2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
49 .devs_max = 0, /* 0 == as many as possible */
51 .tolerated_failures = 1,
55 [BTRFS_RAID_RAID1] = {
60 .tolerated_failures = 1,
69 .tolerated_failures = 0,
73 [BTRFS_RAID_RAID0] = {
78 .tolerated_failures = 0,
82 [BTRFS_RAID_SINGLE] = {
87 .tolerated_failures = 0,
91 [BTRFS_RAID_RAID5] = {
96 .tolerated_failures = 1,
100 [BTRFS_RAID_RAID6] = {
105 .tolerated_failures = 2,
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
159 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160 * The returned struct is not linked onto any lists and can be destroyed with
161 * kfree() right away.
163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
165 struct btrfs_fs_devices *fs_devs;
167 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
169 return ERR_PTR(-ENOMEM);
171 mutex_init(&fs_devs->device_list_mutex);
173 INIT_LIST_HEAD(&fs_devs->devices);
174 INIT_LIST_HEAD(&fs_devs->resized_devices);
175 INIT_LIST_HEAD(&fs_devs->alloc_list);
176 INIT_LIST_HEAD(&fs_devs->list);
178 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
185 struct btrfs_device *device;
186 WARN_ON(fs_devices->opened);
187 while (!list_empty(&fs_devices->devices)) {
188 device = list_entry(fs_devices->devices.next,
189 struct btrfs_device, dev_list);
190 list_del(&device->dev_list);
191 rcu_string_free(device->name);
197 static void btrfs_kobject_uevent(struct block_device *bdev,
198 enum kobject_action action)
202 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
204 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
206 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
207 &disk_to_dev(bdev->bd_disk)->kobj);
210 void btrfs_cleanup_fs_uuids(void)
212 struct btrfs_fs_devices *fs_devices;
214 while (!list_empty(&fs_uuids)) {
215 fs_devices = list_entry(fs_uuids.next,
216 struct btrfs_fs_devices, list);
217 list_del(&fs_devices->list);
218 free_fs_devices(fs_devices);
222 static struct btrfs_device *__alloc_device(void)
224 struct btrfs_device *dev;
226 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
228 return ERR_PTR(-ENOMEM);
231 * Preallocate a bio that's always going to be used for flushing device
232 * barriers and matches the device lifespan
234 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
235 if (!dev->flush_bio) {
237 return ERR_PTR(-ENOMEM);
239 bio_get(dev->flush_bio);
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
243 INIT_LIST_HEAD(&dev->resized_list);
245 spin_lock_init(&dev->io_lock);
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
249 atomic_set(&dev->dev_stats_ccnt, 0);
250 btrfs_device_data_ordered_init(dev);
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
258 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
261 * If devid and uuid are both specified, the match must be exact, otherwise
262 * only devid is used.
264 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
265 u64 devid, const u8 *uuid)
267 struct list_head *head = &fs_devices->devices;
268 struct btrfs_device *dev;
270 list_for_each_entry(dev, head, dev_list) {
271 if (dev->devid == devid &&
272 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
279 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
281 struct btrfs_fs_devices *fs_devices;
283 list_for_each_entry(fs_devices, &fs_uuids, list) {
284 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
291 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
292 int flush, struct block_device **bdev,
293 struct buffer_head **bh)
297 *bdev = blkdev_get_by_path(device_path, flags, holder);
300 ret = PTR_ERR(*bdev);
305 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
306 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
308 blkdev_put(*bdev, flags);
311 invalidate_bdev(*bdev);
312 *bh = btrfs_read_dev_super(*bdev);
315 blkdev_put(*bdev, flags);
327 static void requeue_list(struct btrfs_pending_bios *pending_bios,
328 struct bio *head, struct bio *tail)
331 struct bio *old_head;
333 old_head = pending_bios->head;
334 pending_bios->head = head;
335 if (pending_bios->tail)
336 tail->bi_next = old_head;
338 pending_bios->tail = tail;
342 * we try to collect pending bios for a device so we don't get a large
343 * number of procs sending bios down to the same device. This greatly
344 * improves the schedulers ability to collect and merge the bios.
346 * But, it also turns into a long list of bios to process and that is sure
347 * to eventually make the worker thread block. The solution here is to
348 * make some progress and then put this work struct back at the end of
349 * the list if the block device is congested. This way, multiple devices
350 * can make progress from a single worker thread.
352 static noinline void run_scheduled_bios(struct btrfs_device *device)
354 struct btrfs_fs_info *fs_info = device->fs_info;
356 struct backing_dev_info *bdi;
357 struct btrfs_pending_bios *pending_bios;
361 unsigned long num_run;
362 unsigned long batch_run = 0;
363 unsigned long last_waited = 0;
365 int sync_pending = 0;
366 struct blk_plug plug;
369 * this function runs all the bios we've collected for
370 * a particular device. We don't want to wander off to
371 * another device without first sending all of these down.
372 * So, setup a plug here and finish it off before we return
374 blk_start_plug(&plug);
376 bdi = device->bdev->bd_bdi;
379 spin_lock(&device->io_lock);
384 /* take all the bios off the list at once and process them
385 * later on (without the lock held). But, remember the
386 * tail and other pointers so the bios can be properly reinserted
387 * into the list if we hit congestion
389 if (!force_reg && device->pending_sync_bios.head) {
390 pending_bios = &device->pending_sync_bios;
393 pending_bios = &device->pending_bios;
397 pending = pending_bios->head;
398 tail = pending_bios->tail;
399 WARN_ON(pending && !tail);
402 * if pending was null this time around, no bios need processing
403 * at all and we can stop. Otherwise it'll loop back up again
404 * and do an additional check so no bios are missed.
406 * device->running_pending is used to synchronize with the
409 if (device->pending_sync_bios.head == NULL &&
410 device->pending_bios.head == NULL) {
412 device->running_pending = 0;
415 device->running_pending = 1;
418 pending_bios->head = NULL;
419 pending_bios->tail = NULL;
421 spin_unlock(&device->io_lock);
426 /* we want to work on both lists, but do more bios on the
427 * sync list than the regular list
430 pending_bios != &device->pending_sync_bios &&
431 device->pending_sync_bios.head) ||
432 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
433 device->pending_bios.head)) {
434 spin_lock(&device->io_lock);
435 requeue_list(pending_bios, pending, tail);
440 pending = pending->bi_next;
443 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
446 * if we're doing the sync list, record that our
447 * plug has some sync requests on it
449 * If we're doing the regular list and there are
450 * sync requests sitting around, unplug before
453 if (pending_bios == &device->pending_sync_bios) {
455 } else if (sync_pending) {
456 blk_finish_plug(&plug);
457 blk_start_plug(&plug);
461 btrfsic_submit_bio(cur);
468 * we made progress, there is more work to do and the bdi
469 * is now congested. Back off and let other work structs
472 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
473 fs_info->fs_devices->open_devices > 1) {
474 struct io_context *ioc;
476 ioc = current->io_context;
479 * the main goal here is that we don't want to
480 * block if we're going to be able to submit
481 * more requests without blocking.
483 * This code does two great things, it pokes into
484 * the elevator code from a filesystem _and_
485 * it makes assumptions about how batching works.
487 if (ioc && ioc->nr_batch_requests > 0 &&
488 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
490 ioc->last_waited == last_waited)) {
492 * we want to go through our batch of
493 * requests and stop. So, we copy out
494 * the ioc->last_waited time and test
495 * against it before looping
497 last_waited = ioc->last_waited;
501 spin_lock(&device->io_lock);
502 requeue_list(pending_bios, pending, tail);
503 device->running_pending = 1;
505 spin_unlock(&device->io_lock);
506 btrfs_queue_work(fs_info->submit_workers,
516 spin_lock(&device->io_lock);
517 if (device->pending_bios.head || device->pending_sync_bios.head)
519 spin_unlock(&device->io_lock);
522 blk_finish_plug(&plug);
525 static void pending_bios_fn(struct btrfs_work *work)
527 struct btrfs_device *device;
529 device = container_of(work, struct btrfs_device, work);
530 run_scheduled_bios(device);
534 static void btrfs_free_stale_device(struct btrfs_device *cur_dev)
536 struct btrfs_fs_devices *fs_devs;
537 struct btrfs_device *dev;
542 list_for_each_entry(fs_devs, &fs_uuids, list) {
547 if (fs_devs->seeding)
550 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
558 * Todo: This won't be enough. What if the same device
559 * comes back (with new uuid and) with its mapper path?
560 * But for now, this does help as mostly an admin will
561 * either use mapper or non mapper path throughout.
564 del = strcmp(rcu_str_deref(dev->name),
565 rcu_str_deref(cur_dev->name));
572 /* delete the stale device */
573 if (fs_devs->num_devices == 1) {
574 btrfs_sysfs_remove_fsid(fs_devs);
575 list_del(&fs_devs->list);
576 free_fs_devices(fs_devs);
578 fs_devs->num_devices--;
579 list_del(&dev->dev_list);
580 rcu_string_free(dev->name);
589 * Add new device to list of registered devices
592 * 1 - first time device is seen
593 * 0 - device already known
596 static noinline int device_list_add(const char *path,
597 struct btrfs_super_block *disk_super,
598 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
600 struct btrfs_device *device;
601 struct btrfs_fs_devices *fs_devices;
602 struct rcu_string *name;
604 u64 found_transid = btrfs_super_generation(disk_super);
606 fs_devices = find_fsid(disk_super->fsid);
608 fs_devices = alloc_fs_devices(disk_super->fsid);
609 if (IS_ERR(fs_devices))
610 return PTR_ERR(fs_devices);
612 list_add(&fs_devices->list, &fs_uuids);
616 device = find_device(fs_devices, devid,
617 disk_super->dev_item.uuid);
621 if (fs_devices->opened)
624 device = btrfs_alloc_device(NULL, &devid,
625 disk_super->dev_item.uuid);
626 if (IS_ERR(device)) {
627 /* we can safely leave the fs_devices entry around */
628 return PTR_ERR(device);
631 name = rcu_string_strdup(path, GFP_NOFS);
636 rcu_assign_pointer(device->name, name);
638 mutex_lock(&fs_devices->device_list_mutex);
639 list_add_rcu(&device->dev_list, &fs_devices->devices);
640 fs_devices->num_devices++;
641 mutex_unlock(&fs_devices->device_list_mutex);
644 device->fs_devices = fs_devices;
645 } else if (!device->name || strcmp(device->name->str, path)) {
647 * When FS is already mounted.
648 * 1. If you are here and if the device->name is NULL that
649 * means this device was missing at time of FS mount.
650 * 2. If you are here and if the device->name is different
651 * from 'path' that means either
652 * a. The same device disappeared and reappeared with
654 * b. The missing-disk-which-was-replaced, has
657 * We must allow 1 and 2a above. But 2b would be a spurious
660 * Further in case of 1 and 2a above, the disk at 'path'
661 * would have missed some transaction when it was away and
662 * in case of 2a the stale bdev has to be updated as well.
663 * 2b must not be allowed at all time.
667 * For now, we do allow update to btrfs_fs_device through the
668 * btrfs dev scan cli after FS has been mounted. We're still
669 * tracking a problem where systems fail mount by subvolume id
670 * when we reject replacement on a mounted FS.
672 if (!fs_devices->opened && found_transid < device->generation) {
674 * That is if the FS is _not_ mounted and if you
675 * are here, that means there is more than one
676 * disk with same uuid and devid.We keep the one
677 * with larger generation number or the last-in if
678 * generation are equal.
683 name = rcu_string_strdup(path, GFP_NOFS);
686 rcu_string_free(device->name);
687 rcu_assign_pointer(device->name, name);
688 if (device->missing) {
689 fs_devices->missing_devices--;
695 * Unmount does not free the btrfs_device struct but would zero
696 * generation along with most of the other members. So just update
697 * it back. We need it to pick the disk with largest generation
700 if (!fs_devices->opened)
701 device->generation = found_transid;
704 * if there is new btrfs on an already registered device,
705 * then remove the stale device entry.
708 btrfs_free_stale_device(device);
710 *fs_devices_ret = fs_devices;
715 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
717 struct btrfs_fs_devices *fs_devices;
718 struct btrfs_device *device;
719 struct btrfs_device *orig_dev;
721 fs_devices = alloc_fs_devices(orig->fsid);
722 if (IS_ERR(fs_devices))
725 mutex_lock(&orig->device_list_mutex);
726 fs_devices->total_devices = orig->total_devices;
728 /* We have held the volume lock, it is safe to get the devices. */
729 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
730 struct rcu_string *name;
732 device = btrfs_alloc_device(NULL, &orig_dev->devid,
738 * This is ok to do without rcu read locked because we hold the
739 * uuid mutex so nothing we touch in here is going to disappear.
741 if (orig_dev->name) {
742 name = rcu_string_strdup(orig_dev->name->str,
748 rcu_assign_pointer(device->name, name);
751 list_add(&device->dev_list, &fs_devices->devices);
752 device->fs_devices = fs_devices;
753 fs_devices->num_devices++;
755 mutex_unlock(&orig->device_list_mutex);
758 mutex_unlock(&orig->device_list_mutex);
759 free_fs_devices(fs_devices);
760 return ERR_PTR(-ENOMEM);
763 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
765 struct btrfs_device *device, *next;
766 struct btrfs_device *latest_dev = NULL;
768 mutex_lock(&uuid_mutex);
770 /* This is the initialized path, it is safe to release the devices. */
771 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
772 if (device->in_fs_metadata) {
773 if (!device->is_tgtdev_for_dev_replace &&
775 device->generation > latest_dev->generation)) {
781 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
783 * In the first step, keep the device which has
784 * the correct fsid and the devid that is used
785 * for the dev_replace procedure.
786 * In the second step, the dev_replace state is
787 * read from the device tree and it is known
788 * whether the procedure is really active or
789 * not, which means whether this device is
790 * used or whether it should be removed.
792 if (step == 0 || device->is_tgtdev_for_dev_replace) {
797 blkdev_put(device->bdev, device->mode);
799 fs_devices->open_devices--;
801 if (device->writeable) {
802 list_del_init(&device->dev_alloc_list);
803 device->writeable = 0;
804 if (!device->is_tgtdev_for_dev_replace)
805 fs_devices->rw_devices--;
807 list_del_init(&device->dev_list);
808 fs_devices->num_devices--;
809 rcu_string_free(device->name);
813 if (fs_devices->seed) {
814 fs_devices = fs_devices->seed;
818 fs_devices->latest_bdev = latest_dev->bdev;
820 mutex_unlock(&uuid_mutex);
823 static void __free_device(struct work_struct *work)
825 struct btrfs_device *device;
827 device = container_of(work, struct btrfs_device, rcu_work);
828 rcu_string_free(device->name);
829 bio_put(device->flush_bio);
833 static void free_device(struct rcu_head *head)
835 struct btrfs_device *device;
837 device = container_of(head, struct btrfs_device, rcu);
839 INIT_WORK(&device->rcu_work, __free_device);
840 schedule_work(&device->rcu_work);
843 static void btrfs_close_bdev(struct btrfs_device *device)
845 if (device->bdev && device->writeable) {
846 sync_blockdev(device->bdev);
847 invalidate_bdev(device->bdev);
851 blkdev_put(device->bdev, device->mode);
854 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
856 struct btrfs_fs_devices *fs_devices = device->fs_devices;
857 struct btrfs_device *new_device;
858 struct rcu_string *name;
861 fs_devices->open_devices--;
863 if (device->writeable &&
864 device->devid != BTRFS_DEV_REPLACE_DEVID) {
865 list_del_init(&device->dev_alloc_list);
866 fs_devices->rw_devices--;
870 fs_devices->missing_devices--;
872 new_device = btrfs_alloc_device(NULL, &device->devid,
874 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
876 /* Safe because we are under uuid_mutex */
878 name = rcu_string_strdup(device->name->str, GFP_NOFS);
879 BUG_ON(!name); /* -ENOMEM */
880 rcu_assign_pointer(new_device->name, name);
883 list_replace_rcu(&device->dev_list, &new_device->dev_list);
884 new_device->fs_devices = device->fs_devices;
887 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
889 struct btrfs_device *device, *tmp;
890 struct list_head pending_put;
892 INIT_LIST_HEAD(&pending_put);
894 if (--fs_devices->opened > 0)
897 mutex_lock(&fs_devices->device_list_mutex);
898 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
899 btrfs_prepare_close_one_device(device);
900 list_add(&device->dev_list, &pending_put);
902 mutex_unlock(&fs_devices->device_list_mutex);
905 * btrfs_show_devname() is using the device_list_mutex,
906 * sometimes call to blkdev_put() leads vfs calling
907 * into this func. So do put outside of device_list_mutex,
910 while (!list_empty(&pending_put)) {
911 device = list_first_entry(&pending_put,
912 struct btrfs_device, dev_list);
913 list_del(&device->dev_list);
914 btrfs_close_bdev(device);
915 call_rcu(&device->rcu, free_device);
918 WARN_ON(fs_devices->open_devices);
919 WARN_ON(fs_devices->rw_devices);
920 fs_devices->opened = 0;
921 fs_devices->seeding = 0;
926 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
928 struct btrfs_fs_devices *seed_devices = NULL;
931 mutex_lock(&uuid_mutex);
932 ret = __btrfs_close_devices(fs_devices);
933 if (!fs_devices->opened) {
934 seed_devices = fs_devices->seed;
935 fs_devices->seed = NULL;
937 mutex_unlock(&uuid_mutex);
939 while (seed_devices) {
940 fs_devices = seed_devices;
941 seed_devices = fs_devices->seed;
942 __btrfs_close_devices(fs_devices);
943 free_fs_devices(fs_devices);
946 * Wait for rcu kworkers under __btrfs_close_devices
947 * to finish all blkdev_puts so device is really
948 * free when umount is done.
954 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
955 fmode_t flags, void *holder)
957 struct request_queue *q;
958 struct block_device *bdev;
959 struct list_head *head = &fs_devices->devices;
960 struct btrfs_device *device;
961 struct btrfs_device *latest_dev = NULL;
962 struct buffer_head *bh;
963 struct btrfs_super_block *disk_super;
970 list_for_each_entry(device, head, dev_list) {
976 /* Just open everything we can; ignore failures here */
977 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
981 disk_super = (struct btrfs_super_block *)bh->b_data;
982 devid = btrfs_stack_device_id(&disk_super->dev_item);
983 if (devid != device->devid)
986 if (memcmp(device->uuid, disk_super->dev_item.uuid,
990 device->generation = btrfs_super_generation(disk_super);
992 device->generation > latest_dev->generation)
995 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
996 device->writeable = 0;
998 device->writeable = !bdev_read_only(bdev);
1002 q = bdev_get_queue(bdev);
1003 if (blk_queue_discard(q))
1004 device->can_discard = 1;
1005 if (!blk_queue_nonrot(q))
1006 fs_devices->rotating = 1;
1008 device->bdev = bdev;
1009 device->in_fs_metadata = 0;
1010 device->mode = flags;
1012 fs_devices->open_devices++;
1013 if (device->writeable &&
1014 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1015 fs_devices->rw_devices++;
1016 list_add(&device->dev_alloc_list,
1017 &fs_devices->alloc_list);
1024 blkdev_put(bdev, flags);
1027 if (fs_devices->open_devices == 0) {
1031 fs_devices->seeding = seeding;
1032 fs_devices->opened = 1;
1033 fs_devices->latest_bdev = latest_dev->bdev;
1034 fs_devices->total_rw_bytes = 0;
1039 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1040 fmode_t flags, void *holder)
1044 mutex_lock(&uuid_mutex);
1045 if (fs_devices->opened) {
1046 fs_devices->opened++;
1049 ret = __btrfs_open_devices(fs_devices, flags, holder);
1051 mutex_unlock(&uuid_mutex);
1055 static void btrfs_release_disk_super(struct page *page)
1061 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1063 struct btrfs_super_block **disk_super)
1068 /* make sure our super fits in the device */
1069 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1072 /* make sure our super fits in the page */
1073 if (sizeof(**disk_super) > PAGE_SIZE)
1076 /* make sure our super doesn't straddle pages on disk */
1077 index = bytenr >> PAGE_SHIFT;
1078 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1081 /* pull in the page with our super */
1082 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1085 if (IS_ERR_OR_NULL(*page))
1090 /* align our pointer to the offset of the super block */
1091 *disk_super = p + (bytenr & ~PAGE_MASK);
1093 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1094 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1095 btrfs_release_disk_super(*page);
1099 if ((*disk_super)->label[0] &&
1100 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1101 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1107 * Look for a btrfs signature on a device. This may be called out of the mount path
1108 * and we are not allowed to call set_blocksize during the scan. The superblock
1109 * is read via pagecache
1111 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1112 struct btrfs_fs_devices **fs_devices_ret)
1114 struct btrfs_super_block *disk_super;
1115 struct block_device *bdev;
1124 * we would like to check all the supers, but that would make
1125 * a btrfs mount succeed after a mkfs from a different FS.
