btrfs: do not take the uuid_mutex in btrfs_rm_device
[platform/kernel/linux-rpi.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 #include "zoned.h"
35
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37         [BTRFS_RAID_RAID10] = {
38                 .sub_stripes    = 2,
39                 .dev_stripes    = 1,
40                 .devs_max       = 0,    /* 0 == as many as possible */
41                 .devs_min       = 2,
42                 .tolerated_failures = 1,
43                 .devs_increment = 2,
44                 .ncopies        = 2,
45                 .nparity        = 0,
46                 .raid_name      = "raid10",
47                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
48                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49         },
50         [BTRFS_RAID_RAID1] = {
51                 .sub_stripes    = 1,
52                 .dev_stripes    = 1,
53                 .devs_max       = 2,
54                 .devs_min       = 2,
55                 .tolerated_failures = 1,
56                 .devs_increment = 2,
57                 .ncopies        = 2,
58                 .nparity        = 0,
59                 .raid_name      = "raid1",
60                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
61                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62         },
63         [BTRFS_RAID_RAID1C3] = {
64                 .sub_stripes    = 1,
65                 .dev_stripes    = 1,
66                 .devs_max       = 3,
67                 .devs_min       = 3,
68                 .tolerated_failures = 2,
69                 .devs_increment = 3,
70                 .ncopies        = 3,
71                 .nparity        = 0,
72                 .raid_name      = "raid1c3",
73                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
74                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75         },
76         [BTRFS_RAID_RAID1C4] = {
77                 .sub_stripes    = 1,
78                 .dev_stripes    = 1,
79                 .devs_max       = 4,
80                 .devs_min       = 4,
81                 .tolerated_failures = 3,
82                 .devs_increment = 4,
83                 .ncopies        = 4,
84                 .nparity        = 0,
85                 .raid_name      = "raid1c4",
86                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
87                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88         },
89         [BTRFS_RAID_DUP] = {
90                 .sub_stripes    = 1,
91                 .dev_stripes    = 2,
92                 .devs_max       = 1,
93                 .devs_min       = 1,
94                 .tolerated_failures = 0,
95                 .devs_increment = 1,
96                 .ncopies        = 2,
97                 .nparity        = 0,
98                 .raid_name      = "dup",
99                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
100                 .mindev_error   = 0,
101         },
102         [BTRFS_RAID_RAID0] = {
103                 .sub_stripes    = 1,
104                 .dev_stripes    = 1,
105                 .devs_max       = 0,
106                 .devs_min       = 1,
107                 .tolerated_failures = 0,
108                 .devs_increment = 1,
109                 .ncopies        = 1,
110                 .nparity        = 0,
111                 .raid_name      = "raid0",
112                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
113                 .mindev_error   = 0,
114         },
115         [BTRFS_RAID_SINGLE] = {
116                 .sub_stripes    = 1,
117                 .dev_stripes    = 1,
118                 .devs_max       = 1,
119                 .devs_min       = 1,
120                 .tolerated_failures = 0,
121                 .devs_increment = 1,
122                 .ncopies        = 1,
123                 .nparity        = 0,
124                 .raid_name      = "single",
125                 .bg_flag        = 0,
126                 .mindev_error   = 0,
127         },
128         [BTRFS_RAID_RAID5] = {
129                 .sub_stripes    = 1,
130                 .dev_stripes    = 1,
131                 .devs_max       = 0,
132                 .devs_min       = 2,
133                 .tolerated_failures = 1,
134                 .devs_increment = 1,
135                 .ncopies        = 1,
136                 .nparity        = 1,
137                 .raid_name      = "raid5",
138                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
139                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140         },
141         [BTRFS_RAID_RAID6] = {
142                 .sub_stripes    = 1,
143                 .dev_stripes    = 1,
144                 .devs_max       = 0,
145                 .devs_min       = 3,
146                 .tolerated_failures = 2,
147                 .devs_increment = 1,
148                 .ncopies        = 1,
149                 .nparity        = 2,
150                 .raid_name      = "raid6",
151                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
152                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153         },
154 };
155
156 /*
157  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
158  * can be used as index to access btrfs_raid_array[].
159  */
160 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
161 {
162         if (flags & BTRFS_BLOCK_GROUP_RAID10)
163                 return BTRFS_RAID_RAID10;
164         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
165                 return BTRFS_RAID_RAID1;
166         else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
167                 return BTRFS_RAID_RAID1C3;
168         else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
169                 return BTRFS_RAID_RAID1C4;
170         else if (flags & BTRFS_BLOCK_GROUP_DUP)
171                 return BTRFS_RAID_DUP;
172         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
173                 return BTRFS_RAID_RAID0;
174         else if (flags & BTRFS_BLOCK_GROUP_RAID5)
175                 return BTRFS_RAID_RAID5;
176         else if (flags & BTRFS_BLOCK_GROUP_RAID6)
177                 return BTRFS_RAID_RAID6;
178
179         return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
180 }
181
182 const char *btrfs_bg_type_to_raid_name(u64 flags)
183 {
184         const int index = btrfs_bg_flags_to_raid_index(flags);
185
186         if (index >= BTRFS_NR_RAID_TYPES)
187                 return NULL;
188
189         return btrfs_raid_array[index].raid_name;
190 }
191
192 /*
193  * Fill @buf with textual description of @bg_flags, no more than @size_buf
194  * bytes including terminating null byte.
195  */
196 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
197 {
198         int i;
199         int ret;
200         char *bp = buf;
201         u64 flags = bg_flags;
202         u32 size_bp = size_buf;
203
204         if (!flags) {
205                 strcpy(bp, "NONE");
206                 return;
207         }
208
209 #define DESCRIBE_FLAG(flag, desc)                                               \
210         do {                                                            \
211                 if (flags & (flag)) {                                   \
212                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
213                         if (ret < 0 || ret >= size_bp)                  \
214                                 goto out_overflow;                      \
215                         size_bp -= ret;                                 \
216                         bp += ret;                                      \
217                         flags &= ~(flag);                               \
218                 }                                                       \
219         } while (0)
220
221         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
222         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
223         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
224
225         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
226         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
227                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
228                               btrfs_raid_array[i].raid_name);
229 #undef DESCRIBE_FLAG
230
231         if (flags) {
232                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
233                 size_bp -= ret;
234         }
235
236         if (size_bp < size_buf)
237                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
238
239         /*
240          * The text is trimmed, it's up to the caller to provide sufficiently
241          * large buffer
242          */
243 out_overflow:;
244 }
245
246 static int init_first_rw_device(struct btrfs_trans_handle *trans);
247 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
248 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
249 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
250 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
251                              enum btrfs_map_op op,
252                              u64 logical, u64 *length,
253                              struct btrfs_bio **bbio_ret,
254                              int mirror_num, int need_raid_map);
255
256 /*
257  * Device locking
258  * ==============
259  *
260  * There are several mutexes that protect manipulation of devices and low-level
261  * structures like chunks but not block groups, extents or files
262  *
263  * uuid_mutex (global lock)
264  * ------------------------
265  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
266  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
267  * device) or requested by the device= mount option
268  *
269  * the mutex can be very coarse and can cover long-running operations
270  *
271  * protects: updates to fs_devices counters like missing devices, rw devices,
272  * seeding, structure cloning, opening/closing devices at mount/umount time
273  *
274  * global::fs_devs - add, remove, updates to the global list
275  *
276  * does not protect: manipulation of the fs_devices::devices list in general
277  * but in mount context it could be used to exclude list modifications by eg.
278  * scan ioctl
279  *
280  * btrfs_device::name - renames (write side), read is RCU
281  *
282  * fs_devices::device_list_mutex (per-fs, with RCU)
283  * ------------------------------------------------
284  * protects updates to fs_devices::devices, ie. adding and deleting
285  *
286  * simple list traversal with read-only actions can be done with RCU protection
287  *
288  * may be used to exclude some operations from running concurrently without any
289  * modifications to the list (see write_all_supers)
290  *
291  * Is not required at mount and close times, because our device list is
292  * protected by the uuid_mutex at that point.
293  *
294  * balance_mutex
295  * -------------
296  * protects balance structures (status, state) and context accessed from
297  * several places (internally, ioctl)
298  *
299  * chunk_mutex
300  * -----------
301  * protects chunks, adding or removing during allocation, trim or when a new
302  * device is added/removed. Additionally it also protects post_commit_list of
303  * individual devices, since they can be added to the transaction's
304  * post_commit_list only with chunk_mutex held.
305  *
306  * cleaner_mutex
307  * -------------
308  * a big lock that is held by the cleaner thread and prevents running subvolume
309  * cleaning together with relocation or delayed iputs
310  *
311  *
312  * Lock nesting
313  * ============
314  *
315  * uuid_mutex
316  *   device_list_mutex
317  *     chunk_mutex
318  *   balance_mutex
319  *
320  *
321  * Exclusive operations
322  * ====================
323  *
324  * Maintains the exclusivity of the following operations that apply to the
325  * whole filesystem and cannot run in parallel.
326  *
327  * - Balance (*)
328  * - Device add
329  * - Device remove
330  * - Device replace (*)
331  * - Resize
332  *
333  * The device operations (as above) can be in one of the following states:
334  *
335  * - Running state
336  * - Paused state
337  * - Completed state
338  *
339  * Only device operations marked with (*) can go into the Paused state for the
340  * following reasons:
341  *
342  * - ioctl (only Balance can be Paused through ioctl)
343  * - filesystem remounted as read-only
344  * - filesystem unmounted and mounted as read-only
345  * - system power-cycle and filesystem mounted as read-only
346  * - filesystem or device errors leading to forced read-only
347  *
348  * The status of exclusive operation is set and cleared atomically.
349  * During the course of Paused state, fs_info::exclusive_operation remains set.
350  * A device operation in Paused or Running state can be canceled or resumed
351  * either by ioctl (Balance only) or when remounted as read-write.
352  * The exclusive status is cleared when the device operation is canceled or
353  * completed.
354  */
355
356 DEFINE_MUTEX(uuid_mutex);
357 static LIST_HEAD(fs_uuids);
358 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
359 {
360         return &fs_uuids;
361 }
362
363 /*
364  * alloc_fs_devices - allocate struct btrfs_fs_devices
365  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
366  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
367  *
368  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
369  * The returned struct is not linked onto any lists and can be destroyed with
370  * kfree() right away.
371  */
372 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
373                                                  const u8 *metadata_fsid)
374 {
375         struct btrfs_fs_devices *fs_devs;
376
377         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
378         if (!fs_devs)
379                 return ERR_PTR(-ENOMEM);
380
381         mutex_init(&fs_devs->device_list_mutex);
382
383         INIT_LIST_HEAD(&fs_devs->devices);
384         INIT_LIST_HEAD(&fs_devs->alloc_list);
385         INIT_LIST_HEAD(&fs_devs->fs_list);
386         INIT_LIST_HEAD(&fs_devs->seed_list);
387         if (fsid)
388                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
389
390         if (metadata_fsid)
391                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
392         else if (fsid)
393                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
394
395         return fs_devs;
396 }
397
398 void btrfs_free_device(struct btrfs_device *device)
399 {
400         WARN_ON(!list_empty(&device->post_commit_list));
401         rcu_string_free(device->name);
402         extent_io_tree_release(&device->alloc_state);
403         bio_put(device->flush_bio);
404         btrfs_destroy_dev_zone_info(device);
405         kfree(device);
406 }
407
408 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
409 {
410         struct btrfs_device *device;
411         WARN_ON(fs_devices->opened);
412         while (!list_empty(&fs_devices->devices)) {
413                 device = list_entry(fs_devices->devices.next,
414                                     struct btrfs_device, dev_list);
415                 list_del(&device->dev_list);
416                 btrfs_free_device(device);
417         }
418         kfree(fs_devices);
419 }
420
421 void __exit btrfs_cleanup_fs_uuids(void)
422 {
423         struct btrfs_fs_devices *fs_devices;
424
425         while (!list_empty(&fs_uuids)) {
426                 fs_devices = list_entry(fs_uuids.next,
427                                         struct btrfs_fs_devices, fs_list);
428                 list_del(&fs_devices->fs_list);
429                 free_fs_devices(fs_devices);
430         }
431 }
432
433 static noinline struct btrfs_fs_devices *find_fsid(
434                 const u8 *fsid, const u8 *metadata_fsid)
435 {
436         struct btrfs_fs_devices *fs_devices;
437
438         ASSERT(fsid);
439
440         /* Handle non-split brain cases */
441         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
442                 if (metadata_fsid) {
443                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
444                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
445                                       BTRFS_FSID_SIZE) == 0)
446                                 return fs_devices;
447                 } else {
448                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
449                                 return fs_devices;
450                 }
451         }
452         return NULL;
453 }
454
455 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
456                                 struct btrfs_super_block *disk_super)
457 {
458
459         struct btrfs_fs_devices *fs_devices;
460
461         /*
462          * Handle scanned device having completed its fsid change but
463          * belonging to a fs_devices that was created by first scanning
464          * a device which didn't have its fsid/metadata_uuid changed
465          * at all and the CHANGING_FSID_V2 flag set.
466          */
467         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
468                 if (fs_devices->fsid_change &&
469                     memcmp(disk_super->metadata_uuid, fs_devices->fsid,
470                            BTRFS_FSID_SIZE) == 0 &&
471                     memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
472                            BTRFS_FSID_SIZE) == 0) {
473                         return fs_devices;
474                 }
475         }
476         /*
477          * Handle scanned device having completed its fsid change but
478          * belonging to a fs_devices that was created by a device that
479          * has an outdated pair of fsid/metadata_uuid and
480          * CHANGING_FSID_V2 flag set.
481          */
482         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
483                 if (fs_devices->fsid_change &&
484                     memcmp(fs_devices->metadata_uuid,
485                            fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
486                     memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
487                            BTRFS_FSID_SIZE) == 0) {
488                         return fs_devices;
489                 }
490         }
491
492         return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
493 }
494
495
496 static int
497 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
498                       int flush, struct block_device **bdev,
499                       struct btrfs_super_block **disk_super)
500 {
501         int ret;
502
503         *bdev = blkdev_get_by_path(device_path, flags, holder);
504
505         if (IS_ERR(*bdev)) {
506                 ret = PTR_ERR(*bdev);
507                 goto error;
508         }
509
510         if (flush)
511                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
512         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
513         if (ret) {
514                 blkdev_put(*bdev, flags);
515                 goto error;
516         }
517         invalidate_bdev(*bdev);
518         *disk_super = btrfs_read_dev_super(*bdev);
519         if (IS_ERR(*disk_super)) {
520                 ret = PTR_ERR(*disk_super);
521                 blkdev_put(*bdev, flags);
522                 goto error;
523         }
524
525         return 0;
526
527 error:
528         *bdev = NULL;
529         return ret;
530 }
531
532 static bool device_path_matched(const char *path, struct btrfs_device *device)
533 {
534         int found;
535
536         rcu_read_lock();
537         found = strcmp(rcu_str_deref(device->name), path);
538         rcu_read_unlock();
539
540         return found == 0;
541 }
542
543 /*
544  *  Search and remove all stale (devices which are not mounted) devices.
545  *  When both inputs are NULL, it will search and release all stale devices.
546  *  path:       Optional. When provided will it release all unmounted devices
547  *              matching this path only.
548  *  skip_dev:   Optional. Will skip this device when searching for the stale
549  *              devices.
550  *  Return:     0 for success or if @path is NULL.
551  *              -EBUSY if @path is a mounted device.
552  *              -ENOENT if @path does not match any device in the list.
553  */
554 static int btrfs_free_stale_devices(const char *path,
555                                      struct btrfs_device *skip_device)
556 {
557         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
558         struct btrfs_device *device, *tmp_device;
559         int ret = 0;
560
561         lockdep_assert_held(&uuid_mutex);
562
563         if (path)
564                 ret = -ENOENT;
565
566         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
567
568                 mutex_lock(&fs_devices->device_list_mutex);
569                 list_for_each_entry_safe(device, tmp_device,
570                                          &fs_devices->devices, dev_list) {
571                         if (skip_device && skip_device == device)
572                                 continue;
573                         if (path && !device->name)
574                                 continue;
575                         if (path && !device_path_matched(path, device))
576                                 continue;
577                         if (fs_devices->opened) {
578                                 /* for an already deleted device return 0 */
579                                 if (path && ret != 0)
580                                         ret = -EBUSY;
581                                 break;
582                         }
583
584                         /* delete the stale device */
585                         fs_devices->num_devices--;
586                         list_del(&device->dev_list);
587                         btrfs_free_device(device);
588
589                         ret = 0;
590                 }
591                 mutex_unlock(&fs_devices->device_list_mutex);
592
593                 if (fs_devices->num_devices == 0) {
594                         btrfs_sysfs_remove_fsid(fs_devices);
595                         list_del(&fs_devices->fs_list);
596                         free_fs_devices(fs_devices);
597                 }
598         }
599
600         return ret;
601 }
602
603 /*
604  * This is only used on mount, and we are protected from competing things
605  * messing with our fs_devices by the uuid_mutex, thus we do not need the
606  * fs_devices->device_list_mutex here.
607  */
608 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
609                         struct btrfs_device *device, fmode_t flags,
610                         void *holder)
611 {
612         struct request_queue *q;
613         struct block_device *bdev;
614         struct btrfs_super_block *disk_super;
615         u64 devid;
616         int ret;
617
618         if (device->bdev)
619                 return -EINVAL;
620         if (!device->name)
621                 return -EINVAL;
622
623         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
624                                     &bdev, &disk_super);
625         if (ret)
626                 return ret;
627
628         devid = btrfs_stack_device_id(&disk_super->dev_item);
629         if (devid != device->devid)
630                 goto error_free_page;
631
632         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
633                 goto error_free_page;
634
635         device->generation = btrfs_super_generation(disk_super);
636
637         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
638                 if (btrfs_super_incompat_flags(disk_super) &
639                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
640                         pr_err(
641                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
642                         goto error_free_page;
643                 }
644
645                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
646                 fs_devices->seeding = true;
647         } else {
648                 if (bdev_read_only(bdev))
649                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
650                 else
651                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
652         }
653
654         q = bdev_get_queue(bdev);
655         if (!blk_queue_nonrot(q))
656                 fs_devices->rotating = true;
657
658         device->bdev = bdev;
659         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
660         device->mode = flags;
661
662         fs_devices->open_devices++;
663         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
664             device->devid != BTRFS_DEV_REPLACE_DEVID) {
665                 fs_devices->rw_devices++;
666                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
667         }
668         btrfs_release_disk_super(disk_super);
669
670         return 0;
671
672 error_free_page:
673         btrfs_release_disk_super(disk_super);
674         blkdev_put(bdev, flags);
675
676         return -EINVAL;
677 }
678
679 /*
680  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
681  * being created with a disk that has already completed its fsid change. Such
682  * disk can belong to an fs which has its FSID changed or to one which doesn't.
683  * Handle both cases here.
684  */
685 static struct btrfs_fs_devices *find_fsid_inprogress(
686                                         struct btrfs_super_block *disk_super)
687 {
688         struct btrfs_fs_devices *fs_devices;
689
690         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
691                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
692                            BTRFS_FSID_SIZE) != 0 &&
693                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
694                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
695                         return fs_devices;
696                 }
697         }
698
699         return find_fsid(disk_super->fsid, NULL);
700 }
701
702
703 static struct btrfs_fs_devices *find_fsid_changed(
704                                         struct btrfs_super_block *disk_super)
705 {
706         struct btrfs_fs_devices *fs_devices;
707
708         /*
709          * Handles the case where scanned device is part of an fs that had
710          * multiple successful changes of FSID but currently device didn't
711          * observe it. Meaning our fsid will be different than theirs. We need
712          * to handle two subcases :
713          *  1 - The fs still continues to have different METADATA/FSID uuids.
714          *  2 - The fs is switched back to its original FSID (METADATA/FSID
715          *  are equal).
716          */
717         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
718                 /* Changed UUIDs */
719                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
720                            BTRFS_FSID_SIZE) != 0 &&
721                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
722                            BTRFS_FSID_SIZE) == 0 &&
723                     memcmp(fs_devices->fsid, disk_super->fsid,
724                            BTRFS_FSID_SIZE) != 0)
725                         return fs_devices;
726
727                 /* Unchanged UUIDs */
728                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
729                            BTRFS_FSID_SIZE) == 0 &&
730                     memcmp(fs_devices->fsid, disk_super->metadata_uuid,
731                            BTRFS_FSID_SIZE) == 0)
732                         return fs_devices;
733         }
734
735         return NULL;
736 }
737
738 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
739                                 struct btrfs_super_block *disk_super)
740 {
741         struct btrfs_fs_devices *fs_devices;
742
743         /*
744          * Handle the case where the scanned device is part of an fs whose last
745          * metadata UUID change reverted it to the original FSID. At the same
746          * time * fs_devices was first created by another constitutent device
747          * which didn't fully observe the operation. This results in an
748          * btrfs_fs_devices created with metadata/fsid different AND
749          * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
750          * fs_devices equal to the FSID of the disk.
751          */
752         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
753                 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
754                            BTRFS_FSID_SIZE) != 0 &&
755                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
756                            BTRFS_FSID_SIZE) == 0 &&
757                     fs_devices->fsid_change)
758                         return fs_devices;
759         }
760
761         return NULL;
762 }
763 /*
764  * Add new device to list of registered devices
765  *
766  * Returns:
767  * device pointer which was just added or updated when successful
768  * error pointer when failed
769  */
770 static noinline struct btrfs_device *device_list_add(const char *path,
771                            struct btrfs_super_block *disk_super,
772                            bool *new_device_added)
773 {
774         struct btrfs_device *device;
775         struct btrfs_fs_devices *fs_devices = NULL;
776         struct rcu_string *name;
777         u64 found_transid = btrfs_super_generation(disk_super);
778         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
779         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
780                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
781         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
782                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
783
784         if (fsid_change_in_progress) {
785                 if (!has_metadata_uuid)
786                         fs_devices = find_fsid_inprogress(disk_super);
787                 else
788                         fs_devices = find_fsid_changed(disk_super);
789         } else if (has_metadata_uuid) {
790                 fs_devices = find_fsid_with_metadata_uuid(disk_super);
791         } else {
792                 fs_devices = find_fsid_reverted_metadata(disk_super);
793                 if (!fs_devices)
794                         fs_devices = find_fsid(disk_super->fsid, NULL);
795         }
796
797
798         if (!fs_devices) {
799                 if (has_metadata_uuid)
800                         fs_devices = alloc_fs_devices(disk_super->fsid,
801                                                       disk_super->metadata_uuid);
802                 else
803                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
804
805                 if (IS_ERR(fs_devices))
806                         return ERR_CAST(fs_devices);
807
808                 fs_devices->fsid_change = fsid_change_in_progress;
809
810                 mutex_lock(&fs_devices->device_list_mutex);
811                 list_add(&fs_devices->fs_list, &fs_uuids);
812
813                 device = NULL;
814         } else {
815                 mutex_lock(&fs_devices->device_list_mutex);
816                 device = btrfs_find_device(fs_devices, devid,
817                                 disk_super->dev_item.uuid, NULL);
818
819                 /*
820                  * If this disk has been pulled into an fs devices created by
821                  * a device which had the CHANGING_FSID_V2 flag then replace the
822                  * metadata_uuid/fsid values of the fs_devices.
823                  */
824                 if (fs_devices->fsid_change &&
825                     found_transid > fs_devices->latest_generation) {
826                         memcpy(fs_devices->fsid, disk_super->fsid,
827                                         BTRFS_FSID_SIZE);
828
829                         if (has_metadata_uuid)
830                                 memcpy(fs_devices->metadata_uuid,
831                                        disk_super->metadata_uuid,
832                                        BTRFS_FSID_SIZE);
833                         else
834                                 memcpy(fs_devices->metadata_uuid,
835                                        disk_super->fsid, BTRFS_FSID_SIZE);
836
837                         fs_devices->fsid_change = false;
838                 }
839         }
840
841         if (!device) {
842                 if (fs_devices->opened) {
843                         mutex_unlock(&fs_devices->device_list_mutex);
844                         return ERR_PTR(-EBUSY);
845                 }
846
847                 device = btrfs_alloc_device(NULL, &devid,
848                                             disk_super->dev_item.uuid);
849                 if (IS_ERR(device)) {
850                         mutex_unlock(&fs_devices->device_list_mutex);
851                         /* we can safely leave the fs_devices entry around */
852                         return device;
853                 }
854
855                 name = rcu_string_strdup(path, GFP_NOFS);
856                 if (!name) {
857                         btrfs_free_device(device);
858                         mutex_unlock(&fs_devices->device_list_mutex);
859                         return ERR_PTR(-ENOMEM);
860                 }
861                 rcu_assign_pointer(device->name, name);
862
863                 list_add_rcu(&device->dev_list, &fs_devices->devices);
864                 fs_devices->num_devices++;
865
866                 device->fs_devices = fs_devices;
867                 *new_device_added = true;
868
869                 if (disk_super->label[0])
870                         pr_info(
871         "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
872                                 disk_super->label, devid, found_transid, path,
873                                 current->comm, task_pid_nr(current));
874                 else
875                         pr_info(
876         "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
877                                 disk_super->fsid, devid, found_transid, path,
878                                 current->comm, task_pid_nr(current));
879
880         } else if (!device->name || strcmp(device->name->str, path)) {
881                 /*
882                  * When FS is already mounted.
883                  * 1. If you are here and if the device->name is NULL that
884                  *    means this device was missing at time of FS mount.
885                  * 2. If you are here and if the device->name is different
886                  *    from 'path' that means either
887                  *      a. The same device disappeared and reappeared with
888                  *         different name. or
889                  *      b. The missing-disk-which-was-replaced, has
890                  *         reappeared now.
891                  *
892                  * We must allow 1 and 2a above. But 2b would be a spurious
893                  * and unintentional.
894                  *
895                  * Further in case of 1 and 2a above, the disk at 'path'
896                  * would have missed some transaction when it was away and
897                  * in case of 2a the stale bdev has to be updated as well.
898                  * 2b must not be allowed at all time.
899                  */
900
901                 /*
902                  * For now, we do allow update to btrfs_fs_device through the
903                  * btrfs dev scan cli after FS has been mounted.  We're still
904                  * tracking a problem where systems fail mount by subvolume id
905                  * when we reject replacement on a mounted FS.
906                  */
907                 if (!fs_devices->opened && found_transid < device->generation) {
908                         /*
909                          * That is if the FS is _not_ mounted and if you
910                          * are here, that means there is more than one
911                          * disk with same uuid and devid.We keep the one
912                          * with larger generation number or the last-in if
913                          * generation are equal.
914                          */
915                         mutex_unlock(&fs_devices->device_list_mutex);
916                         return ERR_PTR(-EEXIST);
917                 }
918
919                 /*
920                  * We are going to replace the device path for a given devid,
921                  * make sure it's the same device if the device is mounted
922                  */
923                 if (device->bdev) {
924                         int error;
925                         dev_t path_dev;
926
927                         error = lookup_bdev(path, &path_dev);
928                         if (error) {
929                                 mutex_unlock(&fs_devices->device_list_mutex);
930                                 return ERR_PTR(error);
931                         }
932
933                         if (device->bdev->bd_dev != path_dev) {
934                                 mutex_unlock(&fs_devices->device_list_mutex);
935                                 /*
936                                  * device->fs_info may not be reliable here, so
937                                  * pass in a NULL instead. This avoids a
938                                  * possible use-after-free when the fs_info and
939                                  * fs_info->sb are already torn down.
940                                  */
941                                 btrfs_warn_in_rcu(NULL,
942         "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
943                                                   path, devid, found_transid,
944                                                   current->comm,
945                                                   task_pid_nr(current));
946                                 return ERR_PTR(-EEXIST);
947                         }
948                         btrfs_info_in_rcu(device->fs_info,
949         "devid %llu device path %s changed to %s scanned by %s (%d)",
950                                           devid, rcu_str_deref(device->name),
951                                           path, current->comm,
952                                           task_pid_nr(current));
953                 }
954
955                 name = rcu_string_strdup(path, GFP_NOFS);
956                 if (!name) {
957                         mutex_unlock(&fs_devices->device_list_mutex);
958                         return ERR_PTR(-ENOMEM);
959                 }
960                 rcu_string_free(device->name);
961                 rcu_assign_pointer(device->name, name);
962                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
963                         fs_devices->missing_devices--;
964                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
965                 }
966         }
967
968         /*
969          * Unmount does not free the btrfs_device struct but would zero
970          * generation along with most of the other members. So just update
971          * it back. We need it to pick the disk with largest generation
972          * (as above).
973          */
974         if (!fs_devices->opened) {
975                 device->generation = found_transid;
976                 fs_devices->latest_generation = max_t(u64, found_transid,
977                                                 fs_devices->latest_generation);
978         }
979
980         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
981
982         mutex_unlock(&fs_devices->device_list_mutex);
983         return device;
984 }
985
986 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
987 {
988         struct btrfs_fs_devices *fs_devices;
989         struct btrfs_device *device;
990         struct btrfs_device *orig_dev;
991         int ret = 0;
992
993         lockdep_assert_held(&uuid_mutex);
994
995         fs_devices = alloc_fs_devices(orig->fsid, NULL);
996         if (IS_ERR(fs_devices))
997                 return fs_devices;
998
999         fs_devices->total_devices = orig->total_devices;
1000
1001         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1002                 struct rcu_string *name;
1003
1004                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005                                             orig_dev->uuid);
1006                 if (IS_ERR(device)) {
1007                         ret = PTR_ERR(device);
1008                         goto error;
1009                 }
1010
1011                 /*
1012                  * This is ok to do without rcu read locked because we hold the
1013                  * uuid mutex so nothing we touch in here is going to disappear.
1014                  */
1015                 if (orig_dev->name) {
1016                         name = rcu_string_strdup(orig_dev->name->str,
1017                                         GFP_KERNEL);
1018                         if (!name) {
1019                                 btrfs_free_device(device);
1020                                 ret = -ENOMEM;
1021                                 goto error;
1022                         }
1023                         rcu_assign_pointer(device->name, name);
1024                 }
1025
1026                 list_add(&device->dev_list, &fs_devices->devices);
1027                 device->fs_devices = fs_devices;
1028                 fs_devices->num_devices++;
1029         }
1030         return fs_devices;
1031 error:
1032         free_fs_devices(fs_devices);
1033         return ERR_PTR(ret);
1034 }
1035
1036 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1037                                       struct btrfs_device **latest_dev)
1038 {
1039         struct btrfs_device *device, *next;
1040
1041         /* This is the initialized path, it is safe to release the devices. */
1042         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1043                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1044                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1045                                       &device->dev_state) &&
1046                             !test_bit(BTRFS_DEV_STATE_MISSING,
1047                                       &device->dev_state) &&
1048                             (!*latest_dev ||
1049                              device->generation > (*latest_dev)->generation)) {
1050                                 *latest_dev = device;
1051                         }
1052                         continue;
1053                 }
1054
1055                 /*
1056                  * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1057                  * in btrfs_init_dev_replace() so just continue.
