2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <asm/div64.h>
31 #include "extent_map.h"
33 #include "transaction.h"
34 #include "print-tree.h"
36 #include "async-thread.h"
37 #include "check-integrity.h"
38 #include "rcu-string.h"
40 static int init_first_rw_device(struct btrfs_trans_handle *trans,
41 struct btrfs_root *root,
42 struct btrfs_device *device);
43 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
44 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
45 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
47 static DEFINE_MUTEX(uuid_mutex);
48 static LIST_HEAD(fs_uuids);
50 static void lock_chunks(struct btrfs_root *root)
52 mutex_lock(&root->fs_info->chunk_mutex);
55 static void unlock_chunks(struct btrfs_root *root)
57 mutex_unlock(&root->fs_info->chunk_mutex);
60 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
62 struct btrfs_device *device;
63 WARN_ON(fs_devices->opened);
64 while (!list_empty(&fs_devices->devices)) {
65 device = list_entry(fs_devices->devices.next,
66 struct btrfs_device, dev_list);
67 list_del(&device->dev_list);
68 rcu_string_free(device->name);
74 void btrfs_cleanup_fs_uuids(void)
76 struct btrfs_fs_devices *fs_devices;
78 while (!list_empty(&fs_uuids)) {
79 fs_devices = list_entry(fs_uuids.next,
80 struct btrfs_fs_devices, list);
81 list_del(&fs_devices->list);
82 free_fs_devices(fs_devices);
86 static noinline struct btrfs_device *__find_device(struct list_head *head,
89 struct btrfs_device *dev;
91 list_for_each_entry(dev, head, dev_list) {
92 if (dev->devid == devid &&
93 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
100 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
102 struct btrfs_fs_devices *fs_devices;
104 list_for_each_entry(fs_devices, &fs_uuids, list) {
105 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
111 static void requeue_list(struct btrfs_pending_bios *pending_bios,
112 struct bio *head, struct bio *tail)
115 struct bio *old_head;
117 old_head = pending_bios->head;
118 pending_bios->head = head;
119 if (pending_bios->tail)
120 tail->bi_next = old_head;
122 pending_bios->tail = tail;
126 * we try to collect pending bios for a device so we don't get a large
127 * number of procs sending bios down to the same device. This greatly
128 * improves the schedulers ability to collect and merge the bios.
130 * But, it also turns into a long list of bios to process and that is sure
131 * to eventually make the worker thread block. The solution here is to
132 * make some progress and then put this work struct back at the end of
133 * the list if the block device is congested. This way, multiple devices
134 * can make progress from a single worker thread.
136 static noinline void run_scheduled_bios(struct btrfs_device *device)
139 struct backing_dev_info *bdi;
140 struct btrfs_fs_info *fs_info;
141 struct btrfs_pending_bios *pending_bios;
145 unsigned long num_run;
146 unsigned long batch_run = 0;
148 unsigned long last_waited = 0;
150 int sync_pending = 0;
151 struct blk_plug plug;
154 * this function runs all the bios we've collected for
155 * a particular device. We don't want to wander off to
156 * another device without first sending all of these down.
157 * So, setup a plug here and finish it off before we return
159 blk_start_plug(&plug);
161 bdi = blk_get_backing_dev_info(device->bdev);
162 fs_info = device->dev_root->fs_info;
163 limit = btrfs_async_submit_limit(fs_info);
164 limit = limit * 2 / 3;
167 spin_lock(&device->io_lock);
172 /* take all the bios off the list at once and process them
173 * later on (without the lock held). But, remember the
174 * tail and other pointers so the bios can be properly reinserted
175 * into the list if we hit congestion
177 if (!force_reg && device->pending_sync_bios.head) {
178 pending_bios = &device->pending_sync_bios;
181 pending_bios = &device->pending_bios;
185 pending = pending_bios->head;
186 tail = pending_bios->tail;
187 WARN_ON(pending && !tail);
190 * if pending was null this time around, no bios need processing
191 * at all and we can stop. Otherwise it'll loop back up again
192 * and do an additional check so no bios are missed.
194 * device->running_pending is used to synchronize with the
197 if (device->pending_sync_bios.head == NULL &&
198 device->pending_bios.head == NULL) {
200 device->running_pending = 0;
203 device->running_pending = 1;
206 pending_bios->head = NULL;
207 pending_bios->tail = NULL;
209 spin_unlock(&device->io_lock);
214 /* we want to work on both lists, but do more bios on the
215 * sync list than the regular list
218 pending_bios != &device->pending_sync_bios &&
219 device->pending_sync_bios.head) ||
220 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
221 device->pending_bios.head)) {
222 spin_lock(&device->io_lock);
223 requeue_list(pending_bios, pending, tail);
228 pending = pending->bi_next;
231 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
232 waitqueue_active(&fs_info->async_submit_wait))
233 wake_up(&fs_info->async_submit_wait);
235 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
238 * if we're doing the sync list, record that our
239 * plug has some sync requests on it
241 * If we're doing the regular list and there are
242 * sync requests sitting around, unplug before
245 if (pending_bios == &device->pending_sync_bios) {
247 } else if (sync_pending) {
248 blk_finish_plug(&plug);
249 blk_start_plug(&plug);
253 btrfsic_submit_bio(cur->bi_rw, cur);
260 * we made progress, there is more work to do and the bdi
261 * is now congested. Back off and let other work structs
264 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
265 fs_info->fs_devices->open_devices > 1) {
266 struct io_context *ioc;
268 ioc = current->io_context;
271 * the main goal here is that we don't want to
272 * block if we're going to be able to submit
273 * more requests without blocking.
275 * This code does two great things, it pokes into
276 * the elevator code from a filesystem _and_
277 * it makes assumptions about how batching works.
279 if (ioc && ioc->nr_batch_requests > 0 &&
280 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
282 ioc->last_waited == last_waited)) {
284 * we want to go through our batch of
285 * requests and stop. So, we copy out
286 * the ioc->last_waited time and test
287 * against it before looping
289 last_waited = ioc->last_waited;
294 spin_lock(&device->io_lock);
295 requeue_list(pending_bios, pending, tail);
296 device->running_pending = 1;
298 spin_unlock(&device->io_lock);
299 btrfs_requeue_work(&device->work);
302 /* unplug every 64 requests just for good measure */
303 if (batch_run % 64 == 0) {
304 blk_finish_plug(&plug);
305 blk_start_plug(&plug);
314 spin_lock(&device->io_lock);
315 if (device->pending_bios.head || device->pending_sync_bios.head)
317 spin_unlock(&device->io_lock);
320 blk_finish_plug(&plug);
323 static void pending_bios_fn(struct btrfs_work *work)
325 struct btrfs_device *device;
327 device = container_of(work, struct btrfs_device, work);
328 run_scheduled_bios(device);
331 static noinline int device_list_add(const char *path,
332 struct btrfs_super_block *disk_super,
333 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
335 struct btrfs_device *device;
336 struct btrfs_fs_devices *fs_devices;
337 struct rcu_string *name;
338 u64 found_transid = btrfs_super_generation(disk_super);
340 fs_devices = find_fsid(disk_super->fsid);
342 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
345 INIT_LIST_HEAD(&fs_devices->devices);
346 INIT_LIST_HEAD(&fs_devices->alloc_list);
347 list_add(&fs_devices->list, &fs_uuids);
348 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
349 fs_devices->latest_devid = devid;
350 fs_devices->latest_trans = found_transid;
351 mutex_init(&fs_devices->device_list_mutex);
354 device = __find_device(&fs_devices->devices, devid,
355 disk_super->dev_item.uuid);
358 if (fs_devices->opened)
361 device = kzalloc(sizeof(*device), GFP_NOFS);
363 /* we can safely leave the fs_devices entry around */
366 device->devid = devid;
367 device->dev_stats_valid = 0;
368 device->work.func = pending_bios_fn;
369 memcpy(device->uuid, disk_super->dev_item.uuid,
371 spin_lock_init(&device->io_lock);
373 name = rcu_string_strdup(path, GFP_NOFS);
378 rcu_assign_pointer(device->name, name);
379 INIT_LIST_HEAD(&device->dev_alloc_list);
381 /* init readahead state */
382 spin_lock_init(&device->reada_lock);
383 device->reada_curr_zone = NULL;
384 atomic_set(&device->reada_in_flight, 0);
385 device->reada_next = 0;
386 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
387 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
389 mutex_lock(&fs_devices->device_list_mutex);
390 list_add_rcu(&device->dev_list, &fs_devices->devices);
391 mutex_unlock(&fs_devices->device_list_mutex);
393 device->fs_devices = fs_devices;
394 fs_devices->num_devices++;
395 } else if (!device->name || strcmp(device->name->str, path)) {
396 name = rcu_string_strdup(path, GFP_NOFS);
399 rcu_string_free(device->name);
400 rcu_assign_pointer(device->name, name);
401 if (device->missing) {
402 fs_devices->missing_devices--;
407 if (found_transid > fs_devices->latest_trans) {
408 fs_devices->latest_devid = devid;
409 fs_devices->latest_trans = found_transid;
411 *fs_devices_ret = fs_devices;
415 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
417 struct btrfs_fs_devices *fs_devices;
418 struct btrfs_device *device;
419 struct btrfs_device *orig_dev;
421 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
423 return ERR_PTR(-ENOMEM);
425 INIT_LIST_HEAD(&fs_devices->devices);
426 INIT_LIST_HEAD(&fs_devices->alloc_list);
427 INIT_LIST_HEAD(&fs_devices->list);
428 mutex_init(&fs_devices->device_list_mutex);
429 fs_devices->latest_devid = orig->latest_devid;
430 fs_devices->latest_trans = orig->latest_trans;
431 fs_devices->total_devices = orig->total_devices;
432 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
434 /* We have held the volume lock, it is safe to get the devices. */
435 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
436 struct rcu_string *name;
438 device = kzalloc(sizeof(*device), GFP_NOFS);
443 * This is ok to do without rcu read locked because we hold the
444 * uuid mutex so nothing we touch in here is going to disappear.