1126 * So, we need to add a special mount option to scan for
1127 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1129 bytenr = btrfs_sb_offset(0);
1130 flags |= FMODE_EXCL;
1131 mutex_lock(&uuid_mutex);
1133 bdev = blkdev_get_by_path(path, flags, holder);
1135 ret = PTR_ERR(bdev);
1139 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1140 goto error_bdev_put;
1142 devid = btrfs_stack_device_id(&disk_super->dev_item);
1143 transid = btrfs_super_generation(disk_super);
1144 total_devices = btrfs_super_num_devices(disk_super);
1146 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1148 if (disk_super->label[0]) {
1149 pr_info("BTRFS: device label %s ", disk_super->label);
1151 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1154 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1157 if (!ret && fs_devices_ret)
1158 (*fs_devices_ret)->total_devices = total_devices;
1160 btrfs_release_disk_super(page);
1163 blkdev_put(bdev, flags);
1165 mutex_unlock(&uuid_mutex);
1169 /* helper to account the used device space in the range */
1170 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1171 u64 end, u64 *length)
1173 struct btrfs_key key;
1174 struct btrfs_root *root = device->fs_info->dev_root;
1175 struct btrfs_dev_extent *dev_extent;
1176 struct btrfs_path *path;
1180 struct extent_buffer *l;
1184 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1187 path = btrfs_alloc_path();
1190 path->reada = READA_FORWARD;
1192 key.objectid = device->devid;
1194 key.type = BTRFS_DEV_EXTENT_KEY;
1196 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1200 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1207 slot = path->slots[0];
1208 if (slot >= btrfs_header_nritems(l)) {
1209 ret = btrfs_next_leaf(root, path);
1217 btrfs_item_key_to_cpu(l, &key, slot);
1219 if (key.objectid < device->devid)
1222 if (key.objectid > device->devid)
1225 if (key.type != BTRFS_DEV_EXTENT_KEY)
1228 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1229 extent_end = key.offset + btrfs_dev_extent_length(l,
1231 if (key.offset <= start && extent_end > end) {
1232 *length = end - start + 1;
1234 } else if (key.offset <= start && extent_end > start)
1235 *length += extent_end - start;
1236 else if (key.offset > start && extent_end <= end)
1237 *length += extent_end - key.offset;
1238 else if (key.offset > start && key.offset <= end) {
1239 *length += end - key.offset + 1;
1241 } else if (key.offset > end)
1249 btrfs_free_path(path);
1253 static int contains_pending_extent(struct btrfs_transaction *transaction,
1254 struct btrfs_device *device,
1255 u64 *start, u64 len)
1257 struct btrfs_fs_info *fs_info = device->fs_info;
1258 struct extent_map *em;
1259 struct list_head *search_list = &fs_info->pinned_chunks;
1261 u64 physical_start = *start;
1264 search_list = &transaction->pending_chunks;
1266 list_for_each_entry(em, search_list, list) {
1267 struct map_lookup *map;
1270 map = em->map_lookup;
1271 for (i = 0; i < map->num_stripes; i++) {
1274 if (map->stripes[i].dev != device)
1276 if (map->stripes[i].physical >= physical_start + len ||
1277 map->stripes[i].physical + em->orig_block_len <=
1281 * Make sure that while processing the pinned list we do
1282 * not override our *start with a lower value, because
1283 * we can have pinned chunks that fall within this
1284 * device hole and that have lower physical addresses
1285 * than the pending chunks we processed before. If we
1286 * do not take this special care we can end up getting
1287 * 2 pending chunks that start at the same physical
1288 * device offsets because the end offset of a pinned
1289 * chunk can be equal to the start offset of some
1292 end = map->stripes[i].physical + em->orig_block_len;
1299 if (search_list != &fs_info->pinned_chunks) {
1300 search_list = &fs_info->pinned_chunks;
1309 * find_free_dev_extent_start - find free space in the specified device
1310 * @device: the device which we search the free space in
1311 * @num_bytes: the size of the free space that we need
1312 * @search_start: the position from which to begin the search
1313 * @start: store the start of the free space.
1314 * @len: the size of the free space. that we find, or the size
1315 * of the max free space if we don't find suitable free space
1317 * this uses a pretty simple search, the expectation is that it is
1318 * called very infrequently and that a given device has a small number
1321 * @start is used to store the start of the free space if we find. But if we
1322 * don't find suitable free space, it will be used to store the start position
1323 * of the max free space.
1325 * @len is used to store the size of the free space that we find.
1326 * But if we don't find suitable free space, it is used to store the size of
1327 * the max free space.
1329 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1330 struct btrfs_device *device, u64 num_bytes,
1331 u64 search_start, u64 *start, u64 *len)
1333 struct btrfs_fs_info *fs_info = device->fs_info;
1334 struct btrfs_root *root = fs_info->dev_root;
1335 struct btrfs_key key;
1336 struct btrfs_dev_extent *dev_extent;
1337 struct btrfs_path *path;
1342 u64 search_end = device->total_bytes;
1345 struct extent_buffer *l;
1348 * We don't want to overwrite the superblock on the drive nor any area
1349 * used by the boot loader (grub for example), so we make sure to start
1350 * at an offset of at least 1MB.
1352 search_start = max_t(u64, search_start, SZ_1M);
1354 path = btrfs_alloc_path();
1358 max_hole_start = search_start;
1362 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1367 path->reada = READA_FORWARD;
1368 path->search_commit_root = 1;
1369 path->skip_locking = 1;
1371 key.objectid = device->devid;
1372 key.offset = search_start;
1373 key.type = BTRFS_DEV_EXTENT_KEY;
1375 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1379 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1386 slot = path->slots[0];
1387 if (slot >= btrfs_header_nritems(l)) {
1388 ret = btrfs_next_leaf(root, path);
1396 btrfs_item_key_to_cpu(l, &key, slot);
1398 if (key.objectid < device->devid)
1401 if (key.objectid > device->devid)
1404 if (key.type != BTRFS_DEV_EXTENT_KEY)
1407 if (key.offset > search_start) {
1408 hole_size = key.offset - search_start;
1411 * Have to check before we set max_hole_start, otherwise
1412 * we could end up sending back this offset anyway.
1414 if (contains_pending_extent(transaction, device,
1417 if (key.offset >= search_start) {
1418 hole_size = key.offset - search_start;
1425 if (hole_size > max_hole_size) {
1426 max_hole_start = search_start;
1427 max_hole_size = hole_size;
1431 * If this free space is greater than which we need,
1432 * it must be the max free space that we have found
1433 * until now, so max_hole_start must point to the start
1434 * of this free space and the length of this free space
1435 * is stored in max_hole_size. Thus, we return
1436 * max_hole_start and max_hole_size and go back to the
1439 if (hole_size >= num_bytes) {
1445 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1446 extent_end = key.offset + btrfs_dev_extent_length(l,
1448 if (extent_end > search_start)
1449 search_start = extent_end;
1456 * At this point, search_start should be the end of
1457 * allocated dev extents, and when shrinking the device,
1458 * search_end may be smaller than search_start.
1460 if (search_end > search_start) {
1461 hole_size = search_end - search_start;
1463 if (contains_pending_extent(transaction, device, &search_start,
1465 btrfs_release_path(path);
1469 if (hole_size > max_hole_size) {
1470 max_hole_start = search_start;
1471 max_hole_size = hole_size;
1476 if (max_hole_size < num_bytes)
1482 btrfs_free_path(path);
1483 *start = max_hole_start;
1485 *len = max_hole_size;
1489 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1490 struct btrfs_device *device, u64 num_bytes,
1491 u64 *start, u64 *len)
1493 /* FIXME use last free of some kind */
1494 return find_free_dev_extent_start(trans->transaction, device,
1495 num_bytes, 0, start, len);
1498 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1499 struct btrfs_device *device,
1500 u64 start, u64 *dev_extent_len)
1502 struct btrfs_fs_info *fs_info = device->fs_info;
1503 struct btrfs_root *root = fs_info->dev_root;
1505 struct btrfs_path *path;
1506 struct btrfs_key key;
1507 struct btrfs_key found_key;
1508 struct extent_buffer *leaf = NULL;
1509 struct btrfs_dev_extent *extent = NULL;
1511 path = btrfs_alloc_path();
1515 key.objectid = device->devid;
1517 key.type = BTRFS_DEV_EXTENT_KEY;
1519 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1521 ret = btrfs_previous_item(root, path, key.objectid,
1522 BTRFS_DEV_EXTENT_KEY);
1525 leaf = path->nodes[0];
1526 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1527 extent = btrfs_item_ptr(leaf, path->slots[0],
1528 struct btrfs_dev_extent);
1529 BUG_ON(found_key.offset > start || found_key.offset +
1530 btrfs_dev_extent_length(leaf, extent) < start);
1532 btrfs_release_path(path);
1534 } else if (ret == 0) {
1535 leaf = path->nodes[0];
1536 extent = btrfs_item_ptr(leaf, path->slots[0],
1537 struct btrfs_dev_extent);
1539 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1543 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1545 ret = btrfs_del_item(trans, root, path);
1547 btrfs_handle_fs_error(fs_info, ret,
1548 "Failed to remove dev extent item");
1550 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1553 btrfs_free_path(path);
1557 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1558 struct btrfs_device *device,
1559 u64 chunk_offset, u64 start, u64 num_bytes)
1562 struct btrfs_path *path;
1563 struct btrfs_fs_info *fs_info = device->fs_info;
1564 struct btrfs_root *root = fs_info->dev_root;
1565 struct btrfs_dev_extent *extent;
1566 struct extent_buffer *leaf;
1567 struct btrfs_key key;
1569 WARN_ON(!device->in_fs_metadata);
1570 WARN_ON(device->is_tgtdev_for_dev_replace);
1571 path = btrfs_alloc_path();
1575 key.objectid = device->devid;
1577 key.type = BTRFS_DEV_EXTENT_KEY;
1578 ret = btrfs_insert_empty_item(trans, root, path, &key,
1583 leaf = path->nodes[0];
1584 extent = btrfs_item_ptr(leaf, path->slots[0],
1585 struct btrfs_dev_extent);
1586 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1587 BTRFS_CHUNK_TREE_OBJECTID);
1588 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1589 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1590 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1592 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1593 btrfs_mark_buffer_dirty(leaf);
1595 btrfs_free_path(path);
1599 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1601 struct extent_map_tree *em_tree;
1602 struct extent_map *em;
1606 em_tree = &fs_info->mapping_tree.map_tree;
1607 read_lock(&em_tree->lock);
1608 n = rb_last(&em_tree->map);
1610 em = rb_entry(n, struct extent_map, rb_node);
1611 ret = em->start + em->len;
1613 read_unlock(&em_tree->lock);
1618 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1622 struct btrfs_key key;
1623 struct btrfs_key found_key;
1624 struct btrfs_path *path;
1626 path = btrfs_alloc_path();
1630 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1631 key.type = BTRFS_DEV_ITEM_KEY;
1632 key.offset = (u64)-1;
1634 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1638 BUG_ON(ret == 0); /* Corruption */
1640 ret = btrfs_previous_item(fs_info->chunk_root, path,
1641 BTRFS_DEV_ITEMS_OBJECTID,
1642 BTRFS_DEV_ITEM_KEY);
1646 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1648 *devid_ret = found_key.offset + 1;
1652 btrfs_free_path(path);
1657 * the device information is stored in the chunk root
1658 * the btrfs_device struct should be fully filled in
1660 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1661 struct btrfs_fs_info *fs_info,
1662 struct btrfs_device *device)
1664 struct btrfs_root *root = fs_info->chunk_root;
1666 struct btrfs_path *path;
1667 struct btrfs_dev_item *dev_item;
1668 struct extent_buffer *leaf;
1669 struct btrfs_key key;
1672 path = btrfs_alloc_path();
1676 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1677 key.type = BTRFS_DEV_ITEM_KEY;
1678 key.offset = device->devid;
1680 ret = btrfs_insert_empty_item(trans, root, path, &key,
1685 leaf = path->nodes[0];
1686 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1688 btrfs_set_device_id(leaf, dev_item, device->devid);
1689 btrfs_set_device_generation(leaf, dev_item, 0);
1690 btrfs_set_device_type(leaf, dev_item, device->type);
1691 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1692 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1693 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1694 btrfs_set_device_total_bytes(leaf, dev_item,
1695 btrfs_device_get_disk_total_bytes(device));
1696 btrfs_set_device_bytes_used(leaf, dev_item,
1697 btrfs_device_get_bytes_used(device));
1698 btrfs_set_device_group(leaf, dev_item, 0);
1699 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1700 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1701 btrfs_set_device_start_offset(leaf, dev_item, 0);
1703 ptr = btrfs_device_uuid(dev_item);
1704 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1705 ptr = btrfs_device_fsid(dev_item);
1706 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1707 btrfs_mark_buffer_dirty(leaf);
1711 btrfs_free_path(path);
1716 * Function to update ctime/mtime for a given device path.
1717 * Mainly used for ctime/mtime based probe like libblkid.
1719 static void update_dev_time(const char *path_name)
1723 filp = filp_open(path_name, O_RDWR, 0);
1726 file_update_time(filp);
1727 filp_close(filp, NULL);
1730 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1731 struct btrfs_device *device)
1733 struct btrfs_root *root = fs_info->chunk_root;
1735 struct btrfs_path *path;
1736 struct btrfs_key key;
1737 struct btrfs_trans_handle *trans;
1739 path = btrfs_alloc_path();
1743 trans = btrfs_start_transaction(root, 0);
1744 if (IS_ERR(trans)) {
1745 btrfs_free_path(path);
1746 return PTR_ERR(trans);
1748 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1749 key.type = BTRFS_DEV_ITEM_KEY;
1750 key.offset = device->devid;
1752 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1761 ret = btrfs_del_item(trans, root, path);
1765 btrfs_free_path(path);
1766 btrfs_commit_transaction(trans);
1771 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1772 * filesystem. It's up to the caller to adjust that number regarding eg. device
1775 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1783 seq = read_seqbegin(&fs_info->profiles_lock);
1785 all_avail = fs_info->avail_data_alloc_bits |
1786 fs_info->avail_system_alloc_bits |
1787 fs_info->avail_metadata_alloc_bits;
1788 } while (read_seqretry(&fs_info->profiles_lock, seq));
1790 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1791 if (!(all_avail & btrfs_raid_group[i]))
1794 if (num_devices < btrfs_raid_array[i].devs_min) {
1795 int ret = btrfs_raid_mindev_error[i];
1805 static struct btrfs_device * btrfs_find_next_active_device(
1806 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1808 struct btrfs_device *next_device;
1810 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1811 if (next_device != device &&
1812 !next_device->missing && next_device->bdev)
1820 * Helper function to check if the given device is part of s_bdev / latest_bdev
1821 * and replace it with the provided or the next active device, in the context
1822 * where this function called, there should be always be another device (or
1823 * this_dev) which is active.
1825 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1826 struct btrfs_device *device, struct btrfs_device *this_dev)
1828 struct btrfs_device *next_device;
1831 next_device = this_dev;
1833 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1835 ASSERT(next_device);
1837 if (fs_info->sb->s_bdev &&
1838 (fs_info->sb->s_bdev == device->bdev))
1839 fs_info->sb->s_bdev = next_device->bdev;
1841 if (fs_info->fs_devices->latest_bdev == device->bdev)
1842 fs_info->fs_devices->latest_bdev = next_device->bdev;
1845 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1848 struct btrfs_device *device;
1849 struct btrfs_fs_devices *cur_devices;
1853 mutex_lock(&uuid_mutex);
1855 num_devices = fs_info->fs_devices->num_devices;
1856 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1857 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1858 WARN_ON(num_devices < 1);
1861 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1863 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1867 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1872 if (device->is_tgtdev_for_dev_replace) {
1873 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1877 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1878 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1882 if (device->writeable) {
1883 mutex_lock(&fs_info->chunk_mutex);
1884 list_del_init(&device->dev_alloc_list);
1885 device->fs_devices->rw_devices--;
1886 mutex_unlock(&fs_info->chunk_mutex);
1889 mutex_unlock(&uuid_mutex);
1890 ret = btrfs_shrink_device(device, 0);
1891 mutex_lock(&uuid_mutex);
1896 * TODO: the superblock still includes this device in its num_devices
1897 * counter although write_all_supers() is not locked out. This
1898 * could give a filesystem state which requires a degraded mount.
1900 ret = btrfs_rm_dev_item(fs_info, device);
1904 device->in_fs_metadata = 0;
1905 btrfs_scrub_cancel_dev(fs_info, device);
1908 * the device list mutex makes sure that we don't change
1909 * the device list while someone else is writing out all
1910 * the device supers. Whoever is writing all supers, should
1911 * lock the device list mutex before getting the number of
1912 * devices in the super block (super_copy). Conversely,
1913 * whoever updates the number of devices in the super block
1914 * (super_copy) should hold the device list mutex.
1917 cur_devices = device->fs_devices;
1918 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1919 list_del_rcu(&device->dev_list);
1921 device->fs_devices->num_devices--;
1922 device->fs_devices->total_devices--;
1924 if (device->missing)
1925 device->fs_devices->missing_devices--;
1927 btrfs_assign_next_active_device(fs_info, device, NULL);
1930 device->fs_devices->open_devices--;
1931 /* remove sysfs entry */
1932 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1935 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1936 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1937 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1940 * at this point, the device is zero sized and detached from
1941 * the devices list. All that's left is to zero out the old
1942 * supers and free the device.