1058                  */
1059                 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1060                         continue;
1061
1062                 if (device->bdev) {
1063                         blkdev_put(device->bdev, device->mode);
1064                         device->bdev = NULL;
1065                         fs_devices->open_devices--;
1066                 }
1067                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1068                         list_del_init(&device->dev_alloc_list);
1069                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1070                         fs_devices->rw_devices--;
1071                 }
1072                 list_del_init(&device->dev_list);
1073                 fs_devices->num_devices--;
1074                 btrfs_free_device(device);
1075         }
1076
1077 }
1078
1079 /*
1080  * After we have read the system tree and know devids belonging to this
1081  * filesystem, remove the device which does not belong there.
1082  */
1083 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1084 {
1085         struct btrfs_device *latest_dev = NULL;
1086         struct btrfs_fs_devices *seed_dev;
1087
1088         mutex_lock(&uuid_mutex);
1089         __btrfs_free_extra_devids(fs_devices, &latest_dev);
1090
1091         list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1092                 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1093
1094         fs_devices->latest_bdev = latest_dev->bdev;
1095
1096         mutex_unlock(&uuid_mutex);
1097 }
1098
1099 static void btrfs_close_bdev(struct btrfs_device *device)
1100 {
1101         if (!device->bdev)
1102                 return;
1103
1104         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1105                 sync_blockdev(device->bdev);
1106                 invalidate_bdev(device->bdev);
1107         }
1108
1109         blkdev_put(device->bdev, device->mode);
1110 }
1111
1112 static void btrfs_close_one_device(struct btrfs_device *device)
1113 {
1114         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1115
1116         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1117             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1118                 list_del_init(&device->dev_alloc_list);
1119                 fs_devices->rw_devices--;
1120         }
1121
1122         if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1123                 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1124
1125         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1126                 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1127                 fs_devices->missing_devices--;
1128         }
1129
1130         btrfs_close_bdev(device);
1131         if (device->bdev) {
1132                 fs_devices->open_devices--;
1133                 device->bdev = NULL;
1134         }
1135         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1136         btrfs_destroy_dev_zone_info(device);
1137
1138         device->fs_info = NULL;
1139         atomic_set(&device->dev_stats_ccnt, 0);
1140         extent_io_tree_release(&device->alloc_state);
1141
1142         /*
1143          * Reset the flush error record. We might have a transient flush error
1144          * in this mount, and if so we aborted the current transaction and set
1145          * the fs to an error state, guaranteeing no super blocks can be further
1146          * committed. However that error might be transient and if we unmount the
1147          * filesystem and mount it again, we should allow the mount to succeed
1148          * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1149          * filesystem again we still get flush errors, then we will again abort
1150          * any transaction and set the error state, guaranteeing no commits of
1151          * unsafe super blocks.
1152          */
1153         device->last_flush_error = 0;
1154
1155         /* Verify the device is back in a pristine state  */
1156         ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1157         ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1158         ASSERT(list_empty(&device->dev_alloc_list));
1159         ASSERT(list_empty(&device->post_commit_list));
1160         ASSERT(atomic_read(&device->reada_in_flight) == 0);
1161 }
1162
1163 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1164 {
1165         struct btrfs_device *device, *tmp;
1166
1167         lockdep_assert_held(&uuid_mutex);
1168
1169         if (--fs_devices->opened > 0)
1170                 return;
1171
1172         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1173                 btrfs_close_one_device(device);
1174
1175         WARN_ON(fs_devices->open_devices);
1176         WARN_ON(fs_devices->rw_devices);
1177         fs_devices->opened = 0;
1178         fs_devices->seeding = false;
1179         fs_devices->fs_info = NULL;
1180 }
1181
1182 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1183 {
1184         LIST_HEAD(list);
1185         struct btrfs_fs_devices *tmp;
1186
1187         mutex_lock(&uuid_mutex);
1188         close_fs_devices(fs_devices);
1189         if (!fs_devices->opened)
1190                 list_splice_init(&fs_devices->seed_list, &list);
1191
1192         list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1193                 close_fs_devices(fs_devices);
1194                 list_del(&fs_devices->seed_list);
1195                 free_fs_devices(fs_devices);
1196         }
1197         mutex_unlock(&uuid_mutex);
1198 }
1199
1200 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1201                                 fmode_t flags, void *holder)
1202 {
1203         struct btrfs_device *device;
1204         struct btrfs_device *latest_dev = NULL;
1205         struct btrfs_device *tmp_device;
1206
1207         flags |= FMODE_EXCL;
1208
1209         list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1210                                  dev_list) {
1211                 int ret;
1212
1213                 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1214                 if (ret == 0 &&
1215                     (!latest_dev || device->generation > latest_dev->generation)) {
1216                         latest_dev = device;
1217                 } else if (ret == -ENODATA) {
1218                         fs_devices->num_devices--;
1219                         list_del(&device->dev_list);
1220                         btrfs_free_device(device);
1221                 }
1222         }
1223         if (fs_devices->open_devices == 0)
1224                 return -EINVAL;
1225
1226         fs_devices->opened = 1;
1227         fs_devices->latest_bdev = latest_dev->bdev;
1228         fs_devices->total_rw_bytes = 0;
1229         fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1230         fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1231
1232         return 0;
1233 }
1234
1235 static int devid_cmp(void *priv, const struct list_head *a,
1236                      const struct list_head *b)
1237 {
1238         const struct btrfs_device *dev1, *dev2;
1239
1240         dev1 = list_entry(a, struct btrfs_device, dev_list);
1241         dev2 = list_entry(b, struct btrfs_device, dev_list);
1242
1243         if (dev1->devid < dev2->devid)
1244                 return -1;
1245         else if (dev1->devid > dev2->devid)
1246                 return 1;
1247         return 0;
1248 }
1249
1250 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1251                        fmode_t flags, void *holder)
1252 {
1253         int ret;
1254
1255         lockdep_assert_held(&uuid_mutex);
1256         /*
1257          * The device_list_mutex cannot be taken here in case opening the
1258          * underlying device takes further locks like open_mutex.
1259          *
1260          * We also don't need the lock here as this is called during mount and
1261          * exclusion is provided by uuid_mutex
1262          */
1263
1264         if (fs_devices->opened) {
1265                 fs_devices->opened++;
1266                 ret = 0;
1267         } else {
1268                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1269                 ret = open_fs_devices(fs_devices, flags, holder);
1270         }
1271
1272         return ret;
1273 }
1274
1275 void btrfs_release_disk_super(struct btrfs_super_block *super)
1276 {
1277         struct page *page = virt_to_page(super);
1278
1279         put_page(page);
1280 }
1281
1282 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1283                                                        u64 bytenr, u64 bytenr_orig)
1284 {
1285         struct btrfs_super_block *disk_super;
1286         struct page *page;
1287         void *p;
1288         pgoff_t index;
1289
1290         /* make sure our super fits in the device */
1291         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1292                 return ERR_PTR(-EINVAL);
1293
1294         /* make sure our super fits in the page */
1295         if (sizeof(*disk_super) > PAGE_SIZE)
1296                 return ERR_PTR(-EINVAL);
1297
1298         /* make sure our super doesn't straddle pages on disk */
1299         index = bytenr >> PAGE_SHIFT;
1300         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1301                 return ERR_PTR(-EINVAL);
1302
1303         /* pull in the page with our super */
1304         page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1305
1306         if (IS_ERR(page))
1307                 return ERR_CAST(page);
1308
1309         p = page_address(page);
1310
1311         /* align our pointer to the offset of the super block */
1312         disk_super = p + offset_in_page(bytenr);
1313
1314         if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1315             btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1316                 btrfs_release_disk_super(p);
1317                 return ERR_PTR(-EINVAL);
1318         }
1319
1320         if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1321                 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1322
1323         return disk_super;
1324 }
1325
1326 int btrfs_forget_devices(const char *path)
1327 {
1328         int ret;
1329
1330         mutex_lock(&uuid_mutex);
1331         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1332         mutex_unlock(&uuid_mutex);
1333
1334         return ret;
1335 }
1336
1337 /*
1338  * Look for a btrfs signature on a device. This may be called out of the mount path
1339  * and we are not allowed to call set_blocksize during the scan. The superblock
1340  * is read via pagecache
1341  */
1342 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1343                                            void *holder)
1344 {
1345         struct btrfs_super_block *disk_super;
1346         bool new_device_added = false;
1347         struct btrfs_device *device = NULL;
1348         struct block_device *bdev;
1349         u64 bytenr, bytenr_orig;
1350         int ret;
1351
1352         lockdep_assert_held(&uuid_mutex);
1353
1354         /*
1355          * we would like to check all the supers, but that would make
1356          * a btrfs mount succeed after a mkfs from a different FS.
1357          * So, we need to add a special mount option to scan for
1358          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1359          */
1360         flags |= FMODE_EXCL;
1361
1362         bdev = blkdev_get_by_path(path, flags, holder);
1363         if (IS_ERR(bdev))
1364                 return ERR_CAST(bdev);
1365
1366         bytenr_orig = btrfs_sb_offset(0);
1367         ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1368         if (ret)
1369                 return ERR_PTR(ret);
1370
1371         disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1372         if (IS_ERR(disk_super)) {
1373                 device = ERR_CAST(disk_super);
1374                 goto error_bdev_put;
1375         }
1376
1377         device = device_list_add(path, disk_super, &new_device_added);
1378         if (!IS_ERR(device)) {
1379                 if (new_device_added)
1380                         btrfs_free_stale_devices(path, device);
1381         }
1382
1383         btrfs_release_disk_super(disk_super);
1384
1385 error_bdev_put:
1386         blkdev_put(bdev, flags);
1387
1388         return device;
1389 }
1390
1391 /*
1392  * Try to find a chunk that intersects [start, start + len] range and when one
1393  * such is found, record the end of it in *start
1394  */
1395 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1396                                     u64 len)
1397 {
1398         u64 physical_start, physical_end;
1399
1400         lockdep_assert_held(&device->fs_info->chunk_mutex);
1401
1402         if (!find_first_extent_bit(&device->alloc_state, *start,
1403                                    &physical_start, &physical_end,
1404                                    CHUNK_ALLOCATED, NULL)) {
1405
1406                 if (in_range(physical_start, *start, len) ||
1407                     in_range(*start, physical_start,
1408                              physical_end - physical_start)) {
1409                         *start = physical_end + 1;
1410                         return true;
1411                 }
1412         }
1413         return false;
1414 }
1415
1416 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1417 {
1418         switch (device->fs_devices->chunk_alloc_policy) {
1419         case BTRFS_CHUNK_ALLOC_REGULAR:
1420                 /*
1421                  * We don't want to overwrite the superblock on the drive nor
1422                  * any area used by the boot loader (grub for example), so we
1423                  * make sure to start at an offset of at least 1MB.
1424                  */
1425                 return max_t(u64, start, SZ_1M);
1426         case BTRFS_CHUNK_ALLOC_ZONED:
1427                 /*
1428                  * We don't care about the starting region like regular
1429                  * allocator, because we anyway use/reserve the first two zones
1430                  * for superblock logging.
1431                  */
1432                 return ALIGN(start, device->zone_info->zone_size);
1433         default:
1434                 BUG();
1435         }
1436 }
1437
1438 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1439                                         u64 *hole_start, u64 *hole_size,
1440                                         u64 num_bytes)
1441 {
1442         u64 zone_size = device->zone_info->zone_size;
1443         u64 pos;
1444         int ret;
1445         bool changed = false;
1446
1447         ASSERT(IS_ALIGNED(*hole_start, zone_size));
1448
1449         while (*hole_size > 0) {
1450                 pos = btrfs_find_allocatable_zones(device, *hole_start,
1451                                                    *hole_start + *hole_size,
1452                                                    num_bytes);
1453                 if (pos != *hole_start) {
1454                         *hole_size = *hole_start + *hole_size - pos;
1455                         *hole_start = pos;
1456                         changed = true;
1457                         if (*hole_size < num_bytes)
1458                                 break;
1459                 }
1460
1461                 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1462
1463                 /* Range is ensured to be empty */
1464                 if (!ret)
1465                         return changed;
1466
1467                 /* Given hole range was invalid (outside of device) */
1468                 if (ret == -ERANGE) {
1469                         *hole_start += *hole_size;
1470                         *hole_size = 0;
1471                         return true;
1472                 }
1473
1474                 *hole_start += zone_size;
1475                 *hole_size -= zone_size;
1476                 changed = true;
1477         }
1478
1479         return changed;
1480 }
1481
1482 /**
1483  * dev_extent_hole_check - check if specified hole is suitable for allocation
1484  * @device:     the device which we have the hole
1485  * @hole_start: starting position of the hole
1486  * @hole_size:  the size of the hole
1487  * @num_bytes:  the size of the free space that we need
1488  *
1489  * This function may modify @hole_start and @hole_size to reflect the suitable
1490  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1491  */
1492 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1493                                   u64 *hole_size, u64 num_bytes)
1494 {
1495         bool changed = false;
1496         u64 hole_end = *hole_start + *hole_size;
1497
1498         for (;;) {
1499                 /*
1500                  * Check before we set max_hole_start, otherwise we could end up
1501                  * sending back this offset anyway.
1502                  */
1503                 if (contains_pending_extent(device, hole_start, *hole_size)) {
1504                         if (hole_end >= *hole_start)
1505                                 *hole_size = hole_end - *hole_start;
1506                         else
1507                                 *hole_size = 0;
1508                         changed = true;
1509                 }
1510
1511                 switch (device->fs_devices->chunk_alloc_policy) {
1512                 case BTRFS_CHUNK_ALLOC_REGULAR:
1513                         /* No extra check */
1514                         break;
1515                 case BTRFS_CHUNK_ALLOC_ZONED:
1516                         if (dev_extent_hole_check_zoned(device, hole_start,
1517                                                         hole_size, num_bytes)) {
1518                                 changed = true;
1519                                 /*
1520                                  * The changed hole can contain pending extent.
1521                                  * Loop again to check that.
1522                                  */
1523                                 continue;
1524                         }
1525                         break;
1526                 default:
1527                         BUG();
1528                 }
1529
1530                 break;
1531         }
1532
1533         return changed;
1534 }
1535
1536 /*
1537  * find_free_dev_extent_start - find free space in the specified device
1538  * @device:       the device which we search the free space in
1539  * @num_bytes:    the size of the free space that we need
1540  * @search_start: the position from which to begin the search
1541  * @start:        store the start of the free space.
1542  * @len:          the size of the free space. that we find, or the size
1543  *                of the max free space if we don't find suitable free space
1544  *
1545  * this uses a pretty simple search, the expectation is that it is
1546  * called very infrequently and that a given device has a small number
1547  * of extents
1548  *
1549  * @start is used to store the start of the free space if we find. But if we
1550  * don't find suitable free space, it will be used to store the start position
1551  * of the max free space.
1552  *
1553  * @len is used to store the size of the free space that we find.
1554  * But if we don't find suitable free space, it is used to store the size of
1555  * the max free space.
1556  *
1557  * NOTE: This function will search *commit* root of device tree, and does extra
1558  * check to ensure dev extents are not double allocated.
1559  * This makes the function safe to allocate dev extents but may not report
1560  * correct usable device space, as device extent freed in current transaction
1561  * is not reported as available.
1562  */
1563 static int find_free_dev_extent_start(struct btrfs_device *device,
1564                                 u64 num_bytes, u64 search_start, u64 *start,
1565                                 u64 *len)
1566 {
1567         struct btrfs_fs_info *fs_info = device->fs_info;
1568         struct btrfs_root *root = fs_info->dev_root;
1569         struct btrfs_key key;
1570         struct btrfs_dev_extent *dev_extent;
1571         struct btrfs_path *path;
1572         u64 hole_size;
1573         u64 max_hole_start;
1574         u64 max_hole_size;
1575         u64 extent_end;
1576         u64 search_end = device->total_bytes;
1577         int ret;
1578         int slot;
1579         struct extent_buffer *l;
1580
1581         search_start = dev_extent_search_start(device, search_start);
1582
1583         WARN_ON(device->zone_info &&
1584                 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1585
1586         path = btrfs_alloc_path();
1587         if (!path)
1588                 return -ENOMEM;
1589
1590         max_hole_start = search_start;
1591         max_hole_size = 0;
1592
1593 again:
1594         if (search_start >= search_end ||
1595                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1596                 ret = -ENOSPC;
1597                 goto out;
1598         }
1599
1600         path->reada = READA_FORWARD;
1601         path->search_commit_root = 1;
1602         path->skip_locking = 1;
1603
1604         key.objectid = device->devid;
1605         key.offset = search_start;
1606         key.type = BTRFS_DEV_EXTENT_KEY;
1607
1608         ret = btrfs_search_backwards(root, &key, path);
1609         if (ret < 0)
1610                 goto out;
1611
1612         while (1) {
1613                 l = path->nodes[0];
1614                 slot = path->slots[0];
1615                 if (slot >= btrfs_header_nritems(l)) {
1616                         ret = btrfs_next_leaf(root, path);
1617                         if (ret == 0)
1618                                 continue;
1619                         if (ret < 0)
1620                                 goto out;
1621
1622                         break;
1623                 }
1624                 btrfs_item_key_to_cpu(l, &key, slot);
1625
1626                 if (key.objectid < device->devid)
1627                         goto next;
1628
1629                 if (key.objectid > device->devid)
1630                         break;
1631
1632                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1633                         goto next;
1634
1635                 if (key.offset > search_start) {
1636                         hole_size = key.offset - search_start;
1637                         dev_extent_hole_check(device, &search_start, &hole_size,
1638                                               num_bytes);
1639
1640                         if (hole_size > max_hole_size) {
1641                                 max_hole_start = search_start;
1642                                 max_hole_size = hole_size;
1643                         }
1644
1645                         /*
1646                          * If this free space is greater than which we need,
1647                          * it must be the max free space that we have found
1648                          * until now, so max_hole_start must point to the start
1649                          * of this free space and the length of this free space
1650                          * is stored in max_hole_size. Thus, we return
1651                          * max_hole_start and max_hole_size and go back to the
1652                          * caller.
1653                          */
1654                         if (hole_size >= num_bytes) {
1655                                 ret = 0;
1656                                 goto out;
1657                         }
1658                 }
1659
1660                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1661                 extent_end = key.offset + btrfs_dev_extent_length(l,
1662                                                                   dev_extent);
1663                 if (extent_end > search_start)
1664                         search_start = extent_end;
1665 next:
1666                 path->slots[0]++;
1667                 cond_resched();
1668         }
1669
1670         /*
1671          * At this point, search_start should be the end of
1672          * allocated dev extents, and when shrinking the device,
1673          * search_end may be smaller than search_start.
1674          */
1675         if (search_end > search_start) {
1676                 hole_size = search_end - search_start;
1677                 if (dev_extent_hole_check(device, &search_start, &hole_size,
1678                                           num_bytes)) {
1679                         btrfs_release_path(path);
1680                         goto again;
1681                 }
1682
1683                 if (hole_size > max_hole_size) {
1684                         max_hole_start = search_start;
1685                         max_hole_size = hole_size;
1686                 }
1687         }
1688
1689         /* See above. */
1690         if (max_hole_size < num_bytes)
1691                 ret = -ENOSPC;
1692         else
1693                 ret = 0;
1694
1695 out:
1696         btrfs_free_path(path);
1697         *start = max_hole_start;
1698         if (len)
1699                 *len = max_hole_size;
1700         return ret;
1701 }
1702
1703 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1704                          u64 *start, u64 *len)
1705 {
1706         /* FIXME use last free of some kind */
1707         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1708 }
1709
1710 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1711                           struct btrfs_device *device,
1712                           u64 start, u64 *dev_extent_len)
1713 {
1714         struct btrfs_fs_info *fs_info = device->fs_info;
1715         struct btrfs_root *root = fs_info->dev_root;
1716         int ret;
1717         struct btrfs_path *path;
1718         struct btrfs_key key;
1719         struct btrfs_key found_key;
1720         struct extent_buffer *leaf = NULL;
1721         struct btrfs_dev_extent *extent = NULL;
1722
1723         path = btrfs_alloc_path();
1724         if (!path)
1725                 return -ENOMEM;
1726
1727         key.objectid = device->devid;
1728         key.offset = start;
1729         key.type = BTRFS_DEV_EXTENT_KEY;
1730 again:
1731         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1732         if (ret > 0) {
1733                 ret = btrfs_previous_item(root, path, key.objectid,
1734                                           BTRFS_DEV_EXTENT_KEY);
1735                 if (ret)
1736                         goto out;
1737                 leaf = path->nodes[0];
1738                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1739                 extent = btrfs_item_ptr(leaf, path->slots[0],
1740                                         struct btrfs_dev_extent);
1741                 BUG_ON(found_key.offset > start || found_key.offset +
1742                        btrfs_dev_extent_length(leaf, extent) < start);
1743                 key = found_key;
1744                 btrfs_release_path(path);
1745                 goto again;
1746         } else if (ret == 0) {
1747                 leaf = path->nodes[0];
1748                 extent = btrfs_item_ptr(leaf, path->slots[0],
1749                                         struct btrfs_dev_extent);
1750         } else {
1751                 goto out;
1752         }
1753
1754         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1755
1756         ret = btrfs_del_item(trans, root, path);
1757         if (ret == 0)
1758                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1759 out:
1760         btrfs_free_path(path);
1761         return ret;
1762 }
1763
1764 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1765 {
1766         struct extent_map_tree *em_tree;
1767         struct extent_map *em;
1768         struct rb_node *n;
1769         u64 ret = 0;
1770
1771         em_tree = &fs_info->mapping_tree;
1772         read_lock(&em_tree->lock);
1773         n = rb_last(&em_tree->map.rb_root);
1774         if (n) {
1775                 em = rb_entry(n, struct extent_map, rb_node);
1776                 ret = em->start + em->len;
1777         }
1778         read_unlock(&em_tree->lock);
1779
1780         return ret;
1781 }
1782
1783 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1784                                     u64 *devid_ret)
1785 {
1786         int ret;
1787         struct btrfs_key key;
1788         struct btrfs_key found_key;
1789         struct btrfs_path *path;
1790
1791         path = btrfs_alloc_path();
1792         if (!path)
1793                 return -ENOMEM;
1794
1795         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1796         key.type = BTRFS_DEV_ITEM_KEY;
1797         key.offset = (u64)-1;
1798
1799         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1800         if (ret < 0)
1801                 goto error;
1802
1803         if (ret == 0) {
1804                 /* Corruption */
1805                 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1806                 ret = -EUCLEAN;
1807                 goto error;
1808         }
1809
1810         ret = btrfs_previous_item(fs_info->chunk_root, path,
1811                                   BTRFS_DEV_ITEMS_OBJECTID,
1812                                   BTRFS_DEV_ITEM_KEY);
1813         if (ret) {
1814                 *devid_ret = 1;
1815         } else {
1816                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1817                                       path->slots[0]);
1818                 *devid_ret = found_key.offset + 1;
1819         }
1820         ret = 0;
1821 error:
1822         btrfs_free_path(path);
1823         return ret;
1824 }
1825
1826 /*
1827  * the device information is stored in the chunk root
1828  * the btrfs_device struct should be fully filled in
1829  */
1830 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1831                             struct btrfs_device *device)
1832 {
1833         int ret;
1834         struct btrfs_path *path;
1835         struct btrfs_dev_item *dev_item;
1836         struct extent_buffer *leaf;
1837         struct btrfs_key key;
1838         unsigned long ptr;
1839
1840         path = btrfs_alloc_path();
1841         if (!path)
1842                 return -ENOMEM;
1843
1844         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1845         key.type = BTRFS_DEV_ITEM_KEY;
1846         key.offset = device->devid;
1847
1848         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1849                                       &key, sizeof(*dev_item));
1850         if (ret)
1851                 goto out;
1852
1853         leaf = path->nodes[0];
1854         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1855
1856         btrfs_set_device_id(leaf, dev_item, device->devid);
1857         btrfs_set_device_generation(leaf, dev_item, 0);
1858         btrfs_set_device_type(leaf, dev_item, device->type);
1859         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1860         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1861         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1862         btrfs_set_device_total_bytes(leaf, dev_item,
1863                                      btrfs_device_get_disk_total_bytes(device));
1864         btrfs_set_device_bytes_used(leaf, dev_item,
1865                                     btrfs_device_get_bytes_used(device));
1866         btrfs_set_device_group(leaf, dev_item, 0);
1867         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1868         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1869         btrfs_set_device_start_offset(leaf, dev_item, 0);
1870
1871         ptr = btrfs_device_uuid(dev_item);
1872         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1873         ptr = btrfs_device_fsid(dev_item);
1874         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1875                             ptr, BTRFS_FSID_SIZE);
1876         btrfs_mark_buffer_dirty(leaf);
1877
1878         ret = 0;
1879 out:
1880         btrfs_free_path(path);
1881         return ret;
1882 }
1883
1884 /*
1885  * Function to update ctime/mtime for a given device path.
1886  * Mainly used for ctime/mtime based probe like libblkid.
1887  */
1888 static void update_dev_time(struct block_device *bdev)
1889 {
1890         struct inode *inode = bdev->bd_inode;
1891         struct timespec64 now;
1892
1893         /* Shouldn't happen but just in case. */
1894         if (!inode)
1895                 return;
1896
1897         now = current_time(inode);
1898         generic_update_time(inode, &now, S_MTIME | S_CTIME);
1899 }
1900
1901 static int btrfs_rm_dev_item(struct btrfs_device *device)
1902 {
1903         struct btrfs_root *root = device->fs_info->chunk_root;
1904         int ret;
1905         struct btrfs_path *path;
1906         struct btrfs_key key;
1907         struct btrfs_trans_handle *trans;
1908
1909         path = btrfs_alloc_path();
1910         if (!path)
1911                 return -ENOMEM;
1912
1913         trans = btrfs_start_transaction(root, 0);
1914         if (IS_ERR(trans)) {
1915                 btrfs_free_path(path);
1916                 return PTR_ERR(trans);
1917         }
1918         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1919         key.type = BTRFS_DEV_ITEM_KEY;
1920         key.offset = device->devid;
1921
1922         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1923         if (ret) {
1924                 if (ret > 0)
1925                         ret = -ENOENT;
1926                 btrfs_abort_transaction(trans, ret);
1927                 btrfs_end_transaction(trans);
1928                 goto out;
1929         }
1930
1931         ret = btrfs_del_item(trans, root, path);
1932         if (ret) {
1933                 btrfs_abort_transaction(trans, ret);
1934                 btrfs_end_transaction(trans);
1935         }
1936
1937 out:
1938         btrfs_free_path(path);
1939         if (!ret)
1940                 ret = btrfs_commit_transaction(trans);
1941         return ret;
1942 }
1943
1944 /*
1945  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1946  * filesystem. It's up to the caller to adjust that number regarding eg. device
1947  * replace.
1948  */
1949 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1950                 u64 num_devices)
1951 {
1952         u64 all_avail;
1953         unsigned seq;
1954         int i;
1955
1956         do {
1957                 seq = read_seqbegin(&fs_info->profiles_lock);
1958
1959                 all_avail = fs_info->avail_data_alloc_bits |
1960                             fs_info->avail_system_alloc_bits |
1961                             fs_info->avail_metadata_alloc_bits;
1962         } while (read_seqretry(&fs_info->profiles_lock, seq));
1963
1964         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1965                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1966                         continue;
1967
1968                 if (num_devices < btrfs_raid_array[i].devs_min)
1969                         return btrfs_raid_array[i].mindev_error;
1970         }
1971
1972         return 0;
1973 }
1974
1975 static struct btrfs_device * btrfs_find_next_active_device(
1976                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1977 {
1978         struct btrfs_device *next_device;
1979
1980         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1981                 if (next_device != device &&
1982                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1983                     && next_device->bdev)
1984                         return next_device;
1985         }
1986
1987         return NULL;
1988 }
1989
1990 /*
1991  * Helper function to check if the given device is part of s_bdev / latest_bdev
1992  * and replace it with the provided or the next active device, in the context
1993  * where this function called, there should be always be another device (or
1994  * this_dev) which is active.
1995  */
1996 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1997                                             struct btrfs_device *next_device)
1998 {
1999         struct btrfs_fs_info *fs_info = device->fs_info;
2000
2001         if (!next_device)
2002                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2003                                                             device);
2004         ASSERT(next_device);
2005
2006         if (fs_info->sb->s_bdev &&
2007                         (fs_info->sb->s_bdev == device->bdev))
2008                 fs_info->sb->s_bdev = next_device->bdev;
2009
2010         if (fs_info->fs_devices->latest_bdev == device->bdev)
2011                 fs_info->fs_devices->latest_bdev = next_device->bdev;
2012 }
2013
2014 /*
2015  * Return btrfs_fs_devices::num_devices excluding the device that's being
2016  * currently replaced.
2017  */
2018 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2019 {
2020         u64 num_devices = fs_info->fs_devices->num_devices;
2021
2022         down_read(&fs_info->dev_replace.rwsem);
2023         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2024                 ASSERT(num_devices > 1);
2025                 num_devices--;
2026         }
2027         up_read(&fs_info->dev_replace.rwsem);
2028
2029         return num_devices;
2030 }
2031
2032 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2033                                struct block_device *bdev,
2034                                const char *device_path)
2035 {
2036         struct btrfs_super_block *disk_super;
2037         int copy_num;
2038
2039         if (!bdev)
2040                 return;
2041
2042         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2043                 struct page *page;
2044                 int ret;
2045
2046                 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2047                 if (IS_ERR(disk_super))
2048                         continue;
2049
2050                 if (bdev_is_zoned(bdev)) {
2051                         btrfs_reset_sb_log_zones(bdev, copy_num);
2052                         continue;
2053                 }
2054
2055                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2056
2057                 page = virt_to_page(disk_super);
2058                 set_page_dirty(page);
2059                 lock_page(page);
2060                 /* write_on_page() unlocks the page */
2061                 ret = write_one_page(page);
2062                 if (ret)
2063                         btrfs_warn(fs_info,
2064                                 "error clearing superblock number %d (%d)",
2065                                 copy_num, ret);
2066                 btrfs_release_disk_super(disk_super);
2067
2068         }
2069
2070         /* Notify udev that device has changed */
2071         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2072
2073         /* Update ctime/mtime for device path for libblkid */
2074         update_dev_time(bdev);
2075 }
2076
2077 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2078                     u64 devid, struct block_device **bdev, fmode_t *mode)
2079 {
2080         struct btrfs_device *device;
2081         struct btrfs_fs_devices *cur_devices;
2082         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2083         u64 num_devices;
2084         int ret = 0;
2085
2086         /*
2087          * The device list in fs_devices is accessed without locks (neither
2088          * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2089          * filesystem and another device rm cannot run.
2090          */
2091         num_devices = btrfs_num_devices(fs_info);
2092
2093         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2094         if (ret)
2095                 goto out;
2096
2097         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2098
2099         if (IS_ERR(device)) {
2100                 if (PTR_ERR(device) == -ENOENT &&
2101                     device_path && strcmp(device_path, "missing") == 0)
2102                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2103                 else
2104                         ret = PTR_ERR(device);
2105                 goto out;
2106         }
2107
2108         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2109                 btrfs_warn_in_rcu(fs_info,
2110                   "cannot remove device %s (devid %llu) due to active swapfile",
2111                                   rcu_str_deref(device->name), device->devid);
2112                 ret = -ETXTBSY;
2113                 goto out;
2114         }
2115
2116         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2117                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2118                 goto out;
2119         }
2120
2121         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2122             fs_info->fs_devices->rw_devices == 1) {
2123                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2124                 goto out;
2125         }
2126
2127         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2128                 mutex_lock(&fs_info->chunk_mutex);
2129                 list_del_init(&device->dev_alloc_list);
2130                 device->fs_devices->rw_devices--;
2131                 mutex_unlock(&fs_info->chunk_mutex);
2132         }
2133
2134         ret = btrfs_shrink_device(device, 0);
2135         if (!ret)
2136                 btrfs_reada_remove_dev(device);
2137         if (ret)
2138                 goto error_undo;
2139
2140         /*
2141          * TODO: the superblock still includes this device in its num_devices
2142          * counter although write_all_supers() is not locked out. This
2143          * could give a filesystem state which requires a degraded mount.