446 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
451 rcu_assign_pointer(device->name, name);
453 device->devid = orig_dev->devid;
454 device->work.func = pending_bios_fn;
455 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
456 spin_lock_init(&device->io_lock);
457 INIT_LIST_HEAD(&device->dev_list);
458 INIT_LIST_HEAD(&device->dev_alloc_list);
460 list_add(&device->dev_list, &fs_devices->devices);
461 device->fs_devices = fs_devices;
462 fs_devices->num_devices++;
466 free_fs_devices(fs_devices);
467 return ERR_PTR(-ENOMEM);
470 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
472 struct btrfs_device *device, *next;
474 struct block_device *latest_bdev = NULL;
475 u64 latest_devid = 0;
476 u64 latest_transid = 0;
478 mutex_lock(&uuid_mutex);
480 /* This is the initialized path, it is safe to release the devices. */
481 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
482 if (device->in_fs_metadata) {
483 if (!latest_transid ||
484 device->generation > latest_transid) {
485 latest_devid = device->devid;
486 latest_transid = device->generation;
487 latest_bdev = device->bdev;
493 blkdev_put(device->bdev, device->mode);
495 fs_devices->open_devices--;
497 if (device->writeable) {
498 list_del_init(&device->dev_alloc_list);
499 device->writeable = 0;
500 fs_devices->rw_devices--;
502 list_del_init(&device->dev_list);
503 fs_devices->num_devices--;
504 rcu_string_free(device->name);
508 if (fs_devices->seed) {
509 fs_devices = fs_devices->seed;
513 fs_devices->latest_bdev = latest_bdev;
514 fs_devices->latest_devid = latest_devid;
515 fs_devices->latest_trans = latest_transid;
517 mutex_unlock(&uuid_mutex);
520 static void __free_device(struct work_struct *work)
522 struct btrfs_device *device;
524 device = container_of(work, struct btrfs_device, rcu_work);
527 blkdev_put(device->bdev, device->mode);
529 rcu_string_free(device->name);
533 static void free_device(struct rcu_head *head)
535 struct btrfs_device *device;
537 device = container_of(head, struct btrfs_device, rcu);
539 INIT_WORK(&device->rcu_work, __free_device);
540 schedule_work(&device->rcu_work);
543 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
545 struct btrfs_device *device;
547 if (--fs_devices->opened > 0)
550 mutex_lock(&fs_devices->device_list_mutex);
551 list_for_each_entry(device, &fs_devices->devices, dev_list) {
552 struct btrfs_device *new_device;
553 struct rcu_string *name;
556 fs_devices->open_devices--;
558 if (device->writeable) {
559 list_del_init(&device->dev_alloc_list);
560 fs_devices->rw_devices--;
563 if (device->can_discard)
564 fs_devices->num_can_discard--;
566 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
567 BUG_ON(!new_device); /* -ENOMEM */
568 memcpy(new_device, device, sizeof(*new_device));
570 /* Safe because we are under uuid_mutex */
572 name = rcu_string_strdup(device->name->str, GFP_NOFS);
573 BUG_ON(device->name && !name); /* -ENOMEM */
574 rcu_assign_pointer(new_device->name, name);
576 new_device->bdev = NULL;
577 new_device->writeable = 0;
578 new_device->in_fs_metadata = 0;
579 new_device->can_discard = 0;
580 list_replace_rcu(&device->dev_list, &new_device->dev_list);
582 call_rcu(&device->rcu, free_device);
584 mutex_unlock(&fs_devices->device_list_mutex);
586 WARN_ON(fs_devices->open_devices);
587 WARN_ON(fs_devices->rw_devices);
588 fs_devices->opened = 0;
589 fs_devices->seeding = 0;
594 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
596 struct btrfs_fs_devices *seed_devices = NULL;
599 mutex_lock(&uuid_mutex);
600 ret = __btrfs_close_devices(fs_devices);
601 if (!fs_devices->opened) {
602 seed_devices = fs_devices->seed;
603 fs_devices->seed = NULL;
605 mutex_unlock(&uuid_mutex);
607 while (seed_devices) {
608 fs_devices = seed_devices;
609 seed_devices = fs_devices->seed;
610 __btrfs_close_devices(fs_devices);
611 free_fs_devices(fs_devices);
616 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
617 fmode_t flags, void *holder)
619 struct request_queue *q;
620 struct block_device *bdev;
621 struct list_head *head = &fs_devices->devices;
622 struct btrfs_device *device;
623 struct block_device *latest_bdev = NULL;
624 struct buffer_head *bh;
625 struct btrfs_super_block *disk_super;
626 u64 latest_devid = 0;
627 u64 latest_transid = 0;
634 list_for_each_entry(device, head, dev_list) {
640 bdev = blkdev_get_by_path(device->name->str, flags, holder);
642 printk(KERN_INFO "open %s failed\n", device->name->str);
645 filemap_write_and_wait(bdev->bd_inode->i_mapping);
646 invalidate_bdev(bdev);
647 set_blocksize(bdev, 4096);
649 bh = btrfs_read_dev_super(bdev);
653 disk_super = (struct btrfs_super_block *)bh->b_data;
654 devid = btrfs_stack_device_id(&disk_super->dev_item);
655 if (devid != device->devid)
658 if (memcmp(device->uuid, disk_super->dev_item.uuid,
662 device->generation = btrfs_super_generation(disk_super);
663 if (!latest_transid || device->generation > latest_transid) {
664 latest_devid = devid;
665 latest_transid = device->generation;
669 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
670 device->writeable = 0;
672 device->writeable = !bdev_read_only(bdev);
676 q = bdev_get_queue(bdev);
677 if (blk_queue_discard(q)) {
678 device->can_discard = 1;
679 fs_devices->num_can_discard++;
683 device->in_fs_metadata = 0;
684 device->mode = flags;
686 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
687 fs_devices->rotating = 1;
689 fs_devices->open_devices++;
690 if (device->writeable) {
691 fs_devices->rw_devices++;
692 list_add(&device->dev_alloc_list,
693 &fs_devices->alloc_list);
701 blkdev_put(bdev, flags);
705 if (fs_devices->open_devices == 0) {
709 fs_devices->seeding = seeding;
710 fs_devices->opened = 1;
711 fs_devices->latest_bdev = latest_bdev;
712 fs_devices->latest_devid = latest_devid;
713 fs_devices->latest_trans = latest_transid;
714 fs_devices->total_rw_bytes = 0;
719 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
720 fmode_t flags, void *holder)
724 mutex_lock(&uuid_mutex);
725 if (fs_devices->opened) {
726 fs_devices->opened++;
729 ret = __btrfs_open_devices(fs_devices, flags, holder);
731 mutex_unlock(&uuid_mutex);
735 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
736 struct btrfs_fs_devices **fs_devices_ret)
738 struct btrfs_super_block *disk_super;
739 struct block_device *bdev;
740 struct buffer_head *bh;
747 bdev = blkdev_get_by_path(path, flags, holder);
754 mutex_lock(&uuid_mutex);
755 ret = set_blocksize(bdev, 4096);
758 bh = btrfs_read_dev_super(bdev);
763 disk_super = (struct btrfs_super_block *)bh->b_data;
764 devid = btrfs_stack_device_id(&disk_super->dev_item);
765 transid = btrfs_super_generation(disk_super);
766 total_devices = btrfs_super_num_devices(disk_super);
767 if (disk_super->label[0])
768 printk(KERN_INFO "device label %s ", disk_super->label);
770 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
771 printk(KERN_CONT "devid %llu transid %llu %s\n",
772 (unsigned long long)devid, (unsigned long long)transid, path);
773 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
774 if (!ret && fs_devices_ret)
775 (*fs_devices_ret)->total_devices = total_devices;
778 mutex_unlock(&uuid_mutex);
779 blkdev_put(bdev, flags);
784 /* helper to account the used device space in the range */
785 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
786 u64 end, u64 *length)
788 struct btrfs_key key;
789 struct btrfs_root *root = device->dev_root;
790 struct btrfs_dev_extent *dev_extent;
791 struct btrfs_path *path;
795 struct extent_buffer *l;
799 if (start >= device->total_bytes)
802 path = btrfs_alloc_path();
807 key.objectid = device->devid;
809 key.type = BTRFS_DEV_EXTENT_KEY;
811 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
815 ret = btrfs_previous_item(root, path, key.objectid, key.type);
822 slot = path->slots[0];
823 if (slot >= btrfs_header_nritems(l)) {
824 ret = btrfs_next_leaf(root, path);
832 btrfs_item_key_to_cpu(l, &key, slot);
834 if (key.objectid < device->devid)
837 if (key.objectid > device->devid)
840 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
843 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
844 extent_end = key.offset + btrfs_dev_extent_length(l,
846 if (key.offset <= start && extent_end > end) {
847 *length = end - start + 1;
849 } else if (key.offset <= start && extent_end > start)
850 *length += extent_end - start;
851 else if (key.offset > start && extent_end <= end)
852 *length += extent_end - key.offset;
853 else if (key.offset > start && key.offset <= end) {
854 *length += end - key.offset + 1;
856 } else if (key.offset > end)
864 btrfs_free_path(path);
869 * find_free_dev_extent - find free space in the specified device
870 * @device: the device which we search the free space in
871 * @num_bytes: the size of the free space that we need
872 * @start: store the start of the free space.
873 * @len: the size of the free space. that we find, or the size of the max
874 * free space if we don't find suitable free space
876 * this uses a pretty simple search, the expectation is that it is
877 * called very infrequently and that a given device has a small number
880 * @start is used to store the start of the free space if we find. But if we
881 * don't find suitable free space, it will be used to store the start position
882 * of the max free space.
884 * @len is used to store the size of the free space that we find.
885 * But if we don't find suitable free space, it is used to store the size of
886 * the max free space.
888 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
889 u64 *start, u64 *len)
891 struct btrfs_key key;
892 struct btrfs_root *root = device->dev_root;
893 struct btrfs_dev_extent *dev_extent;
894 struct btrfs_path *path;
900 u64 search_end = device->total_bytes;
903 struct extent_buffer *l;
905 /* FIXME use last free of some kind */
907 /* we don't want to overwrite the superblock on the drive,
908 * so we make sure to start at an offset of at least 1MB
910 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
912 max_hole_start = search_start;
916 if (search_start >= search_end) {
921 path = btrfs_alloc_path();
928 key.objectid = device->devid;
929 key.offset = search_start;
930 key.type = BTRFS_DEV_EXTENT_KEY;
932 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
936 ret = btrfs_previous_item(root, path, key.objectid, key.type);
943 slot = path->slots[0];
944 if (slot >= btrfs_header_nritems(l)) {
945 ret = btrfs_next_leaf(root, path);
953 btrfs_item_key_to_cpu(l, &key, slot);
955 if (key.objectid < device->devid)
958 if (key.objectid > device->devid)
961 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
964 if (key.offset > search_start) {
965 hole_size = key.offset - search_start;
967 if (hole_size > max_hole_size) {
968 max_hole_start = search_start;
969 max_hole_size = hole_size;
973 * If this free space is greater than which we need,
974 * it must be the max free space that we have found
975 * until now, so max_hole_start must point to the start
976 * of this free space and the length of this free space
977 * is stored in max_hole_size. Thus, we return
978 * max_hole_start and max_hole_size and go back to the
981 if (hole_size >= num_bytes) {
987 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
988 extent_end = key.offset + btrfs_dev_extent_length(l,
990 if (extent_end > search_start)
991 search_start = extent_end;
998 * At this point, search_start should be the end of
999 * allocated dev extents, and when shrinking the device,
1000 * search_end may be smaller than search_start.
1002 if (search_end > search_start)
1003 hole_size = search_end - search_start;
1005 if (hole_size > max_hole_size) {
1006 max_hole_start = search_start;
1007 max_hole_size = hole_size;
1011 if (hole_size < num_bytes)
1017 btrfs_free_path(path);
1019 *start = max_hole_start;
1021 *len = max_hole_size;
1025 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1026 struct btrfs_device *device,
1030 struct btrfs_path *path;
1031 struct btrfs_root *root = device->dev_root;
1032 struct btrfs_key key;
1033 struct btrfs_key found_key;
1034 struct extent_buffer *leaf = NULL;
1035 struct btrfs_dev_extent *extent = NULL;
1037 path = btrfs_alloc_path();
1041 key.objectid = device->devid;
1043 key.type = BTRFS_DEV_EXTENT_KEY;
1045 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1047 ret = btrfs_previous_item(root, path, key.objectid,
1048 BTRFS_DEV_EXTENT_KEY);
1051 leaf = path->nodes[0];
1052 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1053 extent = btrfs_item_ptr(leaf, path->slots[0],
1054 struct btrfs_dev_extent);
1055 BUG_ON(found_key.offset > start || found_key.offset +
1056 btrfs_dev_extent_length(leaf, extent) < start);
1058 btrfs_release_path(path);
1060 } else if (ret == 0) {
1061 leaf = path->nodes[0];
1062 extent = btrfs_item_ptr(leaf, path->slots[0],
1063 struct btrfs_dev_extent);
1065 btrfs_error(root->fs_info, ret, "Slot search failed");
1069 if (device->bytes_used > 0) {
1070 u64 len = btrfs_dev_extent_length(leaf, extent);
1071 device->bytes_used -= len;
1072 spin_lock(&root->fs_info->free_chunk_lock);
1073 root->fs_info->free_chunk_space += len;
1074 spin_unlock(&root->fs_info->free_chunk_lock);
1076 ret = btrfs_del_item(trans, root, path);
1078 btrfs_error(root->fs_info, ret,
1079 "Failed to remove dev extent item");
1082 btrfs_free_path(path);
1086 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1087 struct btrfs_device *device,
1088 u64 chunk_tree, u64 chunk_objectid,
1089 u64 chunk_offset, u64 start, u64 num_bytes)
1092 struct btrfs_path *path;
1093 struct btrfs_root *root = device->dev_root;
1094 struct btrfs_dev_extent *extent;
1095 struct extent_buffer *leaf;
1096 struct btrfs_key key;
1098 WARN_ON(!device->in_fs_metadata);
1099 path = btrfs_alloc_path();
1103 key.objectid = device->devid;
1105 key.type = BTRFS_DEV_EXTENT_KEY;
1106 ret = btrfs_insert_empty_item(trans, root, path, &key,
1111 leaf = path->nodes[0];
1112 extent = btrfs_item_ptr(leaf, path->slots[0],
1113 struct btrfs_dev_extent);
1114 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1115 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1116 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1118 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1119 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1122 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1123 btrfs_mark_buffer_dirty(leaf);
1125 btrfs_free_path(path);
1129 static noinline int find_next_chunk(struct btrfs_root *root,
1130 u64 objectid, u64 *offset)
1132 struct btrfs_path *path;
1134 struct btrfs_key key;
1135 struct btrfs_chunk *chunk;
1136 struct btrfs_key found_key;
1138 path = btrfs_alloc_path();
1142 key.objectid = objectid;
1143 key.offset = (u64)-1;
1144 key.type = BTRFS_CHUNK_ITEM_KEY;
1146 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1150 BUG_ON(ret == 0); /* Corruption */
1152 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1156 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1158 if (found_key.objectid != objectid)
1161 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1162 struct btrfs_chunk);
1163 *offset = found_key.offset +
1164 btrfs_chunk_length(path->nodes[0], chunk);
1169 btrfs_free_path(path);
1173 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1176 struct btrfs_key key;
1177 struct btrfs_key found_key;
1178 struct btrfs_path *path;
1180 root = root->fs_info->chunk_root;
1182 path = btrfs_alloc_path();
1186 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1187 key.type = BTRFS_DEV_ITEM_KEY;
1188 key.offset = (u64)-1;
1190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1194 BUG_ON(ret == 0); /* Corruption */
1196 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1197 BTRFS_DEV_ITEM_KEY);
1201 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1203 *objectid = found_key.offset + 1;
1207 btrfs_free_path(path);
1212 * the device information is stored in the chunk root
1213 * the btrfs_device struct should be fully filled in
1215 int btrfs_add_device(struct btrfs_trans_handle *trans,
1216 struct btrfs_root *root,
1217 struct btrfs_device *device)
1220 struct btrfs_path *path;
1221 struct btrfs_dev_item *dev_item;
1222 struct extent_buffer *leaf;
1223 struct btrfs_key key;
1226 root = root->fs_info->chunk_root;
1228 path = btrfs_alloc_path();
1232 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1233 key.type = BTRFS_DEV_ITEM_KEY;
1234 key.offset = device->devid;
1236 ret = btrfs_insert_empty_item(trans, root, path, &key,
1241 leaf = path->nodes[0];
1242 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1244 btrfs_set_device_id(leaf, dev_item, device->devid);
1245 btrfs_set_device_generation(leaf, dev_item, 0);
1246 btrfs_set_device_type(leaf, dev_item, device->type);
1247 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1248 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1249 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1250 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1251 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1252 btrfs_set_device_group(leaf, dev_item, 0);
1253 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1254 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1255 btrfs_set_device_start_offset(leaf, dev_item, 0);
1257 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1258 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1259 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1260 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1261 btrfs_mark_buffer_dirty(leaf);
1265 btrfs_free_path(path);
1269 static int btrfs_rm_dev_item(struct btrfs_root *root,
1270 struct btrfs_device *device)
1273 struct btrfs_path *path;
1274 struct btrfs_key key;
1275 struct btrfs_trans_handle *trans;
1277 root = root->fs_info->chunk_root;
1279 path = btrfs_alloc_path();
1283 trans = btrfs_start_transaction(root, 0);
1284 if (IS_ERR(trans)) {
1285 btrfs_free_path(path);
1286 return PTR_ERR(trans);
1288 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1289 key.type = BTRFS_DEV_ITEM_KEY;
1290 key.offset = device->devid;
1293 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1302 ret = btrfs_del_item(trans, root, path);
1306 btrfs_free_path(path);
1307 unlock_chunks(root);
1308 btrfs_commit_transaction(trans, root);
1312 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1314 struct btrfs_device *device;
1315 struct btrfs_device *next_device;
1316 struct block_device *bdev;
1317 struct buffer_head *bh = NULL;
1318 struct btrfs_super_block *disk_super;
1319 struct btrfs_fs_devices *cur_devices;
1325 bool clear_super = false;
1327 mutex_lock(&uuid_mutex);
1329 all_avail = root->fs_info->avail_data_alloc_bits |
1330 root->fs_info->avail_system_alloc_bits |
1331 root->fs_info->avail_metadata_alloc_bits;
1333 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1334 root->fs_info->fs_devices->num_devices <= 4) {
1335 printk(KERN_ERR "btrfs: unable to go below four devices "
1341 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1342 root->fs_info->fs_devices->num_devices <= 2) {
1343 printk(KERN_ERR "btrfs: unable to go below two "
1344 "devices on raid1\n");
1349 if (strcmp(device_path, "missing") == 0) {
1350 struct list_head *devices;
1351 struct btrfs_device *tmp;
1354 devices = &root->fs_info->fs_devices->devices;
1356 * It is safe to read the devices since the volume_mutex
1359 list_for_each_entry(tmp, devices, dev_list) {
1360 if (tmp->in_fs_metadata && !tmp->bdev) {
1369 printk(KERN_ERR "btrfs: no missing devices found to "
1374 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1375 root->fs_info->bdev_holder);
1377 ret = PTR_ERR(bdev);
1381 set_blocksize(bdev, 4096);
1382 invalidate_bdev(bdev);
1383 bh = btrfs_read_dev_super(bdev);
1388 disk_super = (struct btrfs_super_block *)bh->b_data;
1389 devid = btrfs_stack_device_id(&disk_super->dev_item);
1390 dev_uuid = disk_super->dev_item.uuid;
1391 device = btrfs_find_device(root, devid, dev_uuid,
1399 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1400 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1406 if (device->writeable) {
1408 list_del_init(&device->dev_alloc_list);
1409 unlock_chunks(root);
1410 root->fs_info->fs_devices->rw_devices--;
1414 ret = btrfs_shrink_device(device, 0);
1418 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1422 spin_lock(&root->fs_info->free_chunk_lock);
1423 root->fs_info->free_chunk_space = device->total_bytes -
1425 spin_unlock(&root->fs_info->free_chunk_lock);
1427 device->in_fs_metadata = 0;
1428 btrfs_scrub_cancel_dev(root, device);
1431 * the device list mutex makes sure that we don't change
1432 * the device list while someone else is writing out all
1433 * the device supers.