1944 if (device->writeable)
1945 btrfs_scratch_superblocks(device->bdev, device->name->str);
1947 btrfs_close_bdev(device);
1948 call_rcu(&device->rcu, free_device);
1950 if (cur_devices->open_devices == 0) {
1951 struct btrfs_fs_devices *fs_devices;
1952 fs_devices = fs_info->fs_devices;
1953 while (fs_devices) {
1954 if (fs_devices->seed == cur_devices) {
1955 fs_devices->seed = cur_devices->seed;
1958 fs_devices = fs_devices->seed;
1960 cur_devices->seed = NULL;
1961 __btrfs_close_devices(cur_devices);
1962 free_fs_devices(cur_devices);
1966 mutex_unlock(&uuid_mutex);
1970 if (device->writeable) {
1971 mutex_lock(&fs_info->chunk_mutex);
1972 list_add(&device->dev_alloc_list,
1973 &fs_info->fs_devices->alloc_list);
1974 device->fs_devices->rw_devices++;
1975 mutex_unlock(&fs_info->chunk_mutex);
1980 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1981 struct btrfs_device *srcdev)
1983 struct btrfs_fs_devices *fs_devices;
1985 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1988 * in case of fs with no seed, srcdev->fs_devices will point
1989 * to fs_devices of fs_info. However when the dev being replaced is
1990 * a seed dev it will point to the seed's local fs_devices. In short
1991 * srcdev will have its correct fs_devices in both the cases.
1993 fs_devices = srcdev->fs_devices;
1995 list_del_rcu(&srcdev->dev_list);
1996 list_del_rcu(&srcdev->dev_alloc_list);
1997 fs_devices->num_devices--;
1998 if (srcdev->missing)
1999 fs_devices->missing_devices--;
2001 if (srcdev->writeable)
2002 fs_devices->rw_devices--;
2005 fs_devices->open_devices--;
2008 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2009 struct btrfs_device *srcdev)
2011 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2013 if (srcdev->writeable) {
2014 /* zero out the old super if it is writable */
2015 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2018 btrfs_close_bdev(srcdev);
2019 call_rcu(&srcdev->rcu, free_device);
2021 /* if this is no devs we rather delete the fs_devices */
2022 if (!fs_devices->num_devices) {
2023 struct btrfs_fs_devices *tmp_fs_devices;
2026 * On a mounted FS, num_devices can't be zero unless it's a
2027 * seed. In case of a seed device being replaced, the replace
2028 * target added to the sprout FS, so there will be no more
2029 * device left under the seed FS.
2031 ASSERT(fs_devices->seeding);
2033 tmp_fs_devices = fs_info->fs_devices;
2034 while (tmp_fs_devices) {
2035 if (tmp_fs_devices->seed == fs_devices) {
2036 tmp_fs_devices->seed = fs_devices->seed;
2039 tmp_fs_devices = tmp_fs_devices->seed;
2041 fs_devices->seed = NULL;
2042 __btrfs_close_devices(fs_devices);
2043 free_fs_devices(fs_devices);
2047 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2048 struct btrfs_device *tgtdev)
2050 mutex_lock(&uuid_mutex);
2052 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2054 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2057 fs_info->fs_devices->open_devices--;
2059 fs_info->fs_devices->num_devices--;
2061 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2063 list_del_rcu(&tgtdev->dev_list);
2065 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2066 mutex_unlock(&uuid_mutex);
2069 * The update_dev_time() with in btrfs_scratch_superblocks()
2070 * may lead to a call to btrfs_show_devname() which will try
2071 * to hold device_list_mutex. And here this device
2072 * is already out of device list, so we don't have to hold
2073 * the device_list_mutex lock.
2075 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2077 btrfs_close_bdev(tgtdev);
2078 call_rcu(&tgtdev->rcu, free_device);
2081 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2082 const char *device_path,
2083 struct btrfs_device **device)
2086 struct btrfs_super_block *disk_super;
2089 struct block_device *bdev;
2090 struct buffer_head *bh;
2093 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2094 fs_info->bdev_holder, 0, &bdev, &bh);
2097 disk_super = (struct btrfs_super_block *)bh->b_data;
2098 devid = btrfs_stack_device_id(&disk_super->dev_item);
2099 dev_uuid = disk_super->dev_item.uuid;
2100 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2104 blkdev_put(bdev, FMODE_READ);
2108 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2109 const char *device_path,
2110 struct btrfs_device **device)
2113 if (strcmp(device_path, "missing") == 0) {
2114 struct list_head *devices;
2115 struct btrfs_device *tmp;
2117 devices = &fs_info->fs_devices->devices;
2119 * It is safe to read the devices since the volume_mutex
2120 * is held by the caller.
2122 list_for_each_entry(tmp, devices, dev_list) {
2123 if (tmp->in_fs_metadata && !tmp->bdev) {
2130 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2134 return btrfs_find_device_by_path(fs_info, device_path, device);
2139 * Lookup a device given by device id, or the path if the id is 0.
2141 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2142 const char *devpath,
2143 struct btrfs_device **device)
2149 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2153 if (!devpath || !devpath[0])
2156 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2163 * does all the dirty work required for changing file system's UUID.
2165 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2167 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2168 struct btrfs_fs_devices *old_devices;
2169 struct btrfs_fs_devices *seed_devices;
2170 struct btrfs_super_block *disk_super = fs_info->super_copy;
2171 struct btrfs_device *device;
2174 BUG_ON(!mutex_is_locked(&uuid_mutex));
2175 if (!fs_devices->seeding)
2178 seed_devices = alloc_fs_devices(NULL);
2179 if (IS_ERR(seed_devices))
2180 return PTR_ERR(seed_devices);
2182 old_devices = clone_fs_devices(fs_devices);
2183 if (IS_ERR(old_devices)) {
2184 kfree(seed_devices);
2185 return PTR_ERR(old_devices);
2188 list_add(&old_devices->list, &fs_uuids);
2190 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2191 seed_devices->opened = 1;
2192 INIT_LIST_HEAD(&seed_devices->devices);
2193 INIT_LIST_HEAD(&seed_devices->alloc_list);
2194 mutex_init(&seed_devices->device_list_mutex);
2196 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2197 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2199 list_for_each_entry(device, &seed_devices->devices, dev_list)
2200 device->fs_devices = seed_devices;
2202 mutex_lock(&fs_info->chunk_mutex);
2203 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2204 mutex_unlock(&fs_info->chunk_mutex);
2206 fs_devices->seeding = 0;
2207 fs_devices->num_devices = 0;
2208 fs_devices->open_devices = 0;
2209 fs_devices->missing_devices = 0;
2210 fs_devices->rotating = 0;
2211 fs_devices->seed = seed_devices;
2213 generate_random_uuid(fs_devices->fsid);
2214 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2215 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2216 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2218 super_flags = btrfs_super_flags(disk_super) &
2219 ~BTRFS_SUPER_FLAG_SEEDING;
2220 btrfs_set_super_flags(disk_super, super_flags);
2226 * Store the expected generation for seed devices in device items.
2228 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2229 struct btrfs_fs_info *fs_info)
2231 struct btrfs_root *root = fs_info->chunk_root;
2232 struct btrfs_path *path;
2233 struct extent_buffer *leaf;
2234 struct btrfs_dev_item *dev_item;
2235 struct btrfs_device *device;
2236 struct btrfs_key key;
2237 u8 fs_uuid[BTRFS_FSID_SIZE];
2238 u8 dev_uuid[BTRFS_UUID_SIZE];
2242 path = btrfs_alloc_path();
2246 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2248 key.type = BTRFS_DEV_ITEM_KEY;
2251 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2255 leaf = path->nodes[0];
2257 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2258 ret = btrfs_next_leaf(root, path);
2263 leaf = path->nodes[0];
2264 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2265 btrfs_release_path(path);
2269 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2270 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2271 key.type != BTRFS_DEV_ITEM_KEY)
2274 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2275 struct btrfs_dev_item);
2276 devid = btrfs_device_id(leaf, dev_item);
2277 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2279 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2281 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2282 BUG_ON(!device); /* Logic error */
2284 if (device->fs_devices->seeding) {
2285 btrfs_set_device_generation(leaf, dev_item,
2286 device->generation);
2287 btrfs_mark_buffer_dirty(leaf);
2295 btrfs_free_path(path);
2299 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2301 struct btrfs_root *root = fs_info->dev_root;
2302 struct request_queue *q;
2303 struct btrfs_trans_handle *trans;
2304 struct btrfs_device *device;
2305 struct block_device *bdev;
2306 struct list_head *devices;
2307 struct super_block *sb = fs_info->sb;
2308 struct rcu_string *name;
2310 int seeding_dev = 0;
2312 bool unlocked = false;
2314 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2317 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2318 fs_info->bdev_holder);
2320 return PTR_ERR(bdev);
2322 if (fs_info->fs_devices->seeding) {
2324 down_write(&sb->s_umount);
2325 mutex_lock(&uuid_mutex);
2328 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2330 devices = &fs_info->fs_devices->devices;
2332 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2333 list_for_each_entry(device, devices, dev_list) {
2334 if (device->bdev == bdev) {
2337 &fs_info->fs_devices->device_list_mutex);
2341 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2343 device = btrfs_alloc_device(fs_info, NULL, NULL);
2344 if (IS_ERR(device)) {
2345 /* we can safely leave the fs_devices entry around */
2346 ret = PTR_ERR(device);
2350 name = rcu_string_strdup(device_path, GFP_KERNEL);
2356 rcu_assign_pointer(device->name, name);
2358 trans = btrfs_start_transaction(root, 0);
2359 if (IS_ERR(trans)) {
2360 rcu_string_free(device->name);
2362 ret = PTR_ERR(trans);
2366 q = bdev_get_queue(bdev);
2367 if (blk_queue_discard(q))
2368 device->can_discard = 1;
2369 device->writeable = 1;
2370 device->generation = trans->transid;
2371 device->io_width = fs_info->sectorsize;
2372 device->io_align = fs_info->sectorsize;
2373 device->sector_size = fs_info->sectorsize;
2374 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2375 fs_info->sectorsize);
2376 device->disk_total_bytes = device->total_bytes;
2377 device->commit_total_bytes = device->total_bytes;
2378 device->fs_info = fs_info;
2379 device->bdev = bdev;
2380 device->in_fs_metadata = 1;
2381 device->is_tgtdev_for_dev_replace = 0;
2382 device->mode = FMODE_EXCL;
2383 device->dev_stats_valid = 1;
2384 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2387 sb->s_flags &= ~MS_RDONLY;
2388 ret = btrfs_prepare_sprout(fs_info);
2390 btrfs_abort_transaction(trans, ret);
2395 device->fs_devices = fs_info->fs_devices;
2397 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2398 mutex_lock(&fs_info->chunk_mutex);
2399 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2400 list_add(&device->dev_alloc_list,
2401 &fs_info->fs_devices->alloc_list);
2402 fs_info->fs_devices->num_devices++;
2403 fs_info->fs_devices->open_devices++;
2404 fs_info->fs_devices->rw_devices++;
2405 fs_info->fs_devices->total_devices++;
2406 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2408 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2410 if (!blk_queue_nonrot(q))
2411 fs_info->fs_devices->rotating = 1;
2413 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2414 btrfs_set_super_total_bytes(fs_info->super_copy,
2415 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2417 tmp = btrfs_super_num_devices(fs_info->super_copy);
2418 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2420 /* add sysfs device entry */
2421 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2424 * we've got more storage, clear any full flags on the space
2427 btrfs_clear_space_info_full(fs_info);
2429 mutex_unlock(&fs_info->chunk_mutex);
2430 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2433 mutex_lock(&fs_info->chunk_mutex);
2434 ret = init_first_rw_device(trans, fs_info);
2435 mutex_unlock(&fs_info->chunk_mutex);
2437 btrfs_abort_transaction(trans, ret);
2442 ret = btrfs_add_device(trans, fs_info, device);
2444 btrfs_abort_transaction(trans, ret);
2449 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2451 ret = btrfs_finish_sprout(trans, fs_info);
2453 btrfs_abort_transaction(trans, ret);
2457 /* Sprouting would change fsid of the mounted root,
2458 * so rename the fsid on the sysfs
2460 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2462 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2464 "sysfs: failed to create fsid for sprout");
2467 ret = btrfs_commit_transaction(trans);
2470 mutex_unlock(&uuid_mutex);
2471 up_write(&sb->s_umount);
2474 if (ret) /* transaction commit */
2477 ret = btrfs_relocate_sys_chunks(fs_info);
2479 btrfs_handle_fs_error(fs_info, ret,
2480 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2481 trans = btrfs_attach_transaction(root);
2482 if (IS_ERR(trans)) {
2483 if (PTR_ERR(trans) == -ENOENT)
2485 ret = PTR_ERR(trans);
2489 ret = btrfs_commit_transaction(trans);
2492 /* Update ctime/mtime for libblkid */
2493 update_dev_time(device_path);
2497 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2500 sb->s_flags |= MS_RDONLY;
2502 btrfs_end_transaction(trans);
2503 rcu_string_free(device->name);
2506 blkdev_put(bdev, FMODE_EXCL);
2507 if (seeding_dev && !unlocked) {
2508 mutex_unlock(&uuid_mutex);
2509 up_write(&sb->s_umount);
2514 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2515 const char *device_path,
2516 struct btrfs_device *srcdev,
2517 struct btrfs_device **device_out)
2519 struct request_queue *q;
2520 struct btrfs_device *device;
2521 struct block_device *bdev;
2522 struct list_head *devices;
2523 struct rcu_string *name;
2524 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2528 if (fs_info->fs_devices->seeding) {
2529 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2533 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2534 fs_info->bdev_holder);
2536 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2537 return PTR_ERR(bdev);
2540 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2542 devices = &fs_info->fs_devices->devices;
2543 list_for_each_entry(device, devices, dev_list) {
2544 if (device->bdev == bdev) {
2546 "target device is in the filesystem!");
2553 if (i_size_read(bdev->bd_inode) <
2554 btrfs_device_get_total_bytes(srcdev)) {
2556 "target device is smaller than source device!");
2562 device = btrfs_alloc_device(NULL, &devid, NULL);
2563 if (IS_ERR(device)) {
2564 ret = PTR_ERR(device);
2568 name = rcu_string_strdup(device_path, GFP_KERNEL);
2574 rcu_assign_pointer(device->name, name);
2576 q = bdev_get_queue(bdev);
2577 if (blk_queue_discard(q))
2578 device->can_discard = 1;
2579 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2580 device->writeable = 1;
2581 device->generation = 0;
2582 device->io_width = fs_info->sectorsize;
2583 device->io_align = fs_info->sectorsize;
2584 device->sector_size = fs_info->sectorsize;
2585 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2586 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2587 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2588 ASSERT(list_empty(&srcdev->resized_list));
2589 device->commit_total_bytes = srcdev->commit_total_bytes;
2590 device->commit_bytes_used = device->bytes_used;
2591 device->fs_info = fs_info;
2592 device->bdev = bdev;
2593 device->in_fs_metadata = 1;
2594 device->is_tgtdev_for_dev_replace = 1;
2595 device->mode = FMODE_EXCL;
2596 device->dev_stats_valid = 1;
2597 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2598 device->fs_devices = fs_info->fs_devices;
2599 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2600 fs_info->fs_devices->num_devices++;
2601 fs_info->fs_devices->open_devices++;
2602 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2604 *device_out = device;
2608 blkdev_put(bdev, FMODE_EXCL);
2612 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2613 struct btrfs_device *tgtdev)
2615 u32 sectorsize = fs_info->sectorsize;
2617 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2618 tgtdev->io_width = sectorsize;
2619 tgtdev->io_align = sectorsize;
2620 tgtdev->sector_size = sectorsize;
2621 tgtdev->fs_info = fs_info;
2622 tgtdev->in_fs_metadata = 1;
2625 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2626 struct btrfs_device *device)
2629 struct btrfs_path *path;
2630 struct btrfs_root *root = device->fs_info->chunk_root;
2631 struct btrfs_dev_item *dev_item;
2632 struct extent_buffer *leaf;
2633 struct btrfs_key key;
2635 path = btrfs_alloc_path();
2639 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2640 key.type = BTRFS_DEV_ITEM_KEY;
2641 key.offset = device->devid;
2643 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2652 leaf = path->nodes[0];
2653 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2655 btrfs_set_device_id(leaf, dev_item, device->devid);
2656 btrfs_set_device_type(leaf, dev_item, device->type);
2657 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2658 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2659 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2660 btrfs_set_device_total_bytes(leaf, dev_item,
2661 btrfs_device_get_disk_total_bytes(device));
2662 btrfs_set_device_bytes_used(leaf, dev_item,
2663 btrfs_device_get_bytes_used(device));
2664 btrfs_mark_buffer_dirty(leaf);
2667 btrfs_free_path(path);
2671 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2672 struct btrfs_device *device, u64 new_size)
2674 struct btrfs_fs_info *fs_info = device->fs_info;
2675 struct btrfs_super_block *super_copy = fs_info->super_copy;
2676 struct btrfs_fs_devices *fs_devices;
2680 if (!device->writeable)
2683 new_size = round_down(new_size, fs_info->sectorsize);
2685 mutex_lock(&fs_info->chunk_mutex);
2686 old_total = btrfs_super_total_bytes(super_copy);
2687 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2689 if (new_size <= device->total_bytes ||
2690 device->is_tgtdev_for_dev_replace) {
2691 mutex_unlock(&fs_info->chunk_mutex);
2695 fs_devices = fs_info->fs_devices;
2697 btrfs_set_super_total_bytes(super_copy,
2698 round_down(old_total + diff, fs_info->sectorsize));
2699 device->fs_devices->total_rw_bytes += diff;
2701 btrfs_device_set_total_bytes(device, new_size);
2702 btrfs_device_set_disk_total_bytes(device, new_size);
2703 btrfs_clear_space_info_full(device->fs_info);
2704 if (list_empty(&device->resized_list))
2705 list_add_tail(&device->resized_list,
2706 &fs_devices->resized_devices);
2707 mutex_unlock(&fs_info->chunk_mutex);
2709 return btrfs_update_device(trans, device);
2712 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2713 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2715 struct btrfs_root *root = fs_info->chunk_root;
2717 struct btrfs_path *path;
2718 struct btrfs_key key;
2720 path = btrfs_alloc_path();
2724 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2725 key.offset = chunk_offset;
2726 key.type = BTRFS_CHUNK_ITEM_KEY;
2728 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2731 else if (ret > 0) { /* Logic error or corruption */
2732 btrfs_handle_fs_error(fs_info, -ENOENT,
2733 "Failed lookup while freeing chunk.");
2738 ret = btrfs_del_item(trans, root, path);
2740 btrfs_handle_fs_error(fs_info, ret,
2741 "Failed to delete chunk item.");
2743 btrfs_free_path(path);
2747 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2749 struct btrfs_super_block *super_copy = fs_info->super_copy;
2750 struct btrfs_disk_key *disk_key;
2751 struct btrfs_chunk *chunk;
2758 struct btrfs_key key;
2760 mutex_lock(&fs_info->chunk_mutex);
2761 array_size = btrfs_super_sys_array_size(super_copy);
2763 ptr = super_copy->sys_chunk_array;
2766 while (cur < array_size) {
2767 disk_key = (struct btrfs_disk_key *)ptr;
2768 btrfs_disk_key_to_cpu(&key, disk_key);
2770 len = sizeof(*disk_key);
2772 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2773 chunk = (struct btrfs_chunk *)(ptr + len);
2774 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2775 len += btrfs_chunk_item_size(num_stripes);
2780 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2781 key.offset == chunk_offset) {
2782 memmove(ptr, ptr + len, array_size - (cur + len));
2784 btrfs_set_super_sys_array_size(super_copy, array_size);
2790 mutex_unlock(&fs_info->chunk_mutex);
2794 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2795 u64 logical, u64 length)
2797 struct extent_map_tree *em_tree;
2798 struct extent_map *em;
2800 em_tree = &fs_info->mapping_tree.map_tree;
2801 read_lock(&em_tree->lock);
2802 em = lookup_extent_mapping(em_tree, logical, length);
2803 read_unlock(&em_tree->lock);
2806 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2808 return ERR_PTR(-EINVAL);
2811 if (em->start > logical || em->start + em->len < logical) {
2813 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2814 logical, length, em->start, em->start + em->len);
2815 free_extent_map(em);
2816 return ERR_PTR(-EINVAL);
2819 /* callers are responsible for dropping em's ref. */
2823 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2824 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2826 struct extent_map *em;
2827 struct map_lookup *map;
2828 u64 dev_extent_len = 0;
2830 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2832 em = get_chunk_map(fs_info, chunk_offset, 1);
2835 * This is a logic error, but we don't want to just rely on the
2836 * user having built with ASSERT enabled, so if ASSERT doesn't
2837 * do anything we still error out.