2144          */
2145         ret = btrfs_rm_dev_item(device);
2146         if (ret)
2147                 goto error_undo;
2148
2149         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2150         btrfs_scrub_cancel_dev(device);
2151
2152         /*
2153          * the device list mutex makes sure that we don't change
2154          * the device list while someone else is writing out all
2155          * the device supers. Whoever is writing all supers, should
2156          * lock the device list mutex before getting the number of
2157          * devices in the super block (super_copy). Conversely,
2158          * whoever updates the number of devices in the super block
2159          * (super_copy) should hold the device list mutex.
2160          */
2161
2162         /*
2163          * In normal cases the cur_devices == fs_devices. But in case
2164          * of deleting a seed device, the cur_devices should point to
2165          * its own fs_devices listed under the fs_devices->seed.
2166          */
2167         cur_devices = device->fs_devices;
2168         mutex_lock(&fs_devices->device_list_mutex);
2169         list_del_rcu(&device->dev_list);
2170
2171         cur_devices->num_devices--;
2172         cur_devices->total_devices--;
2173         /* Update total_devices of the parent fs_devices if it's seed */
2174         if (cur_devices != fs_devices)
2175                 fs_devices->total_devices--;
2176
2177         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2178                 cur_devices->missing_devices--;
2179
2180         btrfs_assign_next_active_device(device, NULL);
2181
2182         if (device->bdev) {
2183                 cur_devices->open_devices--;
2184                 /* remove sysfs entry */
2185                 btrfs_sysfs_remove_device(device);
2186         }
2187
2188         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2189         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2190         mutex_unlock(&fs_devices->device_list_mutex);
2191
2192         /*
2193          * At this point, the device is zero sized and detached from the
2194          * devices list.  All that's left is to zero out the old supers and
2195          * free the device.
2196          *
2197          * We cannot call btrfs_close_bdev() here because we're holding the sb
2198          * write lock, and blkdev_put() will pull in the ->open_mutex on the
2199          * block device and it's dependencies.  Instead just flush the device
2200          * and let the caller do the final blkdev_put.
2201          */
2202         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2203                 btrfs_scratch_superblocks(fs_info, device->bdev,
2204                                           device->name->str);
2205                 if (device->bdev) {
2206                         sync_blockdev(device->bdev);
2207                         invalidate_bdev(device->bdev);
2208                 }
2209         }
2210
2211         *bdev = device->bdev;
2212         *mode = device->mode;
2213         synchronize_rcu();
2214         btrfs_free_device(device);
2215
2216         if (cur_devices->open_devices == 0) {
2217                 list_del_init(&cur_devices->seed_list);
2218                 close_fs_devices(cur_devices);
2219                 free_fs_devices(cur_devices);
2220         }
2221
2222 out:
2223         return ret;
2224
2225 error_undo:
2226         btrfs_reada_undo_remove_dev(device);
2227         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2228                 mutex_lock(&fs_info->chunk_mutex);
2229                 list_add(&device->dev_alloc_list,
2230                          &fs_devices->alloc_list);
2231                 device->fs_devices->rw_devices++;
2232                 mutex_unlock(&fs_info->chunk_mutex);
2233         }
2234         goto out;
2235 }
2236
2237 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2238 {
2239         struct btrfs_fs_devices *fs_devices;
2240
2241         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2242
2243         /*
2244          * in case of fs with no seed, srcdev->fs_devices will point
2245          * to fs_devices of fs_info. However when the dev being replaced is
2246          * a seed dev it will point to the seed's local fs_devices. In short
2247          * srcdev will have its correct fs_devices in both the cases.
2248          */
2249         fs_devices = srcdev->fs_devices;
2250
2251         list_del_rcu(&srcdev->dev_list);
2252         list_del(&srcdev->dev_alloc_list);
2253         fs_devices->num_devices--;
2254         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2255                 fs_devices->missing_devices--;
2256
2257         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2258                 fs_devices->rw_devices--;
2259
2260         if (srcdev->bdev)
2261                 fs_devices->open_devices--;
2262 }
2263
2264 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2265 {
2266         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2267
2268         mutex_lock(&uuid_mutex);
2269
2270         btrfs_close_bdev(srcdev);
2271         synchronize_rcu();
2272         btrfs_free_device(srcdev);
2273
2274         /* if this is no devs we rather delete the fs_devices */
2275         if (!fs_devices->num_devices) {
2276                 /*
2277                  * On a mounted FS, num_devices can't be zero unless it's a
2278                  * seed. In case of a seed device being replaced, the replace
2279                  * target added to the sprout FS, so there will be no more
2280                  * device left under the seed FS.
2281                  */
2282                 ASSERT(fs_devices->seeding);
2283
2284                 list_del_init(&fs_devices->seed_list);
2285                 close_fs_devices(fs_devices);
2286                 free_fs_devices(fs_devices);
2287         }
2288         mutex_unlock(&uuid_mutex);
2289 }
2290
2291 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2292 {
2293         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2294
2295         mutex_lock(&fs_devices->device_list_mutex);
2296
2297         btrfs_sysfs_remove_device(tgtdev);
2298
2299         if (tgtdev->bdev)
2300                 fs_devices->open_devices--;
2301
2302         fs_devices->num_devices--;
2303
2304         btrfs_assign_next_active_device(tgtdev, NULL);
2305
2306         list_del_rcu(&tgtdev->dev_list);
2307
2308         mutex_unlock(&fs_devices->device_list_mutex);
2309
2310         /*
2311          * The update_dev_time() with in btrfs_scratch_superblocks()
2312          * may lead to a call to btrfs_show_devname() which will try
2313          * to hold device_list_mutex. And here this device
2314          * is already out of device list, so we don't have to hold
2315          * the device_list_mutex lock.
2316          */
2317         btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2318                                   tgtdev->name->str);
2319
2320         btrfs_close_bdev(tgtdev);
2321         synchronize_rcu();
2322         btrfs_free_device(tgtdev);
2323 }
2324
2325 static struct btrfs_device *btrfs_find_device_by_path(
2326                 struct btrfs_fs_info *fs_info, const char *device_path)
2327 {
2328         int ret = 0;
2329         struct btrfs_super_block *disk_super;
2330         u64 devid;
2331         u8 *dev_uuid;
2332         struct block_device *bdev;
2333         struct btrfs_device *device;
2334
2335         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2336                                     fs_info->bdev_holder, 0, &bdev, &disk_super);
2337         if (ret)
2338                 return ERR_PTR(ret);
2339
2340         devid = btrfs_stack_device_id(&disk_super->dev_item);
2341         dev_uuid = disk_super->dev_item.uuid;
2342         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2343                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2344                                            disk_super->metadata_uuid);
2345         else
2346                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2347                                            disk_super->fsid);
2348
2349         btrfs_release_disk_super(disk_super);
2350         if (!device)
2351                 device = ERR_PTR(-ENOENT);
2352         blkdev_put(bdev, FMODE_READ);
2353         return device;
2354 }
2355
2356 /*
2357  * Lookup a device given by device id, or the path if the id is 0.
2358  */
2359 struct btrfs_device *btrfs_find_device_by_devspec(
2360                 struct btrfs_fs_info *fs_info, u64 devid,
2361                 const char *device_path)
2362 {
2363         struct btrfs_device *device;
2364
2365         if (devid) {
2366                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2367                                            NULL);
2368                 if (!device)
2369                         return ERR_PTR(-ENOENT);
2370                 return device;
2371         }
2372
2373         if (!device_path || !device_path[0])
2374                 return ERR_PTR(-EINVAL);
2375
2376         if (strcmp(device_path, "missing") == 0) {
2377                 /* Find first missing device */
2378                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2379                                     dev_list) {
2380                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2381                                      &device->dev_state) && !device->bdev)
2382                                 return device;
2383                 }
2384                 return ERR_PTR(-ENOENT);
2385         }
2386
2387         return btrfs_find_device_by_path(fs_info, device_path);
2388 }
2389
2390 /*
2391  * does all the dirty work required for changing file system's UUID.
2392  */
2393 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2394 {
2395         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2396         struct btrfs_fs_devices *old_devices;
2397         struct btrfs_fs_devices *seed_devices;
2398         struct btrfs_super_block *disk_super = fs_info->super_copy;
2399         struct btrfs_device *device;
2400         u64 super_flags;
2401
2402         lockdep_assert_held(&uuid_mutex);
2403         if (!fs_devices->seeding)
2404                 return -EINVAL;
2405
2406         /*
2407          * Private copy of the seed devices, anchored at
2408          * fs_info->fs_devices->seed_list
2409          */
2410         seed_devices = alloc_fs_devices(NULL, NULL);
2411         if (IS_ERR(seed_devices))
2412                 return PTR_ERR(seed_devices);
2413
2414         /*
2415          * It's necessary to retain a copy of the original seed fs_devices in
2416          * fs_uuids so that filesystems which have been seeded can successfully
2417          * reference the seed device from open_seed_devices. This also supports
2418          * multiple fs seed.
2419          */
2420         old_devices = clone_fs_devices(fs_devices);
2421         if (IS_ERR(old_devices)) {
2422                 kfree(seed_devices);
2423                 return PTR_ERR(old_devices);
2424         }
2425
2426         list_add(&old_devices->fs_list, &fs_uuids);
2427
2428         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2429         seed_devices->opened = 1;
2430         INIT_LIST_HEAD(&seed_devices->devices);
2431         INIT_LIST_HEAD(&seed_devices->alloc_list);
2432         mutex_init(&seed_devices->device_list_mutex);
2433
2434         mutex_lock(&fs_devices->device_list_mutex);
2435         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2436                               synchronize_rcu);
2437         list_for_each_entry(device, &seed_devices->devices, dev_list)
2438                 device->fs_devices = seed_devices;
2439
2440         fs_devices->seeding = false;
2441         fs_devices->num_devices = 0;
2442         fs_devices->open_devices = 0;
2443         fs_devices->missing_devices = 0;
2444         fs_devices->rotating = false;
2445         list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2446
2447         generate_random_uuid(fs_devices->fsid);
2448         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2449         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2450         mutex_unlock(&fs_devices->device_list_mutex);
2451
2452         super_flags = btrfs_super_flags(disk_super) &
2453                       ~BTRFS_SUPER_FLAG_SEEDING;
2454         btrfs_set_super_flags(disk_super, super_flags);
2455
2456         return 0;
2457 }
2458
2459 /*
2460  * Store the expected generation for seed devices in device items.
2461  */
2462 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2463 {
2464         struct btrfs_fs_info *fs_info = trans->fs_info;
2465         struct btrfs_root *root = fs_info->chunk_root;
2466         struct btrfs_path *path;
2467         struct extent_buffer *leaf;
2468         struct btrfs_dev_item *dev_item;
2469         struct btrfs_device *device;
2470         struct btrfs_key key;
2471         u8 fs_uuid[BTRFS_FSID_SIZE];
2472         u8 dev_uuid[BTRFS_UUID_SIZE];
2473         u64 devid;
2474         int ret;
2475
2476         path = btrfs_alloc_path();
2477         if (!path)
2478                 return -ENOMEM;
2479
2480         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2481         key.offset = 0;
2482         key.type = BTRFS_DEV_ITEM_KEY;
2483
2484         while (1) {
2485                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2486                 if (ret < 0)
2487                         goto error;
2488
2489                 leaf = path->nodes[0];
2490 next_slot:
2491                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2492                         ret = btrfs_next_leaf(root, path);
2493                         if (ret > 0)
2494                                 break;
2495                         if (ret < 0)
2496                                 goto error;
2497                         leaf = path->nodes[0];
2498                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2499                         btrfs_release_path(path);
2500                         continue;
2501                 }
2502
2503                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2504                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2505                     key.type != BTRFS_DEV_ITEM_KEY)
2506                         break;
2507
2508                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2509                                           struct btrfs_dev_item);
2510                 devid = btrfs_device_id(leaf, dev_item);
2511                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2512                                    BTRFS_UUID_SIZE);
2513                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2514                                    BTRFS_FSID_SIZE);
2515                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2516                                            fs_uuid);
2517                 BUG_ON(!device); /* Logic error */
2518
2519                 if (device->fs_devices->seeding) {
2520                         btrfs_set_device_generation(leaf, dev_item,
2521                                                     device->generation);
2522                         btrfs_mark_buffer_dirty(leaf);
2523                 }
2524
2525                 path->slots[0]++;
2526                 goto next_slot;
2527         }
2528         ret = 0;
2529 error:
2530         btrfs_free_path(path);
2531         return ret;
2532 }
2533
2534 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2535 {
2536         struct btrfs_root *root = fs_info->dev_root;
2537         struct request_queue *q;
2538         struct btrfs_trans_handle *trans;
2539         struct btrfs_device *device;
2540         struct block_device *bdev;
2541         struct super_block *sb = fs_info->sb;
2542         struct rcu_string *name;
2543         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2544         u64 orig_super_total_bytes;
2545         u64 orig_super_num_devices;
2546         int seeding_dev = 0;
2547         int ret = 0;
2548         bool locked = false;
2549
2550         if (sb_rdonly(sb) && !fs_devices->seeding)
2551                 return -EROFS;
2552
2553         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2554                                   fs_info->bdev_holder);
2555         if (IS_ERR(bdev))
2556                 return PTR_ERR(bdev);
2557
2558         if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2559                 ret = -EINVAL;
2560                 goto error;
2561         }
2562
2563         if (fs_devices->seeding) {
2564                 seeding_dev = 1;
2565                 down_write(&sb->s_umount);
2566                 mutex_lock(&uuid_mutex);
2567                 locked = true;
2568         }
2569
2570         sync_blockdev(bdev);
2571
2572         rcu_read_lock();
2573         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2574                 if (device->bdev == bdev) {
2575                         ret = -EEXIST;
2576                         rcu_read_unlock();
2577                         goto error;
2578                 }
2579         }
2580         rcu_read_unlock();
2581
2582         device = btrfs_alloc_device(fs_info, NULL, NULL);
2583         if (IS_ERR(device)) {
2584                 /* we can safely leave the fs_devices entry around */
2585                 ret = PTR_ERR(device);
2586                 goto error;
2587         }
2588
2589         name = rcu_string_strdup(device_path, GFP_KERNEL);
2590         if (!name) {
2591                 ret = -ENOMEM;
2592                 goto error_free_device;
2593         }
2594         rcu_assign_pointer(device->name, name);
2595
2596         device->fs_info = fs_info;
2597         device->bdev = bdev;
2598
2599         ret = btrfs_get_dev_zone_info(device);
2600         if (ret)
2601                 goto error_free_device;
2602
2603         trans = btrfs_start_transaction(root, 0);
2604         if (IS_ERR(trans)) {
2605                 ret = PTR_ERR(trans);
2606                 goto error_free_zone;
2607         }
2608
2609         q = bdev_get_queue(bdev);
2610         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2611         device->generation = trans->transid;
2612         device->io_width = fs_info->sectorsize;
2613         device->io_align = fs_info->sectorsize;
2614         device->sector_size = fs_info->sectorsize;
2615         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2616                                          fs_info->sectorsize);
2617         device->disk_total_bytes = device->total_bytes;
2618         device->commit_total_bytes = device->total_bytes;
2619         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2620         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2621         device->mode = FMODE_EXCL;
2622         device->dev_stats_valid = 1;
2623         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2624
2625         if (seeding_dev) {
2626                 btrfs_clear_sb_rdonly(sb);
2627                 ret = btrfs_prepare_sprout(fs_info);
2628                 if (ret) {
2629                         btrfs_abort_transaction(trans, ret);
2630                         goto error_trans;
2631                 }
2632         }
2633
2634         device->fs_devices = fs_devices;
2635
2636         mutex_lock(&fs_devices->device_list_mutex);
2637         mutex_lock(&fs_info->chunk_mutex);
2638         list_add_rcu(&device->dev_list, &fs_devices->devices);
2639         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2640         fs_devices->num_devices++;
2641         fs_devices->open_devices++;
2642         fs_devices->rw_devices++;
2643         fs_devices->total_devices++;
2644         fs_devices->total_rw_bytes += device->total_bytes;
2645
2646         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2647
2648         if (!blk_queue_nonrot(q))
2649                 fs_devices->rotating = true;
2650
2651         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2652         btrfs_set_super_total_bytes(fs_info->super_copy,
2653                 round_down(orig_super_total_bytes + device->total_bytes,
2654                            fs_info->sectorsize));
2655
2656         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2657         btrfs_set_super_num_devices(fs_info->super_copy,
2658                                     orig_super_num_devices + 1);
2659
2660         /*
2661          * we've got more storage, clear any full flags on the space
2662          * infos
2663          */
2664         btrfs_clear_space_info_full(fs_info);
2665
2666         mutex_unlock(&fs_info->chunk_mutex);
2667
2668         /* Add sysfs device entry */
2669         btrfs_sysfs_add_device(device);
2670
2671         mutex_unlock(&fs_devices->device_list_mutex);
2672
2673         if (seeding_dev) {
2674                 mutex_lock(&fs_info->chunk_mutex);
2675                 ret = init_first_rw_device(trans);
2676                 mutex_unlock(&fs_info->chunk_mutex);
2677                 if (ret) {
2678                         btrfs_abort_transaction(trans, ret);
2679                         goto error_sysfs;
2680                 }
2681         }
2682
2683         ret = btrfs_add_dev_item(trans, device);
2684         if (ret) {
2685                 btrfs_abort_transaction(trans, ret);
2686                 goto error_sysfs;
2687         }
2688
2689         if (seeding_dev) {
2690                 ret = btrfs_finish_sprout(trans);
2691                 if (ret) {
2692                         btrfs_abort_transaction(trans, ret);
2693                         goto error_sysfs;
2694                 }
2695
2696                 /*
2697                  * fs_devices now represents the newly sprouted filesystem and
2698                  * its fsid has been changed by btrfs_prepare_sprout
2699                  */
2700                 btrfs_sysfs_update_sprout_fsid(fs_devices);
2701         }
2702
2703         ret = btrfs_commit_transaction(trans);
2704
2705         if (seeding_dev) {
2706                 mutex_unlock(&uuid_mutex);
2707                 up_write(&sb->s_umount);
2708                 locked = false;
2709
2710                 if (ret) /* transaction commit */
2711                         return ret;
2712
2713                 ret = btrfs_relocate_sys_chunks(fs_info);
2714                 if (ret < 0)
2715                         btrfs_handle_fs_error(fs_info, ret,
2716                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2717                 trans = btrfs_attach_transaction(root);
2718                 if (IS_ERR(trans)) {
2719                         if (PTR_ERR(trans) == -ENOENT)
2720                                 return 0;
2721                         ret = PTR_ERR(trans);
2722                         trans = NULL;
2723                         goto error_sysfs;
2724                 }
2725                 ret = btrfs_commit_transaction(trans);
2726         }
2727
2728         /*
2729          * Now that we have written a new super block to this device, check all
2730          * other fs_devices list if device_path alienates any other scanned
2731          * device.
2732          * We can ignore the return value as it typically returns -EINVAL and
2733          * only succeeds if the device was an alien.
2734          */
2735         btrfs_forget_devices(device_path);
2736
2737         /* Update ctime/mtime for blkid or udev */
2738         update_dev_time(bdev);
2739
2740         return ret;
2741
2742 error_sysfs:
2743         btrfs_sysfs_remove_device(device);
2744         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2745         mutex_lock(&fs_info->chunk_mutex);
2746         list_del_rcu(&device->dev_list);
2747         list_del(&device->dev_alloc_list);
2748         fs_info->fs_devices->num_devices--;
2749         fs_info->fs_devices->open_devices--;
2750         fs_info->fs_devices->rw_devices--;
2751         fs_info->fs_devices->total_devices--;
2752         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2753         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2754         btrfs_set_super_total_bytes(fs_info->super_copy,
2755                                     orig_super_total_bytes);
2756         btrfs_set_super_num_devices(fs_info->super_copy,
2757                                     orig_super_num_devices);
2758         mutex_unlock(&fs_info->chunk_mutex);
2759         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2760 error_trans:
2761         if (seeding_dev)
2762                 btrfs_set_sb_rdonly(sb);
2763         if (trans)
2764                 btrfs_end_transaction(trans);
2765 error_free_zone:
2766         btrfs_destroy_dev_zone_info(device);
2767 error_free_device:
2768         btrfs_free_device(device);
2769 error:
2770         blkdev_put(bdev, FMODE_EXCL);
2771         if (locked) {
2772                 mutex_unlock(&uuid_mutex);
2773                 up_write(&sb->s_umount);
2774         }
2775         return ret;
2776 }
2777
2778 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2779                                         struct btrfs_device *device)
2780 {
2781         int ret;
2782         struct btrfs_path *path;
2783         struct btrfs_root *root = device->fs_info->chunk_root;
2784         struct btrfs_dev_item *dev_item;
2785         struct extent_buffer *leaf;
2786         struct btrfs_key key;
2787
2788         path = btrfs_alloc_path();
2789         if (!path)
2790                 return -ENOMEM;
2791
2792         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2793         key.type = BTRFS_DEV_ITEM_KEY;
2794         key.offset = device->devid;
2795
2796         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2797         if (ret < 0)
2798                 goto out;
2799
2800         if (ret > 0) {
2801                 ret = -ENOENT;
2802                 goto out;
2803         }
2804
2805         leaf = path->nodes[0];
2806         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2807
2808         btrfs_set_device_id(leaf, dev_item, device->devid);
2809         btrfs_set_device_type(leaf, dev_item, device->type);
2810         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2811         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2812         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2813         btrfs_set_device_total_bytes(leaf, dev_item,
2814                                      btrfs_device_get_disk_total_bytes(device));
2815         btrfs_set_device_bytes_used(leaf, dev_item,
2816                                     btrfs_device_get_bytes_used(device));
2817         btrfs_mark_buffer_dirty(leaf);
2818
2819 out:
2820         btrfs_free_path(path);
2821         return ret;
2822 }
2823
2824 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2825                       struct btrfs_device *device, u64 new_size)
2826 {
2827         struct btrfs_fs_info *fs_info = device->fs_info;
2828         struct btrfs_super_block *super_copy = fs_info->super_copy;
2829         u64 old_total;
2830         u64 diff;
2831
2832         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2833                 return -EACCES;
2834
2835         new_size = round_down(new_size, fs_info->sectorsize);
2836
2837         mutex_lock(&fs_info->chunk_mutex);
2838         old_total = btrfs_super_total_bytes(super_copy);
2839         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2840
2841         if (new_size <= device->total_bytes ||
2842             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2843                 mutex_unlock(&fs_info->chunk_mutex);
2844                 return -EINVAL;
2845         }
2846
2847         btrfs_set_super_total_bytes(super_copy,
2848                         round_down(old_total + diff, fs_info->sectorsize));
2849         device->fs_devices->total_rw_bytes += diff;
2850
2851         btrfs_device_set_total_bytes(device, new_size);
2852         btrfs_device_set_disk_total_bytes(device, new_size);
2853         btrfs_clear_space_info_full(device->fs_info);
2854         if (list_empty(&device->post_commit_list))
2855                 list_add_tail(&device->post_commit_list,
2856                               &trans->transaction->dev_update_list);
2857         mutex_unlock(&fs_info->chunk_mutex);
2858
2859         return btrfs_update_device(trans, device);
2860 }
2861
2862 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2863 {
2864         struct btrfs_fs_info *fs_info = trans->fs_info;
2865         struct btrfs_root *root = fs_info->chunk_root;
2866         int ret;
2867         struct btrfs_path *path;
2868         struct btrfs_key key;
2869
2870         path = btrfs_alloc_path();
2871         if (!path)
2872                 return -ENOMEM;
2873
2874         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2875         key.offset = chunk_offset;
2876         key.type = BTRFS_CHUNK_ITEM_KEY;
2877
2878         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2879         if (ret < 0)
2880                 goto out;
2881         else if (ret > 0) { /* Logic error or corruption */
2882                 btrfs_handle_fs_error(fs_info, -ENOENT,
2883                                       "Failed lookup while freeing chunk.");
2884                 ret = -ENOENT;
2885                 goto out;
2886         }
2887
2888         ret = btrfs_del_item(trans, root, path);
2889         if (ret < 0)
2890                 btrfs_handle_fs_error(fs_info, ret,
2891                                       "Failed to delete chunk item.");
2892 out:
2893         btrfs_free_path(path);
2894         return ret;
2895 }
2896
2897 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2898 {
2899         struct btrfs_super_block *super_copy = fs_info->super_copy;
2900         struct btrfs_disk_key *disk_key;
2901         struct btrfs_chunk *chunk;
2902         u8 *ptr;
2903         int ret = 0;
2904         u32 num_stripes;
2905         u32 array_size;
2906         u32 len = 0;
2907         u32 cur;
2908         struct btrfs_key key;
2909
2910         lockdep_assert_held(&fs_info->chunk_mutex);
2911         array_size = btrfs_super_sys_array_size(super_copy);
2912
2913         ptr = super_copy->sys_chunk_array;
2914         cur = 0;
2915
2916         while (cur < array_size) {
2917                 disk_key = (struct btrfs_disk_key *)ptr;
2918                 btrfs_disk_key_to_cpu(&key, disk_key);
2919
2920                 len = sizeof(*disk_key);
2921
2922                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2923                         chunk = (struct btrfs_chunk *)(ptr + len);
2924                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2925                         len += btrfs_chunk_item_size(num_stripes);
2926                 } else {
2927                         ret = -EIO;
2928                         break;
2929                 }
2930                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2931                     key.offset == chunk_offset) {
2932                         memmove(ptr, ptr + len, array_size - (cur + len));
2933                         array_size -= len;
2934                         btrfs_set_super_sys_array_size(super_copy, array_size);
2935                 } else {
2936                         ptr += len;
2937                         cur += len;
2938                 }
2939         }
2940         return ret;
2941 }
2942
2943 /*
2944  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2945  * @logical: Logical block offset in bytes.
2946  * @length: Length of extent in bytes.
2947  *
2948  * Return: Chunk mapping or ERR_PTR.
2949  */
2950 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2951                                        u64 logical, u64 length)
2952 {
2953         struct extent_map_tree *em_tree;
2954         struct extent_map *em;
2955
2956         em_tree = &fs_info->mapping_tree;
2957         read_lock(&em_tree->lock);
2958         em = lookup_extent_mapping(em_tree, logical, length);
2959         read_unlock(&em_tree->lock);
2960
2961         if (!em) {
2962                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2963                            logical, length);
2964                 return ERR_PTR(-EINVAL);
2965         }
2966
2967         if (em->start > logical || em->start + em->len < logical) {
2968                 btrfs_crit(fs_info,
2969                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2970                            logical, length, em->start, em->start + em->len);
2971                 free_extent_map(em);
2972                 return ERR_PTR(-EINVAL);
2973         }
2974
2975         /* callers are responsible for dropping em's ref. */
2976         return em;
2977 }
2978
2979 static int remove_chunk_item(struct btrfs_trans_handle *trans,
2980                              struct map_lookup *map, u64 chunk_offset)
2981 {
2982         int i;
2983
2984         /*
2985          * Removing chunk items and updating the device items in the chunks btree
2986          * requires holding the chunk_mutex.
2987          * See the comment at btrfs_chunk_alloc() for the details.
2988          */
2989         lockdep_assert_held(&trans->fs_info->chunk_mutex);
2990
2991         for (i = 0; i < map->num_stripes; i++) {
2992                 int ret;
2993
2994                 ret = btrfs_update_device(trans, map->stripes[i].dev);
2995                 if (ret)
2996                         return ret;
2997         }
2998
2999         return btrfs_free_chunk(trans, chunk_offset);
3000 }
3001
3002 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3003 {
3004         struct btrfs_fs_info *fs_info = trans->fs_info;
3005         struct extent_map *em;
3006         struct map_lookup *map;
3007         u64 dev_extent_len = 0;
3008         int i, ret = 0;
3009         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3010
3011         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3012         if (IS_ERR(em)) {
3013                 /*
3014                  * This is a logic error, but we don't want to just rely on the
3015                  * user having built with ASSERT enabled, so if ASSERT doesn't
3016                  * do anything we still error out.
3017                  */
3018                 ASSERT(0);
3019                 return PTR_ERR(em);
3020         }
3021         map = em->map_lookup;
3022
3023         /*
3024          * First delete the device extent items from the devices btree.
3025          * We take the device_list_mutex to avoid racing with the finishing phase
3026          * of a device replace operation. See the comment below before acquiring
3027          * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3028          * because that can result in a deadlock when deleting the device extent
3029          * items from the devices btree - COWing an extent buffer from the btree
3030          * may result in allocating a new metadata chunk, which would attempt to
3031          * lock again fs_info->chunk_mutex.
3032          */
3033         mutex_lock(&fs_devices->device_list_mutex);
3034         for (i = 0; i < map->num_stripes; i++) {
3035                 struct btrfs_device *device = map->stripes[i].dev;
3036                 ret = btrfs_free_dev_extent(trans, device,
3037                                             map->stripes[i].physical,
3038                                             &dev_extent_len);
3039                 if (ret) {
3040                         mutex_unlock(&fs_devices->device_list_mutex);
3041                         btrfs_abort_transaction(trans, ret);
3042                         goto out;
3043                 }
3044
3045                 if (device->bytes_used > 0) {
3046                         mutex_lock(&fs_info->chunk_mutex);
3047                         btrfs_device_set_bytes_used(device,
3048                                         device->bytes_used - dev_extent_len);
3049                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3050                         btrfs_clear_space_info_full(fs_info);
3051                         mutex_unlock(&fs_info->chunk_mutex);
3052                 }
3053         }
3054         mutex_unlock(&fs_devices->device_list_mutex);
3055
3056         /*
3057          * We acquire fs_info->chunk_mutex for 2 reasons:
3058          *
3059          * 1) Just like with the first phase of the chunk allocation, we must
3060          *    reserve system space, do all chunk btree updates and deletions, and
3061          *    update the system chunk array in the superblock while holding this
3062          *    mutex. This is for similar reasons as explained on the comment at
3063          *    the top of btrfs_chunk_alloc();
3064          *
3065          * 2) Prevent races with the final phase of a device replace operation
3066          *    that replaces the device object associated with the map's stripes,
3067          *    because the device object's id can change at any time during that
3068          *    final phase of the device replace operation
3069          *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3070          *    replaced device and then see it with an ID of
3071          *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3072          *    the device item, which does not exists on the chunk btree.
3073          *    The finishing phase of device replace acquires both the
3074          *    device_list_mutex and the chunk_mutex, in that order, so we are
3075          *    safe by just acquiring the chunk_mutex.