1436 cur_devices = device->fs_devices;
1437 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1438 list_del_rcu(&device->dev_list);
1440 device->fs_devices->num_devices--;
1441 device->fs_devices->total_devices--;
1443 if (device->missing)
1444 root->fs_info->fs_devices->missing_devices--;
1446 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1447 struct btrfs_device, dev_list);
1448 if (device->bdev == root->fs_info->sb->s_bdev)
1449 root->fs_info->sb->s_bdev = next_device->bdev;
1450 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1451 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1454 device->fs_devices->open_devices--;
1456 call_rcu(&device->rcu, free_device);
1457 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1459 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1460 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1462 if (cur_devices->open_devices == 0) {
1463 struct btrfs_fs_devices *fs_devices;
1464 fs_devices = root->fs_info->fs_devices;
1465 while (fs_devices) {
1466 if (fs_devices->seed == cur_devices)
1468 fs_devices = fs_devices->seed;
1470 fs_devices->seed = cur_devices->seed;
1471 cur_devices->seed = NULL;
1473 __btrfs_close_devices(cur_devices);
1474 unlock_chunks(root);
1475 free_fs_devices(cur_devices);
1479 * at this point, the device is zero sized. We want to
1480 * remove it from the devices list and zero out the old super
1483 /* make sure this device isn't detected as part of
1486 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1487 set_buffer_dirty(bh);
1488 sync_dirty_buffer(bh);
1497 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1499 mutex_unlock(&uuid_mutex);
1502 if (device->writeable) {
1504 list_add(&device->dev_alloc_list,
1505 &root->fs_info->fs_devices->alloc_list);
1506 unlock_chunks(root);
1507 root->fs_info->fs_devices->rw_devices++;
1513 * does all the dirty work required for changing file system's UUID.
1515 static int btrfs_prepare_sprout(struct btrfs_root *root)
1517 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1518 struct btrfs_fs_devices *old_devices;
1519 struct btrfs_fs_devices *seed_devices;
1520 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1521 struct btrfs_device *device;
1524 BUG_ON(!mutex_is_locked(&uuid_mutex));
1525 if (!fs_devices->seeding)
1528 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1532 old_devices = clone_fs_devices(fs_devices);
1533 if (IS_ERR(old_devices)) {
1534 kfree(seed_devices);
1535 return PTR_ERR(old_devices);
1538 list_add(&old_devices->list, &fs_uuids);
1540 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1541 seed_devices->opened = 1;
1542 INIT_LIST_HEAD(&seed_devices->devices);
1543 INIT_LIST_HEAD(&seed_devices->alloc_list);
1544 mutex_init(&seed_devices->device_list_mutex);
1546 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1547 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1549 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1551 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1552 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1553 device->fs_devices = seed_devices;
1556 fs_devices->seeding = 0;
1557 fs_devices->num_devices = 0;
1558 fs_devices->open_devices = 0;
1559 fs_devices->total_devices = 0;
1560 fs_devices->seed = seed_devices;
1562 generate_random_uuid(fs_devices->fsid);
1563 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1564 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1565 super_flags = btrfs_super_flags(disk_super) &
1566 ~BTRFS_SUPER_FLAG_SEEDING;
1567 btrfs_set_super_flags(disk_super, super_flags);
1573 * strore the expected generation for seed devices in device items.
1575 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1576 struct btrfs_root *root)
1578 struct btrfs_path *path;
1579 struct extent_buffer *leaf;
1580 struct btrfs_dev_item *dev_item;
1581 struct btrfs_device *device;
1582 struct btrfs_key key;
1583 u8 fs_uuid[BTRFS_UUID_SIZE];
1584 u8 dev_uuid[BTRFS_UUID_SIZE];
1588 path = btrfs_alloc_path();
1592 root = root->fs_info->chunk_root;
1593 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1595 key.type = BTRFS_DEV_ITEM_KEY;
1598 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1602 leaf = path->nodes[0];
1604 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1605 ret = btrfs_next_leaf(root, path);
1610 leaf = path->nodes[0];
1611 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1612 btrfs_release_path(path);
1616 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1617 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1618 key.type != BTRFS_DEV_ITEM_KEY)
1621 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1622 struct btrfs_dev_item);
1623 devid = btrfs_device_id(leaf, dev_item);
1624 read_extent_buffer(leaf, dev_uuid,
1625 (unsigned long)btrfs_device_uuid(dev_item),
1627 read_extent_buffer(leaf, fs_uuid,
1628 (unsigned long)btrfs_device_fsid(dev_item),
1630 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1631 BUG_ON(!device); /* Logic error */
1633 if (device->fs_devices->seeding) {
1634 btrfs_set_device_generation(leaf, dev_item,
1635 device->generation);
1636 btrfs_mark_buffer_dirty(leaf);
1644 btrfs_free_path(path);
1648 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1650 struct request_queue *q;
1651 struct btrfs_trans_handle *trans;
1652 struct btrfs_device *device;
1653 struct block_device *bdev;
1654 struct list_head *devices;
1655 struct super_block *sb = root->fs_info->sb;
1656 struct rcu_string *name;
1658 int seeding_dev = 0;
1661 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1664 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1665 root->fs_info->bdev_holder);
1667 return PTR_ERR(bdev);
1669 if (root->fs_info->fs_devices->seeding) {
1671 down_write(&sb->s_umount);
1672 mutex_lock(&uuid_mutex);
1675 filemap_write_and_wait(bdev->bd_inode->i_mapping);
1677 devices = &root->fs_info->fs_devices->devices;
1679 * we have the volume lock, so we don't need the extra
1680 * device list mutex while reading the list here.
1682 list_for_each_entry(device, devices, dev_list) {
1683 if (device->bdev == bdev) {
1689 device = kzalloc(sizeof(*device), GFP_NOFS);
1691 /* we can safely leave the fs_devices entry around */
1696 name = rcu_string_strdup(device_path, GFP_NOFS);
1702 rcu_assign_pointer(device->name, name);
1704 ret = find_next_devid(root, &device->devid);
1706 rcu_string_free(device->name);
1711 trans = btrfs_start_transaction(root, 0);
1712 if (IS_ERR(trans)) {
1713 rcu_string_free(device->name);
1715 ret = PTR_ERR(trans);
1721 q = bdev_get_queue(bdev);
1722 if (blk_queue_discard(q))
1723 device->can_discard = 1;
1724 device->writeable = 1;
1725 device->work.func = pending_bios_fn;
1726 generate_random_uuid(device->uuid);
1727 spin_lock_init(&device->io_lock);
1728 device->generation = trans->transid;
1729 device->io_width = root->sectorsize;
1730 device->io_align = root->sectorsize;
1731 device->sector_size = root->sectorsize;
1732 device->total_bytes = i_size_read(bdev->bd_inode);
1733 device->disk_total_bytes = device->total_bytes;
1734 device->dev_root = root->fs_info->dev_root;
1735 device->bdev = bdev;
1736 device->in_fs_metadata = 1;
1737 device->mode = FMODE_EXCL;
1738 set_blocksize(device->bdev, 4096);
1741 sb->s_flags &= ~MS_RDONLY;
1742 ret = btrfs_prepare_sprout(root);
1743 BUG_ON(ret); /* -ENOMEM */
1746 device->fs_devices = root->fs_info->fs_devices;
1748 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1749 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
1750 list_add(&device->dev_alloc_list,
1751 &root->fs_info->fs_devices->alloc_list);
1752 root->fs_info->fs_devices->num_devices++;
1753 root->fs_info->fs_devices->open_devices++;
1754 root->fs_info->fs_devices->rw_devices++;
1755 root->fs_info->fs_devices->total_devices++;
1756 if (device->can_discard)
1757 root->fs_info->fs_devices->num_can_discard++;
1758 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1760 spin_lock(&root->fs_info->free_chunk_lock);
1761 root->fs_info->free_chunk_space += device->total_bytes;
1762 spin_unlock(&root->fs_info->free_chunk_lock);
1764 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1765 root->fs_info->fs_devices->rotating = 1;
1767 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1768 btrfs_set_super_total_bytes(root->fs_info->super_copy,
1769 total_bytes + device->total_bytes);
1771 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1772 btrfs_set_super_num_devices(root->fs_info->super_copy,
1774 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1777 ret = init_first_rw_device(trans, root, device);
1780 ret = btrfs_finish_sprout(trans, root);
1784 ret = btrfs_add_device(trans, root, device);
1790 * we've got more storage, clear any full flags on the space
1793 btrfs_clear_space_info_full(root->fs_info);
1795 unlock_chunks(root);
1796 ret = btrfs_commit_transaction(trans, root);
1799 mutex_unlock(&uuid_mutex);
1800 up_write(&sb->s_umount);
1802 if (ret) /* transaction commit */
1805 ret = btrfs_relocate_sys_chunks(root);
1807 btrfs_error(root->fs_info, ret,
1808 "Failed to relocate sys chunks after "
1809 "device initialization. This can be fixed "
1810 "using the \"btrfs balance\" command.");
1816 unlock_chunks(root);
1817 btrfs_abort_transaction(trans, root, ret);
1818 btrfs_end_transaction(trans, root);
1819 rcu_string_free(device->name);
1822 blkdev_put(bdev, FMODE_EXCL);
1824 mutex_unlock(&uuid_mutex);
1825 up_write(&sb->s_umount);
1830 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1831 struct btrfs_device *device)
1834 struct btrfs_path *path;
1835 struct btrfs_root *root;
1836 struct btrfs_dev_item *dev_item;
1837 struct extent_buffer *leaf;
1838 struct btrfs_key key;
1840 root = device->dev_root->fs_info->chunk_root;
1842 path = btrfs_alloc_path();
1846 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1847 key.type = BTRFS_DEV_ITEM_KEY;
1848 key.offset = device->devid;
1850 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1859 leaf = path->nodes[0];
1860 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1862 btrfs_set_device_id(leaf, dev_item, device->devid);
1863 btrfs_set_device_type(leaf, dev_item, device->type);
1864 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1865 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1866 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1867 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1868 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1869 btrfs_mark_buffer_dirty(leaf);
1872 btrfs_free_path(path);
1876 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1877 struct btrfs_device *device, u64 new_size)
1879 struct btrfs_super_block *super_copy =
1880 device->dev_root->fs_info->super_copy;
1881 u64 old_total = btrfs_super_total_bytes(super_copy);
1882 u64 diff = new_size - device->total_bytes;
1884 if (!device->writeable)
1886 if (new_size <= device->total_bytes)
1889 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1890 device->fs_devices->total_rw_bytes += diff;
1892 device->total_bytes = new_size;
1893 device->disk_total_bytes = new_size;
1894 btrfs_clear_space_info_full(device->dev_root->fs_info);
1896 return btrfs_update_device(trans, device);
1899 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1900 struct btrfs_device *device, u64 new_size)
1903 lock_chunks(device->dev_root);
1904 ret = __btrfs_grow_device(trans, device, new_size);
1905 unlock_chunks(device->dev_root);
1909 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1910 struct btrfs_root *root,
1911 u64 chunk_tree, u64 chunk_objectid,
1915 struct btrfs_path *path;
1916 struct btrfs_key key;
1918 root = root->fs_info->chunk_root;
1919 path = btrfs_alloc_path();
1923 key.objectid = chunk_objectid;
1924 key.offset = chunk_offset;
1925 key.type = BTRFS_CHUNK_ITEM_KEY;
1927 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1930 else if (ret > 0) { /* Logic error or corruption */
1931 btrfs_error(root->fs_info, -ENOENT,
1932 "Failed lookup while freeing chunk.");
1937 ret = btrfs_del_item(trans, root, path);
1939 btrfs_error(root->fs_info, ret,
1940 "Failed to delete chunk item.");
1942 btrfs_free_path(path);
1946 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1949 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1950 struct btrfs_disk_key *disk_key;
1951 struct btrfs_chunk *chunk;
1958 struct btrfs_key key;
1960 array_size = btrfs_super_sys_array_size(super_copy);
1962 ptr = super_copy->sys_chunk_array;
1965 while (cur < array_size) {
1966 disk_key = (struct btrfs_disk_key *)ptr;
1967 btrfs_disk_key_to_cpu(&key, disk_key);
1969 len = sizeof(*disk_key);
1971 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1972 chunk = (struct btrfs_chunk *)(ptr + len);
1973 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1974 len += btrfs_chunk_item_size(num_stripes);
1979 if (key.objectid == chunk_objectid &&
1980 key.offset == chunk_offset) {
1981 memmove(ptr, ptr + len, array_size - (cur + len));
1983 btrfs_set_super_sys_array_size(super_copy, array_size);
1992 static int btrfs_relocate_chunk(struct btrfs_root *root,
1993 u64 chunk_tree, u64 chunk_objectid,
1996 struct extent_map_tree *em_tree;
1997 struct btrfs_root *extent_root;
1998 struct btrfs_trans_handle *trans;
1999 struct extent_map *em;
2000 struct map_lookup *map;
2004 root = root->fs_info->chunk_root;
2005 extent_root = root->fs_info->extent_root;
2006 em_tree = &root->fs_info->mapping_tree.map_tree;
2008 ret = btrfs_can_relocate(extent_root, chunk_offset);
2012 /* step one, relocate all the extents inside this chunk */
2013 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2017 trans = btrfs_start_transaction(root, 0);
2018 BUG_ON(IS_ERR(trans));
2023 * step two, delete the device extents and the
2024 * chunk tree entries
2026 read_lock(&em_tree->lock);
2027 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2028 read_unlock(&em_tree->lock);
2030 BUG_ON(!em || em->start > chunk_offset ||
2031 em->start + em->len < chunk_offset);
2032 map = (struct map_lookup *)em->bdev;
2034 for (i = 0; i < map->num_stripes; i++) {
2035 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2036 map->stripes[i].physical);
2039 if (map->stripes[i].dev) {
2040 ret = btrfs_update_device(trans, map->stripes[i].dev);
2044 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2049 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2051 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2052 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2056 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2059 write_lock(&em_tree->lock);