2842 map = em->map_lookup;
2843 mutex_lock(&fs_info->chunk_mutex);
2844 check_system_chunk(trans, fs_info, map->type);
2845 mutex_unlock(&fs_info->chunk_mutex);
2848 * Take the device list mutex to prevent races with the final phase of
2849 * a device replace operation that replaces the device object associated
2850 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2852 mutex_lock(&fs_devices->device_list_mutex);
2853 for (i = 0; i < map->num_stripes; i++) {
2854 struct btrfs_device *device = map->stripes[i].dev;
2855 ret = btrfs_free_dev_extent(trans, device,
2856 map->stripes[i].physical,
2859 mutex_unlock(&fs_devices->device_list_mutex);
2860 btrfs_abort_transaction(trans, ret);
2864 if (device->bytes_used > 0) {
2865 mutex_lock(&fs_info->chunk_mutex);
2866 btrfs_device_set_bytes_used(device,
2867 device->bytes_used - dev_extent_len);
2868 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2869 btrfs_clear_space_info_full(fs_info);
2870 mutex_unlock(&fs_info->chunk_mutex);
2873 if (map->stripes[i].dev) {
2874 ret = btrfs_update_device(trans, map->stripes[i].dev);
2876 mutex_unlock(&fs_devices->device_list_mutex);
2877 btrfs_abort_transaction(trans, ret);
2882 mutex_unlock(&fs_devices->device_list_mutex);
2884 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2886 btrfs_abort_transaction(trans, ret);
2890 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2892 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2893 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2895 btrfs_abort_transaction(trans, ret);
2900 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2902 btrfs_abort_transaction(trans, ret);
2908 free_extent_map(em);
2912 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2914 struct btrfs_root *root = fs_info->chunk_root;
2915 struct btrfs_trans_handle *trans;
2919 * Prevent races with automatic removal of unused block groups.
2920 * After we relocate and before we remove the chunk with offset
2921 * chunk_offset, automatic removal of the block group can kick in,
2922 * resulting in a failure when calling btrfs_remove_chunk() below.
2924 * Make sure to acquire this mutex before doing a tree search (dev
2925 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2926 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2927 * we release the path used to search the chunk/dev tree and before
2928 * the current task acquires this mutex and calls us.
2930 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2932 ret = btrfs_can_relocate(fs_info, chunk_offset);
2936 /* step one, relocate all the extents inside this chunk */
2937 btrfs_scrub_pause(fs_info);
2938 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2939 btrfs_scrub_continue(fs_info);
2943 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2945 if (IS_ERR(trans)) {
2946 ret = PTR_ERR(trans);
2947 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2952 * step two, delete the device extents and the
2953 * chunk tree entries
2955 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2956 btrfs_end_transaction(trans);
2960 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2962 struct btrfs_root *chunk_root = fs_info->chunk_root;
2963 struct btrfs_path *path;
2964 struct extent_buffer *leaf;
2965 struct btrfs_chunk *chunk;
2966 struct btrfs_key key;
2967 struct btrfs_key found_key;
2969 bool retried = false;
2973 path = btrfs_alloc_path();
2978 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2979 key.offset = (u64)-1;
2980 key.type = BTRFS_CHUNK_ITEM_KEY;
2983 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2984 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2986 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2989 BUG_ON(ret == 0); /* Corruption */
2991 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2994 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3000 leaf = path->nodes[0];
3001 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3003 chunk = btrfs_item_ptr(leaf, path->slots[0],
3004 struct btrfs_chunk);
3005 chunk_type = btrfs_chunk_type(leaf, chunk);
3006 btrfs_release_path(path);
3008 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3009 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3015 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3017 if (found_key.offset == 0)
3019 key.offset = found_key.offset - 1;
3022 if (failed && !retried) {
3026 } else if (WARN_ON(failed && retried)) {
3030 btrfs_free_path(path);
3034 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3035 struct btrfs_balance_control *bctl)
3037 struct btrfs_root *root = fs_info->tree_root;
3038 struct btrfs_trans_handle *trans;
3039 struct btrfs_balance_item *item;
3040 struct btrfs_disk_balance_args disk_bargs;
3041 struct btrfs_path *path;
3042 struct extent_buffer *leaf;
3043 struct btrfs_key key;
3046 path = btrfs_alloc_path();
3050 trans = btrfs_start_transaction(root, 0);
3051 if (IS_ERR(trans)) {
3052 btrfs_free_path(path);
3053 return PTR_ERR(trans);
3056 key.objectid = BTRFS_BALANCE_OBJECTID;
3057 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3060 ret = btrfs_insert_empty_item(trans, root, path, &key,
3065 leaf = path->nodes[0];
3066 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3068 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3070 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3071 btrfs_set_balance_data(leaf, item, &disk_bargs);
3072 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3073 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3074 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3075 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3077 btrfs_set_balance_flags(leaf, item, bctl->flags);
3079 btrfs_mark_buffer_dirty(leaf);
3081 btrfs_free_path(path);
3082 err = btrfs_commit_transaction(trans);
3088 static int del_balance_item(struct btrfs_fs_info *fs_info)
3090 struct btrfs_root *root = fs_info->tree_root;
3091 struct btrfs_trans_handle *trans;
3092 struct btrfs_path *path;
3093 struct btrfs_key key;
3096 path = btrfs_alloc_path();
3100 trans = btrfs_start_transaction(root, 0);
3101 if (IS_ERR(trans)) {
3102 btrfs_free_path(path);
3103 return PTR_ERR(trans);
3106 key.objectid = BTRFS_BALANCE_OBJECTID;
3107 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3118 ret = btrfs_del_item(trans, root, path);
3120 btrfs_free_path(path);
3121 err = btrfs_commit_transaction(trans);
3128 * This is a heuristic used to reduce the number of chunks balanced on
3129 * resume after balance was interrupted.
3131 static void update_balance_args(struct btrfs_balance_control *bctl)
3134 * Turn on soft mode for chunk types that were being converted.
3136 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3139 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3140 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3141 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3144 * Turn on usage filter if is not already used. The idea is
3145 * that chunks that we have already balanced should be
3146 * reasonably full. Don't do it for chunks that are being
3147 * converted - that will keep us from relocating unconverted
3148 * (albeit full) chunks.
3150 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3151 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3152 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3153 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3154 bctl->data.usage = 90;
3156 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3157 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3158 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3159 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3160 bctl->sys.usage = 90;
3162 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3163 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3164 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3165 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3166 bctl->meta.usage = 90;
3171 * Should be called with both balance and volume mutexes held to
3172 * serialize other volume operations (add_dev/rm_dev/resize) with
3173 * restriper. Same goes for unset_balance_control.
3175 static void set_balance_control(struct btrfs_balance_control *bctl)
3177 struct btrfs_fs_info *fs_info = bctl->fs_info;
3179 BUG_ON(fs_info->balance_ctl);
3181 spin_lock(&fs_info->balance_lock);
3182 fs_info->balance_ctl = bctl;
3183 spin_unlock(&fs_info->balance_lock);
3186 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3188 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3190 BUG_ON(!fs_info->balance_ctl);
3192 spin_lock(&fs_info->balance_lock);
3193 fs_info->balance_ctl = NULL;
3194 spin_unlock(&fs_info->balance_lock);
3200 * Balance filters. Return 1 if chunk should be filtered out
3201 * (should not be balanced).
3203 static int chunk_profiles_filter(u64 chunk_type,
3204 struct btrfs_balance_args *bargs)
3206 chunk_type = chunk_to_extended(chunk_type) &
3207 BTRFS_EXTENDED_PROFILE_MASK;
3209 if (bargs->profiles & chunk_type)
3215 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3216 struct btrfs_balance_args *bargs)
3218 struct btrfs_block_group_cache *cache;
3220 u64 user_thresh_min;
3221 u64 user_thresh_max;
3224 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3225 chunk_used = btrfs_block_group_used(&cache->item);
3227 if (bargs->usage_min == 0)
3228 user_thresh_min = 0;
3230 user_thresh_min = div_factor_fine(cache->key.offset,
3233 if (bargs->usage_max == 0)
3234 user_thresh_max = 1;
3235 else if (bargs->usage_max > 100)
3236 user_thresh_max = cache->key.offset;
3238 user_thresh_max = div_factor_fine(cache->key.offset,
3241 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3244 btrfs_put_block_group(cache);
3248 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3249 u64 chunk_offset, struct btrfs_balance_args *bargs)
3251 struct btrfs_block_group_cache *cache;
3252 u64 chunk_used, user_thresh;
3255 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3256 chunk_used = btrfs_block_group_used(&cache->item);
3258 if (bargs->usage_min == 0)
3260 else if (bargs->usage > 100)
3261 user_thresh = cache->key.offset;
3263 user_thresh = div_factor_fine(cache->key.offset,
3266 if (chunk_used < user_thresh)
3269 btrfs_put_block_group(cache);
3273 static int chunk_devid_filter(struct extent_buffer *leaf,
3274 struct btrfs_chunk *chunk,
3275 struct btrfs_balance_args *bargs)
3277 struct btrfs_stripe *stripe;
3278 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3281 for (i = 0; i < num_stripes; i++) {
3282 stripe = btrfs_stripe_nr(chunk, i);
3283 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3290 /* [pstart, pend) */
3291 static int chunk_drange_filter(struct extent_buffer *leaf,
3292 struct btrfs_chunk *chunk,
3293 struct btrfs_balance_args *bargs)
3295 struct btrfs_stripe *stripe;
3296 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3302 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3305 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3306 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3307 factor = num_stripes / 2;
3308 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3309 factor = num_stripes - 1;
3310 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3311 factor = num_stripes - 2;
3313 factor = num_stripes;
3316 for (i = 0; i < num_stripes; i++) {
3317 stripe = btrfs_stripe_nr(chunk, i);
3318 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3321 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3322 stripe_length = btrfs_chunk_length(leaf, chunk);
3323 stripe_length = div_u64(stripe_length, factor);
3325 if (stripe_offset < bargs->pend &&
3326 stripe_offset + stripe_length > bargs->pstart)
3333 /* [vstart, vend) */
3334 static int chunk_vrange_filter(struct extent_buffer *leaf,
3335 struct btrfs_chunk *chunk,
3337 struct btrfs_balance_args *bargs)
3339 if (chunk_offset < bargs->vend &&
3340 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3341 /* at least part of the chunk is inside this vrange */
3347 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3348 struct btrfs_chunk *chunk,
3349 struct btrfs_balance_args *bargs)
3351 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3353 if (bargs->stripes_min <= num_stripes
3354 && num_stripes <= bargs->stripes_max)
3360 static int chunk_soft_convert_filter(u64 chunk_type,
3361 struct btrfs_balance_args *bargs)
3363 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3366 chunk_type = chunk_to_extended(chunk_type) &
3367 BTRFS_EXTENDED_PROFILE_MASK;
3369 if (bargs->target == chunk_type)
3375 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3376 struct extent_buffer *leaf,
3377 struct btrfs_chunk *chunk, u64 chunk_offset)
3379 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3380 struct btrfs_balance_args *bargs = NULL;
3381 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3384 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3385 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3389 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3390 bargs = &bctl->data;
3391 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3393 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3394 bargs = &bctl->meta;
3396 /* profiles filter */
3397 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3398 chunk_profiles_filter(chunk_type, bargs)) {
3403 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3404 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3406 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3407 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3412 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3413 chunk_devid_filter(leaf, chunk, bargs)) {
3417 /* drange filter, makes sense only with devid filter */
3418 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3419 chunk_drange_filter(leaf, chunk, bargs)) {
3424 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3425 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3429 /* stripes filter */
3430 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3431 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3435 /* soft profile changing mode */
3436 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3437 chunk_soft_convert_filter(chunk_type, bargs)) {
3442 * limited by count, must be the last filter
3444 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3445 if (bargs->limit == 0)
3449 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3451 * Same logic as the 'limit' filter; the minimum cannot be
3452 * determined here because we do not have the global information
3453 * about the count of all chunks that satisfy the filters.
3455 if (bargs->limit_max == 0)
3464 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3466 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3467 struct btrfs_root *chunk_root = fs_info->chunk_root;
3468 struct btrfs_root *dev_root = fs_info->dev_root;
3469 struct list_head *devices;
3470 struct btrfs_device *device;
3474 struct btrfs_chunk *chunk;
3475 struct btrfs_path *path = NULL;
3476 struct btrfs_key key;
3477 struct btrfs_key found_key;
3478 struct btrfs_trans_handle *trans;
3479 struct extent_buffer *leaf;
3482 int enospc_errors = 0;
3483 bool counting = true;
3484 /* The single value limit and min/max limits use the same bytes in the */
3485 u64 limit_data = bctl->data.limit;
3486 u64 limit_meta = bctl->meta.limit;
3487 u64 limit_sys = bctl->sys.limit;
3491 int chunk_reserved = 0;
3494 /* step one make some room on all the devices */
3495 devices = &fs_info->fs_devices->devices;
3496 list_for_each_entry(device, devices, dev_list) {
3497 old_size = btrfs_device_get_total_bytes(device);
3498 size_to_free = div_factor(old_size, 1);
3499 size_to_free = min_t(u64, size_to_free, SZ_1M);
3500 if (!device->writeable ||
3501 btrfs_device_get_total_bytes(device) -
3502 btrfs_device_get_bytes_used(device) > size_to_free ||
3503 device->is_tgtdev_for_dev_replace)
3506 ret = btrfs_shrink_device(device, old_size - size_to_free);
3510 /* btrfs_shrink_device never returns ret > 0 */
3515 trans = btrfs_start_transaction(dev_root, 0);
3516 if (IS_ERR(trans)) {
3517 ret = PTR_ERR(trans);
3518 btrfs_info_in_rcu(fs_info,
3519 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3520 rcu_str_deref(device->name), ret,
3521 old_size, old_size - size_to_free);
3525 ret = btrfs_grow_device(trans, device, old_size);
3527 btrfs_end_transaction(trans);
3528 /* btrfs_grow_device never returns ret > 0 */
3530 btrfs_info_in_rcu(fs_info,
3531 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3532 rcu_str_deref(device->name), ret,
3533 old_size, old_size - size_to_free);
3537 btrfs_end_transaction(trans);
3540 /* step two, relocate all the chunks */
3541 path = btrfs_alloc_path();
3547 /* zero out stat counters */
3548 spin_lock(&fs_info->balance_lock);
3549 memset(&bctl->stat, 0, sizeof(bctl->stat));
3550 spin_unlock(&fs_info->balance_lock);
3554 * The single value limit and min/max limits use the same bytes
3557 bctl->data.limit = limit_data;
3558 bctl->meta.limit = limit_meta;
3559 bctl->sys.limit = limit_sys;
3561 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3562 key.offset = (u64)-1;
3563 key.type = BTRFS_CHUNK_ITEM_KEY;
3566 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3567 atomic_read(&fs_info->balance_cancel_req)) {
3572 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3573 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3575 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3580 * this shouldn't happen, it means the last relocate
3584 BUG(); /* FIXME break ? */
3586 ret = btrfs_previous_item(chunk_root, path, 0,
3587 BTRFS_CHUNK_ITEM_KEY);
3589 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3594 leaf = path->nodes[0];
3595 slot = path->slots[0];
3596 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3598 if (found_key.objectid != key.objectid) {
3599 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3603 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3604 chunk_type = btrfs_chunk_type(leaf, chunk);
3607 spin_lock(&fs_info->balance_lock);
3608 bctl->stat.considered++;
3609 spin_unlock(&fs_info->balance_lock);
3612 ret = should_balance_chunk(fs_info, leaf, chunk,
3615 btrfs_release_path(path);
3617 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3622 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3623 spin_lock(&fs_info->balance_lock);
3624 bctl->stat.expected++;
3625 spin_unlock(&fs_info->balance_lock);
3627 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3629 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3631 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3638 * Apply limit_min filter, no need to check if the LIMITS
3639 * filter is used, limit_min is 0 by default
3641 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3642 count_data < bctl->data.limit_min)
3643 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3644 count_meta < bctl->meta.limit_min)
3645 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3646 count_sys < bctl->sys.limit_min)) {
3647 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3651 ASSERT(fs_info->data_sinfo);
3652 spin_lock(&fs_info->data_sinfo->lock);
3653 bytes_used = fs_info->data_sinfo->bytes_used;
3654 spin_unlock(&fs_info->data_sinfo->lock);
3656 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3657 !chunk_reserved && !bytes_used) {
3658 trans = btrfs_start_transaction(chunk_root, 0);
3659 if (IS_ERR(trans)) {
3660 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3661 ret = PTR_ERR(trans);
3665 ret = btrfs_force_chunk_alloc(trans, fs_info,
3666 BTRFS_BLOCK_GROUP_DATA);
3667 btrfs_end_transaction(trans);
3669 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3675 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3676 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3677 if (ret && ret != -ENOSPC)
3679 if (ret == -ENOSPC) {
3682 spin_lock(&fs_info->balance_lock);
3683 bctl->stat.completed++;
3684 spin_unlock(&fs_info->balance_lock);
3687 if (found_key.offset == 0)
3689 key.offset = found_key.offset - 1;
3693 btrfs_release_path(path);
3698 btrfs_free_path(path);
3699 if (enospc_errors) {
3700 btrfs_info(fs_info, "%d enospc errors during balance",
3710 * alloc_profile_is_valid - see if a given profile is valid and reduced
3711 * @flags: profile to validate
3712 * @extended: if true @flags is treated as an extended profile
3714 static int alloc_profile_is_valid(u64 flags, int extended)
3716 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3717 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3719 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3721 /* 1) check that all other bits are zeroed */
3725 /* 2) see if profile is reduced */
3727 return !extended; /* "0" is valid for usual profiles */
3729 /* true if exactly one bit set */
3730 return (flags & (flags - 1)) == 0;
3733 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3735 /* cancel requested || normal exit path */
3736 return atomic_read(&fs_info->balance_cancel_req) ||
3737 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3738 atomic_read(&fs_info->balance_cancel_req) == 0);
3741 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3745 unset_balance_control(fs_info);
3746 ret = del_balance_item(fs_info);
3748 btrfs_handle_fs_error(fs_info, ret, NULL);
3750 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3753 /* Non-zero return value signifies invalidity */
3754 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3757 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3758 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3759 (bctl_arg->target & ~allowed)));
3763 * Should be called with both balance and volume mutexes held
3765 int btrfs_balance(struct btrfs_balance_control *bctl,
3766 struct btrfs_ioctl_balance_args *bargs)
3768 struct btrfs_fs_info *fs_info = bctl->fs_info;
3769 u64 meta_target, data_target;
3776 if (btrfs_fs_closing(fs_info) ||
3777 atomic_read(&fs_info->balance_pause_req) ||
3778 atomic_read(&fs_info->balance_cancel_req)) {
3783 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3784 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3788 * In case of mixed groups both data and meta should be picked,
3789 * and identical options should be given for both of them.