3076          */
3077         trans->removing_chunk = true;
3078         mutex_lock(&fs_info->chunk_mutex);
3079
3080         check_system_chunk(trans, map->type);
3081
3082         ret = remove_chunk_item(trans, map, chunk_offset);
3083         /*
3084          * Normally we should not get -ENOSPC since we reserved space before
3085          * through the call to check_system_chunk().
3086          *
3087          * Despite our system space_info having enough free space, we may not
3088          * be able to allocate extents from its block groups, because all have
3089          * an incompatible profile, which will force us to allocate a new system
3090          * block group with the right profile, or right after we called
3091          * check_system_space() above, a scrub turned the only system block group
3092          * with enough free space into RO mode.
3093          * This is explained with more detail at do_chunk_alloc().
3094          *
3095          * So if we get -ENOSPC, allocate a new system chunk and retry once.
3096          */
3097         if (ret == -ENOSPC) {
3098                 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3099                 struct btrfs_block_group *sys_bg;
3100
3101                 sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3102                 if (IS_ERR(sys_bg)) {
3103                         ret = PTR_ERR(sys_bg);
3104                         btrfs_abort_transaction(trans, ret);
3105                         goto out;
3106                 }
3107
3108                 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3109                 if (ret) {
3110                         btrfs_abort_transaction(trans, ret);
3111                         goto out;
3112                 }
3113
3114                 ret = remove_chunk_item(trans, map, chunk_offset);
3115                 if (ret) {
3116                         btrfs_abort_transaction(trans, ret);
3117                         goto out;
3118                 }
3119         } else if (ret) {
3120                 btrfs_abort_transaction(trans, ret);
3121                 goto out;
3122         }
3123
3124         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3125
3126         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3127                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3128                 if (ret) {
3129                         btrfs_abort_transaction(trans, ret);
3130                         goto out;
3131                 }
3132         }
3133
3134         mutex_unlock(&fs_info->chunk_mutex);
3135         trans->removing_chunk = false;
3136
3137         /*
3138          * We are done with chunk btree updates and deletions, so release the
3139          * system space we previously reserved (with check_system_chunk()).
3140          */
3141         btrfs_trans_release_chunk_metadata(trans);
3142
3143         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3144         if (ret) {
3145                 btrfs_abort_transaction(trans, ret);
3146                 goto out;
3147         }
3148
3149 out:
3150         if (trans->removing_chunk) {
3151                 mutex_unlock(&fs_info->chunk_mutex);
3152                 trans->removing_chunk = false;
3153         }
3154         /* once for us */
3155         free_extent_map(em);
3156         return ret;
3157 }
3158
3159 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3160 {
3161         struct btrfs_root *root = fs_info->chunk_root;
3162         struct btrfs_trans_handle *trans;
3163         struct btrfs_block_group *block_group;
3164         u64 length;
3165         int ret;
3166
3167         /*
3168          * Prevent races with automatic removal of unused block groups.
3169          * After we relocate and before we remove the chunk with offset
3170          * chunk_offset, automatic removal of the block group can kick in,
3171          * resulting in a failure when calling btrfs_remove_chunk() below.
3172          *
3173          * Make sure to acquire this mutex before doing a tree search (dev
3174          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3175          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3176          * we release the path used to search the chunk/dev tree and before
3177          * the current task acquires this mutex and calls us.
3178          */
3179         lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3180
3181         /* step one, relocate all the extents inside this chunk */
3182         btrfs_scrub_pause(fs_info);
3183         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3184         btrfs_scrub_continue(fs_info);
3185         if (ret)
3186                 return ret;
3187
3188         block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3189         if (!block_group)
3190                 return -ENOENT;
3191         btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3192         length = block_group->length;
3193         btrfs_put_block_group(block_group);
3194
3195         /*
3196          * On a zoned file system, discard the whole block group, this will
3197          * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3198          * resetting the zone fails, don't treat it as a fatal problem from the
3199          * filesystem's point of view.
3200          */
3201         if (btrfs_is_zoned(fs_info)) {
3202                 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3203                 if (ret)
3204                         btrfs_info(fs_info,
3205                                 "failed to reset zone %llu after relocation",
3206                                 chunk_offset);
3207         }
3208
3209         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3210                                                      chunk_offset);
3211         if (IS_ERR(trans)) {
3212                 ret = PTR_ERR(trans);
3213                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3214                 return ret;
3215         }
3216
3217         /*
3218          * step two, delete the device extents and the
3219          * chunk tree entries
3220          */
3221         ret = btrfs_remove_chunk(trans, chunk_offset);
3222         btrfs_end_transaction(trans);
3223         return ret;
3224 }
3225
3226 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3227 {
3228         struct btrfs_root *chunk_root = fs_info->chunk_root;
3229         struct btrfs_path *path;
3230         struct extent_buffer *leaf;
3231         struct btrfs_chunk *chunk;
3232         struct btrfs_key key;
3233         struct btrfs_key found_key;
3234         u64 chunk_type;
3235         bool retried = false;
3236         int failed = 0;
3237         int ret;
3238
3239         path = btrfs_alloc_path();
3240         if (!path)
3241                 return -ENOMEM;
3242
3243 again:
3244         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3245         key.offset = (u64)-1;
3246         key.type = BTRFS_CHUNK_ITEM_KEY;
3247
3248         while (1) {
3249                 mutex_lock(&fs_info->reclaim_bgs_lock);
3250                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3251                 if (ret < 0) {
3252                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3253                         goto error;
3254                 }
3255                 BUG_ON(ret == 0); /* Corruption */
3256
3257                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3258                                           key.type);
3259                 if (ret)
3260                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3261                 if (ret < 0)
3262                         goto error;
3263                 if (ret > 0)
3264                         break;
3265
3266                 leaf = path->nodes[0];
3267                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3268
3269                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3270                                        struct btrfs_chunk);
3271                 chunk_type = btrfs_chunk_type(leaf, chunk);
3272                 btrfs_release_path(path);
3273
3274                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3275                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3276                         if (ret == -ENOSPC)
3277                                 failed++;
3278                         else
3279                                 BUG_ON(ret);
3280                 }
3281                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3282
3283                 if (found_key.offset == 0)
3284                         break;
3285                 key.offset = found_key.offset - 1;
3286         }
3287         ret = 0;
3288         if (failed && !retried) {
3289                 failed = 0;
3290                 retried = true;
3291                 goto again;
3292         } else if (WARN_ON(failed && retried)) {
3293                 ret = -ENOSPC;
3294         }
3295 error:
3296         btrfs_free_path(path);
3297         return ret;
3298 }
3299
3300 /*
3301  * return 1 : allocate a data chunk successfully,
3302  * return <0: errors during allocating a data chunk,
3303  * return 0 : no need to allocate a data chunk.
3304  */
3305 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3306                                       u64 chunk_offset)
3307 {
3308         struct btrfs_block_group *cache;
3309         u64 bytes_used;
3310         u64 chunk_type;
3311
3312         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3313         ASSERT(cache);
3314         chunk_type = cache->flags;
3315         btrfs_put_block_group(cache);
3316
3317         if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3318                 return 0;
3319
3320         spin_lock(&fs_info->data_sinfo->lock);
3321         bytes_used = fs_info->data_sinfo->bytes_used;
3322         spin_unlock(&fs_info->data_sinfo->lock);
3323
3324         if (!bytes_used) {
3325                 struct btrfs_trans_handle *trans;
3326                 int ret;
3327
3328                 trans = btrfs_join_transaction(fs_info->tree_root);
3329                 if (IS_ERR(trans))
3330                         return PTR_ERR(trans);
3331
3332                 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3333                 btrfs_end_transaction(trans);
3334                 if (ret < 0)
3335                         return ret;
3336                 return 1;
3337         }
3338
3339         return 0;
3340 }
3341
3342 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3343                                struct btrfs_balance_control *bctl)
3344 {
3345         struct btrfs_root *root = fs_info->tree_root;
3346         struct btrfs_trans_handle *trans;
3347         struct btrfs_balance_item *item;
3348         struct btrfs_disk_balance_args disk_bargs;
3349         struct btrfs_path *path;
3350         struct extent_buffer *leaf;
3351         struct btrfs_key key;
3352         int ret, err;
3353
3354         path = btrfs_alloc_path();
3355         if (!path)
3356                 return -ENOMEM;
3357
3358         trans = btrfs_start_transaction(root, 0);
3359         if (IS_ERR(trans)) {
3360                 btrfs_free_path(path);
3361                 return PTR_ERR(trans);
3362         }
3363
3364         key.objectid = BTRFS_BALANCE_OBJECTID;
3365         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3366         key.offset = 0;
3367
3368         ret = btrfs_insert_empty_item(trans, root, path, &key,
3369                                       sizeof(*item));
3370         if (ret)
3371                 goto out;
3372
3373         leaf = path->nodes[0];
3374         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3375
3376         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3377
3378         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3379         btrfs_set_balance_data(leaf, item, &disk_bargs);
3380         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3381         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3382         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3383         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3384
3385         btrfs_set_balance_flags(leaf, item, bctl->flags);
3386
3387         btrfs_mark_buffer_dirty(leaf);
3388 out:
3389         btrfs_free_path(path);
3390         err = btrfs_commit_transaction(trans);
3391         if (err && !ret)
3392                 ret = err;
3393         return ret;
3394 }
3395
3396 static int del_balance_item(struct btrfs_fs_info *fs_info)
3397 {
3398         struct btrfs_root *root = fs_info->tree_root;
3399         struct btrfs_trans_handle *trans;
3400         struct btrfs_path *path;
3401         struct btrfs_key key;
3402         int ret, err;
3403
3404         path = btrfs_alloc_path();
3405         if (!path)
3406                 return -ENOMEM;
3407
3408         trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3409         if (IS_ERR(trans)) {
3410                 btrfs_free_path(path);
3411                 return PTR_ERR(trans);
3412         }
3413
3414         key.objectid = BTRFS_BALANCE_OBJECTID;
3415         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3416         key.offset = 0;
3417
3418         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3419         if (ret < 0)
3420                 goto out;
3421         if (ret > 0) {
3422                 ret = -ENOENT;
3423                 goto out;
3424         }
3425
3426         ret = btrfs_del_item(trans, root, path);
3427 out:
3428         btrfs_free_path(path);
3429         err = btrfs_commit_transaction(trans);
3430         if (err && !ret)
3431                 ret = err;
3432         return ret;
3433 }
3434
3435 /*
3436  * This is a heuristic used to reduce the number of chunks balanced on
3437  * resume after balance was interrupted.
3438  */
3439 static void update_balance_args(struct btrfs_balance_control *bctl)
3440 {
3441         /*
3442          * Turn on soft mode for chunk types that were being converted.
3443          */
3444         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3445                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3446         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3447                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3448         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3449                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3450
3451         /*
3452          * Turn on usage filter if is not already used.  The idea is
3453          * that chunks that we have already balanced should be
3454          * reasonably full.  Don't do it for chunks that are being
3455          * converted - that will keep us from relocating unconverted
3456          * (albeit full) chunks.
3457          */
3458         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3459             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3460             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3461                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3462                 bctl->data.usage = 90;
3463         }
3464         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3465             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3466             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3467                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3468                 bctl->sys.usage = 90;
3469         }
3470         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3471             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3472             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3473                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3474                 bctl->meta.usage = 90;
3475         }
3476 }
3477
3478 /*
3479  * Clear the balance status in fs_info and delete the balance item from disk.
3480  */
3481 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3482 {
3483         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3484         int ret;
3485
3486         BUG_ON(!fs_info->balance_ctl);
3487
3488         spin_lock(&fs_info->balance_lock);
3489         fs_info->balance_ctl = NULL;
3490         spin_unlock(&fs_info->balance_lock);
3491
3492         kfree(bctl);
3493         ret = del_balance_item(fs_info);
3494         if (ret)
3495                 btrfs_handle_fs_error(fs_info, ret, NULL);
3496 }
3497
3498 /*
3499  * Balance filters.  Return 1 if chunk should be filtered out
3500  * (should not be balanced).
3501  */
3502 static int chunk_profiles_filter(u64 chunk_type,
3503                                  struct btrfs_balance_args *bargs)
3504 {
3505         chunk_type = chunk_to_extended(chunk_type) &
3506                                 BTRFS_EXTENDED_PROFILE_MASK;
3507
3508         if (bargs->profiles & chunk_type)
3509                 return 0;
3510
3511         return 1;
3512 }
3513
3514 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3515                               struct btrfs_balance_args *bargs)
3516 {
3517         struct btrfs_block_group *cache;
3518         u64 chunk_used;
3519         u64 user_thresh_min;
3520         u64 user_thresh_max;
3521         int ret = 1;
3522
3523         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3524         chunk_used = cache->used;
3525
3526         if (bargs->usage_min == 0)
3527                 user_thresh_min = 0;
3528         else
3529                 user_thresh_min = div_factor_fine(cache->length,
3530                                                   bargs->usage_min);
3531
3532         if (bargs->usage_max == 0)
3533                 user_thresh_max = 1;
3534         else if (bargs->usage_max > 100)
3535                 user_thresh_max = cache->length;
3536         else
3537                 user_thresh_max = div_factor_fine(cache->length,
3538                                                   bargs->usage_max);
3539
3540         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3541                 ret = 0;
3542
3543         btrfs_put_block_group(cache);
3544         return ret;
3545 }
3546
3547 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3548                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3549 {
3550         struct btrfs_block_group *cache;
3551         u64 chunk_used, user_thresh;
3552         int ret = 1;
3553
3554         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3555         chunk_used = cache->used;
3556
3557         if (bargs->usage_min == 0)
3558                 user_thresh = 1;
3559         else if (bargs->usage > 100)
3560                 user_thresh = cache->length;
3561         else
3562                 user_thresh = div_factor_fine(cache->length, bargs->usage);
3563
3564         if (chunk_used < user_thresh)
3565                 ret = 0;
3566
3567         btrfs_put_block_group(cache);
3568         return ret;
3569 }
3570
3571 static int chunk_devid_filter(struct extent_buffer *leaf,
3572                               struct btrfs_chunk *chunk,
3573                               struct btrfs_balance_args *bargs)
3574 {
3575         struct btrfs_stripe *stripe;
3576         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3577         int i;
3578
3579         for (i = 0; i < num_stripes; i++) {
3580                 stripe = btrfs_stripe_nr(chunk, i);
3581                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3582                         return 0;
3583         }
3584
3585         return 1;
3586 }
3587
3588 static u64 calc_data_stripes(u64 type, int num_stripes)
3589 {
3590         const int index = btrfs_bg_flags_to_raid_index(type);
3591         const int ncopies = btrfs_raid_array[index].ncopies;
3592         const int nparity = btrfs_raid_array[index].nparity;
3593
3594         return (num_stripes - nparity) / ncopies;
3595 }
3596
3597 /* [pstart, pend) */
3598 static int chunk_drange_filter(struct extent_buffer *leaf,
3599                                struct btrfs_chunk *chunk,
3600                                struct btrfs_balance_args *bargs)
3601 {
3602         struct btrfs_stripe *stripe;
3603         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3604         u64 stripe_offset;
3605         u64 stripe_length;
3606         u64 type;
3607         int factor;
3608         int i;
3609
3610         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3611                 return 0;
3612
3613         type = btrfs_chunk_type(leaf, chunk);
3614         factor = calc_data_stripes(type, num_stripes);
3615
3616         for (i = 0; i < num_stripes; i++) {
3617                 stripe = btrfs_stripe_nr(chunk, i);
3618                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3619                         continue;
3620
3621                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3622                 stripe_length = btrfs_chunk_length(leaf, chunk);
3623                 stripe_length = div_u64(stripe_length, factor);
3624
3625                 if (stripe_offset < bargs->pend &&
3626                     stripe_offset + stripe_length > bargs->pstart)
3627                         return 0;
3628         }
3629
3630         return 1;
3631 }
3632
3633 /* [vstart, vend) */
3634 static int chunk_vrange_filter(struct extent_buffer *leaf,
3635                                struct btrfs_chunk *chunk,
3636                                u64 chunk_offset,
3637                                struct btrfs_balance_args *bargs)
3638 {
3639         if (chunk_offset < bargs->vend &&
3640             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3641                 /* at least part of the chunk is inside this vrange */
3642                 return 0;
3643
3644         return 1;
3645 }
3646
3647 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3648                                struct btrfs_chunk *chunk,
3649                                struct btrfs_balance_args *bargs)
3650 {
3651         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3652
3653         if (bargs->stripes_min <= num_stripes
3654                         && num_stripes <= bargs->stripes_max)
3655                 return 0;
3656
3657         return 1;
3658 }
3659
3660 static int chunk_soft_convert_filter(u64 chunk_type,
3661                                      struct btrfs_balance_args *bargs)
3662 {
3663         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3664                 return 0;
3665
3666         chunk_type = chunk_to_extended(chunk_type) &
3667                                 BTRFS_EXTENDED_PROFILE_MASK;
3668
3669         if (bargs->target == chunk_type)
3670                 return 1;
3671
3672         return 0;
3673 }
3674
3675 static int should_balance_chunk(struct extent_buffer *leaf,
3676                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3677 {
3678         struct btrfs_fs_info *fs_info = leaf->fs_info;
3679         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3680         struct btrfs_balance_args *bargs = NULL;
3681         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3682
3683         /* type filter */
3684         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3685               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3686                 return 0;
3687         }
3688
3689         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3690                 bargs = &bctl->data;
3691         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3692                 bargs = &bctl->sys;
3693         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3694                 bargs = &bctl->meta;
3695
3696         /* profiles filter */
3697         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3698             chunk_profiles_filter(chunk_type, bargs)) {
3699                 return 0;
3700         }
3701
3702         /* usage filter */
3703         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3704             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3705                 return 0;
3706         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3707             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3708                 return 0;
3709         }
3710
3711         /* devid filter */
3712         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3713             chunk_devid_filter(leaf, chunk, bargs)) {
3714                 return 0;
3715         }
3716
3717         /* drange filter, makes sense only with devid filter */
3718         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3719             chunk_drange_filter(leaf, chunk, bargs)) {
3720                 return 0;
3721         }
3722
3723         /* vrange filter */
3724         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3725             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3726                 return 0;
3727         }
3728
3729         /* stripes filter */
3730         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3731             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3732                 return 0;
3733         }
3734
3735         /* soft profile changing mode */
3736         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3737             chunk_soft_convert_filter(chunk_type, bargs)) {
3738                 return 0;
3739         }
3740
3741         /*
3742          * limited by count, must be the last filter
3743          */
3744         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3745                 if (bargs->limit == 0)
3746                         return 0;
3747                 else
3748                         bargs->limit--;
3749         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3750                 /*
3751                  * Same logic as the 'limit' filter; the minimum cannot be
3752                  * determined here because we do not have the global information
3753                  * about the count of all chunks that satisfy the filters.
3754                  */
3755                 if (bargs->limit_max == 0)
3756                         return 0;
3757                 else
3758                         bargs->limit_max--;
3759         }
3760
3761         return 1;
3762 }
3763
3764 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3765 {
3766         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3767         struct btrfs_root *chunk_root = fs_info->chunk_root;
3768         u64 chunk_type;
3769         struct btrfs_chunk *chunk;
3770         struct btrfs_path *path = NULL;
3771         struct btrfs_key key;
3772         struct btrfs_key found_key;
3773         struct extent_buffer *leaf;
3774         int slot;
3775         int ret;
3776         int enospc_errors = 0;
3777         bool counting = true;
3778         /* The single value limit and min/max limits use the same bytes in the */
3779         u64 limit_data = bctl->data.limit;
3780         u64 limit_meta = bctl->meta.limit;
3781         u64 limit_sys = bctl->sys.limit;
3782         u32 count_data = 0;
3783         u32 count_meta = 0;
3784         u32 count_sys = 0;
3785         int chunk_reserved = 0;
3786
3787         path = btrfs_alloc_path();
3788         if (!path) {
3789                 ret = -ENOMEM;
3790                 goto error;
3791         }
3792
3793         /* zero out stat counters */
3794         spin_lock(&fs_info->balance_lock);
3795         memset(&bctl->stat, 0, sizeof(bctl->stat));
3796         spin_unlock(&fs_info->balance_lock);
3797 again:
3798         if (!counting) {
3799                 /*
3800                  * The single value limit and min/max limits use the same bytes
3801                  * in the
3802                  */
3803                 bctl->data.limit = limit_data;
3804                 bctl->meta.limit = limit_meta;
3805                 bctl->sys.limit = limit_sys;
3806         }
3807         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3808         key.offset = (u64)-1;
3809         key.type = BTRFS_CHUNK_ITEM_KEY;
3810
3811         while (1) {
3812                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3813                     atomic_read(&fs_info->balance_cancel_req)) {
3814                         ret = -ECANCELED;
3815                         goto error;
3816                 }
3817
3818                 mutex_lock(&fs_info->reclaim_bgs_lock);
3819                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3820                 if (ret < 0) {
3821                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3822                         goto error;
3823                 }
3824
3825                 /*
3826                  * this shouldn't happen, it means the last relocate
3827                  * failed
3828                  */
3829                 if (ret == 0)
3830                         BUG(); /* FIXME break ? */
3831
3832                 ret = btrfs_previous_item(chunk_root, path, 0,
3833                                           BTRFS_CHUNK_ITEM_KEY);
3834                 if (ret) {
3835                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3836                         ret = 0;
3837                         break;
3838                 }
3839
3840                 leaf = path->nodes[0];
3841                 slot = path->slots[0];
3842                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3843
3844                 if (found_key.objectid != key.objectid) {
3845                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3846                         break;
3847                 }
3848
3849                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3850                 chunk_type = btrfs_chunk_type(leaf, chunk);
3851
3852                 if (!counting) {
3853                         spin_lock(&fs_info->balance_lock);
3854                         bctl->stat.considered++;
3855                         spin_unlock(&fs_info->balance_lock);
3856                 }
3857
3858                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3859
3860                 btrfs_release_path(path);
3861                 if (!ret) {
3862                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3863                         goto loop;
3864                 }
3865
3866                 if (counting) {
3867                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3868                         spin_lock(&fs_info->balance_lock);
3869                         bctl->stat.expected++;
3870                         spin_unlock(&fs_info->balance_lock);
3871
3872                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3873                                 count_data++;
3874                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3875                                 count_sys++;
3876                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3877                                 count_meta++;
3878
3879                         goto loop;
3880                 }
3881
3882                 /*
3883                  * Apply limit_min filter, no need to check if the LIMITS
3884                  * filter is used, limit_min is 0 by default
3885                  */
3886                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3887                                         count_data < bctl->data.limit_min)
3888                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3889                                         count_meta < bctl->meta.limit_min)
3890                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3891                                         count_sys < bctl->sys.limit_min)) {
3892                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3893                         goto loop;
3894                 }
3895
3896                 if (!chunk_reserved) {
3897                         /*
3898                          * We may be relocating the only data chunk we have,
3899                          * which could potentially end up with losing data's
3900                          * raid profile, so lets allocate an empty one in
3901                          * advance.
3902                          */
3903                         ret = btrfs_may_alloc_data_chunk(fs_info,
3904                                                          found_key.offset);
3905                         if (ret < 0) {
3906                                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3907                                 goto error;
3908                         } else if (ret == 1) {
3909                                 chunk_reserved = 1;
3910                         }
3911                 }
3912
3913                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3914                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3915                 if (ret == -ENOSPC) {
3916                         enospc_errors++;
3917                 } else if (ret == -ETXTBSY) {
3918                         btrfs_info(fs_info,
3919            "skipping relocation of block group %llu due to active swapfile",
3920                                    found_key.offset);
3921                         ret = 0;
3922                 } else if (ret) {
3923                         goto error;
3924                 } else {
3925                         spin_lock(&fs_info->balance_lock);
3926                         bctl->stat.completed++;
3927                         spin_unlock(&fs_info->balance_lock);
3928                 }
3929 loop:
3930                 if (found_key.offset == 0)
3931                         break;
3932                 key.offset = found_key.offset - 1;
3933         }
3934
3935         if (counting) {
3936                 btrfs_release_path(path);
3937                 counting = false;
3938                 goto again;
3939         }
3940 error:
3941         btrfs_free_path(path);
3942         if (enospc_errors) {
3943                 btrfs_info(fs_info, "%d enospc errors during balance",
3944                            enospc_errors);
3945                 if (!ret)
3946                         ret = -ENOSPC;
3947         }
3948
3949         return ret;
3950 }
3951
3952 /**
3953  * alloc_profile_is_valid - see if a given profile is valid and reduced
3954  * @flags: profile to validate
3955  * @extended: if true @flags is treated as an extended profile
3956  */
3957 static int alloc_profile_is_valid(u64 flags, int extended)
3958 {
3959         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3960                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3961
3962         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3963
3964         /* 1) check that all other bits are zeroed */
3965         if (flags & ~mask)
3966                 return 0;
3967
3968         /* 2) see if profile is reduced */
3969         if (flags == 0)
3970                 return !extended; /* "0" is valid for usual profiles */
3971
3972         return has_single_bit_set(flags);
3973 }
3974
3975 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3976 {
3977         /* cancel requested || normal exit path */
3978         return atomic_read(&fs_info->balance_cancel_req) ||
3979                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3980                  atomic_read(&fs_info->balance_cancel_req) == 0);
3981 }
3982
3983 /*
3984  * Validate target profile against allowed profiles and return true if it's OK.
3985  * Otherwise print the error message and return false.
3986  */
3987 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3988                 const struct btrfs_balance_args *bargs,
3989                 u64 allowed, const char *type)
3990 {
3991         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3992                 return true;
3993
3994         if (fs_info->sectorsize < PAGE_SIZE &&
3995                 bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3996                 btrfs_err(fs_info,
3997                 "RAID56 is not yet supported for sectorsize %u with page size %lu",
3998                           fs_info->sectorsize, PAGE_SIZE);
3999                 return false;
4000         }
4001         /* Profile is valid and does not have bits outside of the allowed set */
4002         if (alloc_profile_is_valid(bargs->target, 1) &&
4003             (bargs->target & ~allowed) == 0)
4004                 return true;
4005
4006         btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4007                         type, btrfs_bg_type_to_raid_name(bargs->target));
4008         return false;
4009 }
4010
4011 /*
4012  * Fill @buf with textual description of balance filter flags @bargs, up to
4013  * @size_buf including the terminating null. The output may be trimmed if it
4014  * does not fit into the provided buffer.
4015  */
4016 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4017                                  u32 size_buf)
4018 {
4019         int ret;
4020         u32 size_bp = size_buf;
4021         char *bp = buf;
4022         u64 flags = bargs->flags;
4023         char tmp_buf[128] = {'\0'};
4024
4025         if (!flags)
4026                 return;
4027
4028 #define CHECK_APPEND_NOARG(a)                                           \
4029         do {                                                            \
4030                 ret = snprintf(bp, size_bp, (a));                       \
4031                 if (ret < 0 || ret >= size_bp)                          \
4032                         goto out_overflow;                              \
4033                 size_bp -= ret;                                         \
4034                 bp += ret;                                              \
4035         } while (0)
4036
4037 #define CHECK_APPEND_1ARG(a, v1)                                        \
4038         do {                                                            \
4039                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4040                 if (ret < 0 || ret >= size_bp)                          \
4041                         goto out_overflow;                              \
4042                 size_bp -= ret;                                         \
4043                 bp += ret;                                              \
4044         } while (0)
4045
4046 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
4047         do {                                                            \
4048                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
4049                 if (ret < 0 || ret >= size_bp)                          \
4050                         goto out_overflow;                              \
4051                 size_bp -= ret;                                         \
4052                 bp += ret;                                              \
4053         } while (0)
4054
4055         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4056                 CHECK_APPEND_1ARG("convert=%s,",
4057                                   btrfs_bg_type_to_raid_name(bargs->target));
4058
4059         if (flags & BTRFS_BALANCE_ARGS_SOFT)
4060                 CHECK_APPEND_NOARG("soft,");
4061
4062         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4063                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4064                                             sizeof(tmp_buf));
4065                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4066         }
4067
4068         if (flags & BTRFS_BALANCE_ARGS_USAGE)
4069                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4070
4071         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4072                 CHECK_APPEND_2ARG("usage=%u..%u,",
4073                                   bargs->usage_min, bargs->usage_max);
4074
4075         if (flags & BTRFS_BALANCE_ARGS_DEVID)
4076                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4077
4078         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4079                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4080                                   bargs->pstart, bargs->pend);
4081
4082         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4083                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4084                                   bargs->vstart, bargs->vend);
4085
4086         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4087                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4088
4089         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4090                 CHECK_APPEND_2ARG("limit=%u..%u,",
4091                                 bargs->limit_min, bargs->limit_max);
4092
4093         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4094                 CHECK_APPEND_2ARG("stripes=%u..%u,",
4095                                   bargs->stripes_min, bargs->stripes_max);
4096
4097 #undef CHECK_APPEND_2ARG
4098 #undef CHECK_APPEND_1ARG
4099 #undef CHECK_APPEND_NOARG
4100
4101 out_overflow:
4102
4103         if (size_bp < size_buf)
4104                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4105         else
4106                 buf[0] = '\0';
4107 }
4108
4109 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4110 {
4111         u32 size_buf = 1024;
4112         char tmp_buf[192] = {'\0'};
4113         char *buf;
4114         char *bp;
4115         u32 size_bp = size_buf;
4116         int ret;
4117         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4118
4119         buf = kzalloc(size_buf, GFP_KERNEL);
4120         if (!buf)
4121                 return;
4122
4123         bp = buf;
4124
4125 #define CHECK_APPEND_1ARG(a, v1)                                        \
4126         do {                                                            \
4127                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4128                 if (ret < 0 || ret >= size_bp)                          \
4129                         goto out_overflow;                              \
4130                 size_bp -= ret;                                         \
4131                 bp += ret;                                              \
4132         } while (0)
4133
4134         if (bctl->flags & BTRFS_BALANCE_FORCE)
4135                 CHECK_APPEND_1ARG("%s", "-f ");
4136
4137         if (bctl->flags & BTRFS_BALANCE_DATA) {
4138                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4139                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4140         }
4141
4142         if (bctl->flags & BTRFS_BALANCE_METADATA) {
4143                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4144                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4145         }
4146
4147         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4148                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4149                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4150         }
4151
4152 #undef CHECK_APPEND_1ARG
4153
4154 out_overflow:
4155
4156         if (size_bp < size_buf)
4157                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4158         btrfs_info(fs_info, "balance: %s %s",
4159                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
4160                    "resume" : "start", buf);
4161
4162         kfree(buf);
4163 }
4164
4165 /*
4166  * Should be called with balance mutexe held
4167  */
4168 int btrfs_balance(struct btrfs_fs_info *fs_info,
4169                   struct btrfs_balance_control *bctl,
4170                   struct btrfs_ioctl_balance_args *bargs)
4171 {
4172         u64 meta_target, data_target;
4173         u64 allowed;
4174         int mixed = 0;
4175         int ret;
4176         u64 num_devices;
4177         unsigned seq;
4178         bool reducing_redundancy;
4179         int i;
4180
4181         if (btrfs_fs_closing(fs_info) ||
4182             atomic_read(&fs_info->balance_pause_req) ||
4183             btrfs_should_cancel_balance(fs_info)) {
4184                 ret = -EINVAL;
4185                 goto out;
4186         }
4187
4188         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4189         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4190                 mixed = 1;
4191
4192         /*
4193          * In case of mixed groups both data and meta should be picked,
4194          * and identical options should be given for both of them.
