btrfs: zoned: mark relocation as writing
[platform/kernel/linux-rpi.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34 #include "discard.h"
35 #include "zoned.h"
36
37 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
38         [BTRFS_RAID_RAID10] = {
39                 .sub_stripes    = 2,
40                 .dev_stripes    = 1,
41                 .devs_max       = 0,    /* 0 == as many as possible */
42                 .devs_min       = 2,
43                 .tolerated_failures = 1,
44                 .devs_increment = 2,
45                 .ncopies        = 2,
46                 .nparity        = 0,
47                 .raid_name      = "raid10",
48                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
49                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
50         },
51         [BTRFS_RAID_RAID1] = {
52                 .sub_stripes    = 1,
53                 .dev_stripes    = 1,
54                 .devs_max       = 2,
55                 .devs_min       = 2,
56                 .tolerated_failures = 1,
57                 .devs_increment = 2,
58                 .ncopies        = 2,
59                 .nparity        = 0,
60                 .raid_name      = "raid1",
61                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
62                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
63         },
64         [BTRFS_RAID_RAID1C3] = {
65                 .sub_stripes    = 1,
66                 .dev_stripes    = 1,
67                 .devs_max       = 3,
68                 .devs_min       = 3,
69                 .tolerated_failures = 2,
70                 .devs_increment = 3,
71                 .ncopies        = 3,
72                 .nparity        = 0,
73                 .raid_name      = "raid1c3",
74                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
75                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
76         },
77         [BTRFS_RAID_RAID1C4] = {
78                 .sub_stripes    = 1,
79                 .dev_stripes    = 1,
80                 .devs_max       = 4,
81                 .devs_min       = 4,
82                 .tolerated_failures = 3,
83                 .devs_increment = 4,
84                 .ncopies        = 4,
85                 .nparity        = 0,
86                 .raid_name      = "raid1c4",
87                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
88                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
89         },
90         [BTRFS_RAID_DUP] = {
91                 .sub_stripes    = 1,
92                 .dev_stripes    = 2,
93                 .devs_max       = 1,
94                 .devs_min       = 1,
95                 .tolerated_failures = 0,
96                 .devs_increment = 1,
97                 .ncopies        = 2,
98                 .nparity        = 0,
99                 .raid_name      = "dup",
100                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
101                 .mindev_error   = 0,
102         },
103         [BTRFS_RAID_RAID0] = {
104                 .sub_stripes    = 1,
105                 .dev_stripes    = 1,
106                 .devs_max       = 0,
107                 .devs_min       = 1,
108                 .tolerated_failures = 0,
109                 .devs_increment = 1,
110                 .ncopies        = 1,
111                 .nparity        = 0,
112                 .raid_name      = "raid0",
113                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
114                 .mindev_error   = 0,
115         },
116         [BTRFS_RAID_SINGLE] = {
117                 .sub_stripes    = 1,
118                 .dev_stripes    = 1,
119                 .devs_max       = 1,
120                 .devs_min       = 1,
121                 .tolerated_failures = 0,
122                 .devs_increment = 1,
123                 .ncopies        = 1,
124                 .nparity        = 0,
125                 .raid_name      = "single",
126                 .bg_flag        = 0,
127                 .mindev_error   = 0,
128         },
129         [BTRFS_RAID_RAID5] = {
130                 .sub_stripes    = 1,
131                 .dev_stripes    = 1,
132                 .devs_max       = 0,
133                 .devs_min       = 2,
134                 .tolerated_failures = 1,
135                 .devs_increment = 1,
136                 .ncopies        = 1,
137                 .nparity        = 1,
138                 .raid_name      = "raid5",
139                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
140                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
141         },
142         [BTRFS_RAID_RAID6] = {
143                 .sub_stripes    = 1,
144                 .dev_stripes    = 1,
145                 .devs_max       = 0,
146                 .devs_min       = 3,
147                 .tolerated_failures = 2,
148                 .devs_increment = 1,
149                 .ncopies        = 1,
150                 .nparity        = 2,
151                 .raid_name      = "raid6",
152                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
153                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
154         },
155 };
156
157 /*
158  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
159  * can be used as index to access btrfs_raid_array[].
160  */
161 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
162 {
163         if (flags & BTRFS_BLOCK_GROUP_RAID10)
164                 return BTRFS_RAID_RAID10;
165         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
166                 return BTRFS_RAID_RAID1;
167         else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
168                 return BTRFS_RAID_RAID1C3;
169         else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
170                 return BTRFS_RAID_RAID1C4;
171         else if (flags & BTRFS_BLOCK_GROUP_DUP)
172                 return BTRFS_RAID_DUP;
173         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
174                 return BTRFS_RAID_RAID0;
175         else if (flags & BTRFS_BLOCK_GROUP_RAID5)
176                 return BTRFS_RAID_RAID5;
177         else if (flags & BTRFS_BLOCK_GROUP_RAID6)
178                 return BTRFS_RAID_RAID6;
179
180         return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
181 }
182
183 const char *btrfs_bg_type_to_raid_name(u64 flags)
184 {
185         const int index = btrfs_bg_flags_to_raid_index(flags);
186
187         if (index >= BTRFS_NR_RAID_TYPES)
188                 return NULL;
189
190         return btrfs_raid_array[index].raid_name;
191 }
192
193 /*
194  * Fill @buf with textual description of @bg_flags, no more than @size_buf
195  * bytes including terminating null byte.
196  */
197 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
198 {
199         int i;
200         int ret;
201         char *bp = buf;
202         u64 flags = bg_flags;
203         u32 size_bp = size_buf;
204
205         if (!flags) {
206                 strcpy(bp, "NONE");
207                 return;
208         }
209
210 #define DESCRIBE_FLAG(flag, desc)                                               \
211         do {                                                            \
212                 if (flags & (flag)) {                                   \
213                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
214                         if (ret < 0 || ret >= size_bp)                  \
215                                 goto out_overflow;                      \
216                         size_bp -= ret;                                 \
217                         bp += ret;                                      \
218                         flags &= ~(flag);                               \
219                 }                                                       \
220         } while (0)
221
222         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
223         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
224         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
225
226         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
227         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
228                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
229                               btrfs_raid_array[i].raid_name);
230 #undef DESCRIBE_FLAG
231
232         if (flags) {
233                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
234                 size_bp -= ret;
235         }
236
237         if (size_bp < size_buf)
238                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
239
240         /*
241          * The text is trimmed, it's up to the caller to provide sufficiently
242          * large buffer
243          */
244 out_overflow:;
245 }
246
247 static int init_first_rw_device(struct btrfs_trans_handle *trans);
248 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
249 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
252                              enum btrfs_map_op op,
253                              u64 logical, u64 *length,
254                              struct btrfs_bio **bbio_ret,
255                              int mirror_num, int need_raid_map);
256
257 /*
258  * Device locking
259  * ==============
260  *
261  * There are several mutexes that protect manipulation of devices and low-level
262  * structures like chunks but not block groups, extents or files
263  *
264  * uuid_mutex (global lock)
265  * ------------------------
266  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
267  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
268  * device) or requested by the device= mount option
269  *
270  * the mutex can be very coarse and can cover long-running operations
271  *
272  * protects: updates to fs_devices counters like missing devices, rw devices,
273  * seeding, structure cloning, opening/closing devices at mount/umount time
274  *
275  * global::fs_devs - add, remove, updates to the global list
276  *
277  * does not protect: manipulation of the fs_devices::devices list in general
278  * but in mount context it could be used to exclude list modifications by eg.
279  * scan ioctl
280  *
281  * btrfs_device::name - renames (write side), read is RCU
282  *
283  * fs_devices::device_list_mutex (per-fs, with RCU)
284  * ------------------------------------------------
285  * protects updates to fs_devices::devices, ie. adding and deleting
286  *
287  * simple list traversal with read-only actions can be done with RCU protection
288  *
289  * may be used to exclude some operations from running concurrently without any
290  * modifications to the list (see write_all_supers)
291  *
292  * Is not required at mount and close times, because our device list is
293  * protected by the uuid_mutex at that point.
294  *
295  * balance_mutex
296  * -------------
297  * protects balance structures (status, state) and context accessed from
298  * several places (internally, ioctl)
299  *
300  * chunk_mutex
301  * -----------
302  * protects chunks, adding or removing during allocation, trim or when a new
303  * device is added/removed. Additionally it also protects post_commit_list of
304  * individual devices, since they can be added to the transaction's
305  * post_commit_list only with chunk_mutex held.
306  *
307  * cleaner_mutex
308  * -------------
309  * a big lock that is held by the cleaner thread and prevents running subvolume
310  * cleaning together with relocation or delayed iputs
311  *
312  *
313  * Lock nesting
314  * ============
315  *
316  * uuid_mutex
317  *   device_list_mutex
318  *     chunk_mutex
319  *   balance_mutex
320  *
321  *
322  * Exclusive operations
323  * ====================
324  *
325  * Maintains the exclusivity of the following operations that apply to the
326  * whole filesystem and cannot run in parallel.
327  *
328  * - Balance (*)
329  * - Device add
330  * - Device remove
331  * - Device replace (*)
332  * - Resize
333  *
334  * The device operations (as above) can be in one of the following states:
335  *
336  * - Running state
337  * - Paused state
338  * - Completed state
339  *
340  * Only device operations marked with (*) can go into the Paused state for the
341  * following reasons:
342  *
343  * - ioctl (only Balance can be Paused through ioctl)
344  * - filesystem remounted as read-only
345  * - filesystem unmounted and mounted as read-only
346  * - system power-cycle and filesystem mounted as read-only
347  * - filesystem or device errors leading to forced read-only
348  *
349  * The status of exclusive operation is set and cleared atomically.
350  * During the course of Paused state, fs_info::exclusive_operation remains set.
351  * A device operation in Paused or Running state can be canceled or resumed
352  * either by ioctl (Balance only) or when remounted as read-write.
353  * The exclusive status is cleared when the device operation is canceled or
354  * completed.
355  */
356
357 DEFINE_MUTEX(uuid_mutex);
358 static LIST_HEAD(fs_uuids);
359 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
360 {
361         return &fs_uuids;
362 }
363
364 /*
365  * alloc_fs_devices - allocate struct btrfs_fs_devices
366  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
367  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
368  *
369  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
370  * The returned struct is not linked onto any lists and can be destroyed with
371  * kfree() right away.
372  */
373 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
374                                                  const u8 *metadata_fsid)
375 {
376         struct btrfs_fs_devices *fs_devs;
377
378         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
379         if (!fs_devs)
380                 return ERR_PTR(-ENOMEM);
381
382         mutex_init(&fs_devs->device_list_mutex);
383
384         INIT_LIST_HEAD(&fs_devs->devices);
385         INIT_LIST_HEAD(&fs_devs->alloc_list);
386         INIT_LIST_HEAD(&fs_devs->fs_list);
387         INIT_LIST_HEAD(&fs_devs->seed_list);
388         if (fsid)
389                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
390
391         if (metadata_fsid)
392                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
393         else if (fsid)
394                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
395
396         return fs_devs;
397 }
398
399 void btrfs_free_device(struct btrfs_device *device)
400 {
401         WARN_ON(!list_empty(&device->post_commit_list));
402         rcu_string_free(device->name);
403         extent_io_tree_release(&device->alloc_state);
404         bio_put(device->flush_bio);
405         btrfs_destroy_dev_zone_info(device);
406         kfree(device);
407 }
408
409 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
410 {
411         struct btrfs_device *device;
412         WARN_ON(fs_devices->opened);
413         while (!list_empty(&fs_devices->devices)) {
414                 device = list_entry(fs_devices->devices.next,
415                                     struct btrfs_device, dev_list);
416                 list_del(&device->dev_list);
417                 btrfs_free_device(device);
418         }
419         kfree(fs_devices);
420 }
421
422 void __exit btrfs_cleanup_fs_uuids(void)
423 {
424         struct btrfs_fs_devices *fs_devices;
425
426         while (!list_empty(&fs_uuids)) {
427                 fs_devices = list_entry(fs_uuids.next,
428                                         struct btrfs_fs_devices, fs_list);
429                 list_del(&fs_devices->fs_list);
430                 free_fs_devices(fs_devices);
431         }
432 }
433
434 static noinline struct btrfs_fs_devices *find_fsid(
435                 const u8 *fsid, const u8 *metadata_fsid)
436 {
437         struct btrfs_fs_devices *fs_devices;
438
439         ASSERT(fsid);
440
441         /* Handle non-split brain cases */
442         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
443                 if (metadata_fsid) {
444                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
445                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
446                                       BTRFS_FSID_SIZE) == 0)
447                                 return fs_devices;
448                 } else {
449                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
450                                 return fs_devices;
451                 }
452         }
453         return NULL;
454 }
455
456 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
457                                 struct btrfs_super_block *disk_super)
458 {
459
460         struct btrfs_fs_devices *fs_devices;
461
462         /*
463          * Handle scanned device having completed its fsid change but
464          * belonging to a fs_devices that was created by first scanning
465          * a device which didn't have its fsid/metadata_uuid changed
466          * at all and the CHANGING_FSID_V2 flag set.
467          */
468         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
469                 if (fs_devices->fsid_change &&
470                     memcmp(disk_super->metadata_uuid, fs_devices->fsid,
471                            BTRFS_FSID_SIZE) == 0 &&
472                     memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
473                            BTRFS_FSID_SIZE) == 0) {
474                         return fs_devices;
475                 }
476         }
477         /*
478          * Handle scanned device having completed its fsid change but
479          * belonging to a fs_devices that was created by a device that
480          * has an outdated pair of fsid/metadata_uuid and
481          * CHANGING_FSID_V2 flag set.
482          */
483         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
484                 if (fs_devices->fsid_change &&
485                     memcmp(fs_devices->metadata_uuid,
486                            fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
487                     memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
488                            BTRFS_FSID_SIZE) == 0) {
489                         return fs_devices;
490                 }
491         }
492
493         return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
494 }
495
496
497 static int
498 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
499                       int flush, struct block_device **bdev,
500                       struct btrfs_super_block **disk_super)
501 {
502         int ret;
503
504         *bdev = blkdev_get_by_path(device_path, flags, holder);
505
506         if (IS_ERR(*bdev)) {
507                 ret = PTR_ERR(*bdev);
508                 goto error;
509         }
510
511         if (flush)
512                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
513         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
514         if (ret) {
515                 blkdev_put(*bdev, flags);
516                 goto error;
517         }
518         invalidate_bdev(*bdev);
519         *disk_super = btrfs_read_dev_super(*bdev);
520         if (IS_ERR(*disk_super)) {
521                 ret = PTR_ERR(*disk_super);
522                 blkdev_put(*bdev, flags);
523                 goto error;
524         }
525
526         return 0;
527
528 error:
529         *bdev = NULL;
530         return ret;
531 }
532
533 static bool device_path_matched(const char *path, struct btrfs_device *device)
534 {
535         int found;
536
537         rcu_read_lock();
538         found = strcmp(rcu_str_deref(device->name), path);
539         rcu_read_unlock();
540
541         return found == 0;
542 }
543
544 /*
545  *  Search and remove all stale (devices which are not mounted) devices.
546  *  When both inputs are NULL, it will search and release all stale devices.
547  *  path:       Optional. When provided will it release all unmounted devices
548  *              matching this path only.
549  *  skip_dev:   Optional. Will skip this device when searching for the stale
550  *              devices.
551  *  Return:     0 for success or if @path is NULL.
552  *              -EBUSY if @path is a mounted device.
553  *              -ENOENT if @path does not match any device in the list.
554  */
555 static int btrfs_free_stale_devices(const char *path,
556                                      struct btrfs_device *skip_device)
557 {
558         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
559         struct btrfs_device *device, *tmp_device;
560         int ret = 0;
561
562         lockdep_assert_held(&uuid_mutex);
563
564         if (path)
565                 ret = -ENOENT;
566
567         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
568
569                 mutex_lock(&fs_devices->device_list_mutex);
570                 list_for_each_entry_safe(device, tmp_device,
571                                          &fs_devices->devices, dev_list) {
572                         if (skip_device && skip_device == device)
573                                 continue;
574                         if (path && !device->name)
575                                 continue;
576                         if (path && !device_path_matched(path, device))
577                                 continue;
578                         if (fs_devices->opened) {
579                                 /* for an already deleted device return 0 */
580                                 if (path && ret != 0)
581                                         ret = -EBUSY;
582                                 break;
583                         }
584
585                         /* delete the stale device */
586                         fs_devices->num_devices--;
587                         list_del(&device->dev_list);
588                         btrfs_free_device(device);
589
590                         ret = 0;
591                 }
592                 mutex_unlock(&fs_devices->device_list_mutex);
593
594                 if (fs_devices->num_devices == 0) {
595                         btrfs_sysfs_remove_fsid(fs_devices);
596                         list_del(&fs_devices->fs_list);
597                         free_fs_devices(fs_devices);
598                 }
599         }
600
601         return ret;
602 }
603
604 /*
605  * This is only used on mount, and we are protected from competing things
606  * messing with our fs_devices by the uuid_mutex, thus we do not need the
607  * fs_devices->device_list_mutex here.
608  */
609 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
610                         struct btrfs_device *device, fmode_t flags,
611                         void *holder)
612 {
613         struct request_queue *q;
614         struct block_device *bdev;
615         struct btrfs_super_block *disk_super;
616         u64 devid;
617         int ret;
618
619         if (device->bdev)
620                 return -EINVAL;
621         if (!device->name)
622                 return -EINVAL;
623
624         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
625                                     &bdev, &disk_super);
626         if (ret)
627                 return ret;
628
629         devid = btrfs_stack_device_id(&disk_super->dev_item);
630         if (devid != device->devid)
631                 goto error_free_page;
632
633         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
634                 goto error_free_page;
635
636         device->generation = btrfs_super_generation(disk_super);
637
638         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
639                 if (btrfs_super_incompat_flags(disk_super) &
640                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
641                         pr_err(
642                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
643                         goto error_free_page;
644                 }
645
646                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
647                 fs_devices->seeding = true;
648         } else {
649                 if (bdev_read_only(bdev))
650                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
651                 else
652                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653         }
654
655         q = bdev_get_queue(bdev);
656         if (!blk_queue_nonrot(q))
657                 fs_devices->rotating = true;
658
659         device->bdev = bdev;
660         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
661         device->mode = flags;
662
663         fs_devices->open_devices++;
664         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
665             device->devid != BTRFS_DEV_REPLACE_DEVID) {
666                 fs_devices->rw_devices++;
667                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
668         }
669         btrfs_release_disk_super(disk_super);
670
671         return 0;
672
673 error_free_page:
674         btrfs_release_disk_super(disk_super);
675         blkdev_put(bdev, flags);
676
677         return -EINVAL;
678 }
679
680 /*
681  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
682  * being created with a disk that has already completed its fsid change. Such
683  * disk can belong to an fs which has its FSID changed or to one which doesn't.
684  * Handle both cases here.
685  */
686 static struct btrfs_fs_devices *find_fsid_inprogress(
687                                         struct btrfs_super_block *disk_super)
688 {
689         struct btrfs_fs_devices *fs_devices;
690
691         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
692                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
693                            BTRFS_FSID_SIZE) != 0 &&
694                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
695                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
696                         return fs_devices;
697                 }
698         }
699
700         return find_fsid(disk_super->fsid, NULL);
701 }
702
703
704 static struct btrfs_fs_devices *find_fsid_changed(
705                                         struct btrfs_super_block *disk_super)
706 {
707         struct btrfs_fs_devices *fs_devices;
708
709         /*
710          * Handles the case where scanned device is part of an fs that had
711          * multiple successful changes of FSID but currently device didn't
712          * observe it. Meaning our fsid will be different than theirs. We need
713          * to handle two subcases :
714          *  1 - The fs still continues to have different METADATA/FSID uuids.
715          *  2 - The fs is switched back to its original FSID (METADATA/FSID
716          *  are equal).
717          */
718         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
719                 /* Changed UUIDs */
720                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
721                            BTRFS_FSID_SIZE) != 0 &&
722                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
723                            BTRFS_FSID_SIZE) == 0 &&
724                     memcmp(fs_devices->fsid, disk_super->fsid,
725                            BTRFS_FSID_SIZE) != 0)
726                         return fs_devices;
727
728                 /* Unchanged UUIDs */
729                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
730                            BTRFS_FSID_SIZE) == 0 &&
731                     memcmp(fs_devices->fsid, disk_super->metadata_uuid,
732                            BTRFS_FSID_SIZE) == 0)
733                         return fs_devices;
734         }
735
736         return NULL;
737 }
738
739 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
740                                 struct btrfs_super_block *disk_super)
741 {
742         struct btrfs_fs_devices *fs_devices;
743
744         /*
745          * Handle the case where the scanned device is part of an fs whose last
746          * metadata UUID change reverted it to the original FSID. At the same
747          * time * fs_devices was first created by another constitutent device
748          * which didn't fully observe the operation. This results in an
749          * btrfs_fs_devices created with metadata/fsid different AND
750          * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
751          * fs_devices equal to the FSID of the disk.
752          */
753         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
754                 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
755                            BTRFS_FSID_SIZE) != 0 &&
756                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
757                            BTRFS_FSID_SIZE) == 0 &&
758                     fs_devices->fsid_change)
759                         return fs_devices;
760         }
761
762         return NULL;
763 }
764 /*
765  * Add new device to list of registered devices
766  *
767  * Returns:
768  * device pointer which was just added or updated when successful
769  * error pointer when failed
770  */
771 static noinline struct btrfs_device *device_list_add(const char *path,
772                            struct btrfs_super_block *disk_super,
773                            bool *new_device_added)
774 {
775         struct btrfs_device *device;
776         struct btrfs_fs_devices *fs_devices = NULL;
777         struct rcu_string *name;
778         u64 found_transid = btrfs_super_generation(disk_super);
779         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
780         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
781                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
782         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
783                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
784
785         if (fsid_change_in_progress) {
786                 if (!has_metadata_uuid)
787                         fs_devices = find_fsid_inprogress(disk_super);
788                 else
789                         fs_devices = find_fsid_changed(disk_super);
790         } else if (has_metadata_uuid) {
791                 fs_devices = find_fsid_with_metadata_uuid(disk_super);
792         } else {
793                 fs_devices = find_fsid_reverted_metadata(disk_super);
794                 if (!fs_devices)
795                         fs_devices = find_fsid(disk_super->fsid, NULL);
796         }
797
798
799         if (!fs_devices) {
800                 if (has_metadata_uuid)
801                         fs_devices = alloc_fs_devices(disk_super->fsid,
802                                                       disk_super->metadata_uuid);
803                 else
804                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
805
806                 if (IS_ERR(fs_devices))
807                         return ERR_CAST(fs_devices);
808
809                 fs_devices->fsid_change = fsid_change_in_progress;
810
811                 mutex_lock(&fs_devices->device_list_mutex);
812                 list_add(&fs_devices->fs_list, &fs_uuids);
813
814                 device = NULL;
815         } else {
816                 mutex_lock(&fs_devices->device_list_mutex);
817                 device = btrfs_find_device(fs_devices, devid,
818                                 disk_super->dev_item.uuid, NULL);
819
820                 /*
821                  * If this disk has been pulled into an fs devices created by
822                  * a device which had the CHANGING_FSID_V2 flag then replace the
823                  * metadata_uuid/fsid values of the fs_devices.
824                  */
825                 if (fs_devices->fsid_change &&
826                     found_transid > fs_devices->latest_generation) {
827                         memcpy(fs_devices->fsid, disk_super->fsid,
828                                         BTRFS_FSID_SIZE);
829
830                         if (has_metadata_uuid)
831                                 memcpy(fs_devices->metadata_uuid,
832                                        disk_super->metadata_uuid,
833                                        BTRFS_FSID_SIZE);
834                         else
835                                 memcpy(fs_devices->metadata_uuid,
836                                        disk_super->fsid, BTRFS_FSID_SIZE);
837
838                         fs_devices->fsid_change = false;
839                 }
840         }
841
842         if (!device) {
843                 if (fs_devices->opened) {
844                         mutex_unlock(&fs_devices->device_list_mutex);
845                         return ERR_PTR(-EBUSY);
846                 }
847
848                 device = btrfs_alloc_device(NULL, &devid,
849                                             disk_super->dev_item.uuid);
850                 if (IS_ERR(device)) {
851                         mutex_unlock(&fs_devices->device_list_mutex);
852                         /* we can safely leave the fs_devices entry around */
853                         return device;
854                 }
855
856                 name = rcu_string_strdup(path, GFP_NOFS);
857                 if (!name) {
858                         btrfs_free_device(device);
859                         mutex_unlock(&fs_devices->device_list_mutex);
860                         return ERR_PTR(-ENOMEM);
861                 }
862                 rcu_assign_pointer(device->name, name);
863
864                 list_add_rcu(&device->dev_list, &fs_devices->devices);
865                 fs_devices->num_devices++;
866
867                 device->fs_devices = fs_devices;
868                 *new_device_added = true;
869
870                 if (disk_super->label[0])
871                         pr_info(
872         "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
873                                 disk_super->label, devid, found_transid, path,
874                                 current->comm, task_pid_nr(current));
875                 else
876                         pr_info(
877         "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
878                                 disk_super->fsid, devid, found_transid, path,
879                                 current->comm, task_pid_nr(current));
880
881         } else if (!device->name || strcmp(device->name->str, path)) {
882                 /*
883                  * When FS is already mounted.
884                  * 1. If you are here and if the device->name is NULL that
885                  *    means this device was missing at time of FS mount.
886                  * 2. If you are here and if the device->name is different
887                  *    from 'path' that means either
888                  *      a. The same device disappeared and reappeared with
889                  *         different name. or
890                  *      b. The missing-disk-which-was-replaced, has
891                  *         reappeared now.
892                  *
893                  * We must allow 1 and 2a above. But 2b would be a spurious
894                  * and unintentional.
895                  *
896                  * Further in case of 1 and 2a above, the disk at 'path'
897                  * would have missed some transaction when it was away and
898                  * in case of 2a the stale bdev has to be updated as well.
899                  * 2b must not be allowed at all time.
900                  */
901
902                 /*
903                  * For now, we do allow update to btrfs_fs_device through the
904                  * btrfs dev scan cli after FS has been mounted.  We're still
905                  * tracking a problem where systems fail mount by subvolume id
906                  * when we reject replacement on a mounted FS.
907                  */
908                 if (!fs_devices->opened && found_transid < device->generation) {
909                         /*
910                          * That is if the FS is _not_ mounted and if you
911                          * are here, that means there is more than one
912                          * disk with same uuid and devid.We keep the one
913                          * with larger generation number or the last-in if
914                          * generation are equal.
915                          */
916                         mutex_unlock(&fs_devices->device_list_mutex);
917                         return ERR_PTR(-EEXIST);
918                 }
919
920                 /*
921                  * We are going to replace the device path for a given devid,
922                  * make sure it's the same device if the device is mounted
923                  */
924                 if (device->bdev) {
925                         int error;
926                         dev_t path_dev;
927
928                         error = lookup_bdev(path, &path_dev);
929                         if (error) {
930                                 mutex_unlock(&fs_devices->device_list_mutex);
931                                 return ERR_PTR(error);
932                         }
933
934                         if (device->bdev->bd_dev != path_dev) {
935                                 mutex_unlock(&fs_devices->device_list_mutex);
936                                 /*
937                                  * device->fs_info may not be reliable here, so
938                                  * pass in a NULL instead. This avoids a
939                                  * possible use-after-free when the fs_info and
940                                  * fs_info->sb are already torn down.
941                                  */
942                                 btrfs_warn_in_rcu(NULL,
943         "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
944                                                   path, devid, found_transid,
945                                                   current->comm,
946                                                   task_pid_nr(current));
947                                 return ERR_PTR(-EEXIST);
948                         }
949                         btrfs_info_in_rcu(device->fs_info,
950         "devid %llu device path %s changed to %s scanned by %s (%d)",
951                                           devid, rcu_str_deref(device->name),
952                                           path, current->comm,
953                                           task_pid_nr(current));
954                 }
955
956                 name = rcu_string_strdup(path, GFP_NOFS);
957                 if (!name) {
958                         mutex_unlock(&fs_devices->device_list_mutex);
959                         return ERR_PTR(-ENOMEM);
960                 }
961                 rcu_string_free(device->name);
962                 rcu_assign_pointer(device->name, name);
963                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
964                         fs_devices->missing_devices--;
965                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
966                 }
967         }
968
969         /*
970          * Unmount does not free the btrfs_device struct but would zero
971          * generation along with most of the other members. So just update
972          * it back. We need it to pick the disk with largest generation
973          * (as above).
974          */
975         if (!fs_devices->opened) {
976                 device->generation = found_transid;
977                 fs_devices->latest_generation = max_t(u64, found_transid,
978                                                 fs_devices->latest_generation);
979         }
980
981         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
982
983         mutex_unlock(&fs_devices->device_list_mutex);
984         return device;
985 }
986
987 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
988 {
989         struct btrfs_fs_devices *fs_devices;
990         struct btrfs_device *device;
991         struct btrfs_device *orig_dev;
992         int ret = 0;
993
994         lockdep_assert_held(&uuid_mutex);
995
996         fs_devices = alloc_fs_devices(orig->fsid, NULL);
997         if (IS_ERR(fs_devices))
998                 return fs_devices;
999
1000         fs_devices->total_devices = orig->total_devices;
1001
1002         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1003                 struct rcu_string *name;
1004
1005                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1006                                             orig_dev->uuid);
1007                 if (IS_ERR(device)) {
1008                         ret = PTR_ERR(device);
1009                         goto error;
1010                 }
1011
1012                 /*
1013                  * This is ok to do without rcu read locked because we hold the
1014                  * uuid mutex so nothing we touch in here is going to disappear.
1015                  */
1016                 if (orig_dev->name) {
1017                         name = rcu_string_strdup(orig_dev->name->str,
1018                                         GFP_KERNEL);
1019                         if (!name) {
1020                                 btrfs_free_device(device);
1021                                 ret = -ENOMEM;
1022                                 goto error;
1023                         }
1024                         rcu_assign_pointer(device->name, name);
1025                 }
1026
1027                 list_add(&device->dev_list, &fs_devices->devices);
1028                 device->fs_devices = fs_devices;
1029                 fs_devices->num_devices++;
1030         }
1031         return fs_devices;
1032 error:
1033         free_fs_devices(fs_devices);
1034         return ERR_PTR(ret);
1035 }
1036
1037 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1038                                       struct btrfs_device **latest_dev)
1039 {
1040         struct btrfs_device *device, *next;
1041
1042         /* This is the initialized path, it is safe to release the devices. */
1043         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1044                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1045                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1046                                       &device->dev_state) &&
1047                             !test_bit(BTRFS_DEV_STATE_MISSING,
1048                                       &device->dev_state) &&
1049                             (!*latest_dev ||
1050                              device->generation > (*latest_dev)->generation)) {
1051                                 *latest_dev = device;
1052                         }
1053                         continue;
1054                 }
1055
1056                 /*
1057                  * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1058                  * in btrfs_init_dev_replace() so just continue.
