1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
19 #include "extent_map.h"
21 #include "transaction.h"
22 #include "print-tree.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 [BTRFS_RAID_RAID10] = {
40 .devs_max = 0, /* 0 == as many as possible */
42 .tolerated_failures = 1,
46 .raid_name = "raid10",
47 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
48 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
50 [BTRFS_RAID_RAID1] = {
55 .tolerated_failures = 1,
60 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
61 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
63 [BTRFS_RAID_RAID1C3] = {
68 .tolerated_failures = 2,
72 .raid_name = "raid1c3",
73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
74 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
76 [BTRFS_RAID_RAID1C4] = {
81 .tolerated_failures = 3,
85 .raid_name = "raid1c4",
86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
87 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
94 .tolerated_failures = 0,
99 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
102 [BTRFS_RAID_RAID0] = {
107 .tolerated_failures = 0,
111 .raid_name = "raid0",
112 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
115 [BTRFS_RAID_SINGLE] = {
120 .tolerated_failures = 0,
124 .raid_name = "single",
128 [BTRFS_RAID_RAID5] = {
133 .tolerated_failures = 1,
137 .raid_name = "raid5",
138 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
139 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
141 [BTRFS_RAID_RAID6] = {
146 .tolerated_failures = 2,
150 .raid_name = "raid6",
151 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
152 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
156 const char *btrfs_bg_type_to_raid_name(u64 flags)
158 const int index = btrfs_bg_flags_to_raid_index(flags);
160 if (index >= BTRFS_NR_RAID_TYPES)
163 return btrfs_raid_array[index].raid_name;
167 * Fill @buf with textual description of @bg_flags, no more than @size_buf
168 * bytes including terminating null byte.
170 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
175 u64 flags = bg_flags;
176 u32 size_bp = size_buf;
183 #define DESCRIBE_FLAG(flag, desc) \
185 if (flags & (flag)) { \
186 ret = snprintf(bp, size_bp, "%s|", (desc)); \
187 if (ret < 0 || ret >= size_bp) \
195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
197 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
199 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
202 btrfs_raid_array[i].raid_name);
206 ret = snprintf(bp, size_bp, "0x%llx|", flags);
210 if (size_bp < size_buf)
211 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
214 * The text is trimmed, it's up to the caller to provide sufficiently
220 static int init_first_rw_device(struct btrfs_trans_handle *trans);
221 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
222 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
223 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
224 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
225 enum btrfs_map_op op,
226 u64 logical, u64 *length,
227 struct btrfs_bio **bbio_ret,
228 int mirror_num, int need_raid_map);
234 * There are several mutexes that protect manipulation of devices and low-level
235 * structures like chunks but not block groups, extents or files
237 * uuid_mutex (global lock)
238 * ------------------------
239 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
240 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
241 * device) or requested by the device= mount option
243 * the mutex can be very coarse and can cover long-running operations
245 * protects: updates to fs_devices counters like missing devices, rw devices,
246 * seeding, structure cloning, opening/closing devices at mount/umount time
248 * global::fs_devs - add, remove, updates to the global list
250 * does not protect: manipulation of the fs_devices::devices list in general
251 * but in mount context it could be used to exclude list modifications by eg.
254 * btrfs_device::name - renames (write side), read is RCU
256 * fs_devices::device_list_mutex (per-fs, with RCU)
257 * ------------------------------------------------
258 * protects updates to fs_devices::devices, ie. adding and deleting
260 * simple list traversal with read-only actions can be done with RCU protection
262 * may be used to exclude some operations from running concurrently without any
263 * modifications to the list (see write_all_supers)
265 * Is not required at mount and close times, because our device list is
266 * protected by the uuid_mutex at that point.
270 * protects balance structures (status, state) and context accessed from
271 * several places (internally, ioctl)
275 * protects chunks, adding or removing during allocation, trim or when a new
276 * device is added/removed. Additionally it also protects post_commit_list of
277 * individual devices, since they can be added to the transaction's
278 * post_commit_list only with chunk_mutex held.
282 * a big lock that is held by the cleaner thread and prevents running subvolume
283 * cleaning together with relocation or delayed iputs
295 * Exclusive operations
296 * ====================
298 * Maintains the exclusivity of the following operations that apply to the
299 * whole filesystem and cannot run in parallel.
304 * - Device replace (*)
307 * The device operations (as above) can be in one of the following states:
313 * Only device operations marked with (*) can go into the Paused state for the
316 * - ioctl (only Balance can be Paused through ioctl)
317 * - filesystem remounted as read-only
318 * - filesystem unmounted and mounted as read-only
319 * - system power-cycle and filesystem mounted as read-only
320 * - filesystem or device errors leading to forced read-only
322 * The status of exclusive operation is set and cleared atomically.
323 * During the course of Paused state, fs_info::exclusive_operation remains set.
324 * A device operation in Paused or Running state can be canceled or resumed
325 * either by ioctl (Balance only) or when remounted as read-write.