4195          */
4196         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4197         if (mixed && (bctl->flags & allowed)) {
4198                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4199                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4200                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4201                         btrfs_err(fs_info,
4202           "balance: mixed groups data and metadata options must be the same");
4203                         ret = -EINVAL;
4204                         goto out;
4205                 }
4206         }
4207
4208         /*
4209          * rw_devices will not change at the moment, device add/delete/replace
4210          * are exclusive
4211          */
4212         num_devices = fs_info->fs_devices->rw_devices;
4213
4214         /*
4215          * SINGLE profile on-disk has no profile bit, but in-memory we have a
4216          * special bit for it, to make it easier to distinguish.  Thus we need
4217          * to set it manually, or balance would refuse the profile.
4218          */
4219         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4220         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4221                 if (num_devices >= btrfs_raid_array[i].devs_min)
4222                         allowed |= btrfs_raid_array[i].bg_flag;
4223
4224         if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4225             !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4226             !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4227                 ret = -EINVAL;
4228                 goto out;
4229         }
4230
4231         /*
4232          * Allow to reduce metadata or system integrity only if force set for
4233          * profiles with redundancy (copies, parity)
4234          */
4235         allowed = 0;
4236         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4237                 if (btrfs_raid_array[i].ncopies >= 2 ||
4238                     btrfs_raid_array[i].tolerated_failures >= 1)
4239                         allowed |= btrfs_raid_array[i].bg_flag;
4240         }
4241         do {
4242                 seq = read_seqbegin(&fs_info->profiles_lock);
4243
4244                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4245                      (fs_info->avail_system_alloc_bits & allowed) &&
4246                      !(bctl->sys.target & allowed)) ||
4247                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4248                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4249                      !(bctl->meta.target & allowed)))
4250                         reducing_redundancy = true;
4251                 else
4252                         reducing_redundancy = false;
4253
4254                 /* if we're not converting, the target field is uninitialized */
4255                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4256                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4257                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4258                         bctl->data.target : fs_info->avail_data_alloc_bits;
4259         } while (read_seqretry(&fs_info->profiles_lock, seq));
4260
4261         if (reducing_redundancy) {
4262                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4263                         btrfs_info(fs_info,
4264                            "balance: force reducing metadata redundancy");
4265                 } else {
4266                         btrfs_err(fs_info,
4267         "balance: reduces metadata redundancy, use --force if you want this");
4268                         ret = -EINVAL;
4269                         goto out;
4270                 }
4271         }
4272
4273         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4274                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4275                 btrfs_warn(fs_info,
4276         "balance: metadata profile %s has lower redundancy than data profile %s",
4277                                 btrfs_bg_type_to_raid_name(meta_target),
4278                                 btrfs_bg_type_to_raid_name(data_target));
4279         }
4280
4281         ret = insert_balance_item(fs_info, bctl);
4282         if (ret && ret != -EEXIST)
4283                 goto out;
4284
4285         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4286                 BUG_ON(ret == -EEXIST);
4287                 BUG_ON(fs_info->balance_ctl);
4288                 spin_lock(&fs_info->balance_lock);
4289                 fs_info->balance_ctl = bctl;
4290                 spin_unlock(&fs_info->balance_lock);
4291         } else {
4292                 BUG_ON(ret != -EEXIST);
4293                 spin_lock(&fs_info->balance_lock);
4294                 update_balance_args(bctl);
4295                 spin_unlock(&fs_info->balance_lock);
4296         }
4297
4298         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4299         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4300         describe_balance_start_or_resume(fs_info);
4301         mutex_unlock(&fs_info->balance_mutex);
4302
4303         ret = __btrfs_balance(fs_info);
4304
4305         mutex_lock(&fs_info->balance_mutex);
4306         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4307                 btrfs_info(fs_info, "balance: paused");
4308         /*
4309          * Balance can be canceled by:
4310          *
4311          * - Regular cancel request
4312          *   Then ret == -ECANCELED and balance_cancel_req > 0
4313          *
4314          * - Fatal signal to "btrfs" process
4315          *   Either the signal caught by wait_reserve_ticket() and callers
4316          *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4317          *   got -ECANCELED.
4318          *   Either way, in this case balance_cancel_req = 0, and
4319          *   ret == -EINTR or ret == -ECANCELED.
4320          *
4321          * So here we only check the return value to catch canceled balance.
4322          */
4323         else if (ret == -ECANCELED || ret == -EINTR)
4324                 btrfs_info(fs_info, "balance: canceled");
4325         else
4326                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4327
4328         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4329
4330         if (bargs) {
4331                 memset(bargs, 0, sizeof(*bargs));
4332                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4333         }
4334
4335         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4336             balance_need_close(fs_info)) {
4337                 reset_balance_state(fs_info);
4338                 btrfs_exclop_finish(fs_info);
4339         }
4340
4341         wake_up(&fs_info->balance_wait_q);
4342
4343         return ret;
4344 out:
4345         if (bctl->flags & BTRFS_BALANCE_RESUME)
4346                 reset_balance_state(fs_info);
4347         else
4348                 kfree(bctl);
4349         btrfs_exclop_finish(fs_info);
4350
4351         return ret;
4352 }
4353
4354 static int balance_kthread(void *data)
4355 {
4356         struct btrfs_fs_info *fs_info = data;
4357         int ret = 0;
4358
4359         mutex_lock(&fs_info->balance_mutex);
4360         if (fs_info->balance_ctl)
4361                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4362         mutex_unlock(&fs_info->balance_mutex);
4363
4364         return ret;
4365 }
4366
4367 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4368 {
4369         struct task_struct *tsk;
4370
4371         mutex_lock(&fs_info->balance_mutex);
4372         if (!fs_info->balance_ctl) {
4373                 mutex_unlock(&fs_info->balance_mutex);
4374                 return 0;
4375         }
4376         mutex_unlock(&fs_info->balance_mutex);
4377
4378         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4379                 btrfs_info(fs_info, "balance: resume skipped");
4380                 return 0;
4381         }
4382
4383         /*
4384          * A ro->rw remount sequence should continue with the paused balance
4385          * regardless of who pauses it, system or the user as of now, so set
4386          * the resume flag.
4387          */
4388         spin_lock(&fs_info->balance_lock);
4389         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4390         spin_unlock(&fs_info->balance_lock);
4391
4392         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4393         return PTR_ERR_OR_ZERO(tsk);
4394 }
4395
4396 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4397 {
4398         struct btrfs_balance_control *bctl;
4399         struct btrfs_balance_item *item;
4400         struct btrfs_disk_balance_args disk_bargs;
4401         struct btrfs_path *path;
4402         struct extent_buffer *leaf;
4403         struct btrfs_key key;
4404         int ret;
4405
4406         path = btrfs_alloc_path();
4407         if (!path)
4408                 return -ENOMEM;
4409
4410         key.objectid = BTRFS_BALANCE_OBJECTID;
4411         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4412         key.offset = 0;
4413
4414         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4415         if (ret < 0)
4416                 goto out;
4417         if (ret > 0) { /* ret = -ENOENT; */
4418                 ret = 0;
4419                 goto out;
4420         }
4421
4422         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4423         if (!bctl) {
4424                 ret = -ENOMEM;
4425                 goto out;
4426         }
4427
4428         leaf = path->nodes[0];
4429         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4430
4431         bctl->flags = btrfs_balance_flags(leaf, item);
4432         bctl->flags |= BTRFS_BALANCE_RESUME;
4433
4434         btrfs_balance_data(leaf, item, &disk_bargs);
4435         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4436         btrfs_balance_meta(leaf, item, &disk_bargs);
4437         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4438         btrfs_balance_sys(leaf, item, &disk_bargs);
4439         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4440
4441         /*
4442          * This should never happen, as the paused balance state is recovered
4443          * during mount without any chance of other exclusive ops to collide.
4444          *
4445          * This gives the exclusive op status to balance and keeps in paused
4446          * state until user intervention (cancel or umount). If the ownership
4447          * cannot be assigned, show a message but do not fail. The balance
4448          * is in a paused state and must have fs_info::balance_ctl properly
4449          * set up.
4450          */
4451         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4452                 btrfs_warn(fs_info,
4453         "balance: cannot set exclusive op status, resume manually");
4454
4455         btrfs_release_path(path);
4456
4457         mutex_lock(&fs_info->balance_mutex);
4458         BUG_ON(fs_info->balance_ctl);
4459         spin_lock(&fs_info->balance_lock);
4460         fs_info->balance_ctl = bctl;
4461         spin_unlock(&fs_info->balance_lock);
4462         mutex_unlock(&fs_info->balance_mutex);
4463 out:
4464         btrfs_free_path(path);
4465         return ret;
4466 }
4467
4468 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4469 {
4470         int ret = 0;
4471
4472         mutex_lock(&fs_info->balance_mutex);
4473         if (!fs_info->balance_ctl) {
4474                 mutex_unlock(&fs_info->balance_mutex);
4475                 return -ENOTCONN;
4476         }
4477
4478         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4479                 atomic_inc(&fs_info->balance_pause_req);
4480                 mutex_unlock(&fs_info->balance_mutex);
4481
4482                 wait_event(fs_info->balance_wait_q,
4483                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4484
4485                 mutex_lock(&fs_info->balance_mutex);
4486                 /* we are good with balance_ctl ripped off from under us */
4487                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4488                 atomic_dec(&fs_info->balance_pause_req);
4489         } else {
4490                 ret = -ENOTCONN;
4491         }
4492
4493         mutex_unlock(&fs_info->balance_mutex);
4494         return ret;
4495 }
4496
4497 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4498 {
4499         mutex_lock(&fs_info->balance_mutex);
4500         if (!fs_info->balance_ctl) {
4501                 mutex_unlock(&fs_info->balance_mutex);
4502                 return -ENOTCONN;
4503         }
4504
4505         /*
4506          * A paused balance with the item stored on disk can be resumed at
4507          * mount time if the mount is read-write. Otherwise it's still paused
4508          * and we must not allow cancelling as it deletes the item.
4509          */
4510         if (sb_rdonly(fs_info->sb)) {
4511                 mutex_unlock(&fs_info->balance_mutex);
4512                 return -EROFS;
4513         }
4514
4515         atomic_inc(&fs_info->balance_cancel_req);
4516         /*
4517          * if we are running just wait and return, balance item is
4518          * deleted in btrfs_balance in this case
4519          */
4520         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4521                 mutex_unlock(&fs_info->balance_mutex);
4522                 wait_event(fs_info->balance_wait_q,
4523                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4524                 mutex_lock(&fs_info->balance_mutex);
4525         } else {
4526                 mutex_unlock(&fs_info->balance_mutex);
4527                 /*
4528                  * Lock released to allow other waiters to continue, we'll
4529                  * reexamine the status again.
4530                  */
4531                 mutex_lock(&fs_info->balance_mutex);
4532
4533                 if (fs_info->balance_ctl) {
4534                         reset_balance_state(fs_info);
4535                         btrfs_exclop_finish(fs_info);
4536                         btrfs_info(fs_info, "balance: canceled");
4537                 }
4538         }
4539
4540         BUG_ON(fs_info->balance_ctl ||
4541                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4542         atomic_dec(&fs_info->balance_cancel_req);
4543         mutex_unlock(&fs_info->balance_mutex);
4544         return 0;
4545 }
4546
4547 int btrfs_uuid_scan_kthread(void *data)
4548 {
4549         struct btrfs_fs_info *fs_info = data;
4550         struct btrfs_root *root = fs_info->tree_root;
4551         struct btrfs_key key;
4552         struct btrfs_path *path = NULL;
4553         int ret = 0;
4554         struct extent_buffer *eb;
4555         int slot;
4556         struct btrfs_root_item root_item;
4557         u32 item_size;
4558         struct btrfs_trans_handle *trans = NULL;
4559         bool closing = false;
4560
4561         path = btrfs_alloc_path();
4562         if (!path) {
4563                 ret = -ENOMEM;
4564                 goto out;
4565         }
4566
4567         key.objectid = 0;
4568         key.type = BTRFS_ROOT_ITEM_KEY;
4569         key.offset = 0;
4570
4571         while (1) {
4572                 if (btrfs_fs_closing(fs_info)) {
4573                         closing = true;
4574                         break;
4575                 }
4576                 ret = btrfs_search_forward(root, &key, path,
4577                                 BTRFS_OLDEST_GENERATION);
4578                 if (ret) {
4579                         if (ret > 0)
4580                                 ret = 0;
4581                         break;
4582                 }
4583
4584                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4585                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4586                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4587                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4588                         goto skip;
4589
4590                 eb = path->nodes[0];
4591                 slot = path->slots[0];
4592                 item_size = btrfs_item_size_nr(eb, slot);
4593                 if (item_size < sizeof(root_item))
4594                         goto skip;
4595
4596                 read_extent_buffer(eb, &root_item,
4597                                    btrfs_item_ptr_offset(eb, slot),
4598                                    (int)sizeof(root_item));
4599                 if (btrfs_root_refs(&root_item) == 0)
4600                         goto skip;
4601
4602                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4603                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4604                         if (trans)
4605                                 goto update_tree;
4606
4607                         btrfs_release_path(path);
4608                         /*
4609                          * 1 - subvol uuid item
4610                          * 1 - received_subvol uuid item
4611                          */
4612                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4613                         if (IS_ERR(trans)) {
4614                                 ret = PTR_ERR(trans);
4615                                 break;
4616                         }
4617                         continue;
4618                 } else {
4619                         goto skip;
4620                 }
4621 update_tree:
4622                 btrfs_release_path(path);
4623                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4624                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4625                                                   BTRFS_UUID_KEY_SUBVOL,
4626                                                   key.objectid);
4627                         if (ret < 0) {
4628                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4629                                         ret);
4630                                 break;
4631                         }
4632                 }
4633
4634                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4635                         ret = btrfs_uuid_tree_add(trans,
4636                                                   root_item.received_uuid,
4637                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4638                                                   key.objectid);
4639                         if (ret < 0) {
4640                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4641                                         ret);
4642                                 break;
4643                         }
4644                 }
4645
4646 skip:
4647                 btrfs_release_path(path);
4648                 if (trans) {
4649                         ret = btrfs_end_transaction(trans);
4650                         trans = NULL;
4651                         if (ret)
4652                                 break;
4653                 }
4654
4655                 if (key.offset < (u64)-1) {
4656                         key.offset++;
4657                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4658                         key.offset = 0;
4659                         key.type = BTRFS_ROOT_ITEM_KEY;
4660                 } else if (key.objectid < (u64)-1) {
4661                         key.offset = 0;
4662                         key.type = BTRFS_ROOT_ITEM_KEY;
4663                         key.objectid++;
4664                 } else {
4665                         break;
4666                 }
4667                 cond_resched();
4668         }
4669
4670 out:
4671         btrfs_free_path(path);
4672         if (trans && !IS_ERR(trans))
4673                 btrfs_end_transaction(trans);
4674         if (ret)
4675                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4676         else if (!closing)
4677                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4678         up(&fs_info->uuid_tree_rescan_sem);
4679         return 0;
4680 }
4681
4682 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4683 {
4684         struct btrfs_trans_handle *trans;
4685         struct btrfs_root *tree_root = fs_info->tree_root;
4686         struct btrfs_root *uuid_root;
4687         struct task_struct *task;
4688         int ret;
4689
4690         /*
4691          * 1 - root node
4692          * 1 - root item
4693          */
4694         trans = btrfs_start_transaction(tree_root, 2);
4695         if (IS_ERR(trans))
4696                 return PTR_ERR(trans);
4697
4698         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4699         if (IS_ERR(uuid_root)) {
4700                 ret = PTR_ERR(uuid_root);
4701                 btrfs_abort_transaction(trans, ret);
4702                 btrfs_end_transaction(trans);
4703                 return ret;
4704         }
4705
4706         fs_info->uuid_root = uuid_root;
4707
4708         ret = btrfs_commit_transaction(trans);
4709         if (ret)
4710                 return ret;
4711
4712         down(&fs_info->uuid_tree_rescan_sem);
4713         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4714         if (IS_ERR(task)) {
4715                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4716                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4717                 up(&fs_info->uuid_tree_rescan_sem);
4718                 return PTR_ERR(task);
4719         }
4720
4721         return 0;
4722 }
4723
4724 /*
4725  * shrinking a device means finding all of the device extents past
4726  * the new size, and then following the back refs to the chunks.
4727  * The chunk relocation code actually frees the device extent
4728  */
4729 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4730 {
4731         struct btrfs_fs_info *fs_info = device->fs_info;
4732         struct btrfs_root *root = fs_info->dev_root;
4733         struct btrfs_trans_handle *trans;
4734         struct btrfs_dev_extent *dev_extent = NULL;
4735         struct btrfs_path *path;
4736         u64 length;
4737         u64 chunk_offset;
4738         int ret;
4739         int slot;
4740         int failed = 0;
4741         bool retried = false;
4742         struct extent_buffer *l;
4743         struct btrfs_key key;
4744         struct btrfs_super_block *super_copy = fs_info->super_copy;
4745         u64 old_total = btrfs_super_total_bytes(super_copy);
4746         u64 old_size = btrfs_device_get_total_bytes(device);
4747         u64 diff;
4748         u64 start;
4749
4750         new_size = round_down(new_size, fs_info->sectorsize);
4751         start = new_size;
4752         diff = round_down(old_size - new_size, fs_info->sectorsize);
4753
4754         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4755                 return -EINVAL;
4756
4757         path = btrfs_alloc_path();
4758         if (!path)
4759                 return -ENOMEM;
4760
4761         path->reada = READA_BACK;
4762
4763         trans = btrfs_start_transaction(root, 0);
4764         if (IS_ERR(trans)) {
4765                 btrfs_free_path(path);
4766                 return PTR_ERR(trans);
4767         }
4768
4769         mutex_lock(&fs_info->chunk_mutex);
4770
4771         btrfs_device_set_total_bytes(device, new_size);
4772         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4773                 device->fs_devices->total_rw_bytes -= diff;
4774                 atomic64_sub(diff, &fs_info->free_chunk_space);
4775         }
4776
4777         /*
4778          * Once the device's size has been set to the new size, ensure all
4779          * in-memory chunks are synced to disk so that the loop below sees them
4780          * and relocates them accordingly.
4781          */
4782         if (contains_pending_extent(device, &start, diff)) {
4783                 mutex_unlock(&fs_info->chunk_mutex);
4784                 ret = btrfs_commit_transaction(trans);
4785                 if (ret)
4786                         goto done;
4787         } else {
4788                 mutex_unlock(&fs_info->chunk_mutex);
4789                 btrfs_end_transaction(trans);
4790         }
4791
4792 again:
4793         key.objectid = device->devid;
4794         key.offset = (u64)-1;
4795         key.type = BTRFS_DEV_EXTENT_KEY;
4796
4797         do {
4798                 mutex_lock(&fs_info->reclaim_bgs_lock);
4799                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4800                 if (ret < 0) {
4801                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4802                         goto done;
4803                 }
4804
4805                 ret = btrfs_previous_item(root, path, 0, key.type);
4806                 if (ret) {
4807                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4808                         if (ret < 0)
4809                                 goto done;
4810                         ret = 0;
4811                         btrfs_release_path(path);
4812                         break;
4813                 }
4814
4815                 l = path->nodes[0];
4816                 slot = path->slots[0];
4817                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4818
4819                 if (key.objectid != device->devid) {
4820                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4821                         btrfs_release_path(path);
4822                         break;
4823                 }
4824
4825                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4826                 length = btrfs_dev_extent_length(l, dev_extent);
4827
4828                 if (key.offset + length <= new_size) {
4829                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4830                         btrfs_release_path(path);
4831                         break;
4832                 }
4833
4834                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4835                 btrfs_release_path(path);
4836
4837                 /*
4838                  * We may be relocating the only data chunk we have,
4839                  * which could potentially end up with losing data's
4840                  * raid profile, so lets allocate an empty one in
4841                  * advance.
4842                  */
4843                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4844                 if (ret < 0) {
4845                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4846                         goto done;
4847                 }
4848
4849                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4850                 mutex_unlock(&fs_info->reclaim_bgs_lock);
4851                 if (ret == -ENOSPC) {
4852                         failed++;
4853                 } else if (ret) {
4854                         if (ret == -ETXTBSY) {
4855                                 btrfs_warn(fs_info,
4856                    "could not shrink block group %llu due to active swapfile",
4857                                            chunk_offset);
4858                         }
4859                         goto done;
4860                 }
4861         } while (key.offset-- > 0);
4862
4863         if (failed && !retried) {
4864                 failed = 0;
4865                 retried = true;
4866                 goto again;
4867         } else if (failed && retried) {
4868                 ret = -ENOSPC;
4869                 goto done;
4870         }
4871
4872         /* Shrinking succeeded, else we would be at "done". */
4873         trans = btrfs_start_transaction(root, 0);
4874         if (IS_ERR(trans)) {
4875                 ret = PTR_ERR(trans);
4876                 goto done;
4877         }
4878
4879         mutex_lock(&fs_info->chunk_mutex);
4880         /* Clear all state bits beyond the shrunk device size */
4881         clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4882                           CHUNK_STATE_MASK);
4883
4884         btrfs_device_set_disk_total_bytes(device, new_size);
4885         if (list_empty(&device->post_commit_list))
4886                 list_add_tail(&device->post_commit_list,
4887                               &trans->transaction->dev_update_list);
4888
4889         WARN_ON(diff > old_total);
4890         btrfs_set_super_total_bytes(super_copy,
4891                         round_down(old_total - diff, fs_info->sectorsize));
4892         mutex_unlock(&fs_info->chunk_mutex);
4893
4894         /* Now btrfs_update_device() will change the on-disk size. */
4895         ret = btrfs_update_device(trans, device);
4896         if (ret < 0) {
4897                 btrfs_abort_transaction(trans, ret);
4898                 btrfs_end_transaction(trans);
4899         } else {
4900                 ret = btrfs_commit_transaction(trans);
4901         }
4902 done:
4903         btrfs_free_path(path);
4904         if (ret) {
4905                 mutex_lock(&fs_info->chunk_mutex);
4906                 btrfs_device_set_total_bytes(device, old_size);
4907                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4908                         device->fs_devices->total_rw_bytes += diff;
4909                 atomic64_add(diff, &fs_info->free_chunk_space);
4910                 mutex_unlock(&fs_info->chunk_mutex);
4911         }
4912         return ret;
4913 }
4914
4915 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4916                            struct btrfs_key *key,
4917                            struct btrfs_chunk *chunk, int item_size)
4918 {
4919         struct btrfs_super_block *super_copy = fs_info->super_copy;
4920         struct btrfs_disk_key disk_key;
4921         u32 array_size;
4922         u8 *ptr;
4923
4924         lockdep_assert_held(&fs_info->chunk_mutex);
4925
4926         array_size = btrfs_super_sys_array_size(super_copy);
4927         if (array_size + item_size + sizeof(disk_key)
4928                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4929                 return -EFBIG;
4930
4931         ptr = super_copy->sys_chunk_array + array_size;
4932         btrfs_cpu_key_to_disk(&disk_key, key);
4933         memcpy(ptr, &disk_key, sizeof(disk_key));
4934         ptr += sizeof(disk_key);
4935         memcpy(ptr, chunk, item_size);
4936         item_size += sizeof(disk_key);
4937         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4938
4939         return 0;
4940 }
4941
4942 /*
4943  * sort the devices in descending order by max_avail, total_avail
4944  */
4945 static int btrfs_cmp_device_info(const void *a, const void *b)
4946 {
4947         const struct btrfs_device_info *di_a = a;
4948         const struct btrfs_device_info *di_b = b;
4949
4950         if (di_a->max_avail > di_b->max_avail)
4951                 return -1;
4952         if (di_a->max_avail < di_b->max_avail)
4953                 return 1;
4954         if (di_a->total_avail > di_b->total_avail)
4955                 return -1;
4956         if (di_a->total_avail < di_b->total_avail)
4957                 return 1;
4958         return 0;
4959 }
4960
4961 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4962 {
4963         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4964                 return;
4965
4966         btrfs_set_fs_incompat(info, RAID56);
4967 }
4968
4969 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4970 {
4971         if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4972                 return;
4973
4974         btrfs_set_fs_incompat(info, RAID1C34);
4975 }
4976
4977 /*
4978  * Structure used internally for __btrfs_alloc_chunk() function.
4979  * Wraps needed parameters.
4980  */
4981 struct alloc_chunk_ctl {
4982         u64 start;
4983         u64 type;
4984         /* Total number of stripes to allocate */
4985         int num_stripes;
4986         /* sub_stripes info for map */
4987         int sub_stripes;
4988         /* Stripes per device */
4989         int dev_stripes;
4990         /* Maximum number of devices to use */
4991         int devs_max;
4992         /* Minimum number of devices to use */
4993         int devs_min;
4994         /* ndevs has to be a multiple of this */
4995         int devs_increment;
4996         /* Number of copies */
4997         int ncopies;
4998         /* Number of stripes worth of bytes to store parity information */
4999         int nparity;
5000         u64 max_stripe_size;
5001         u64 max_chunk_size;
5002         u64 dev_extent_min;
5003         u64 stripe_size;
5004         u64 chunk_size;
5005         int ndevs;
5006 };
5007
5008 static void init_alloc_chunk_ctl_policy_regular(
5009                                 struct btrfs_fs_devices *fs_devices,
5010                                 struct alloc_chunk_ctl *ctl)
5011 {
5012         u64 type = ctl->type;
5013
5014         if (type & BTRFS_BLOCK_GROUP_DATA) {
5015                 ctl->max_stripe_size = SZ_1G;
5016                 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5017         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5018                 /* For larger filesystems, use larger metadata chunks */
5019                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5020                         ctl->max_stripe_size = SZ_1G;
5021                 else
5022                         ctl->max_stripe_size = SZ_256M;
5023                 ctl->max_chunk_size = ctl->max_stripe_size;
5024         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5025                 ctl->max_stripe_size = SZ_32M;
5026                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5027                 ctl->devs_max = min_t(int, ctl->devs_max,
5028                                       BTRFS_MAX_DEVS_SYS_CHUNK);
5029         } else {
5030                 BUG();
5031         }
5032
5033         /* We don't want a chunk larger than 10% of writable space */
5034         ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5035                                   ctl->max_chunk_size);
5036         ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5037 }
5038
5039 static void init_alloc_chunk_ctl_policy_zoned(
5040                                       struct btrfs_fs_devices *fs_devices,
5041                                       struct alloc_chunk_ctl *ctl)
5042 {
5043         u64 zone_size = fs_devices->fs_info->zone_size;
5044         u64 limit;
5045         int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5046         int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5047         u64 min_chunk_size = min_data_stripes * zone_size;
5048         u64 type = ctl->type;
5049
5050         ctl->max_stripe_size = zone_size;
5051         if (type & BTRFS_BLOCK_GROUP_DATA) {
5052                 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5053                                                  zone_size);
5054         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5055                 ctl->max_chunk_size = ctl->max_stripe_size;
5056         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5057                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5058                 ctl->devs_max = min_t(int, ctl->devs_max,
5059                                       BTRFS_MAX_DEVS_SYS_CHUNK);
5060         } else {
5061                 BUG();
5062         }
5063
5064         /* We don't want a chunk larger than 10% of writable space */
5065         limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5066                                zone_size),
5067                     min_chunk_size);
5068         ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5069         ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5070 }
5071
5072 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5073                                  struct alloc_chunk_ctl *ctl)
5074 {
5075         int index = btrfs_bg_flags_to_raid_index(ctl->type);
5076
5077         ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5078         ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5079         ctl->devs_max = btrfs_raid_array[index].devs_max;
5080         if (!ctl->devs_max)
5081                 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5082         ctl->devs_min = btrfs_raid_array[index].devs_min;
5083         ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5084         ctl->ncopies = btrfs_raid_array[index].ncopies;
5085         ctl->nparity = btrfs_raid_array[index].nparity;
5086         ctl->ndevs = 0;
5087
5088         switch (fs_devices->chunk_alloc_policy) {
5089         case BTRFS_CHUNK_ALLOC_REGULAR:
5090                 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5091                 break;
5092         case BTRFS_CHUNK_ALLOC_ZONED:
5093                 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5094                 break;
5095         default:
5096                 BUG();
5097         }
5098 }
5099
5100 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5101                               struct alloc_chunk_ctl *ctl,
5102                               struct btrfs_device_info *devices_info)
5103 {
5104         struct btrfs_fs_info *info = fs_devices->fs_info;
5105         struct btrfs_device *device;
5106         u64 total_avail;
5107         u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5108         int ret;
5109         int ndevs = 0;
5110         u64 max_avail;
5111         u64 dev_offset;
5112
5113         /*
5114          * in the first pass through the devices list, we gather information
5115          * about the available holes on each device.
5116          */
5117         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5118                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5119                         WARN(1, KERN_ERR
5120                                "BTRFS: read-only device in alloc_list\n");
5121                         continue;
5122                 }
5123
5124                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5125                                         &device->dev_state) ||
5126                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5127                         continue;
5128
5129                 if (device->total_bytes > device->bytes_used)
5130                         total_avail = device->total_bytes - device->bytes_used;
5131                 else
5132                         total_avail = 0;
5133
5134                 /* If there is no space on this device, skip it. */
5135                 if (total_avail < ctl->dev_extent_min)
5136                         continue;
5137
5138                 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5139                                            &max_avail);
5140                 if (ret && ret != -ENOSPC)
5141                         return ret;
5142
5143                 if (ret == 0)
5144                         max_avail = dev_extent_want;
5145
5146                 if (max_avail < ctl->dev_extent_min) {
5147                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
5148                                 btrfs_debug(info,
5149                         "%s: devid %llu has no free space, have=%llu want=%llu",
5150                                             __func__, device->devid, max_avail,
5151                                             ctl->dev_extent_min);
5152                         continue;
5153                 }
5154
5155                 if (ndevs == fs_devices->rw_devices) {
5156                         WARN(1, "%s: found more than %llu devices\n",
5157                              __func__, fs_devices->rw_devices);
5158                         break;
5159                 }
5160                 devices_info[ndevs].dev_offset = dev_offset;
5161                 devices_info[ndevs].max_avail = max_avail;
5162                 devices_info[ndevs].total_avail = total_avail;
5163                 devices_info[ndevs].dev = device;
5164                 ++ndevs;
5165         }
5166         ctl->ndevs = ndevs;
5167
5168         /*
5169          * now sort the devices by hole size / available space
5170          */
5171         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5172              btrfs_cmp_device_info, NULL);
5173
5174         return 0;
5175 }
5176
5177 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5178                                       struct btrfs_device_info *devices_info)
5179 {
5180         /* Number of stripes that count for block group size */
5181         int data_stripes;
5182
5183         /*
5184          * The primary goal is to maximize the number of stripes, so use as
5185          * many devices as possible, even if the stripes are not maximum sized.
5186          *
5187          * The DUP profile stores more than one stripe per device, the
5188          * max_avail is the total size so we have to adjust.