1059                  */
1060                 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1061                         continue;
1062
1063                 if (device->bdev) {
1064                         blkdev_put(device->bdev, device->mode);
1065                         device->bdev = NULL;
1066                         fs_devices->open_devices--;
1067                 }
1068                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1069                         list_del_init(&device->dev_alloc_list);
1070                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1071                         fs_devices->rw_devices--;
1072                 }
1073                 list_del_init(&device->dev_list);
1074                 fs_devices->num_devices--;
1075                 btrfs_free_device(device);
1076         }
1077
1078 }
1079
1080 /*
1081  * After we have read the system tree and know devids belonging to this
1082  * filesystem, remove the device which does not belong there.
1083  */
1084 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1085 {
1086         struct btrfs_device *latest_dev = NULL;
1087         struct btrfs_fs_devices *seed_dev;
1088
1089         mutex_lock(&uuid_mutex);
1090         __btrfs_free_extra_devids(fs_devices, &latest_dev);
1091
1092         list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1093                 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1094
1095         fs_devices->latest_dev = latest_dev;
1096
1097         mutex_unlock(&uuid_mutex);
1098 }
1099
1100 static void btrfs_close_bdev(struct btrfs_device *device)
1101 {
1102         if (!device->bdev)
1103                 return;
1104
1105         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1106                 sync_blockdev(device->bdev);
1107                 invalidate_bdev(device->bdev);
1108         }
1109
1110         blkdev_put(device->bdev, device->mode);
1111 }
1112
1113 static void btrfs_close_one_device(struct btrfs_device *device)
1114 {
1115         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1116
1117         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1118             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1119                 list_del_init(&device->dev_alloc_list);
1120                 fs_devices->rw_devices--;
1121         }
1122
1123         if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1124                 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1125
1126         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1127                 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1128                 fs_devices->missing_devices--;
1129         }
1130
1131         btrfs_close_bdev(device);
1132         if (device->bdev) {
1133                 fs_devices->open_devices--;
1134                 device->bdev = NULL;
1135         }
1136         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1137         btrfs_destroy_dev_zone_info(device);
1138
1139         device->fs_info = NULL;
1140         atomic_set(&device->dev_stats_ccnt, 0);
1141         extent_io_tree_release(&device->alloc_state);
1142
1143         /*
1144          * Reset the flush error record. We might have a transient flush error
1145          * in this mount, and if so we aborted the current transaction and set
1146          * the fs to an error state, guaranteeing no super blocks can be further
1147          * committed. However that error might be transient and if we unmount the
1148          * filesystem and mount it again, we should allow the mount to succeed
1149          * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1150          * filesystem again we still get flush errors, then we will again abort
1151          * any transaction and set the error state, guaranteeing no commits of
1152          * unsafe super blocks.
1153          */
1154         device->last_flush_error = 0;
1155
1156         /* Verify the device is back in a pristine state  */
1157         ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1158         ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1159         ASSERT(list_empty(&device->dev_alloc_list));
1160         ASSERT(list_empty(&device->post_commit_list));
1161         ASSERT(atomic_read(&device->reada_in_flight) == 0);
1162 }
1163
1164 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1165 {
1166         struct btrfs_device *device, *tmp;
1167
1168         lockdep_assert_held(&uuid_mutex);
1169
1170         if (--fs_devices->opened > 0)
1171                 return;
1172
1173         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1174                 btrfs_close_one_device(device);
1175
1176         WARN_ON(fs_devices->open_devices);
1177         WARN_ON(fs_devices->rw_devices);
1178         fs_devices->opened = 0;
1179         fs_devices->seeding = false;
1180         fs_devices->fs_info = NULL;
1181 }
1182
1183 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1184 {
1185         LIST_HEAD(list);
1186         struct btrfs_fs_devices *tmp;
1187
1188         mutex_lock(&uuid_mutex);
1189         close_fs_devices(fs_devices);
1190         if (!fs_devices->opened)
1191                 list_splice_init(&fs_devices->seed_list, &list);
1192
1193         list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1194                 close_fs_devices(fs_devices);
1195                 list_del(&fs_devices->seed_list);
1196                 free_fs_devices(fs_devices);
1197         }
1198         mutex_unlock(&uuid_mutex);
1199 }
1200
1201 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1202                                 fmode_t flags, void *holder)
1203 {
1204         struct btrfs_device *device;
1205         struct btrfs_device *latest_dev = NULL;
1206         struct btrfs_device *tmp_device;
1207
1208         flags |= FMODE_EXCL;
1209
1210         list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1211                                  dev_list) {
1212                 int ret;
1213
1214                 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1215                 if (ret == 0 &&
1216                     (!latest_dev || device->generation > latest_dev->generation)) {
1217                         latest_dev = device;
1218                 } else if (ret == -ENODATA) {
1219                         fs_devices->num_devices--;
1220                         list_del(&device->dev_list);
1221                         btrfs_free_device(device);
1222                 }
1223         }
1224         if (fs_devices->open_devices == 0)
1225                 return -EINVAL;
1226
1227         fs_devices->opened = 1;
1228         fs_devices->latest_dev = latest_dev;
1229         fs_devices->total_rw_bytes = 0;
1230         fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1231         fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1232
1233         return 0;
1234 }
1235
1236 static int devid_cmp(void *priv, const struct list_head *a,
1237                      const struct list_head *b)
1238 {
1239         const struct btrfs_device *dev1, *dev2;
1240
1241         dev1 = list_entry(a, struct btrfs_device, dev_list);
1242         dev2 = list_entry(b, struct btrfs_device, dev_list);
1243
1244         if (dev1->devid < dev2->devid)
1245                 return -1;
1246         else if (dev1->devid > dev2->devid)
1247                 return 1;
1248         return 0;
1249 }
1250
1251 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1252                        fmode_t flags, void *holder)
1253 {
1254         int ret;
1255
1256         lockdep_assert_held(&uuid_mutex);
1257         /*
1258          * The device_list_mutex cannot be taken here in case opening the
1259          * underlying device takes further locks like open_mutex.
1260          *
1261          * We also don't need the lock here as this is called during mount and
1262          * exclusion is provided by uuid_mutex
1263          */
1264
1265         if (fs_devices->opened) {
1266                 fs_devices->opened++;
1267                 ret = 0;
1268         } else {
1269                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1270                 ret = open_fs_devices(fs_devices, flags, holder);
1271         }
1272
1273         return ret;
1274 }
1275
1276 void btrfs_release_disk_super(struct btrfs_super_block *super)
1277 {
1278         struct page *page = virt_to_page(super);
1279
1280         put_page(page);
1281 }
1282
1283 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1284                                                        u64 bytenr, u64 bytenr_orig)
1285 {
1286         struct btrfs_super_block *disk_super;
1287         struct page *page;
1288         void *p;
1289         pgoff_t index;
1290
1291         /* make sure our super fits in the device */
1292         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1293                 return ERR_PTR(-EINVAL);
1294
1295         /* make sure our super fits in the page */
1296         if (sizeof(*disk_super) > PAGE_SIZE)
1297                 return ERR_PTR(-EINVAL);
1298
1299         /* make sure our super doesn't straddle pages on disk */
1300         index = bytenr >> PAGE_SHIFT;
1301         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1302                 return ERR_PTR(-EINVAL);
1303
1304         /* pull in the page with our super */
1305         page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1306
1307         if (IS_ERR(page))
1308                 return ERR_CAST(page);
1309
1310         p = page_address(page);
1311
1312         /* align our pointer to the offset of the super block */
1313         disk_super = p + offset_in_page(bytenr);
1314
1315         if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1316             btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1317                 btrfs_release_disk_super(p);
1318                 return ERR_PTR(-EINVAL);
1319         }
1320
1321         if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1322                 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1323
1324         return disk_super;
1325 }
1326
1327 int btrfs_forget_devices(const char *path)
1328 {
1329         int ret;
1330
1331         mutex_lock(&uuid_mutex);
1332         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1333         mutex_unlock(&uuid_mutex);
1334
1335         return ret;
1336 }
1337
1338 /*
1339  * Look for a btrfs signature on a device. This may be called out of the mount path
1340  * and we are not allowed to call set_blocksize during the scan. The superblock
1341  * is read via pagecache
1342  */
1343 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1344                                            void *holder)
1345 {
1346         struct btrfs_super_block *disk_super;
1347         bool new_device_added = false;
1348         struct btrfs_device *device = NULL;
1349         struct block_device *bdev;
1350         u64 bytenr, bytenr_orig;
1351         int ret;
1352
1353         lockdep_assert_held(&uuid_mutex);
1354
1355         /*
1356          * we would like to check all the supers, but that would make
1357          * a btrfs mount succeed after a mkfs from a different FS.
1358          * So, we need to add a special mount option to scan for
1359          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1360          */
1361         flags |= FMODE_EXCL;
1362
1363         bdev = blkdev_get_by_path(path, flags, holder);
1364         if (IS_ERR(bdev))
1365                 return ERR_CAST(bdev);
1366
1367         bytenr_orig = btrfs_sb_offset(0);
1368         ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1369         if (ret) {
1370                 device = ERR_PTR(ret);
1371                 goto error_bdev_put;
1372         }
1373
1374         disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1375         if (IS_ERR(disk_super)) {
1376                 device = ERR_CAST(disk_super);
1377                 goto error_bdev_put;
1378         }
1379
1380         device = device_list_add(path, disk_super, &new_device_added);
1381         if (!IS_ERR(device)) {
1382                 if (new_device_added)
1383                         btrfs_free_stale_devices(path, device);
1384         }
1385
1386         btrfs_release_disk_super(disk_super);
1387
1388 error_bdev_put:
1389         blkdev_put(bdev, flags);
1390
1391         return device;
1392 }
1393
1394 /*
1395  * Try to find a chunk that intersects [start, start + len] range and when one
1396  * such is found, record the end of it in *start
1397  */
1398 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1399                                     u64 len)
1400 {
1401         u64 physical_start, physical_end;
1402
1403         lockdep_assert_held(&device->fs_info->chunk_mutex);
1404
1405         if (!find_first_extent_bit(&device->alloc_state, *start,
1406                                    &physical_start, &physical_end,
1407                                    CHUNK_ALLOCATED, NULL)) {
1408
1409                 if (in_range(physical_start, *start, len) ||
1410                     in_range(*start, physical_start,
1411                              physical_end - physical_start)) {
1412                         *start = physical_end + 1;
1413                         return true;
1414                 }
1415         }
1416         return false;
1417 }
1418
1419 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1420 {
1421         switch (device->fs_devices->chunk_alloc_policy) {
1422         case BTRFS_CHUNK_ALLOC_REGULAR:
1423                 /*
1424                  * We don't want to overwrite the superblock on the drive nor
1425                  * any area used by the boot loader (grub for example), so we
1426                  * make sure to start at an offset of at least 1MB.
1427                  */
1428                 return max_t(u64, start, SZ_1M);
1429         case BTRFS_CHUNK_ALLOC_ZONED:
1430                 /*
1431                  * We don't care about the starting region like regular
1432                  * allocator, because we anyway use/reserve the first two zones
1433                  * for superblock logging.
1434                  */
1435                 return ALIGN(start, device->zone_info->zone_size);
1436         default:
1437                 BUG();
1438         }
1439 }
1440
1441 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1442                                         u64 *hole_start, u64 *hole_size,
1443                                         u64 num_bytes)
1444 {
1445         u64 zone_size = device->zone_info->zone_size;
1446         u64 pos;
1447         int ret;
1448         bool changed = false;
1449
1450         ASSERT(IS_ALIGNED(*hole_start, zone_size));
1451
1452         while (*hole_size > 0) {
1453                 pos = btrfs_find_allocatable_zones(device, *hole_start,
1454                                                    *hole_start + *hole_size,
1455                                                    num_bytes);
1456                 if (pos != *hole_start) {
1457                         *hole_size = *hole_start + *hole_size - pos;
1458                         *hole_start = pos;
1459                         changed = true;
1460                         if (*hole_size < num_bytes)
1461                                 break;
1462                 }
1463
1464                 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1465
1466                 /* Range is ensured to be empty */
1467                 if (!ret)
1468                         return changed;
1469
1470                 /* Given hole range was invalid (outside of device) */
1471                 if (ret == -ERANGE) {
1472                         *hole_start += *hole_size;
1473                         *hole_size = 0;
1474                         return true;
1475                 }
1476
1477                 *hole_start += zone_size;
1478                 *hole_size -= zone_size;
1479                 changed = true;
1480         }
1481
1482         return changed;
1483 }
1484
1485 /**
1486  * dev_extent_hole_check - check if specified hole is suitable for allocation
1487  * @device:     the device which we have the hole
1488  * @hole_start: starting position of the hole
1489  * @hole_size:  the size of the hole
1490  * @num_bytes:  the size of the free space that we need
1491  *
1492  * This function may modify @hole_start and @hole_size to reflect the suitable
1493  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1494  */
1495 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1496                                   u64 *hole_size, u64 num_bytes)
1497 {
1498         bool changed = false;
1499         u64 hole_end = *hole_start + *hole_size;
1500
1501         for (;;) {
1502                 /*
1503                  * Check before we set max_hole_start, otherwise we could end up
1504                  * sending back this offset anyway.
1505                  */
1506                 if (contains_pending_extent(device, hole_start, *hole_size)) {
1507                         if (hole_end >= *hole_start)
1508                                 *hole_size = hole_end - *hole_start;
1509                         else
1510                                 *hole_size = 0;
1511                         changed = true;
1512                 }
1513
1514                 switch (device->fs_devices->chunk_alloc_policy) {
1515                 case BTRFS_CHUNK_ALLOC_REGULAR:
1516                         /* No extra check */
1517                         break;
1518                 case BTRFS_CHUNK_ALLOC_ZONED:
1519                         if (dev_extent_hole_check_zoned(device, hole_start,
1520                                                         hole_size, num_bytes)) {
1521                                 changed = true;
1522                                 /*
1523                                  * The changed hole can contain pending extent.
1524                                  * Loop again to check that.
1525                                  */
1526                                 continue;
1527                         }
1528                         break;
1529                 default:
1530                         BUG();
1531                 }
1532
1533                 break;
1534         }
1535
1536         return changed;
1537 }
1538
1539 /*
1540  * find_free_dev_extent_start - find free space in the specified device
1541  * @device:       the device which we search the free space in
1542  * @num_bytes:    the size of the free space that we need
1543  * @search_start: the position from which to begin the search
1544  * @start:        store the start of the free space.
1545  * @len:          the size of the free space. that we find, or the size
1546  *                of the max free space if we don't find suitable free space
1547  *
1548  * this uses a pretty simple search, the expectation is that it is
1549  * called very infrequently and that a given device has a small number
1550  * of extents
1551  *
1552  * @start is used to store the start of the free space if we find. But if we
1553  * don't find suitable free space, it will be used to store the start position
1554  * of the max free space.
1555  *
1556  * @len is used to store the size of the free space that we find.
1557  * But if we don't find suitable free space, it is used to store the size of
1558  * the max free space.
1559  *
1560  * NOTE: This function will search *commit* root of device tree, and does extra
1561  * check to ensure dev extents are not double allocated.
1562  * This makes the function safe to allocate dev extents but may not report
1563  * correct usable device space, as device extent freed in current transaction
1564  * is not reported as available.
1565  */
1566 static int find_free_dev_extent_start(struct btrfs_device *device,
1567                                 u64 num_bytes, u64 search_start, u64 *start,
1568                                 u64 *len)
1569 {
1570         struct btrfs_fs_info *fs_info = device->fs_info;
1571         struct btrfs_root *root = fs_info->dev_root;
1572         struct btrfs_key key;
1573         struct btrfs_dev_extent *dev_extent;
1574         struct btrfs_path *path;
1575         u64 hole_size;
1576         u64 max_hole_start;
1577         u64 max_hole_size;
1578         u64 extent_end;
1579         u64 search_end = device->total_bytes;
1580         int ret;
1581         int slot;
1582         struct extent_buffer *l;
1583
1584         search_start = dev_extent_search_start(device, search_start);
1585
1586         WARN_ON(device->zone_info &&
1587                 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1588
1589         path = btrfs_alloc_path();
1590         if (!path)
1591                 return -ENOMEM;
1592
1593         max_hole_start = search_start;
1594         max_hole_size = 0;
1595
1596 again:
1597         if (search_start >= search_end ||
1598                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1599                 ret = -ENOSPC;
1600                 goto out;
1601         }
1602
1603         path->reada = READA_FORWARD;
1604         path->search_commit_root = 1;
1605         path->skip_locking = 1;
1606
1607         key.objectid = device->devid;
1608         key.offset = search_start;
1609         key.type = BTRFS_DEV_EXTENT_KEY;
1610
1611         ret = btrfs_search_backwards(root, &key, path);
1612         if (ret < 0)
1613                 goto out;
1614
1615         while (1) {
1616                 l = path->nodes[0];
1617                 slot = path->slots[0];
1618                 if (slot >= btrfs_header_nritems(l)) {
1619                         ret = btrfs_next_leaf(root, path);
1620                         if (ret == 0)
1621                                 continue;
1622                         if (ret < 0)
1623                                 goto out;
1624
1625                         break;
1626                 }
1627                 btrfs_item_key_to_cpu(l, &key, slot);
1628
1629                 if (key.objectid < device->devid)
1630                         goto next;
1631
1632                 if (key.objectid > device->devid)
1633                         break;
1634
1635                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1636                         goto next;
1637
1638                 if (key.offset > search_start) {
1639                         hole_size = key.offset - search_start;
1640                         dev_extent_hole_check(device, &search_start, &hole_size,
1641                                               num_bytes);
1642
1643                         if (hole_size > max_hole_size) {
1644                                 max_hole_start = search_start;
1645                                 max_hole_size = hole_size;
1646                         }
1647
1648                         /*
1649                          * If this free space is greater than which we need,
1650                          * it must be the max free space that we have found
1651                          * until now, so max_hole_start must point to the start
1652                          * of this free space and the length of this free space
1653                          * is stored in max_hole_size. Thus, we return
1654                          * max_hole_start and max_hole_size and go back to the
1655                          * caller.
1656                          */
1657                         if (hole_size >= num_bytes) {
1658                                 ret = 0;
1659                                 goto out;
1660                         }
1661                 }
1662
1663                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1664                 extent_end = key.offset + btrfs_dev_extent_length(l,
1665                                                                   dev_extent);
1666                 if (extent_end > search_start)
1667                         search_start = extent_end;
1668 next:
1669                 path->slots[0]++;
1670                 cond_resched();
1671         }
1672
1673         /*
1674          * At this point, search_start should be the end of
1675          * allocated dev extents, and when shrinking the device,
1676          * search_end may be smaller than search_start.
1677          */
1678         if (search_end > search_start) {
1679                 hole_size = search_end - search_start;
1680                 if (dev_extent_hole_check(device, &search_start, &hole_size,
1681                                           num_bytes)) {
1682                         btrfs_release_path(path);
1683                         goto again;
1684                 }
1685
1686                 if (hole_size > max_hole_size) {
1687                         max_hole_start = search_start;
1688                         max_hole_size = hole_size;
1689                 }
1690         }
1691
1692         /* See above. */
1693         if (max_hole_size < num_bytes)
1694                 ret = -ENOSPC;
1695         else
1696                 ret = 0;
1697
1698 out:
1699         btrfs_free_path(path);
1700         *start = max_hole_start;
1701         if (len)
1702                 *len = max_hole_size;
1703         return ret;
1704 }
1705
1706 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1707                          u64 *start, u64 *len)
1708 {
1709         /* FIXME use last free of some kind */
1710         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1711 }
1712
1713 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1714                           struct btrfs_device *device,
1715                           u64 start, u64 *dev_extent_len)
1716 {
1717         struct btrfs_fs_info *fs_info = device->fs_info;
1718         struct btrfs_root *root = fs_info->dev_root;
1719         int ret;
1720         struct btrfs_path *path;
1721         struct btrfs_key key;
1722         struct btrfs_key found_key;
1723         struct extent_buffer *leaf = NULL;
1724         struct btrfs_dev_extent *extent = NULL;
1725
1726         path = btrfs_alloc_path();
1727         if (!path)
1728                 return -ENOMEM;
1729
1730         key.objectid = device->devid;
1731         key.offset = start;
1732         key.type = BTRFS_DEV_EXTENT_KEY;
1733 again:
1734         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1735         if (ret > 0) {
1736                 ret = btrfs_previous_item(root, path, key.objectid,
1737                                           BTRFS_DEV_EXTENT_KEY);
1738                 if (ret)
1739                         goto out;
1740                 leaf = path->nodes[0];
1741                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1742                 extent = btrfs_item_ptr(leaf, path->slots[0],
1743                                         struct btrfs_dev_extent);
1744                 BUG_ON(found_key.offset > start || found_key.offset +
1745                        btrfs_dev_extent_length(leaf, extent) < start);
1746                 key = found_key;
1747                 btrfs_release_path(path);
1748                 goto again;
1749         } else if (ret == 0) {
1750                 leaf = path->nodes[0];
1751                 extent = btrfs_item_ptr(leaf, path->slots[0],
1752                                         struct btrfs_dev_extent);
1753         } else {
1754                 goto out;
1755         }
1756
1757         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1758
1759         ret = btrfs_del_item(trans, root, path);
1760         if (ret == 0)
1761                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1762 out:
1763         btrfs_free_path(path);
1764         return ret;
1765 }
1766
1767 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1768 {
1769         struct extent_map_tree *em_tree;
1770         struct extent_map *em;
1771         struct rb_node *n;
1772         u64 ret = 0;
1773
1774         em_tree = &fs_info->mapping_tree;
1775         read_lock(&em_tree->lock);
1776         n = rb_last(&em_tree->map.rb_root);
1777         if (n) {
1778                 em = rb_entry(n, struct extent_map, rb_node);
1779                 ret = em->start + em->len;
1780         }
1781         read_unlock(&em_tree->lock);
1782
1783         return ret;
1784 }
1785
1786 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1787                                     u64 *devid_ret)
1788 {
1789         int ret;
1790         struct btrfs_key key;
1791         struct btrfs_key found_key;
1792         struct btrfs_path *path;
1793
1794         path = btrfs_alloc_path();
1795         if (!path)
1796                 return -ENOMEM;
1797
1798         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1799         key.type = BTRFS_DEV_ITEM_KEY;
1800         key.offset = (u64)-1;
1801
1802         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1803         if (ret < 0)
1804                 goto error;
1805
1806         if (ret == 0) {
1807                 /* Corruption */
1808                 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1809                 ret = -EUCLEAN;
1810                 goto error;
1811         }
1812
1813         ret = btrfs_previous_item(fs_info->chunk_root, path,
1814                                   BTRFS_DEV_ITEMS_OBJECTID,
1815                                   BTRFS_DEV_ITEM_KEY);
1816         if (ret) {
1817                 *devid_ret = 1;
1818         } else {
1819                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1820                                       path->slots[0]);
1821                 *devid_ret = found_key.offset + 1;
1822         }
1823         ret = 0;
1824 error:
1825         btrfs_free_path(path);
1826         return ret;
1827 }
1828
1829 /*
1830  * the device information is stored in the chunk root
1831  * the btrfs_device struct should be fully filled in
1832  */
1833 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1834                             struct btrfs_device *device)
1835 {
1836         int ret;
1837         struct btrfs_path *path;
1838         struct btrfs_dev_item *dev_item;
1839         struct extent_buffer *leaf;
1840         struct btrfs_key key;
1841         unsigned long ptr;
1842
1843         path = btrfs_alloc_path();
1844         if (!path)
1845                 return -ENOMEM;
1846
1847         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1848         key.type = BTRFS_DEV_ITEM_KEY;
1849         key.offset = device->devid;
1850
1851         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1852                                       &key, sizeof(*dev_item));
1853         if (ret)
1854                 goto out;
1855
1856         leaf = path->nodes[0];
1857         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1858
1859         btrfs_set_device_id(leaf, dev_item, device->devid);
1860         btrfs_set_device_generation(leaf, dev_item, 0);
1861         btrfs_set_device_type(leaf, dev_item, device->type);
1862         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1863         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1864         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1865         btrfs_set_device_total_bytes(leaf, dev_item,
1866                                      btrfs_device_get_disk_total_bytes(device));
1867         btrfs_set_device_bytes_used(leaf, dev_item,
1868                                     btrfs_device_get_bytes_used(device));
1869         btrfs_set_device_group(leaf, dev_item, 0);
1870         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1871         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1872         btrfs_set_device_start_offset(leaf, dev_item, 0);
1873
1874         ptr = btrfs_device_uuid(dev_item);
1875         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1876         ptr = btrfs_device_fsid(dev_item);
1877         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1878                             ptr, BTRFS_FSID_SIZE);
1879         btrfs_mark_buffer_dirty(leaf);
1880
1881         ret = 0;
1882 out:
1883         btrfs_free_path(path);
1884         return ret;
1885 }
1886
1887 /*
1888  * Function to update ctime/mtime for a given device path.
1889  * Mainly used for ctime/mtime based probe like libblkid.
1890  *
1891  * We don't care about errors here, this is just to be kind to userspace.
1892  */
1893 static void update_dev_time(const char *device_path)
1894 {
1895         struct path path;
1896         struct timespec64 now;
1897         int ret;
1898
1899         ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1900         if (ret)
1901                 return;
1902
1903         now = current_time(d_inode(path.dentry));
1904         inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1905         path_put(&path);
1906 }
1907
1908 static int btrfs_rm_dev_item(struct btrfs_device *device)
1909 {
1910         struct btrfs_root *root = device->fs_info->chunk_root;
1911         int ret;
1912         struct btrfs_path *path;
1913         struct btrfs_key key;
1914         struct btrfs_trans_handle *trans;
1915
1916         path = btrfs_alloc_path();
1917         if (!path)
1918                 return -ENOMEM;
1919
1920         trans = btrfs_start_transaction(root, 0);
1921         if (IS_ERR(trans)) {
1922                 btrfs_free_path(path);
1923                 return PTR_ERR(trans);
1924         }
1925         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1926         key.type = BTRFS_DEV_ITEM_KEY;
1927         key.offset = device->devid;
1928
1929         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1930         if (ret) {
1931                 if (ret > 0)
1932                         ret = -ENOENT;
1933                 btrfs_abort_transaction(trans, ret);
1934                 btrfs_end_transaction(trans);
1935                 goto out;
1936         }
1937
1938         ret = btrfs_del_item(trans, root, path);
1939         if (ret) {
1940                 btrfs_abort_transaction(trans, ret);
1941                 btrfs_end_transaction(trans);
1942         }
1943
1944 out:
1945         btrfs_free_path(path);
1946         if (!ret)
1947                 ret = btrfs_commit_transaction(trans);
1948         return ret;
1949 }
1950
1951 /*
1952  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1953  * filesystem. It's up to the caller to adjust that number regarding eg. device
1954  * replace.
1955  */
1956 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1957                 u64 num_devices)
1958 {
1959         u64 all_avail;
1960         unsigned seq;
1961         int i;
1962
1963         do {
1964                 seq = read_seqbegin(&fs_info->profiles_lock);
1965
1966                 all_avail = fs_info->avail_data_alloc_bits |
1967                             fs_info->avail_system_alloc_bits |
1968                             fs_info->avail_metadata_alloc_bits;
1969         } while (read_seqretry(&fs_info->profiles_lock, seq));
1970
1971         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1972                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1973                         continue;
1974
1975                 if (num_devices < btrfs_raid_array[i].devs_min)
1976                         return btrfs_raid_array[i].mindev_error;
1977         }
1978
1979         return 0;
1980 }
1981
1982 static struct btrfs_device * btrfs_find_next_active_device(
1983                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1984 {
1985         struct btrfs_device *next_device;
1986
1987         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1988                 if (next_device != device &&
1989                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1990                     && next_device->bdev)
1991                         return next_device;
1992         }
1993
1994         return NULL;
1995 }
1996
1997 /*
1998  * Helper function to check if the given device is part of s_bdev / latest_dev
1999  * and replace it with the provided or the next active device, in the context
2000  * where this function called, there should be always be another device (or
2001  * this_dev) which is active.
2002  */
2003 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2004                                             struct btrfs_device *next_device)
2005 {
2006         struct btrfs_fs_info *fs_info = device->fs_info;
2007
2008         if (!next_device)
2009                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2010                                                             device);
2011         ASSERT(next_device);
2012
2013         if (fs_info->sb->s_bdev &&
2014                         (fs_info->sb->s_bdev == device->bdev))
2015                 fs_info->sb->s_bdev = next_device->bdev;
2016
2017         if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2018                 fs_info->fs_devices->latest_dev = next_device;
2019 }
2020
2021 /*
2022  * Return btrfs_fs_devices::num_devices excluding the device that's being
2023  * currently replaced.
2024  */
2025 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2026 {
2027         u64 num_devices = fs_info->fs_devices->num_devices;
2028
2029         down_read(&fs_info->dev_replace.rwsem);
2030         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2031                 ASSERT(num_devices > 1);
2032                 num_devices--;
2033         }
2034         up_read(&fs_info->dev_replace.rwsem);
2035
2036         return num_devices;
2037 }
2038
2039 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2040                                struct block_device *bdev,
2041                                const char *device_path)
2042 {
2043         struct btrfs_super_block *disk_super;
2044         int copy_num;
2045
2046         if (!bdev)
2047                 return;
2048
2049         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2050                 struct page *page;
2051                 int ret;
2052
2053                 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2054                 if (IS_ERR(disk_super))
2055                         continue;
2056
2057                 if (bdev_is_zoned(bdev)) {
2058                         btrfs_reset_sb_log_zones(bdev, copy_num);
2059                         continue;
2060                 }
2061
2062                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2063
2064                 page = virt_to_page(disk_super);
2065                 set_page_dirty(page);
2066                 lock_page(page);
2067                 /* write_on_page() unlocks the page */
2068                 ret = write_one_page(page);
2069                 if (ret)
2070                         btrfs_warn(fs_info,
2071                                 "error clearing superblock number %d (%d)",
2072                                 copy_num, ret);
2073                 btrfs_release_disk_super(disk_super);
2074
2075         }
2076
2077         /* Notify udev that device has changed */
2078         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2079
2080         /* Update ctime/mtime for device path for libblkid */
2081         update_dev_time(device_path);
2082 }
2083
2084 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2085                     u64 devid, struct block_device **bdev, fmode_t *mode)
2086 {
2087         struct btrfs_device *device;
2088         struct btrfs_fs_devices *cur_devices;
2089         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2090         u64 num_devices;
2091         int ret = 0;
2092
2093         /*
2094          * The device list in fs_devices is accessed without locks (neither
2095          * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2096          * filesystem and another device rm cannot run.
2097          */
2098         num_devices = btrfs_num_devices(fs_info);
2099
2100         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2101         if (ret)
2102                 goto out;
2103
2104         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2105
2106         if (IS_ERR(device)) {
2107                 if (PTR_ERR(device) == -ENOENT &&
2108                     device_path && strcmp(device_path, "missing") == 0)
2109                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2110                 else
2111                         ret = PTR_ERR(device);
2112                 goto out;
2113         }
2114
2115         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2116                 btrfs_warn_in_rcu(fs_info,
2117                   "cannot remove device %s (devid %llu) due to active swapfile",
2118                                   rcu_str_deref(device->name), device->devid);
2119                 ret = -ETXTBSY;
2120                 goto out;
2121         }
2122
2123         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2124                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2125                 goto out;
2126         }
2127
2128         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2129             fs_info->fs_devices->rw_devices == 1) {
2130                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2131                 goto out;
2132         }
2133
2134         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2135                 mutex_lock(&fs_info->chunk_mutex);
2136                 list_del_init(&device->dev_alloc_list);
2137                 device->fs_devices->rw_devices--;
2138                 mutex_unlock(&fs_info->chunk_mutex);
2139         }
2140
2141         ret = btrfs_shrink_device(device, 0);
2142         if (!ret)
2143                 btrfs_reada_remove_dev(device);
2144         if (ret)
2145                 goto error_undo;
2146
2147         /*
2148          * TODO: the superblock still includes this device in its num_devices
2149          * counter although write_all_supers() is not locked out. This
2150          * could give a filesystem state which requires a degraded mount.