2060 remove_extent_mapping(em_tree, em);
2061 write_unlock(&em_tree->lock);
2066 /* once for the tree */
2067 free_extent_map(em);
2069 free_extent_map(em);
2071 unlock_chunks(root);
2072 btrfs_end_transaction(trans, root);
2076 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2078 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2079 struct btrfs_path *path;
2080 struct extent_buffer *leaf;
2081 struct btrfs_chunk *chunk;
2082 struct btrfs_key key;
2083 struct btrfs_key found_key;
2084 u64 chunk_tree = chunk_root->root_key.objectid;
2086 bool retried = false;
2090 path = btrfs_alloc_path();
2095 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2096 key.offset = (u64)-1;
2097 key.type = BTRFS_CHUNK_ITEM_KEY;
2100 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2103 BUG_ON(ret == 0); /* Corruption */
2105 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2112 leaf = path->nodes[0];
2113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2115 chunk = btrfs_item_ptr(leaf, path->slots[0],
2116 struct btrfs_chunk);
2117 chunk_type = btrfs_chunk_type(leaf, chunk);
2118 btrfs_release_path(path);
2120 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2121 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2130 if (found_key.offset == 0)
2132 key.offset = found_key.offset - 1;
2135 if (failed && !retried) {
2139 } else if (failed && retried) {
2144 btrfs_free_path(path);
2148 static int insert_balance_item(struct btrfs_root *root,
2149 struct btrfs_balance_control *bctl)
2151 struct btrfs_trans_handle *trans;
2152 struct btrfs_balance_item *item;
2153 struct btrfs_disk_balance_args disk_bargs;
2154 struct btrfs_path *path;
2155 struct extent_buffer *leaf;
2156 struct btrfs_key key;
2159 path = btrfs_alloc_path();
2163 trans = btrfs_start_transaction(root, 0);
2164 if (IS_ERR(trans)) {
2165 btrfs_free_path(path);
2166 return PTR_ERR(trans);
2169 key.objectid = BTRFS_BALANCE_OBJECTID;
2170 key.type = BTRFS_BALANCE_ITEM_KEY;
2173 ret = btrfs_insert_empty_item(trans, root, path, &key,
2178 leaf = path->nodes[0];
2179 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2181 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2183 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2184 btrfs_set_balance_data(leaf, item, &disk_bargs);
2185 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2186 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2187 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2188 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2190 btrfs_set_balance_flags(leaf, item, bctl->flags);
2192 btrfs_mark_buffer_dirty(leaf);
2194 btrfs_free_path(path);
2195 err = btrfs_commit_transaction(trans, root);
2201 static int del_balance_item(struct btrfs_root *root)
2203 struct btrfs_trans_handle *trans;
2204 struct btrfs_path *path;
2205 struct btrfs_key key;
2208 path = btrfs_alloc_path();
2212 trans = btrfs_start_transaction(root, 0);
2213 if (IS_ERR(trans)) {
2214 btrfs_free_path(path);
2215 return PTR_ERR(trans);
2218 key.objectid = BTRFS_BALANCE_OBJECTID;
2219 key.type = BTRFS_BALANCE_ITEM_KEY;
2222 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2230 ret = btrfs_del_item(trans, root, path);
2232 btrfs_free_path(path);
2233 err = btrfs_commit_transaction(trans, root);
2240 * This is a heuristic used to reduce the number of chunks balanced on
2241 * resume after balance was interrupted.
2243 static void update_balance_args(struct btrfs_balance_control *bctl)
2246 * Turn on soft mode for chunk types that were being converted.
2248 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2249 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2250 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2251 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2252 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2253 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2256 * Turn on usage filter if is not already used. The idea is
2257 * that chunks that we have already balanced should be
2258 * reasonably full. Don't do it for chunks that are being
2259 * converted - that will keep us from relocating unconverted
2260 * (albeit full) chunks.
2262 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2263 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2264 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2265 bctl->data.usage = 90;
2267 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2268 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2269 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2270 bctl->sys.usage = 90;
2272 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2273 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2274 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2275 bctl->meta.usage = 90;
2280 * Should be called with both balance and volume mutexes held to
2281 * serialize other volume operations (add_dev/rm_dev/resize) with
2282 * restriper. Same goes for unset_balance_control.
2284 static void set_balance_control(struct btrfs_balance_control *bctl)
2286 struct btrfs_fs_info *fs_info = bctl->fs_info;
2288 BUG_ON(fs_info->balance_ctl);
2290 spin_lock(&fs_info->balance_lock);
2291 fs_info->balance_ctl = bctl;
2292 spin_unlock(&fs_info->balance_lock);
2295 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2297 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2299 BUG_ON(!fs_info->balance_ctl);
2301 spin_lock(&fs_info->balance_lock);
2302 fs_info->balance_ctl = NULL;
2303 spin_unlock(&fs_info->balance_lock);
2309 * Balance filters. Return 1 if chunk should be filtered out
2310 * (should not be balanced).
2312 static int chunk_profiles_filter(u64 chunk_type,
2313 struct btrfs_balance_args *bargs)
2315 chunk_type = chunk_to_extended(chunk_type) &
2316 BTRFS_EXTENDED_PROFILE_MASK;
2318 if (bargs->profiles & chunk_type)
2324 static u64 div_factor_fine(u64 num, int factor)
2336 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2337 struct btrfs_balance_args *bargs)
2339 struct btrfs_block_group_cache *cache;
2340 u64 chunk_used, user_thresh;
2343 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2344 chunk_used = btrfs_block_group_used(&cache->item);
2346 user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2347 if (chunk_used < user_thresh)
2350 btrfs_put_block_group(cache);
2354 static int chunk_devid_filter(struct extent_buffer *leaf,
2355 struct btrfs_chunk *chunk,
2356 struct btrfs_balance_args *bargs)
2358 struct btrfs_stripe *stripe;
2359 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2362 for (i = 0; i < num_stripes; i++) {
2363 stripe = btrfs_stripe_nr(chunk, i);
2364 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2371 /* [pstart, pend) */
2372 static int chunk_drange_filter(struct extent_buffer *leaf,
2373 struct btrfs_chunk *chunk,
2375 struct btrfs_balance_args *bargs)
2377 struct btrfs_stripe *stripe;
2378 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2384 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2387 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2388 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2392 factor = num_stripes / factor;
2394 for (i = 0; i < num_stripes; i++) {
2395 stripe = btrfs_stripe_nr(chunk, i);
2396 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2399 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2400 stripe_length = btrfs_chunk_length(leaf, chunk);
2401 do_div(stripe_length, factor);
2403 if (stripe_offset < bargs->pend &&
2404 stripe_offset + stripe_length > bargs->pstart)
2411 /* [vstart, vend) */
2412 static int chunk_vrange_filter(struct extent_buffer *leaf,
2413 struct btrfs_chunk *chunk,
2415 struct btrfs_balance_args *bargs)
2417 if (chunk_offset < bargs->vend &&
2418 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2419 /* at least part of the chunk is inside this vrange */
2425 static int chunk_soft_convert_filter(u64 chunk_type,
2426 struct btrfs_balance_args *bargs)
2428 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2431 chunk_type = chunk_to_extended(chunk_type) &
2432 BTRFS_EXTENDED_PROFILE_MASK;
2434 if (bargs->target == chunk_type)
2440 static int should_balance_chunk(struct btrfs_root *root,
2441 struct extent_buffer *leaf,
2442 struct btrfs_chunk *chunk, u64 chunk_offset)
2444 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2445 struct btrfs_balance_args *bargs = NULL;
2446 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2449 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2450 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2454 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2455 bargs = &bctl->data;
2456 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2458 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2459 bargs = &bctl->meta;
2461 /* profiles filter */
2462 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2463 chunk_profiles_filter(chunk_type, bargs)) {
2468 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2469 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2474 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2475 chunk_devid_filter(leaf, chunk, bargs)) {
2479 /* drange filter, makes sense only with devid filter */
2480 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2481 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2486 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2487 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2491 /* soft profile changing mode */
2492 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2493 chunk_soft_convert_filter(chunk_type, bargs)) {
2500 static u64 div_factor(u64 num, int factor)
2509 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2511 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2512 struct btrfs_root *chunk_root = fs_info->chunk_root;
2513 struct btrfs_root *dev_root = fs_info->dev_root;
2514 struct list_head *devices;
2515 struct btrfs_device *device;
2518 struct btrfs_chunk *chunk;
2519 struct btrfs_path *path;
2520 struct btrfs_key key;
2521 struct btrfs_key found_key;
2522 struct btrfs_trans_handle *trans;
2523 struct extent_buffer *leaf;
2526 int enospc_errors = 0;
2527 bool counting = true;
2529 /* step one make some room on all the devices */
2530 devices = &fs_info->fs_devices->devices;
2531 list_for_each_entry(device, devices, dev_list) {
2532 old_size = device->total_bytes;
2533 size_to_free = div_factor(old_size, 1);
2534 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2535 if (!device->writeable ||
2536 device->total_bytes - device->bytes_used > size_to_free)
2539 ret = btrfs_shrink_device(device, old_size - size_to_free);
2544 trans = btrfs_start_transaction(dev_root, 0);
2545 BUG_ON(IS_ERR(trans));
2547 ret = btrfs_grow_device(trans, device, old_size);
2550 btrfs_end_transaction(trans, dev_root);
2553 /* step two, relocate all the chunks */
2554 path = btrfs_alloc_path();
2560 /* zero out stat counters */
2561 spin_lock(&fs_info->balance_lock);
2562 memset(&bctl->stat, 0, sizeof(bctl->stat));
2563 spin_unlock(&fs_info->balance_lock);
2565 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2566 key.offset = (u64)-1;
2567 key.type = BTRFS_CHUNK_ITEM_KEY;
2570 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2571 atomic_read(&fs_info->balance_cancel_req)) {
2576 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2581 * this shouldn't happen, it means the last relocate
2585 BUG(); /* FIXME break ? */
2587 ret = btrfs_previous_item(chunk_root, path, 0,
2588 BTRFS_CHUNK_ITEM_KEY);
2594 leaf = path->nodes[0];
2595 slot = path->slots[0];
2596 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2598 if (found_key.objectid != key.objectid)
2601 /* chunk zero is special */
2602 if (found_key.offset == 0)
2605 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2608 spin_lock(&fs_info->balance_lock);
2609 bctl->stat.considered++;
2610 spin_unlock(&fs_info->balance_lock);
2613 ret = should_balance_chunk(chunk_root, leaf, chunk,
2615 btrfs_release_path(path);
2620 spin_lock(&fs_info->balance_lock);
2621 bctl->stat.expected++;
2622 spin_unlock(&fs_info->balance_lock);
2626 ret = btrfs_relocate_chunk(chunk_root,
2627 chunk_root->root_key.objectid,
2630 if (ret && ret != -ENOSPC)
2632 if (ret == -ENOSPC) {
2635 spin_lock(&fs_info->balance_lock);
2636 bctl->stat.completed++;
2637 spin_unlock(&fs_info->balance_lock);
2640 key.offset = found_key.offset - 1;
2644 btrfs_release_path(path);
2649 btrfs_free_path(path);
2650 if (enospc_errors) {
2651 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2661 * alloc_profile_is_valid - see if a given profile is valid and reduced
2662 * @flags: profile to validate
2663 * @extended: if true @flags is treated as an extended profile
2665 static int alloc_profile_is_valid(u64 flags, int extended)
2667 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2668 BTRFS_BLOCK_GROUP_PROFILE_MASK);
2670 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2672 /* 1) check that all other bits are zeroed */
2676 /* 2) see if profile is reduced */
2678 return !extended; /* "0" is valid for usual profiles */
2680 /* true if exactly one bit set */
2681 return (flags & (flags - 1)) == 0;
2684 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2686 /* cancel requested || normal exit path */
2687 return atomic_read(&fs_info->balance_cancel_req) ||
2688 (atomic_read(&fs_info->balance_pause_req) == 0 &&
2689 atomic_read(&fs_info->balance_cancel_req) == 0);
2692 static void __cancel_balance(struct btrfs_fs_info *fs_info)
2696 unset_balance_control(fs_info);
2697 ret = del_balance_item(fs_info->tree_root);
2701 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
2702 struct btrfs_ioctl_balance_args *bargs);
2705 * Should be called with both balance and volume mutexes held
2707 int btrfs_balance(struct btrfs_balance_control *bctl,
2708 struct btrfs_ioctl_balance_args *bargs)
2710 struct btrfs_fs_info *fs_info = bctl->fs_info;
2715 if (btrfs_fs_closing(fs_info) ||
2716 atomic_read(&fs_info->balance_pause_req) ||
2717 atomic_read(&fs_info->balance_cancel_req)) {
2722 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2723 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
2727 * In case of mixed groups both data and meta should be picked,
2728 * and identical options should be given for both of them.