5189          */
5190         ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5191                                    ctl->dev_stripes);
5192         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5193
5194         /* This will have to be fixed for RAID1 and RAID10 over more drives */
5195         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5196
5197         /*
5198          * Use the number of data stripes to figure out how big this chunk is
5199          * really going to be in terms of logical address space, and compare
5200          * that answer with the max chunk size. If it's higher, we try to
5201          * reduce stripe_size.
5202          */
5203         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5204                 /*
5205                  * Reduce stripe_size, round it up to a 16MB boundary again and
5206                  * then use it, unless it ends up being even bigger than the
5207                  * previous value we had already.
5208                  */
5209                 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5210                                                         data_stripes), SZ_16M),
5211                                        ctl->stripe_size);
5212         }
5213
5214         /* Align to BTRFS_STRIPE_LEN */
5215         ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5216         ctl->chunk_size = ctl->stripe_size * data_stripes;
5217
5218         return 0;
5219 }
5220
5221 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5222                                     struct btrfs_device_info *devices_info)
5223 {
5224         u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5225         /* Number of stripes that count for block group size */
5226         int data_stripes;
5227
5228         /*
5229          * It should hold because:
5230          *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5231          */
5232         ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5233
5234         ctl->stripe_size = zone_size;
5235         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5236         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5237
5238         /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5239         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5240                 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5241                                              ctl->stripe_size) + ctl->nparity,
5242                                      ctl->dev_stripes);
5243                 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5244                 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5245                 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5246         }
5247
5248         ctl->chunk_size = ctl->stripe_size * data_stripes;
5249
5250         return 0;
5251 }
5252
5253 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5254                               struct alloc_chunk_ctl *ctl,
5255                               struct btrfs_device_info *devices_info)
5256 {
5257         struct btrfs_fs_info *info = fs_devices->fs_info;
5258
5259         /*
5260          * Round down to number of usable stripes, devs_increment can be any
5261          * number so we can't use round_down() that requires power of 2, while
5262          * rounddown is safe.
5263          */
5264         ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5265
5266         if (ctl->ndevs < ctl->devs_min) {
5267                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5268                         btrfs_debug(info,
5269         "%s: not enough devices with free space: have=%d minimum required=%d",
5270                                     __func__, ctl->ndevs, ctl->devs_min);
5271                 }
5272                 return -ENOSPC;
5273         }
5274
5275         ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5276
5277         switch (fs_devices->chunk_alloc_policy) {
5278         case BTRFS_CHUNK_ALLOC_REGULAR:
5279                 return decide_stripe_size_regular(ctl, devices_info);
5280         case BTRFS_CHUNK_ALLOC_ZONED:
5281                 return decide_stripe_size_zoned(ctl, devices_info);
5282         default:
5283                 BUG();
5284         }
5285 }
5286
5287 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5288                         struct alloc_chunk_ctl *ctl,
5289                         struct btrfs_device_info *devices_info)
5290 {
5291         struct btrfs_fs_info *info = trans->fs_info;
5292         struct map_lookup *map = NULL;
5293         struct extent_map_tree *em_tree;
5294         struct btrfs_block_group *block_group;
5295         struct extent_map *em;
5296         u64 start = ctl->start;
5297         u64 type = ctl->type;
5298         int ret;
5299         int i;
5300         int j;
5301
5302         map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5303         if (!map)
5304                 return ERR_PTR(-ENOMEM);
5305         map->num_stripes = ctl->num_stripes;
5306
5307         for (i = 0; i < ctl->ndevs; ++i) {
5308                 for (j = 0; j < ctl->dev_stripes; ++j) {
5309                         int s = i * ctl->dev_stripes + j;
5310                         map->stripes[s].dev = devices_info[i].dev;
5311                         map->stripes[s].physical = devices_info[i].dev_offset +
5312                                                    j * ctl->stripe_size;
5313                 }
5314         }
5315         map->stripe_len = BTRFS_STRIPE_LEN;
5316         map->io_align = BTRFS_STRIPE_LEN;
5317         map->io_width = BTRFS_STRIPE_LEN;
5318         map->type = type;
5319         map->sub_stripes = ctl->sub_stripes;
5320
5321         trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5322
5323         em = alloc_extent_map();
5324         if (!em) {
5325                 kfree(map);
5326                 return ERR_PTR(-ENOMEM);
5327         }
5328         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5329         em->map_lookup = map;
5330         em->start = start;
5331         em->len = ctl->chunk_size;
5332         em->block_start = 0;
5333         em->block_len = em->len;
5334         em->orig_block_len = ctl->stripe_size;
5335
5336         em_tree = &info->mapping_tree;
5337         write_lock(&em_tree->lock);
5338         ret = add_extent_mapping(em_tree, em, 0);
5339         if (ret) {
5340                 write_unlock(&em_tree->lock);
5341                 free_extent_map(em);
5342                 return ERR_PTR(ret);
5343         }
5344         write_unlock(&em_tree->lock);
5345
5346         block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5347         if (IS_ERR(block_group))
5348                 goto error_del_extent;
5349
5350         for (i = 0; i < map->num_stripes; i++) {
5351                 struct btrfs_device *dev = map->stripes[i].dev;
5352
5353                 btrfs_device_set_bytes_used(dev,
5354                                             dev->bytes_used + ctl->stripe_size);
5355                 if (list_empty(&dev->post_commit_list))
5356                         list_add_tail(&dev->post_commit_list,
5357                                       &trans->transaction->dev_update_list);
5358         }
5359
5360         atomic64_sub(ctl->stripe_size * map->num_stripes,
5361                      &info->free_chunk_space);
5362
5363         free_extent_map(em);
5364         check_raid56_incompat_flag(info, type);
5365         check_raid1c34_incompat_flag(info, type);
5366
5367         return block_group;
5368
5369 error_del_extent:
5370         write_lock(&em_tree->lock);
5371         remove_extent_mapping(em_tree, em);
5372         write_unlock(&em_tree->lock);
5373
5374         /* One for our allocation */
5375         free_extent_map(em);
5376         /* One for the tree reference */
5377         free_extent_map(em);
5378
5379         return block_group;
5380 }
5381
5382 struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5383                                             u64 type)
5384 {
5385         struct btrfs_fs_info *info = trans->fs_info;
5386         struct btrfs_fs_devices *fs_devices = info->fs_devices;
5387         struct btrfs_device_info *devices_info = NULL;
5388         struct alloc_chunk_ctl ctl;
5389         struct btrfs_block_group *block_group;
5390         int ret;
5391
5392         lockdep_assert_held(&info->chunk_mutex);
5393
5394         if (!alloc_profile_is_valid(type, 0)) {
5395                 ASSERT(0);
5396                 return ERR_PTR(-EINVAL);
5397         }
5398
5399         if (list_empty(&fs_devices->alloc_list)) {
5400                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5401                         btrfs_debug(info, "%s: no writable device", __func__);
5402                 return ERR_PTR(-ENOSPC);
5403         }
5404
5405         if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5406                 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5407                 ASSERT(0);
5408                 return ERR_PTR(-EINVAL);
5409         }
5410
5411         ctl.start = find_next_chunk(info);
5412         ctl.type = type;
5413         init_alloc_chunk_ctl(fs_devices, &ctl);
5414
5415         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5416                                GFP_NOFS);
5417         if (!devices_info)
5418                 return ERR_PTR(-ENOMEM);
5419
5420         ret = gather_device_info(fs_devices, &ctl, devices_info);
5421         if (ret < 0) {
5422                 block_group = ERR_PTR(ret);
5423                 goto out;
5424         }
5425
5426         ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5427         if (ret < 0) {
5428                 block_group = ERR_PTR(ret);
5429                 goto out;
5430         }
5431
5432         block_group = create_chunk(trans, &ctl, devices_info);
5433
5434 out:
5435         kfree(devices_info);
5436         return block_group;
5437 }
5438
5439 /*
5440  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5441  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5442  * chunks.
5443  *
5444  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5445  * phases.
5446  */
5447 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5448                                      struct btrfs_block_group *bg)
5449 {
5450         struct btrfs_fs_info *fs_info = trans->fs_info;
5451         struct btrfs_root *extent_root = fs_info->extent_root;
5452         struct btrfs_root *chunk_root = fs_info->chunk_root;
5453         struct btrfs_key key;
5454         struct btrfs_chunk *chunk;
5455         struct btrfs_stripe *stripe;
5456         struct extent_map *em;
5457         struct map_lookup *map;
5458         size_t item_size;
5459         int i;
5460         int ret;
5461
5462         /*
5463          * We take the chunk_mutex for 2 reasons:
5464          *
5465          * 1) Updates and insertions in the chunk btree must be done while holding
5466          *    the chunk_mutex, as well as updating the system chunk array in the
5467          *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5468          *    details;
5469          *
5470          * 2) To prevent races with the final phase of a device replace operation
5471          *    that replaces the device object associated with the map's stripes,
5472          *    because the device object's id can change at any time during that
5473          *    final phase of the device replace operation
5474          *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5475          *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5476          *    which would cause a failure when updating the device item, which does
5477          *    not exists, or persisting a stripe of the chunk item with such ID.
5478          *    Here we can't use the device_list_mutex because our caller already
5479          *    has locked the chunk_mutex, and the final phase of device replace
5480          *    acquires both mutexes - first the device_list_mutex and then the
5481          *    chunk_mutex. Using any of those two mutexes protects us from a
5482          *    concurrent device replace.
5483          */
5484         lockdep_assert_held(&fs_info->chunk_mutex);
5485
5486         em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5487         if (IS_ERR(em)) {
5488                 ret = PTR_ERR(em);
5489                 btrfs_abort_transaction(trans, ret);
5490                 return ret;
5491         }
5492
5493         map = em->map_lookup;
5494         item_size = btrfs_chunk_item_size(map->num_stripes);
5495
5496         chunk = kzalloc(item_size, GFP_NOFS);
5497         if (!chunk) {
5498                 ret = -ENOMEM;
5499                 btrfs_abort_transaction(trans, ret);
5500                 goto out;
5501         }
5502
5503         for (i = 0; i < map->num_stripes; i++) {
5504                 struct btrfs_device *device = map->stripes[i].dev;
5505
5506                 ret = btrfs_update_device(trans, device);
5507                 if (ret)
5508                         goto out;
5509         }
5510
5511         stripe = &chunk->stripe;
5512         for (i = 0; i < map->num_stripes; i++) {
5513                 struct btrfs_device *device = map->stripes[i].dev;
5514                 const u64 dev_offset = map->stripes[i].physical;
5515
5516                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5517                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5518                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5519                 stripe++;
5520         }
5521
5522         btrfs_set_stack_chunk_length(chunk, bg->length);
5523         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5524         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5525         btrfs_set_stack_chunk_type(chunk, map->type);
5526         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5527         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5528         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5529         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5530         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5531
5532         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5533         key.type = BTRFS_CHUNK_ITEM_KEY;
5534         key.offset = bg->start;
5535
5536         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5537         if (ret)
5538                 goto out;
5539
5540         bg->chunk_item_inserted = 1;
5541
5542         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5543                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5544                 if (ret)
5545                         goto out;
5546         }
5547
5548 out:
5549         kfree(chunk);
5550         free_extent_map(em);
5551         return ret;
5552 }
5553
5554 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5555 {
5556         struct btrfs_fs_info *fs_info = trans->fs_info;
5557         u64 alloc_profile;
5558         struct btrfs_block_group *meta_bg;
5559         struct btrfs_block_group *sys_bg;
5560
5561         /*
5562          * When adding a new device for sprouting, the seed device is read-only
5563          * so we must first allocate a metadata and a system chunk. But before
5564          * adding the block group items to the extent, device and chunk btrees,
5565          * we must first:
5566          *
5567          * 1) Create both chunks without doing any changes to the btrees, as
5568          *    otherwise we would get -ENOSPC since the block groups from the
5569          *    seed device are read-only;
5570          *
5571          * 2) Add the device item for the new sprout device - finishing the setup
5572          *    of a new block group requires updating the device item in the chunk
5573          *    btree, so it must exist when we attempt to do it. The previous step
5574          *    ensures this does not fail with -ENOSPC.
5575          *
5576          * After that we can add the block group items to their btrees:
5577          * update existing device item in the chunk btree, add a new block group
5578          * item to the extent btree, add a new chunk item to the chunk btree and
5579          * finally add the new device extent items to the devices btree.
5580          */
5581
5582         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5583         meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5584         if (IS_ERR(meta_bg))
5585                 return PTR_ERR(meta_bg);
5586
5587         alloc_profile = btrfs_system_alloc_profile(fs_info);
5588         sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5589         if (IS_ERR(sys_bg))
5590                 return PTR_ERR(sys_bg);
5591
5592         return 0;
5593 }
5594
5595 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5596 {
5597         const int index = btrfs_bg_flags_to_raid_index(map->type);
5598
5599         return btrfs_raid_array[index].tolerated_failures;
5600 }
5601
5602 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5603 {
5604         struct extent_map *em;
5605         struct map_lookup *map;
5606         int readonly = 0;
5607         int miss_ndevs = 0;
5608         int i;
5609
5610         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5611         if (IS_ERR(em))
5612                 return 1;
5613
5614         map = em->map_lookup;
5615         for (i = 0; i < map->num_stripes; i++) {
5616                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5617                                         &map->stripes[i].dev->dev_state)) {
5618                         miss_ndevs++;
5619                         continue;
5620                 }
5621                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5622                                         &map->stripes[i].dev->dev_state)) {
5623                         readonly = 1;
5624                         goto end;
5625                 }
5626         }
5627
5628         /*
5629          * If the number of missing devices is larger than max errors,
5630          * we can not write the data into that chunk successfully, so
5631          * set it readonly.
5632          */
5633         if (miss_ndevs > btrfs_chunk_max_errors(map))
5634                 readonly = 1;
5635 end:
5636         free_extent_map(em);
5637         return readonly;
5638 }
5639
5640 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5641 {
5642         struct extent_map *em;
5643
5644         while (1) {
5645                 write_lock(&tree->lock);
5646                 em = lookup_extent_mapping(tree, 0, (u64)-1);
5647                 if (em)
5648                         remove_extent_mapping(tree, em);
5649                 write_unlock(&tree->lock);
5650                 if (!em)
5651                         break;
5652                 /* once for us */
5653                 free_extent_map(em);
5654                 /* once for the tree */
5655                 free_extent_map(em);
5656         }
5657 }
5658
5659 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5660 {
5661         struct extent_map *em;
5662         struct map_lookup *map;
5663         int ret;
5664
5665         em = btrfs_get_chunk_map(fs_info, logical, len);
5666         if (IS_ERR(em))
5667                 /*
5668                  * We could return errors for these cases, but that could get
5669                  * ugly and we'd probably do the same thing which is just not do
5670                  * anything else and exit, so return 1 so the callers don't try
5671                  * to use other copies.
5672                  */
5673                 return 1;
5674
5675         map = em->map_lookup;
5676         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5677                 ret = map->num_stripes;
5678         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5679                 ret = map->sub_stripes;
5680         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5681                 ret = 2;
5682         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5683                 /*
5684                  * There could be two corrupted data stripes, we need
5685                  * to loop retry in order to rebuild the correct data.
5686                  *
5687                  * Fail a stripe at a time on every retry except the
5688                  * stripe under reconstruction.
5689                  */
5690                 ret = map->num_stripes;
5691         else
5692                 ret = 1;
5693         free_extent_map(em);
5694
5695         down_read(&fs_info->dev_replace.rwsem);
5696         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5697             fs_info->dev_replace.tgtdev)
5698                 ret++;
5699         up_read(&fs_info->dev_replace.rwsem);
5700
5701         return ret;
5702 }
5703
5704 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5705                                     u64 logical)
5706 {
5707         struct extent_map *em;
5708         struct map_lookup *map;
5709         unsigned long len = fs_info->sectorsize;
5710
5711         em = btrfs_get_chunk_map(fs_info, logical, len);
5712
5713         if (!WARN_ON(IS_ERR(em))) {
5714                 map = em->map_lookup;
5715                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5716                         len = map->stripe_len * nr_data_stripes(map);
5717                 free_extent_map(em);
5718         }
5719         return len;
5720 }
5721
5722 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5723 {
5724         struct extent_map *em;
5725         struct map_lookup *map;
5726         int ret = 0;
5727
5728         em = btrfs_get_chunk_map(fs_info, logical, len);
5729
5730         if(!WARN_ON(IS_ERR(em))) {
5731                 map = em->map_lookup;
5732                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5733                         ret = 1;
5734                 free_extent_map(em);
5735         }
5736         return ret;
5737 }
5738
5739 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5740                             struct map_lookup *map, int first,
5741                             int dev_replace_is_ongoing)
5742 {
5743         int i;
5744         int num_stripes;
5745         int preferred_mirror;
5746         int tolerance;
5747         struct btrfs_device *srcdev;
5748
5749         ASSERT((map->type &
5750                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5751
5752         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5753                 num_stripes = map->sub_stripes;
5754         else
5755                 num_stripes = map->num_stripes;
5756
5757         switch (fs_info->fs_devices->read_policy) {
5758         default:
5759                 /* Shouldn't happen, just warn and use pid instead of failing */
5760                 btrfs_warn_rl(fs_info,
5761                               "unknown read_policy type %u, reset to pid",
5762                               fs_info->fs_devices->read_policy);
5763                 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5764                 fallthrough;
5765         case BTRFS_READ_POLICY_PID:
5766                 preferred_mirror = first + (current->pid % num_stripes);
5767                 break;
5768         }
5769
5770         if (dev_replace_is_ongoing &&
5771             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5772              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5773                 srcdev = fs_info->dev_replace.srcdev;
5774         else
5775                 srcdev = NULL;
5776
5777         /*
5778          * try to avoid the drive that is the source drive for a
5779          * dev-replace procedure, only choose it if no other non-missing
5780          * mirror is available
5781          */
5782         for (tolerance = 0; tolerance < 2; tolerance++) {
5783                 if (map->stripes[preferred_mirror].dev->bdev &&
5784                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5785                         return preferred_mirror;
5786                 for (i = first; i < first + num_stripes; i++) {
5787                         if (map->stripes[i].dev->bdev &&
5788                             (tolerance || map->stripes[i].dev != srcdev))
5789                                 return i;
5790                 }
5791         }
5792
5793         /* we couldn't find one that doesn't fail.  Just return something
5794          * and the io error handling code will clean up eventually
5795          */
5796         return preferred_mirror;
5797 }
5798
5799 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5800 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5801 {
5802         int i;
5803         int again = 1;
5804
5805         while (again) {
5806                 again = 0;
5807                 for (i = 0; i < num_stripes - 1; i++) {
5808                         /* Swap if parity is on a smaller index */
5809                         if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5810                                 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5811                                 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5812                                 again = 1;
5813                         }
5814                 }
5815         }
5816 }
5817
5818 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5819 {
5820         struct btrfs_bio *bbio = kzalloc(
5821                  /* the size of the btrfs_bio */
5822                 sizeof(struct btrfs_bio) +
5823                 /* plus the variable array for the stripes */
5824                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5825                 /* plus the variable array for the tgt dev */
5826                 sizeof(int) * (real_stripes) +
5827                 /*
5828                  * plus the raid_map, which includes both the tgt dev
5829                  * and the stripes
5830                  */
5831                 sizeof(u64) * (total_stripes),
5832                 GFP_NOFS|__GFP_NOFAIL);
5833
5834         atomic_set(&bbio->error, 0);
5835         refcount_set(&bbio->refs, 1);
5836
5837         bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5838         bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5839
5840         return bbio;
5841 }
5842
5843 void btrfs_get_bbio(struct btrfs_bio *bbio)
5844 {
5845         WARN_ON(!refcount_read(&bbio->refs));
5846         refcount_inc(&bbio->refs);
5847 }
5848
5849 void btrfs_put_bbio(struct btrfs_bio *bbio)
5850 {
5851         if (!bbio)
5852                 return;
5853         if (refcount_dec_and_test(&bbio->refs))
5854                 kfree(bbio);
5855 }
5856
5857 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5858 /*
5859  * Please note that, discard won't be sent to target device of device
5860  * replace.
5861  */
5862 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5863                                          u64 logical, u64 *length_ret,
5864                                          struct btrfs_bio **bbio_ret)
5865 {
5866         struct extent_map *em;
5867         struct map_lookup *map;
5868         struct btrfs_bio *bbio;
5869         u64 length = *length_ret;
5870         u64 offset;
5871         u64 stripe_nr;
5872         u64 stripe_nr_end;
5873         u64 stripe_end_offset;
5874         u64 stripe_cnt;
5875         u64 stripe_len;
5876         u64 stripe_offset;
5877         u64 num_stripes;
5878         u32 stripe_index;
5879         u32 factor = 0;
5880         u32 sub_stripes = 0;
5881         u64 stripes_per_dev = 0;
5882         u32 remaining_stripes = 0;
5883         u32 last_stripe = 0;
5884         int ret = 0;
5885         int i;
5886
5887         /* discard always return a bbio */
5888         ASSERT(bbio_ret);
5889
5890         em = btrfs_get_chunk_map(fs_info, logical, length);
5891         if (IS_ERR(em))
5892                 return PTR_ERR(em);
5893
5894         map = em->map_lookup;
5895         /* we don't discard raid56 yet */
5896         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5897                 ret = -EOPNOTSUPP;
5898                 goto out;
5899         }
5900
5901         offset = logical - em->start;
5902         length = min_t(u64, em->start + em->len - logical, length);
5903         *length_ret = length;
5904
5905         stripe_len = map->stripe_len;
5906         /*
5907          * stripe_nr counts the total number of stripes we have to stride
5908          * to get to this block
5909          */
5910         stripe_nr = div64_u64(offset, stripe_len);
5911
5912         /* stripe_offset is the offset of this block in its stripe */
5913         stripe_offset = offset - stripe_nr * stripe_len;
5914
5915         stripe_nr_end = round_up(offset + length, map->stripe_len);
5916         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5917         stripe_cnt = stripe_nr_end - stripe_nr;
5918         stripe_end_offset = stripe_nr_end * map->stripe_len -
5919                             (offset + length);
5920         /*
5921          * after this, stripe_nr is the number of stripes on this
5922          * device we have to walk to find the data, and stripe_index is
5923          * the number of our device in the stripe array
5924          */
5925         num_stripes = 1;
5926         stripe_index = 0;
5927         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5928                          BTRFS_BLOCK_GROUP_RAID10)) {
5929                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5930                         sub_stripes = 1;
5931                 else
5932                         sub_stripes = map->sub_stripes;
5933
5934                 factor = map->num_stripes / sub_stripes;
5935                 num_stripes = min_t(u64, map->num_stripes,
5936                                     sub_stripes * stripe_cnt);
5937                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5938                 stripe_index *= sub_stripes;
5939                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5940                                               &remaining_stripes);
5941                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5942                 last_stripe *= sub_stripes;
5943         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5944                                 BTRFS_BLOCK_GROUP_DUP)) {
5945                 num_stripes = map->num_stripes;
5946         } else {
5947                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5948                                         &stripe_index);
5949         }
5950
5951         bbio = alloc_btrfs_bio(num_stripes, 0);
5952         if (!bbio) {
5953                 ret = -ENOMEM;
5954                 goto out;
5955         }
5956
5957         for (i = 0; i < num_stripes; i++) {
5958                 bbio->stripes[i].physical =
5959                         map->stripes[stripe_index].physical +
5960                         stripe_offset + stripe_nr * map->stripe_len;
5961                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5962
5963                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5964                                  BTRFS_BLOCK_GROUP_RAID10)) {
5965                         bbio->stripes[i].length = stripes_per_dev *
5966                                 map->stripe_len;
5967
5968                         if (i / sub_stripes < remaining_stripes)
5969                                 bbio->stripes[i].length +=
5970                                         map->stripe_len;
5971
5972                         /*
5973                          * Special for the first stripe and
5974                          * the last stripe:
5975                          *
5976                          * |-------|...|-------|
5977                          *     |----------|
5978                          *    off     end_off
5979                          */
5980                         if (i < sub_stripes)
5981                                 bbio->stripes[i].length -=
5982                                         stripe_offset;
5983
5984                         if (stripe_index >= last_stripe &&
5985                             stripe_index <= (last_stripe +
5986                                              sub_stripes - 1))
5987                                 bbio->stripes[i].length -=
5988                                         stripe_end_offset;
5989
5990                         if (i == sub_stripes - 1)
5991                                 stripe_offset = 0;
5992                 } else {
5993                         bbio->stripes[i].length = length;
5994                 }
5995
5996                 stripe_index++;
5997                 if (stripe_index == map->num_stripes) {
5998                         stripe_index = 0;
5999                         stripe_nr++;
6000                 }
6001         }
6002
6003         *bbio_ret = bbio;
6004         bbio->map_type = map->type;
6005         bbio->num_stripes = num_stripes;
6006 out:
6007         free_extent_map(em);
6008         return ret;
6009 }
6010
6011 /*
6012  * In dev-replace case, for repair case (that's the only case where the mirror
6013  * is selected explicitly when calling btrfs_map_block), blocks left of the
6014  * left cursor can also be read from the target drive.
6015  *
6016  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6017  * array of stripes.
6018  * For READ, it also needs to be supported using the same mirror number.
6019  *
6020  * If the requested block is not left of the left cursor, EIO is returned. This
6021  * can happen because btrfs_num_copies() returns one more in the dev-replace
6022  * case.
6023  */
6024 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6025                                          u64 logical, u64 length,
6026                                          u64 srcdev_devid, int *mirror_num,
6027                                          u64 *physical)
6028 {
6029         struct btrfs_bio *bbio = NULL;
6030         int num_stripes;
6031         int index_srcdev = 0;
6032         int found = 0;
6033         u64 physical_of_found = 0;
6034         int i;
6035         int ret = 0;
6036
6037         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6038                                 logical, &length, &bbio, 0, 0);
6039         if (ret) {
6040                 ASSERT(bbio == NULL);
6041                 return ret;
6042         }
6043
6044         num_stripes = bbio->num_stripes;
6045         if (*mirror_num > num_stripes) {
6046                 /*
6047                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6048                  * that means that the requested area is not left of the left
6049                  * cursor
6050                  */
6051                 btrfs_put_bbio(bbio);
6052                 return -EIO;
6053         }
6054
6055         /*
6056          * process the rest of the function using the mirror_num of the source
6057          * drive. Therefore look it up first.  At the end, patch the device
6058          * pointer to the one of the target drive.
6059          */
6060         for (i = 0; i < num_stripes; i++) {
6061                 if (bbio->stripes[i].dev->devid != srcdev_devid)
6062                         continue;
6063
6064                 /*
6065                  * In case of DUP, in order to keep it simple, only add the
6066                  * mirror with the lowest physical address
6067                  */
6068                 if (found &&
6069                     physical_of_found <= bbio->stripes[i].physical)
6070                         continue;
6071
6072                 index_srcdev = i;
6073                 found = 1;
6074                 physical_of_found = bbio->stripes[i].physical;
6075         }
6076
6077         btrfs_put_bbio(bbio);
6078
6079         ASSERT(found);
6080         if (!found)
6081                 return -EIO;
6082
6083         *mirror_num = index_srcdev + 1;
6084         *physical = physical_of_found;
6085         return ret;
6086 }
6087
6088 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6089 {
6090         struct btrfs_block_group *cache;
6091         bool ret;
6092
6093         /* Non zoned filesystem does not use "to_copy" flag */
6094         if (!btrfs_is_zoned(fs_info))
6095                 return false;
6096
6097         cache = btrfs_lookup_block_group(fs_info, logical);
6098
6099         spin_lock(&cache->lock);
6100         ret = cache->to_copy;
6101         spin_unlock(&cache->lock);
6102
6103         btrfs_put_block_group(cache);
6104         return ret;
6105 }
6106
6107 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6108                                       struct btrfs_bio **bbio_ret,
6109                                       struct btrfs_dev_replace *dev_replace,
6110                                       u64 logical,
6111                                       int *num_stripes_ret, int *max_errors_ret)
6112 {
6113         struct btrfs_bio *bbio = *bbio_ret;
6114         u64 srcdev_devid = dev_replace->srcdev->devid;
6115         int tgtdev_indexes = 0;
6116         int num_stripes = *num_stripes_ret;
6117         int max_errors = *max_errors_ret;
6118         int i;
6119
6120         if (op == BTRFS_MAP_WRITE) {
6121                 int index_where_to_add;
6122
6123                 /*
6124                  * A block group which have "to_copy" set will eventually
6125                  * copied by dev-replace process. We can avoid cloning IO here.
6126                  */
6127                 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6128                         return;
6129
6130                 /*
6131                  * duplicate the write operations while the dev replace
6132                  * procedure is running. Since the copying of the old disk to
6133                  * the new disk takes place at run time while the filesystem is
6134                  * mounted writable, the regular write operations to the old
6135                  * disk have to be duplicated to go to the new disk as well.
6136                  *
6137                  * Note that device->missing is handled by the caller, and that
6138                  * the write to the old disk is already set up in the stripes
6139                  * array.
6140                  */
6141                 index_where_to_add = num_stripes;
6142                 for (i = 0; i < num_stripes; i++) {
6143                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
6144                                 /* write to new disk, too */
6145                                 struct btrfs_bio_stripe *new =
6146                                         bbio->stripes + index_where_to_add;
6147                                 struct btrfs_bio_stripe *old =
6148                                         bbio->stripes + i;
6149
6150                                 new->physical = old->physical;
6151                                 new->length = old->length;
6152                                 new->dev = dev_replace->tgtdev;
6153                                 bbio->tgtdev_map[i] = index_where_to_add;
6154                                 index_where_to_add++;
6155                                 max_errors++;
6156                                 tgtdev_indexes++;
6157                         }
6158                 }
6159                 num_stripes = index_where_to_add;
6160         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6161                 int index_srcdev = 0;
6162                 int found = 0;
6163                 u64 physical_of_found = 0;
6164
6165                 /*
6166                  * During the dev-replace procedure, the target drive can also
6167                  * be used to read data in case it is needed to repair a corrupt
6168                  * block elsewhere. This is possible if the requested area is
6169                  * left of the left cursor. In this area, the target drive is a
6170                  * full copy of the source drive.
6171                  */
6172                 for (i = 0; i < num_stripes; i++) {
6173                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
6174                                 /*
6175                                  * In case of DUP, in order to keep it simple,
6176                                  * only add the mirror with the lowest physical
6177                                  * address
6178                                  */
6179                                 if (found &&
6180                                     physical_of_found <=
6181                                      bbio->stripes[i].physical)
6182                                         continue;
6183                                 index_srcdev = i;
6184                                 found = 1;
6185                                 physical_of_found = bbio->stripes[i].physical;
6186                         }
6187                 }
6188                 if (found) {
6189                         struct btrfs_bio_stripe *tgtdev_stripe =
6190                                 bbio->stripes + num_stripes;
6191
6192                         tgtdev_stripe->physical = physical_of_found;
6193                         tgtdev_stripe->length =
6194                                 bbio->stripes[index_srcdev].length;
6195                         tgtdev_stripe->dev = dev_replace->tgtdev;
6196                         bbio->tgtdev_map[index_srcdev] = num_stripes;
6197
6198                         tgtdev_indexes++;
6199                         num_stripes++;
6200                 }
6201         }
6202
6203         *num_stripes_ret = num_stripes;
6204         *max_errors_ret = max_errors;
6205         bbio->num_tgtdevs = tgtdev_indexes;
6206         *bbio_ret = bbio;
6207 }
6208
6209 static bool need_full_stripe(enum btrfs_map_op op)
6210 {
6211         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6212 }
6213
6214 /*
6215  * Calculate the geometry of a particular (address, len) tuple. This
6216  * information is used to calculate how big a particular bio can get before it
6217  * straddles a stripe.