2151          */
2152         ret = btrfs_rm_dev_item(device);
2153         if (ret)
2154                 goto error_undo;
2155
2156         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2157         btrfs_scrub_cancel_dev(device);
2158
2159         /*
2160          * the device list mutex makes sure that we don't change
2161          * the device list while someone else is writing out all
2162          * the device supers. Whoever is writing all supers, should
2163          * lock the device list mutex before getting the number of
2164          * devices in the super block (super_copy). Conversely,
2165          * whoever updates the number of devices in the super block
2166          * (super_copy) should hold the device list mutex.
2167          */
2168
2169         /*
2170          * In normal cases the cur_devices == fs_devices. But in case
2171          * of deleting a seed device, the cur_devices should point to
2172          * its own fs_devices listed under the fs_devices->seed.
2173          */
2174         cur_devices = device->fs_devices;
2175         mutex_lock(&fs_devices->device_list_mutex);
2176         list_del_rcu(&device->dev_list);
2177
2178         cur_devices->num_devices--;
2179         cur_devices->total_devices--;
2180         /* Update total_devices of the parent fs_devices if it's seed */
2181         if (cur_devices != fs_devices)
2182                 fs_devices->total_devices--;
2183
2184         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2185                 cur_devices->missing_devices--;
2186
2187         btrfs_assign_next_active_device(device, NULL);
2188
2189         if (device->bdev) {
2190                 cur_devices->open_devices--;
2191                 /* remove sysfs entry */
2192                 btrfs_sysfs_remove_device(device);
2193         }
2194
2195         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2196         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2197         mutex_unlock(&fs_devices->device_list_mutex);
2198
2199         /*
2200          * At this point, the device is zero sized and detached from the
2201          * devices list.  All that's left is to zero out the old supers and
2202          * free the device.
2203          *
2204          * We cannot call btrfs_close_bdev() here because we're holding the sb
2205          * write lock, and blkdev_put() will pull in the ->open_mutex on the
2206          * block device and it's dependencies.  Instead just flush the device
2207          * and let the caller do the final blkdev_put.
2208          */
2209         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2210                 btrfs_scratch_superblocks(fs_info, device->bdev,
2211                                           device->name->str);
2212                 if (device->bdev) {
2213                         sync_blockdev(device->bdev);
2214                         invalidate_bdev(device->bdev);
2215                 }
2216         }
2217
2218         *bdev = device->bdev;
2219         *mode = device->mode;
2220         synchronize_rcu();
2221         btrfs_free_device(device);
2222
2223         if (cur_devices->open_devices == 0) {
2224                 list_del_init(&cur_devices->seed_list);
2225                 close_fs_devices(cur_devices);
2226                 free_fs_devices(cur_devices);
2227         }
2228
2229 out:
2230         return ret;
2231
2232 error_undo:
2233         btrfs_reada_undo_remove_dev(device);
2234         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2235                 mutex_lock(&fs_info->chunk_mutex);
2236                 list_add(&device->dev_alloc_list,
2237                          &fs_devices->alloc_list);
2238                 device->fs_devices->rw_devices++;
2239                 mutex_unlock(&fs_info->chunk_mutex);
2240         }
2241         goto out;
2242 }
2243
2244 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2245 {
2246         struct btrfs_fs_devices *fs_devices;
2247
2248         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2249
2250         /*
2251          * in case of fs with no seed, srcdev->fs_devices will point
2252          * to fs_devices of fs_info. However when the dev being replaced is
2253          * a seed dev it will point to the seed's local fs_devices. In short
2254          * srcdev will have its correct fs_devices in both the cases.
2255          */
2256         fs_devices = srcdev->fs_devices;
2257
2258         list_del_rcu(&srcdev->dev_list);
2259         list_del(&srcdev->dev_alloc_list);
2260         fs_devices->num_devices--;
2261         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2262                 fs_devices->missing_devices--;
2263
2264         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2265                 fs_devices->rw_devices--;
2266
2267         if (srcdev->bdev)
2268                 fs_devices->open_devices--;
2269 }
2270
2271 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2272 {
2273         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2274
2275         mutex_lock(&uuid_mutex);
2276
2277         btrfs_close_bdev(srcdev);
2278         synchronize_rcu();
2279         btrfs_free_device(srcdev);
2280
2281         /* if this is no devs we rather delete the fs_devices */
2282         if (!fs_devices->num_devices) {
2283                 /*
2284                  * On a mounted FS, num_devices can't be zero unless it's a
2285                  * seed. In case of a seed device being replaced, the replace
2286                  * target added to the sprout FS, so there will be no more
2287                  * device left under the seed FS.
2288                  */
2289                 ASSERT(fs_devices->seeding);
2290
2291                 list_del_init(&fs_devices->seed_list);
2292                 close_fs_devices(fs_devices);
2293                 free_fs_devices(fs_devices);
2294         }
2295         mutex_unlock(&uuid_mutex);
2296 }
2297
2298 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2299 {
2300         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2301
2302         mutex_lock(&fs_devices->device_list_mutex);
2303
2304         btrfs_sysfs_remove_device(tgtdev);
2305
2306         if (tgtdev->bdev)
2307                 fs_devices->open_devices--;
2308
2309         fs_devices->num_devices--;
2310
2311         btrfs_assign_next_active_device(tgtdev, NULL);
2312
2313         list_del_rcu(&tgtdev->dev_list);
2314
2315         mutex_unlock(&fs_devices->device_list_mutex);
2316
2317         btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2318                                   tgtdev->name->str);
2319
2320         btrfs_close_bdev(tgtdev);
2321         synchronize_rcu();
2322         btrfs_free_device(tgtdev);
2323 }
2324
2325 static struct btrfs_device *btrfs_find_device_by_path(
2326                 struct btrfs_fs_info *fs_info, const char *device_path)
2327 {
2328         int ret = 0;
2329         struct btrfs_super_block *disk_super;
2330         u64 devid;
2331         u8 *dev_uuid;
2332         struct block_device *bdev;
2333         struct btrfs_device *device;
2334
2335         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2336                                     fs_info->bdev_holder, 0, &bdev, &disk_super);
2337         if (ret)
2338                 return ERR_PTR(ret);
2339
2340         devid = btrfs_stack_device_id(&disk_super->dev_item);
2341         dev_uuid = disk_super->dev_item.uuid;
2342         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2343                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2344                                            disk_super->metadata_uuid);
2345         else
2346                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2347                                            disk_super->fsid);
2348
2349         btrfs_release_disk_super(disk_super);
2350         if (!device)
2351                 device = ERR_PTR(-ENOENT);
2352         blkdev_put(bdev, FMODE_READ);
2353         return device;
2354 }
2355
2356 /*
2357  * Lookup a device given by device id, or the path if the id is 0.
2358  */
2359 struct btrfs_device *btrfs_find_device_by_devspec(
2360                 struct btrfs_fs_info *fs_info, u64 devid,
2361                 const char *device_path)
2362 {
2363         struct btrfs_device *device;
2364
2365         if (devid) {
2366                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2367                                            NULL);
2368                 if (!device)
2369                         return ERR_PTR(-ENOENT);
2370                 return device;
2371         }
2372
2373         if (!device_path || !device_path[0])
2374                 return ERR_PTR(-EINVAL);
2375
2376         if (strcmp(device_path, "missing") == 0) {
2377                 /* Find first missing device */
2378                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2379                                     dev_list) {
2380                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2381                                      &device->dev_state) && !device->bdev)
2382                                 return device;
2383                 }
2384                 return ERR_PTR(-ENOENT);
2385         }
2386
2387         return btrfs_find_device_by_path(fs_info, device_path);
2388 }
2389
2390 /*
2391  * does all the dirty work required for changing file system's UUID.
2392  */
2393 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2394 {
2395         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2396         struct btrfs_fs_devices *old_devices;
2397         struct btrfs_fs_devices *seed_devices;
2398         struct btrfs_super_block *disk_super = fs_info->super_copy;
2399         struct btrfs_device *device;
2400         u64 super_flags;
2401
2402         lockdep_assert_held(&uuid_mutex);
2403         if (!fs_devices->seeding)
2404                 return -EINVAL;
2405
2406         /*
2407          * Private copy of the seed devices, anchored at
2408          * fs_info->fs_devices->seed_list
2409          */
2410         seed_devices = alloc_fs_devices(NULL, NULL);
2411         if (IS_ERR(seed_devices))
2412                 return PTR_ERR(seed_devices);
2413
2414         /*
2415          * It's necessary to retain a copy of the original seed fs_devices in
2416          * fs_uuids so that filesystems which have been seeded can successfully
2417          * reference the seed device from open_seed_devices. This also supports
2418          * multiple fs seed.
2419          */
2420         old_devices = clone_fs_devices(fs_devices);
2421         if (IS_ERR(old_devices)) {
2422                 kfree(seed_devices);
2423                 return PTR_ERR(old_devices);
2424         }
2425
2426         list_add(&old_devices->fs_list, &fs_uuids);
2427
2428         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2429         seed_devices->opened = 1;
2430         INIT_LIST_HEAD(&seed_devices->devices);
2431         INIT_LIST_HEAD(&seed_devices->alloc_list);
2432         mutex_init(&seed_devices->device_list_mutex);
2433
2434         mutex_lock(&fs_devices->device_list_mutex);
2435         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2436                               synchronize_rcu);
2437         list_for_each_entry(device, &seed_devices->devices, dev_list)
2438                 device->fs_devices = seed_devices;
2439
2440         fs_devices->seeding = false;
2441         fs_devices->num_devices = 0;
2442         fs_devices->open_devices = 0;
2443         fs_devices->missing_devices = 0;
2444         fs_devices->rotating = false;
2445         list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2446
2447         generate_random_uuid(fs_devices->fsid);
2448         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2449         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2450         mutex_unlock(&fs_devices->device_list_mutex);
2451
2452         super_flags = btrfs_super_flags(disk_super) &
2453                       ~BTRFS_SUPER_FLAG_SEEDING;
2454         btrfs_set_super_flags(disk_super, super_flags);
2455
2456         return 0;
2457 }
2458
2459 /*
2460  * Store the expected generation for seed devices in device items.
2461  */
2462 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2463 {
2464         struct btrfs_fs_info *fs_info = trans->fs_info;
2465         struct btrfs_root *root = fs_info->chunk_root;
2466         struct btrfs_path *path;
2467         struct extent_buffer *leaf;
2468         struct btrfs_dev_item *dev_item;
2469         struct btrfs_device *device;
2470         struct btrfs_key key;
2471         u8 fs_uuid[BTRFS_FSID_SIZE];
2472         u8 dev_uuid[BTRFS_UUID_SIZE];
2473         u64 devid;
2474         int ret;
2475
2476         path = btrfs_alloc_path();
2477         if (!path)
2478                 return -ENOMEM;
2479
2480         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2481         key.offset = 0;
2482         key.type = BTRFS_DEV_ITEM_KEY;
2483
2484         while (1) {
2485                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2486                 if (ret < 0)
2487                         goto error;
2488
2489                 leaf = path->nodes[0];
2490 next_slot:
2491                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2492                         ret = btrfs_next_leaf(root, path);
2493                         if (ret > 0)
2494                                 break;
2495                         if (ret < 0)
2496                                 goto error;
2497                         leaf = path->nodes[0];
2498                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2499                         btrfs_release_path(path);
2500                         continue;
2501                 }
2502
2503                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2504                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2505                     key.type != BTRFS_DEV_ITEM_KEY)
2506                         break;
2507
2508                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2509                                           struct btrfs_dev_item);
2510                 devid = btrfs_device_id(leaf, dev_item);
2511                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2512                                    BTRFS_UUID_SIZE);
2513                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2514                                    BTRFS_FSID_SIZE);
2515                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2516                                            fs_uuid);
2517                 BUG_ON(!device); /* Logic error */
2518
2519                 if (device->fs_devices->seeding) {
2520                         btrfs_set_device_generation(leaf, dev_item,
2521                                                     device->generation);
2522                         btrfs_mark_buffer_dirty(leaf);
2523                 }
2524
2525                 path->slots[0]++;
2526                 goto next_slot;
2527         }
2528         ret = 0;
2529 error:
2530         btrfs_free_path(path);
2531         return ret;
2532 }
2533
2534 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2535 {
2536         struct btrfs_root *root = fs_info->dev_root;
2537         struct request_queue *q;
2538         struct btrfs_trans_handle *trans;
2539         struct btrfs_device *device;
2540         struct block_device *bdev;
2541         struct super_block *sb = fs_info->sb;
2542         struct rcu_string *name;
2543         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2544         u64 orig_super_total_bytes;
2545         u64 orig_super_num_devices;
2546         int seeding_dev = 0;
2547         int ret = 0;
2548         bool locked = false;
2549
2550         if (sb_rdonly(sb) && !fs_devices->seeding)
2551                 return -EROFS;
2552
2553         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2554                                   fs_info->bdev_holder);
2555         if (IS_ERR(bdev))
2556                 return PTR_ERR(bdev);
2557
2558         if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2559                 ret = -EINVAL;
2560                 goto error;
2561         }
2562
2563         if (fs_devices->seeding) {
2564                 seeding_dev = 1;
2565                 down_write(&sb->s_umount);
2566                 mutex_lock(&uuid_mutex);
2567                 locked = true;
2568         }
2569
2570         sync_blockdev(bdev);
2571
2572         rcu_read_lock();
2573         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2574                 if (device->bdev == bdev) {
2575                         ret = -EEXIST;
2576                         rcu_read_unlock();
2577                         goto error;
2578                 }
2579         }
2580         rcu_read_unlock();
2581
2582         device = btrfs_alloc_device(fs_info, NULL, NULL);
2583         if (IS_ERR(device)) {
2584                 /* we can safely leave the fs_devices entry around */
2585                 ret = PTR_ERR(device);
2586                 goto error;
2587         }
2588
2589         name = rcu_string_strdup(device_path, GFP_KERNEL);
2590         if (!name) {
2591                 ret = -ENOMEM;
2592                 goto error_free_device;
2593         }
2594         rcu_assign_pointer(device->name, name);
2595
2596         device->fs_info = fs_info;
2597         device->bdev = bdev;
2598
2599         ret = btrfs_get_dev_zone_info(device, false);
2600         if (ret)
2601                 goto error_free_device;
2602
2603         trans = btrfs_start_transaction(root, 0);
2604         if (IS_ERR(trans)) {
2605                 ret = PTR_ERR(trans);
2606                 goto error_free_zone;
2607         }
2608
2609         q = bdev_get_queue(bdev);
2610         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2611         device->generation = trans->transid;
2612         device->io_width = fs_info->sectorsize;
2613         device->io_align = fs_info->sectorsize;
2614         device->sector_size = fs_info->sectorsize;
2615         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2616                                          fs_info->sectorsize);
2617         device->disk_total_bytes = device->total_bytes;
2618         device->commit_total_bytes = device->total_bytes;
2619         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2620         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2621         device->mode = FMODE_EXCL;
2622         device->dev_stats_valid = 1;
2623         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2624
2625         if (seeding_dev) {
2626                 btrfs_clear_sb_rdonly(sb);
2627                 ret = btrfs_prepare_sprout(fs_info);
2628                 if (ret) {
2629                         btrfs_abort_transaction(trans, ret);
2630                         goto error_trans;
2631                 }
2632                 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2633                                                 device);
2634         }
2635
2636         device->fs_devices = fs_devices;
2637
2638         mutex_lock(&fs_devices->device_list_mutex);
2639         mutex_lock(&fs_info->chunk_mutex);
2640         list_add_rcu(&device->dev_list, &fs_devices->devices);
2641         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2642         fs_devices->num_devices++;
2643         fs_devices->open_devices++;
2644         fs_devices->rw_devices++;
2645         fs_devices->total_devices++;
2646         fs_devices->total_rw_bytes += device->total_bytes;
2647
2648         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2649
2650         if (!blk_queue_nonrot(q))
2651                 fs_devices->rotating = true;
2652
2653         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2654         btrfs_set_super_total_bytes(fs_info->super_copy,
2655                 round_down(orig_super_total_bytes + device->total_bytes,
2656                            fs_info->sectorsize));
2657
2658         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2659         btrfs_set_super_num_devices(fs_info->super_copy,
2660                                     orig_super_num_devices + 1);
2661
2662         /*
2663          * we've got more storage, clear any full flags on the space
2664          * infos
2665          */
2666         btrfs_clear_space_info_full(fs_info);
2667
2668         mutex_unlock(&fs_info->chunk_mutex);
2669
2670         /* Add sysfs device entry */
2671         btrfs_sysfs_add_device(device);
2672
2673         mutex_unlock(&fs_devices->device_list_mutex);
2674
2675         if (seeding_dev) {
2676                 mutex_lock(&fs_info->chunk_mutex);
2677                 ret = init_first_rw_device(trans);
2678                 mutex_unlock(&fs_info->chunk_mutex);
2679                 if (ret) {
2680                         btrfs_abort_transaction(trans, ret);
2681                         goto error_sysfs;
2682                 }
2683         }
2684
2685         ret = btrfs_add_dev_item(trans, device);
2686         if (ret) {
2687                 btrfs_abort_transaction(trans, ret);
2688                 goto error_sysfs;
2689         }
2690
2691         if (seeding_dev) {
2692                 ret = btrfs_finish_sprout(trans);
2693                 if (ret) {
2694                         btrfs_abort_transaction(trans, ret);
2695                         goto error_sysfs;
2696                 }
2697
2698                 /*
2699                  * fs_devices now represents the newly sprouted filesystem and
2700                  * its fsid has been changed by btrfs_prepare_sprout
2701                  */
2702                 btrfs_sysfs_update_sprout_fsid(fs_devices);
2703         }
2704
2705         ret = btrfs_commit_transaction(trans);
2706
2707         if (seeding_dev) {
2708                 mutex_unlock(&uuid_mutex);
2709                 up_write(&sb->s_umount);
2710                 locked = false;
2711
2712                 if (ret) /* transaction commit */
2713                         return ret;
2714
2715                 ret = btrfs_relocate_sys_chunks(fs_info);
2716                 if (ret < 0)
2717                         btrfs_handle_fs_error(fs_info, ret,
2718                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2719                 trans = btrfs_attach_transaction(root);
2720                 if (IS_ERR(trans)) {
2721                         if (PTR_ERR(trans) == -ENOENT)
2722                                 return 0;
2723                         ret = PTR_ERR(trans);
2724                         trans = NULL;
2725                         goto error_sysfs;
2726                 }
2727                 ret = btrfs_commit_transaction(trans);
2728         }
2729
2730         /*
2731          * Now that we have written a new super block to this device, check all
2732          * other fs_devices list if device_path alienates any other scanned
2733          * device.
2734          * We can ignore the return value as it typically returns -EINVAL and
2735          * only succeeds if the device was an alien.
2736          */
2737         btrfs_forget_devices(device_path);
2738
2739         /* Update ctime/mtime for blkid or udev */
2740         update_dev_time(device_path);
2741
2742         return ret;
2743
2744 error_sysfs:
2745         btrfs_sysfs_remove_device(device);
2746         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2747         mutex_lock(&fs_info->chunk_mutex);
2748         list_del_rcu(&device->dev_list);
2749         list_del(&device->dev_alloc_list);
2750         fs_info->fs_devices->num_devices--;
2751         fs_info->fs_devices->open_devices--;
2752         fs_info->fs_devices->rw_devices--;
2753         fs_info->fs_devices->total_devices--;
2754         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2755         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2756         btrfs_set_super_total_bytes(fs_info->super_copy,
2757                                     orig_super_total_bytes);
2758         btrfs_set_super_num_devices(fs_info->super_copy,
2759                                     orig_super_num_devices);
2760         mutex_unlock(&fs_info->chunk_mutex);
2761         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2762 error_trans:
2763         if (seeding_dev)
2764                 btrfs_set_sb_rdonly(sb);
2765         if (trans)
2766                 btrfs_end_transaction(trans);
2767 error_free_zone:
2768         btrfs_destroy_dev_zone_info(device);
2769 error_free_device:
2770         btrfs_free_device(device);
2771 error:
2772         blkdev_put(bdev, FMODE_EXCL);
2773         if (locked) {
2774                 mutex_unlock(&uuid_mutex);
2775                 up_write(&sb->s_umount);
2776         }
2777         return ret;
2778 }
2779
2780 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2781                                         struct btrfs_device *device)
2782 {
2783         int ret;
2784         struct btrfs_path *path;
2785         struct btrfs_root *root = device->fs_info->chunk_root;
2786         struct btrfs_dev_item *dev_item;
2787         struct extent_buffer *leaf;
2788         struct btrfs_key key;
2789
2790         path = btrfs_alloc_path();
2791         if (!path)
2792                 return -ENOMEM;
2793
2794         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2795         key.type = BTRFS_DEV_ITEM_KEY;
2796         key.offset = device->devid;
2797
2798         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2799         if (ret < 0)
2800                 goto out;
2801
2802         if (ret > 0) {
2803                 ret = -ENOENT;
2804                 goto out;
2805         }
2806
2807         leaf = path->nodes[0];
2808         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2809
2810         btrfs_set_device_id(leaf, dev_item, device->devid);
2811         btrfs_set_device_type(leaf, dev_item, device->type);
2812         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2813         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2814         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2815         btrfs_set_device_total_bytes(leaf, dev_item,
2816                                      btrfs_device_get_disk_total_bytes(device));
2817         btrfs_set_device_bytes_used(leaf, dev_item,
2818                                     btrfs_device_get_bytes_used(device));
2819         btrfs_mark_buffer_dirty(leaf);
2820
2821 out:
2822         btrfs_free_path(path);
2823         return ret;
2824 }
2825
2826 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2827                       struct btrfs_device *device, u64 new_size)
2828 {
2829         struct btrfs_fs_info *fs_info = device->fs_info;
2830         struct btrfs_super_block *super_copy = fs_info->super_copy;
2831         u64 old_total;
2832         u64 diff;
2833
2834         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2835                 return -EACCES;
2836
2837         new_size = round_down(new_size, fs_info->sectorsize);
2838
2839         mutex_lock(&fs_info->chunk_mutex);
2840         old_total = btrfs_super_total_bytes(super_copy);
2841         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2842
2843         if (new_size <= device->total_bytes ||
2844             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2845                 mutex_unlock(&fs_info->chunk_mutex);
2846                 return -EINVAL;
2847         }
2848
2849         btrfs_set_super_total_bytes(super_copy,
2850                         round_down(old_total + diff, fs_info->sectorsize));
2851         device->fs_devices->total_rw_bytes += diff;
2852
2853         btrfs_device_set_total_bytes(device, new_size);
2854         btrfs_device_set_disk_total_bytes(device, new_size);
2855         btrfs_clear_space_info_full(device->fs_info);
2856         if (list_empty(&device->post_commit_list))
2857                 list_add_tail(&device->post_commit_list,
2858                               &trans->transaction->dev_update_list);
2859         mutex_unlock(&fs_info->chunk_mutex);
2860
2861         return btrfs_update_device(trans, device);
2862 }
2863
2864 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2865 {
2866         struct btrfs_fs_info *fs_info = trans->fs_info;
2867         struct btrfs_root *root = fs_info->chunk_root;
2868         int ret;
2869         struct btrfs_path *path;
2870         struct btrfs_key key;
2871
2872         path = btrfs_alloc_path();
2873         if (!path)
2874                 return -ENOMEM;
2875
2876         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2877         key.offset = chunk_offset;
2878         key.type = BTRFS_CHUNK_ITEM_KEY;
2879
2880         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2881         if (ret < 0)
2882                 goto out;
2883         else if (ret > 0) { /* Logic error or corruption */
2884                 btrfs_handle_fs_error(fs_info, -ENOENT,
2885                                       "Failed lookup while freeing chunk.");
2886                 ret = -ENOENT;
2887                 goto out;
2888         }
2889
2890         ret = btrfs_del_item(trans, root, path);
2891         if (ret < 0)
2892                 btrfs_handle_fs_error(fs_info, ret,
2893                                       "Failed to delete chunk item.");
2894 out:
2895         btrfs_free_path(path);
2896         return ret;
2897 }
2898
2899 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2900 {
2901         struct btrfs_super_block *super_copy = fs_info->super_copy;
2902         struct btrfs_disk_key *disk_key;
2903         struct btrfs_chunk *chunk;
2904         u8 *ptr;
2905         int ret = 0;
2906         u32 num_stripes;
2907         u32 array_size;
2908         u32 len = 0;
2909         u32 cur;
2910         struct btrfs_key key;
2911
2912         lockdep_assert_held(&fs_info->chunk_mutex);
2913         array_size = btrfs_super_sys_array_size(super_copy);
2914
2915         ptr = super_copy->sys_chunk_array;
2916         cur = 0;
2917
2918         while (cur < array_size) {
2919                 disk_key = (struct btrfs_disk_key *)ptr;
2920                 btrfs_disk_key_to_cpu(&key, disk_key);
2921
2922                 len = sizeof(*disk_key);
2923
2924                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2925                         chunk = (struct btrfs_chunk *)(ptr + len);
2926                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2927                         len += btrfs_chunk_item_size(num_stripes);
2928                 } else {
2929                         ret = -EIO;
2930                         break;
2931                 }
2932                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2933                     key.offset == chunk_offset) {
2934                         memmove(ptr, ptr + len, array_size - (cur + len));
2935                         array_size -= len;
2936                         btrfs_set_super_sys_array_size(super_copy, array_size);
2937                 } else {
2938                         ptr += len;
2939                         cur += len;
2940                 }
2941         }
2942         return ret;
2943 }
2944
2945 /*
2946  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2947  * @logical: Logical block offset in bytes.
2948  * @length: Length of extent in bytes.
2949  *
2950  * Return: Chunk mapping or ERR_PTR.
2951  */
2952 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2953                                        u64 logical, u64 length)
2954 {
2955         struct extent_map_tree *em_tree;
2956         struct extent_map *em;
2957
2958         em_tree = &fs_info->mapping_tree;
2959         read_lock(&em_tree->lock);
2960         em = lookup_extent_mapping(em_tree, logical, length);
2961         read_unlock(&em_tree->lock);
2962
2963         if (!em) {
2964                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2965                            logical, length);
2966                 return ERR_PTR(-EINVAL);
2967         }
2968
2969         if (em->start > logical || em->start + em->len < logical) {
2970                 btrfs_crit(fs_info,
2971                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2972                            logical, length, em->start, em->start + em->len);
2973                 free_extent_map(em);
2974                 return ERR_PTR(-EINVAL);
2975         }
2976
2977         /* callers are responsible for dropping em's ref. */
2978         return em;
2979 }
2980
2981 static int remove_chunk_item(struct btrfs_trans_handle *trans,
2982                              struct map_lookup *map, u64 chunk_offset)
2983 {
2984         int i;
2985
2986         /*
2987          * Removing chunk items and updating the device items in the chunks btree
2988          * requires holding the chunk_mutex.
2989          * See the comment at btrfs_chunk_alloc() for the details.
2990          */
2991         lockdep_assert_held(&trans->fs_info->chunk_mutex);
2992
2993         for (i = 0; i < map->num_stripes; i++) {
2994                 int ret;
2995
2996                 ret = btrfs_update_device(trans, map->stripes[i].dev);
2997                 if (ret)
2998                         return ret;
2999         }
3000
3001         return btrfs_free_chunk(trans, chunk_offset);
3002 }
3003
3004 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3005 {
3006         struct btrfs_fs_info *fs_info = trans->fs_info;
3007         struct extent_map *em;
3008         struct map_lookup *map;
3009         u64 dev_extent_len = 0;
3010         int i, ret = 0;
3011         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3012
3013         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3014         if (IS_ERR(em)) {
3015                 /*
3016                  * This is a logic error, but we don't want to just rely on the
3017                  * user having built with ASSERT enabled, so if ASSERT doesn't
3018                  * do anything we still error out.
3019                  */
3020                 ASSERT(0);
3021                 return PTR_ERR(em);
3022         }
3023         map = em->map_lookup;
3024
3025         /*
3026          * First delete the device extent items from the devices btree.
3027          * We take the device_list_mutex to avoid racing with the finishing phase
3028          * of a device replace operation. See the comment below before acquiring
3029          * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3030          * because that can result in a deadlock when deleting the device extent
3031          * items from the devices btree - COWing an extent buffer from the btree
3032          * may result in allocating a new metadata chunk, which would attempt to
3033          * lock again fs_info->chunk_mutex.
3034          */
3035         mutex_lock(&fs_devices->device_list_mutex);
3036         for (i = 0; i < map->num_stripes; i++) {
3037                 struct btrfs_device *device = map->stripes[i].dev;
3038                 ret = btrfs_free_dev_extent(trans, device,
3039                                             map->stripes[i].physical,
3040                                             &dev_extent_len);
3041                 if (ret) {
3042                         mutex_unlock(&fs_devices->device_list_mutex);
3043                         btrfs_abort_transaction(trans, ret);
3044                         goto out;
3045                 }
3046
3047                 if (device->bytes_used > 0) {
3048                         mutex_lock(&fs_info->chunk_mutex);
3049                         btrfs_device_set_bytes_used(device,
3050                                         device->bytes_used - dev_extent_len);
3051                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3052                         btrfs_clear_space_info_full(fs_info);
3053                         mutex_unlock(&fs_info->chunk_mutex);
3054                 }
3055         }
3056         mutex_unlock(&fs_devices->device_list_mutex);
3057
3058         /*
3059          * We acquire fs_info->chunk_mutex for 2 reasons:
3060          *
3061          * 1) Just like with the first phase of the chunk allocation, we must
3062          *    reserve system space, do all chunk btree updates and deletions, and
3063          *    update the system chunk array in the superblock while holding this
3064          *    mutex. This is for similar reasons as explained on the comment at
3065          *    the top of btrfs_chunk_alloc();
3066          *
3067          * 2) Prevent races with the final phase of a device replace operation
3068          *    that replaces the device object associated with the map's stripes,
3069          *    because the device object's id can change at any time during that
3070          *    final phase of the device replace operation
3071          *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3072          *    replaced device and then see it with an ID of
3073          *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3074          *    the device item, which does not exists on the chunk btree.
3075          *    The finishing phase of device replace acquires both the
3076          *    device_list_mutex and the chunk_mutex, in that order, so we are
3077          *    safe by just acquiring the chunk_mutex.
3078          */
3079         trans->removing_chunk = true;
3080         mutex_lock(&fs_info->chunk_mutex);
3081
3082         check_system_chunk(trans, map->type);
3083
3084         ret = remove_chunk_item(trans, map, chunk_offset);
3085         /*
3086          * Normally we should not get -ENOSPC since we reserved space before
3087          * through the call to check_system_chunk().