2730 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
2731 if (mixed && (bctl->flags & allowed)) {
2732 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2733 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2734 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2735 printk(KERN_ERR "btrfs: with mixed groups data and "
2736 "metadata balance options must be the same\n");
2742 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2743 if (fs_info->fs_devices->num_devices == 1)
2744 allowed |= BTRFS_BLOCK_GROUP_DUP;
2745 else if (fs_info->fs_devices->num_devices < 4)
2746 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2748 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2749 BTRFS_BLOCK_GROUP_RAID10);
2751 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2752 (!alloc_profile_is_valid(bctl->data.target, 1) ||
2753 (bctl->data.target & ~allowed))) {
2754 printk(KERN_ERR "btrfs: unable to start balance with target "
2755 "data profile %llu\n",
2756 (unsigned long long)bctl->data.target);
2760 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2761 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
2762 (bctl->meta.target & ~allowed))) {
2763 printk(KERN_ERR "btrfs: unable to start balance with target "
2764 "metadata profile %llu\n",
2765 (unsigned long long)bctl->meta.target);
2769 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2770 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
2771 (bctl->sys.target & ~allowed))) {
2772 printk(KERN_ERR "btrfs: unable to start balance with target "
2773 "system profile %llu\n",
2774 (unsigned long long)bctl->sys.target);
2779 /* allow dup'ed data chunks only in mixed mode */
2780 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2781 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
2782 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2787 /* allow to reduce meta or sys integrity only if force set */
2788 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2789 BTRFS_BLOCK_GROUP_RAID10;
2790 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2791 (fs_info->avail_system_alloc_bits & allowed) &&
2792 !(bctl->sys.target & allowed)) ||
2793 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2794 (fs_info->avail_metadata_alloc_bits & allowed) &&
2795 !(bctl->meta.target & allowed))) {
2796 if (bctl->flags & BTRFS_BALANCE_FORCE) {
2797 printk(KERN_INFO "btrfs: force reducing metadata "
2800 printk(KERN_ERR "btrfs: balance will reduce metadata "
2801 "integrity, use force if you want this\n");
2807 ret = insert_balance_item(fs_info->tree_root, bctl);
2808 if (ret && ret != -EEXIST)
2811 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2812 BUG_ON(ret == -EEXIST);
2813 set_balance_control(bctl);
2815 BUG_ON(ret != -EEXIST);
2816 spin_lock(&fs_info->balance_lock);
2817 update_balance_args(bctl);
2818 spin_unlock(&fs_info->balance_lock);
2821 atomic_inc(&fs_info->balance_running);
2822 mutex_unlock(&fs_info->balance_mutex);
2824 ret = __btrfs_balance(fs_info);
2826 mutex_lock(&fs_info->balance_mutex);
2827 atomic_dec(&fs_info->balance_running);
2830 memset(bargs, 0, sizeof(*bargs));
2831 update_ioctl_balance_args(fs_info, 0, bargs);
2834 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2835 balance_need_close(fs_info)) {
2836 __cancel_balance(fs_info);
2839 wake_up(&fs_info->balance_wait_q);
2843 if (bctl->flags & BTRFS_BALANCE_RESUME)
2844 __cancel_balance(fs_info);
2850 static int balance_kthread(void *data)
2852 struct btrfs_fs_info *fs_info = data;
2855 mutex_lock(&fs_info->volume_mutex);
2856 mutex_lock(&fs_info->balance_mutex);
2858 if (fs_info->balance_ctl) {
2859 printk(KERN_INFO "btrfs: continuing balance\n");
2860 ret = btrfs_balance(fs_info->balance_ctl, NULL);
2863 mutex_unlock(&fs_info->balance_mutex);
2864 mutex_unlock(&fs_info->volume_mutex);
2869 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
2871 struct task_struct *tsk;
2873 spin_lock(&fs_info->balance_lock);
2874 if (!fs_info->balance_ctl) {
2875 spin_unlock(&fs_info->balance_lock);
2878 spin_unlock(&fs_info->balance_lock);
2880 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2881 printk(KERN_INFO "btrfs: force skipping balance\n");
2885 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
2887 return PTR_ERR(tsk);
2892 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
2894 struct btrfs_balance_control *bctl;
2895 struct btrfs_balance_item *item;
2896 struct btrfs_disk_balance_args disk_bargs;
2897 struct btrfs_path *path;
2898 struct extent_buffer *leaf;
2899 struct btrfs_key key;
2902 path = btrfs_alloc_path();
2906 key.objectid = BTRFS_BALANCE_OBJECTID;
2907 key.type = BTRFS_BALANCE_ITEM_KEY;
2910 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2913 if (ret > 0) { /* ret = -ENOENT; */
2918 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2924 leaf = path->nodes[0];
2925 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2927 bctl->fs_info = fs_info;
2928 bctl->flags = btrfs_balance_flags(leaf, item);
2929 bctl->flags |= BTRFS_BALANCE_RESUME;
2931 btrfs_balance_data(leaf, item, &disk_bargs);
2932 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2933 btrfs_balance_meta(leaf, item, &disk_bargs);
2934 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2935 btrfs_balance_sys(leaf, item, &disk_bargs);
2936 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2938 mutex_lock(&fs_info->volume_mutex);
2939 mutex_lock(&fs_info->balance_mutex);
2941 set_balance_control(bctl);
2943 mutex_unlock(&fs_info->balance_mutex);
2944 mutex_unlock(&fs_info->volume_mutex);
2946 btrfs_free_path(path);
2950 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2954 mutex_lock(&fs_info->balance_mutex);
2955 if (!fs_info->balance_ctl) {
2956 mutex_unlock(&fs_info->balance_mutex);
2960 if (atomic_read(&fs_info->balance_running)) {
2961 atomic_inc(&fs_info->balance_pause_req);
2962 mutex_unlock(&fs_info->balance_mutex);
2964 wait_event(fs_info->balance_wait_q,
2965 atomic_read(&fs_info->balance_running) == 0);
2967 mutex_lock(&fs_info->balance_mutex);
2968 /* we are good with balance_ctl ripped off from under us */
2969 BUG_ON(atomic_read(&fs_info->balance_running));
2970 atomic_dec(&fs_info->balance_pause_req);
2975 mutex_unlock(&fs_info->balance_mutex);
2979 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
2981 mutex_lock(&fs_info->balance_mutex);
2982 if (!fs_info->balance_ctl) {
2983 mutex_unlock(&fs_info->balance_mutex);
2987 atomic_inc(&fs_info->balance_cancel_req);
2989 * if we are running just wait and return, balance item is
2990 * deleted in btrfs_balance in this case
2992 if (atomic_read(&fs_info->balance_running)) {
2993 mutex_unlock(&fs_info->balance_mutex);
2994 wait_event(fs_info->balance_wait_q,
2995 atomic_read(&fs_info->balance_running) == 0);
2996 mutex_lock(&fs_info->balance_mutex);
2998 /* __cancel_balance needs volume_mutex */
2999 mutex_unlock(&fs_info->balance_mutex);
3000 mutex_lock(&fs_info->volume_mutex);
3001 mutex_lock(&fs_info->balance_mutex);
3003 if (fs_info->balance_ctl)
3004 __cancel_balance(fs_info);
3006 mutex_unlock(&fs_info->volume_mutex);
3009 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3010 atomic_dec(&fs_info->balance_cancel_req);
3011 mutex_unlock(&fs_info->balance_mutex);
3016 * shrinking a device means finding all of the device extents past
3017 * the new size, and then following the back refs to the chunks.
3018 * The chunk relocation code actually frees the device extent
3020 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3022 struct btrfs_trans_handle *trans;
3023 struct btrfs_root *root = device->dev_root;
3024 struct btrfs_dev_extent *dev_extent = NULL;
3025 struct btrfs_path *path;
3033 bool retried = false;
3034 struct extent_buffer *l;
3035 struct btrfs_key key;
3036 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3037 u64 old_total = btrfs_super_total_bytes(super_copy);
3038 u64 old_size = device->total_bytes;
3039 u64 diff = device->total_bytes - new_size;
3041 if (new_size >= device->total_bytes)
3044 path = btrfs_alloc_path();
3052 device->total_bytes = new_size;
3053 if (device->writeable) {
3054 device->fs_devices->total_rw_bytes -= diff;
3055 spin_lock(&root->fs_info->free_chunk_lock);
3056 root->fs_info->free_chunk_space -= diff;
3057 spin_unlock(&root->fs_info->free_chunk_lock);
3059 unlock_chunks(root);
3062 key.objectid = device->devid;
3063 key.offset = (u64)-1;
3064 key.type = BTRFS_DEV_EXTENT_KEY;
3067 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3071 ret = btrfs_previous_item(root, path, 0, key.type);
3076 btrfs_release_path(path);
3081 slot = path->slots[0];
3082 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3084 if (key.objectid != device->devid) {
3085 btrfs_release_path(path);
3089 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3090 length = btrfs_dev_extent_length(l, dev_extent);
3092 if (key.offset + length <= new_size) {
3093 btrfs_release_path(path);
3097 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3098 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3099 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3100 btrfs_release_path(path);
3102 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3104 if (ret && ret != -ENOSPC)
3108 } while (key.offset-- > 0);
3110 if (failed && !retried) {
3114 } else if (failed && retried) {
3118 device->total_bytes = old_size;
3119 if (device->writeable)
3120 device->fs_devices->total_rw_bytes += diff;
3121 spin_lock(&root->fs_info->free_chunk_lock);
3122 root->fs_info->free_chunk_space += diff;
3123 spin_unlock(&root->fs_info->free_chunk_lock);
3124 unlock_chunks(root);
3128 /* Shrinking succeeded, else we would be at "done". */
3129 trans = btrfs_start_transaction(root, 0);
3130 if (IS_ERR(trans)) {
3131 ret = PTR_ERR(trans);
3137 device->disk_total_bytes = new_size;
3138 /* Now btrfs_update_device() will change the on-disk size. */
3139 ret = btrfs_update_device(trans, device);
3141 unlock_chunks(root);
3142 btrfs_end_transaction(trans, root);
3145 WARN_ON(diff > old_total);
3146 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3147 unlock_chunks(root);
3148 btrfs_end_transaction(trans, root);
3150 btrfs_free_path(path);
3154 static int btrfs_add_system_chunk(struct btrfs_root *root,
3155 struct btrfs_key *key,
3156 struct btrfs_chunk *chunk, int item_size)
3158 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3159 struct btrfs_disk_key disk_key;
3163 array_size = btrfs_super_sys_array_size(super_copy);
3164 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3167 ptr = super_copy->sys_chunk_array + array_size;
3168 btrfs_cpu_key_to_disk(&disk_key, key);
3169 memcpy(ptr, &disk_key, sizeof(disk_key));
3170 ptr += sizeof(disk_key);
3171 memcpy(ptr, chunk, item_size);
3172 item_size += sizeof(disk_key);
3173 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3178 * sort the devices in descending order by max_avail, total_avail
3180 static int btrfs_cmp_device_info(const void *a, const void *b)
3182 const struct btrfs_device_info *di_a = a;
3183 const struct btrfs_device_info *di_b = b;
3185 if (di_a->max_avail > di_b->max_avail)
3187 if (di_a->max_avail < di_b->max_avail)
3189 if (di_a->total_avail > di_b->total_avail)
3191 if (di_a->total_avail < di_b->total_avail)
3196 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3197 struct btrfs_root *extent_root,
3198 struct map_lookup **map_ret,
3199 u64 *num_bytes_out, u64 *stripe_size_out,
3200 u64 start, u64 type)
3202 struct btrfs_fs_info *info = extent_root->fs_info;
3203 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3204 struct list_head *cur;
3205 struct map_lookup *map = NULL;
3206 struct extent_map_tree *em_tree;
3207 struct extent_map *em;
3208 struct btrfs_device_info *devices_info = NULL;
3210 int num_stripes; /* total number of stripes to allocate */
3211 int sub_stripes; /* sub_stripes info for map */
3212 int dev_stripes; /* stripes per dev */
3213 int devs_max; /* max devs to use */
3214 int devs_min; /* min devs needed */
3215 int devs_increment; /* ndevs has to be a multiple of this */
3216 int ncopies; /* how many copies to data has */
3218 u64 max_stripe_size;
3226 BUG_ON(!alloc_profile_is_valid(type, 0));
3228 if (list_empty(&fs_devices->alloc_list))
3235 devs_max = 0; /* 0 == as many as possible */
3239 * define the properties of each RAID type.