6218  *
6219  * @fs_info: the filesystem
6220  * @em:      mapping containing the logical extent
6221  * @op:      type of operation - write or read
6222  * @logical: address that we want to figure out the geometry of
6223  * @io_geom: pointer used to return values
6224  *
6225  * Returns < 0 in case a chunk for the given logical address cannot be found,
6226  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6227  */
6228 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6229                           enum btrfs_map_op op, u64 logical,
6230                           struct btrfs_io_geometry *io_geom)
6231 {
6232         struct map_lookup *map;
6233         u64 len;
6234         u64 offset;
6235         u64 stripe_offset;
6236         u64 stripe_nr;
6237         u64 stripe_len;
6238         u64 raid56_full_stripe_start = (u64)-1;
6239         int data_stripes;
6240
6241         ASSERT(op != BTRFS_MAP_DISCARD);
6242
6243         map = em->map_lookup;
6244         /* Offset of this logical address in the chunk */
6245         offset = logical - em->start;
6246         /* Len of a stripe in a chunk */
6247         stripe_len = map->stripe_len;
6248         /* Stripe where this block falls in */
6249         stripe_nr = div64_u64(offset, stripe_len);
6250         /* Offset of stripe in the chunk */
6251         stripe_offset = stripe_nr * stripe_len;
6252         if (offset < stripe_offset) {
6253                 btrfs_crit(fs_info,
6254 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6255                         stripe_offset, offset, em->start, logical, stripe_len);
6256                 return -EINVAL;
6257         }
6258
6259         /* stripe_offset is the offset of this block in its stripe */
6260         stripe_offset = offset - stripe_offset;
6261         data_stripes = nr_data_stripes(map);
6262
6263         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6264                 u64 max_len = stripe_len - stripe_offset;
6265
6266                 /*
6267                  * In case of raid56, we need to know the stripe aligned start
6268                  */
6269                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6270                         unsigned long full_stripe_len = stripe_len * data_stripes;
6271                         raid56_full_stripe_start = offset;
6272
6273                         /*
6274                          * Allow a write of a full stripe, but make sure we
6275                          * don't allow straddling of stripes
6276                          */
6277                         raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6278                                         full_stripe_len);
6279                         raid56_full_stripe_start *= full_stripe_len;
6280
6281                         /*
6282                          * For writes to RAID[56], allow a full stripeset across
6283                          * all disks. For other RAID types and for RAID[56]
6284                          * reads, just allow a single stripe (on a single disk).
6285                          */
6286                         if (op == BTRFS_MAP_WRITE) {
6287                                 max_len = stripe_len * data_stripes -
6288                                           (offset - raid56_full_stripe_start);
6289                         }
6290                 }
6291                 len = min_t(u64, em->len - offset, max_len);
6292         } else {
6293                 len = em->len - offset;
6294         }
6295
6296         io_geom->len = len;
6297         io_geom->offset = offset;
6298         io_geom->stripe_len = stripe_len;
6299         io_geom->stripe_nr = stripe_nr;
6300         io_geom->stripe_offset = stripe_offset;
6301         io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6302
6303         return 0;
6304 }
6305
6306 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6307                              enum btrfs_map_op op,
6308                              u64 logical, u64 *length,
6309                              struct btrfs_bio **bbio_ret,
6310                              int mirror_num, int need_raid_map)
6311 {
6312         struct extent_map *em;
6313         struct map_lookup *map;
6314         u64 stripe_offset;
6315         u64 stripe_nr;
6316         u64 stripe_len;
6317         u32 stripe_index;
6318         int data_stripes;
6319         int i;
6320         int ret = 0;
6321         int num_stripes;
6322         int max_errors = 0;
6323         int tgtdev_indexes = 0;
6324         struct btrfs_bio *bbio = NULL;
6325         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6326         int dev_replace_is_ongoing = 0;
6327         int num_alloc_stripes;
6328         int patch_the_first_stripe_for_dev_replace = 0;
6329         u64 physical_to_patch_in_first_stripe = 0;
6330         u64 raid56_full_stripe_start = (u64)-1;
6331         struct btrfs_io_geometry geom;
6332
6333         ASSERT(bbio_ret);
6334         ASSERT(op != BTRFS_MAP_DISCARD);
6335
6336         em = btrfs_get_chunk_map(fs_info, logical, *length);
6337         ASSERT(!IS_ERR(em));
6338
6339         ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6340         if (ret < 0)
6341                 return ret;
6342
6343         map = em->map_lookup;
6344
6345         *length = geom.len;
6346         stripe_len = geom.stripe_len;
6347         stripe_nr = geom.stripe_nr;
6348         stripe_offset = geom.stripe_offset;
6349         raid56_full_stripe_start = geom.raid56_stripe_offset;
6350         data_stripes = nr_data_stripes(map);
6351
6352         down_read(&dev_replace->rwsem);
6353         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6354         /*
6355          * Hold the semaphore for read during the whole operation, write is
6356          * requested at commit time but must wait.
6357          */
6358         if (!dev_replace_is_ongoing)
6359                 up_read(&dev_replace->rwsem);
6360
6361         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6362             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6363                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6364                                                     dev_replace->srcdev->devid,
6365                                                     &mirror_num,
6366                                             &physical_to_patch_in_first_stripe);
6367                 if (ret)
6368                         goto out;
6369                 else
6370                         patch_the_first_stripe_for_dev_replace = 1;
6371         } else if (mirror_num > map->num_stripes) {
6372                 mirror_num = 0;
6373         }
6374
6375         num_stripes = 1;
6376         stripe_index = 0;
6377         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6378                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6379                                 &stripe_index);
6380                 if (!need_full_stripe(op))
6381                         mirror_num = 1;
6382         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6383                 if (need_full_stripe(op))
6384                         num_stripes = map->num_stripes;
6385                 else if (mirror_num)
6386                         stripe_index = mirror_num - 1;
6387                 else {
6388                         stripe_index = find_live_mirror(fs_info, map, 0,
6389                                             dev_replace_is_ongoing);
6390                         mirror_num = stripe_index + 1;
6391                 }
6392
6393         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6394                 if (need_full_stripe(op)) {
6395                         num_stripes = map->num_stripes;
6396                 } else if (mirror_num) {
6397                         stripe_index = mirror_num - 1;
6398                 } else {
6399                         mirror_num = 1;
6400                 }
6401
6402         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6403                 u32 factor = map->num_stripes / map->sub_stripes;
6404
6405                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6406                 stripe_index *= map->sub_stripes;
6407
6408                 if (need_full_stripe(op))
6409                         num_stripes = map->sub_stripes;
6410                 else if (mirror_num)
6411                         stripe_index += mirror_num - 1;
6412                 else {
6413                         int old_stripe_index = stripe_index;
6414                         stripe_index = find_live_mirror(fs_info, map,
6415                                               stripe_index,
6416                                               dev_replace_is_ongoing);
6417                         mirror_num = stripe_index - old_stripe_index + 1;
6418                 }
6419
6420         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6421                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6422                         /* push stripe_nr back to the start of the full stripe */
6423                         stripe_nr = div64_u64(raid56_full_stripe_start,
6424                                         stripe_len * data_stripes);
6425
6426                         /* RAID[56] write or recovery. Return all stripes */
6427                         num_stripes = map->num_stripes;
6428                         max_errors = nr_parity_stripes(map);
6429
6430                         *length = map->stripe_len;
6431                         stripe_index = 0;
6432                         stripe_offset = 0;
6433                 } else {
6434                         /*
6435                          * Mirror #0 or #1 means the original data block.
6436                          * Mirror #2 is RAID5 parity block.
6437                          * Mirror #3 is RAID6 Q block.
6438                          */
6439                         stripe_nr = div_u64_rem(stripe_nr,
6440                                         data_stripes, &stripe_index);
6441                         if (mirror_num > 1)
6442                                 stripe_index = data_stripes + mirror_num - 2;
6443
6444                         /* We distribute the parity blocks across stripes */
6445                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6446                                         &stripe_index);
6447                         if (!need_full_stripe(op) && mirror_num <= 1)
6448                                 mirror_num = 1;
6449                 }
6450         } else {
6451                 /*
6452                  * after this, stripe_nr is the number of stripes on this
6453                  * device we have to walk to find the data, and stripe_index is
6454                  * the number of our device in the stripe array
6455                  */
6456                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6457                                 &stripe_index);
6458                 mirror_num = stripe_index + 1;
6459         }
6460         if (stripe_index >= map->num_stripes) {
6461                 btrfs_crit(fs_info,
6462                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6463                            stripe_index, map->num_stripes);
6464                 ret = -EINVAL;
6465                 goto out;
6466         }
6467
6468         num_alloc_stripes = num_stripes;
6469         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6470                 if (op == BTRFS_MAP_WRITE)
6471                         num_alloc_stripes <<= 1;
6472                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6473                         num_alloc_stripes++;
6474                 tgtdev_indexes = num_stripes;
6475         }
6476
6477         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6478         if (!bbio) {
6479                 ret = -ENOMEM;
6480                 goto out;
6481         }
6482
6483         for (i = 0; i < num_stripes; i++) {
6484                 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6485                         stripe_offset + stripe_nr * map->stripe_len;
6486                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6487                 stripe_index++;
6488         }
6489
6490         /* build raid_map */
6491         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6492             (need_full_stripe(op) || mirror_num > 1)) {
6493                 u64 tmp;
6494                 unsigned rot;
6495
6496                 /* Work out the disk rotation on this stripe-set */
6497                 div_u64_rem(stripe_nr, num_stripes, &rot);
6498
6499                 /* Fill in the logical address of each stripe */
6500                 tmp = stripe_nr * data_stripes;
6501                 for (i = 0; i < data_stripes; i++)
6502                         bbio->raid_map[(i+rot) % num_stripes] =
6503                                 em->start + (tmp + i) * map->stripe_len;
6504
6505                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6506                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6507                         bbio->raid_map[(i+rot+1) % num_stripes] =
6508                                 RAID6_Q_STRIPE;
6509
6510                 sort_parity_stripes(bbio, num_stripes);
6511         }
6512
6513         if (need_full_stripe(op))
6514                 max_errors = btrfs_chunk_max_errors(map);
6515
6516         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6517             need_full_stripe(op)) {
6518                 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6519                                           &num_stripes, &max_errors);
6520         }
6521
6522         *bbio_ret = bbio;
6523         bbio->map_type = map->type;
6524         bbio->num_stripes = num_stripes;
6525         bbio->max_errors = max_errors;
6526         bbio->mirror_num = mirror_num;
6527
6528         /*
6529          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6530          * mirror_num == num_stripes + 1 && dev_replace target drive is
6531          * available as a mirror
6532          */
6533         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6534                 WARN_ON(num_stripes > 1);
6535                 bbio->stripes[0].dev = dev_replace->tgtdev;
6536                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6537                 bbio->mirror_num = map->num_stripes + 1;
6538         }
6539 out:
6540         if (dev_replace_is_ongoing) {
6541                 lockdep_assert_held(&dev_replace->rwsem);
6542                 /* Unlock and let waiting writers proceed */
6543                 up_read(&dev_replace->rwsem);
6544         }
6545         free_extent_map(em);
6546         return ret;
6547 }
6548
6549 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6550                       u64 logical, u64 *length,
6551                       struct btrfs_bio **bbio_ret, int mirror_num)
6552 {
6553         if (op == BTRFS_MAP_DISCARD)
6554                 return __btrfs_map_block_for_discard(fs_info, logical,
6555                                                      length, bbio_ret);
6556
6557         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6558                                  mirror_num, 0);
6559 }
6560
6561 /* For Scrub/replace */
6562 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6563                      u64 logical, u64 *length,
6564                      struct btrfs_bio **bbio_ret)
6565 {
6566         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6567 }
6568
6569 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6570 {
6571         bio->bi_private = bbio->private;
6572         bio->bi_end_io = bbio->end_io;
6573         bio_endio(bio);
6574
6575         btrfs_put_bbio(bbio);
6576 }
6577
6578 static void btrfs_end_bio(struct bio *bio)
6579 {
6580         struct btrfs_bio *bbio = bio->bi_private;
6581         int is_orig_bio = 0;
6582
6583         if (bio->bi_status) {
6584                 atomic_inc(&bbio->error);
6585                 if (bio->bi_status == BLK_STS_IOERR ||
6586                     bio->bi_status == BLK_STS_TARGET) {
6587                         struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6588
6589                         ASSERT(dev->bdev);
6590                         if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6591                                 btrfs_dev_stat_inc_and_print(dev,
6592                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6593                         else if (!(bio->bi_opf & REQ_RAHEAD))
6594                                 btrfs_dev_stat_inc_and_print(dev,
6595                                                 BTRFS_DEV_STAT_READ_ERRS);
6596                         if (bio->bi_opf & REQ_PREFLUSH)
6597                                 btrfs_dev_stat_inc_and_print(dev,
6598                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6599                 }
6600         }
6601
6602         if (bio == bbio->orig_bio)
6603                 is_orig_bio = 1;
6604
6605         btrfs_bio_counter_dec(bbio->fs_info);
6606
6607         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6608                 if (!is_orig_bio) {
6609                         bio_put(bio);
6610                         bio = bbio->orig_bio;
6611                 }
6612
6613                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6614                 /* only send an error to the higher layers if it is
6615                  * beyond the tolerance of the btrfs bio
6616                  */
6617                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6618                         bio->bi_status = BLK_STS_IOERR;
6619                 } else {
6620                         /*
6621                          * this bio is actually up to date, we didn't
6622                          * go over the max number of errors
6623                          */
6624                         bio->bi_status = BLK_STS_OK;
6625                 }
6626
6627                 btrfs_end_bbio(bbio, bio);
6628         } else if (!is_orig_bio) {
6629                 bio_put(bio);
6630         }
6631 }
6632
6633 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6634                               u64 physical, struct btrfs_device *dev)
6635 {
6636         struct btrfs_fs_info *fs_info = bbio->fs_info;
6637
6638         bio->bi_private = bbio;
6639         btrfs_io_bio(bio)->device = dev;
6640         bio->bi_end_io = btrfs_end_bio;
6641         bio->bi_iter.bi_sector = physical >> 9;
6642         /*
6643          * For zone append writing, bi_sector must point the beginning of the
6644          * zone
6645          */
6646         if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6647                 if (btrfs_dev_is_sequential(dev, physical)) {
6648                         u64 zone_start = round_down(physical, fs_info->zone_size);
6649
6650                         bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6651                 } else {
6652                         bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6653                         bio->bi_opf |= REQ_OP_WRITE;
6654                 }
6655         }
6656         btrfs_debug_in_rcu(fs_info,
6657         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6658                 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6659                 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6660                 dev->devid, bio->bi_iter.bi_size);
6661         bio_set_dev(bio, dev->bdev);
6662
6663         btrfs_bio_counter_inc_noblocked(fs_info);
6664
6665         btrfsic_submit_bio(bio);
6666 }
6667
6668 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6669 {
6670         atomic_inc(&bbio->error);
6671         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6672                 /* Should be the original bio. */
6673                 WARN_ON(bio != bbio->orig_bio);
6674
6675                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6676                 bio->bi_iter.bi_sector = logical >> 9;
6677                 if (atomic_read(&bbio->error) > bbio->max_errors)
6678                         bio->bi_status = BLK_STS_IOERR;
6679                 else
6680                         bio->bi_status = BLK_STS_OK;
6681                 btrfs_end_bbio(bbio, bio);
6682         }
6683 }
6684
6685 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6686                            int mirror_num)
6687 {
6688         struct btrfs_device *dev;
6689         struct bio *first_bio = bio;
6690         u64 logical = bio->bi_iter.bi_sector << 9;
6691         u64 length = 0;
6692         u64 map_length;
6693         int ret;
6694         int dev_nr;
6695         int total_devs;
6696         struct btrfs_bio *bbio = NULL;
6697
6698         length = bio->bi_iter.bi_size;
6699         map_length = length;
6700
6701         btrfs_bio_counter_inc_blocked(fs_info);
6702         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6703                                 &map_length, &bbio, mirror_num, 1);
6704         if (ret) {
6705                 btrfs_bio_counter_dec(fs_info);
6706                 return errno_to_blk_status(ret);
6707         }
6708
6709         total_devs = bbio->num_stripes;
6710         bbio->orig_bio = first_bio;
6711         bbio->private = first_bio->bi_private;
6712         bbio->end_io = first_bio->bi_end_io;
6713         bbio->fs_info = fs_info;
6714         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6715
6716         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6717             ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6718                 /* In this case, map_length has been set to the length of
6719                    a single stripe; not the whole write */
6720                 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6721                         ret = raid56_parity_write(fs_info, bio, bbio,
6722                                                   map_length);
6723                 } else {
6724                         ret = raid56_parity_recover(fs_info, bio, bbio,
6725                                                     map_length, mirror_num, 1);
6726                 }
6727
6728                 btrfs_bio_counter_dec(fs_info);
6729                 return errno_to_blk_status(ret);
6730         }
6731
6732         if (map_length < length) {
6733                 btrfs_crit(fs_info,
6734                            "mapping failed logical %llu bio len %llu len %llu",
6735                            logical, length, map_length);
6736                 BUG();
6737         }
6738
6739         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6740                 dev = bbio->stripes[dev_nr].dev;
6741                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6742                                                    &dev->dev_state) ||
6743                     (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6744                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6745                         bbio_error(bbio, first_bio, logical);
6746                         continue;
6747                 }
6748
6749                 if (dev_nr < total_devs - 1)
6750                         bio = btrfs_bio_clone(first_bio);
6751                 else
6752                         bio = first_bio;
6753
6754                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6755         }
6756         btrfs_bio_counter_dec(fs_info);
6757         return BLK_STS_OK;
6758 }
6759
6760 /*
6761  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6762  * return NULL.
6763  *
6764  * If devid and uuid are both specified, the match must be exact, otherwise
6765  * only devid is used.
6766  */
6767 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6768                                        u64 devid, u8 *uuid, u8 *fsid)
6769 {
6770         struct btrfs_device *device;
6771         struct btrfs_fs_devices *seed_devs;
6772
6773         if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6774                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6775                         if (device->devid == devid &&
6776                             (!uuid || memcmp(device->uuid, uuid,
6777                                              BTRFS_UUID_SIZE) == 0))
6778                                 return device;
6779                 }
6780         }
6781
6782         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6783                 if (!fsid ||
6784                     !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6785                         list_for_each_entry(device, &seed_devs->devices,
6786                                             dev_list) {
6787                                 if (device->devid == devid &&
6788                                     (!uuid || memcmp(device->uuid, uuid,
6789                                                      BTRFS_UUID_SIZE) == 0))
6790                                         return device;
6791                         }
6792                 }
6793         }
6794
6795         return NULL;
6796 }
6797
6798 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6799                                             u64 devid, u8 *dev_uuid)
6800 {
6801         struct btrfs_device *device;
6802         unsigned int nofs_flag;
6803
6804         /*
6805          * We call this under the chunk_mutex, so we want to use NOFS for this
6806          * allocation, however we don't want to change btrfs_alloc_device() to
6807          * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6808          * places.
6809          */
6810         nofs_flag = memalloc_nofs_save();
6811         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6812         memalloc_nofs_restore(nofs_flag);
6813         if (IS_ERR(device))
6814                 return device;
6815
6816         list_add(&device->dev_list, &fs_devices->devices);
6817         device->fs_devices = fs_devices;
6818         fs_devices->num_devices++;
6819
6820         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6821         fs_devices->missing_devices++;
6822
6823         return device;
6824 }
6825
6826 /**
6827  * btrfs_alloc_device - allocate struct btrfs_device
6828  * @fs_info:    used only for generating a new devid, can be NULL if
6829  *              devid is provided (i.e. @devid != NULL).
6830  * @devid:      a pointer to devid for this device.  If NULL a new devid
6831  *              is generated.
6832  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6833  *              is generated.
6834  *
6835  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6836  * on error.  Returned struct is not linked onto any lists and must be
6837  * destroyed with btrfs_free_device.
6838  */
6839 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6840                                         const u64 *devid,
6841                                         const u8 *uuid)
6842 {
6843         struct btrfs_device *dev;
6844         u64 tmp;
6845
6846         if (WARN_ON(!devid && !fs_info))
6847                 return ERR_PTR(-EINVAL);
6848
6849         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6850         if (!dev)
6851                 return ERR_PTR(-ENOMEM);
6852
6853         /*
6854          * Preallocate a bio that's always going to be used for flushing device
6855          * barriers and matches the device lifespan
6856          */
6857         dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6858         if (!dev->flush_bio) {
6859                 kfree(dev);
6860                 return ERR_PTR(-ENOMEM);
6861         }
6862
6863         INIT_LIST_HEAD(&dev->dev_list);
6864         INIT_LIST_HEAD(&dev->dev_alloc_list);
6865         INIT_LIST_HEAD(&dev->post_commit_list);
6866
6867         atomic_set(&dev->reada_in_flight, 0);
6868         atomic_set(&dev->dev_stats_ccnt, 0);
6869         btrfs_device_data_ordered_init(dev);
6870         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6871         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6872         extent_io_tree_init(fs_info, &dev->alloc_state,
6873                             IO_TREE_DEVICE_ALLOC_STATE, NULL);
6874
6875         if (devid)
6876                 tmp = *devid;
6877         else {
6878                 int ret;
6879
6880                 ret = find_next_devid(fs_info, &tmp);
6881                 if (ret) {
6882                         btrfs_free_device(dev);
6883                         return ERR_PTR(ret);
6884                 }
6885         }
6886         dev->devid = tmp;
6887
6888         if (uuid)
6889                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6890         else
6891                 generate_random_uuid(dev->uuid);
6892
6893         return dev;
6894 }
6895
6896 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6897                                         u64 devid, u8 *uuid, bool error)
6898 {
6899         if (error)
6900                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6901                               devid, uuid);
6902         else
6903                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6904                               devid, uuid);
6905 }
6906
6907 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6908 {
6909         const int data_stripes = calc_data_stripes(type, num_stripes);
6910
6911         return div_u64(chunk_len, data_stripes);
6912 }
6913
6914 #if BITS_PER_LONG == 32
6915 /*
6916  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6917  * can't be accessed on 32bit systems.
6918  *
6919  * This function do mount time check to reject the fs if it already has
6920  * metadata chunk beyond that limit.
6921  */
6922 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6923                                   u64 logical, u64 length, u64 type)
6924 {
6925         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6926                 return 0;
6927
6928         if (logical + length < MAX_LFS_FILESIZE)
6929                 return 0;
6930
6931         btrfs_err_32bit_limit(fs_info);
6932         return -EOVERFLOW;
6933 }
6934
6935 /*
6936  * This is to give early warning for any metadata chunk reaching
6937  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6938  * Although we can still access the metadata, it's not going to be possible
6939  * once the limit is reached.
6940  */
6941 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6942                                   u64 logical, u64 length, u64 type)
6943 {
6944         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6945                 return;
6946
6947         if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6948                 return;
6949
6950         btrfs_warn_32bit_limit(fs_info);
6951 }
6952 #endif
6953
6954 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6955                           struct btrfs_chunk *chunk)
6956 {
6957         struct btrfs_fs_info *fs_info = leaf->fs_info;
6958         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6959         struct map_lookup *map;
6960         struct extent_map *em;
6961         u64 logical;
6962         u64 length;
6963         u64 devid;
6964         u64 type;
6965         u8 uuid[BTRFS_UUID_SIZE];
6966         int num_stripes;
6967         int ret;
6968         int i;
6969
6970         logical = key->offset;
6971         length = btrfs_chunk_length(leaf, chunk);
6972         type = btrfs_chunk_type(leaf, chunk);
6973         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6974
6975 #if BITS_PER_LONG == 32
6976         ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6977         if (ret < 0)
6978                 return ret;
6979         warn_32bit_meta_chunk(fs_info, logical, length, type);
6980 #endif
6981
6982         /*
6983          * Only need to verify chunk item if we're reading from sys chunk array,
6984          * as chunk item in tree block is already verified by tree-checker.
6985          */
6986         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6987                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6988                 if (ret)
6989                         return ret;
6990         }
6991
6992         read_lock(&map_tree->lock);
6993         em = lookup_extent_mapping(map_tree, logical, 1);
6994         read_unlock(&map_tree->lock);
6995
6996         /* already mapped? */
6997         if (em && em->start <= logical && em->start + em->len > logical) {
6998                 free_extent_map(em);
6999                 return 0;
7000         } else if (em) {
7001                 free_extent_map(em);
7002         }
7003
7004         em = alloc_extent_map();
7005         if (!em)
7006                 return -ENOMEM;
7007         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7008         if (!map) {
7009                 free_extent_map(em);
7010                 return -ENOMEM;
7011         }
7012
7013         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7014         em->map_lookup = map;
7015         em->start = logical;
7016         em->len = length;
7017         em->orig_start = 0;
7018         em->block_start = 0;
7019         em->block_len = em->len;
7020
7021         map->num_stripes = num_stripes;
7022         map->io_width = btrfs_chunk_io_width(leaf, chunk);
7023         map->io_align = btrfs_chunk_io_align(leaf, chunk);
7024         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7025         map->type = type;
7026         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7027         map->verified_stripes = 0;
7028         em->orig_block_len = calc_stripe_length(type, em->len,
7029                                                 map->num_stripes);
7030         for (i = 0; i < num_stripes; i++) {
7031                 map->stripes[i].physical =
7032                         btrfs_stripe_offset_nr(leaf, chunk, i);
7033                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7034                 read_extent_buffer(leaf, uuid, (unsigned long)
7035                                    btrfs_stripe_dev_uuid_nr(chunk, i),
7036                                    BTRFS_UUID_SIZE);
7037                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
7038                                                         devid, uuid, NULL);
7039                 if (!map->stripes[i].dev &&
7040                     !btrfs_test_opt(fs_info, DEGRADED)) {
7041                         free_extent_map(em);
7042                         btrfs_report_missing_device(fs_info, devid, uuid, true);
7043                         return -ENOENT;
7044                 }
7045                 if (!map->stripes[i].dev) {
7046                         map->stripes[i].dev =
7047                                 add_missing_dev(fs_info->fs_devices, devid,
7048                                                 uuid);
7049                         if (IS_ERR(map->stripes[i].dev)) {
7050                                 free_extent_map(em);
7051                                 btrfs_err(fs_info,
7052                                         "failed to init missing dev %llu: %ld",
7053                                         devid, PTR_ERR(map->stripes[i].dev));
7054                                 return PTR_ERR(map->stripes[i].dev);
7055                         }
7056                         btrfs_report_missing_device(fs_info, devid, uuid, false);
7057                 }
7058                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7059                                 &(map->stripes[i].dev->dev_state));
7060
7061         }
7062
7063         write_lock(&map_tree->lock);
7064         ret = add_extent_mapping(map_tree, em, 0);
7065         write_unlock(&map_tree->lock);
7066         if (ret < 0) {
7067                 btrfs_err(fs_info,
7068                           "failed to add chunk map, start=%llu len=%llu: %d",
7069                           em->start, em->len, ret);
7070         }
7071         free_extent_map(em);
7072
7073         return ret;
7074 }
7075
7076 static void fill_device_from_item(struct extent_buffer *leaf,
7077                                  struct btrfs_dev_item *dev_item,
7078                                  struct btrfs_device *device)
7079 {
7080         unsigned long ptr;
7081
7082         device->devid = btrfs_device_id(leaf, dev_item);
7083         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7084         device->total_bytes = device->disk_total_bytes;
7085         device->commit_total_bytes = device->disk_total_bytes;
7086         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7087         device->commit_bytes_used = device->bytes_used;
7088         device->type = btrfs_device_type(leaf, dev_item);
7089         device->io_align = btrfs_device_io_align(leaf, dev_item);
7090         device->io_width = btrfs_device_io_width(leaf, dev_item);
7091         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7092         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7093         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7094
7095         ptr = btrfs_device_uuid(dev_item);
7096         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7097 }
7098
7099 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7100                                                   u8 *fsid)
7101 {
7102         struct btrfs_fs_devices *fs_devices;
7103         int ret;
7104
7105         lockdep_assert_held(&uuid_mutex);
7106         ASSERT(fsid);
7107
7108         /* This will match only for multi-device seed fs */
7109         list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7110                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7111                         return fs_devices;
7112
7113
7114         fs_devices = find_fsid(fsid, NULL);
7115         if (!fs_devices) {
7116                 if (!btrfs_test_opt(fs_info, DEGRADED))
7117                         return ERR_PTR(-ENOENT);
7118
7119                 fs_devices = alloc_fs_devices(fsid, NULL);
7120                 if (IS_ERR(fs_devices))
7121                         return fs_devices;
7122
7123                 fs_devices->seeding = true;
7124                 fs_devices->opened = 1;
7125                 return fs_devices;
7126         }
7127
7128         /*
7129          * Upon first call for a seed fs fsid, just create a private copy of the
7130          * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7131          */
7132         fs_devices = clone_fs_devices(fs_devices);
7133         if (IS_ERR(fs_devices))
7134                 return fs_devices;
7135
7136         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7137         if (ret) {
7138                 free_fs_devices(fs_devices);
7139                 return ERR_PTR(ret);
7140         }
7141
7142         if (!fs_devices->seeding) {
7143                 close_fs_devices(fs_devices);
7144                 free_fs_devices(fs_devices);
7145                 return ERR_PTR(-EINVAL);
7146         }
7147
7148         list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7149
7150         return fs_devices;
7151 }
7152
7153 static int read_one_dev(struct extent_buffer *leaf,
7154                         struct btrfs_dev_item *dev_item)
7155 {
7156         struct btrfs_fs_info *fs_info = leaf->fs_info;
7157         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7158         struct btrfs_device *device;
7159         u64 devid;
7160         int ret;
7161         u8 fs_uuid[BTRFS_FSID_SIZE];
7162         u8 dev_uuid[BTRFS_UUID_SIZE];
7163
7164         devid = btrfs_device_id(leaf, dev_item);
7165         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7166                            BTRFS_UUID_SIZE);
7167         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7168                            BTRFS_FSID_SIZE);
7169
7170         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7171                 fs_devices = open_seed_devices(fs_info, fs_uuid);
7172                 if (IS_ERR(fs_devices))
7173                         return PTR_ERR(fs_devices);
7174         }
7175
7176         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7177                                    fs_uuid);
7178         if (!device) {
7179                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7180                         btrfs_report_missing_device(fs_info, devid,
7181                                                         dev_uuid, true);
7182                         return -ENOENT;
7183                 }
7184
7185                 device = add_missing_dev(fs_devices, devid, dev_uuid);
7186                 if (IS_ERR(device)) {
7187                         btrfs_err(fs_info,
7188                                 "failed to add missing dev %llu: %ld",
7189                                 devid, PTR_ERR(device));
7190                         return PTR_ERR(device);
7191                 }
7192                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7193         } else {
7194                 if (!device->bdev) {
7195                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
7196                                 btrfs_report_missing_device(fs_info,
7197                                                 devid, dev_uuid, true);
7198                                 return -ENOENT;
7199                         }
7200                         btrfs_report_missing_device(fs_info, devid,
7201                                                         dev_uuid, false);
7202                 }
7203
7204                 if (!device->bdev &&
7205                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7206                         /*
7207                          * this happens when a device that was properly setup
7208                          * in the device info lists suddenly goes bad.