3088          *
3089          * Despite our system space_info having enough free space, we may not
3090          * be able to allocate extents from its block groups, because all have
3091          * an incompatible profile, which will force us to allocate a new system
3092          * block group with the right profile, or right after we called
3093          * check_system_space() above, a scrub turned the only system block group
3094          * with enough free space into RO mode.
3095          * This is explained with more detail at do_chunk_alloc().
3096          *
3097          * So if we get -ENOSPC, allocate a new system chunk and retry once.
3098          */
3099         if (ret == -ENOSPC) {
3100                 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3101                 struct btrfs_block_group *sys_bg;
3102
3103                 sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3104                 if (IS_ERR(sys_bg)) {
3105                         ret = PTR_ERR(sys_bg);
3106                         btrfs_abort_transaction(trans, ret);
3107                         goto out;
3108                 }
3109
3110                 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3111                 if (ret) {
3112                         btrfs_abort_transaction(trans, ret);
3113                         goto out;
3114                 }
3115
3116                 ret = remove_chunk_item(trans, map, chunk_offset);
3117                 if (ret) {
3118                         btrfs_abort_transaction(trans, ret);
3119                         goto out;
3120                 }
3121         } else if (ret) {
3122                 btrfs_abort_transaction(trans, ret);
3123                 goto out;
3124         }
3125
3126         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3127
3128         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3129                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3130                 if (ret) {
3131                         btrfs_abort_transaction(trans, ret);
3132                         goto out;
3133                 }
3134         }
3135
3136         mutex_unlock(&fs_info->chunk_mutex);
3137         trans->removing_chunk = false;
3138
3139         /*
3140          * We are done with chunk btree updates and deletions, so release the
3141          * system space we previously reserved (with check_system_chunk()).
3142          */
3143         btrfs_trans_release_chunk_metadata(trans);
3144
3145         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3146         if (ret) {
3147                 btrfs_abort_transaction(trans, ret);
3148                 goto out;
3149         }
3150
3151 out:
3152         if (trans->removing_chunk) {
3153                 mutex_unlock(&fs_info->chunk_mutex);
3154                 trans->removing_chunk = false;
3155         }
3156         /* once for us */
3157         free_extent_map(em);
3158         return ret;
3159 }
3160
3161 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3162 {
3163         struct btrfs_root *root = fs_info->chunk_root;
3164         struct btrfs_trans_handle *trans;
3165         struct btrfs_block_group *block_group;
3166         u64 length;
3167         int ret;
3168
3169         /*
3170          * Prevent races with automatic removal of unused block groups.
3171          * After we relocate and before we remove the chunk with offset
3172          * chunk_offset, automatic removal of the block group can kick in,
3173          * resulting in a failure when calling btrfs_remove_chunk() below.
3174          *
3175          * Make sure to acquire this mutex before doing a tree search (dev
3176          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3177          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3178          * we release the path used to search the chunk/dev tree and before
3179          * the current task acquires this mutex and calls us.
3180          */
3181         lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3182
3183         /* step one, relocate all the extents inside this chunk */
3184         btrfs_scrub_pause(fs_info);
3185         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3186         btrfs_scrub_continue(fs_info);
3187         if (ret)
3188                 return ret;
3189
3190         block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3191         if (!block_group)
3192                 return -ENOENT;
3193         btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3194         length = block_group->length;
3195         btrfs_put_block_group(block_group);
3196
3197         /*
3198          * On a zoned file system, discard the whole block group, this will
3199          * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3200          * resetting the zone fails, don't treat it as a fatal problem from the
3201          * filesystem's point of view.
3202          */
3203         if (btrfs_is_zoned(fs_info)) {
3204                 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3205                 if (ret)
3206                         btrfs_info(fs_info,
3207                                 "failed to reset zone %llu after relocation",
3208                                 chunk_offset);
3209         }
3210
3211         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3212                                                      chunk_offset);
3213         if (IS_ERR(trans)) {
3214                 ret = PTR_ERR(trans);
3215                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3216                 return ret;
3217         }
3218
3219         /*
3220          * step two, delete the device extents and the
3221          * chunk tree entries
3222          */
3223         ret = btrfs_remove_chunk(trans, chunk_offset);
3224         btrfs_end_transaction(trans);
3225         return ret;
3226 }
3227
3228 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3229 {
3230         struct btrfs_root *chunk_root = fs_info->chunk_root;
3231         struct btrfs_path *path;
3232         struct extent_buffer *leaf;
3233         struct btrfs_chunk *chunk;
3234         struct btrfs_key key;
3235         struct btrfs_key found_key;
3236         u64 chunk_type;
3237         bool retried = false;
3238         int failed = 0;
3239         int ret;
3240
3241         path = btrfs_alloc_path();
3242         if (!path)
3243                 return -ENOMEM;
3244
3245 again:
3246         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3247         key.offset = (u64)-1;
3248         key.type = BTRFS_CHUNK_ITEM_KEY;
3249
3250         while (1) {
3251                 mutex_lock(&fs_info->reclaim_bgs_lock);
3252                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3253                 if (ret < 0) {
3254                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3255                         goto error;
3256                 }
3257                 BUG_ON(ret == 0); /* Corruption */
3258
3259                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3260                                           key.type);
3261                 if (ret)
3262                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3263                 if (ret < 0)
3264                         goto error;
3265                 if (ret > 0)
3266                         break;
3267
3268                 leaf = path->nodes[0];
3269                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3270
3271                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3272                                        struct btrfs_chunk);
3273                 chunk_type = btrfs_chunk_type(leaf, chunk);
3274                 btrfs_release_path(path);
3275
3276                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3277                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3278                         if (ret == -ENOSPC)
3279                                 failed++;
3280                         else
3281                                 BUG_ON(ret);
3282                 }
3283                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3284
3285                 if (found_key.offset == 0)
3286                         break;
3287                 key.offset = found_key.offset - 1;
3288         }
3289         ret = 0;
3290         if (failed && !retried) {
3291                 failed = 0;
3292                 retried = true;
3293                 goto again;
3294         } else if (WARN_ON(failed && retried)) {
3295                 ret = -ENOSPC;
3296         }
3297 error:
3298         btrfs_free_path(path);
3299         return ret;
3300 }
3301
3302 /*
3303  * return 1 : allocate a data chunk successfully,
3304  * return <0: errors during allocating a data chunk,
3305  * return 0 : no need to allocate a data chunk.
3306  */
3307 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3308                                       u64 chunk_offset)
3309 {
3310         struct btrfs_block_group *cache;
3311         u64 bytes_used;
3312         u64 chunk_type;
3313
3314         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3315         ASSERT(cache);
3316         chunk_type = cache->flags;
3317         btrfs_put_block_group(cache);
3318
3319         if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3320                 return 0;
3321
3322         spin_lock(&fs_info->data_sinfo->lock);
3323         bytes_used = fs_info->data_sinfo->bytes_used;
3324         spin_unlock(&fs_info->data_sinfo->lock);
3325
3326         if (!bytes_used) {
3327                 struct btrfs_trans_handle *trans;
3328                 int ret;
3329
3330                 trans = btrfs_join_transaction(fs_info->tree_root);
3331                 if (IS_ERR(trans))
3332                         return PTR_ERR(trans);
3333
3334                 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3335                 btrfs_end_transaction(trans);
3336                 if (ret < 0)
3337                         return ret;
3338                 return 1;
3339         }
3340
3341         return 0;
3342 }
3343
3344 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3345                                struct btrfs_balance_control *bctl)
3346 {
3347         struct btrfs_root *root = fs_info->tree_root;
3348         struct btrfs_trans_handle *trans;
3349         struct btrfs_balance_item *item;
3350         struct btrfs_disk_balance_args disk_bargs;
3351         struct btrfs_path *path;
3352         struct extent_buffer *leaf;
3353         struct btrfs_key key;
3354         int ret, err;
3355
3356         path = btrfs_alloc_path();
3357         if (!path)
3358                 return -ENOMEM;
3359
3360         trans = btrfs_start_transaction(root, 0);
3361         if (IS_ERR(trans)) {
3362                 btrfs_free_path(path);
3363                 return PTR_ERR(trans);
3364         }
3365
3366         key.objectid = BTRFS_BALANCE_OBJECTID;
3367         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3368         key.offset = 0;
3369
3370         ret = btrfs_insert_empty_item(trans, root, path, &key,
3371                                       sizeof(*item));
3372         if (ret)
3373                 goto out;
3374
3375         leaf = path->nodes[0];
3376         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3377
3378         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3379
3380         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3381         btrfs_set_balance_data(leaf, item, &disk_bargs);
3382         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3383         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3384         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3385         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3386
3387         btrfs_set_balance_flags(leaf, item, bctl->flags);
3388
3389         btrfs_mark_buffer_dirty(leaf);
3390 out:
3391         btrfs_free_path(path);
3392         err = btrfs_commit_transaction(trans);
3393         if (err && !ret)
3394                 ret = err;
3395         return ret;
3396 }
3397
3398 static int del_balance_item(struct btrfs_fs_info *fs_info)
3399 {
3400         struct btrfs_root *root = fs_info->tree_root;
3401         struct btrfs_trans_handle *trans;
3402         struct btrfs_path *path;
3403         struct btrfs_key key;
3404         int ret, err;
3405
3406         path = btrfs_alloc_path();
3407         if (!path)
3408                 return -ENOMEM;
3409
3410         trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3411         if (IS_ERR(trans)) {
3412                 btrfs_free_path(path);
3413                 return PTR_ERR(trans);
3414         }
3415
3416         key.objectid = BTRFS_BALANCE_OBJECTID;
3417         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3418         key.offset = 0;
3419
3420         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3421         if (ret < 0)
3422                 goto out;
3423         if (ret > 0) {
3424                 ret = -ENOENT;
3425                 goto out;
3426         }
3427
3428         ret = btrfs_del_item(trans, root, path);
3429 out:
3430         btrfs_free_path(path);
3431         err = btrfs_commit_transaction(trans);
3432         if (err && !ret)
3433                 ret = err;
3434         return ret;
3435 }
3436
3437 /*
3438  * This is a heuristic used to reduce the number of chunks balanced on
3439  * resume after balance was interrupted.
3440  */
3441 static void update_balance_args(struct btrfs_balance_control *bctl)
3442 {
3443         /*
3444          * Turn on soft mode for chunk types that were being converted.
3445          */
3446         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3447                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3448         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3449                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3450         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3451                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3452
3453         /*
3454          * Turn on usage filter if is not already used.  The idea is
3455          * that chunks that we have already balanced should be
3456          * reasonably full.  Don't do it for chunks that are being
3457          * converted - that will keep us from relocating unconverted
3458          * (albeit full) chunks.
3459          */
3460         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3461             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3462             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3463                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3464                 bctl->data.usage = 90;
3465         }
3466         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3467             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3468             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3469                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3470                 bctl->sys.usage = 90;
3471         }
3472         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3473             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3474             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3475                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3476                 bctl->meta.usage = 90;
3477         }
3478 }
3479
3480 /*
3481  * Clear the balance status in fs_info and delete the balance item from disk.
3482  */
3483 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3484 {
3485         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3486         int ret;
3487
3488         BUG_ON(!fs_info->balance_ctl);
3489
3490         spin_lock(&fs_info->balance_lock);
3491         fs_info->balance_ctl = NULL;
3492         spin_unlock(&fs_info->balance_lock);
3493
3494         kfree(bctl);
3495         ret = del_balance_item(fs_info);
3496         if (ret)
3497                 btrfs_handle_fs_error(fs_info, ret, NULL);
3498 }
3499
3500 /*
3501  * Balance filters.  Return 1 if chunk should be filtered out
3502  * (should not be balanced).
3503  */
3504 static int chunk_profiles_filter(u64 chunk_type,
3505                                  struct btrfs_balance_args *bargs)
3506 {
3507         chunk_type = chunk_to_extended(chunk_type) &
3508                                 BTRFS_EXTENDED_PROFILE_MASK;
3509
3510         if (bargs->profiles & chunk_type)
3511                 return 0;
3512
3513         return 1;
3514 }
3515
3516 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3517                               struct btrfs_balance_args *bargs)
3518 {
3519         struct btrfs_block_group *cache;
3520         u64 chunk_used;
3521         u64 user_thresh_min;
3522         u64 user_thresh_max;
3523         int ret = 1;
3524
3525         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3526         chunk_used = cache->used;
3527
3528         if (bargs->usage_min == 0)
3529                 user_thresh_min = 0;
3530         else
3531                 user_thresh_min = div_factor_fine(cache->length,
3532                                                   bargs->usage_min);
3533
3534         if (bargs->usage_max == 0)
3535                 user_thresh_max = 1;
3536         else if (bargs->usage_max > 100)
3537                 user_thresh_max = cache->length;
3538         else
3539                 user_thresh_max = div_factor_fine(cache->length,
3540                                                   bargs->usage_max);
3541
3542         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3543                 ret = 0;
3544
3545         btrfs_put_block_group(cache);
3546         return ret;
3547 }
3548
3549 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3550                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3551 {
3552         struct btrfs_block_group *cache;
3553         u64 chunk_used, user_thresh;
3554         int ret = 1;
3555
3556         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3557         chunk_used = cache->used;
3558
3559         if (bargs->usage_min == 0)
3560                 user_thresh = 1;
3561         else if (bargs->usage > 100)
3562                 user_thresh = cache->length;
3563         else
3564                 user_thresh = div_factor_fine(cache->length, bargs->usage);
3565
3566         if (chunk_used < user_thresh)
3567                 ret = 0;
3568
3569         btrfs_put_block_group(cache);
3570         return ret;
3571 }
3572
3573 static int chunk_devid_filter(struct extent_buffer *leaf,
3574                               struct btrfs_chunk *chunk,
3575                               struct btrfs_balance_args *bargs)
3576 {
3577         struct btrfs_stripe *stripe;
3578         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3579         int i;
3580
3581         for (i = 0; i < num_stripes; i++) {
3582                 stripe = btrfs_stripe_nr(chunk, i);
3583                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3584                         return 0;
3585         }
3586
3587         return 1;
3588 }
3589
3590 static u64 calc_data_stripes(u64 type, int num_stripes)
3591 {
3592         const int index = btrfs_bg_flags_to_raid_index(type);
3593         const int ncopies = btrfs_raid_array[index].ncopies;
3594         const int nparity = btrfs_raid_array[index].nparity;
3595
3596         return (num_stripes - nparity) / ncopies;
3597 }
3598
3599 /* [pstart, pend) */
3600 static int chunk_drange_filter(struct extent_buffer *leaf,
3601                                struct btrfs_chunk *chunk,
3602                                struct btrfs_balance_args *bargs)
3603 {
3604         struct btrfs_stripe *stripe;
3605         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3606         u64 stripe_offset;
3607         u64 stripe_length;
3608         u64 type;
3609         int factor;
3610         int i;
3611
3612         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3613                 return 0;
3614
3615         type = btrfs_chunk_type(leaf, chunk);
3616         factor = calc_data_stripes(type, num_stripes);
3617
3618         for (i = 0; i < num_stripes; i++) {
3619                 stripe = btrfs_stripe_nr(chunk, i);
3620                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3621                         continue;
3622
3623                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3624                 stripe_length = btrfs_chunk_length(leaf, chunk);
3625                 stripe_length = div_u64(stripe_length, factor);
3626
3627                 if (stripe_offset < bargs->pend &&
3628                     stripe_offset + stripe_length > bargs->pstart)
3629                         return 0;
3630         }
3631
3632         return 1;
3633 }
3634
3635 /* [vstart, vend) */
3636 static int chunk_vrange_filter(struct extent_buffer *leaf,
3637                                struct btrfs_chunk *chunk,
3638                                u64 chunk_offset,
3639                                struct btrfs_balance_args *bargs)
3640 {
3641         if (chunk_offset < bargs->vend &&
3642             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3643                 /* at least part of the chunk is inside this vrange */
3644                 return 0;
3645
3646         return 1;
3647 }
3648
3649 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3650                                struct btrfs_chunk *chunk,
3651                                struct btrfs_balance_args *bargs)
3652 {
3653         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3654
3655         if (bargs->stripes_min <= num_stripes
3656                         && num_stripes <= bargs->stripes_max)
3657                 return 0;
3658
3659         return 1;
3660 }
3661
3662 static int chunk_soft_convert_filter(u64 chunk_type,
3663                                      struct btrfs_balance_args *bargs)
3664 {
3665         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3666                 return 0;
3667
3668         chunk_type = chunk_to_extended(chunk_type) &
3669                                 BTRFS_EXTENDED_PROFILE_MASK;
3670
3671         if (bargs->target == chunk_type)
3672                 return 1;
3673
3674         return 0;
3675 }
3676
3677 static int should_balance_chunk(struct extent_buffer *leaf,
3678                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3679 {
3680         struct btrfs_fs_info *fs_info = leaf->fs_info;
3681         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3682         struct btrfs_balance_args *bargs = NULL;
3683         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3684
3685         /* type filter */
3686         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3687               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3688                 return 0;
3689         }
3690
3691         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3692                 bargs = &bctl->data;
3693         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3694                 bargs = &bctl->sys;
3695         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3696                 bargs = &bctl->meta;
3697
3698         /* profiles filter */
3699         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3700             chunk_profiles_filter(chunk_type, bargs)) {
3701                 return 0;
3702         }
3703
3704         /* usage filter */
3705         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3706             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3707                 return 0;
3708         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3709             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3710                 return 0;
3711         }
3712
3713         /* devid filter */
3714         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3715             chunk_devid_filter(leaf, chunk, bargs)) {
3716                 return 0;
3717         }
3718
3719         /* drange filter, makes sense only with devid filter */
3720         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3721             chunk_drange_filter(leaf, chunk, bargs)) {
3722                 return 0;
3723         }
3724
3725         /* vrange filter */
3726         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3727             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3728                 return 0;
3729         }
3730
3731         /* stripes filter */
3732         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3733             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3734                 return 0;
3735         }
3736
3737         /* soft profile changing mode */
3738         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3739             chunk_soft_convert_filter(chunk_type, bargs)) {
3740                 return 0;
3741         }
3742
3743         /*
3744          * limited by count, must be the last filter
3745          */
3746         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3747                 if (bargs->limit == 0)
3748                         return 0;
3749                 else
3750                         bargs->limit--;
3751         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3752                 /*
3753                  * Same logic as the 'limit' filter; the minimum cannot be
3754                  * determined here because we do not have the global information
3755                  * about the count of all chunks that satisfy the filters.
3756                  */
3757                 if (bargs->limit_max == 0)
3758                         return 0;
3759                 else
3760                         bargs->limit_max--;
3761         }
3762
3763         return 1;
3764 }
3765
3766 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3767 {
3768         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3769         struct btrfs_root *chunk_root = fs_info->chunk_root;
3770         u64 chunk_type;
3771         struct btrfs_chunk *chunk;
3772         struct btrfs_path *path = NULL;
3773         struct btrfs_key key;
3774         struct btrfs_key found_key;
3775         struct extent_buffer *leaf;
3776         int slot;
3777         int ret;
3778         int enospc_errors = 0;
3779         bool counting = true;
3780         /* The single value limit and min/max limits use the same bytes in the */
3781         u64 limit_data = bctl->data.limit;
3782         u64 limit_meta = bctl->meta.limit;
3783         u64 limit_sys = bctl->sys.limit;
3784         u32 count_data = 0;
3785         u32 count_meta = 0;
3786         u32 count_sys = 0;
3787         int chunk_reserved = 0;
3788
3789         path = btrfs_alloc_path();
3790         if (!path) {
3791                 ret = -ENOMEM;
3792                 goto error;
3793         }
3794
3795         /* zero out stat counters */
3796         spin_lock(&fs_info->balance_lock);
3797         memset(&bctl->stat, 0, sizeof(bctl->stat));
3798         spin_unlock(&fs_info->balance_lock);
3799 again:
3800         if (!counting) {
3801                 /*
3802                  * The single value limit and min/max limits use the same bytes
3803                  * in the
3804                  */
3805                 bctl->data.limit = limit_data;
3806                 bctl->meta.limit = limit_meta;
3807                 bctl->sys.limit = limit_sys;
3808         }
3809         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3810         key.offset = (u64)-1;
3811         key.type = BTRFS_CHUNK_ITEM_KEY;
3812
3813         while (1) {
3814                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3815                     atomic_read(&fs_info->balance_cancel_req)) {
3816                         ret = -ECANCELED;
3817                         goto error;
3818                 }
3819
3820                 mutex_lock(&fs_info->reclaim_bgs_lock);
3821                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3822                 if (ret < 0) {
3823                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3824                         goto error;
3825                 }
3826
3827                 /*
3828                  * this shouldn't happen, it means the last relocate
3829                  * failed
3830                  */
3831                 if (ret == 0)
3832                         BUG(); /* FIXME break ? */
3833
3834                 ret = btrfs_previous_item(chunk_root, path, 0,
3835                                           BTRFS_CHUNK_ITEM_KEY);
3836                 if (ret) {
3837                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3838                         ret = 0;
3839                         break;
3840                 }
3841
3842                 leaf = path->nodes[0];
3843                 slot = path->slots[0];
3844                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3845
3846                 if (found_key.objectid != key.objectid) {
3847                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3848                         break;
3849                 }
3850
3851                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3852                 chunk_type = btrfs_chunk_type(leaf, chunk);
3853
3854                 if (!counting) {
3855                         spin_lock(&fs_info->balance_lock);
3856                         bctl->stat.considered++;
3857                         spin_unlock(&fs_info->balance_lock);
3858                 }
3859
3860                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3861
3862                 btrfs_release_path(path);
3863                 if (!ret) {
3864                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3865                         goto loop;
3866                 }
3867
3868                 if (counting) {
3869                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3870                         spin_lock(&fs_info->balance_lock);
3871                         bctl->stat.expected++;
3872                         spin_unlock(&fs_info->balance_lock);
3873
3874                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3875                                 count_data++;
3876                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3877                                 count_sys++;
3878                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3879                                 count_meta++;
3880
3881                         goto loop;
3882                 }
3883
3884                 /*
3885                  * Apply limit_min filter, no need to check if the LIMITS
3886                  * filter is used, limit_min is 0 by default
3887                  */
3888                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3889                                         count_data < bctl->data.limit_min)
3890                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3891                                         count_meta < bctl->meta.limit_min)
3892                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3893                                         count_sys < bctl->sys.limit_min)) {
3894                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3895                         goto loop;
3896                 }
3897
3898                 if (!chunk_reserved) {
3899                         /*
3900                          * We may be relocating the only data chunk we have,
3901                          * which could potentially end up with losing data's
3902                          * raid profile, so lets allocate an empty one in
3903                          * advance.
3904                          */
3905                         ret = btrfs_may_alloc_data_chunk(fs_info,
3906                                                          found_key.offset);
3907                         if (ret < 0) {
3908                                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3909                                 goto error;
3910                         } else if (ret == 1) {
3911                                 chunk_reserved = 1;
3912                         }
3913                 }
3914
3915                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3916                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3917                 if (ret == -ENOSPC) {
3918                         enospc_errors++;
3919                 } else if (ret == -ETXTBSY) {
3920                         btrfs_info(fs_info,
3921            "skipping relocation of block group %llu due to active swapfile",
3922                                    found_key.offset);
3923                         ret = 0;
3924                 } else if (ret) {
3925                         goto error;
3926                 } else {
3927                         spin_lock(&fs_info->balance_lock);
3928                         bctl->stat.completed++;
3929                         spin_unlock(&fs_info->balance_lock);
3930                 }
3931 loop:
3932                 if (found_key.offset == 0)
3933                         break;
3934                 key.offset = found_key.offset - 1;
3935         }
3936
3937         if (counting) {
3938                 btrfs_release_path(path);
3939                 counting = false;
3940                 goto again;
3941         }
3942 error:
3943         btrfs_free_path(path);
3944         if (enospc_errors) {
3945                 btrfs_info(fs_info, "%d enospc errors during balance",
3946                            enospc_errors);
3947                 if (!ret)
3948                         ret = -ENOSPC;
3949         }
3950
3951         return ret;
3952 }
3953
3954 /**
3955  * alloc_profile_is_valid - see if a given profile is valid and reduced
3956  * @flags: profile to validate
3957  * @extended: if true @flags is treated as an extended profile
3958  */
3959 static int alloc_profile_is_valid(u64 flags, int extended)
3960 {
3961         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3962                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3963
3964         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3965
3966         /* 1) check that all other bits are zeroed */
3967         if (flags & ~mask)
3968                 return 0;
3969
3970         /* 2) see if profile is reduced */
3971         if (flags == 0)
3972                 return !extended; /* "0" is valid for usual profiles */
3973
3974         return has_single_bit_set(flags);
3975 }
3976
3977 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3978 {
3979         /* cancel requested || normal exit path */
3980         return atomic_read(&fs_info->balance_cancel_req) ||
3981                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3982                  atomic_read(&fs_info->balance_cancel_req) == 0);
3983 }
3984
3985 /*
3986  * Validate target profile against allowed profiles and return true if it's OK.
3987  * Otherwise print the error message and return false.
3988  */
3989 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3990                 const struct btrfs_balance_args *bargs,
3991                 u64 allowed, const char *type)
3992 {
3993         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3994                 return true;
3995
3996         if (fs_info->sectorsize < PAGE_SIZE &&
3997                 bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3998                 btrfs_err(fs_info,
3999                 "RAID56 is not yet supported for sectorsize %u with page size %lu",
4000                           fs_info->sectorsize, PAGE_SIZE);
4001                 return false;
4002         }
4003         /* Profile is valid and does not have bits outside of the allowed set */
4004         if (alloc_profile_is_valid(bargs->target, 1) &&
4005             (bargs->target & ~allowed) == 0)
4006                 return true;
4007
4008         btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4009                         type, btrfs_bg_type_to_raid_name(bargs->target));
4010         return false;
4011 }
4012
4013 /*
4014  * Fill @buf with textual description of balance filter flags @bargs, up to
4015  * @size_buf including the terminating null. The output may be trimmed if it
4016  * does not fit into the provided buffer.
4017  */
4018 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4019                                  u32 size_buf)
4020 {
4021         int ret;
4022         u32 size_bp = size_buf;
4023         char *bp = buf;
4024         u64 flags = bargs->flags;
4025         char tmp_buf[128] = {'\0'};
4026
4027         if (!flags)
4028                 return;
4029
4030 #define CHECK_APPEND_NOARG(a)                                           \
4031         do {                                                            \
4032                 ret = snprintf(bp, size_bp, (a));                       \
4033                 if (ret < 0 || ret >= size_bp)                          \
4034                         goto out_overflow;                              \
4035                 size_bp -= ret;                                         \
4036                 bp += ret;                                              \
4037         } while (0)
4038
4039 #define CHECK_APPEND_1ARG(a, v1)                                        \
4040         do {                                                            \
4041                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4042                 if (ret < 0 || ret >= size_bp)                          \
4043                         goto out_overflow;                              \
4044                 size_bp -= ret;                                         \
4045                 bp += ret;                                              \
4046         } while (0)
4047
4048 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
4049         do {                                                            \
4050                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
4051                 if (ret < 0 || ret >= size_bp)                          \
4052                         goto out_overflow;                              \
4053                 size_bp -= ret;                                         \
4054                 bp += ret;                                              \
4055         } while (0)
4056
4057         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4058                 CHECK_APPEND_1ARG("convert=%s,",
4059                                   btrfs_bg_type_to_raid_name(bargs->target));
4060
4061         if (flags & BTRFS_BALANCE_ARGS_SOFT)
4062                 CHECK_APPEND_NOARG("soft,");
4063
4064         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4065                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4066                                             sizeof(tmp_buf));
4067                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4068         }
4069
4070         if (flags & BTRFS_BALANCE_ARGS_USAGE)
4071                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4072
4073         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4074                 CHECK_APPEND_2ARG("usage=%u..%u,",
4075                                   bargs->usage_min, bargs->usage_max);
4076
4077         if (flags & BTRFS_BALANCE_ARGS_DEVID)
4078                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4079
4080         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4081                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4082                                   bargs->pstart, bargs->pend);
4083
4084         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4085                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4086                                   bargs->vstart, bargs->vend);
4087
4088         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4089                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4090
4091         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4092                 CHECK_APPEND_2ARG("limit=%u..%u,",
4093                                 bargs->limit_min, bargs->limit_max);
4094
4095         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4096                 CHECK_APPEND_2ARG("stripes=%u..%u,",
4097                                   bargs->stripes_min, bargs->stripes_max);
4098
4099 #undef CHECK_APPEND_2ARG
4100 #undef CHECK_APPEND_1ARG
4101 #undef CHECK_APPEND_NOARG
4102
4103 out_overflow:
4104
4105         if (size_bp < size_buf)
4106                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4107         else
4108                 buf[0] = '\0';
4109 }
4110
4111 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4112 {
4113         u32 size_buf = 1024;
4114         char tmp_buf[192] = {'\0'};
4115         char *buf;
4116         char *bp;
4117         u32 size_bp = size_buf;
4118         int ret;
4119         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4120
4121         buf = kzalloc(size_buf, GFP_KERNEL);
4122         if (!buf)
4123                 return;
4124
4125         bp = buf;
4126
4127 #define CHECK_APPEND_1ARG(a, v1)                                        \
4128         do {                                                            \
4129                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4130                 if (ret < 0 || ret >= size_bp)                          \
4131                         goto out_overflow;                              \
4132                 size_bp -= ret;                                         \
4133                 bp += ret;                                              \
4134         } while (0)
4135
4136         if (bctl->flags & BTRFS_BALANCE_FORCE)
4137                 CHECK_APPEND_1ARG("%s", "-f ");
4138
4139         if (bctl->flags & BTRFS_BALANCE_DATA) {
4140                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4141                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4142         }
4143
4144         if (bctl->flags & BTRFS_BALANCE_METADATA) {
4145                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4146                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4147         }
4148
4149         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4150                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4151                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4152         }
4153
4154 #undef CHECK_APPEND_1ARG
4155
4156 out_overflow:
4157
4158         if (size_bp < size_buf)
4159                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4160         btrfs_info(fs_info, "balance: %s %s",
4161                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
4162                    "resume" : "start", buf);
4163
4164         kfree(buf);
4165 }
4166
4167 /*
4168  * Should be called with balance mutexe held
4169  */
4170 int btrfs_balance(struct btrfs_fs_info *fs_info,
4171                   struct btrfs_balance_control *bctl,
4172                   struct btrfs_ioctl_balance_args *bargs)
4173 {
4174         u64 meta_target, data_target;
4175         u64 allowed;
4176         int mixed = 0;
4177         int ret;
4178         u64 num_devices;
4179         unsigned seq;
4180         bool reducing_redundancy;
4181         int i;
4182
4183         if (btrfs_fs_closing(fs_info) ||
4184             atomic_read(&fs_info->balance_pause_req) ||
4185             btrfs_should_cancel_balance(fs_info)) {
4186                 ret = -EINVAL;
4187                 goto out;
4188         }
4189
4190         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4191         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4192                 mixed = 1;
4193
4194         /*
4195          * In case of mixed groups both data and meta should be picked,
4196          * and identical options should be given for both of them.