3791 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3792 if (mixed && (bctl->flags & allowed)) {
3793 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3794 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3795 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3797 "with mixed groups data and metadata balance options must be the same");
3803 num_devices = fs_info->fs_devices->num_devices;
3804 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3805 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3806 BUG_ON(num_devices < 1);
3809 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3810 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3811 if (num_devices > 1)
3812 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3813 if (num_devices > 2)
3814 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3815 if (num_devices > 3)
3816 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3817 BTRFS_BLOCK_GROUP_RAID6);
3818 if (validate_convert_profile(&bctl->data, allowed)) {
3820 "unable to start balance with target data profile %llu",
3825 if (validate_convert_profile(&bctl->meta, allowed)) {
3827 "unable to start balance with target metadata profile %llu",
3832 if (validate_convert_profile(&bctl->sys, allowed)) {
3834 "unable to start balance with target system profile %llu",
3840 /* allow to reduce meta or sys integrity only if force set */
3841 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3842 BTRFS_BLOCK_GROUP_RAID10 |
3843 BTRFS_BLOCK_GROUP_RAID5 |
3844 BTRFS_BLOCK_GROUP_RAID6;
3846 seq = read_seqbegin(&fs_info->profiles_lock);
3848 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3849 (fs_info->avail_system_alloc_bits & allowed) &&
3850 !(bctl->sys.target & allowed)) ||
3851 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3852 (fs_info->avail_metadata_alloc_bits & allowed) &&
3853 !(bctl->meta.target & allowed))) {
3854 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3856 "force reducing metadata integrity");
3859 "balance will reduce metadata integrity, use force if you want this");
3864 } while (read_seqretry(&fs_info->profiles_lock, seq));
3866 /* if we're not converting, the target field is uninitialized */
3867 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3868 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3869 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3870 bctl->data.target : fs_info->avail_data_alloc_bits;
3871 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3872 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3874 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3875 meta_target, data_target);
3878 ret = insert_balance_item(fs_info, bctl);
3879 if (ret && ret != -EEXIST)
3882 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3883 BUG_ON(ret == -EEXIST);
3884 set_balance_control(bctl);
3886 BUG_ON(ret != -EEXIST);
3887 spin_lock(&fs_info->balance_lock);
3888 update_balance_args(bctl);
3889 spin_unlock(&fs_info->balance_lock);
3892 atomic_inc(&fs_info->balance_running);
3893 mutex_unlock(&fs_info->balance_mutex);
3895 ret = __btrfs_balance(fs_info);
3897 mutex_lock(&fs_info->balance_mutex);
3898 atomic_dec(&fs_info->balance_running);
3901 memset(bargs, 0, sizeof(*bargs));
3902 update_ioctl_balance_args(fs_info, 0, bargs);
3905 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3906 balance_need_close(fs_info)) {
3907 __cancel_balance(fs_info);
3910 wake_up(&fs_info->balance_wait_q);
3914 if (bctl->flags & BTRFS_BALANCE_RESUME)
3915 __cancel_balance(fs_info);
3918 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3923 static int balance_kthread(void *data)
3925 struct btrfs_fs_info *fs_info = data;
3928 mutex_lock(&fs_info->volume_mutex);
3929 mutex_lock(&fs_info->balance_mutex);
3931 if (fs_info->balance_ctl) {
3932 btrfs_info(fs_info, "continuing balance");
3933 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3936 mutex_unlock(&fs_info->balance_mutex);
3937 mutex_unlock(&fs_info->volume_mutex);
3942 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3944 struct task_struct *tsk;
3946 spin_lock(&fs_info->balance_lock);
3947 if (!fs_info->balance_ctl) {
3948 spin_unlock(&fs_info->balance_lock);
3951 spin_unlock(&fs_info->balance_lock);
3953 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3954 btrfs_info(fs_info, "force skipping balance");
3958 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3959 return PTR_ERR_OR_ZERO(tsk);
3962 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3964 struct btrfs_balance_control *bctl;
3965 struct btrfs_balance_item *item;
3966 struct btrfs_disk_balance_args disk_bargs;
3967 struct btrfs_path *path;
3968 struct extent_buffer *leaf;
3969 struct btrfs_key key;
3972 path = btrfs_alloc_path();
3976 key.objectid = BTRFS_BALANCE_OBJECTID;
3977 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3980 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3983 if (ret > 0) { /* ret = -ENOENT; */
3988 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3994 leaf = path->nodes[0];
3995 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3997 bctl->fs_info = fs_info;
3998 bctl->flags = btrfs_balance_flags(leaf, item);
3999 bctl->flags |= BTRFS_BALANCE_RESUME;
4001 btrfs_balance_data(leaf, item, &disk_bargs);
4002 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4003 btrfs_balance_meta(leaf, item, &disk_bargs);
4004 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4005 btrfs_balance_sys(leaf, item, &disk_bargs);
4006 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4008 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4010 mutex_lock(&fs_info->volume_mutex);
4011 mutex_lock(&fs_info->balance_mutex);
4013 set_balance_control(bctl);
4015 mutex_unlock(&fs_info->balance_mutex);
4016 mutex_unlock(&fs_info->volume_mutex);
4018 btrfs_free_path(path);
4022 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4026 mutex_lock(&fs_info->balance_mutex);
4027 if (!fs_info->balance_ctl) {
4028 mutex_unlock(&fs_info->balance_mutex);
4032 if (atomic_read(&fs_info->balance_running)) {
4033 atomic_inc(&fs_info->balance_pause_req);
4034 mutex_unlock(&fs_info->balance_mutex);
4036 wait_event(fs_info->balance_wait_q,
4037 atomic_read(&fs_info->balance_running) == 0);
4039 mutex_lock(&fs_info->balance_mutex);
4040 /* we are good with balance_ctl ripped off from under us */
4041 BUG_ON(atomic_read(&fs_info->balance_running));
4042 atomic_dec(&fs_info->balance_pause_req);
4047 mutex_unlock(&fs_info->balance_mutex);
4051 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4053 if (sb_rdonly(fs_info->sb))
4056 mutex_lock(&fs_info->balance_mutex);
4057 if (!fs_info->balance_ctl) {
4058 mutex_unlock(&fs_info->balance_mutex);
4062 atomic_inc(&fs_info->balance_cancel_req);
4064 * if we are running just wait and return, balance item is
4065 * deleted in btrfs_balance in this case
4067 if (atomic_read(&fs_info->balance_running)) {
4068 mutex_unlock(&fs_info->balance_mutex);
4069 wait_event(fs_info->balance_wait_q,
4070 atomic_read(&fs_info->balance_running) == 0);
4071 mutex_lock(&fs_info->balance_mutex);
4073 /* __cancel_balance needs volume_mutex */
4074 mutex_unlock(&fs_info->balance_mutex);
4075 mutex_lock(&fs_info->volume_mutex);
4076 mutex_lock(&fs_info->balance_mutex);
4078 if (fs_info->balance_ctl)
4079 __cancel_balance(fs_info);
4081 mutex_unlock(&fs_info->volume_mutex);
4084 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4085 atomic_dec(&fs_info->balance_cancel_req);
4086 mutex_unlock(&fs_info->balance_mutex);
4090 static int btrfs_uuid_scan_kthread(void *data)
4092 struct btrfs_fs_info *fs_info = data;
4093 struct btrfs_root *root = fs_info->tree_root;
4094 struct btrfs_key key;
4095 struct btrfs_path *path = NULL;
4097 struct extent_buffer *eb;
4099 struct btrfs_root_item root_item;
4101 struct btrfs_trans_handle *trans = NULL;
4103 path = btrfs_alloc_path();
4110 key.type = BTRFS_ROOT_ITEM_KEY;
4114 ret = btrfs_search_forward(root, &key, path, 0);
4121 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4122 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4123 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4124 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4127 eb = path->nodes[0];
4128 slot = path->slots[0];
4129 item_size = btrfs_item_size_nr(eb, slot);
4130 if (item_size < sizeof(root_item))
4133 read_extent_buffer(eb, &root_item,
4134 btrfs_item_ptr_offset(eb, slot),
4135 (int)sizeof(root_item));
4136 if (btrfs_root_refs(&root_item) == 0)
4139 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4140 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4144 btrfs_release_path(path);
4146 * 1 - subvol uuid item
4147 * 1 - received_subvol uuid item
4149 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4150 if (IS_ERR(trans)) {
4151 ret = PTR_ERR(trans);
4159 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4160 ret = btrfs_uuid_tree_add(trans, fs_info,
4162 BTRFS_UUID_KEY_SUBVOL,
4165 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4171 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4172 ret = btrfs_uuid_tree_add(trans, fs_info,
4173 root_item.received_uuid,
4174 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4177 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4185 ret = btrfs_end_transaction(trans);
4191 btrfs_release_path(path);
4192 if (key.offset < (u64)-1) {
4194 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4196 key.type = BTRFS_ROOT_ITEM_KEY;
4197 } else if (key.objectid < (u64)-1) {
4199 key.type = BTRFS_ROOT_ITEM_KEY;
4208 btrfs_free_path(path);
4209 if (trans && !IS_ERR(trans))
4210 btrfs_end_transaction(trans);
4212 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4214 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4215 up(&fs_info->uuid_tree_rescan_sem);
4220 * Callback for btrfs_uuid_tree_iterate().
4222 * 0 check succeeded, the entry is not outdated.
4223 * < 0 if an error occurred.
4224 * > 0 if the check failed, which means the caller shall remove the entry.
4226 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4227 u8 *uuid, u8 type, u64 subid)
4229 struct btrfs_key key;
4231 struct btrfs_root *subvol_root;
4233 if (type != BTRFS_UUID_KEY_SUBVOL &&
4234 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4237 key.objectid = subid;
4238 key.type = BTRFS_ROOT_ITEM_KEY;
4239 key.offset = (u64)-1;
4240 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4241 if (IS_ERR(subvol_root)) {
4242 ret = PTR_ERR(subvol_root);
4249 case BTRFS_UUID_KEY_SUBVOL:
4250 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4253 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4254 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4264 static int btrfs_uuid_rescan_kthread(void *data)
4266 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4270 * 1st step is to iterate through the existing UUID tree and
4271 * to delete all entries that contain outdated data.
4272 * 2nd step is to add all missing entries to the UUID tree.
4274 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4276 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4277 up(&fs_info->uuid_tree_rescan_sem);
4280 return btrfs_uuid_scan_kthread(data);
4283 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4285 struct btrfs_trans_handle *trans;
4286 struct btrfs_root *tree_root = fs_info->tree_root;
4287 struct btrfs_root *uuid_root;
4288 struct task_struct *task;
4295 trans = btrfs_start_transaction(tree_root, 2);
4297 return PTR_ERR(trans);
4299 uuid_root = btrfs_create_tree(trans, fs_info,
4300 BTRFS_UUID_TREE_OBJECTID);
4301 if (IS_ERR(uuid_root)) {
4302 ret = PTR_ERR(uuid_root);
4303 btrfs_abort_transaction(trans, ret);
4304 btrfs_end_transaction(trans);
4308 fs_info->uuid_root = uuid_root;
4310 ret = btrfs_commit_transaction(trans);
4314 down(&fs_info->uuid_tree_rescan_sem);
4315 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4317 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4318 btrfs_warn(fs_info, "failed to start uuid_scan task");
4319 up(&fs_info->uuid_tree_rescan_sem);
4320 return PTR_ERR(task);
4326 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4328 struct task_struct *task;
4330 down(&fs_info->uuid_tree_rescan_sem);
4331 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4333 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4334 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4335 up(&fs_info->uuid_tree_rescan_sem);
4336 return PTR_ERR(task);
4343 * shrinking a device means finding all of the device extents past
4344 * the new size, and then following the back refs to the chunks.
4345 * The chunk relocation code actually frees the device extent
4347 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4349 struct btrfs_fs_info *fs_info = device->fs_info;
4350 struct btrfs_root *root = fs_info->dev_root;
4351 struct btrfs_trans_handle *trans;
4352 struct btrfs_dev_extent *dev_extent = NULL;
4353 struct btrfs_path *path;
4359 bool retried = false;
4360 bool checked_pending_chunks = false;
4361 struct extent_buffer *l;
4362 struct btrfs_key key;
4363 struct btrfs_super_block *super_copy = fs_info->super_copy;
4364 u64 old_total = btrfs_super_total_bytes(super_copy);
4365 u64 old_size = btrfs_device_get_total_bytes(device);
4368 new_size = round_down(new_size, fs_info->sectorsize);
4369 diff = round_down(old_size - new_size, fs_info->sectorsize);
4371 if (device->is_tgtdev_for_dev_replace)
4374 path = btrfs_alloc_path();
4378 path->reada = READA_FORWARD;
4380 mutex_lock(&fs_info->chunk_mutex);
4382 btrfs_device_set_total_bytes(device, new_size);
4383 if (device->writeable) {
4384 device->fs_devices->total_rw_bytes -= diff;
4385 atomic64_sub(diff, &fs_info->free_chunk_space);
4387 mutex_unlock(&fs_info->chunk_mutex);
4390 key.objectid = device->devid;
4391 key.offset = (u64)-1;
4392 key.type = BTRFS_DEV_EXTENT_KEY;
4395 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4396 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4398 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4402 ret = btrfs_previous_item(root, path, 0, key.type);
4404 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4409 btrfs_release_path(path);
4414 slot = path->slots[0];
4415 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4417 if (key.objectid != device->devid) {
4418 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4419 btrfs_release_path(path);
4423 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4424 length = btrfs_dev_extent_length(l, dev_extent);
4426 if (key.offset + length <= new_size) {
4427 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4428 btrfs_release_path(path);
4432 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4433 btrfs_release_path(path);
4435 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4436 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4437 if (ret && ret != -ENOSPC)
4441 } while (key.offset-- > 0);
4443 if (failed && !retried) {
4447 } else if (failed && retried) {
4452 /* Shrinking succeeded, else we would be at "done". */
4453 trans = btrfs_start_transaction(root, 0);
4454 if (IS_ERR(trans)) {
4455 ret = PTR_ERR(trans);
4459 mutex_lock(&fs_info->chunk_mutex);
4462 * We checked in the above loop all device extents that were already in
4463 * the device tree. However before we have updated the device's
4464 * total_bytes to the new size, we might have had chunk allocations that
4465 * have not complete yet (new block groups attached to transaction
4466 * handles), and therefore their device extents were not yet in the
4467 * device tree and we missed them in the loop above. So if we have any
4468 * pending chunk using a device extent that overlaps the device range
4469 * that we can not use anymore, commit the current transaction and
4470 * repeat the search on the device tree - this way we guarantee we will
4471 * not have chunks using device extents that end beyond 'new_size'.
4473 if (!checked_pending_chunks) {
4474 u64 start = new_size;
4475 u64 len = old_size - new_size;
4477 if (contains_pending_extent(trans->transaction, device,
4479 mutex_unlock(&fs_info->chunk_mutex);
4480 checked_pending_chunks = true;
4483 ret = btrfs_commit_transaction(trans);
4490 btrfs_device_set_disk_total_bytes(device, new_size);
4491 if (list_empty(&device->resized_list))
4492 list_add_tail(&device->resized_list,
4493 &fs_info->fs_devices->resized_devices);
4495 WARN_ON(diff > old_total);
4496 btrfs_set_super_total_bytes(super_copy,
4497 round_down(old_total - diff, fs_info->sectorsize));
4498 mutex_unlock(&fs_info->chunk_mutex);
4500 /* Now btrfs_update_device() will change the on-disk size. */
4501 ret = btrfs_update_device(trans, device);
4502 btrfs_end_transaction(trans);
4504 btrfs_free_path(path);
4506 mutex_lock(&fs_info->chunk_mutex);
4507 btrfs_device_set_total_bytes(device, old_size);
4508 if (device->writeable)
4509 device->fs_devices->total_rw_bytes += diff;
4510 atomic64_add(diff, &fs_info->free_chunk_space);
4511 mutex_unlock(&fs_info->chunk_mutex);
4516 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4517 struct btrfs_key *key,
4518 struct btrfs_chunk *chunk, int item_size)
4520 struct btrfs_super_block *super_copy = fs_info->super_copy;
4521 struct btrfs_disk_key disk_key;
4525 mutex_lock(&fs_info->chunk_mutex);
4526 array_size = btrfs_super_sys_array_size(super_copy);
4527 if (array_size + item_size + sizeof(disk_key)
4528 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4529 mutex_unlock(&fs_info->chunk_mutex);
4533 ptr = super_copy->sys_chunk_array + array_size;
4534 btrfs_cpu_key_to_disk(&disk_key, key);
4535 memcpy(ptr, &disk_key, sizeof(disk_key));
4536 ptr += sizeof(disk_key);
4537 memcpy(ptr, chunk, item_size);
4538 item_size += sizeof(disk_key);
4539 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4540 mutex_unlock(&fs_info->chunk_mutex);
4546 * sort the devices in descending order by max_avail, total_avail
4548 static int btrfs_cmp_device_info(const void *a, const void *b)
4550 const struct btrfs_device_info *di_a = a;
4551 const struct btrfs_device_info *di_b = b;
4553 if (di_a->max_avail > di_b->max_avail)
4555 if (di_a->max_avail < di_b->max_avail)
4557 if (di_a->total_avail > di_b->total_avail)
4559 if (di_a->total_avail < di_b->total_avail)
4564 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4566 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4569 btrfs_set_fs_incompat(info, RAID56);
4572 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4573 - sizeof(struct btrfs_chunk)) \
4574 / sizeof(struct btrfs_stripe) + 1)
4576 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4577 - 2 * sizeof(struct btrfs_disk_key) \
4578 - 2 * sizeof(struct btrfs_chunk)) \
4579 / sizeof(struct btrfs_stripe) + 1)
4581 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4582 u64 start, u64 type)
4584 struct btrfs_fs_info *info = trans->fs_info;
4585 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4586 struct btrfs_device *device;
4587 struct map_lookup *map = NULL;
4588 struct extent_map_tree *em_tree;
4589 struct extent_map *em;
4590 struct btrfs_device_info *devices_info = NULL;
4592 int num_stripes; /* total number of stripes to allocate */
4593 int data_stripes; /* number of stripes that count for
4595 int sub_stripes; /* sub_stripes info for map */
4596 int dev_stripes; /* stripes per dev */
4597 int devs_max; /* max devs to use */
4598 int devs_min; /* min devs needed */
4599 int devs_increment; /* ndevs has to be a multiple of this */
4600 int ncopies; /* how many copies to data has */
4602 u64 max_stripe_size;
4611 BUG_ON(!alloc_profile_is_valid(type, 0));
4613 if (list_empty(&fs_devices->alloc_list))
4616 index = __get_raid_index(type);
4618 sub_stripes = btrfs_raid_array[index].sub_stripes;
4619 dev_stripes = btrfs_raid_array[index].dev_stripes;
4620 devs_max = btrfs_raid_array[index].devs_max;
4621 devs_min = btrfs_raid_array[index].devs_min;
4622 devs_increment = btrfs_raid_array[index].devs_increment;
4623 ncopies = btrfs_raid_array[index].ncopies;
4625 if (type & BTRFS_BLOCK_GROUP_DATA) {
4626 max_stripe_size = SZ_1G;
4627 max_chunk_size = 10 * max_stripe_size;
4629 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4630 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4631 /* for larger filesystems, use larger metadata chunks */
4632 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4633 max_stripe_size = SZ_1G;
4635 max_stripe_size = SZ_256M;
4636 max_chunk_size = max_stripe_size;
4638 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4639 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4640 max_stripe_size = SZ_32M;
4641 max_chunk_size = 2 * max_stripe_size;
4643 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4645 btrfs_err(info, "invalid chunk type 0x%llx requested",
4650 /* we don't want a chunk larger than 10% of writeable space */
4651 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4654 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4660 * in the first pass through the devices list, we gather information
4661 * about the available holes on each device.