3240 * FIXME: move this to a global table and use it in all RAID
3243 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3247 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3249 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3254 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3263 if (type & BTRFS_BLOCK_GROUP_DATA) {
3264 max_stripe_size = 1024 * 1024 * 1024;
3265 max_chunk_size = 10 * max_stripe_size;
3266 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
3267 /* for larger filesystems, use larger metadata chunks */
3268 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3269 max_stripe_size = 1024 * 1024 * 1024;
3271 max_stripe_size = 256 * 1024 * 1024;
3272 max_chunk_size = max_stripe_size;
3273 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
3274 max_stripe_size = 32 * 1024 * 1024;
3275 max_chunk_size = 2 * max_stripe_size;
3277 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3282 /* we don't want a chunk larger than 10% of writeable space */
3283 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3286 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3291 cur = fs_devices->alloc_list.next;
3294 * in the first pass through the devices list, we gather information
3295 * about the available holes on each device.
3298 while (cur != &fs_devices->alloc_list) {
3299 struct btrfs_device *device;
3303 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
3307 if (!device->writeable) {
3309 "btrfs: read-only device in alloc_list\n");
3314 if (!device->in_fs_metadata)
3317 if (device->total_bytes > device->bytes_used)
3318 total_avail = device->total_bytes - device->bytes_used;
3322 /* If there is no space on this device, skip it. */
3323 if (total_avail == 0)
3326 ret = find_free_dev_extent(device,
3327 max_stripe_size * dev_stripes,
3328 &dev_offset, &max_avail);
3329 if (ret && ret != -ENOSPC)
3333 max_avail = max_stripe_size * dev_stripes;
3335 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3338 devices_info[ndevs].dev_offset = dev_offset;
3339 devices_info[ndevs].max_avail = max_avail;
3340 devices_info[ndevs].total_avail = total_avail;
3341 devices_info[ndevs].dev = device;
3346 * now sort the devices by hole size / available space
3348 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3349 btrfs_cmp_device_info, NULL);
3351 /* round down to number of usable stripes */
3352 ndevs -= ndevs % devs_increment;
3354 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3359 if (devs_max && ndevs > devs_max)
3362 * the primary goal is to maximize the number of stripes, so use as many
3363 * devices as possible, even if the stripes are not maximum sized.
3365 stripe_size = devices_info[ndevs-1].max_avail;
3366 num_stripes = ndevs * dev_stripes;
3368 if (stripe_size * ndevs > max_chunk_size * ncopies) {
3369 stripe_size = max_chunk_size * ncopies;
3370 do_div(stripe_size, ndevs);
3373 do_div(stripe_size, dev_stripes);
3375 /* align to BTRFS_STRIPE_LEN */
3376 do_div(stripe_size, BTRFS_STRIPE_LEN);
3377 stripe_size *= BTRFS_STRIPE_LEN;
3379 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3384 map->num_stripes = num_stripes;
3386 for (i = 0; i < ndevs; ++i) {
3387 for (j = 0; j < dev_stripes; ++j) {
3388 int s = i * dev_stripes + j;
3389 map->stripes[s].dev = devices_info[i].dev;
3390 map->stripes[s].physical = devices_info[i].dev_offset +
3394 map->sector_size = extent_root->sectorsize;
3395 map->stripe_len = BTRFS_STRIPE_LEN;
3396 map->io_align = BTRFS_STRIPE_LEN;
3397 map->io_width = BTRFS_STRIPE_LEN;
3399 map->sub_stripes = sub_stripes;
3402 num_bytes = stripe_size * (num_stripes / ncopies);
3404 *stripe_size_out = stripe_size;
3405 *num_bytes_out = num_bytes;
3407 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
3409 em = alloc_extent_map();
3414 em->bdev = (struct block_device *)map;
3416 em->len = num_bytes;
3417 em->block_start = 0;
3418 em->block_len = em->len;
3420 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
3421 write_lock(&em_tree->lock);
3422 ret = add_extent_mapping(em_tree, em);
3423 write_unlock(&em_tree->lock);
3424 free_extent_map(em);
3428 ret = btrfs_make_block_group(trans, extent_root, 0, type,
3429 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3434 for (i = 0; i < map->num_stripes; ++i) {
3435 struct btrfs_device *device;
3438 device = map->stripes[i].dev;
3439 dev_offset = map->stripes[i].physical;
3441 ret = btrfs_alloc_dev_extent(trans, device,
3442 info->chunk_root->root_key.objectid,
3443 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3444 start, dev_offset, stripe_size);
3446 btrfs_abort_transaction(trans, extent_root, ret);
3451 kfree(devices_info);
3456 kfree(devices_info);
3460 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3461 struct btrfs_root *extent_root,
3462 struct map_lookup *map, u64 chunk_offset,
3463 u64 chunk_size, u64 stripe_size)
3466 struct btrfs_key key;
3467 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3468 struct btrfs_device *device;
3469 struct btrfs_chunk *chunk;
3470 struct btrfs_stripe *stripe;
3471 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3475 chunk = kzalloc(item_size, GFP_NOFS);
3480 while (index < map->num_stripes) {
3481 device = map->stripes[index].dev;
3482 device->bytes_used += stripe_size;
3483 ret = btrfs_update_device(trans, device);
3489 spin_lock(&extent_root->fs_info->free_chunk_lock);
3490 extent_root->fs_info->free_chunk_space -= (stripe_size *
3492 spin_unlock(&extent_root->fs_info->free_chunk_lock);
3495 stripe = &chunk->stripe;
3496 while (index < map->num_stripes) {
3497 device = map->stripes[index].dev;
3498 dev_offset = map->stripes[index].physical;
3500 btrfs_set_stack_stripe_devid(stripe, device->devid);
3501 btrfs_set_stack_stripe_offset(stripe, dev_offset);
3502 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
3507 btrfs_set_stack_chunk_length(chunk, chunk_size);
3508 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
3509 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3510 btrfs_set_stack_chunk_type(chunk, map->type);
3511 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3512 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3513 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
3514 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
3515 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
3517 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3518 key.type = BTRFS_CHUNK_ITEM_KEY;
3519 key.offset = chunk_offset;
3521 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
3523 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3525 * TODO: Cleanup of inserted chunk root in case of
3528 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
3538 * Chunk allocation falls into two parts. The first part does works
3539 * that make the new allocated chunk useable, but not do any operation
3540 * that modifies the chunk tree. The second part does the works that
3541 * require modifying the chunk tree. This division is important for the
3542 * bootstrap process of adding storage to a seed btrfs.
3544 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3545 struct btrfs_root *extent_root, u64 type)
3550 struct map_lookup *map;
3551 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3554 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3559 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3560 &stripe_size, chunk_offset, type);
3564 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3565 chunk_size, stripe_size);
3571 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
3572 struct btrfs_root *root,
3573 struct btrfs_device *device)
3576 u64 sys_chunk_offset;
3580 u64 sys_stripe_size;
3582 struct map_lookup *map;
3583 struct map_lookup *sys_map;
3584 struct btrfs_fs_info *fs_info = root->fs_info;
3585 struct btrfs_root *extent_root = fs_info->extent_root;
3588 ret = find_next_chunk(fs_info->chunk_root,
3589 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
3593 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
3594 fs_info->avail_metadata_alloc_bits;
3595 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3597 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3598 &stripe_size, chunk_offset, alloc_profile);
3602 sys_chunk_offset = chunk_offset + chunk_size;
3604 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
3605 fs_info->avail_system_alloc_bits;
3606 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3608 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3609 &sys_chunk_size, &sys_stripe_size,
3610 sys_chunk_offset, alloc_profile);
3614 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
3619 * Modifying chunk tree needs allocating new blocks from both
3620 * system block group and metadata block group. So we only can
3621 * do operations require modifying the chunk tree after both
3622 * block groups were created.