4197          */
4198         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4199         if (mixed && (bctl->flags & allowed)) {
4200                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4201                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4202                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4203                         btrfs_err(fs_info,
4204           "balance: mixed groups data and metadata options must be the same");
4205                         ret = -EINVAL;
4206                         goto out;
4207                 }
4208         }
4209
4210         /*
4211          * rw_devices will not change at the moment, device add/delete/replace
4212          * are exclusive
4213          */
4214         num_devices = fs_info->fs_devices->rw_devices;
4215
4216         /*
4217          * SINGLE profile on-disk has no profile bit, but in-memory we have a
4218          * special bit for it, to make it easier to distinguish.  Thus we need
4219          * to set it manually, or balance would refuse the profile.
4220          */
4221         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4222         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4223                 if (num_devices >= btrfs_raid_array[i].devs_min)
4224                         allowed |= btrfs_raid_array[i].bg_flag;
4225
4226         if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4227             !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4228             !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4229                 ret = -EINVAL;
4230                 goto out;
4231         }
4232
4233         /*
4234          * Allow to reduce metadata or system integrity only if force set for
4235          * profiles with redundancy (copies, parity)
4236          */
4237         allowed = 0;
4238         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4239                 if (btrfs_raid_array[i].ncopies >= 2 ||
4240                     btrfs_raid_array[i].tolerated_failures >= 1)
4241                         allowed |= btrfs_raid_array[i].bg_flag;
4242         }
4243         do {
4244                 seq = read_seqbegin(&fs_info->profiles_lock);
4245
4246                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4247                      (fs_info->avail_system_alloc_bits & allowed) &&
4248                      !(bctl->sys.target & allowed)) ||
4249                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4250                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4251                      !(bctl->meta.target & allowed)))
4252                         reducing_redundancy = true;
4253                 else
4254                         reducing_redundancy = false;
4255
4256                 /* if we're not converting, the target field is uninitialized */
4257                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4258                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4259                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4260                         bctl->data.target : fs_info->avail_data_alloc_bits;
4261         } while (read_seqretry(&fs_info->profiles_lock, seq));
4262
4263         if (reducing_redundancy) {
4264                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4265                         btrfs_info(fs_info,
4266                            "balance: force reducing metadata redundancy");
4267                 } else {
4268                         btrfs_err(fs_info,
4269         "balance: reduces metadata redundancy, use --force if you want this");
4270                         ret = -EINVAL;
4271                         goto out;
4272                 }
4273         }
4274
4275         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4276                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4277                 btrfs_warn(fs_info,
4278         "balance: metadata profile %s has lower redundancy than data profile %s",
4279                                 btrfs_bg_type_to_raid_name(meta_target),
4280                                 btrfs_bg_type_to_raid_name(data_target));
4281         }
4282
4283         ret = insert_balance_item(fs_info, bctl);
4284         if (ret && ret != -EEXIST)
4285                 goto out;
4286
4287         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4288                 BUG_ON(ret == -EEXIST);
4289                 BUG_ON(fs_info->balance_ctl);
4290                 spin_lock(&fs_info->balance_lock);
4291                 fs_info->balance_ctl = bctl;
4292                 spin_unlock(&fs_info->balance_lock);
4293         } else {
4294                 BUG_ON(ret != -EEXIST);
4295                 spin_lock(&fs_info->balance_lock);
4296                 update_balance_args(bctl);
4297                 spin_unlock(&fs_info->balance_lock);
4298         }
4299
4300         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4301         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4302         describe_balance_start_or_resume(fs_info);
4303         mutex_unlock(&fs_info->balance_mutex);
4304
4305         ret = __btrfs_balance(fs_info);
4306
4307         mutex_lock(&fs_info->balance_mutex);
4308         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4309                 btrfs_info(fs_info, "balance: paused");
4310         /*
4311          * Balance can be canceled by:
4312          *
4313          * - Regular cancel request
4314          *   Then ret == -ECANCELED and balance_cancel_req > 0
4315          *
4316          * - Fatal signal to "btrfs" process
4317          *   Either the signal caught by wait_reserve_ticket() and callers
4318          *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4319          *   got -ECANCELED.
4320          *   Either way, in this case balance_cancel_req = 0, and
4321          *   ret == -EINTR or ret == -ECANCELED.
4322          *
4323          * So here we only check the return value to catch canceled balance.
4324          */
4325         else if (ret == -ECANCELED || ret == -EINTR)
4326                 btrfs_info(fs_info, "balance: canceled");
4327         else
4328                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4329
4330         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4331
4332         if (bargs) {
4333                 memset(bargs, 0, sizeof(*bargs));
4334                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4335         }
4336
4337         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4338             balance_need_close(fs_info)) {
4339                 reset_balance_state(fs_info);
4340                 btrfs_exclop_finish(fs_info);
4341         }
4342
4343         wake_up(&fs_info->balance_wait_q);
4344
4345         return ret;
4346 out:
4347         if (bctl->flags & BTRFS_BALANCE_RESUME)
4348                 reset_balance_state(fs_info);
4349         else
4350                 kfree(bctl);
4351         btrfs_exclop_finish(fs_info);
4352
4353         return ret;
4354 }
4355
4356 static int balance_kthread(void *data)
4357 {
4358         struct btrfs_fs_info *fs_info = data;
4359         int ret = 0;
4360
4361         mutex_lock(&fs_info->balance_mutex);
4362         if (fs_info->balance_ctl)
4363                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4364         mutex_unlock(&fs_info->balance_mutex);
4365
4366         return ret;
4367 }
4368
4369 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4370 {
4371         struct task_struct *tsk;
4372
4373         mutex_lock(&fs_info->balance_mutex);
4374         if (!fs_info->balance_ctl) {
4375                 mutex_unlock(&fs_info->balance_mutex);
4376                 return 0;
4377         }
4378         mutex_unlock(&fs_info->balance_mutex);
4379
4380         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4381                 btrfs_info(fs_info, "balance: resume skipped");
4382                 return 0;
4383         }
4384
4385         /*
4386          * A ro->rw remount sequence should continue with the paused balance
4387          * regardless of who pauses it, system or the user as of now, so set
4388          * the resume flag.
4389          */
4390         spin_lock(&fs_info->balance_lock);
4391         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4392         spin_unlock(&fs_info->balance_lock);
4393
4394         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4395         return PTR_ERR_OR_ZERO(tsk);
4396 }
4397
4398 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4399 {
4400         struct btrfs_balance_control *bctl;
4401         struct btrfs_balance_item *item;
4402         struct btrfs_disk_balance_args disk_bargs;
4403         struct btrfs_path *path;
4404         struct extent_buffer *leaf;
4405         struct btrfs_key key;
4406         int ret;
4407
4408         path = btrfs_alloc_path();
4409         if (!path)
4410                 return -ENOMEM;
4411
4412         key.objectid = BTRFS_BALANCE_OBJECTID;
4413         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4414         key.offset = 0;
4415
4416         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4417         if (ret < 0)
4418                 goto out;
4419         if (ret > 0) { /* ret = -ENOENT; */
4420                 ret = 0;
4421                 goto out;
4422         }
4423
4424         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4425         if (!bctl) {
4426                 ret = -ENOMEM;
4427                 goto out;
4428         }
4429
4430         leaf = path->nodes[0];
4431         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4432
4433         bctl->flags = btrfs_balance_flags(leaf, item);
4434         bctl->flags |= BTRFS_BALANCE_RESUME;
4435
4436         btrfs_balance_data(leaf, item, &disk_bargs);
4437         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4438         btrfs_balance_meta(leaf, item, &disk_bargs);
4439         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4440         btrfs_balance_sys(leaf, item, &disk_bargs);
4441         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4442
4443         /*
4444          * This should never happen, as the paused balance state is recovered
4445          * during mount without any chance of other exclusive ops to collide.
4446          *
4447          * This gives the exclusive op status to balance and keeps in paused
4448          * state until user intervention (cancel or umount). If the ownership
4449          * cannot be assigned, show a message but do not fail. The balance
4450          * is in a paused state and must have fs_info::balance_ctl properly
4451          * set up.
4452          */
4453         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4454                 btrfs_warn(fs_info,
4455         "balance: cannot set exclusive op status, resume manually");
4456
4457         btrfs_release_path(path);
4458
4459         mutex_lock(&fs_info->balance_mutex);
4460         BUG_ON(fs_info->balance_ctl);
4461         spin_lock(&fs_info->balance_lock);
4462         fs_info->balance_ctl = bctl;
4463         spin_unlock(&fs_info->balance_lock);
4464         mutex_unlock(&fs_info->balance_mutex);
4465 out:
4466         btrfs_free_path(path);
4467         return ret;
4468 }
4469
4470 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4471 {
4472         int ret = 0;
4473
4474         mutex_lock(&fs_info->balance_mutex);
4475         if (!fs_info->balance_ctl) {
4476                 mutex_unlock(&fs_info->balance_mutex);
4477                 return -ENOTCONN;
4478         }
4479
4480         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4481                 atomic_inc(&fs_info->balance_pause_req);
4482                 mutex_unlock(&fs_info->balance_mutex);
4483
4484                 wait_event(fs_info->balance_wait_q,
4485                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4486
4487                 mutex_lock(&fs_info->balance_mutex);
4488                 /* we are good with balance_ctl ripped off from under us */
4489                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4490                 atomic_dec(&fs_info->balance_pause_req);
4491         } else {
4492                 ret = -ENOTCONN;
4493         }
4494
4495         mutex_unlock(&fs_info->balance_mutex);
4496         return ret;
4497 }
4498
4499 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4500 {
4501         mutex_lock(&fs_info->balance_mutex);
4502         if (!fs_info->balance_ctl) {
4503                 mutex_unlock(&fs_info->balance_mutex);
4504                 return -ENOTCONN;
4505         }
4506
4507         /*
4508          * A paused balance with the item stored on disk can be resumed at
4509          * mount time if the mount is read-write. Otherwise it's still paused
4510          * and we must not allow cancelling as it deletes the item.
4511          */
4512         if (sb_rdonly(fs_info->sb)) {
4513                 mutex_unlock(&fs_info->balance_mutex);
4514                 return -EROFS;
4515         }
4516
4517         atomic_inc(&fs_info->balance_cancel_req);
4518         /*
4519          * if we are running just wait and return, balance item is
4520          * deleted in btrfs_balance in this case
4521          */
4522         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4523                 mutex_unlock(&fs_info->balance_mutex);
4524                 wait_event(fs_info->balance_wait_q,
4525                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4526                 mutex_lock(&fs_info->balance_mutex);
4527         } else {
4528                 mutex_unlock(&fs_info->balance_mutex);
4529                 /*
4530                  * Lock released to allow other waiters to continue, we'll
4531                  * reexamine the status again.
4532                  */
4533                 mutex_lock(&fs_info->balance_mutex);
4534
4535                 if (fs_info->balance_ctl) {
4536                         reset_balance_state(fs_info);
4537                         btrfs_exclop_finish(fs_info);
4538                         btrfs_info(fs_info, "balance: canceled");
4539                 }
4540         }
4541
4542         BUG_ON(fs_info->balance_ctl ||
4543                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4544         atomic_dec(&fs_info->balance_cancel_req);
4545         mutex_unlock(&fs_info->balance_mutex);
4546         return 0;
4547 }
4548
4549 int btrfs_uuid_scan_kthread(void *data)
4550 {
4551         struct btrfs_fs_info *fs_info = data;
4552         struct btrfs_root *root = fs_info->tree_root;
4553         struct btrfs_key key;
4554         struct btrfs_path *path = NULL;
4555         int ret = 0;
4556         struct extent_buffer *eb;
4557         int slot;
4558         struct btrfs_root_item root_item;
4559         u32 item_size;
4560         struct btrfs_trans_handle *trans = NULL;
4561         bool closing = false;
4562
4563         path = btrfs_alloc_path();
4564         if (!path) {
4565                 ret = -ENOMEM;
4566                 goto out;
4567         }
4568
4569         key.objectid = 0;
4570         key.type = BTRFS_ROOT_ITEM_KEY;
4571         key.offset = 0;
4572
4573         while (1) {
4574                 if (btrfs_fs_closing(fs_info)) {
4575                         closing = true;
4576                         break;
4577                 }
4578                 ret = btrfs_search_forward(root, &key, path,
4579                                 BTRFS_OLDEST_GENERATION);
4580                 if (ret) {
4581                         if (ret > 0)
4582                                 ret = 0;
4583                         break;
4584                 }
4585
4586                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4587                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4588                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4589                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4590                         goto skip;
4591
4592                 eb = path->nodes[0];
4593                 slot = path->slots[0];
4594                 item_size = btrfs_item_size_nr(eb, slot);
4595                 if (item_size < sizeof(root_item))
4596                         goto skip;
4597
4598                 read_extent_buffer(eb, &root_item,
4599                                    btrfs_item_ptr_offset(eb, slot),
4600                                    (int)sizeof(root_item));
4601                 if (btrfs_root_refs(&root_item) == 0)
4602                         goto skip;
4603
4604                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4605                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4606                         if (trans)
4607                                 goto update_tree;
4608
4609                         btrfs_release_path(path);
4610                         /*
4611                          * 1 - subvol uuid item
4612                          * 1 - received_subvol uuid item
4613                          */
4614                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4615                         if (IS_ERR(trans)) {
4616                                 ret = PTR_ERR(trans);
4617                                 break;
4618                         }
4619                         continue;
4620                 } else {
4621                         goto skip;
4622                 }
4623 update_tree:
4624                 btrfs_release_path(path);
4625                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4626                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4627                                                   BTRFS_UUID_KEY_SUBVOL,
4628                                                   key.objectid);
4629                         if (ret < 0) {
4630                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4631                                         ret);
4632                                 break;
4633                         }
4634                 }
4635
4636                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4637                         ret = btrfs_uuid_tree_add(trans,
4638                                                   root_item.received_uuid,
4639                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4640                                                   key.objectid);
4641                         if (ret < 0) {
4642                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4643                                         ret);
4644                                 break;
4645                         }
4646                 }
4647
4648 skip:
4649                 btrfs_release_path(path);
4650                 if (trans) {
4651                         ret = btrfs_end_transaction(trans);
4652                         trans = NULL;
4653                         if (ret)
4654                                 break;
4655                 }
4656
4657                 if (key.offset < (u64)-1) {
4658                         key.offset++;
4659                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4660                         key.offset = 0;
4661                         key.type = BTRFS_ROOT_ITEM_KEY;
4662                 } else if (key.objectid < (u64)-1) {
4663                         key.offset = 0;
4664                         key.type = BTRFS_ROOT_ITEM_KEY;
4665                         key.objectid++;
4666                 } else {
4667                         break;
4668                 }
4669                 cond_resched();
4670         }
4671
4672 out:
4673         btrfs_free_path(path);
4674         if (trans && !IS_ERR(trans))
4675                 btrfs_end_transaction(trans);
4676         if (ret)
4677                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4678         else if (!closing)
4679                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4680         up(&fs_info->uuid_tree_rescan_sem);
4681         return 0;
4682 }
4683
4684 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4685 {
4686         struct btrfs_trans_handle *trans;
4687         struct btrfs_root *tree_root = fs_info->tree_root;
4688         struct btrfs_root *uuid_root;
4689         struct task_struct *task;
4690         int ret;
4691
4692         /*
4693          * 1 - root node
4694          * 1 - root item
4695          */
4696         trans = btrfs_start_transaction(tree_root, 2);
4697         if (IS_ERR(trans))
4698                 return PTR_ERR(trans);
4699
4700         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4701         if (IS_ERR(uuid_root)) {
4702                 ret = PTR_ERR(uuid_root);
4703                 btrfs_abort_transaction(trans, ret);
4704                 btrfs_end_transaction(trans);
4705                 return ret;
4706         }
4707
4708         fs_info->uuid_root = uuid_root;
4709
4710         ret = btrfs_commit_transaction(trans);
4711         if (ret)
4712                 return ret;
4713
4714         down(&fs_info->uuid_tree_rescan_sem);
4715         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4716         if (IS_ERR(task)) {
4717                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4718                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4719                 up(&fs_info->uuid_tree_rescan_sem);
4720                 return PTR_ERR(task);
4721         }
4722
4723         return 0;
4724 }
4725
4726 /*
4727  * shrinking a device means finding all of the device extents past
4728  * the new size, and then following the back refs to the chunks.
4729  * The chunk relocation code actually frees the device extent
4730  */
4731 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4732 {
4733         struct btrfs_fs_info *fs_info = device->fs_info;
4734         struct btrfs_root *root = fs_info->dev_root;
4735         struct btrfs_trans_handle *trans;
4736         struct btrfs_dev_extent *dev_extent = NULL;
4737         struct btrfs_path *path;
4738         u64 length;
4739         u64 chunk_offset;
4740         int ret;
4741         int slot;
4742         int failed = 0;
4743         bool retried = false;
4744         struct extent_buffer *l;
4745         struct btrfs_key key;
4746         struct btrfs_super_block *super_copy = fs_info->super_copy;
4747         u64 old_total = btrfs_super_total_bytes(super_copy);
4748         u64 old_size = btrfs_device_get_total_bytes(device);
4749         u64 diff;
4750         u64 start;
4751
4752         new_size = round_down(new_size, fs_info->sectorsize);
4753         start = new_size;
4754         diff = round_down(old_size - new_size, fs_info->sectorsize);
4755
4756         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4757                 return -EINVAL;
4758
4759         path = btrfs_alloc_path();
4760         if (!path)
4761                 return -ENOMEM;
4762
4763         path->reada = READA_BACK;
4764
4765         trans = btrfs_start_transaction(root, 0);
4766         if (IS_ERR(trans)) {
4767                 btrfs_free_path(path);
4768                 return PTR_ERR(trans);
4769         }
4770
4771         mutex_lock(&fs_info->chunk_mutex);
4772
4773         btrfs_device_set_total_bytes(device, new_size);
4774         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4775                 device->fs_devices->total_rw_bytes -= diff;
4776                 atomic64_sub(diff, &fs_info->free_chunk_space);
4777         }
4778
4779         /*
4780          * Once the device's size has been set to the new size, ensure all
4781          * in-memory chunks are synced to disk so that the loop below sees them
4782          * and relocates them accordingly.
4783          */
4784         if (contains_pending_extent(device, &start, diff)) {
4785                 mutex_unlock(&fs_info->chunk_mutex);
4786                 ret = btrfs_commit_transaction(trans);
4787                 if (ret)
4788                         goto done;
4789         } else {
4790                 mutex_unlock(&fs_info->chunk_mutex);
4791                 btrfs_end_transaction(trans);
4792         }
4793
4794 again:
4795         key.objectid = device->devid;
4796         key.offset = (u64)-1;
4797         key.type = BTRFS_DEV_EXTENT_KEY;
4798
4799         do {
4800                 mutex_lock(&fs_info->reclaim_bgs_lock);
4801                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4802                 if (ret < 0) {
4803                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4804                         goto done;
4805                 }
4806
4807                 ret = btrfs_previous_item(root, path, 0, key.type);
4808                 if (ret) {
4809                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4810                         if (ret < 0)
4811                                 goto done;
4812                         ret = 0;
4813                         btrfs_release_path(path);
4814                         break;
4815                 }
4816
4817                 l = path->nodes[0];
4818                 slot = path->slots[0];
4819                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4820
4821                 if (key.objectid != device->devid) {
4822                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4823                         btrfs_release_path(path);
4824                         break;
4825                 }
4826
4827                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4828                 length = btrfs_dev_extent_length(l, dev_extent);
4829
4830                 if (key.offset + length <= new_size) {
4831                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4832                         btrfs_release_path(path);
4833                         break;
4834                 }
4835
4836                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4837                 btrfs_release_path(path);
4838
4839                 /*
4840                  * We may be relocating the only data chunk we have,
4841                  * which could potentially end up with losing data's
4842                  * raid profile, so lets allocate an empty one in
4843                  * advance.
4844                  */
4845                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4846                 if (ret < 0) {
4847                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4848                         goto done;
4849                 }
4850
4851                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4852                 mutex_unlock(&fs_info->reclaim_bgs_lock);
4853                 if (ret == -ENOSPC) {
4854                         failed++;
4855                 } else if (ret) {
4856                         if (ret == -ETXTBSY) {
4857                                 btrfs_warn(fs_info,
4858                    "could not shrink block group %llu due to active swapfile",
4859                                            chunk_offset);
4860                         }
4861                         goto done;
4862                 }
4863         } while (key.offset-- > 0);
4864
4865         if (failed && !retried) {
4866                 failed = 0;
4867                 retried = true;
4868                 goto again;
4869         } else if (failed && retried) {
4870                 ret = -ENOSPC;
4871                 goto done;
4872         }
4873
4874         /* Shrinking succeeded, else we would be at "done". */
4875         trans = btrfs_start_transaction(root, 0);
4876         if (IS_ERR(trans)) {
4877                 ret = PTR_ERR(trans);
4878                 goto done;
4879         }
4880
4881         mutex_lock(&fs_info->chunk_mutex);
4882         /* Clear all state bits beyond the shrunk device size */
4883         clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4884                           CHUNK_STATE_MASK);
4885
4886         btrfs_device_set_disk_total_bytes(device, new_size);
4887         if (list_empty(&device->post_commit_list))
4888                 list_add_tail(&device->post_commit_list,
4889                               &trans->transaction->dev_update_list);
4890
4891         WARN_ON(diff > old_total);
4892         btrfs_set_super_total_bytes(super_copy,
4893                         round_down(old_total - diff, fs_info->sectorsize));
4894         mutex_unlock(&fs_info->chunk_mutex);
4895
4896         /* Now btrfs_update_device() will change the on-disk size. */
4897         ret = btrfs_update_device(trans, device);
4898         if (ret < 0) {
4899                 btrfs_abort_transaction(trans, ret);
4900                 btrfs_end_transaction(trans);
4901         } else {
4902                 ret = btrfs_commit_transaction(trans);
4903         }
4904 done:
4905         btrfs_free_path(path);
4906         if (ret) {
4907                 mutex_lock(&fs_info->chunk_mutex);
4908                 btrfs_device_set_total_bytes(device, old_size);
4909                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4910                         device->fs_devices->total_rw_bytes += diff;
4911                 atomic64_add(diff, &fs_info->free_chunk_space);
4912                 mutex_unlock(&fs_info->chunk_mutex);
4913         }
4914         return ret;
4915 }
4916
4917 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4918                            struct btrfs_key *key,
4919                            struct btrfs_chunk *chunk, int item_size)
4920 {
4921         struct btrfs_super_block *super_copy = fs_info->super_copy;
4922         struct btrfs_disk_key disk_key;
4923         u32 array_size;
4924         u8 *ptr;
4925
4926         lockdep_assert_held(&fs_info->chunk_mutex);
4927
4928         array_size = btrfs_super_sys_array_size(super_copy);
4929         if (array_size + item_size + sizeof(disk_key)
4930                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4931                 return -EFBIG;
4932
4933         ptr = super_copy->sys_chunk_array + array_size;
4934         btrfs_cpu_key_to_disk(&disk_key, key);
4935         memcpy(ptr, &disk_key, sizeof(disk_key));
4936         ptr += sizeof(disk_key);
4937         memcpy(ptr, chunk, item_size);
4938         item_size += sizeof(disk_key);
4939         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4940
4941         return 0;
4942 }
4943
4944 /*
4945  * sort the devices in descending order by max_avail, total_avail
4946  */
4947 static int btrfs_cmp_device_info(const void *a, const void *b)
4948 {
4949         const struct btrfs_device_info *di_a = a;
4950         const struct btrfs_device_info *di_b = b;
4951
4952         if (di_a->max_avail > di_b->max_avail)
4953                 return -1;
4954         if (di_a->max_avail < di_b->max_avail)
4955                 return 1;
4956         if (di_a->total_avail > di_b->total_avail)
4957                 return -1;
4958         if (di_a->total_avail < di_b->total_avail)
4959                 return 1;
4960         return 0;
4961 }
4962
4963 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4964 {
4965         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4966                 return;
4967
4968         btrfs_set_fs_incompat(info, RAID56);
4969 }
4970
4971 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4972 {
4973         if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4974                 return;
4975
4976         btrfs_set_fs_incompat(info, RAID1C34);
4977 }
4978
4979 /*
4980  * Structure used internally for __btrfs_alloc_chunk() function.
4981  * Wraps needed parameters.
4982  */
4983 struct alloc_chunk_ctl {
4984         u64 start;
4985         u64 type;
4986         /* Total number of stripes to allocate */
4987         int num_stripes;
4988         /* sub_stripes info for map */
4989         int sub_stripes;
4990         /* Stripes per device */
4991         int dev_stripes;
4992         /* Maximum number of devices to use */
4993         int devs_max;
4994         /* Minimum number of devices to use */
4995         int devs_min;
4996         /* ndevs has to be a multiple of this */
4997         int devs_increment;
4998         /* Number of copies */
4999         int ncopies;
5000         /* Number of stripes worth of bytes to store parity information */
5001         int nparity;
5002         u64 max_stripe_size;
5003         u64 max_chunk_size;
5004         u64 dev_extent_min;
5005         u64 stripe_size;
5006         u64 chunk_size;
5007         int ndevs;
5008 };
5009
5010 static void init_alloc_chunk_ctl_policy_regular(
5011                                 struct btrfs_fs_devices *fs_devices,
5012                                 struct alloc_chunk_ctl *ctl)
5013 {
5014         u64 type = ctl->type;
5015
5016         if (type & BTRFS_BLOCK_GROUP_DATA) {
5017                 ctl->max_stripe_size = SZ_1G;
5018                 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5019         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5020                 /* For larger filesystems, use larger metadata chunks */
5021                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5022                         ctl->max_stripe_size = SZ_1G;
5023                 else
5024                         ctl->max_stripe_size = SZ_256M;
5025                 ctl->max_chunk_size = ctl->max_stripe_size;
5026         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5027                 ctl->max_stripe_size = SZ_32M;
5028                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5029                 ctl->devs_max = min_t(int, ctl->devs_max,
5030                                       BTRFS_MAX_DEVS_SYS_CHUNK);
5031         } else {
5032                 BUG();
5033         }
5034
5035         /* We don't want a chunk larger than 10% of writable space */
5036         ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5037                                   ctl->max_chunk_size);
5038         ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5039 }
5040
5041 static void init_alloc_chunk_ctl_policy_zoned(
5042                                       struct btrfs_fs_devices *fs_devices,
5043                                       struct alloc_chunk_ctl *ctl)
5044 {
5045         u64 zone_size = fs_devices->fs_info->zone_size;
5046         u64 limit;
5047         int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5048         int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5049         u64 min_chunk_size = min_data_stripes * zone_size;
5050         u64 type = ctl->type;
5051
5052         ctl->max_stripe_size = zone_size;
5053         if (type & BTRFS_BLOCK_GROUP_DATA) {
5054                 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5055                                                  zone_size);
5056         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5057                 ctl->max_chunk_size = ctl->max_stripe_size;
5058         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5059                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5060                 ctl->devs_max = min_t(int, ctl->devs_max,
5061                                       BTRFS_MAX_DEVS_SYS_CHUNK);
5062         } else {
5063                 BUG();
5064         }
5065
5066         /* We don't want a chunk larger than 10% of writable space */
5067         limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5068                                zone_size),
5069                     min_chunk_size);
5070         ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5071         ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5072 }
5073
5074 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5075                                  struct alloc_chunk_ctl *ctl)
5076 {
5077         int index = btrfs_bg_flags_to_raid_index(ctl->type);
5078
5079         ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5080         ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5081         ctl->devs_max = btrfs_raid_array[index].devs_max;
5082         if (!ctl->devs_max)
5083                 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5084         ctl->devs_min = btrfs_raid_array[index].devs_min;
5085         ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5086         ctl->ncopies = btrfs_raid_array[index].ncopies;
5087         ctl->nparity = btrfs_raid_array[index].nparity;
5088         ctl->ndevs = 0;
5089
5090         switch (fs_devices->chunk_alloc_policy) {
5091         case BTRFS_CHUNK_ALLOC_REGULAR:
5092                 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5093                 break;
5094         case BTRFS_CHUNK_ALLOC_ZONED:
5095                 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5096                 break;
5097         default:
5098                 BUG();
5099         }
5100 }
5101
5102 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5103                               struct alloc_chunk_ctl *ctl,
5104                               struct btrfs_device_info *devices_info)
5105 {
5106         struct btrfs_fs_info *info = fs_devices->fs_info;
5107         struct btrfs_device *device;
5108         u64 total_avail;
5109         u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5110         int ret;
5111         int ndevs = 0;
5112         u64 max_avail;
5113         u64 dev_offset;
5114
5115         /*
5116          * in the first pass through the devices list, we gather information
5117          * about the available holes on each device.
5118          */
5119         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5120                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5121                         WARN(1, KERN_ERR
5122                                "BTRFS: read-only device in alloc_list\n");
5123                         continue;
5124                 }
5125
5126                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5127                                         &device->dev_state) ||
5128                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5129                         continue;
5130
5131                 if (device->total_bytes > device->bytes_used)
5132                         total_avail = device->total_bytes - device->bytes_used;
5133                 else
5134                         total_avail = 0;
5135
5136                 /* If there is no space on this device, skip it. */
5137                 if (total_avail < ctl->dev_extent_min)
5138                         continue;
5139
5140                 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5141                                            &max_avail);
5142                 if (ret && ret != -ENOSPC)
5143                         return ret;
5144
5145                 if (ret == 0)
5146                         max_avail = dev_extent_want;
5147
5148                 if (max_avail < ctl->dev_extent_min) {
5149                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
5150                                 btrfs_debug(info,
5151                         "%s: devid %llu has no free space, have=%llu want=%llu",
5152                                             __func__, device->devid, max_avail,
5153                                             ctl->dev_extent_min);
5154                         continue;
5155                 }
5156
5157                 if (ndevs == fs_devices->rw_devices) {
5158                         WARN(1, "%s: found more than %llu devices\n",
5159                              __func__, fs_devices->rw_devices);
5160                         break;
5161                 }
5162                 devices_info[ndevs].dev_offset = dev_offset;
5163                 devices_info[ndevs].max_avail = max_avail;
5164                 devices_info[ndevs].total_avail = total_avail;
5165                 devices_info[ndevs].dev = device;
5166                 ++ndevs;
5167         }
5168         ctl->ndevs = ndevs;
5169
5170         /*
5171          * now sort the devices by hole size / available space
5172          */
5173         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5174              btrfs_cmp_device_info, NULL);
5175
5176         return 0;
5177 }
5178
5179 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5180                                       struct btrfs_device_info *devices_info)
5181 {
5182         /* Number of stripes that count for block group size */
5183         int data_stripes;
5184
5185         /*
5186          * The primary goal is to maximize the number of stripes, so use as
5187          * many devices as possible, even if the stripes are not maximum sized.
5188          *
5189          * The DUP profile stores more than one stripe per device, the
5190          * max_avail is the total size so we have to adjust.
5191          */
5192         ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5193                                    ctl->dev_stripes);
5194         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5195
5196         /* This will have to be fixed for RAID1 and RAID10 over more drives */
5197         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5198
5199         /*
5200          * Use the number of data stripes to figure out how big this chunk is
5201          * really going to be in terms of logical address space, and compare
5202          * that answer with the max chunk size. If it's higher, we try to
5203          * reduce stripe_size.
5204          */
5205         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5206                 /*
5207                  * Reduce stripe_size, round it up to a 16MB boundary again and
5208                  * then use it, unless it ends up being even bigger than the
5209                  * previous value we had already.