4664 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4668 if (!device->writeable) {
4670 "BTRFS: read-only device in alloc_list\n");
4674 if (!device->in_fs_metadata ||
4675 device->is_tgtdev_for_dev_replace)
4678 if (device->total_bytes > device->bytes_used)
4679 total_avail = device->total_bytes - device->bytes_used;
4683 /* If there is no space on this device, skip it. */
4684 if (total_avail == 0)
4687 ret = find_free_dev_extent(trans, device,
4688 max_stripe_size * dev_stripes,
4689 &dev_offset, &max_avail);
4690 if (ret && ret != -ENOSPC)
4694 max_avail = max_stripe_size * dev_stripes;
4696 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4699 if (ndevs == fs_devices->rw_devices) {
4700 WARN(1, "%s: found more than %llu devices\n",
4701 __func__, fs_devices->rw_devices);
4704 devices_info[ndevs].dev_offset = dev_offset;
4705 devices_info[ndevs].max_avail = max_avail;
4706 devices_info[ndevs].total_avail = total_avail;
4707 devices_info[ndevs].dev = device;
4712 * now sort the devices by hole size / available space
4714 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4715 btrfs_cmp_device_info, NULL);
4717 /* round down to number of usable stripes */
4718 ndevs = round_down(ndevs, devs_increment);
4720 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4725 ndevs = min(ndevs, devs_max);
4728 * the primary goal is to maximize the number of stripes, so use as many
4729 * devices as possible, even if the stripes are not maximum sized.
4731 stripe_size = devices_info[ndevs-1].max_avail;
4732 num_stripes = ndevs * dev_stripes;
4735 * this will have to be fixed for RAID1 and RAID10 over
4738 data_stripes = num_stripes / ncopies;
4740 if (type & BTRFS_BLOCK_GROUP_RAID5)
4741 data_stripes = num_stripes - 1;
4743 if (type & BTRFS_BLOCK_GROUP_RAID6)
4744 data_stripes = num_stripes - 2;
4747 * Use the number of data stripes to figure out how big this chunk
4748 * is really going to be in terms of logical address space,
4749 * and compare that answer with the max chunk size
4751 if (stripe_size * data_stripes > max_chunk_size) {
4752 u64 mask = (1ULL << 24) - 1;
4754 stripe_size = div_u64(max_chunk_size, data_stripes);
4756 /* bump the answer up to a 16MB boundary */
4757 stripe_size = (stripe_size + mask) & ~mask;
4759 /* but don't go higher than the limits we found
4760 * while searching for free extents
4762 if (stripe_size > devices_info[ndevs-1].max_avail)
4763 stripe_size = devices_info[ndevs-1].max_avail;
4766 stripe_size = div_u64(stripe_size, dev_stripes);
4768 /* align to BTRFS_STRIPE_LEN */
4769 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4771 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4776 map->num_stripes = num_stripes;
4778 for (i = 0; i < ndevs; ++i) {
4779 for (j = 0; j < dev_stripes; ++j) {
4780 int s = i * dev_stripes + j;
4781 map->stripes[s].dev = devices_info[i].dev;
4782 map->stripes[s].physical = devices_info[i].dev_offset +
4786 map->stripe_len = BTRFS_STRIPE_LEN;
4787 map->io_align = BTRFS_STRIPE_LEN;
4788 map->io_width = BTRFS_STRIPE_LEN;
4790 map->sub_stripes = sub_stripes;
4792 num_bytes = stripe_size * data_stripes;
4794 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4796 em = alloc_extent_map();
4802 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4803 em->map_lookup = map;
4805 em->len = num_bytes;
4806 em->block_start = 0;
4807 em->block_len = em->len;
4808 em->orig_block_len = stripe_size;
4810 em_tree = &info->mapping_tree.map_tree;
4811 write_lock(&em_tree->lock);
4812 ret = add_extent_mapping(em_tree, em, 0);
4814 write_unlock(&em_tree->lock);
4815 free_extent_map(em);
4819 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4820 refcount_inc(&em->refs);
4821 write_unlock(&em_tree->lock);
4823 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4825 goto error_del_extent;
4827 for (i = 0; i < map->num_stripes; i++) {
4828 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4829 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4832 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4834 free_extent_map(em);
4835 check_raid56_incompat_flag(info, type);
4837 kfree(devices_info);
4841 write_lock(&em_tree->lock);
4842 remove_extent_mapping(em_tree, em);
4843 write_unlock(&em_tree->lock);
4845 /* One for our allocation */
4846 free_extent_map(em);
4847 /* One for the tree reference */
4848 free_extent_map(em);
4849 /* One for the pending_chunks list reference */
4850 free_extent_map(em);
4852 kfree(devices_info);
4856 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4857 struct btrfs_fs_info *fs_info,
4858 u64 chunk_offset, u64 chunk_size)
4860 struct btrfs_root *extent_root = fs_info->extent_root;
4861 struct btrfs_root *chunk_root = fs_info->chunk_root;
4862 struct btrfs_key key;
4863 struct btrfs_device *device;
4864 struct btrfs_chunk *chunk;
4865 struct btrfs_stripe *stripe;
4866 struct extent_map *em;
4867 struct map_lookup *map;
4874 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4878 map = em->map_lookup;
4879 item_size = btrfs_chunk_item_size(map->num_stripes);
4880 stripe_size = em->orig_block_len;
4882 chunk = kzalloc(item_size, GFP_NOFS);
4889 * Take the device list mutex to prevent races with the final phase of
4890 * a device replace operation that replaces the device object associated
4891 * with the map's stripes, because the device object's id can change
4892 * at any time during that final phase of the device replace operation
4893 * (dev-replace.c:btrfs_dev_replace_finishing()).
4895 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4896 for (i = 0; i < map->num_stripes; i++) {
4897 device = map->stripes[i].dev;
4898 dev_offset = map->stripes[i].physical;
4900 ret = btrfs_update_device(trans, device);
4903 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4904 dev_offset, stripe_size);
4909 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4913 stripe = &chunk->stripe;
4914 for (i = 0; i < map->num_stripes; i++) {
4915 device = map->stripes[i].dev;
4916 dev_offset = map->stripes[i].physical;
4918 btrfs_set_stack_stripe_devid(stripe, device->devid);
4919 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4920 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4923 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4925 btrfs_set_stack_chunk_length(chunk, chunk_size);
4926 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4927 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4928 btrfs_set_stack_chunk_type(chunk, map->type);
4929 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4930 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4931 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4932 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4933 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4935 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4936 key.type = BTRFS_CHUNK_ITEM_KEY;
4937 key.offset = chunk_offset;
4939 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4940 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4942 * TODO: Cleanup of inserted chunk root in case of
4945 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4950 free_extent_map(em);
4955 * Chunk allocation falls into two parts. The first part does works
4956 * that make the new allocated chunk useable, but not do any operation
4957 * that modifies the chunk tree. The second part does the works that
4958 * require modifying the chunk tree. This division is important for the
4959 * bootstrap process of adding storage to a seed btrfs.
4961 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4962 struct btrfs_fs_info *fs_info, u64 type)
4966 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4967 chunk_offset = find_next_chunk(fs_info);
4968 return __btrfs_alloc_chunk(trans, chunk_offset, type);
4971 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4972 struct btrfs_fs_info *fs_info)
4975 u64 sys_chunk_offset;
4979 chunk_offset = find_next_chunk(fs_info);
4980 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4981 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
4985 sys_chunk_offset = find_next_chunk(fs_info);
4986 alloc_profile = btrfs_system_alloc_profile(fs_info);
4987 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
4991 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4995 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4996 BTRFS_BLOCK_GROUP_RAID10 |
4997 BTRFS_BLOCK_GROUP_RAID5 |
4998 BTRFS_BLOCK_GROUP_DUP)) {
5000 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5009 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5011 struct extent_map *em;
5012 struct map_lookup *map;
5017 em = get_chunk_map(fs_info, chunk_offset, 1);
5021 map = em->map_lookup;
5022 for (i = 0; i < map->num_stripes; i++) {
5023 if (map->stripes[i].dev->missing) {
5028 if (!map->stripes[i].dev->writeable) {
5035 * If the number of missing devices is larger than max errors,
5036 * we can not write the data into that chunk successfully, so
5039 if (miss_ndevs > btrfs_chunk_max_errors(map))
5042 free_extent_map(em);
5046 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5048 extent_map_tree_init(&tree->map_tree);
5051 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5053 struct extent_map *em;
5056 write_lock(&tree->map_tree.lock);
5057 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5059 remove_extent_mapping(&tree->map_tree, em);
5060 write_unlock(&tree->map_tree.lock);
5064 free_extent_map(em);
5065 /* once for the tree */
5066 free_extent_map(em);
5070 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5072 struct extent_map *em;
5073 struct map_lookup *map;
5076 em = get_chunk_map(fs_info, logical, len);
5079 * We could return errors for these cases, but that could get
5080 * ugly and we'd probably do the same thing which is just not do
5081 * anything else and exit, so return 1 so the callers don't try
5082 * to use other copies.
5086 map = em->map_lookup;
5087 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5088 ret = map->num_stripes;
5089 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5090 ret = map->sub_stripes;
5091 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5093 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5097 free_extent_map(em);
5099 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5100 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5101 fs_info->dev_replace.tgtdev)
5103 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5108 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5111 struct extent_map *em;
5112 struct map_lookup *map;
5113 unsigned long len = fs_info->sectorsize;
5115 em = get_chunk_map(fs_info, logical, len);
5117 if (!WARN_ON(IS_ERR(em))) {
5118 map = em->map_lookup;
5119 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5120 len = map->stripe_len * nr_data_stripes(map);
5121 free_extent_map(em);
5126 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5128 struct extent_map *em;
5129 struct map_lookup *map;
5132 em = get_chunk_map(fs_info, logical, len);
5134 if(!WARN_ON(IS_ERR(em))) {
5135 map = em->map_lookup;
5136 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5138 free_extent_map(em);
5143 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5144 struct map_lookup *map, int first, int num,
5145 int optimal, int dev_replace_is_ongoing)
5149 struct btrfs_device *srcdev;
5151 if (dev_replace_is_ongoing &&
5152 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5153 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5154 srcdev = fs_info->dev_replace.srcdev;
5159 * try to avoid the drive that is the source drive for a
5160 * dev-replace procedure, only choose it if no other non-missing
5161 * mirror is available
5163 for (tolerance = 0; tolerance < 2; tolerance++) {
5164 if (map->stripes[optimal].dev->bdev &&
5165 (tolerance || map->stripes[optimal].dev != srcdev))
5167 for (i = first; i < first + num; i++) {
5168 if (map->stripes[i].dev->bdev &&
5169 (tolerance || map->stripes[i].dev != srcdev))
5174 /* we couldn't find one that doesn't fail. Just return something
5175 * and the io error handling code will clean up eventually
5180 static inline int parity_smaller(u64 a, u64 b)
5185 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5186 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5188 struct btrfs_bio_stripe s;
5195 for (i = 0; i < num_stripes - 1; i++) {
5196 if (parity_smaller(bbio->raid_map[i],
5197 bbio->raid_map[i+1])) {
5198 s = bbio->stripes[i];
5199 l = bbio->raid_map[i];
5200 bbio->stripes[i] = bbio->stripes[i+1];
5201 bbio->raid_map[i] = bbio->raid_map[i+1];
5202 bbio->stripes[i+1] = s;
5203 bbio->raid_map[i+1] = l;
5211 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5213 struct btrfs_bio *bbio = kzalloc(
5214 /* the size of the btrfs_bio */
5215 sizeof(struct btrfs_bio) +
5216 /* plus the variable array for the stripes */
5217 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5218 /* plus the variable array for the tgt dev */
5219 sizeof(int) * (real_stripes) +
5221 * plus the raid_map, which includes both the tgt dev
5224 sizeof(u64) * (total_stripes),
5225 GFP_NOFS|__GFP_NOFAIL);
5227 atomic_set(&bbio->error, 0);
5228 refcount_set(&bbio->refs, 1);
5233 void btrfs_get_bbio(struct btrfs_bio *bbio)
5235 WARN_ON(!refcount_read(&bbio->refs));
5236 refcount_inc(&bbio->refs);
5239 void btrfs_put_bbio(struct btrfs_bio *bbio)
5243 if (refcount_dec_and_test(&bbio->refs))
5247 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5249 * Please note that, discard won't be sent to target device of device
5252 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5253 u64 logical, u64 length,
5254 struct btrfs_bio **bbio_ret)
5256 struct extent_map *em;
5257 struct map_lookup *map;
5258 struct btrfs_bio *bbio;
5262 u64 stripe_end_offset;
5269 u32 sub_stripes = 0;
5270 u64 stripes_per_dev = 0;
5271 u32 remaining_stripes = 0;
5272 u32 last_stripe = 0;
5276 /* discard always return a bbio */
5279 em = get_chunk_map(fs_info, logical, length);
5283 map = em->map_lookup;
5284 /* we don't discard raid56 yet */
5285 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5290 offset = logical - em->start;
5291 length = min_t(u64, em->len - offset, length);
5293 stripe_len = map->stripe_len;
5295 * stripe_nr counts the total number of stripes we have to stride
5296 * to get to this block
5298 stripe_nr = div64_u64(offset, stripe_len);
5300 /* stripe_offset is the offset of this block in its stripe */
5301 stripe_offset = offset - stripe_nr * stripe_len;
5303 stripe_nr_end = round_up(offset + length, map->stripe_len);
5304 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5305 stripe_cnt = stripe_nr_end - stripe_nr;
5306 stripe_end_offset = stripe_nr_end * map->stripe_len -
5309 * after this, stripe_nr is the number of stripes on this
5310 * device we have to walk to find the data, and stripe_index is
5311 * the number of our device in the stripe array
5315 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5316 BTRFS_BLOCK_GROUP_RAID10)) {
5317 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5320 sub_stripes = map->sub_stripes;
5322 factor = map->num_stripes / sub_stripes;
5323 num_stripes = min_t(u64, map->num_stripes,
5324 sub_stripes * stripe_cnt);
5325 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5326 stripe_index *= sub_stripes;
5327 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5328 &remaining_stripes);
5329 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5330 last_stripe *= sub_stripes;
5331 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5332 BTRFS_BLOCK_GROUP_DUP)) {
5333 num_stripes = map->num_stripes;
5335 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5339 bbio = alloc_btrfs_bio(num_stripes, 0);
5345 for (i = 0; i < num_stripes; i++) {
5346 bbio->stripes[i].physical =
5347 map->stripes[stripe_index].physical +
5348 stripe_offset + stripe_nr * map->stripe_len;
5349 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5351 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5352 BTRFS_BLOCK_GROUP_RAID10)) {
5353 bbio->stripes[i].length = stripes_per_dev *
5356 if (i / sub_stripes < remaining_stripes)
5357 bbio->stripes[i].length +=
5361 * Special for the first stripe and
5364 * |-------|...|-------|
5368 if (i < sub_stripes)
5369 bbio->stripes[i].length -=
5372 if (stripe_index >= last_stripe &&
5373 stripe_index <= (last_stripe +
5375 bbio->stripes[i].length -=
5378 if (i == sub_stripes - 1)
5381 bbio->stripes[i].length = length;
5385 if (stripe_index == map->num_stripes) {
5392 bbio->map_type = map->type;
5393 bbio->num_stripes = num_stripes;
5395 free_extent_map(em);
5400 * In dev-replace case, for repair case (that's the only case where the mirror
5401 * is selected explicitly when calling btrfs_map_block), blocks left of the
5402 * left cursor can also be read from the target drive.
5404 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5406 * For READ, it also needs to be supported using the same mirror number.
5408 * If the requested block is not left of the left cursor, EIO is returned. This
5409 * can happen because btrfs_num_copies() returns one more in the dev-replace
5412 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5413 u64 logical, u64 length,
5414 u64 srcdev_devid, int *mirror_num,
5417 struct btrfs_bio *bbio = NULL;
5419 int index_srcdev = 0;
5421 u64 physical_of_found = 0;
5425 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5426 logical, &length, &bbio, 0, 0);
5428 ASSERT(bbio == NULL);
5432 num_stripes = bbio->num_stripes;
5433 if (*mirror_num > num_stripes) {
5435 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5436 * that means that the requested area is not left of the left
5439 btrfs_put_bbio(bbio);
5444 * process the rest of the function using the mirror_num of the source
5445 * drive. Therefore look it up first. At the end, patch the device
5446 * pointer to the one of the target drive.
5448 for (i = 0; i < num_stripes; i++) {
5449 if (bbio->stripes[i].dev->devid != srcdev_devid)
5453 * In case of DUP, in order to keep it simple, only add the
5454 * mirror with the lowest physical address
5457 physical_of_found <= bbio->stripes[i].physical)
5462 physical_of_found = bbio->stripes[i].physical;
5465 btrfs_put_bbio(bbio);
5471 *mirror_num = index_srcdev + 1;
5472 *physical = physical_of_found;
5476 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5477 struct btrfs_bio **bbio_ret,
5478 struct btrfs_dev_replace *dev_replace,
5479 int *num_stripes_ret, int *max_errors_ret)
5481 struct btrfs_bio *bbio = *bbio_ret;
5482 u64 srcdev_devid = dev_replace->srcdev->devid;
5483 int tgtdev_indexes = 0;
5484 int num_stripes = *num_stripes_ret;
5485 int max_errors = *max_errors_ret;
5488 if (op == BTRFS_MAP_WRITE) {
5489 int index_where_to_add;
5492 * duplicate the write operations while the dev replace
5493 * procedure is running. Since the copying of the old disk to
5494 * the new disk takes place at run time while the filesystem is
5495 * mounted writable, the regular write operations to the old
5496 * disk have to be duplicated to go to the new disk as well.
5498 * Note that device->missing is handled by the caller, and that
5499 * the write to the old disk is already set up in the stripes
5502 index_where_to_add = num_stripes;
5503 for (i = 0; i < num_stripes; i++) {
5504 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5505 /* write to new disk, too */
5506 struct btrfs_bio_stripe *new =
5507 bbio->stripes + index_where_to_add;
5508 struct btrfs_bio_stripe *old =
5511 new->physical = old->physical;
5512 new->length = old->length;
5513 new->dev = dev_replace->tgtdev;
5514 bbio->tgtdev_map[i] = index_where_to_add;
5515 index_where_to_add++;
5520 num_stripes = index_where_to_add;
5521 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5522 int index_srcdev = 0;
5524 u64 physical_of_found = 0;
5527 * During the dev-replace procedure, the target drive can also
5528 * be used to read data in case it is needed to repair a corrupt
5529 * block elsewhere. This is possible if the requested area is
5530 * left of the left cursor. In this area, the target drive is a
5531 * full copy of the source drive.