7209                          * device->bdev is NULL, and so we have to set
7210                          * device->missing to one here
7211                          */
7212                         device->fs_devices->missing_devices++;
7213                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7214                 }
7215
7216                 /* Move the device to its own fs_devices */
7217                 if (device->fs_devices != fs_devices) {
7218                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7219                                                         &device->dev_state));
7220
7221                         list_move(&device->dev_list, &fs_devices->devices);
7222                         device->fs_devices->num_devices--;
7223                         fs_devices->num_devices++;
7224
7225                         device->fs_devices->missing_devices--;
7226                         fs_devices->missing_devices++;
7227
7228                         device->fs_devices = fs_devices;
7229                 }
7230         }
7231
7232         if (device->fs_devices != fs_info->fs_devices) {
7233                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7234                 if (device->generation !=
7235                     btrfs_device_generation(leaf, dev_item))
7236                         return -EINVAL;
7237         }
7238
7239         fill_device_from_item(leaf, dev_item, device);
7240         if (device->bdev) {
7241                 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7242
7243                 if (device->total_bytes > max_total_bytes) {
7244                         btrfs_err(fs_info,
7245                         "device total_bytes should be at most %llu but found %llu",
7246                                   max_total_bytes, device->total_bytes);
7247                         return -EINVAL;
7248                 }
7249         }
7250         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7251         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7252            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7253                 device->fs_devices->total_rw_bytes += device->total_bytes;
7254                 atomic64_add(device->total_bytes - device->bytes_used,
7255                                 &fs_info->free_chunk_space);
7256         }
7257         ret = 0;
7258         return ret;
7259 }
7260
7261 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7262 {
7263         struct btrfs_root *root = fs_info->tree_root;
7264         struct btrfs_super_block *super_copy = fs_info->super_copy;
7265         struct extent_buffer *sb;
7266         struct btrfs_disk_key *disk_key;
7267         struct btrfs_chunk *chunk;
7268         u8 *array_ptr;
7269         unsigned long sb_array_offset;
7270         int ret = 0;
7271         u32 num_stripes;
7272         u32 array_size;
7273         u32 len = 0;
7274         u32 cur_offset;
7275         u64 type;
7276         struct btrfs_key key;
7277
7278         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7279         /*
7280          * This will create extent buffer of nodesize, superblock size is
7281          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7282          * overallocate but we can keep it as-is, only the first page is used.
7283          */
7284         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7285                                           root->root_key.objectid, 0);
7286         if (IS_ERR(sb))
7287                 return PTR_ERR(sb);
7288         set_extent_buffer_uptodate(sb);
7289         /*
7290          * The sb extent buffer is artificial and just used to read the system array.
7291          * set_extent_buffer_uptodate() call does not properly mark all it's
7292          * pages up-to-date when the page is larger: extent does not cover the
7293          * whole page and consequently check_page_uptodate does not find all
7294          * the page's extents up-to-date (the hole beyond sb),
7295          * write_extent_buffer then triggers a WARN_ON.
7296          *
7297          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7298          * but sb spans only this function. Add an explicit SetPageUptodate call
7299          * to silence the warning eg. on PowerPC 64.
7300          */
7301         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7302                 SetPageUptodate(sb->pages[0]);
7303
7304         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7305         array_size = btrfs_super_sys_array_size(super_copy);
7306
7307         array_ptr = super_copy->sys_chunk_array;
7308         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7309         cur_offset = 0;
7310
7311         while (cur_offset < array_size) {
7312                 disk_key = (struct btrfs_disk_key *)array_ptr;
7313                 len = sizeof(*disk_key);
7314                 if (cur_offset + len > array_size)
7315                         goto out_short_read;
7316
7317                 btrfs_disk_key_to_cpu(&key, disk_key);
7318
7319                 array_ptr += len;
7320                 sb_array_offset += len;
7321                 cur_offset += len;
7322
7323                 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7324                         btrfs_err(fs_info,
7325                             "unexpected item type %u in sys_array at offset %u",
7326                                   (u32)key.type, cur_offset);
7327                         ret = -EIO;
7328                         break;
7329                 }
7330
7331                 chunk = (struct btrfs_chunk *)sb_array_offset;
7332                 /*
7333                  * At least one btrfs_chunk with one stripe must be present,
7334                  * exact stripe count check comes afterwards
7335                  */
7336                 len = btrfs_chunk_item_size(1);
7337                 if (cur_offset + len > array_size)
7338                         goto out_short_read;
7339
7340                 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7341                 if (!num_stripes) {
7342                         btrfs_err(fs_info,
7343                         "invalid number of stripes %u in sys_array at offset %u",
7344                                   num_stripes, cur_offset);
7345                         ret = -EIO;
7346                         break;
7347                 }
7348
7349                 type = btrfs_chunk_type(sb, chunk);
7350                 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7351                         btrfs_err(fs_info,
7352                         "invalid chunk type %llu in sys_array at offset %u",
7353                                   type, cur_offset);
7354                         ret = -EIO;
7355                         break;
7356                 }
7357
7358                 len = btrfs_chunk_item_size(num_stripes);
7359                 if (cur_offset + len > array_size)
7360                         goto out_short_read;
7361
7362                 ret = read_one_chunk(&key, sb, chunk);
7363                 if (ret)
7364                         break;
7365
7366                 array_ptr += len;
7367                 sb_array_offset += len;
7368                 cur_offset += len;
7369         }
7370         clear_extent_buffer_uptodate(sb);
7371         free_extent_buffer_stale(sb);
7372         return ret;
7373
7374 out_short_read:
7375         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7376                         len, cur_offset);
7377         clear_extent_buffer_uptodate(sb);
7378         free_extent_buffer_stale(sb);
7379         return -EIO;
7380 }
7381
7382 /*
7383  * Check if all chunks in the fs are OK for read-write degraded mount
7384  *
7385  * If the @failing_dev is specified, it's accounted as missing.
7386  *
7387  * Return true if all chunks meet the minimal RW mount requirements.
7388  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7389  */
7390 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7391                                         struct btrfs_device *failing_dev)
7392 {
7393         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7394         struct extent_map *em;
7395         u64 next_start = 0;
7396         bool ret = true;
7397
7398         read_lock(&map_tree->lock);
7399         em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7400         read_unlock(&map_tree->lock);
7401         /* No chunk at all? Return false anyway */
7402         if (!em) {
7403                 ret = false;
7404                 goto out;
7405         }
7406         while (em) {
7407                 struct map_lookup *map;
7408                 int missing = 0;
7409                 int max_tolerated;
7410                 int i;
7411
7412                 map = em->map_lookup;
7413                 max_tolerated =
7414                         btrfs_get_num_tolerated_disk_barrier_failures(
7415                                         map->type);
7416                 for (i = 0; i < map->num_stripes; i++) {
7417                         struct btrfs_device *dev = map->stripes[i].dev;
7418
7419                         if (!dev || !dev->bdev ||
7420                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7421                             dev->last_flush_error)
7422                                 missing++;
7423                         else if (failing_dev && failing_dev == dev)
7424                                 missing++;
7425                 }
7426                 if (missing > max_tolerated) {
7427                         if (!failing_dev)
7428                                 btrfs_warn(fs_info,
7429         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7430                                    em->start, missing, max_tolerated);
7431                         free_extent_map(em);
7432                         ret = false;
7433                         goto out;
7434                 }
7435                 next_start = extent_map_end(em);
7436                 free_extent_map(em);
7437
7438                 read_lock(&map_tree->lock);
7439                 em = lookup_extent_mapping(map_tree, next_start,
7440                                            (u64)(-1) - next_start);
7441                 read_unlock(&map_tree->lock);
7442         }
7443 out:
7444         return ret;
7445 }
7446
7447 static void readahead_tree_node_children(struct extent_buffer *node)
7448 {
7449         int i;
7450         const int nr_items = btrfs_header_nritems(node);
7451
7452         for (i = 0; i < nr_items; i++)
7453                 btrfs_readahead_node_child(node, i);
7454 }
7455
7456 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7457 {
7458         struct btrfs_root *root = fs_info->chunk_root;
7459         struct btrfs_path *path;
7460         struct extent_buffer *leaf;
7461         struct btrfs_key key;
7462         struct btrfs_key found_key;
7463         int ret;
7464         int slot;
7465         u64 total_dev = 0;
7466         u64 last_ra_node = 0;
7467
7468         path = btrfs_alloc_path();
7469         if (!path)
7470                 return -ENOMEM;
7471
7472         /*
7473          * uuid_mutex is needed only if we are mounting a sprout FS
7474          * otherwise we don't need it.
7475          */
7476         mutex_lock(&uuid_mutex);
7477
7478         /*
7479          * It is possible for mount and umount to race in such a way that
7480          * we execute this code path, but open_fs_devices failed to clear
7481          * total_rw_bytes. We certainly want it cleared before reading the
7482          * device items, so clear it here.
7483          */
7484         fs_info->fs_devices->total_rw_bytes = 0;
7485
7486         /*
7487          * Read all device items, and then all the chunk items. All
7488          * device items are found before any chunk item (their object id
7489          * is smaller than the lowest possible object id for a chunk
7490          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7491          */
7492         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7493         key.offset = 0;
7494         key.type = 0;
7495         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7496         if (ret < 0)
7497                 goto error;
7498         while (1) {
7499                 struct extent_buffer *node;
7500
7501                 leaf = path->nodes[0];
7502                 slot = path->slots[0];
7503                 if (slot >= btrfs_header_nritems(leaf)) {
7504                         ret = btrfs_next_leaf(root, path);
7505                         if (ret == 0)
7506                                 continue;
7507                         if (ret < 0)
7508                                 goto error;
7509                         break;
7510                 }
7511                 /*
7512                  * The nodes on level 1 are not locked but we don't need to do
7513                  * that during mount time as nothing else can access the tree
7514                  */
7515                 node = path->nodes[1];
7516                 if (node) {
7517                         if (last_ra_node != node->start) {
7518                                 readahead_tree_node_children(node);
7519                                 last_ra_node = node->start;
7520                         }
7521                 }
7522                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7523                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7524                         struct btrfs_dev_item *dev_item;
7525                         dev_item = btrfs_item_ptr(leaf, slot,
7526                                                   struct btrfs_dev_item);
7527                         ret = read_one_dev(leaf, dev_item);
7528                         if (ret)
7529                                 goto error;
7530                         total_dev++;
7531                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7532                         struct btrfs_chunk *chunk;
7533
7534                         /*
7535                          * We are only called at mount time, so no need to take
7536                          * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7537                          * we always lock first fs_info->chunk_mutex before
7538                          * acquiring any locks on the chunk tree. This is a
7539                          * requirement for chunk allocation, see the comment on
7540                          * top of btrfs_chunk_alloc() for details.
7541                          */
7542                         ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7543                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7544                         ret = read_one_chunk(&found_key, leaf, chunk);
7545                         if (ret)
7546                                 goto error;
7547                 }
7548                 path->slots[0]++;
7549         }
7550
7551         /*
7552          * After loading chunk tree, we've got all device information,
7553          * do another round of validation checks.
7554          */
7555         if (total_dev != fs_info->fs_devices->total_devices) {
7556                 btrfs_err(fs_info,
7557            "super_num_devices %llu mismatch with num_devices %llu found here",
7558                           btrfs_super_num_devices(fs_info->super_copy),
7559                           total_dev);
7560                 ret = -EINVAL;
7561                 goto error;
7562         }
7563         if (btrfs_super_total_bytes(fs_info->super_copy) <
7564             fs_info->fs_devices->total_rw_bytes) {
7565                 btrfs_err(fs_info,
7566         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7567                           btrfs_super_total_bytes(fs_info->super_copy),
7568                           fs_info->fs_devices->total_rw_bytes);
7569                 ret = -EINVAL;
7570                 goto error;
7571         }
7572         ret = 0;
7573 error:
7574         mutex_unlock(&uuid_mutex);
7575
7576         btrfs_free_path(path);
7577         return ret;
7578 }
7579
7580 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7581 {
7582         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7583         struct btrfs_device *device;
7584
7585         fs_devices->fs_info = fs_info;
7586
7587         mutex_lock(&fs_devices->device_list_mutex);
7588         list_for_each_entry(device, &fs_devices->devices, dev_list)
7589                 device->fs_info = fs_info;
7590
7591         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7592                 list_for_each_entry(device, &seed_devs->devices, dev_list)
7593                         device->fs_info = fs_info;
7594
7595                 seed_devs->fs_info = fs_info;
7596         }
7597         mutex_unlock(&fs_devices->device_list_mutex);
7598 }
7599
7600 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7601                                  const struct btrfs_dev_stats_item *ptr,
7602                                  int index)
7603 {
7604         u64 val;
7605
7606         read_extent_buffer(eb, &val,
7607                            offsetof(struct btrfs_dev_stats_item, values) +
7608                             ((unsigned long)ptr) + (index * sizeof(u64)),
7609                            sizeof(val));
7610         return val;
7611 }
7612
7613 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7614                                       struct btrfs_dev_stats_item *ptr,
7615                                       int index, u64 val)
7616 {
7617         write_extent_buffer(eb, &val,
7618                             offsetof(struct btrfs_dev_stats_item, values) +
7619                              ((unsigned long)ptr) + (index * sizeof(u64)),
7620                             sizeof(val));
7621 }
7622
7623 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7624                                        struct btrfs_path *path)
7625 {
7626         struct btrfs_dev_stats_item *ptr;
7627         struct extent_buffer *eb;
7628         struct btrfs_key key;
7629         int item_size;
7630         int i, ret, slot;
7631
7632         if (!device->fs_info->dev_root)
7633                 return 0;
7634
7635         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7636         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7637         key.offset = device->devid;
7638         ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7639         if (ret) {
7640                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7641                         btrfs_dev_stat_set(device, i, 0);
7642                 device->dev_stats_valid = 1;
7643                 btrfs_release_path(path);
7644                 return ret < 0 ? ret : 0;
7645         }
7646         slot = path->slots[0];
7647         eb = path->nodes[0];
7648         item_size = btrfs_item_size_nr(eb, slot);
7649
7650         ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7651
7652         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7653                 if (item_size >= (1 + i) * sizeof(__le64))
7654                         btrfs_dev_stat_set(device, i,
7655                                            btrfs_dev_stats_value(eb, ptr, i));
7656                 else
7657                         btrfs_dev_stat_set(device, i, 0);
7658         }
7659
7660         device->dev_stats_valid = 1;
7661         btrfs_dev_stat_print_on_load(device);
7662         btrfs_release_path(path);
7663
7664         return 0;
7665 }
7666
7667 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7668 {
7669         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7670         struct btrfs_device *device;
7671         struct btrfs_path *path = NULL;
7672         int ret = 0;
7673
7674         path = btrfs_alloc_path();
7675         if (!path)
7676                 return -ENOMEM;
7677
7678         mutex_lock(&fs_devices->device_list_mutex);
7679         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7680                 ret = btrfs_device_init_dev_stats(device, path);
7681                 if (ret)
7682                         goto out;
7683         }
7684         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7685                 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7686                         ret = btrfs_device_init_dev_stats(device, path);
7687                         if (ret)
7688                                 goto out;
7689                 }
7690         }
7691 out:
7692         mutex_unlock(&fs_devices->device_list_mutex);
7693
7694         btrfs_free_path(path);
7695         return ret;
7696 }
7697
7698 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7699                                 struct btrfs_device *device)
7700 {
7701         struct btrfs_fs_info *fs_info = trans->fs_info;
7702         struct btrfs_root *dev_root = fs_info->dev_root;
7703         struct btrfs_path *path;
7704         struct btrfs_key key;
7705         struct extent_buffer *eb;
7706         struct btrfs_dev_stats_item *ptr;
7707         int ret;
7708         int i;
7709
7710         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7711         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7712         key.offset = device->devid;
7713
7714         path = btrfs_alloc_path();
7715         if (!path)
7716                 return -ENOMEM;
7717         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7718         if (ret < 0) {
7719                 btrfs_warn_in_rcu(fs_info,
7720                         "error %d while searching for dev_stats item for device %s",
7721                               ret, rcu_str_deref(device->name));
7722                 goto out;
7723         }
7724
7725         if (ret == 0 &&
7726             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7727                 /* need to delete old one and insert a new one */
7728                 ret = btrfs_del_item(trans, dev_root, path);
7729                 if (ret != 0) {
7730                         btrfs_warn_in_rcu(fs_info,
7731                                 "delete too small dev_stats item for device %s failed %d",
7732                                       rcu_str_deref(device->name), ret);
7733                         goto out;
7734                 }
7735                 ret = 1;
7736         }
7737
7738         if (ret == 1) {
7739                 /* need to insert a new item */
7740                 btrfs_release_path(path);
7741                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7742                                               &key, sizeof(*ptr));
7743                 if (ret < 0) {
7744                         btrfs_warn_in_rcu(fs_info,
7745                                 "insert dev_stats item for device %s failed %d",
7746                                 rcu_str_deref(device->name), ret);
7747                         goto out;
7748                 }
7749         }
7750
7751         eb = path->nodes[0];
7752         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7753         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7754                 btrfs_set_dev_stats_value(eb, ptr, i,
7755                                           btrfs_dev_stat_read(device, i));
7756         btrfs_mark_buffer_dirty(eb);
7757
7758 out:
7759         btrfs_free_path(path);
7760         return ret;
7761 }
7762
7763 /*
7764  * called from commit_transaction. Writes all changed device stats to disk.
7765  */
7766 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7767 {
7768         struct btrfs_fs_info *fs_info = trans->fs_info;
7769         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7770         struct btrfs_device *device;
7771         int stats_cnt;
7772         int ret = 0;
7773
7774         mutex_lock(&fs_devices->device_list_mutex);
7775         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7776                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7777                 if (!device->dev_stats_valid || stats_cnt == 0)
7778                         continue;
7779
7780
7781                 /*
7782                  * There is a LOAD-LOAD control dependency between the value of
7783                  * dev_stats_ccnt and updating the on-disk values which requires
7784                  * reading the in-memory counters. Such control dependencies
7785                  * require explicit read memory barriers.
7786                  *
7787                  * This memory barriers pairs with smp_mb__before_atomic in
7788                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7789                  * barrier implied by atomic_xchg in
7790                  * btrfs_dev_stats_read_and_reset
7791                  */
7792                 smp_rmb();
7793
7794                 ret = update_dev_stat_item(trans, device);
7795                 if (!ret)
7796                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7797         }
7798         mutex_unlock(&fs_devices->device_list_mutex);
7799
7800         return ret;
7801 }
7802
7803 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7804 {
7805         btrfs_dev_stat_inc(dev, index);
7806         btrfs_dev_stat_print_on_error(dev);
7807 }
7808
7809 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7810 {
7811         if (!dev->dev_stats_valid)
7812                 return;
7813         btrfs_err_rl_in_rcu(dev->fs_info,
7814                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7815                            rcu_str_deref(dev->name),
7816                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7817                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7818                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7819                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7820                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7821 }
7822
7823 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7824 {
7825         int i;
7826
7827         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7828                 if (btrfs_dev_stat_read(dev, i) != 0)
7829                         break;
7830         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7831                 return; /* all values == 0, suppress message */
7832
7833         btrfs_info_in_rcu(dev->fs_info,
7834                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7835                rcu_str_deref(dev->name),
7836                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7837                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7838                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7839                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7840                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7841 }
7842
7843 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7844                         struct btrfs_ioctl_get_dev_stats *stats)
7845 {
7846         struct btrfs_device *dev;
7847         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7848         int i;
7849
7850         mutex_lock(&fs_devices->device_list_mutex);
7851         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7852         mutex_unlock(&fs_devices->device_list_mutex);
7853
7854         if (!dev) {
7855                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7856                 return -ENODEV;
7857         } else if (!dev->dev_stats_valid) {
7858                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7859                 return -ENODEV;
7860         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7861                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7862                         if (stats->nr_items > i)
7863                                 stats->values[i] =
7864                                         btrfs_dev_stat_read_and_reset(dev, i);
7865                         else
7866                                 btrfs_dev_stat_set(dev, i, 0);
7867                 }
7868                 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7869                            current->comm, task_pid_nr(current));
7870         } else {
7871                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7872                         if (stats->nr_items > i)
7873                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7874         }
7875         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7876                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7877         return 0;
7878 }
7879
7880 /*
7881  * Update the size and bytes used for each device where it changed.  This is
7882  * delayed since we would otherwise get errors while writing out the
7883  * superblocks.
7884  *
7885  * Must be invoked during transaction commit.
7886  */
7887 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7888 {
7889         struct btrfs_device *curr, *next;
7890
7891         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7892
7893         if (list_empty(&trans->dev_update_list))
7894                 return;
7895
7896         /*
7897          * We don't need the device_list_mutex here.  This list is owned by the
7898          * transaction and the transaction must complete before the device is
7899          * released.
7900          */
7901         mutex_lock(&trans->fs_info->chunk_mutex);
7902         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7903                                  post_commit_list) {
7904                 list_del_init(&curr->post_commit_list);
7905                 curr->commit_total_bytes = curr->disk_total_bytes;
7906                 curr->commit_bytes_used = curr->bytes_used;
7907         }
7908         mutex_unlock(&trans->fs_info->chunk_mutex);
7909 }
7910
7911 /*
7912  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7913  */
7914 int btrfs_bg_type_to_factor(u64 flags)
7915 {
7916         const int index = btrfs_bg_flags_to_raid_index(flags);
7917
7918         return btrfs_raid_array[index].ncopies;
7919 }
7920
7921
7922
7923 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7924                                  u64 chunk_offset, u64 devid,
7925                                  u64 physical_offset, u64 physical_len)
7926 {
7927         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7928         struct extent_map *em;
7929         struct map_lookup *map;
7930         struct btrfs_device *dev;
7931         u64 stripe_len;
7932         bool found = false;
7933         int ret = 0;
7934         int i;
7935
7936         read_lock(&em_tree->lock);
7937         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7938         read_unlock(&em_tree->lock);
7939
7940         if (!em) {
7941                 btrfs_err(fs_info,
7942 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7943                           physical_offset, devid);
7944                 ret = -EUCLEAN;
7945                 goto out;
7946         }
7947
7948         map = em->map_lookup;
7949         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7950         if (physical_len != stripe_len) {
7951                 btrfs_err(fs_info,
7952 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7953                           physical_offset, devid, em->start, physical_len,
7954                           stripe_len);
7955                 ret = -EUCLEAN;
7956                 goto out;
7957         }
7958
7959         for (i = 0; i < map->num_stripes; i++) {
7960                 if (map->stripes[i].dev->devid == devid &&
7961                     map->stripes[i].physical == physical_offset) {
7962                         found = true;
7963                         if (map->verified_stripes >= map->num_stripes) {
7964                                 btrfs_err(fs_info,
7965                                 "too many dev extents for chunk %llu found",
7966                                           em->start);
7967                                 ret = -EUCLEAN;
7968                                 goto out;
7969                         }
7970                         map->verified_stripes++;
7971                         break;
7972                 }
7973         }
7974         if (!found) {
7975                 btrfs_err(fs_info,
7976         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7977                         physical_offset, devid);
7978                 ret = -EUCLEAN;
7979         }
7980
7981         /* Make sure no dev extent is beyond device boundary */
7982         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7983         if (!dev) {
7984                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7985                 ret = -EUCLEAN;
7986                 goto out;
7987         }
7988
7989         if (physical_offset + physical_len > dev->disk_total_bytes) {
7990                 btrfs_err(fs_info,
7991 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7992                           devid, physical_offset, physical_len,
7993                           dev->disk_total_bytes);
7994                 ret = -EUCLEAN;
7995                 goto out;
7996         }
7997
7998         if (dev->zone_info) {
7999                 u64 zone_size = dev->zone_info->zone_size;
8000
8001                 if (!IS_ALIGNED(physical_offset, zone_size) ||
8002                     !IS_ALIGNED(physical_len, zone_size)) {
8003                         btrfs_err(fs_info,
8004 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8005                                   devid, physical_offset, physical_len);
8006                         ret = -EUCLEAN;
8007                         goto out;
8008                 }
8009         }
8010
8011 out:
8012         free_extent_map(em);
8013         return ret;
8014 }
8015
8016 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8017 {
8018         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8019         struct extent_map *em;
8020         struct rb_node *node;
8021         int ret = 0;
8022
8023         read_lock(&em_tree->lock);
8024         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8025                 em = rb_entry(node, struct extent_map, rb_node);
8026                 if (em->map_lookup->num_stripes !=
8027                     em->map_lookup->verified_stripes) {
8028                         btrfs_err(fs_info,
8029                         "chunk %llu has missing dev extent, have %d expect %d",
8030                                   em->start, em->map_lookup->verified_stripes,
8031                                   em->map_lookup->num_stripes);
8032                         ret = -EUCLEAN;
8033                         goto out;
8034                 }
8035         }
8036 out:
8037         read_unlock(&em_tree->lock);
8038         return ret;
8039 }
8040
8041 /*
8042  * Ensure that all dev extents are mapped to correct chunk, otherwise
8043  * later chunk allocation/free would cause unexpected behavior.
8044  *
8045  * NOTE: This will iterate through the whole device tree, which should be of
8046  * the same size level as the chunk tree.  This slightly increases mount time.
8047  */
8048 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8049 {
8050         struct btrfs_path *path;
8051         struct btrfs_root *root = fs_info->dev_root;
8052         struct btrfs_key key;
8053         u64 prev_devid = 0;
8054         u64 prev_dev_ext_end = 0;
8055         int ret = 0;
8056
8057         /*
8058          * We don't have a dev_root because we mounted with ignorebadroots and
8059          * failed to load the root, so we want to skip the verification in this
8060          * case for sure.
8061          *
8062          * However if the dev root is fine, but the tree itself is corrupted
8063          * we'd still fail to mount.  This verification is only to make sure
8064          * writes can happen safely, so instead just bypass this check
8065          * completely in the case of IGNOREBADROOTS.
8066          */
8067         if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8068                 return 0;
8069
8070         key.objectid = 1;
8071         key.type = BTRFS_DEV_EXTENT_KEY;
8072         key.offset = 0;
8073
8074         path = btrfs_alloc_path();
8075         if (!path)
8076                 return -ENOMEM;
8077
8078         path->reada = READA_FORWARD;
8079         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8080         if (ret < 0)
8081                 goto out;
8082
8083         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8084                 ret = btrfs_next_leaf(root, path);
8085                 if (ret < 0)
8086                         goto out;
8087                 /* No dev extents at all? Not good */
8088                 if (ret > 0) {
8089                         ret = -EUCLEAN;
8090                         goto out;
8091                 }
8092         }
8093         while (1) {
8094                 struct extent_buffer *leaf = path->nodes[0];
8095                 struct btrfs_dev_extent *dext;
8096                 int slot = path->slots[0];
8097                 u64 chunk_offset;
8098                 u64 physical_offset;
8099                 u64 physical_len;
8100                 u64 devid;
8101
8102                 btrfs_item_key_to_cpu(leaf, &key, slot);
8103                 if (key.type != BTRFS_DEV_EXTENT_KEY)
8104                         break;
8105                 devid = key.objectid;
8106                 physical_offset = key.offset;
8107
8108                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8109                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8110                 physical_len = btrfs_dev_extent_length(leaf, dext);
8111
8112                 /* Check if this dev extent overlaps with the previous one */
8113                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8114                         btrfs_err(fs_info,
8115 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8116                                   devid, physical_offset, prev_dev_ext_end);
8117                         ret = -EUCLEAN;
8118                         goto out;
8119                 }
8120
8121                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8122                                             physical_offset, physical_len);
8123                 if (ret < 0)
8124                         goto out;
8125                 prev_devid = devid;
8126                 prev_dev_ext_end = physical_offset + physical_len;
8127
8128                 ret = btrfs_next_item(root, path);
8129                 if (ret < 0)
8130                         goto out;
8131                 if (ret > 0) {
8132                         ret = 0;
8133                         break;
8134                 }
8135         }
8136
8137         /* Ensure all chunks have corresponding dev extents */
8138         ret = verify_chunk_dev_extent_mapping(fs_info);
8139 out:
8140         btrfs_free_path(path);
8141         return ret;
8142 }
8143
8144 /*
8145  * Check whether the given block group or device is pinned by any inode being
8146  * used as a swapfile.
8147  */
8148 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8149 {
8150         struct btrfs_swapfile_pin *sp;
8151         struct rb_node *node;
8152
8153         spin_lock(&fs_info->swapfile_pins_lock);
8154         node = fs_info->swapfile_pins.rb_node;
8155         while (node) {
8156                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8157                 if (ptr < sp->ptr)
8158                         node = node->rb_left;
8159                 else if (ptr > sp->ptr)
8160                         node = node->rb_right;
8161                 else
8162                         break;
8163         }
8164         spin_unlock(&fs_info->swapfile_pins_lock);
8165         return node != NULL;
8166 }
8167
8168 static int relocating_repair_kthread(void *data)
8169 {
8170         struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8171         struct btrfs_fs_info *fs_info = cache->fs_info;
8172         u64 target;
8173         int ret = 0;
8174
8175         target = cache->start;
8176         btrfs_put_block_group(cache);
8177
8178         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8179                 btrfs_info(fs_info,
8180                            "zoned: skip relocating block group %llu to repair: EBUSY",
8181                            target);
8182                 return -EBUSY;
8183         }
8184
8185         mutex_lock(&fs_info->reclaim_bgs_lock);
8186
8187         /* Ensure block group still exists */
8188         cache = btrfs_lookup_block_group(fs_info, target);
8189         if (!cache)
8190                 goto out;
8191
8192         if (!cache->relocating_repair)
8193                 goto out;
8194
8195         ret = btrfs_may_alloc_data_chunk(fs_info, target);
8196         if (ret < 0)
8197                 goto out;
8198
8199         btrfs_info(fs_info,
8200                    "zoned: relocating block group %llu to repair IO failure",
8201                    target);
8202         ret = btrfs_relocate_chunk(fs_info, target);
8203
8204 out:
8205         if (cache)
8206                 btrfs_put_block_group(cache);
8207         mutex_unlock(&fs_info->reclaim_bgs_lock);
8208         btrfs_exclop_finish(fs_info);
8209
8210         return ret;
8211 }
8212
8213 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8214 {
8215         struct btrfs_block_group *cache;
8216
8217         /* Do not attempt to repair in degraded state */
8218         if (btrfs_test_opt(fs_info, DEGRADED))
8219                 return 0;
8220
8221         cache = btrfs_lookup_block_group(fs_info, logical);
8222         if (!cache)
8223                 return 0;
8224
8225         spin_lock(&cache->lock);
8226         if (cache->relocating_repair) {
8227                 spin_unlock(&cache->lock);
8228                 btrfs_put_block_group(cache);
8229                 return 0;
8230         }
8231         cache->relocating_repair = 1;
8232         spin_unlock(&cache->lock);
8233
8234         kthread_run(relocating_repair_kthread, cache,
8235                     "btrfs-relocating-repair");
8236
8237         return 0;
8238 }