5210                  */
5211                 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5212                                                         data_stripes), SZ_16M),
5213                                        ctl->stripe_size);
5214         }
5215
5216         /* Align to BTRFS_STRIPE_LEN */
5217         ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5218         ctl->chunk_size = ctl->stripe_size * data_stripes;
5219
5220         return 0;
5221 }
5222
5223 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5224                                     struct btrfs_device_info *devices_info)
5225 {
5226         u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5227         /* Number of stripes that count for block group size */
5228         int data_stripes;
5229
5230         /*
5231          * It should hold because:
5232          *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5233          */
5234         ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5235
5236         ctl->stripe_size = zone_size;
5237         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5238         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5239
5240         /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5241         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5242                 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5243                                              ctl->stripe_size) + ctl->nparity,
5244                                      ctl->dev_stripes);
5245                 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5246                 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5247                 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5248         }
5249
5250         ctl->chunk_size = ctl->stripe_size * data_stripes;
5251
5252         return 0;
5253 }
5254
5255 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5256                               struct alloc_chunk_ctl *ctl,
5257                               struct btrfs_device_info *devices_info)
5258 {
5259         struct btrfs_fs_info *info = fs_devices->fs_info;
5260
5261         /*
5262          * Round down to number of usable stripes, devs_increment can be any
5263          * number so we can't use round_down() that requires power of 2, while
5264          * rounddown is safe.
5265          */
5266         ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5267
5268         if (ctl->ndevs < ctl->devs_min) {
5269                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5270                         btrfs_debug(info,
5271         "%s: not enough devices with free space: have=%d minimum required=%d",
5272                                     __func__, ctl->ndevs, ctl->devs_min);
5273                 }
5274                 return -ENOSPC;
5275         }
5276
5277         ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5278
5279         switch (fs_devices->chunk_alloc_policy) {
5280         case BTRFS_CHUNK_ALLOC_REGULAR:
5281                 return decide_stripe_size_regular(ctl, devices_info);
5282         case BTRFS_CHUNK_ALLOC_ZONED:
5283                 return decide_stripe_size_zoned(ctl, devices_info);
5284         default:
5285                 BUG();
5286         }
5287 }
5288
5289 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5290                         struct alloc_chunk_ctl *ctl,
5291                         struct btrfs_device_info *devices_info)
5292 {
5293         struct btrfs_fs_info *info = trans->fs_info;
5294         struct map_lookup *map = NULL;
5295         struct extent_map_tree *em_tree;
5296         struct btrfs_block_group *block_group;
5297         struct extent_map *em;
5298         u64 start = ctl->start;
5299         u64 type = ctl->type;
5300         int ret;
5301         int i;
5302         int j;
5303
5304         map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5305         if (!map)
5306                 return ERR_PTR(-ENOMEM);
5307         map->num_stripes = ctl->num_stripes;
5308
5309         for (i = 0; i < ctl->ndevs; ++i) {
5310                 for (j = 0; j < ctl->dev_stripes; ++j) {
5311                         int s = i * ctl->dev_stripes + j;
5312                         map->stripes[s].dev = devices_info[i].dev;
5313                         map->stripes[s].physical = devices_info[i].dev_offset +
5314                                                    j * ctl->stripe_size;
5315                 }
5316         }
5317         map->stripe_len = BTRFS_STRIPE_LEN;
5318         map->io_align = BTRFS_STRIPE_LEN;
5319         map->io_width = BTRFS_STRIPE_LEN;
5320         map->type = type;
5321         map->sub_stripes = ctl->sub_stripes;
5322
5323         trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5324
5325         em = alloc_extent_map();
5326         if (!em) {
5327                 kfree(map);
5328                 return ERR_PTR(-ENOMEM);
5329         }
5330         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5331         em->map_lookup = map;
5332         em->start = start;
5333         em->len = ctl->chunk_size;
5334         em->block_start = 0;
5335         em->block_len = em->len;
5336         em->orig_block_len = ctl->stripe_size;
5337
5338         em_tree = &info->mapping_tree;
5339         write_lock(&em_tree->lock);
5340         ret = add_extent_mapping(em_tree, em, 0);
5341         if (ret) {
5342                 write_unlock(&em_tree->lock);
5343                 free_extent_map(em);
5344                 return ERR_PTR(ret);
5345         }
5346         write_unlock(&em_tree->lock);
5347
5348         block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5349         if (IS_ERR(block_group))
5350                 goto error_del_extent;
5351
5352         for (i = 0; i < map->num_stripes; i++) {
5353                 struct btrfs_device *dev = map->stripes[i].dev;
5354
5355                 btrfs_device_set_bytes_used(dev,
5356                                             dev->bytes_used + ctl->stripe_size);
5357                 if (list_empty(&dev->post_commit_list))
5358                         list_add_tail(&dev->post_commit_list,
5359                                       &trans->transaction->dev_update_list);
5360         }
5361
5362         atomic64_sub(ctl->stripe_size * map->num_stripes,
5363                      &info->free_chunk_space);
5364
5365         free_extent_map(em);
5366         check_raid56_incompat_flag(info, type);
5367         check_raid1c34_incompat_flag(info, type);
5368
5369         return block_group;
5370
5371 error_del_extent:
5372         write_lock(&em_tree->lock);
5373         remove_extent_mapping(em_tree, em);
5374         write_unlock(&em_tree->lock);
5375
5376         /* One for our allocation */
5377         free_extent_map(em);
5378         /* One for the tree reference */
5379         free_extent_map(em);
5380
5381         return block_group;
5382 }
5383
5384 struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5385                                             u64 type)
5386 {
5387         struct btrfs_fs_info *info = trans->fs_info;
5388         struct btrfs_fs_devices *fs_devices = info->fs_devices;
5389         struct btrfs_device_info *devices_info = NULL;
5390         struct alloc_chunk_ctl ctl;
5391         struct btrfs_block_group *block_group;
5392         int ret;
5393
5394         lockdep_assert_held(&info->chunk_mutex);
5395
5396         if (!alloc_profile_is_valid(type, 0)) {
5397                 ASSERT(0);
5398                 return ERR_PTR(-EINVAL);
5399         }
5400
5401         if (list_empty(&fs_devices->alloc_list)) {
5402                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5403                         btrfs_debug(info, "%s: no writable device", __func__);
5404                 return ERR_PTR(-ENOSPC);
5405         }
5406
5407         if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5408                 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5409                 ASSERT(0);
5410                 return ERR_PTR(-EINVAL);
5411         }
5412
5413         ctl.start = find_next_chunk(info);
5414         ctl.type = type;
5415         init_alloc_chunk_ctl(fs_devices, &ctl);
5416
5417         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5418                                GFP_NOFS);
5419         if (!devices_info)
5420                 return ERR_PTR(-ENOMEM);
5421
5422         ret = gather_device_info(fs_devices, &ctl, devices_info);
5423         if (ret < 0) {
5424                 block_group = ERR_PTR(ret);
5425                 goto out;
5426         }
5427
5428         ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5429         if (ret < 0) {
5430                 block_group = ERR_PTR(ret);
5431                 goto out;
5432         }
5433
5434         block_group = create_chunk(trans, &ctl, devices_info);
5435
5436 out:
5437         kfree(devices_info);
5438         return block_group;
5439 }
5440
5441 /*
5442  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5443  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5444  * chunks.
5445  *
5446  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5447  * phases.
5448  */
5449 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5450                                      struct btrfs_block_group *bg)
5451 {
5452         struct btrfs_fs_info *fs_info = trans->fs_info;
5453         struct btrfs_root *extent_root = fs_info->extent_root;
5454         struct btrfs_root *chunk_root = fs_info->chunk_root;
5455         struct btrfs_key key;
5456         struct btrfs_chunk *chunk;
5457         struct btrfs_stripe *stripe;
5458         struct extent_map *em;
5459         struct map_lookup *map;
5460         size_t item_size;
5461         int i;
5462         int ret;
5463
5464         /*
5465          * We take the chunk_mutex for 2 reasons:
5466          *
5467          * 1) Updates and insertions in the chunk btree must be done while holding
5468          *    the chunk_mutex, as well as updating the system chunk array in the
5469          *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5470          *    details;
5471          *
5472          * 2) To prevent races with the final phase of a device replace operation
5473          *    that replaces the device object associated with the map's stripes,
5474          *    because the device object's id can change at any time during that
5475          *    final phase of the device replace operation
5476          *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5477          *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5478          *    which would cause a failure when updating the device item, which does
5479          *    not exists, or persisting a stripe of the chunk item with such ID.
5480          *    Here we can't use the device_list_mutex because our caller already
5481          *    has locked the chunk_mutex, and the final phase of device replace
5482          *    acquires both mutexes - first the device_list_mutex and then the
5483          *    chunk_mutex. Using any of those two mutexes protects us from a
5484          *    concurrent device replace.
5485          */
5486         lockdep_assert_held(&fs_info->chunk_mutex);
5487
5488         em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5489         if (IS_ERR(em)) {
5490                 ret = PTR_ERR(em);
5491                 btrfs_abort_transaction(trans, ret);
5492                 return ret;
5493         }
5494
5495         map = em->map_lookup;
5496         item_size = btrfs_chunk_item_size(map->num_stripes);
5497
5498         chunk = kzalloc(item_size, GFP_NOFS);
5499         if (!chunk) {
5500                 ret = -ENOMEM;
5501                 btrfs_abort_transaction(trans, ret);
5502                 goto out;
5503         }
5504
5505         for (i = 0; i < map->num_stripes; i++) {
5506                 struct btrfs_device *device = map->stripes[i].dev;
5507
5508                 ret = btrfs_update_device(trans, device);
5509                 if (ret)
5510                         goto out;
5511         }
5512
5513         stripe = &chunk->stripe;
5514         for (i = 0; i < map->num_stripes; i++) {
5515                 struct btrfs_device *device = map->stripes[i].dev;
5516                 const u64 dev_offset = map->stripes[i].physical;
5517
5518                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5519                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5520                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5521                 stripe++;
5522         }
5523
5524         btrfs_set_stack_chunk_length(chunk, bg->length);
5525         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5526         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5527         btrfs_set_stack_chunk_type(chunk, map->type);
5528         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5529         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5530         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5531         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5532         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5533
5534         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5535         key.type = BTRFS_CHUNK_ITEM_KEY;
5536         key.offset = bg->start;
5537
5538         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5539         if (ret)
5540                 goto out;
5541
5542         bg->chunk_item_inserted = 1;
5543
5544         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5545                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5546                 if (ret)
5547                         goto out;
5548         }
5549
5550 out:
5551         kfree(chunk);
5552         free_extent_map(em);
5553         return ret;
5554 }
5555
5556 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5557 {
5558         struct btrfs_fs_info *fs_info = trans->fs_info;
5559         u64 alloc_profile;
5560         struct btrfs_block_group *meta_bg;
5561         struct btrfs_block_group *sys_bg;
5562
5563         /*
5564          * When adding a new device for sprouting, the seed device is read-only
5565          * so we must first allocate a metadata and a system chunk. But before
5566          * adding the block group items to the extent, device and chunk btrees,
5567          * we must first:
5568          *
5569          * 1) Create both chunks without doing any changes to the btrees, as
5570          *    otherwise we would get -ENOSPC since the block groups from the
5571          *    seed device are read-only;
5572          *
5573          * 2) Add the device item for the new sprout device - finishing the setup
5574          *    of a new block group requires updating the device item in the chunk
5575          *    btree, so it must exist when we attempt to do it. The previous step
5576          *    ensures this does not fail with -ENOSPC.
5577          *
5578          * After that we can add the block group items to their btrees:
5579          * update existing device item in the chunk btree, add a new block group
5580          * item to the extent btree, add a new chunk item to the chunk btree and
5581          * finally add the new device extent items to the devices btree.
5582          */
5583
5584         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5585         meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5586         if (IS_ERR(meta_bg))
5587                 return PTR_ERR(meta_bg);
5588
5589         alloc_profile = btrfs_system_alloc_profile(fs_info);
5590         sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5591         if (IS_ERR(sys_bg))
5592                 return PTR_ERR(sys_bg);
5593
5594         return 0;
5595 }
5596
5597 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5598 {
5599         const int index = btrfs_bg_flags_to_raid_index(map->type);
5600
5601         return btrfs_raid_array[index].tolerated_failures;
5602 }
5603
5604 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5605 {
5606         struct extent_map *em;
5607         struct map_lookup *map;
5608         int readonly = 0;
5609         int miss_ndevs = 0;
5610         int i;
5611
5612         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5613         if (IS_ERR(em))
5614                 return 1;
5615
5616         map = em->map_lookup;
5617         for (i = 0; i < map->num_stripes; i++) {
5618                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5619                                         &map->stripes[i].dev->dev_state)) {
5620                         miss_ndevs++;
5621                         continue;
5622                 }
5623                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5624                                         &map->stripes[i].dev->dev_state)) {
5625                         readonly = 1;
5626                         goto end;
5627                 }
5628         }
5629
5630         /*
5631          * If the number of missing devices is larger than max errors,
5632          * we can not write the data into that chunk successfully, so
5633          * set it readonly.
5634          */
5635         if (miss_ndevs > btrfs_chunk_max_errors(map))
5636                 readonly = 1;
5637 end:
5638         free_extent_map(em);
5639         return readonly;
5640 }
5641
5642 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5643 {
5644         struct extent_map *em;
5645
5646         while (1) {
5647                 write_lock(&tree->lock);
5648                 em = lookup_extent_mapping(tree, 0, (u64)-1);
5649                 if (em)
5650                         remove_extent_mapping(tree, em);
5651                 write_unlock(&tree->lock);
5652                 if (!em)
5653                         break;
5654                 /* once for us */
5655                 free_extent_map(em);
5656                 /* once for the tree */
5657                 free_extent_map(em);
5658         }
5659 }
5660
5661 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5662 {
5663         struct extent_map *em;
5664         struct map_lookup *map;
5665         int ret;
5666
5667         em = btrfs_get_chunk_map(fs_info, logical, len);
5668         if (IS_ERR(em))
5669                 /*
5670                  * We could return errors for these cases, but that could get
5671                  * ugly and we'd probably do the same thing which is just not do
5672                  * anything else and exit, so return 1 so the callers don't try
5673                  * to use other copies.
5674                  */
5675                 return 1;
5676
5677         map = em->map_lookup;
5678         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5679                 ret = map->num_stripes;
5680         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5681                 ret = map->sub_stripes;
5682         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5683                 ret = 2;
5684         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5685                 /*
5686                  * There could be two corrupted data stripes, we need
5687                  * to loop retry in order to rebuild the correct data.
5688                  *
5689                  * Fail a stripe at a time on every retry except the
5690                  * stripe under reconstruction.
5691                  */
5692                 ret = map->num_stripes;
5693         else
5694                 ret = 1;
5695         free_extent_map(em);
5696
5697         down_read(&fs_info->dev_replace.rwsem);
5698         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5699             fs_info->dev_replace.tgtdev)
5700                 ret++;
5701         up_read(&fs_info->dev_replace.rwsem);
5702
5703         return ret;
5704 }
5705
5706 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5707                                     u64 logical)
5708 {
5709         struct extent_map *em;
5710         struct map_lookup *map;
5711         unsigned long len = fs_info->sectorsize;
5712
5713         em = btrfs_get_chunk_map(fs_info, logical, len);
5714
5715         if (!WARN_ON(IS_ERR(em))) {
5716                 map = em->map_lookup;
5717                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5718                         len = map->stripe_len * nr_data_stripes(map);
5719                 free_extent_map(em);
5720         }
5721         return len;
5722 }
5723
5724 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5725 {
5726         struct extent_map *em;
5727         struct map_lookup *map;
5728         int ret = 0;
5729
5730         em = btrfs_get_chunk_map(fs_info, logical, len);
5731
5732         if(!WARN_ON(IS_ERR(em))) {
5733                 map = em->map_lookup;
5734                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5735                         ret = 1;
5736                 free_extent_map(em);
5737         }
5738         return ret;
5739 }
5740
5741 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5742                             struct map_lookup *map, int first,
5743                             int dev_replace_is_ongoing)
5744 {
5745         int i;
5746         int num_stripes;
5747         int preferred_mirror;
5748         int tolerance;
5749         struct btrfs_device *srcdev;
5750
5751         ASSERT((map->type &
5752                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5753
5754         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5755                 num_stripes = map->sub_stripes;
5756         else
5757                 num_stripes = map->num_stripes;
5758
5759         switch (fs_info->fs_devices->read_policy) {
5760         default:
5761                 /* Shouldn't happen, just warn and use pid instead of failing */
5762                 btrfs_warn_rl(fs_info,
5763                               "unknown read_policy type %u, reset to pid",
5764                               fs_info->fs_devices->read_policy);
5765                 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5766                 fallthrough;
5767         case BTRFS_READ_POLICY_PID:
5768                 preferred_mirror = first + (current->pid % num_stripes);
5769                 break;
5770         }
5771
5772         if (dev_replace_is_ongoing &&
5773             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5774              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5775                 srcdev = fs_info->dev_replace.srcdev;
5776         else
5777                 srcdev = NULL;
5778
5779         /*
5780          * try to avoid the drive that is the source drive for a
5781          * dev-replace procedure, only choose it if no other non-missing
5782          * mirror is available
5783          */
5784         for (tolerance = 0; tolerance < 2; tolerance++) {
5785                 if (map->stripes[preferred_mirror].dev->bdev &&
5786                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5787                         return preferred_mirror;
5788                 for (i = first; i < first + num_stripes; i++) {
5789                         if (map->stripes[i].dev->bdev &&
5790                             (tolerance || map->stripes[i].dev != srcdev))
5791                                 return i;
5792                 }
5793         }
5794
5795         /* we couldn't find one that doesn't fail.  Just return something
5796          * and the io error handling code will clean up eventually
5797          */
5798         return preferred_mirror;
5799 }
5800
5801 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5802 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5803 {
5804         int i;
5805         int again = 1;
5806
5807         while (again) {
5808                 again = 0;
5809                 for (i = 0; i < num_stripes - 1; i++) {
5810                         /* Swap if parity is on a smaller index */
5811                         if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5812                                 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5813                                 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5814                                 again = 1;
5815                         }
5816                 }
5817         }
5818 }
5819
5820 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5821 {
5822         struct btrfs_bio *bbio = kzalloc(
5823                  /* the size of the btrfs_bio */
5824                 sizeof(struct btrfs_bio) +
5825                 /* plus the variable array for the stripes */
5826                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5827                 /* plus the variable array for the tgt dev */
5828                 sizeof(int) * (real_stripes) +
5829                 /*
5830                  * plus the raid_map, which includes both the tgt dev
5831                  * and the stripes
5832                  */
5833                 sizeof(u64) * (total_stripes),
5834                 GFP_NOFS|__GFP_NOFAIL);
5835
5836         atomic_set(&bbio->error, 0);
5837         refcount_set(&bbio->refs, 1);
5838
5839         bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5840         bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5841
5842         return bbio;
5843 }
5844
5845 void btrfs_get_bbio(struct btrfs_bio *bbio)
5846 {
5847         WARN_ON(!refcount_read(&bbio->refs));
5848         refcount_inc(&bbio->refs);
5849 }
5850
5851 void btrfs_put_bbio(struct btrfs_bio *bbio)
5852 {
5853         if (!bbio)
5854                 return;
5855         if (refcount_dec_and_test(&bbio->refs))
5856                 kfree(bbio);
5857 }
5858
5859 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5860 /*
5861  * Please note that, discard won't be sent to target device of device
5862  * replace.
5863  */
5864 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5865                                          u64 logical, u64 *length_ret,
5866                                          struct btrfs_bio **bbio_ret)
5867 {
5868         struct extent_map *em;
5869         struct map_lookup *map;
5870         struct btrfs_bio *bbio;
5871         u64 length = *length_ret;
5872         u64 offset;
5873         u64 stripe_nr;
5874         u64 stripe_nr_end;
5875         u64 stripe_end_offset;
5876         u64 stripe_cnt;
5877         u64 stripe_len;
5878         u64 stripe_offset;
5879         u64 num_stripes;
5880         u32 stripe_index;
5881         u32 factor = 0;
5882         u32 sub_stripes = 0;
5883         u64 stripes_per_dev = 0;
5884         u32 remaining_stripes = 0;
5885         u32 last_stripe = 0;
5886         int ret = 0;
5887         int i;
5888
5889         /* discard always return a bbio */
5890         ASSERT(bbio_ret);
5891
5892         em = btrfs_get_chunk_map(fs_info, logical, length);
5893         if (IS_ERR(em))
5894                 return PTR_ERR(em);
5895
5896         map = em->map_lookup;
5897         /* we don't discard raid56 yet */
5898         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5899                 ret = -EOPNOTSUPP;
5900                 goto out;
5901         }
5902
5903         offset = logical - em->start;
5904         length = min_t(u64, em->start + em->len - logical, length);
5905         *length_ret = length;
5906
5907         stripe_len = map->stripe_len;
5908         /*
5909          * stripe_nr counts the total number of stripes we have to stride
5910          * to get to this block
5911          */
5912         stripe_nr = div64_u64(offset, stripe_len);
5913
5914         /* stripe_offset is the offset of this block in its stripe */
5915         stripe_offset = offset - stripe_nr * stripe_len;
5916
5917         stripe_nr_end = round_up(offset + length, map->stripe_len);
5918         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5919         stripe_cnt = stripe_nr_end - stripe_nr;
5920         stripe_end_offset = stripe_nr_end * map->stripe_len -
5921                             (offset + length);
5922         /*
5923          * after this, stripe_nr is the number of stripes on this
5924          * device we have to walk to find the data, and stripe_index is
5925          * the number of our device in the stripe array
5926          */
5927         num_stripes = 1;
5928         stripe_index = 0;
5929         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5930                          BTRFS_BLOCK_GROUP_RAID10)) {
5931                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5932                         sub_stripes = 1;
5933                 else
5934                         sub_stripes = map->sub_stripes;
5935
5936                 factor = map->num_stripes / sub_stripes;
5937                 num_stripes = min_t(u64, map->num_stripes,
5938                                     sub_stripes * stripe_cnt);
5939                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5940                 stripe_index *= sub_stripes;
5941                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5942                                               &remaining_stripes);
5943                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5944                 last_stripe *= sub_stripes;
5945         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5946                                 BTRFS_BLOCK_GROUP_DUP)) {
5947                 num_stripes = map->num_stripes;
5948         } else {
5949                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5950                                         &stripe_index);
5951         }
5952
5953         bbio = alloc_btrfs_bio(num_stripes, 0);
5954         if (!bbio) {
5955                 ret = -ENOMEM;
5956                 goto out;
5957         }
5958
5959         for (i = 0; i < num_stripes; i++) {
5960                 bbio->stripes[i].physical =
5961                         map->stripes[stripe_index].physical +
5962                         stripe_offset + stripe_nr * map->stripe_len;
5963                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5964
5965                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5966                                  BTRFS_BLOCK_GROUP_RAID10)) {
5967                         bbio->stripes[i].length = stripes_per_dev *
5968                                 map->stripe_len;
5969
5970                         if (i / sub_stripes < remaining_stripes)
5971                                 bbio->stripes[i].length +=
5972                                         map->stripe_len;
5973
5974                         /*
5975                          * Special for the first stripe and
5976                          * the last stripe:
5977                          *
5978                          * |-------|...|-------|
5979                          *     |----------|
5980                          *    off     end_off
5981                          */
5982                         if (i < sub_stripes)
5983                                 bbio->stripes[i].length -=
5984                                         stripe_offset;
5985
5986                         if (stripe_index >= last_stripe &&
5987                             stripe_index <= (last_stripe +
5988                                              sub_stripes - 1))
5989                                 bbio->stripes[i].length -=
5990                                         stripe_end_offset;
5991
5992                         if (i == sub_stripes - 1)
5993                                 stripe_offset = 0;
5994                 } else {
5995                         bbio->stripes[i].length = length;
5996                 }
5997
5998                 stripe_index++;
5999                 if (stripe_index == map->num_stripes) {
6000                         stripe_index = 0;
6001                         stripe_nr++;
6002                 }
6003         }
6004
6005         *bbio_ret = bbio;
6006         bbio->map_type = map->type;
6007         bbio->num_stripes = num_stripes;
6008 out:
6009         free_extent_map(em);
6010         return ret;
6011 }
6012
6013 /*
6014  * In dev-replace case, for repair case (that's the only case where the mirror
6015  * is selected explicitly when calling btrfs_map_block), blocks left of the
6016  * left cursor can also be read from the target drive.
6017  *
6018  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6019  * array of stripes.
6020  * For READ, it also needs to be supported using the same mirror number.
6021  *
6022  * If the requested block is not left of the left cursor, EIO is returned. This
6023  * can happen because btrfs_num_copies() returns one more in the dev-replace
6024  * case.
6025  */
6026 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6027                                          u64 logical, u64 length,
6028                                          u64 srcdev_devid, int *mirror_num,
6029                                          u64 *physical)
6030 {
6031         struct btrfs_bio *bbio = NULL;
6032         int num_stripes;
6033         int index_srcdev = 0;
6034         int found = 0;
6035         u64 physical_of_found = 0;
6036         int i;
6037         int ret = 0;
6038
6039         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6040                                 logical, &length, &bbio, 0, 0);
6041         if (ret) {
6042                 ASSERT(bbio == NULL);
6043                 return ret;
6044         }
6045
6046         num_stripes = bbio->num_stripes;
6047         if (*mirror_num > num_stripes) {
6048                 /*
6049                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6050                  * that means that the requested area is not left of the left
6051                  * cursor
6052                  */
6053                 btrfs_put_bbio(bbio);
6054                 return -EIO;
6055         }
6056
6057         /*
6058          * process the rest of the function using the mirror_num of the source
6059          * drive. Therefore look it up first.  At the end, patch the device
6060          * pointer to the one of the target drive.
6061          */
6062         for (i = 0; i < num_stripes; i++) {
6063                 if (bbio->stripes[i].dev->devid != srcdev_devid)
6064                         continue;
6065
6066                 /*
6067                  * In case of DUP, in order to keep it simple, only add the
6068                  * mirror with the lowest physical address
6069                  */
6070                 if (found &&
6071                     physical_of_found <= bbio->stripes[i].physical)
6072                         continue;
6073
6074                 index_srcdev = i;
6075                 found = 1;
6076                 physical_of_found = bbio->stripes[i].physical;
6077         }
6078
6079         btrfs_put_bbio(bbio);
6080
6081         ASSERT(found);
6082         if (!found)
6083                 return -EIO;
6084
6085         *mirror_num = index_srcdev + 1;
6086         *physical = physical_of_found;
6087         return ret;
6088 }
6089
6090 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6091 {
6092         struct btrfs_block_group *cache;
6093         bool ret;
6094
6095         /* Non zoned filesystem does not use "to_copy" flag */
6096         if (!btrfs_is_zoned(fs_info))
6097                 return false;
6098
6099         cache = btrfs_lookup_block_group(fs_info, logical);
6100
6101         spin_lock(&cache->lock);
6102         ret = cache->to_copy;
6103         spin_unlock(&cache->lock);
6104
6105         btrfs_put_block_group(cache);
6106         return ret;
6107 }
6108
6109 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6110                                       struct btrfs_bio **bbio_ret,
6111                                       struct btrfs_dev_replace *dev_replace,
6112                                       u64 logical,
6113                                       int *num_stripes_ret, int *max_errors_ret)
6114 {
6115         struct btrfs_bio *bbio = *bbio_ret;
6116         u64 srcdev_devid = dev_replace->srcdev->devid;
6117         int tgtdev_indexes = 0;
6118         int num_stripes = *num_stripes_ret;
6119         int max_errors = *max_errors_ret;
6120         int i;
6121
6122         if (op == BTRFS_MAP_WRITE) {
6123                 int index_where_to_add;
6124
6125                 /*
6126                  * A block group which have "to_copy" set will eventually
6127                  * copied by dev-replace process. We can avoid cloning IO here.
6128                  */
6129                 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6130                         return;
6131
6132                 /*
6133                  * duplicate the write operations while the dev replace
6134                  * procedure is running. Since the copying of the old disk to
6135                  * the new disk takes place at run time while the filesystem is
6136                  * mounted writable, the regular write operations to the old
6137                  * disk have to be duplicated to go to the new disk as well.
6138                  *
6139                  * Note that device->missing is handled by the caller, and that
6140                  * the write to the old disk is already set up in the stripes
6141                  * array.
6142                  */
6143                 index_where_to_add = num_stripes;
6144                 for (i = 0; i < num_stripes; i++) {
6145                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
6146                                 /* write to new disk, too */
6147                                 struct btrfs_bio_stripe *new =
6148                                         bbio->stripes + index_where_to_add;
6149                                 struct btrfs_bio_stripe *old =
6150                                         bbio->stripes + i;
6151
6152                                 new->physical = old->physical;
6153                                 new->length = old->length;
6154                                 new->dev = dev_replace->tgtdev;
6155                                 bbio->tgtdev_map[i] = index_where_to_add;
6156                                 index_where_to_add++;
6157                                 max_errors++;
6158                                 tgtdev_indexes++;
6159                         }
6160                 }
6161                 num_stripes = index_where_to_add;
6162         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6163                 int index_srcdev = 0;
6164                 int found = 0;
6165                 u64 physical_of_found = 0;
6166
6167                 /*
6168                  * During the dev-replace procedure, the target drive can also
6169                  * be used to read data in case it is needed to repair a corrupt
6170                  * block elsewhere. This is possible if the requested area is
6171                  * left of the left cursor. In this area, the target drive is a
6172                  * full copy of the source drive.
6173                  */
6174                 for (i = 0; i < num_stripes; i++) {
6175                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
6176                                 /*
6177                                  * In case of DUP, in order to keep it simple,
6178                                  * only add the mirror with the lowest physical
6179                                  * address
6180                                  */
6181                                 if (found &&
6182                                     physical_of_found <=
6183                                      bbio->stripes[i].physical)
6184                                         continue;
6185                                 index_srcdev = i;
6186                                 found = 1;
6187                                 physical_of_found = bbio->stripes[i].physical;
6188                         }
6189                 }
6190                 if (found) {
6191                         struct btrfs_bio_stripe *tgtdev_stripe =
6192                                 bbio->stripes + num_stripes;
6193
6194                         tgtdev_stripe->physical = physical_of_found;
6195                         tgtdev_stripe->length =
6196                                 bbio->stripes[index_srcdev].length;
6197                         tgtdev_stripe->dev = dev_replace->tgtdev;
6198                         bbio->tgtdev_map[index_srcdev] = num_stripes;
6199
6200                         tgtdev_indexes++;
6201                         num_stripes++;
6202                 }
6203         }
6204
6205         *num_stripes_ret = num_stripes;
6206         *max_errors_ret = max_errors;
6207         bbio->num_tgtdevs = tgtdev_indexes;
6208         *bbio_ret = bbio;
6209 }
6210
6211 static bool need_full_stripe(enum btrfs_map_op op)
6212 {
6213         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6214 }
6215
6216 /*
6217  * Calculate the geometry of a particular (address, len) tuple. This
6218  * information is used to calculate how big a particular bio can get before it
6219  * straddles a stripe.