5533 for (i = 0; i < num_stripes; i++) {
5534 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5536 * In case of DUP, in order to keep it simple,
5537 * only add the mirror with the lowest physical
5541 physical_of_found <=
5542 bbio->stripes[i].physical)
5546 physical_of_found = bbio->stripes[i].physical;
5550 struct btrfs_bio_stripe *tgtdev_stripe =
5551 bbio->stripes + num_stripes;
5553 tgtdev_stripe->physical = physical_of_found;
5554 tgtdev_stripe->length =
5555 bbio->stripes[index_srcdev].length;
5556 tgtdev_stripe->dev = dev_replace->tgtdev;
5557 bbio->tgtdev_map[index_srcdev] = num_stripes;
5564 *num_stripes_ret = num_stripes;
5565 *max_errors_ret = max_errors;
5566 bbio->num_tgtdevs = tgtdev_indexes;
5570 static bool need_full_stripe(enum btrfs_map_op op)
5572 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5575 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5576 enum btrfs_map_op op,
5577 u64 logical, u64 *length,
5578 struct btrfs_bio **bbio_ret,
5579 int mirror_num, int need_raid_map)
5581 struct extent_map *em;
5582 struct map_lookup *map;
5592 int tgtdev_indexes = 0;
5593 struct btrfs_bio *bbio = NULL;
5594 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5595 int dev_replace_is_ongoing = 0;
5596 int num_alloc_stripes;
5597 int patch_the_first_stripe_for_dev_replace = 0;
5598 u64 physical_to_patch_in_first_stripe = 0;
5599 u64 raid56_full_stripe_start = (u64)-1;
5601 if (op == BTRFS_MAP_DISCARD)
5602 return __btrfs_map_block_for_discard(fs_info, logical,
5605 em = get_chunk_map(fs_info, logical, *length);
5609 map = em->map_lookup;
5610 offset = logical - em->start;
5612 stripe_len = map->stripe_len;
5615 * stripe_nr counts the total number of stripes we have to stride
5616 * to get to this block
5618 stripe_nr = div64_u64(stripe_nr, stripe_len);
5620 stripe_offset = stripe_nr * stripe_len;
5621 if (offset < stripe_offset) {
5623 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5624 stripe_offset, offset, em->start, logical,
5626 free_extent_map(em);
5630 /* stripe_offset is the offset of this block in its stripe*/
5631 stripe_offset = offset - stripe_offset;
5633 /* if we're here for raid56, we need to know the stripe aligned start */
5634 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5635 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5636 raid56_full_stripe_start = offset;
5638 /* allow a write of a full stripe, but make sure we don't
5639 * allow straddling of stripes
5641 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5643 raid56_full_stripe_start *= full_stripe_len;
5646 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5648 /* For writes to RAID[56], allow a full stripeset across all disks.
5649 For other RAID types and for RAID[56] reads, just allow a single
5650 stripe (on a single disk). */
5651 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5652 (op == BTRFS_MAP_WRITE)) {
5653 max_len = stripe_len * nr_data_stripes(map) -
5654 (offset - raid56_full_stripe_start);
5656 /* we limit the length of each bio to what fits in a stripe */
5657 max_len = stripe_len - stripe_offset;
5659 *length = min_t(u64, em->len - offset, max_len);
5661 *length = em->len - offset;
5664 /* This is for when we're called from btrfs_merge_bio_hook() and all
5665 it cares about is the length */
5669 btrfs_dev_replace_lock(dev_replace, 0);
5670 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5671 if (!dev_replace_is_ongoing)
5672 btrfs_dev_replace_unlock(dev_replace, 0);
5674 btrfs_dev_replace_set_lock_blocking(dev_replace);
5676 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5677 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5678 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5679 dev_replace->srcdev->devid,
5681 &physical_to_patch_in_first_stripe);
5685 patch_the_first_stripe_for_dev_replace = 1;
5686 } else if (mirror_num > map->num_stripes) {
5692 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5693 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5695 if (!need_full_stripe(op))
5697 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5698 if (need_full_stripe(op))
5699 num_stripes = map->num_stripes;
5700 else if (mirror_num)
5701 stripe_index = mirror_num - 1;
5703 stripe_index = find_live_mirror(fs_info, map, 0,
5705 current->pid % map->num_stripes,
5706 dev_replace_is_ongoing);
5707 mirror_num = stripe_index + 1;
5710 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5711 if (need_full_stripe(op)) {
5712 num_stripes = map->num_stripes;
5713 } else if (mirror_num) {
5714 stripe_index = mirror_num - 1;
5719 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5720 u32 factor = map->num_stripes / map->sub_stripes;
5722 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5723 stripe_index *= map->sub_stripes;
5725 if (need_full_stripe(op))
5726 num_stripes = map->sub_stripes;
5727 else if (mirror_num)
5728 stripe_index += mirror_num - 1;
5730 int old_stripe_index = stripe_index;
5731 stripe_index = find_live_mirror(fs_info, map,
5733 map->sub_stripes, stripe_index +
5734 current->pid % map->sub_stripes,
5735 dev_replace_is_ongoing);
5736 mirror_num = stripe_index - old_stripe_index + 1;
5739 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5740 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5741 /* push stripe_nr back to the start of the full stripe */
5742 stripe_nr = div64_u64(raid56_full_stripe_start,
5743 stripe_len * nr_data_stripes(map));
5745 /* RAID[56] write or recovery. Return all stripes */
5746 num_stripes = map->num_stripes;
5747 max_errors = nr_parity_stripes(map);
5749 *length = map->stripe_len;
5754 * Mirror #0 or #1 means the original data block.
5755 * Mirror #2 is RAID5 parity block.
5756 * Mirror #3 is RAID6 Q block.
5758 stripe_nr = div_u64_rem(stripe_nr,
5759 nr_data_stripes(map), &stripe_index);
5761 stripe_index = nr_data_stripes(map) +
5764 /* We distribute the parity blocks across stripes */
5765 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5767 if (!need_full_stripe(op) && mirror_num <= 1)
5772 * after this, stripe_nr is the number of stripes on this
5773 * device we have to walk to find the data, and stripe_index is
5774 * the number of our device in the stripe array
5776 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5778 mirror_num = stripe_index + 1;
5780 if (stripe_index >= map->num_stripes) {
5782 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5783 stripe_index, map->num_stripes);
5788 num_alloc_stripes = num_stripes;
5789 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5790 if (op == BTRFS_MAP_WRITE)
5791 num_alloc_stripes <<= 1;
5792 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5793 num_alloc_stripes++;
5794 tgtdev_indexes = num_stripes;
5797 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5802 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5803 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5805 /* build raid_map */
5806 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5807 (need_full_stripe(op) || mirror_num > 1)) {
5811 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5812 sizeof(struct btrfs_bio_stripe) *
5814 sizeof(int) * tgtdev_indexes);
5816 /* Work out the disk rotation on this stripe-set */
5817 div_u64_rem(stripe_nr, num_stripes, &rot);
5819 /* Fill in the logical address of each stripe */
5820 tmp = stripe_nr * nr_data_stripes(map);
5821 for (i = 0; i < nr_data_stripes(map); i++)
5822 bbio->raid_map[(i+rot) % num_stripes] =
5823 em->start + (tmp + i) * map->stripe_len;
5825 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5826 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5827 bbio->raid_map[(i+rot+1) % num_stripes] =
5832 for (i = 0; i < num_stripes; i++) {
5833 bbio->stripes[i].physical =
5834 map->stripes[stripe_index].physical +
5836 stripe_nr * map->stripe_len;
5837 bbio->stripes[i].dev =
5838 map->stripes[stripe_index].dev;
5842 if (need_full_stripe(op))
5843 max_errors = btrfs_chunk_max_errors(map);
5846 sort_parity_stripes(bbio, num_stripes);
5848 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5849 need_full_stripe(op)) {
5850 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5855 bbio->map_type = map->type;
5856 bbio->num_stripes = num_stripes;
5857 bbio->max_errors = max_errors;
5858 bbio->mirror_num = mirror_num;
5861 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5862 * mirror_num == num_stripes + 1 && dev_replace target drive is
5863 * available as a mirror
5865 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5866 WARN_ON(num_stripes > 1);
5867 bbio->stripes[0].dev = dev_replace->tgtdev;
5868 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5869 bbio->mirror_num = map->num_stripes + 1;
5872 if (dev_replace_is_ongoing) {
5873 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5874 btrfs_dev_replace_unlock(dev_replace, 0);
5876 free_extent_map(em);
5880 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5881 u64 logical, u64 *length,
5882 struct btrfs_bio **bbio_ret, int mirror_num)
5884 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5888 /* For Scrub/replace */
5889 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5890 u64 logical, u64 *length,
5891 struct btrfs_bio **bbio_ret)
5893 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5896 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5897 u64 chunk_start, u64 physical, u64 devid,
5898 u64 **logical, int *naddrs, int *stripe_len)
5900 struct extent_map *em;
5901 struct map_lookup *map;
5909 em = get_chunk_map(fs_info, chunk_start, 1);
5913 map = em->map_lookup;
5915 rmap_len = map->stripe_len;
5917 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5918 length = div_u64(length, map->num_stripes / map->sub_stripes);
5919 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5920 length = div_u64(length, map->num_stripes);
5921 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5922 length = div_u64(length, nr_data_stripes(map));
5923 rmap_len = map->stripe_len * nr_data_stripes(map);
5926 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5927 BUG_ON(!buf); /* -ENOMEM */
5929 for (i = 0; i < map->num_stripes; i++) {
5930 if (devid && map->stripes[i].dev->devid != devid)
5932 if (map->stripes[i].physical > physical ||
5933 map->stripes[i].physical + length <= physical)
5936 stripe_nr = physical - map->stripes[i].physical;
5937 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5939 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5940 stripe_nr = stripe_nr * map->num_stripes + i;
5941 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5942 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5943 stripe_nr = stripe_nr * map->num_stripes + i;
5944 } /* else if RAID[56], multiply by nr_data_stripes().
5945 * Alternatively, just use rmap_len below instead of
5946 * map->stripe_len */
5948 bytenr = chunk_start + stripe_nr * rmap_len;
5949 WARN_ON(nr >= map->num_stripes);
5950 for (j = 0; j < nr; j++) {
5951 if (buf[j] == bytenr)
5955 WARN_ON(nr >= map->num_stripes);
5962 *stripe_len = rmap_len;
5964 free_extent_map(em);
5968 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5970 bio->bi_private = bbio->private;
5971 bio->bi_end_io = bbio->end_io;
5974 btrfs_put_bbio(bbio);
5977 static void btrfs_end_bio(struct bio *bio)
5979 struct btrfs_bio *bbio = bio->bi_private;
5980 int is_orig_bio = 0;
5982 if (bio->bi_status) {
5983 atomic_inc(&bbio->error);
5984 if (bio->bi_status == BLK_STS_IOERR ||
5985 bio->bi_status == BLK_STS_TARGET) {
5986 unsigned int stripe_index =
5987 btrfs_io_bio(bio)->stripe_index;
5988 struct btrfs_device *dev;
5990 BUG_ON(stripe_index >= bbio->num_stripes);
5991 dev = bbio->stripes[stripe_index].dev;
5993 if (bio_op(bio) == REQ_OP_WRITE)
5994 btrfs_dev_stat_inc(dev,
5995 BTRFS_DEV_STAT_WRITE_ERRS);
5997 btrfs_dev_stat_inc(dev,
5998 BTRFS_DEV_STAT_READ_ERRS);
5999 if (bio->bi_opf & REQ_PREFLUSH)
6000 btrfs_dev_stat_inc(dev,
6001 BTRFS_DEV_STAT_FLUSH_ERRS);
6002 btrfs_dev_stat_print_on_error(dev);
6007 if (bio == bbio->orig_bio)
6010 btrfs_bio_counter_dec(bbio->fs_info);
6012 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6015 bio = bbio->orig_bio;
6018 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6019 /* only send an error to the higher layers if it is
6020 * beyond the tolerance of the btrfs bio
6022 if (atomic_read(&bbio->error) > bbio->max_errors) {
6023 bio->bi_status = BLK_STS_IOERR;
6026 * this bio is actually up to date, we didn't
6027 * go over the max number of errors
6029 bio->bi_status = BLK_STS_OK;
6032 btrfs_end_bbio(bbio, bio);
6033 } else if (!is_orig_bio) {
6039 * see run_scheduled_bios for a description of why bios are collected for
6042 * This will add one bio to the pending list for a device and make sure
6043 * the work struct is scheduled.
6045 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6048 struct btrfs_fs_info *fs_info = device->fs_info;
6049 int should_queue = 1;
6050 struct btrfs_pending_bios *pending_bios;
6052 if (device->missing || !device->bdev) {
6057 /* don't bother with additional async steps for reads, right now */
6058 if (bio_op(bio) == REQ_OP_READ) {
6060 btrfsic_submit_bio(bio);
6065 WARN_ON(bio->bi_next);
6066 bio->bi_next = NULL;
6068 spin_lock(&device->io_lock);
6069 if (op_is_sync(bio->bi_opf))
6070 pending_bios = &device->pending_sync_bios;
6072 pending_bios = &device->pending_bios;
6074 if (pending_bios->tail)
6075 pending_bios->tail->bi_next = bio;
6077 pending_bios->tail = bio;
6078 if (!pending_bios->head)
6079 pending_bios->head = bio;
6080 if (device->running_pending)
6083 spin_unlock(&device->io_lock);
6086 btrfs_queue_work(fs_info->submit_workers, &device->work);
6089 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6090 u64 physical, int dev_nr, int async)
6092 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6093 struct btrfs_fs_info *fs_info = bbio->fs_info;
6095 bio->bi_private = bbio;
6096 btrfs_io_bio(bio)->stripe_index = dev_nr;
6097 bio->bi_end_io = btrfs_end_bio;
6098 bio->bi_iter.bi_sector = physical >> 9;
6101 struct rcu_string *name;
6104 name = rcu_dereference(dev->name);
6105 btrfs_debug(fs_info,
6106 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6107 bio_op(bio), bio->bi_opf,
6108 (u64)bio->bi_iter.bi_sector,
6109 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6110 bio->bi_iter.bi_size);
6114 bio_set_dev(bio, dev->bdev);
6116 btrfs_bio_counter_inc_noblocked(fs_info);
6119 btrfs_schedule_bio(dev, bio);
6121 btrfsic_submit_bio(bio);
6124 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6126 atomic_inc(&bbio->error);
6127 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6128 /* Should be the original bio. */
6129 WARN_ON(bio != bbio->orig_bio);
6131 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6132 bio->bi_iter.bi_sector = logical >> 9;
6133 if (atomic_read(&bbio->error) > bbio->max_errors)
6134 bio->bi_status = BLK_STS_IOERR;
6136 bio->bi_status = BLK_STS_OK;
6137 btrfs_end_bbio(bbio, bio);
6141 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6142 int mirror_num, int async_submit)
6144 struct btrfs_device *dev;
6145 struct bio *first_bio = bio;
6146 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6152 struct btrfs_bio *bbio = NULL;
6154 length = bio->bi_iter.bi_size;
6155 map_length = length;
6157 btrfs_bio_counter_inc_blocked(fs_info);
6158 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6159 &map_length, &bbio, mirror_num, 1);
6161 btrfs_bio_counter_dec(fs_info);
6162 return errno_to_blk_status(ret);
6165 total_devs = bbio->num_stripes;
6166 bbio->orig_bio = first_bio;
6167 bbio->private = first_bio->bi_private;
6168 bbio->end_io = first_bio->bi_end_io;
6169 bbio->fs_info = fs_info;
6170 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6172 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6173 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6174 /* In this case, map_length has been set to the length of
6175 a single stripe; not the whole write */
6176 if (bio_op(bio) == REQ_OP_WRITE) {
6177 ret = raid56_parity_write(fs_info, bio, bbio,
6180 ret = raid56_parity_recover(fs_info, bio, bbio,
6181 map_length, mirror_num, 1);
6184 btrfs_bio_counter_dec(fs_info);
6185 return errno_to_blk_status(ret);
6188 if (map_length < length) {
6190 "mapping failed logical %llu bio len %llu len %llu",
6191 logical, length, map_length);
6195 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6196 dev = bbio->stripes[dev_nr].dev;
6197 if (!dev || !dev->bdev ||
6198 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6199 bbio_error(bbio, first_bio, logical);
6203 if (dev_nr < total_devs - 1)
6204 bio = btrfs_bio_clone(first_bio);
6208 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6209 dev_nr, async_submit);
6211 btrfs_bio_counter_dec(fs_info);
6215 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6218 struct btrfs_device *device;
6219 struct btrfs_fs_devices *cur_devices;
6221 cur_devices = fs_info->fs_devices;
6222 while (cur_devices) {
6224 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6225 device = find_device(cur_devices, devid, uuid);
6229 cur_devices = cur_devices->seed;
6234 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6235 u64 devid, u8 *dev_uuid)
6237 struct btrfs_device *device;
6239 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6243 list_add(&device->dev_list, &fs_devices->devices);
6244 device->fs_devices = fs_devices;
6245 fs_devices->num_devices++;
6247 device->missing = 1;
6248 fs_devices->missing_devices++;
6254 * btrfs_alloc_device - allocate struct btrfs_device
6255 * @fs_info: used only for generating a new devid, can be NULL if
6256 * devid is provided (i.e. @devid != NULL).
6257 * @devid: a pointer to devid for this device. If NULL a new devid
6259 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6262 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6263 * on error. Returned struct is not linked onto any lists and can be
6264 * destroyed with kfree() right away.