3624 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3625 chunk_size, stripe_size);
3629 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3630 sys_chunk_offset, sys_chunk_size,
3638 btrfs_abort_transaction(trans, root, ret);
3642 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3644 struct extent_map *em;
3645 struct map_lookup *map;
3646 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3650 read_lock(&map_tree->map_tree.lock);
3651 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3652 read_unlock(&map_tree->map_tree.lock);
3656 if (btrfs_test_opt(root, DEGRADED)) {
3657 free_extent_map(em);
3661 map = (struct map_lookup *)em->bdev;
3662 for (i = 0; i < map->num_stripes; i++) {
3663 if (!map->stripes[i].dev->writeable) {
3668 free_extent_map(em);
3672 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3674 extent_map_tree_init(&tree->map_tree);
3677 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3679 struct extent_map *em;
3682 write_lock(&tree->map_tree.lock);
3683 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3685 remove_extent_mapping(&tree->map_tree, em);
3686 write_unlock(&tree->map_tree.lock);
3691 free_extent_map(em);
3692 /* once for the tree */
3693 free_extent_map(em);
3697 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3699 struct extent_map *em;
3700 struct map_lookup *map;
3701 struct extent_map_tree *em_tree = &map_tree->map_tree;
3704 read_lock(&em_tree->lock);
3705 em = lookup_extent_mapping(em_tree, logical, len);
3706 read_unlock(&em_tree->lock);
3709 BUG_ON(em->start > logical || em->start + em->len < logical);
3710 map = (struct map_lookup *)em->bdev;
3711 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3712 ret = map->num_stripes;
3713 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3714 ret = map->sub_stripes;
3717 free_extent_map(em);
3721 static int find_live_mirror(struct map_lookup *map, int first, int num,
3725 if (map->stripes[optimal].dev->bdev)
3727 for (i = first; i < first + num; i++) {
3728 if (map->stripes[i].dev->bdev)
3731 /* we couldn't find one that doesn't fail. Just return something
3732 * and the io error handling code will clean up eventually
3737 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3738 u64 logical, u64 *length,
3739 struct btrfs_bio **bbio_ret,
3742 struct extent_map *em;
3743 struct map_lookup *map;
3744 struct extent_map_tree *em_tree = &map_tree->map_tree;
3747 u64 stripe_end_offset;
3756 struct btrfs_bio *bbio = NULL;
3758 read_lock(&em_tree->lock);
3759 em = lookup_extent_mapping(em_tree, logical, *length);
3760 read_unlock(&em_tree->lock);
3763 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
3764 (unsigned long long)logical,
3765 (unsigned long long)*length);
3769 BUG_ON(em->start > logical || em->start + em->len < logical);
3770 map = (struct map_lookup *)em->bdev;
3771 offset = logical - em->start;
3773 if (mirror_num > map->num_stripes)
3778 * stripe_nr counts the total number of stripes we have to stride
3779 * to get to this block
3781 do_div(stripe_nr, map->stripe_len);
3783 stripe_offset = stripe_nr * map->stripe_len;
3784 BUG_ON(offset < stripe_offset);
3786 /* stripe_offset is the offset of this block in its stripe*/
3787 stripe_offset = offset - stripe_offset;
3789 if (rw & REQ_DISCARD)
3790 *length = min_t(u64, em->len - offset, *length);
3791 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
3792 /* we limit the length of each bio to what fits in a stripe */
3793 *length = min_t(u64, em->len - offset,
3794 map->stripe_len - stripe_offset);
3796 *length = em->len - offset;
3804 stripe_nr_orig = stripe_nr;
3805 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3806 (~(map->stripe_len - 1));
3807 do_div(stripe_nr_end, map->stripe_len);
3808 stripe_end_offset = stripe_nr_end * map->stripe_len -
3810 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3811 if (rw & REQ_DISCARD)
3812 num_stripes = min_t(u64, map->num_stripes,
3813 stripe_nr_end - stripe_nr_orig);
3814 stripe_index = do_div(stripe_nr, map->num_stripes);
3815 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3816 if (rw & (REQ_WRITE | REQ_DISCARD))
3817 num_stripes = map->num_stripes;
3818 else if (mirror_num)
3819 stripe_index = mirror_num - 1;
3821 stripe_index = find_live_mirror(map, 0,
3823 current->pid % map->num_stripes);
3824 mirror_num = stripe_index + 1;
3827 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3828 if (rw & (REQ_WRITE | REQ_DISCARD)) {
3829 num_stripes = map->num_stripes;
3830 } else if (mirror_num) {
3831 stripe_index = mirror_num - 1;
3836 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3837 int factor = map->num_stripes / map->sub_stripes;
3839 stripe_index = do_div(stripe_nr, factor);
3840 stripe_index *= map->sub_stripes;
3843 num_stripes = map->sub_stripes;
3844 else if (rw & REQ_DISCARD)
3845 num_stripes = min_t(u64, map->sub_stripes *
3846 (stripe_nr_end - stripe_nr_orig),
3848 else if (mirror_num)
3849 stripe_index += mirror_num - 1;
3851 int old_stripe_index = stripe_index;
3852 stripe_index = find_live_mirror(map, stripe_index,
3853 map->sub_stripes, stripe_index +
3854 current->pid % map->sub_stripes);
3855 mirror_num = stripe_index - old_stripe_index + 1;
3859 * after this do_div call, stripe_nr is the number of stripes
3860 * on this device we have to walk to find the data, and
3861 * stripe_index is the number of our device in the stripe array
3863 stripe_index = do_div(stripe_nr, map->num_stripes);
3864 mirror_num = stripe_index + 1;
3866 BUG_ON(stripe_index >= map->num_stripes);
3868 bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3873 atomic_set(&bbio->error, 0);
3875 if (rw & REQ_DISCARD) {
3877 int sub_stripes = 0;
3878 u64 stripes_per_dev = 0;
3879 u32 remaining_stripes = 0;
3880 u32 last_stripe = 0;
3883 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3884 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3887 sub_stripes = map->sub_stripes;
3889 factor = map->num_stripes / sub_stripes;
3890 stripes_per_dev = div_u64_rem(stripe_nr_end -
3893 &remaining_stripes);
3894 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
3895 last_stripe *= sub_stripes;
3898 for (i = 0; i < num_stripes; i++) {
3899 bbio->stripes[i].physical =
3900 map->stripes[stripe_index].physical +
3901 stripe_offset + stripe_nr * map->stripe_len;
3902 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
3904 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3905 BTRFS_BLOCK_GROUP_RAID10)) {
3906 bbio->stripes[i].length = stripes_per_dev *
3909 if (i / sub_stripes < remaining_stripes)
3910 bbio->stripes[i].length +=
3914 * Special for the first stripe and
3917 * |-------|...|-------|
3921 if (i < sub_stripes)
3922 bbio->stripes[i].length -=
3925 if (stripe_index >= last_stripe &&
3926 stripe_index <= (last_stripe +
3928 bbio->stripes[i].length -=
3931 if (i == sub_stripes - 1)
3934 bbio->stripes[i].length = *length;
3937 if (stripe_index == map->num_stripes) {
3938 /* This could only happen for RAID0/10 */
3944 for (i = 0; i < num_stripes; i++) {
3945 bbio->stripes[i].physical =
3946 map->stripes[stripe_index].physical +
3948 stripe_nr * map->stripe_len;
3949 bbio->stripes[i].dev =
3950 map->stripes[stripe_index].dev;
3955 if (rw & REQ_WRITE) {
3956 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3957 BTRFS_BLOCK_GROUP_RAID10 |
3958 BTRFS_BLOCK_GROUP_DUP)) {
3964 bbio->num_stripes = num_stripes;
3965 bbio->max_errors = max_errors;
3966 bbio->mirror_num = mirror_num;
3968 free_extent_map(em);
3972 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3973 u64 logical, u64 *length,
3974 struct btrfs_bio **bbio_ret, int mirror_num)
3976 return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
3980 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3981 u64 chunk_start, u64 physical, u64 devid,
3982 u64 **logical, int *naddrs, int *stripe_len)
3984 struct extent_map_tree *em_tree = &map_tree->map_tree;
3985 struct extent_map *em;
3986 struct map_lookup *map;
3993 read_lock(&em_tree->lock);
3994 em = lookup_extent_mapping(em_tree, chunk_start, 1);
3995 read_unlock(&em_tree->lock);
3997 BUG_ON(!em || em->start != chunk_start);
3998 map = (struct map_lookup *)em->bdev;
4001 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4002 do_div(length, map->num_stripes / map->sub_stripes);
4003 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4004 do_div(length, map->num_stripes);
4006 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
4007 BUG_ON(!buf); /* -ENOMEM */
4009 for (i = 0; i < map->num_stripes; i++) {
4010 if (devid && map->stripes[i].dev->devid != devid)
4012 if (map->stripes[i].physical > physical ||
4013 map->stripes[i].physical + length <= physical)
4016 stripe_nr = physical - map->stripes[i].physical;
4017 do_div(stripe_nr, map->stripe_len);
4019 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4020 stripe_nr = stripe_nr * map->num_stripes + i;
4021 do_div(stripe_nr, map->sub_stripes);
4022 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4023 stripe_nr = stripe_nr * map->num_stripes + i;
4025 bytenr = chunk_start + stripe_nr * map->stripe_len;
4026 WARN_ON(nr >= map->num_stripes);
4027 for (j = 0; j < nr; j++) {
4028 if (buf[j] == bytenr)
4032 WARN_ON(nr >= map->num_stripes);
4039 *stripe_len = map->stripe_len;
4041 free_extent_map(em);
4045 static void *merge_stripe_index_into_bio_private(void *bi_private,
4046 unsigned int stripe_index)
4049 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is
4051 * The alternative solution (instead of stealing bits from the
4052 * pointer) would be to allocate an intermediate structure
4053 * that contains the old private pointer plus the stripe_index.
4055 BUG_ON((((uintptr_t)bi_private) & 3) != 0);
4056 BUG_ON(stripe_index > 3);
4057 return (void *)(((uintptr_t)bi_private) | stripe_index);
4060 static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private)
4062 return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3));
4065 static unsigned int extract_stripe_index_from_bio_private(void *bi_private)
4067 return (unsigned int)((uintptr_t)bi_private) & 3;
4070 static void btrfs_end_bio(struct bio *bio, int err)
4072 struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private);
4073 int is_orig_bio = 0;
4076 atomic_inc(&bbio->error);
4077 if (err == -EIO || err == -EREMOTEIO) {
4078 unsigned int stripe_index =
4079 extract_stripe_index_from_bio_private(
4081 struct btrfs_device *dev;
4083 BUG_ON(stripe_index >= bbio->num_stripes);
4084 dev = bbio->stripes[stripe_index].dev;
4086 if (bio->bi_rw & WRITE)
4087 btrfs_dev_stat_inc(dev,
4088 BTRFS_DEV_STAT_WRITE_ERRS);
4090 btrfs_dev_stat_inc(dev,
4091 BTRFS_DEV_STAT_READ_ERRS);
4092 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
4093 btrfs_dev_stat_inc(dev,
4094 BTRFS_DEV_STAT_FLUSH_ERRS);
4095 btrfs_dev_stat_print_on_error(dev);
4100 if (bio == bbio->orig_bio)
4103 if (atomic_dec_and_test(&bbio->stripes_pending)) {
4106 bio = bbio->orig_bio;
4108 bio->bi_private = bbio->private;
4109 bio->bi_end_io = bbio->end_io;
4110 bio->bi_bdev = (struct block_device *)
4111 (unsigned long)bbio->mirror_num;
4112 /* only send an error to the higher layers if it is
4113 * beyond the tolerance of the multi-bio
4115 if (atomic_read(&bbio->error) > bbio->max_errors) {
4119 * this bio is actually up to date, we didn't
4120 * go over the max number of errors
4122 set_bit(BIO_UPTODATE, &bio->bi_flags);
4127 bio_endio(bio, err);
4128 } else if (!is_orig_bio) {
4133 struct async_sched {
4136 struct btrfs_fs_info *info;
4137 struct btrfs_work work;
4141 * see run_scheduled_bios for a description of why bios are collected for
4144 * This will add one bio to the pending list for a device and make sure
4145 * the work struct is scheduled.
4147 static noinline void schedule_bio(struct btrfs_root *root,
4148 struct btrfs_device *device,
4149 int rw, struct bio *bio)
4151 int should_queue = 1;
4152 struct btrfs_pending_bios *pending_bios;
4154 /* don't bother with additional async steps for reads, right now */
4155 if (!(rw & REQ_WRITE)) {
4157 btrfsic_submit_bio(rw, bio);
4163 * nr_async_bios allows us to reliably return congestion to the
4164 * higher layers. Otherwise, the async bio makes it appear we have
4165 * made progress against dirty pages when we've really just put it
4166 * on a queue for later
4168 atomic_inc(&root->fs_info->nr_async_bios);
4169 WARN_ON(bio->bi_next);
4170 bio->bi_next = NULL;
4173 spin_lock(&device->io_lock);
4174 if (bio->bi_rw & REQ_SYNC)
4175 pending_bios = &device->pending_sync_bios;
4177 pending_bios = &device->pending_bios;
4179 if (pending_bios->tail)
4180 pending_bios->tail->bi_next = bio;
4182 pending_bios->tail = bio;
4183 if (!pending_bios->head)
4184 pending_bios->head = bio;
4185 if (device->running_pending)
4188 spin_unlock(&device->io_lock);
4191 btrfs_queue_worker(&root->fs_info->submit_workers,
4195 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
4196 int mirror_num, int async_submit)
4198 struct btrfs_mapping_tree *map_tree;
4199 struct btrfs_device *dev;
4200 struct bio *first_bio = bio;
4201 u64 logical = (u64)bio->bi_sector << 9;
4207 struct btrfs_bio *bbio = NULL;
4209 length = bio->bi_size;
4210 map_tree = &root->fs_info->mapping_tree;
4211 map_length = length;
4213 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
4215 if (ret) /* -ENOMEM */
4218 total_devs = bbio->num_stripes;
4219 if (map_length < length) {
4220 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
4221 "len %llu\n", (unsigned long long)logical,
4222 (unsigned long long)length,
4223 (unsigned long long)map_length);
4227 bbio->orig_bio = first_bio;
4228 bbio->private = first_bio->bi_private;
4229 bbio->end_io = first_bio->bi_end_io;
4230 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
4232 while (dev_nr < total_devs) {
4233 if (dev_nr < total_devs - 1) {
4234 bio = bio_clone(first_bio, GFP_NOFS);
4235 BUG_ON(!bio); /* -ENOMEM */
4239 bio->bi_private = bbio;
4240 bio->bi_private = merge_stripe_index_into_bio_private(
4241 bio->bi_private, (unsigned int)dev_nr);
4242 bio->bi_end_io = btrfs_end_bio;
4243 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4244 dev = bbio->stripes[dev_nr].dev;
4245 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
4247 struct rcu_string *name;
4250 name = rcu_dereference(dev->name);
4251 pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4252 "(%s id %llu), size=%u\n", rw,
4253 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4254 name->str, dev->devid, bio->bi_size);
4257 bio->bi_bdev = dev->bdev;
4259 schedule_bio(root, dev, rw, bio);
4261 btrfsic_submit_bio(rw, bio);
4263 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4264 bio->bi_sector = logical >> 9;
4265 bio_endio(bio, -EIO);
4272 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
4275 struct btrfs_device *device;
4276 struct btrfs_fs_devices *cur_devices;
4278 cur_devices = root->fs_info->fs_devices;
4279 while (cur_devices) {
4281 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4282 device = __find_device(&cur_devices->devices,
4287 cur_devices = cur_devices->seed;
4292 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4293 u64 devid, u8 *dev_uuid)