6220  *
6221  * @fs_info: the filesystem
6222  * @em:      mapping containing the logical extent
6223  * @op:      type of operation - write or read
6224  * @logical: address that we want to figure out the geometry of
6225  * @io_geom: pointer used to return values
6226  *
6227  * Returns < 0 in case a chunk for the given logical address cannot be found,
6228  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6229  */
6230 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6231                           enum btrfs_map_op op, u64 logical,
6232                           struct btrfs_io_geometry *io_geom)
6233 {
6234         struct map_lookup *map;
6235         u64 len;
6236         u64 offset;
6237         u64 stripe_offset;
6238         u64 stripe_nr;
6239         u64 stripe_len;
6240         u64 raid56_full_stripe_start = (u64)-1;
6241         int data_stripes;
6242
6243         ASSERT(op != BTRFS_MAP_DISCARD);
6244
6245         map = em->map_lookup;
6246         /* Offset of this logical address in the chunk */
6247         offset = logical - em->start;
6248         /* Len of a stripe in a chunk */
6249         stripe_len = map->stripe_len;
6250         /* Stripe where this block falls in */
6251         stripe_nr = div64_u64(offset, stripe_len);
6252         /* Offset of stripe in the chunk */
6253         stripe_offset = stripe_nr * stripe_len;
6254         if (offset < stripe_offset) {
6255                 btrfs_crit(fs_info,
6256 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6257                         stripe_offset, offset, em->start, logical, stripe_len);
6258                 return -EINVAL;
6259         }
6260
6261         /* stripe_offset is the offset of this block in its stripe */
6262         stripe_offset = offset - stripe_offset;
6263         data_stripes = nr_data_stripes(map);
6264
6265         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6266                 u64 max_len = stripe_len - stripe_offset;
6267
6268                 /*
6269                  * In case of raid56, we need to know the stripe aligned start
6270                  */
6271                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6272                         unsigned long full_stripe_len = stripe_len * data_stripes;
6273                         raid56_full_stripe_start = offset;
6274
6275                         /*
6276                          * Allow a write of a full stripe, but make sure we
6277                          * don't allow straddling of stripes
6278                          */
6279                         raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6280                                         full_stripe_len);
6281                         raid56_full_stripe_start *= full_stripe_len;
6282
6283                         /*
6284                          * For writes to RAID[56], allow a full stripeset across
6285                          * all disks. For other RAID types and for RAID[56]
6286                          * reads, just allow a single stripe (on a single disk).
6287                          */
6288                         if (op == BTRFS_MAP_WRITE) {
6289                                 max_len = stripe_len * data_stripes -
6290                                           (offset - raid56_full_stripe_start);
6291                         }
6292                 }
6293                 len = min_t(u64, em->len - offset, max_len);
6294         } else {
6295                 len = em->len - offset;
6296         }
6297
6298         io_geom->len = len;
6299         io_geom->offset = offset;
6300         io_geom->stripe_len = stripe_len;
6301         io_geom->stripe_nr = stripe_nr;
6302         io_geom->stripe_offset = stripe_offset;
6303         io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6304
6305         return 0;
6306 }
6307
6308 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6309                              enum btrfs_map_op op,
6310                              u64 logical, u64 *length,
6311                              struct btrfs_bio **bbio_ret,
6312                              int mirror_num, int need_raid_map)
6313 {
6314         struct extent_map *em;
6315         struct map_lookup *map;
6316         u64 stripe_offset;
6317         u64 stripe_nr;
6318         u64 stripe_len;
6319         u32 stripe_index;
6320         int data_stripes;
6321         int i;
6322         int ret = 0;
6323         int num_stripes;
6324         int max_errors = 0;
6325         int tgtdev_indexes = 0;
6326         struct btrfs_bio *bbio = NULL;
6327         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6328         int dev_replace_is_ongoing = 0;
6329         int num_alloc_stripes;
6330         int patch_the_first_stripe_for_dev_replace = 0;
6331         u64 physical_to_patch_in_first_stripe = 0;
6332         u64 raid56_full_stripe_start = (u64)-1;
6333         struct btrfs_io_geometry geom;
6334
6335         ASSERT(bbio_ret);
6336         ASSERT(op != BTRFS_MAP_DISCARD);
6337
6338         em = btrfs_get_chunk_map(fs_info, logical, *length);
6339         ASSERT(!IS_ERR(em));
6340
6341         ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6342         if (ret < 0)
6343                 return ret;
6344
6345         map = em->map_lookup;
6346
6347         *length = geom.len;
6348         stripe_len = geom.stripe_len;
6349         stripe_nr = geom.stripe_nr;
6350         stripe_offset = geom.stripe_offset;
6351         raid56_full_stripe_start = geom.raid56_stripe_offset;
6352         data_stripes = nr_data_stripes(map);
6353
6354         down_read(&dev_replace->rwsem);
6355         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6356         /*
6357          * Hold the semaphore for read during the whole operation, write is
6358          * requested at commit time but must wait.
6359          */
6360         if (!dev_replace_is_ongoing)
6361                 up_read(&dev_replace->rwsem);
6362
6363         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6364             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6365                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6366                                                     dev_replace->srcdev->devid,
6367                                                     &mirror_num,
6368                                             &physical_to_patch_in_first_stripe);
6369                 if (ret)
6370                         goto out;
6371                 else
6372                         patch_the_first_stripe_for_dev_replace = 1;
6373         } else if (mirror_num > map->num_stripes) {
6374                 mirror_num = 0;
6375         }
6376
6377         num_stripes = 1;
6378         stripe_index = 0;
6379         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6380                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6381                                 &stripe_index);
6382                 if (!need_full_stripe(op))
6383                         mirror_num = 1;
6384         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6385                 if (need_full_stripe(op))
6386                         num_stripes = map->num_stripes;
6387                 else if (mirror_num)
6388                         stripe_index = mirror_num - 1;
6389                 else {
6390                         stripe_index = find_live_mirror(fs_info, map, 0,
6391                                             dev_replace_is_ongoing);
6392                         mirror_num = stripe_index + 1;
6393                 }
6394
6395         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6396                 if (need_full_stripe(op)) {
6397                         num_stripes = map->num_stripes;
6398                 } else if (mirror_num) {
6399                         stripe_index = mirror_num - 1;
6400                 } else {
6401                         mirror_num = 1;
6402                 }
6403
6404         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6405                 u32 factor = map->num_stripes / map->sub_stripes;
6406
6407                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6408                 stripe_index *= map->sub_stripes;
6409
6410                 if (need_full_stripe(op))
6411                         num_stripes = map->sub_stripes;
6412                 else if (mirror_num)
6413                         stripe_index += mirror_num - 1;
6414                 else {
6415                         int old_stripe_index = stripe_index;
6416                         stripe_index = find_live_mirror(fs_info, map,
6417                                               stripe_index,
6418                                               dev_replace_is_ongoing);
6419                         mirror_num = stripe_index - old_stripe_index + 1;
6420                 }
6421
6422         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6423                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6424                         /* push stripe_nr back to the start of the full stripe */
6425                         stripe_nr = div64_u64(raid56_full_stripe_start,
6426                                         stripe_len * data_stripes);
6427
6428                         /* RAID[56] write or recovery. Return all stripes */
6429                         num_stripes = map->num_stripes;
6430                         max_errors = nr_parity_stripes(map);
6431
6432                         *length = map->stripe_len;
6433                         stripe_index = 0;
6434                         stripe_offset = 0;
6435                 } else {
6436                         /*
6437                          * Mirror #0 or #1 means the original data block.
6438                          * Mirror #2 is RAID5 parity block.
6439                          * Mirror #3 is RAID6 Q block.
6440                          */
6441                         stripe_nr = div_u64_rem(stripe_nr,
6442                                         data_stripes, &stripe_index);
6443                         if (mirror_num > 1)
6444                                 stripe_index = data_stripes + mirror_num - 2;
6445
6446                         /* We distribute the parity blocks across stripes */
6447                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6448                                         &stripe_index);
6449                         if (!need_full_stripe(op) && mirror_num <= 1)
6450                                 mirror_num = 1;
6451                 }
6452         } else {
6453                 /*
6454                  * after this, stripe_nr is the number of stripes on this
6455                  * device we have to walk to find the data, and stripe_index is
6456                  * the number of our device in the stripe array
6457                  */
6458                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6459                                 &stripe_index);
6460                 mirror_num = stripe_index + 1;
6461         }
6462         if (stripe_index >= map->num_stripes) {
6463                 btrfs_crit(fs_info,
6464                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6465                            stripe_index, map->num_stripes);
6466                 ret = -EINVAL;
6467                 goto out;
6468         }
6469
6470         num_alloc_stripes = num_stripes;
6471         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6472                 if (op == BTRFS_MAP_WRITE)
6473                         num_alloc_stripes <<= 1;
6474                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6475                         num_alloc_stripes++;
6476                 tgtdev_indexes = num_stripes;
6477         }
6478
6479         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6480         if (!bbio) {
6481                 ret = -ENOMEM;
6482                 goto out;
6483         }
6484
6485         for (i = 0; i < num_stripes; i++) {
6486                 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6487                         stripe_offset + stripe_nr * map->stripe_len;
6488                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6489                 stripe_index++;
6490         }
6491
6492         /* build raid_map */
6493         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6494             (need_full_stripe(op) || mirror_num > 1)) {
6495                 u64 tmp;
6496                 unsigned rot;
6497
6498                 /* Work out the disk rotation on this stripe-set */
6499                 div_u64_rem(stripe_nr, num_stripes, &rot);
6500
6501                 /* Fill in the logical address of each stripe */
6502                 tmp = stripe_nr * data_stripes;
6503                 for (i = 0; i < data_stripes; i++)
6504                         bbio->raid_map[(i+rot) % num_stripes] =
6505                                 em->start + (tmp + i) * map->stripe_len;
6506
6507                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6508                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6509                         bbio->raid_map[(i+rot+1) % num_stripes] =
6510                                 RAID6_Q_STRIPE;
6511
6512                 sort_parity_stripes(bbio, num_stripes);
6513         }
6514
6515         if (need_full_stripe(op))
6516                 max_errors = btrfs_chunk_max_errors(map);
6517
6518         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6519             need_full_stripe(op)) {
6520                 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6521                                           &num_stripes, &max_errors);
6522         }
6523
6524         *bbio_ret = bbio;
6525         bbio->map_type = map->type;
6526         bbio->num_stripes = num_stripes;
6527         bbio->max_errors = max_errors;
6528         bbio->mirror_num = mirror_num;
6529
6530         /*
6531          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6532          * mirror_num == num_stripes + 1 && dev_replace target drive is
6533          * available as a mirror
6534          */
6535         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6536                 WARN_ON(num_stripes > 1);
6537                 bbio->stripes[0].dev = dev_replace->tgtdev;
6538                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6539                 bbio->mirror_num = map->num_stripes + 1;
6540         }
6541 out:
6542         if (dev_replace_is_ongoing) {
6543                 lockdep_assert_held(&dev_replace->rwsem);
6544                 /* Unlock and let waiting writers proceed */
6545                 up_read(&dev_replace->rwsem);
6546         }
6547         free_extent_map(em);
6548         return ret;
6549 }
6550
6551 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6552                       u64 logical, u64 *length,
6553                       struct btrfs_bio **bbio_ret, int mirror_num)
6554 {
6555         if (op == BTRFS_MAP_DISCARD)
6556                 return __btrfs_map_block_for_discard(fs_info, logical,
6557                                                      length, bbio_ret);
6558
6559         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6560                                  mirror_num, 0);
6561 }
6562
6563 /* For Scrub/replace */
6564 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6565                      u64 logical, u64 *length,
6566                      struct btrfs_bio **bbio_ret)
6567 {
6568         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6569 }
6570
6571 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6572 {
6573         bio->bi_private = bbio->private;
6574         bio->bi_end_io = bbio->end_io;
6575         bio_endio(bio);
6576
6577         btrfs_put_bbio(bbio);
6578 }
6579
6580 static void btrfs_end_bio(struct bio *bio)
6581 {
6582         struct btrfs_bio *bbio = bio->bi_private;
6583         int is_orig_bio = 0;
6584
6585         if (bio->bi_status) {
6586                 atomic_inc(&bbio->error);
6587                 if (bio->bi_status == BLK_STS_IOERR ||
6588                     bio->bi_status == BLK_STS_TARGET) {
6589                         struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6590
6591                         ASSERT(dev->bdev);
6592                         if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6593                                 btrfs_dev_stat_inc_and_print(dev,
6594                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6595                         else if (!(bio->bi_opf & REQ_RAHEAD))
6596                                 btrfs_dev_stat_inc_and_print(dev,
6597                                                 BTRFS_DEV_STAT_READ_ERRS);
6598                         if (bio->bi_opf & REQ_PREFLUSH)
6599                                 btrfs_dev_stat_inc_and_print(dev,
6600                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6601                 }
6602         }
6603
6604         if (bio == bbio->orig_bio)
6605                 is_orig_bio = 1;
6606
6607         btrfs_bio_counter_dec(bbio->fs_info);
6608
6609         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6610                 if (!is_orig_bio) {
6611                         bio_put(bio);
6612                         bio = bbio->orig_bio;
6613                 }
6614
6615                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6616                 /* only send an error to the higher layers if it is
6617                  * beyond the tolerance of the btrfs bio
6618                  */
6619                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6620                         bio->bi_status = BLK_STS_IOERR;
6621                 } else {
6622                         /*
6623                          * this bio is actually up to date, we didn't
6624                          * go over the max number of errors
6625                          */
6626                         bio->bi_status = BLK_STS_OK;
6627                 }
6628
6629                 btrfs_end_bbio(bbio, bio);
6630         } else if (!is_orig_bio) {
6631                 bio_put(bio);
6632         }
6633 }
6634
6635 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6636                               u64 physical, struct btrfs_device *dev)
6637 {
6638         struct btrfs_fs_info *fs_info = bbio->fs_info;
6639
6640         bio->bi_private = bbio;
6641         btrfs_io_bio(bio)->device = dev;
6642         bio->bi_end_io = btrfs_end_bio;
6643         bio->bi_iter.bi_sector = physical >> 9;
6644         /*
6645          * For zone append writing, bi_sector must point the beginning of the
6646          * zone
6647          */
6648         if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6649                 if (btrfs_dev_is_sequential(dev, physical)) {
6650                         u64 zone_start = round_down(physical, fs_info->zone_size);
6651
6652                         bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6653                 } else {
6654                         bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6655                         bio->bi_opf |= REQ_OP_WRITE;
6656                 }
6657         }
6658         btrfs_debug_in_rcu(fs_info,
6659         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6660                 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6661                 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6662                 dev->devid, bio->bi_iter.bi_size);
6663         bio_set_dev(bio, dev->bdev);
6664
6665         btrfs_bio_counter_inc_noblocked(fs_info);
6666
6667         btrfsic_submit_bio(bio);
6668 }
6669
6670 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6671 {
6672         atomic_inc(&bbio->error);
6673         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6674                 /* Should be the original bio. */
6675                 WARN_ON(bio != bbio->orig_bio);
6676
6677                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6678                 bio->bi_iter.bi_sector = logical >> 9;
6679                 if (atomic_read(&bbio->error) > bbio->max_errors)
6680                         bio->bi_status = BLK_STS_IOERR;
6681                 else
6682                         bio->bi_status = BLK_STS_OK;
6683                 btrfs_end_bbio(bbio, bio);
6684         }
6685 }
6686
6687 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6688                            int mirror_num)
6689 {
6690         struct btrfs_device *dev;
6691         struct bio *first_bio = bio;
6692         u64 logical = bio->bi_iter.bi_sector << 9;
6693         u64 length = 0;
6694         u64 map_length;
6695         int ret;
6696         int dev_nr;
6697         int total_devs;
6698         struct btrfs_bio *bbio = NULL;
6699
6700         length = bio->bi_iter.bi_size;
6701         map_length = length;
6702
6703         btrfs_bio_counter_inc_blocked(fs_info);
6704         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6705                                 &map_length, &bbio, mirror_num, 1);
6706         if (ret) {
6707                 btrfs_bio_counter_dec(fs_info);
6708                 return errno_to_blk_status(ret);
6709         }
6710
6711         total_devs = bbio->num_stripes;
6712         bbio->orig_bio = first_bio;
6713         bbio->private = first_bio->bi_private;
6714         bbio->end_io = first_bio->bi_end_io;
6715         bbio->fs_info = fs_info;
6716         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6717
6718         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6719             ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6720                 /* In this case, map_length has been set to the length of
6721                    a single stripe; not the whole write */
6722                 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6723                         ret = raid56_parity_write(fs_info, bio, bbio,
6724                                                   map_length);
6725                 } else {
6726                         ret = raid56_parity_recover(fs_info, bio, bbio,
6727                                                     map_length, mirror_num, 1);
6728                 }
6729
6730                 btrfs_bio_counter_dec(fs_info);
6731                 return errno_to_blk_status(ret);
6732         }
6733
6734         if (map_length < length) {
6735                 btrfs_crit(fs_info,
6736                            "mapping failed logical %llu bio len %llu len %llu",
6737                            logical, length, map_length);
6738                 BUG();
6739         }
6740
6741         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6742                 dev = bbio->stripes[dev_nr].dev;
6743                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6744                                                    &dev->dev_state) ||
6745                     (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6746                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6747                         bbio_error(bbio, first_bio, logical);
6748                         continue;
6749                 }
6750
6751                 if (dev_nr < total_devs - 1)
6752                         bio = btrfs_bio_clone(first_bio);
6753                 else
6754                         bio = first_bio;
6755
6756                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6757         }
6758         btrfs_bio_counter_dec(fs_info);
6759         return BLK_STS_OK;
6760 }
6761
6762 /*
6763  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6764  * return NULL.
6765  *
6766  * If devid and uuid are both specified, the match must be exact, otherwise
6767  * only devid is used.
6768  */
6769 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6770                                        u64 devid, u8 *uuid, u8 *fsid)
6771 {
6772         struct btrfs_device *device;
6773         struct btrfs_fs_devices *seed_devs;
6774
6775         if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6776                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6777                         if (device->devid == devid &&
6778                             (!uuid || memcmp(device->uuid, uuid,
6779                                              BTRFS_UUID_SIZE) == 0))
6780                                 return device;
6781                 }
6782         }
6783
6784         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6785                 if (!fsid ||
6786                     !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6787                         list_for_each_entry(device, &seed_devs->devices,
6788                                             dev_list) {
6789                                 if (device->devid == devid &&
6790                                     (!uuid || memcmp(device->uuid, uuid,
6791                                                      BTRFS_UUID_SIZE) == 0))
6792                                         return device;
6793                         }
6794                 }
6795         }
6796
6797         return NULL;
6798 }
6799
6800 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6801                                             u64 devid, u8 *dev_uuid)
6802 {
6803         struct btrfs_device *device;
6804         unsigned int nofs_flag;
6805
6806         /*
6807          * We call this under the chunk_mutex, so we want to use NOFS for this
6808          * allocation, however we don't want to change btrfs_alloc_device() to
6809          * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6810          * places.
6811          */
6812         nofs_flag = memalloc_nofs_save();
6813         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6814         memalloc_nofs_restore(nofs_flag);
6815         if (IS_ERR(device))
6816                 return device;
6817
6818         list_add(&device->dev_list, &fs_devices->devices);
6819         device->fs_devices = fs_devices;
6820         fs_devices->num_devices++;
6821
6822         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6823         fs_devices->missing_devices++;
6824
6825         return device;
6826 }
6827
6828 /**
6829  * btrfs_alloc_device - allocate struct btrfs_device
6830  * @fs_info:    used only for generating a new devid, can be NULL if
6831  *              devid is provided (i.e. @devid != NULL).
6832  * @devid:      a pointer to devid for this device.  If NULL a new devid
6833  *              is generated.
6834  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6835  *              is generated.
6836  *
6837  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6838  * on error.  Returned struct is not linked onto any lists and must be
6839  * destroyed with btrfs_free_device.
6840  */
6841 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6842                                         const u64 *devid,
6843                                         const u8 *uuid)
6844 {
6845         struct btrfs_device *dev;
6846         u64 tmp;
6847
6848         if (WARN_ON(!devid && !fs_info))
6849                 return ERR_PTR(-EINVAL);
6850
6851         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6852         if (!dev)
6853                 return ERR_PTR(-ENOMEM);
6854
6855         /*
6856          * Preallocate a bio that's always going to be used for flushing device
6857          * barriers and matches the device lifespan
6858          */
6859         dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6860         if (!dev->flush_bio) {
6861                 kfree(dev);
6862                 return ERR_PTR(-ENOMEM);
6863         }
6864
6865         INIT_LIST_HEAD(&dev->dev_list);
6866         INIT_LIST_HEAD(&dev->dev_alloc_list);
6867         INIT_LIST_HEAD(&dev->post_commit_list);
6868
6869         atomic_set(&dev->reada_in_flight, 0);
6870         atomic_set(&dev->dev_stats_ccnt, 0);
6871         btrfs_device_data_ordered_init(dev);
6872         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6873         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6874         extent_io_tree_init(fs_info, &dev->alloc_state,
6875                             IO_TREE_DEVICE_ALLOC_STATE, NULL);
6876
6877         if (devid)
6878                 tmp = *devid;
6879         else {
6880                 int ret;
6881
6882                 ret = find_next_devid(fs_info, &tmp);
6883                 if (ret) {
6884                         btrfs_free_device(dev);
6885                         return ERR_PTR(ret);
6886                 }
6887         }
6888         dev->devid = tmp;
6889
6890         if (uuid)
6891                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6892         else
6893                 generate_random_uuid(dev->uuid);
6894
6895         return dev;
6896 }
6897
6898 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6899                                         u64 devid, u8 *uuid, bool error)
6900 {
6901         if (error)
6902                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6903                               devid, uuid);
6904         else
6905                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6906                               devid, uuid);
6907 }
6908
6909 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6910 {
6911         const int data_stripes = calc_data_stripes(type, num_stripes);
6912
6913         return div_u64(chunk_len, data_stripes);
6914 }
6915
6916 #if BITS_PER_LONG == 32
6917 /*
6918  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6919  * can't be accessed on 32bit systems.
6920  *
6921  * This function do mount time check to reject the fs if it already has
6922  * metadata chunk beyond that limit.
6923  */
6924 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6925                                   u64 logical, u64 length, u64 type)
6926 {
6927         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6928                 return 0;
6929
6930         if (logical + length < MAX_LFS_FILESIZE)
6931                 return 0;
6932
6933         btrfs_err_32bit_limit(fs_info);
6934         return -EOVERFLOW;
6935 }
6936
6937 /*
6938  * This is to give early warning for any metadata chunk reaching
6939  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6940  * Although we can still access the metadata, it's not going to be possible
6941  * once the limit is reached.
6942  */
6943 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6944                                   u64 logical, u64 length, u64 type)
6945 {
6946         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6947                 return;
6948
6949         if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6950                 return;
6951
6952         btrfs_warn_32bit_limit(fs_info);
6953 }
6954 #endif
6955
6956 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6957                           struct btrfs_chunk *chunk)
6958 {
6959         struct btrfs_fs_info *fs_info = leaf->fs_info;
6960         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6961         struct map_lookup *map;
6962         struct extent_map *em;
6963         u64 logical;
6964         u64 length;
6965         u64 devid;
6966         u64 type;
6967         u8 uuid[BTRFS_UUID_SIZE];
6968         int num_stripes;
6969         int ret;
6970         int i;
6971
6972         logical = key->offset;
6973         length = btrfs_chunk_length(leaf, chunk);
6974         type = btrfs_chunk_type(leaf, chunk);
6975         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6976
6977 #if BITS_PER_LONG == 32
6978         ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6979         if (ret < 0)
6980                 return ret;
6981         warn_32bit_meta_chunk(fs_info, logical, length, type);
6982 #endif
6983
6984         /*
6985          * Only need to verify chunk item if we're reading from sys chunk array,
6986          * as chunk item in tree block is already verified by tree-checker.
6987          */
6988         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6989                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6990                 if (ret)
6991                         return ret;
6992         }
6993
6994         read_lock(&map_tree->lock);
6995         em = lookup_extent_mapping(map_tree, logical, 1);
6996         read_unlock(&map_tree->lock);
6997
6998         /* already mapped? */
6999         if (em && em->start <= logical && em->start + em->len > logical) {
7000                 free_extent_map(em);
7001                 return 0;
7002         } else if (em) {
7003                 free_extent_map(em);
7004         }
7005
7006         em = alloc_extent_map();
7007         if (!em)
7008                 return -ENOMEM;
7009         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7010         if (!map) {
7011                 free_extent_map(em);
7012                 return -ENOMEM;
7013         }
7014
7015         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7016         em->map_lookup = map;
7017         em->start = logical;
7018         em->len = length;
7019         em->orig_start = 0;
7020         em->block_start = 0;
7021         em->block_len = em->len;
7022
7023         map->num_stripes = num_stripes;
7024         map->io_width = btrfs_chunk_io_width(leaf, chunk);
7025         map->io_align = btrfs_chunk_io_align(leaf, chunk);
7026         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7027         map->type = type;
7028         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7029         map->verified_stripes = 0;
7030         em->orig_block_len = calc_stripe_length(type, em->len,
7031                                                 map->num_stripes);
7032         for (i = 0; i < num_stripes; i++) {
7033                 map->stripes[i].physical =
7034                         btrfs_stripe_offset_nr(leaf, chunk, i);
7035                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7036                 read_extent_buffer(leaf, uuid, (unsigned long)
7037                                    btrfs_stripe_dev_uuid_nr(chunk, i),
7038                                    BTRFS_UUID_SIZE);
7039                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
7040                                                         devid, uuid, NULL);
7041                 if (!map->stripes[i].dev &&
7042                     !btrfs_test_opt(fs_info, DEGRADED)) {
7043                         free_extent_map(em);
7044                         btrfs_report_missing_device(fs_info, devid, uuid, true);
7045                         return -ENOENT;
7046                 }
7047                 if (!map->stripes[i].dev) {
7048                         map->stripes[i].dev =
7049                                 add_missing_dev(fs_info->fs_devices, devid,
7050                                                 uuid);
7051                         if (IS_ERR(map->stripes[i].dev)) {
7052                                 free_extent_map(em);
7053                                 btrfs_err(fs_info,
7054                                         "failed to init missing dev %llu: %ld",
7055                                         devid, PTR_ERR(map->stripes[i].dev));
7056                                 return PTR_ERR(map->stripes[i].dev);
7057                         }
7058                         btrfs_report_missing_device(fs_info, devid, uuid, false);
7059                 }
7060                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7061                                 &(map->stripes[i].dev->dev_state));
7062
7063         }
7064
7065         write_lock(&map_tree->lock);
7066         ret = add_extent_mapping(map_tree, em, 0);
7067         write_unlock(&map_tree->lock);
7068         if (ret < 0) {
7069                 btrfs_err(fs_info,
7070                           "failed to add chunk map, start=%llu len=%llu: %d",
7071                           em->start, em->len, ret);
7072         }
7073         free_extent_map(em);
7074
7075         return ret;
7076 }
7077
7078 static void fill_device_from_item(struct extent_buffer *leaf,
7079                                  struct btrfs_dev_item *dev_item,
7080                                  struct btrfs_device *device)
7081 {
7082         unsigned long ptr;
7083
7084         device->devid = btrfs_device_id(leaf, dev_item);
7085         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7086         device->total_bytes = device->disk_total_bytes;
7087         device->commit_total_bytes = device->disk_total_bytes;
7088         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7089         device->commit_bytes_used = device->bytes_used;
7090         device->type = btrfs_device_type(leaf, dev_item);
7091         device->io_align = btrfs_device_io_align(leaf, dev_item);
7092         device->io_width = btrfs_device_io_width(leaf, dev_item);
7093         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7094         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7095         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7096
7097         ptr = btrfs_device_uuid(dev_item);
7098         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7099 }
7100
7101 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7102                                                   u8 *fsid)
7103 {
7104         struct btrfs_fs_devices *fs_devices;
7105         int ret;
7106
7107         lockdep_assert_held(&uuid_mutex);
7108         ASSERT(fsid);
7109
7110         /* This will match only for multi-device seed fs */
7111         list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7112                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7113                         return fs_devices;
7114
7115
7116         fs_devices = find_fsid(fsid, NULL);
7117         if (!fs_devices) {
7118                 if (!btrfs_test_opt(fs_info, DEGRADED))
7119                         return ERR_PTR(-ENOENT);
7120
7121                 fs_devices = alloc_fs_devices(fsid, NULL);
7122                 if (IS_ERR(fs_devices))
7123                         return fs_devices;
7124
7125                 fs_devices->seeding = true;
7126                 fs_devices->opened = 1;
7127                 return fs_devices;
7128         }
7129
7130         /*
7131          * Upon first call for a seed fs fsid, just create a private copy of the
7132          * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7133          */
7134         fs_devices = clone_fs_devices(fs_devices);
7135         if (IS_ERR(fs_devices))
7136                 return fs_devices;
7137
7138         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7139         if (ret) {
7140                 free_fs_devices(fs_devices);
7141                 return ERR_PTR(ret);
7142         }
7143
7144         if (!fs_devices->seeding) {
7145                 close_fs_devices(fs_devices);
7146                 free_fs_devices(fs_devices);
7147                 return ERR_PTR(-EINVAL);
7148         }
7149
7150         list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7151
7152         return fs_devices;
7153 }
7154
7155 static int read_one_dev(struct extent_buffer *leaf,
7156                         struct btrfs_dev_item *dev_item)
7157 {
7158         struct btrfs_fs_info *fs_info = leaf->fs_info;
7159         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7160         struct btrfs_device *device;
7161         u64 devid;
7162         int ret;
7163         u8 fs_uuid[BTRFS_FSID_SIZE];
7164         u8 dev_uuid[BTRFS_UUID_SIZE];
7165
7166         devid = btrfs_device_id(leaf, dev_item);
7167         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7168                            BTRFS_UUID_SIZE);
7169         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7170                            BTRFS_FSID_SIZE);
7171
7172         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7173                 fs_devices = open_seed_devices(fs_info, fs_uuid);
7174                 if (IS_ERR(fs_devices))
7175                         return PTR_ERR(fs_devices);
7176         }
7177
7178         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7179                                    fs_uuid);
7180         if (!device) {
7181                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7182                         btrfs_report_missing_device(fs_info, devid,
7183                                                         dev_uuid, true);
7184                         return -ENOENT;
7185                 }
7186
7187                 device = add_missing_dev(fs_devices, devid, dev_uuid);
7188                 if (IS_ERR(device)) {
7189                         btrfs_err(fs_info,
7190                                 "failed to add missing dev %llu: %ld",
7191                                 devid, PTR_ERR(device));
7192                         return PTR_ERR(device);
7193                 }
7194                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7195         } else {
7196                 if (!device->bdev) {
7197                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
7198                                 btrfs_report_missing_device(fs_info,
7199                                                 devid, dev_uuid, true);
7200                                 return -ENOENT;
7201                         }
7202                         btrfs_report_missing_device(fs_info, devid,
7203                                                         dev_uuid, false);
7204                 }
7205
7206                 if (!device->bdev &&
7207                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7208                         /*
7209                          * this happens when a device that was properly setup
7210                          * in the device info lists suddenly goes bad.