6266 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6270 struct btrfs_device *dev;
6273 if (WARN_ON(!devid && !fs_info))
6274 return ERR_PTR(-EINVAL);
6276 dev = __alloc_device();
6285 ret = find_next_devid(fs_info, &tmp);
6288 return ERR_PTR(ret);
6294 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6296 generate_random_uuid(dev->uuid);
6298 btrfs_init_work(&dev->work, btrfs_submit_helper,
6299 pending_bios_fn, NULL, NULL);
6304 /* Return -EIO if any error, otherwise return 0. */
6305 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6306 struct extent_buffer *leaf,
6307 struct btrfs_chunk *chunk, u64 logical)
6315 length = btrfs_chunk_length(leaf, chunk);
6316 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6317 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6318 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6319 type = btrfs_chunk_type(leaf, chunk);
6322 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6326 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6327 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6330 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6331 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6332 btrfs_chunk_sector_size(leaf, chunk));
6335 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6336 btrfs_err(fs_info, "invalid chunk length %llu", length);
6339 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6340 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6344 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6346 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6347 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6348 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6349 btrfs_chunk_type(leaf, chunk));
6352 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6353 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6354 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6355 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6356 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6357 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6358 num_stripes != 1)) {
6360 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6361 num_stripes, sub_stripes,
6362 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6369 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6370 u64 devid, u8 *uuid, bool error)
6373 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6376 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6380 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6381 struct extent_buffer *leaf,
6382 struct btrfs_chunk *chunk)
6384 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6385 struct map_lookup *map;
6386 struct extent_map *em;
6390 u8 uuid[BTRFS_UUID_SIZE];
6395 logical = key->offset;
6396 length = btrfs_chunk_length(leaf, chunk);
6397 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6399 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6403 read_lock(&map_tree->map_tree.lock);
6404 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6405 read_unlock(&map_tree->map_tree.lock);
6407 /* already mapped? */
6408 if (em && em->start <= logical && em->start + em->len > logical) {
6409 free_extent_map(em);
6412 free_extent_map(em);
6415 em = alloc_extent_map();
6418 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6420 free_extent_map(em);
6424 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6425 em->map_lookup = map;
6426 em->start = logical;
6429 em->block_start = 0;
6430 em->block_len = em->len;
6432 map->num_stripes = num_stripes;
6433 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6434 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6435 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6436 map->type = btrfs_chunk_type(leaf, chunk);
6437 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6438 for (i = 0; i < num_stripes; i++) {
6439 map->stripes[i].physical =
6440 btrfs_stripe_offset_nr(leaf, chunk, i);
6441 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6442 read_extent_buffer(leaf, uuid, (unsigned long)
6443 btrfs_stripe_dev_uuid_nr(chunk, i),
6445 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6447 if (!map->stripes[i].dev &&
6448 !btrfs_test_opt(fs_info, DEGRADED)) {
6449 free_extent_map(em);
6450 btrfs_report_missing_device(fs_info, devid, uuid, true);
6453 if (!map->stripes[i].dev) {
6454 map->stripes[i].dev =
6455 add_missing_dev(fs_info->fs_devices, devid,
6457 if (IS_ERR(map->stripes[i].dev)) {
6458 free_extent_map(em);
6460 "failed to init missing dev %llu: %ld",
6461 devid, PTR_ERR(map->stripes[i].dev));
6462 return PTR_ERR(map->stripes[i].dev);
6464 btrfs_report_missing_device(fs_info, devid, uuid, false);
6466 map->stripes[i].dev->in_fs_metadata = 1;
6469 write_lock(&map_tree->map_tree.lock);
6470 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6471 write_unlock(&map_tree->map_tree.lock);
6472 BUG_ON(ret); /* Tree corruption */
6473 free_extent_map(em);
6478 static void fill_device_from_item(struct extent_buffer *leaf,
6479 struct btrfs_dev_item *dev_item,
6480 struct btrfs_device *device)
6484 device->devid = btrfs_device_id(leaf, dev_item);
6485 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6486 device->total_bytes = device->disk_total_bytes;
6487 device->commit_total_bytes = device->disk_total_bytes;
6488 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6489 device->commit_bytes_used = device->bytes_used;
6490 device->type = btrfs_device_type(leaf, dev_item);
6491 device->io_align = btrfs_device_io_align(leaf, dev_item);
6492 device->io_width = btrfs_device_io_width(leaf, dev_item);
6493 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6494 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6495 device->is_tgtdev_for_dev_replace = 0;
6497 ptr = btrfs_device_uuid(dev_item);
6498 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6501 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6504 struct btrfs_fs_devices *fs_devices;
6507 BUG_ON(!mutex_is_locked(&uuid_mutex));
6510 fs_devices = fs_info->fs_devices->seed;
6511 while (fs_devices) {
6512 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6515 fs_devices = fs_devices->seed;
6518 fs_devices = find_fsid(fsid);
6520 if (!btrfs_test_opt(fs_info, DEGRADED))
6521 return ERR_PTR(-ENOENT);
6523 fs_devices = alloc_fs_devices(fsid);
6524 if (IS_ERR(fs_devices))
6527 fs_devices->seeding = 1;
6528 fs_devices->opened = 1;
6532 fs_devices = clone_fs_devices(fs_devices);
6533 if (IS_ERR(fs_devices))
6536 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6537 fs_info->bdev_holder);
6539 free_fs_devices(fs_devices);
6540 fs_devices = ERR_PTR(ret);
6544 if (!fs_devices->seeding) {
6545 __btrfs_close_devices(fs_devices);
6546 free_fs_devices(fs_devices);
6547 fs_devices = ERR_PTR(-EINVAL);
6551 fs_devices->seed = fs_info->fs_devices->seed;
6552 fs_info->fs_devices->seed = fs_devices;
6557 static int read_one_dev(struct btrfs_fs_info *fs_info,
6558 struct extent_buffer *leaf,
6559 struct btrfs_dev_item *dev_item)
6561 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6562 struct btrfs_device *device;
6565 u8 fs_uuid[BTRFS_FSID_SIZE];
6566 u8 dev_uuid[BTRFS_UUID_SIZE];
6568 devid = btrfs_device_id(leaf, dev_item);
6569 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6571 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6574 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6575 fs_devices = open_seed_devices(fs_info, fs_uuid);
6576 if (IS_ERR(fs_devices))
6577 return PTR_ERR(fs_devices);
6580 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6582 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6583 btrfs_report_missing_device(fs_info, devid,
6588 device = add_missing_dev(fs_devices, devid, dev_uuid);
6589 if (IS_ERR(device)) {
6591 "failed to add missing dev %llu: %ld",
6592 devid, PTR_ERR(device));
6593 return PTR_ERR(device);
6595 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6597 if (!device->bdev) {
6598 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6599 btrfs_report_missing_device(fs_info,
6600 devid, dev_uuid, true);
6603 btrfs_report_missing_device(fs_info, devid,
6607 if(!device->bdev && !device->missing) {
6609 * this happens when a device that was properly setup
6610 * in the device info lists suddenly goes bad.
6611 * device->bdev is NULL, and so we have to set
6612 * device->missing to one here
6614 device->fs_devices->missing_devices++;
6615 device->missing = 1;
6618 /* Move the device to its own fs_devices */
6619 if (device->fs_devices != fs_devices) {
6620 ASSERT(device->missing);
6622 list_move(&device->dev_list, &fs_devices->devices);
6623 device->fs_devices->num_devices--;
6624 fs_devices->num_devices++;
6626 device->fs_devices->missing_devices--;
6627 fs_devices->missing_devices++;
6629 device->fs_devices = fs_devices;
6633 if (device->fs_devices != fs_info->fs_devices) {
6634 BUG_ON(device->writeable);
6635 if (device->generation !=
6636 btrfs_device_generation(leaf, dev_item))
6640 fill_device_from_item(leaf, dev_item, device);
6641 device->in_fs_metadata = 1;
6642 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6643 device->fs_devices->total_rw_bytes += device->total_bytes;
6644 atomic64_add(device->total_bytes - device->bytes_used,
6645 &fs_info->free_chunk_space);
6651 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6653 struct btrfs_root *root = fs_info->tree_root;
6654 struct btrfs_super_block *super_copy = fs_info->super_copy;
6655 struct extent_buffer *sb;
6656 struct btrfs_disk_key *disk_key;
6657 struct btrfs_chunk *chunk;
6659 unsigned long sb_array_offset;
6666 struct btrfs_key key;
6668 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6670 * This will create extent buffer of nodesize, superblock size is
6671 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6672 * overallocate but we can keep it as-is, only the first page is used.
6674 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6677 set_extent_buffer_uptodate(sb);
6678 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6680 * The sb extent buffer is artificial and just used to read the system array.
6681 * set_extent_buffer_uptodate() call does not properly mark all it's
6682 * pages up-to-date when the page is larger: extent does not cover the
6683 * whole page and consequently check_page_uptodate does not find all
6684 * the page's extents up-to-date (the hole beyond sb),
6685 * write_extent_buffer then triggers a WARN_ON.
6687 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6688 * but sb spans only this function. Add an explicit SetPageUptodate call
6689 * to silence the warning eg. on PowerPC 64.
6691 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6692 SetPageUptodate(sb->pages[0]);
6694 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6695 array_size = btrfs_super_sys_array_size(super_copy);
6697 array_ptr = super_copy->sys_chunk_array;
6698 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6701 while (cur_offset < array_size) {
6702 disk_key = (struct btrfs_disk_key *)array_ptr;
6703 len = sizeof(*disk_key);
6704 if (cur_offset + len > array_size)
6705 goto out_short_read;
6707 btrfs_disk_key_to_cpu(&key, disk_key);
6710 sb_array_offset += len;
6713 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6714 chunk = (struct btrfs_chunk *)sb_array_offset;
6716 * At least one btrfs_chunk with one stripe must be
6717 * present, exact stripe count check comes afterwards
6719 len = btrfs_chunk_item_size(1);
6720 if (cur_offset + len > array_size)
6721 goto out_short_read;
6723 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6726 "invalid number of stripes %u in sys_array at offset %u",
6727 num_stripes, cur_offset);
6732 type = btrfs_chunk_type(sb, chunk);
6733 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6735 "invalid chunk type %llu in sys_array at offset %u",
6741 len = btrfs_chunk_item_size(num_stripes);
6742 if (cur_offset + len > array_size)
6743 goto out_short_read;
6745 ret = read_one_chunk(fs_info, &key, sb, chunk);
6750 "unexpected item type %u in sys_array at offset %u",
6751 (u32)key.type, cur_offset);
6756 sb_array_offset += len;
6759 clear_extent_buffer_uptodate(sb);
6760 free_extent_buffer_stale(sb);
6764 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6766 clear_extent_buffer_uptodate(sb);
6767 free_extent_buffer_stale(sb);
6772 * Check if all chunks in the fs are OK for read-write degraded mount
6774 * Return true if all chunks meet the minimal RW mount requirements.
6775 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6777 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6779 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6780 struct extent_map *em;
6784 read_lock(&map_tree->map_tree.lock);
6785 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6786 read_unlock(&map_tree->map_tree.lock);
6787 /* No chunk at all? Return false anyway */
6793 struct map_lookup *map;
6798 map = em->map_lookup;
6800 btrfs_get_num_tolerated_disk_barrier_failures(
6802 for (i = 0; i < map->num_stripes; i++) {
6803 struct btrfs_device *dev = map->stripes[i].dev;
6805 if (!dev || !dev->bdev || dev->missing ||
6806 dev->last_flush_error)
6809 if (missing > max_tolerated) {
6811 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6812 em->start, missing, max_tolerated);
6813 free_extent_map(em);
6817 next_start = extent_map_end(em);
6818 free_extent_map(em);
6820 read_lock(&map_tree->map_tree.lock);
6821 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6822 (u64)(-1) - next_start);
6823 read_unlock(&map_tree->map_tree.lock);
6829 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6831 struct btrfs_root *root = fs_info->chunk_root;
6832 struct btrfs_path *path;
6833 struct extent_buffer *leaf;
6834 struct btrfs_key key;
6835 struct btrfs_key found_key;
6840 path = btrfs_alloc_path();
6844 mutex_lock(&uuid_mutex);
6845 mutex_lock(&fs_info->chunk_mutex);
6848 * Read all device items, and then all the chunk items. All
6849 * device items are found before any chunk item (their object id
6850 * is smaller than the lowest possible object id for a chunk
6851 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6853 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6856 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6860 leaf = path->nodes[0];
6861 slot = path->slots[0];
6862 if (slot >= btrfs_header_nritems(leaf)) {
6863 ret = btrfs_next_leaf(root, path);
6870 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6871 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6872 struct btrfs_dev_item *dev_item;
6873 dev_item = btrfs_item_ptr(leaf, slot,
6874 struct btrfs_dev_item);
6875 ret = read_one_dev(fs_info, leaf, dev_item);
6879 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6880 struct btrfs_chunk *chunk;
6881 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6882 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6890 * After loading chunk tree, we've got all device information,
6891 * do another round of validation checks.
6893 if (total_dev != fs_info->fs_devices->total_devices) {
6895 "super_num_devices %llu mismatch with num_devices %llu found here",
6896 btrfs_super_num_devices(fs_info->super_copy),
6901 if (btrfs_super_total_bytes(fs_info->super_copy) <
6902 fs_info->fs_devices->total_rw_bytes) {
6904 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6905 btrfs_super_total_bytes(fs_info->super_copy),
6906 fs_info->fs_devices->total_rw_bytes);
6912 mutex_unlock(&fs_info->chunk_mutex);
6913 mutex_unlock(&uuid_mutex);
6915 btrfs_free_path(path);
6919 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6921 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6922 struct btrfs_device *device;
6924 while (fs_devices) {
6925 mutex_lock(&fs_devices->device_list_mutex);
6926 list_for_each_entry(device, &fs_devices->devices, dev_list)
6927 device->fs_info = fs_info;
6928 mutex_unlock(&fs_devices->device_list_mutex);
6930 fs_devices = fs_devices->seed;
6934 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6938 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6939 btrfs_dev_stat_reset(dev, i);
6942 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6944 struct btrfs_key key;
6945 struct btrfs_key found_key;
6946 struct btrfs_root *dev_root = fs_info->dev_root;
6947 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6948 struct extent_buffer *eb;
6951 struct btrfs_device *device;
6952 struct btrfs_path *path = NULL;
6955 path = btrfs_alloc_path();
6961 mutex_lock(&fs_devices->device_list_mutex);
6962 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6964 struct btrfs_dev_stats_item *ptr;
6966 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6967 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6968 key.offset = device->devid;
6969 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6971 __btrfs_reset_dev_stats(device);
6972 device->dev_stats_valid = 1;
6973 btrfs_release_path(path);
6976 slot = path->slots[0];
6977 eb = path->nodes[0];
6978 btrfs_item_key_to_cpu(eb, &found_key, slot);
6979 item_size = btrfs_item_size_nr(eb, slot);
6981 ptr = btrfs_item_ptr(eb, slot,
6982 struct btrfs_dev_stats_item);
6984 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6985 if (item_size >= (1 + i) * sizeof(__le64))
6986 btrfs_dev_stat_set(device, i,
6987 btrfs_dev_stats_value(eb, ptr, i));
6989 btrfs_dev_stat_reset(device, i);
6992 device->dev_stats_valid = 1;
6993 btrfs_dev_stat_print_on_load(device);
6994 btrfs_release_path(path);
6996 mutex_unlock(&fs_devices->device_list_mutex);
6999 btrfs_free_path(path);
7000 return ret < 0 ? ret : 0;
7003 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7004 struct btrfs_fs_info *fs_info,
7005 struct btrfs_device *device)
7007 struct btrfs_root *dev_root = fs_info->dev_root;
7008 struct btrfs_path *path;
7009 struct btrfs_key key;
7010 struct extent_buffer *eb;
7011 struct btrfs_dev_stats_item *ptr;
7015 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7016 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7017 key.offset = device->devid;
7019 path = btrfs_alloc_path();
7022 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7024 btrfs_warn_in_rcu(fs_info,
7025 "error %d while searching for dev_stats item for device %s",
7026 ret, rcu_str_deref(device->name));
7031 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7032 /* need to delete old one and insert a new one */
7033 ret = btrfs_del_item(trans, dev_root, path);
7035 btrfs_warn_in_rcu(fs_info,
7036 "delete too small dev_stats item for device %s failed %d",
7037 rcu_str_deref(device->name), ret);
7044 /* need to insert a new item */
7045 btrfs_release_path(path);
7046 ret = btrfs_insert_empty_item(trans, dev_root, path,
7047 &key, sizeof(*ptr));
7049 btrfs_warn_in_rcu(fs_info,
7050 "insert dev_stats item for device %s failed %d",
7051 rcu_str_deref(device->name), ret);
7056 eb = path->nodes[0];
7057 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7058 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7059 btrfs_set_dev_stats_value(eb, ptr, i,
7060 btrfs_dev_stat_read(device, i));
7061 btrfs_mark_buffer_dirty(eb);
7064 btrfs_free_path(path);
7069 * called from commit_transaction. Writes all changed device stats to disk.
7071 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7072 struct btrfs_fs_info *fs_info)
7074 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7075 struct btrfs_device *device;
7079 mutex_lock(&fs_devices->device_list_mutex);
7080 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7081 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7084 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7085 ret = update_dev_stat_item(trans, fs_info, device);
7087 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7089 mutex_unlock(&fs_devices->device_list_mutex);
7094 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7096 btrfs_dev_stat_inc(dev, index);
7097 btrfs_dev_stat_print_on_error(dev);
7100 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7102 if (!dev->dev_stats_valid)
7104 btrfs_err_rl_in_rcu(dev->fs_info,
7105 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7106 rcu_str_deref(dev->name),
7107 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7108 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7109 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7110 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7111 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7114 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7118 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7119 if (btrfs_dev_stat_read(dev, i) != 0)
7121 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7122 return; /* all values == 0, suppress message */
7124 btrfs_info_in_rcu(dev->fs_info,
7125 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7126 rcu_str_deref(dev->name),
7127 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7128 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7129 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7130 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7131 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7134 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7135 struct btrfs_ioctl_get_dev_stats *stats)
7137 struct btrfs_device *dev;
7138 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7141 mutex_lock(&fs_devices->device_list_mutex);
7142 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7143 mutex_unlock(&fs_devices->device_list_mutex);
7146 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7148 } else if (!dev->dev_stats_valid) {
7149 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7151 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7152 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7153 if (stats->nr_items > i)
7155 btrfs_dev_stat_read_and_reset(dev, i);
7157 btrfs_dev_stat_reset(dev, i);
7160 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7161 if (stats->nr_items > i)
7162 stats->values[i] = btrfs_dev_stat_read(dev, i);
7164 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7165 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7169 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7171 struct buffer_head *bh;
7172 struct btrfs_super_block *disk_super;
7178 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7181 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7184 disk_super = (struct btrfs_super_block *)bh->b_data;
7186 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7187 set_buffer_dirty(bh);
7188 sync_dirty_buffer(bh);
7192 /* Notify udev that device has changed */
7193 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7195 /* Update ctime/mtime for device path for libblkid */
7196 update_dev_time(device_path);
7200 * Update the size of all devices, which is used for writing out the
7203 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7205 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7206 struct btrfs_device *curr, *next;
7208 if (list_empty(&fs_devices->resized_devices))
7211 mutex_lock(&fs_devices->device_list_mutex);
7212 mutex_lock(&fs_info->chunk_mutex);
7213 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7215 list_del_init(&curr->resized_list);
7216 curr->commit_total_bytes = curr->disk_total_bytes;
7218 mutex_unlock(&fs_info->chunk_mutex);
7219 mutex_unlock(&fs_devices->device_list_mutex);
7222 /* Must be invoked during the transaction commit */
7223 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7224 struct btrfs_transaction *transaction)
7226 struct extent_map *em;
7227 struct map_lookup *map;
7228 struct btrfs_device *dev;
7231 if (list_empty(&transaction->pending_chunks))
7234 /* In order to kick the device replace finish process */
7235 mutex_lock(&fs_info->chunk_mutex);
7236 list_for_each_entry(em, &transaction->pending_chunks, list) {
7237 map = em->map_lookup;
7239 for (i = 0; i < map->num_stripes; i++) {
7240 dev = map->stripes[i].dev;
7241 dev->commit_bytes_used = dev->bytes_used;
7244 mutex_unlock(&fs_info->chunk_mutex);
7247 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7249 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7250 while (fs_devices) {
7251 fs_devices->fs_info = fs_info;
7252 fs_devices = fs_devices->seed;
7256 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7258 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7259 while (fs_devices) {
7260 fs_devices->fs_info = NULL;
7261 fs_devices = fs_devices->seed;