4295 struct btrfs_device *device;
4296 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4298 device = kzalloc(sizeof(*device), GFP_NOFS);
4301 list_add(&device->dev_list,
4302 &fs_devices->devices);
4303 device->dev_root = root->fs_info->dev_root;
4304 device->devid = devid;
4305 device->work.func = pending_bios_fn;
4306 device->fs_devices = fs_devices;
4307 device->missing = 1;
4308 fs_devices->num_devices++;
4309 fs_devices->missing_devices++;
4310 spin_lock_init(&device->io_lock);
4311 INIT_LIST_HEAD(&device->dev_alloc_list);
4312 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4316 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4317 struct extent_buffer *leaf,
4318 struct btrfs_chunk *chunk)
4320 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4321 struct map_lookup *map;
4322 struct extent_map *em;
4326 u8 uuid[BTRFS_UUID_SIZE];
4331 logical = key->offset;
4332 length = btrfs_chunk_length(leaf, chunk);
4334 read_lock(&map_tree->map_tree.lock);
4335 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
4336 read_unlock(&map_tree->map_tree.lock);
4338 /* already mapped? */
4339 if (em && em->start <= logical && em->start + em->len > logical) {
4340 free_extent_map(em);
4343 free_extent_map(em);
4346 em = alloc_extent_map();
4349 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4350 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4352 free_extent_map(em);
4356 em->bdev = (struct block_device *)map;
4357 em->start = logical;
4359 em->block_start = 0;
4360 em->block_len = em->len;
4362 map->num_stripes = num_stripes;
4363 map->io_width = btrfs_chunk_io_width(leaf, chunk);
4364 map->io_align = btrfs_chunk_io_align(leaf, chunk);
4365 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4366 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4367 map->type = btrfs_chunk_type(leaf, chunk);
4368 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
4369 for (i = 0; i < num_stripes; i++) {
4370 map->stripes[i].physical =
4371 btrfs_stripe_offset_nr(leaf, chunk, i);
4372 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
4373 read_extent_buffer(leaf, uuid, (unsigned long)
4374 btrfs_stripe_dev_uuid_nr(chunk, i),
4376 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4378 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
4380 free_extent_map(em);
4383 if (!map->stripes[i].dev) {
4384 map->stripes[i].dev =
4385 add_missing_dev(root, devid, uuid);
4386 if (!map->stripes[i].dev) {
4388 free_extent_map(em);
4392 map->stripes[i].dev->in_fs_metadata = 1;
4395 write_lock(&map_tree->map_tree.lock);
4396 ret = add_extent_mapping(&map_tree->map_tree, em);
4397 write_unlock(&map_tree->map_tree.lock);
4398 BUG_ON(ret); /* Tree corruption */
4399 free_extent_map(em);
4404 static void fill_device_from_item(struct extent_buffer *leaf,
4405 struct btrfs_dev_item *dev_item,
4406 struct btrfs_device *device)
4410 device->devid = btrfs_device_id(leaf, dev_item);
4411 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4412 device->total_bytes = device->disk_total_bytes;
4413 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4414 device->type = btrfs_device_type(leaf, dev_item);
4415 device->io_align = btrfs_device_io_align(leaf, dev_item);
4416 device->io_width = btrfs_device_io_width(leaf, dev_item);
4417 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
4419 ptr = (unsigned long)btrfs_device_uuid(dev_item);
4420 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
4423 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4425 struct btrfs_fs_devices *fs_devices;
4428 BUG_ON(!mutex_is_locked(&uuid_mutex));
4430 fs_devices = root->fs_info->fs_devices->seed;
4431 while (fs_devices) {
4432 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4436 fs_devices = fs_devices->seed;
4439 fs_devices = find_fsid(fsid);
4445 fs_devices = clone_fs_devices(fs_devices);
4446 if (IS_ERR(fs_devices)) {
4447 ret = PTR_ERR(fs_devices);
4451 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
4452 root->fs_info->bdev_holder);
4454 free_fs_devices(fs_devices);
4458 if (!fs_devices->seeding) {
4459 __btrfs_close_devices(fs_devices);
4460 free_fs_devices(fs_devices);
4465 fs_devices->seed = root->fs_info->fs_devices->seed;
4466 root->fs_info->fs_devices->seed = fs_devices;
4471 static int read_one_dev(struct btrfs_root *root,
4472 struct extent_buffer *leaf,
4473 struct btrfs_dev_item *dev_item)
4475 struct btrfs_device *device;
4478 u8 fs_uuid[BTRFS_UUID_SIZE];
4479 u8 dev_uuid[BTRFS_UUID_SIZE];
4481 devid = btrfs_device_id(leaf, dev_item);
4482 read_extent_buffer(leaf, dev_uuid,
4483 (unsigned long)btrfs_device_uuid(dev_item),
4485 read_extent_buffer(leaf, fs_uuid,
4486 (unsigned long)btrfs_device_fsid(dev_item),
4489 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4490 ret = open_seed_devices(root, fs_uuid);
4491 if (ret && !btrfs_test_opt(root, DEGRADED))
4495 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4496 if (!device || !device->bdev) {
4497 if (!btrfs_test_opt(root, DEGRADED))
4501 printk(KERN_WARNING "warning devid %llu missing\n",
4502 (unsigned long long)devid);
4503 device = add_missing_dev(root, devid, dev_uuid);
4506 } else if (!device->missing) {
4508 * this happens when a device that was properly setup
4509 * in the device info lists suddenly goes bad.
4510 * device->bdev is NULL, and so we have to set
4511 * device->missing to one here
4513 root->fs_info->fs_devices->missing_devices++;
4514 device->missing = 1;
4518 if (device->fs_devices != root->fs_info->fs_devices) {
4519 BUG_ON(device->writeable);
4520 if (device->generation !=
4521 btrfs_device_generation(leaf, dev_item))
4525 fill_device_from_item(leaf, dev_item, device);
4526 device->dev_root = root->fs_info->dev_root;
4527 device->in_fs_metadata = 1;
4528 if (device->writeable) {
4529 device->fs_devices->total_rw_bytes += device->total_bytes;
4530 spin_lock(&root->fs_info->free_chunk_lock);
4531 root->fs_info->free_chunk_space += device->total_bytes -
4533 spin_unlock(&root->fs_info->free_chunk_lock);
4539 int btrfs_read_sys_array(struct btrfs_root *root)
4541 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4542 struct extent_buffer *sb;
4543 struct btrfs_disk_key *disk_key;
4544 struct btrfs_chunk *chunk;
4546 unsigned long sb_ptr;
4552 struct btrfs_key key;
4554 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
4555 BTRFS_SUPER_INFO_SIZE);
4558 btrfs_set_buffer_uptodate(sb);
4559 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
4561 * The sb extent buffer is artifical and just used to read the system array.
4562 * btrfs_set_buffer_uptodate() call does not properly mark all it's
4563 * pages up-to-date when the page is larger: extent does not cover the
4564 * whole page and consequently check_page_uptodate does not find all
4565 * the page's extents up-to-date (the hole beyond sb),
4566 * write_extent_buffer then triggers a WARN_ON.
4568 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4569 * but sb spans only this function. Add an explicit SetPageUptodate call
4570 * to silence the warning eg. on PowerPC 64.
4572 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
4573 SetPageUptodate(sb->pages[0]);
4575 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
4576 array_size = btrfs_super_sys_array_size(super_copy);
4578 ptr = super_copy->sys_chunk_array;
4579 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4582 while (cur < array_size) {
4583 disk_key = (struct btrfs_disk_key *)ptr;
4584 btrfs_disk_key_to_cpu(&key, disk_key);
4586 len = sizeof(*disk_key); ptr += len;
4590 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
4591 chunk = (struct btrfs_chunk *)sb_ptr;
4592 ret = read_one_chunk(root, &key, sb, chunk);
4595 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4596 len = btrfs_chunk_item_size(num_stripes);
4605 free_extent_buffer(sb);
4609 int btrfs_read_chunk_tree(struct btrfs_root *root)
4611 struct btrfs_path *path;
4612 struct extent_buffer *leaf;
4613 struct btrfs_key key;
4614 struct btrfs_key found_key;
4618 root = root->fs_info->chunk_root;
4620 path = btrfs_alloc_path();
4624 mutex_lock(&uuid_mutex);
4627 /* first we search for all of the device items, and then we
4628 * read in all of the chunk items. This way we can create chunk
4629 * mappings that reference all of the devices that are afound
4631 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4635 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4639 leaf = path->nodes[0];
4640 slot = path->slots[0];
4641 if (slot >= btrfs_header_nritems(leaf)) {
4642 ret = btrfs_next_leaf(root, path);
4649 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4650 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4651 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4653 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4654 struct btrfs_dev_item *dev_item;
4655 dev_item = btrfs_item_ptr(leaf, slot,
4656 struct btrfs_dev_item);
4657 ret = read_one_dev(root, leaf, dev_item);
4661 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4662 struct btrfs_chunk *chunk;
4663 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4664 ret = read_one_chunk(root, &found_key, leaf, chunk);
4670 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4672 btrfs_release_path(path);
4677 unlock_chunks(root);
4678 mutex_unlock(&uuid_mutex);
4680 btrfs_free_path(path);
4684 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
4688 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4689 btrfs_dev_stat_reset(dev, i);
4692 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
4694 struct btrfs_key key;
4695 struct btrfs_key found_key;
4696 struct btrfs_root *dev_root = fs_info->dev_root;
4697 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4698 struct extent_buffer *eb;
4701 struct btrfs_device *device;
4702 struct btrfs_path *path = NULL;
4705 path = btrfs_alloc_path();
4711 mutex_lock(&fs_devices->device_list_mutex);
4712 list_for_each_entry(device, &fs_devices->devices, dev_list) {
4714 struct btrfs_dev_stats_item *ptr;
4717 key.type = BTRFS_DEV_STATS_KEY;
4718 key.offset = device->devid;
4719 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
4721 __btrfs_reset_dev_stats(device);
4722 device->dev_stats_valid = 1;
4723 btrfs_release_path(path);
4726 slot = path->slots[0];
4727 eb = path->nodes[0];
4728 btrfs_item_key_to_cpu(eb, &found_key, slot);
4729 item_size = btrfs_item_size_nr(eb, slot);
4731 ptr = btrfs_item_ptr(eb, slot,
4732 struct btrfs_dev_stats_item);
4734 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4735 if (item_size >= (1 + i) * sizeof(__le64))
4736 btrfs_dev_stat_set(device, i,
4737 btrfs_dev_stats_value(eb, ptr, i));
4739 btrfs_dev_stat_reset(device, i);
4742 device->dev_stats_valid = 1;
4743 btrfs_dev_stat_print_on_load(device);
4744 btrfs_release_path(path);
4746 mutex_unlock(&fs_devices->device_list_mutex);
4749 btrfs_free_path(path);
4750 return ret < 0 ? ret : 0;
4753 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
4754 struct btrfs_root *dev_root,
4755 struct btrfs_device *device)
4757 struct btrfs_path *path;
4758 struct btrfs_key key;
4759 struct extent_buffer *eb;
4760 struct btrfs_dev_stats_item *ptr;
4765 key.type = BTRFS_DEV_STATS_KEY;
4766 key.offset = device->devid;
4768 path = btrfs_alloc_path();
4770 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
4772 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
4773 ret, rcu_str_deref(device->name));
4778 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
4779 /* need to delete old one and insert a new one */
4780 ret = btrfs_del_item(trans, dev_root, path);
4782 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
4783 rcu_str_deref(device->name), ret);
4790 /* need to insert a new item */
4791 btrfs_release_path(path);
4792 ret = btrfs_insert_empty_item(trans, dev_root, path,
4793 &key, sizeof(*ptr));
4795 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
4796 rcu_str_deref(device->name), ret);
4801 eb = path->nodes[0];
4802 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
4803 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4804 btrfs_set_dev_stats_value(eb, ptr, i,
4805 btrfs_dev_stat_read(device, i));
4806 btrfs_mark_buffer_dirty(eb);
4809 btrfs_free_path(path);
4814 * called from commit_transaction. Writes all changed device stats to disk.
4816 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
4817 struct btrfs_fs_info *fs_info)
4819 struct btrfs_root *dev_root = fs_info->dev_root;
4820 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4821 struct btrfs_device *device;
4824 mutex_lock(&fs_devices->device_list_mutex);
4825 list_for_each_entry(device, &fs_devices->devices, dev_list) {
4826 if (!device->dev_stats_valid || !device->dev_stats_dirty)
4829 ret = update_dev_stat_item(trans, dev_root, device);
4831 device->dev_stats_dirty = 0;
4833 mutex_unlock(&fs_devices->device_list_mutex);
4838 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
4840 btrfs_dev_stat_inc(dev, index);
4841 btrfs_dev_stat_print_on_error(dev);
4844 void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
4846 if (!dev->dev_stats_valid)
4848 printk_ratelimited_in_rcu(KERN_ERR
4849 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4850 rcu_str_deref(dev->name),
4851 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4852 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4853 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4854 btrfs_dev_stat_read(dev,
4855 BTRFS_DEV_STAT_CORRUPTION_ERRS),
4856 btrfs_dev_stat_read(dev,
4857 BTRFS_DEV_STAT_GENERATION_ERRS));
4860 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
4864 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4865 if (btrfs_dev_stat_read(dev, i) != 0)
4867 if (i == BTRFS_DEV_STAT_VALUES_MAX)
4868 return; /* all values == 0, suppress message */
4870 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4871 rcu_str_deref(dev->name),
4872 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4873 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4874 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4875 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
4876 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
4879 int btrfs_get_dev_stats(struct btrfs_root *root,
4880 struct btrfs_ioctl_get_dev_stats *stats)
4882 struct btrfs_device *dev;
4883 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4886 mutex_lock(&fs_devices->device_list_mutex);
4887 dev = btrfs_find_device(root, stats->devid, NULL, NULL);
4888 mutex_unlock(&fs_devices->device_list_mutex);
4892 "btrfs: get dev_stats failed, device not found\n");
4894 } else if (!dev->dev_stats_valid) {
4896 "btrfs: get dev_stats failed, not yet valid\n");
4898 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
4899 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4900 if (stats->nr_items > i)
4902 btrfs_dev_stat_read_and_reset(dev, i);
4904 btrfs_dev_stat_reset(dev, i);
4907 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4908 if (stats->nr_items > i)
4909 stats->values[i] = btrfs_dev_stat_read(dev, i);
4911 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
4912 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;