 }
8135
8136                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8137                                             physical_offset, physical_len);
8138                 if (ret < 0)
8139                         goto out;
8140                 prev_devid = devid;
8141                 prev_dev_ext_end = physical_offset + physical_len;
8142
8143                 ret = btrfs_next_item(root, path);
8144                 if (ret < 0)
8145                         goto out;
8146                 if (ret > 0) {
8147                         ret = 0;
8148                         break;
8149                 }
8150         }
8151
8152         /* Ensure all chunks have corresponding dev extents */
8153         ret = verify_chunk_dev_extent_mapping(fs_info);
8154 out:
8155         btrfs_free_path(path);
8156         return ret;
8157 }
8158
8159 /*
8160  * Check whether the given block group or device is pinned by any inode being
8161  * used as a swapfile.
8162  */
8163 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8164 {
8165         struct btrfs_swapfile_pin *sp;
8166         struct rb_node *node;
8167
8168         spin_lock(&fs_info->swapfile_pins_lock);
8169         node = fs_info->swapfile_pins.rb_node;
8170         while (node) {
8171                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8172                 if (ptr < sp->ptr)
8173                         node = node->rb_left;
8174                 else if (ptr > sp->ptr)
8175                         node = node->rb_right;
8176                 else
8177                         break;
8178         }
8179         spin_unlock(&fs_info->swapfile_pins_lock);
8180         return node != NULL;
8181 }
8182
8183 static int relocating_repair_kthread(void *data)
8184 {
8185         struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8186         struct btrfs_fs_info *fs_info = cache->fs_info;
8187         u64 target;
8188         int ret = 0;
8189
8190         target = cache->start;
8191         btrfs_put_block_group(cache);
8192
8193         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8194                 btrfs_info(fs_info,
8195                            "zoned: skip relocating block group %llu to repair: EBUSY",
8196                            target);
8197                 return -EBUSY;
8198         }
8199
8200         mutex_lock(&fs_info->reclaim_bgs_lock);
8201
8202         /* Ensure block group still exists */
8203         cache = btrfs_lookup_block_group(fs_info, target);
8204         if (!cache)
8205                 goto out;
8206
8207         if (!cache->relocating_repair)
8208                 goto out;
8209
8210         ret = btrfs_may_alloc_data_chunk(fs_info, target);
8211         if (ret < 0)
8212                 goto out;
8213
8214         btrfs_info(fs_info,
8215                    "zoned: relocating block group %llu to repair IO failure",
8216                    target);
8217         ret = btrfs_relocate_chunk(fs_info, target);
8218
8219 out:
8220         if (cache)
8221                 btrfs_put_block_group(cache);
8222         mutex_unlock(&fs_info->reclaim_bgs_lock);
8223         btrfs_exclop_finish(fs_info);
8224
8225         return ret;
8226 }
8227
8228 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8229 {
8230         struct btrfs_block_group *cache;
8231
8232         /* Do not attempt to repair in degraded state */
8233         if (btrfs_test_opt(fs_info, DEGRADED))
8234                 return 0;
8235
8236         cache = btrfs_lookup_block_group(fs_info, logical);
8237         if (!cache)
8238                 return 0;
8239
8240         spin_lock(&cache->lock);
8241         if (cache->relocating_repair) {
8242                 spin_unlock(&cache->lock);
8243                 btrfs_put_block_group(cache);
8244                 return 0;
8245         }
8246         cache->relocating_repair = 1;
8247         spin_unlock(&cache->lock);
8248
8249         kthread_run(relocating_repair_kthread, cache,
8250                     "btrfs-relocating-repair");
8251
8252         return 0;
8253 }