7211                          * device->bdev is NULL, and so we have to set
7212                          * device->missing to one here
7213                          */
7214                         device->fs_devices->missing_devices++;
7215                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7216                 }
7217
7218                 /* Move the device to its own fs_devices */
7219                 if (device->fs_devices != fs_devices) {
7220                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7221                                                         &device->dev_state));
7222
7223                         list_move(&device->dev_list, &fs_devices->devices);
7224                         device->fs_devices->num_devices--;
7225                         fs_devices->num_devices++;
7226
7227                         device->fs_devices->missing_devices--;
7228                         fs_devices->missing_devices++;
7229
7230                         device->fs_devices = fs_devices;
7231                 }
7232         }
7233
7234         if (device->fs_devices != fs_info->fs_devices) {
7235                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7236                 if (device->generation !=
7237                     btrfs_device_generation(leaf, dev_item))
7238                         return -EINVAL;
7239         }
7240
7241         fill_device_from_item(leaf, dev_item, device);
7242         if (device->bdev) {
7243                 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7244
7245                 if (device->total_bytes > max_total_bytes) {
7246                         btrfs_err(fs_info,
7247                         "device total_bytes should be at most %llu but found %llu",
7248                                   max_total_bytes, device->total_bytes);
7249                         return -EINVAL;
7250                 }
7251         }
7252         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7253         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7254            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7255                 device->fs_devices->total_rw_bytes += device->total_bytes;
7256                 atomic64_add(device->total_bytes - device->bytes_used,
7257                                 &fs_info->free_chunk_space);
7258         }
7259         ret = 0;
7260         return ret;
7261 }
7262
7263 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7264 {
7265         struct btrfs_root *root = fs_info->tree_root;
7266         struct btrfs_super_block *super_copy = fs_info->super_copy;
7267         struct extent_buffer *sb;
7268         struct btrfs_disk_key *disk_key;
7269         struct btrfs_chunk *chunk;
7270         u8 *array_ptr;
7271         unsigned long sb_array_offset;
7272         int ret = 0;
7273         u32 num_stripes;
7274         u32 array_size;
7275         u32 len = 0;
7276         u32 cur_offset;
7277         u64 type;
7278         struct btrfs_key key;
7279
7280         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7281         /*
7282          * This will create extent buffer of nodesize, superblock size is
7283          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7284          * overallocate but we can keep it as-is, only the first page is used.
7285          */
7286         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7287                                           root->root_key.objectid, 0);
7288         if (IS_ERR(sb))
7289                 return PTR_ERR(sb);
7290         set_extent_buffer_uptodate(sb);
7291         /*
7292          * The sb extent buffer is artificial and just used to read the system array.
7293          * set_extent_buffer_uptodate() call does not properly mark all it's
7294          * pages up-to-date when the page is larger: extent does not cover the
7295          * whole page and consequently check_page_uptodate does not find all
7296          * the page's extents up-to-date (the hole beyond sb),
7297          * write_extent_buffer then triggers a WARN_ON.
7298          *
7299          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7300          * but sb spans only this function. Add an explicit SetPageUptodate call
7301          * to silence the warning eg. on PowerPC 64.
7302          */
7303         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7304                 SetPageUptodate(sb->pages[0]);
7305
7306         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7307         array_size = btrfs_super_sys_array_size(super_copy);
7308
7309         array_ptr = super_copy->sys_chunk_array;
7310         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7311         cur_offset = 0;
7312
7313         while (cur_offset < array_size) {
7314                 disk_key = (struct btrfs_disk_key *)array_ptr;
7315                 len = sizeof(*disk_key);
7316                 if (cur_offset + len > array_size)
7317                         goto out_short_read;
7318
7319                 btrfs_disk_key_to_cpu(&key, disk_key);
7320
7321                 array_ptr += len;
7322                 sb_array_offset += len;
7323                 cur_offset += len;
7324
7325                 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7326                         btrfs_err(fs_info,
7327                             "unexpected item type %u in sys_array at offset %u",
7328                                   (u32)key.type, cur_offset);
7329                         ret = -EIO;
7330                         break;
7331                 }
7332
7333                 chunk = (struct btrfs_chunk *)sb_array_offset;
7334                 /*
7335                  * At least one btrfs_chunk with one stripe must be present,
7336                  * exact stripe count check comes afterwards
7337                  */
7338                 len = btrfs_chunk_item_size(1);
7339                 if (cur_offset + len > array_size)
7340                         goto out_short_read;
7341
7342                 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7343                 if (!num_stripes) {
7344                         btrfs_err(fs_info,
7345                         "invalid number of stripes %u in sys_array at offset %u",
7346                                   num_stripes, cur_offset);
7347                         ret = -EIO;
7348                         break;
7349                 }
7350
7351                 type = btrfs_chunk_type(sb, chunk);
7352                 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7353                         btrfs_err(fs_info,
7354                         "invalid chunk type %llu in sys_array at offset %u",
7355                                   type, cur_offset);
7356                         ret = -EIO;
7357                         break;
7358                 }
7359
7360                 len = btrfs_chunk_item_size(num_stripes);
7361                 if (cur_offset + len > array_size)
7362                         goto out_short_read;
7363
7364                 ret = read_one_chunk(&key, sb, chunk);
7365                 if (ret)
7366                         break;
7367
7368                 array_ptr += len;
7369                 sb_array_offset += len;
7370                 cur_offset += len;
7371         }
7372         clear_extent_buffer_uptodate(sb);
7373         free_extent_buffer_stale(sb);
7374         return ret;
7375
7376 out_short_read:
7377         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7378                         len, cur_offset);
7379         clear_extent_buffer_uptodate(sb);
7380         free_extent_buffer_stale(sb);
7381         return -EIO;
7382 }
7383
7384 /*
7385  * Check if all chunks in the fs are OK for read-write degraded mount
7386  *
7387  * If the @failing_dev is specified, it's accounted as missing.
7388  *
7389  * Return true if all chunks meet the minimal RW mount requirements.
7390  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7391  */
7392 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7393                                         struct btrfs_device *failing_dev)
7394 {
7395         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7396         struct extent_map *em;
7397         u64 next_start = 0;
7398         bool ret = true;
7399
7400         read_lock(&map_tree->lock);
7401         em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7402         read_unlock(&map_tree->lock);
7403         /* No chunk at all? Return false anyway */
7404         if (!em) {
7405                 ret = false;
7406                 goto out;
7407         }
7408         while (em) {
7409                 struct map_lookup *map;
7410                 int missing = 0;
7411                 int max_tolerated;
7412                 int i;
7413
7414                 map = em->map_lookup;
7415                 max_tolerated =
7416                         btrfs_get_num_tolerated_disk_barrier_failures(
7417                                         map->type);
7418                 for (i = 0; i < map->num_stripes; i++) {
7419                         struct btrfs_device *dev = map->stripes[i].dev;
7420
7421                         if (!dev || !dev->bdev ||
7422                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7423                             dev->last_flush_error)
7424                                 missing++;
7425                         else if (failing_dev && failing_dev == dev)
7426                                 missing++;
7427                 }
7428                 if (missing > max_tolerated) {
7429                         if (!failing_dev)
7430                                 btrfs_warn(fs_info,
7431         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7432                                    em->start, missing, max_tolerated);
7433                         free_extent_map(em);
7434                         ret = false;
7435                         goto out;
7436                 }
7437                 next_start = extent_map_end(em);
7438                 free_extent_map(em);
7439
7440                 read_lock(&map_tree->lock);
7441                 em = lookup_extent_mapping(map_tree, next_start,
7442                                            (u64)(-1) - next_start);
7443                 read_unlock(&map_tree->lock);
7444         }
7445 out:
7446         return ret;
7447 }
7448
7449 static void readahead_tree_node_children(struct extent_buffer *node)
7450 {
7451         int i;
7452         const int nr_items = btrfs_header_nritems(node);
7453
7454         for (i = 0; i < nr_items; i++)
7455                 btrfs_readahead_node_child(node, i);
7456 }
7457
7458 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7459 {
7460         struct btrfs_root *root = fs_info->chunk_root;
7461         struct btrfs_path *path;
7462         struct extent_buffer *leaf;
7463         struct btrfs_key key;
7464         struct btrfs_key found_key;
7465         int ret;
7466         int slot;
7467         u64 total_dev = 0;
7468         u64 last_ra_node = 0;
7469
7470         path = btrfs_alloc_path();
7471         if (!path)
7472                 return -ENOMEM;
7473
7474         /*
7475          * uuid_mutex is needed only if we are mounting a sprout FS
7476          * otherwise we don't need it.
7477          */
7478         mutex_lock(&uuid_mutex);
7479
7480         /*
7481          * It is possible for mount and umount to race in such a way that
7482          * we execute this code path, but open_fs_devices failed to clear
7483          * total_rw_bytes. We certainly want it cleared before reading the
7484          * device items, so clear it here.
7485          */
7486         fs_info->fs_devices->total_rw_bytes = 0;
7487
7488         /*
7489          * Lockdep complains about possible circular locking dependency between
7490          * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7491          * used for freeze procection of a fs (struct super_block.s_writers),
7492          * which we take when starting a transaction, and extent buffers of the
7493          * chunk tree if we call read_one_dev() while holding a lock on an
7494          * extent buffer of the chunk tree. Since we are mounting the filesystem
7495          * and at this point there can't be any concurrent task modifying the
7496          * chunk tree, to keep it simple, just skip locking on the chunk tree.
7497          */
7498         ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7499         path->skip_locking = 1;
7500
7501         /*
7502          * Read all device items, and then all the chunk items. All
7503          * device items are found before any chunk item (their object id
7504          * is smaller than the lowest possible object id for a chunk
7505          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7506          */
7507         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7508         key.offset = 0;
7509         key.type = 0;
7510         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7511         if (ret < 0)
7512                 goto error;
7513         while (1) {
7514                 struct extent_buffer *node;
7515
7516                 leaf = path->nodes[0];
7517                 slot = path->slots[0];
7518                 if (slot >= btrfs_header_nritems(leaf)) {
7519                         ret = btrfs_next_leaf(root, path);
7520                         if (ret == 0)
7521                                 continue;
7522                         if (ret < 0)
7523                                 goto error;
7524                         break;
7525                 }
7526                 node = path->nodes[1];
7527                 if (node) {
7528                         if (last_ra_node != node->start) {
7529                                 readahead_tree_node_children(node);
7530                                 last_ra_node = node->start;
7531                         }
7532                 }
7533                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7534                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7535                         struct btrfs_dev_item *dev_item;
7536                         dev_item = btrfs_item_ptr(leaf, slot,
7537                                                   struct btrfs_dev_item);
7538                         ret = read_one_dev(leaf, dev_item);
7539                         if (ret)
7540                                 goto error;
7541                         total_dev++;
7542                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7543                         struct btrfs_chunk *chunk;
7544
7545                         /*
7546                          * We are only called at mount time, so no need to take
7547                          * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7548                          * we always lock first fs_info->chunk_mutex before
7549                          * acquiring any locks on the chunk tree. This is a
7550                          * requirement for chunk allocation, see the comment on
7551                          * top of btrfs_chunk_alloc() for details.
7552                          */
7553                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7554                         ret = read_one_chunk(&found_key, leaf, chunk);
7555                         if (ret)
7556                                 goto error;
7557                 }
7558                 path->slots[0]++;
7559         }
7560
7561         /*
7562          * After loading chunk tree, we've got all device information,
7563          * do another round of validation checks.
7564          */
7565         if (total_dev != fs_info->fs_devices->total_devices) {
7566                 btrfs_err(fs_info,
7567            "super_num_devices %llu mismatch with num_devices %llu found here",
7568                           btrfs_super_num_devices(fs_info->super_copy),
7569                           total_dev);
7570                 ret = -EINVAL;
7571                 goto error;
7572         }
7573         if (btrfs_super_total_bytes(fs_info->super_copy) <
7574             fs_info->fs_devices->total_rw_bytes) {
7575                 btrfs_err(fs_info,
7576         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7577                           btrfs_super_total_bytes(fs_info->super_copy),
7578                           fs_info->fs_devices->total_rw_bytes);
7579                 ret = -EINVAL;
7580                 goto error;
7581         }
7582         ret = 0;
7583 error:
7584         mutex_unlock(&uuid_mutex);
7585
7586         btrfs_free_path(path);
7587         return ret;
7588 }
7589
7590 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7591 {
7592         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7593         struct btrfs_device *device;
7594
7595         fs_devices->fs_info = fs_info;
7596
7597         mutex_lock(&fs_devices->device_list_mutex);
7598         list_for_each_entry(device, &fs_devices->devices, dev_list)
7599                 device->fs_info = fs_info;
7600
7601         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7602                 list_for_each_entry(device, &seed_devs->devices, dev_list)
7603                         device->fs_info = fs_info;
7604
7605                 seed_devs->fs_info = fs_info;
7606         }
7607         mutex_unlock(&fs_devices->device_list_mutex);
7608 }
7609
7610 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7611                                  const struct btrfs_dev_stats_item *ptr,
7612                                  int index)
7613 {
7614         u64 val;
7615
7616         read_extent_buffer(eb, &val,
7617                            offsetof(struct btrfs_dev_stats_item, values) +
7618                             ((unsigned long)ptr) + (index * sizeof(u64)),
7619                            sizeof(val));
7620         return val;
7621 }
7622
7623 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7624                                       struct btrfs_dev_stats_item *ptr,
7625                                       int index, u64 val)
7626 {
7627         write_extent_buffer(eb, &val,
7628                             offsetof(struct btrfs_dev_stats_item, values) +
7629                              ((unsigned long)ptr) + (index * sizeof(u64)),
7630                             sizeof(val));
7631 }
7632
7633 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7634                                        struct btrfs_path *path)
7635 {
7636         struct btrfs_dev_stats_item *ptr;
7637         struct extent_buffer *eb;
7638         struct btrfs_key key;
7639         int item_size;
7640         int i, ret, slot;
7641
7642         if (!device->fs_info->dev_root)
7643                 return 0;
7644
7645         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7646         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7647         key.offset = device->devid;
7648         ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7649         if (ret) {
7650                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7651                         btrfs_dev_stat_set(device, i, 0);
7652                 device->dev_stats_valid = 1;
7653                 btrfs_release_path(path);
7654                 return ret < 0 ? ret : 0;
7655         }
7656         slot = path->slots[0];
7657         eb = path->nodes[0];
7658         item_size = btrfs_item_size_nr(eb, slot);
7659
7660         ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7661
7662         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7663                 if (item_size >= (1 + i) * sizeof(__le64))
7664                         btrfs_dev_stat_set(device, i,
7665                                            btrfs_dev_stats_value(eb, ptr, i));
7666                 else
7667                         btrfs_dev_stat_set(device, i, 0);
7668         }
7669
7670         device->dev_stats_valid = 1;
7671         btrfs_dev_stat_print_on_load(device);
7672         btrfs_release_path(path);
7673
7674         return 0;
7675 }
7676
7677 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7678 {
7679         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7680         struct btrfs_device *device;
7681         struct btrfs_path *path = NULL;
7682         int ret = 0;
7683
7684         path = btrfs_alloc_path();
7685         if (!path)
7686                 return -ENOMEM;
7687
7688         mutex_lock(&fs_devices->device_list_mutex);
7689         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7690                 ret = btrfs_device_init_dev_stats(device, path);
7691                 if (ret)
7692                         goto out;
7693         }
7694         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7695                 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7696                         ret = btrfs_device_init_dev_stats(device, path);
7697                         if (ret)
7698                                 goto out;
7699                 }
7700         }
7701 out:
7702         mutex_unlock(&fs_devices->device_list_mutex);
7703
7704         btrfs_free_path(path);
7705         return ret;
7706 }
7707
7708 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7709                                 struct btrfs_device *device)
7710 {
7711         struct btrfs_fs_info *fs_info = trans->fs_info;
7712         struct btrfs_root *dev_root = fs_info->dev_root;
7713         struct btrfs_path *path;
7714         struct btrfs_key key;
7715         struct extent_buffer *eb;
7716         struct btrfs_dev_stats_item *ptr;
7717         int ret;
7718         int i;
7719
7720         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7721         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7722         key.offset = device->devid;
7723
7724         path = btrfs_alloc_path();
7725         if (!path)
7726                 return -ENOMEM;
7727         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7728         if (ret < 0) {
7729                 btrfs_warn_in_rcu(fs_info,
7730                         "error %d while searching for dev_stats item for device %s",
7731                               ret, rcu_str_deref(device->name));
7732                 goto out;
7733         }
7734
7735         if (ret == 0 &&
7736             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7737                 /* need to delete old one and insert a new one */
7738                 ret = btrfs_del_item(trans, dev_root, path);
7739                 if (ret != 0) {
7740                         btrfs_warn_in_rcu(fs_info,
7741                                 "delete too small dev_stats item for device %s failed %d",
7742                                       rcu_str_deref(device->name), ret);
7743                         goto out;
7744                 }
7745                 ret = 1;
7746         }
7747
7748         if (ret == 1) {
7749                 /* need to insert a new item */
7750                 btrfs_release_path(path);
7751                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7752                                               &key, sizeof(*ptr));
7753                 if (ret < 0) {
7754                         btrfs_warn_in_rcu(fs_info,
7755                                 "insert dev_stats item for device %s failed %d",
7756                                 rcu_str_deref(device->name), ret);
7757                         goto out;
7758                 }
7759         }
7760
7761         eb = path->nodes[0];
7762         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7763         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7764                 btrfs_set_dev_stats_value(eb, ptr, i,
7765                                           btrfs_dev_stat_read(device, i));
7766         btrfs_mark_buffer_dirty(eb);
7767
7768 out:
7769         btrfs_free_path(path);
7770         return ret;
7771 }
7772
7773 /*
7774  * called from commit_transaction. Writes all changed device stats to disk.
7775  */
7776 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7777 {
7778         struct btrfs_fs_info *fs_info = trans->fs_info;
7779         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7780         struct btrfs_device *device;
7781         int stats_cnt;
7782         int ret = 0;
7783
7784         mutex_lock(&fs_devices->device_list_mutex);
7785         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7786                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7787                 if (!device->dev_stats_valid || stats_cnt == 0)
7788                         continue;
7789
7790
7791                 /*
7792                  * There is a LOAD-LOAD control dependency between the value of
7793                  * dev_stats_ccnt and updating the on-disk values which requires
7794                  * reading the in-memory counters. Such control dependencies
7795                  * require explicit read memory barriers.
7796                  *
7797                  * This memory barriers pairs with smp_mb__before_atomic in
7798                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7799                  * barrier implied by atomic_xchg in
7800                  * btrfs_dev_stats_read_and_reset
7801                  */
7802                 smp_rmb();
7803
7804                 ret = update_dev_stat_item(trans, device);
7805                 if (!ret)
7806                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7807         }
7808         mutex_unlock(&fs_devices->device_list_mutex);
7809
7810         return ret;
7811 }
7812
7813 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7814 {
7815         btrfs_dev_stat_inc(dev, index);
7816         btrfs_dev_stat_print_on_error(dev);
7817 }
7818
7819 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7820 {
7821         if (!dev->dev_stats_valid)
7822                 return;
7823         btrfs_err_rl_in_rcu(dev->fs_info,
7824                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7825                            rcu_str_deref(dev->name),
7826                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7827                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7828                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7829                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7830                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7831 }
7832
7833 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7834 {
7835         int i;
7836
7837         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7838                 if (btrfs_dev_stat_read(dev, i) != 0)
7839                         break;
7840         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7841                 return; /* all values == 0, suppress message */
7842
7843         btrfs_info_in_rcu(dev->fs_info,
7844                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7845                rcu_str_deref(dev->name),
7846                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7847                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7848                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7849                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7850                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7851 }
7852
7853 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7854                         struct btrfs_ioctl_get_dev_stats *stats)
7855 {
7856         struct btrfs_device *dev;
7857         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7858         int i;
7859
7860         mutex_lock(&fs_devices->device_list_mutex);
7861         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7862         mutex_unlock(&fs_devices->device_list_mutex);
7863
7864         if (!dev) {
7865                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7866                 return -ENODEV;
7867         } else if (!dev->dev_stats_valid) {
7868                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7869                 return -ENODEV;
7870         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7871                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7872                         if (stats->nr_items > i)
7873                                 stats->values[i] =
7874                                         btrfs_dev_stat_read_and_reset(dev, i);
7875                         else
7876                                 btrfs_dev_stat_set(dev, i, 0);
7877                 }
7878                 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7879                            current->comm, task_pid_nr(current));
7880         } else {
7881                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7882                         if (stats->nr_items > i)
7883                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7884         }
7885         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7886                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7887         return 0;
7888 }
7889
7890 /*
7891  * Update the size and bytes used for each device where it changed.  This is
7892  * delayed since we would otherwise get errors while writing out the
7893  * superblocks.
7894  *
7895  * Must be invoked during transaction commit.
7896  */
7897 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7898 {
7899         struct btrfs_device *curr, *next;
7900
7901         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7902
7903         if (list_empty(&trans->dev_update_list))
7904                 return;
7905
7906         /*
7907          * We don't need the device_list_mutex here.  This list is owned by the
7908          * transaction and the transaction must complete before the device is
7909          * released.
7910          */
7911         mutex_lock(&trans->fs_info->chunk_mutex);
7912         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7913                                  post_commit_list) {
7914                 list_del_init(&curr->post_commit_list);
7915                 curr->commit_total_bytes = curr->disk_total_bytes;
7916                 curr->commit_bytes_used = curr->bytes_used;
7917         }
7918         mutex_unlock(&trans->fs_info->chunk_mutex);
7919 }
7920
7921 /*
7922  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7923  */
7924 int btrfs_bg_type_to_factor(u64 flags)
7925 {
7926         const int index = btrfs_bg_flags_to_raid_index(flags);
7927
7928         return btrfs_raid_array[index].ncopies;
7929 }
7930
7931
7932
7933 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7934                                  u64 chunk_offset, u64 devid,
7935                                  u64 physical_offset, u64 physical_len)
7936 {
7937         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7938         struct extent_map *em;
7939         struct map_lookup *map;
7940         struct btrfs_device *dev;
7941         u64 stripe_len;
7942         bool found = false;
7943         int ret = 0;
7944         int i;
7945
7946         read_lock(&em_tree->lock);
7947         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7948         read_unlock(&em_tree->lock);
7949
7950         if (!em) {
7951                 btrfs_err(fs_info,
7952 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7953                           physical_offset, devid);
7954                 ret = -EUCLEAN;
7955                 goto out;
7956         }
7957
7958         map = em->map_lookup;
7959         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7960         if (physical_len != stripe_len) {
7961                 btrfs_err(fs_info,
7962 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7963                           physical_offset, devid, em->start, physical_len,
7964                           stripe_len);
7965                 ret = -EUCLEAN;
7966                 goto out;
7967         }
7968
7969         for (i = 0; i < map->num_stripes; i++) {
7970                 if (map->stripes[i].dev->devid == devid &&
7971                     map->stripes[i].physical == physical_offset) {
7972                         found = true;
7973                         if (map->verified_stripes >= map->num_stripes) {
7974                                 btrfs_err(fs_info,
7975                                 "too many dev extents for chunk %llu found",
7976                                           em->start);
7977                                 ret = -EUCLEAN;
7978                                 goto out;
7979                         }
7980                         map->verified_stripes++;
7981                         break;
7982                 }
7983         }
7984         if (!found) {
7985                 btrfs_err(fs_info,
7986         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7987                         physical_offset, devid);
7988                 ret = -EUCLEAN;
7989         }
7990
7991         /* Make sure no dev extent is beyond device boundary */
7992         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7993         if (!dev) {
7994                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7995                 ret = -EUCLEAN;
7996                 goto out;
7997         }
7998
7999         if (physical_offset + physical_len > dev->disk_total_bytes) {
8000                 btrfs_err(fs_info,
8001 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8002                           devid, physical_offset, physical_len,
8003                           dev->disk_total_bytes);
8004                 ret = -EUCLEAN;
8005                 goto out;
8006         }
8007
8008         if (dev->zone_info) {
8009                 u64 zone_size = dev->zone_info->zone_size;
8010
8011                 if (!IS_ALIGNED(physical_offset, zone_size) ||
8012                     !IS_ALIGNED(physical_len, zone_size)) {
8013                         btrfs_err(fs_info,
8014 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8015                                   devid, physical_offset, physical_len);
8016                         ret = -EUCLEAN;
8017                         goto out;
8018                 }
8019         }
8020
8021 out:
8022         free_extent_map(em);
8023         return ret;
8024 }
8025
8026 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8027 {
8028         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8029         struct extent_map *em;
8030         struct rb_node *node;
8031         int ret = 0;
8032
8033         read_lock(&em_tree->lock);
8034         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8035                 em = rb_entry(node, struct extent_map, rb_node);
8036                 if (em->map_lookup->num_stripes !=
8037                     em->map_lookup->verified_stripes) {
8038                         btrfs_err(fs_info,
8039                         "chunk %llu has missing dev extent, have %d expect %d",
8040                                   em->start, em->map_lookup->verified_stripes,
8041                                   em->map_lookup->num_stripes);
8042                         ret = -EUCLEAN;
8043                         goto out;
8044                 }
8045         }
8046 out:
8047         read_unlock(&em_tree->lock);
8048         return ret;
8049 }
8050
8051 /*
8052  * Ensure that all dev extents are mapped to correct chunk, otherwise
8053  * later chunk allocation/free would cause unexpected behavior.
8054  *
8055  * NOTE: This will iterate through the whole device tree, which should be of
8056  * the same size level as the chunk tree.  This slightly increases mount time.
8057  */
8058 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8059 {
8060         struct btrfs_path *path;
8061         struct btrfs_root *root = fs_info->dev_root;
8062         struct btrfs_key key;
8063         u64 prev_devid = 0;
8064         u64 prev_dev_ext_end = 0;
8065         int ret = 0;
8066
8067         /*
8068          * We don't have a dev_root because we mounted with ignorebadroots and
8069          * failed to load the root, so we want to skip the verification in this
8070          * case for sure.
8071          *
8072          * However if the dev root is fine, but the tree itself is corrupted
8073          * we'd still fail to mount.  This verification is only to make sure
8074          * writes can happen safely, so instead just bypass this check
8075          * completely in the case of IGNOREBADROOTS.
8076          */
8077         if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8078                 return 0;
8079
8080         key.objectid = 1;
8081         key.type = BTRFS_DEV_EXTENT_KEY;
8082         key.offset = 0;
8083
8084         path = btrfs_alloc_path();
8085         if (!path)
8086                 return -ENOMEM;
8087
8088         path->reada = READA_FORWARD;
8089         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8090         if (ret < 0)
8091                 goto out;
8092
8093         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8094                 ret = btrfs_next_leaf(root, path);
8095                 if (ret < 0)
8096                         goto out;
8097                 /* No dev extents at all? Not good */
8098                 if (ret > 0) {
8099                         ret = -EUCLEAN;
8100                         goto out;
8101                 }
8102         }
8103         while (1) {
8104                 struct extent_buffer *leaf = path->nodes[0];
8105                 struct btrfs_dev_extent *dext;
8106                 int slot = path->slots[0];
8107                 u64 chunk_offset;
8108                 u64 physical_offset;
8109                 u64 physical_len;
8110                 u64 devid;
8111
8112                 btrfs_item_key_to_cpu(leaf, &key, slot);
8113                 if (key.type != BTRFS_DEV_EXTENT_KEY)
8114                         break;
8115                 devid = key.objectid;
8116                 physical_offset = key.offset;
8117
8118                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8119                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8120                 physical_len = btrfs_dev_extent_length(leaf, dext);
8121
8122                 /* Check if this dev extent overlaps with the previous one */
8123                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8124                         btrfs_err(fs_info,
8125 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8126                                   devid, physical_offset, prev_dev_ext_end);
8127                         ret = -EUCLEAN;
8128                         goto out;
8129                 }
8130
8131                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8132                                             physical_offset, physical_len);
8133                 if (ret < 0)
8134                         goto out;
8135                 prev_devid = devid;
8136                 prev_dev_ext_end = physical_offset + physical_len;
8137
8138                 ret = btrfs_next_item(root, path);
8139                 if (ret < 0)
8140                         goto out;
8141                 if (ret > 0) {
8142                         ret = 0;
8143                         break;
8144                 }
8145         }
8146
8147         /* Ensure all chunks have corresponding dev extents */
8148         ret = verify_chunk_dev_extent_mapping(fs_info);
8149 out:
8150         btrfs_free_path(path);
8151         return ret;
8152 }
8153
8154 /*
8155  * Check whether the given block group or device is pinned by any inode being
8156  * used as a swapfile.
8157  */
8158 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8159 {
8160         struct btrfs_swapfile_pin *sp;
8161         struct rb_node *node;
8162
8163         spin_lock(&fs_info->swapfile_pins_lock);
8164         node = fs_info->swapfile_pins.rb_node;
8165         while (node) {
8166                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8167                 if (ptr < sp->ptr)
8168                         node = node->rb_left;
8169                 else if (ptr > sp->ptr)
8170                         node = node->rb_right;
8171                 else
8172                         break;
8173         }
8174         spin_unlock(&fs_info->swapfile_pins_lock);
8175         return node != NULL;
8176 }
8177
8178 static int relocating_repair_kthread(void *data)
8179 {
8180         struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8181         struct btrfs_fs_info *fs_info = cache->fs_info;
8182         u64 target;
8183         int ret = 0;
8184
8185         target = cache->start;
8186         btrfs_put_block_group(cache);
8187
8188         sb_start_write(fs_info->sb);
8189         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8190                 btrfs_info(fs_info,
8191                            "zoned: skip relocating block group %llu to repair: EBUSY",
8192                            target);
8193                 sb_end_write(fs_info->sb);
8194                 return -EBUSY;
8195         }
8196
8197         mutex_lock(&fs_info->reclaim_bgs_lock);
8198
8199         /* Ensure block group still exists */
8200         cache = btrfs_lookup_block_group(fs_info, target);
8201         if (!cache)
8202                 goto out;
8203
8204         if (!cache->relocating_repair)
8205                 goto out;
8206
8207         ret = btrfs_may_alloc_data_chunk(fs_info, target);
8208         if (ret < 0)
8209                 goto out;
8210
8211         btrfs_info(fs_info,
8212                    "zoned: relocating block group %llu to repair IO failure",
8213                    target);
8214         ret = btrfs_relocate_chunk(fs_info, target);
8215
8216 out:
8217         if (cache)
8218                 btrfs_put_block_group(cache);
8219         mutex_unlock(&fs_info->reclaim_bgs_lock);
8220         btrfs_exclop_finish(fs_info);
8221         sb_end_write(fs_info->sb);
8222
8223         return ret;
8224 }
8225
8226 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8227 {
8228         struct btrfs_block_group *cache;
8229
8230         /* Do not attempt to repair in degraded state */
8231         if (btrfs_test_opt(fs_info, DEGRADED))
8232                 return 0;
8233
8234         cache = btrfs_lookup_block_group(fs_info, logical);
8235         if (!cache)
8236                 return 0;
8237
8238         spin_lock(&cache->lock);
8239         if (cache->relocating_repair) {
8240                 spin_unlock(&cache->lock);
8241                 btrfs_put_block_group(cache);
8242                 return 0;
8243         }
8244         cache->relocating_repair = 1;
8245         spin_unlock(&cache->lock);
8246
8247         kthread_run(relocating_repair_kthread, cache,
8248                     "btrfs-relocating-repair");
8249
8250         return 0;
8251 }