326 * The exclusive status is cleared when the device operation is canceled or
330 DEFINE_MUTEX(uuid_mutex);
331 static LIST_HEAD(fs_uuids);
332 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
338 * alloc_fs_devices - allocate struct btrfs_fs_devices
339 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
340 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
342 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
343 * The returned struct is not linked onto any lists and can be destroyed with
344 * kfree() right away.
346 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
347 const u8 *metadata_fsid)
349 struct btrfs_fs_devices *fs_devs;
351 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
353 return ERR_PTR(-ENOMEM);
355 mutex_init(&fs_devs->device_list_mutex);
357 INIT_LIST_HEAD(&fs_devs->devices);
358 INIT_LIST_HEAD(&fs_devs->alloc_list);
359 INIT_LIST_HEAD(&fs_devs->fs_list);
360 INIT_LIST_HEAD(&fs_devs->seed_list);
362 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
365 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
367 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
372 void btrfs_free_device(struct btrfs_device *device)
374 WARN_ON(!list_empty(&device->post_commit_list));
375 rcu_string_free(device->name);
376 extent_io_tree_release(&device->alloc_state);
377 bio_put(device->flush_bio);
378 btrfs_destroy_dev_zone_info(device);
382 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
384 struct btrfs_device *device;
385 WARN_ON(fs_devices->opened);
386 while (!list_empty(&fs_devices->devices)) {
387 device = list_entry(fs_devices->devices.next,
388 struct btrfs_device, dev_list);
389 list_del(&device->dev_list);
390 btrfs_free_device(device);
395 void __exit btrfs_cleanup_fs_uuids(void)
397 struct btrfs_fs_devices *fs_devices;
399 while (!list_empty(&fs_uuids)) {
400 fs_devices = list_entry(fs_uuids.next,
401 struct btrfs_fs_devices, fs_list);
402 list_del(&fs_devices->fs_list);
403 free_fs_devices(fs_devices);
408 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
409 * Returned struct is not linked onto any lists and must be destroyed using
412 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
414 struct btrfs_device *dev;
416 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
418 return ERR_PTR(-ENOMEM);
421 * Preallocate a bio that's always going to be used for flushing device
422 * barriers and matches the device lifespan
424 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
425 if (!dev->flush_bio) {
427 return ERR_PTR(-ENOMEM);
430 INIT_LIST_HEAD(&dev->dev_list);
431 INIT_LIST_HEAD(&dev->dev_alloc_list);
432 INIT_LIST_HEAD(&dev->post_commit_list);
434 atomic_set(&dev->reada_in_flight, 0);
435 atomic_set(&dev->dev_stats_ccnt, 0);
436 btrfs_device_data_ordered_init(dev);
437 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
438 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
439 extent_io_tree_init(fs_info, &dev->alloc_state,
440 IO_TREE_DEVICE_ALLOC_STATE, NULL);
445 static noinline struct btrfs_fs_devices *find_fsid(
446 const u8 *fsid, const u8 *metadata_fsid)
448 struct btrfs_fs_devices *fs_devices;
452 /* Handle non-split brain cases */
453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
455 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457 BTRFS_FSID_SIZE) == 0)
460 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
467 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
468 struct btrfs_super_block *disk_super)
471 struct btrfs_fs_devices *fs_devices;
474 * Handle scanned device having completed its fsid change but
475 * belonging to a fs_devices that was created by first scanning
476 * a device which didn't have its fsid/metadata_uuid changed
477 * at all and the CHANGING_FSID_V2 flag set.
479 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
480 if (fs_devices->fsid_change &&
481 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
482 BTRFS_FSID_SIZE) == 0 &&
483 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
484 BTRFS_FSID_SIZE) == 0) {
489 * Handle scanned device having completed its fsid change but
490 * belonging to a fs_devices that was created by a device that
491 * has an outdated pair of fsid/metadata_uuid and
492 * CHANGING_FSID_V2 flag set.
494 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
495 if (fs_devices->fsid_change &&
496 memcmp(fs_devices->metadata_uuid,
497 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
498 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
499 BTRFS_FSID_SIZE) == 0) {
504 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
509 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
510 int flush, struct block_device **bdev,
511 struct btrfs_super_block **disk_super)
515 *bdev = blkdev_get_by_path(device_path, flags, holder);
518 ret = PTR_ERR(*bdev);
523 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
524 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
526 blkdev_put(*bdev, flags);
529 invalidate_bdev(*bdev);
530 *disk_super = btrfs_read_dev_super(*bdev);
531 if (IS_ERR(*disk_super)) {
532 ret = PTR_ERR(*disk_super);
533 blkdev_put(*bdev, flags);
544 static bool device_path_matched(const char *path, struct btrfs_device *device)
549 found = strcmp(rcu_str_deref(device->name), path);
556 * Search and remove all stale (devices which are not mounted) devices.
557 * When both inputs are NULL, it will search and release all stale devices.
558 * path: Optional. When provided will it release all unmounted devices
559 * matching this path only.
560 * skip_dev: Optional. Will skip this device when searching for the stale
562 * Return: 0 for success or if @path is NULL.
563 * -EBUSY if @path is a mounted device.
564 * -ENOENT if @path does not match any device in the list.
566 static int btrfs_free_stale_devices(const char *path,
567 struct btrfs_device *skip_device)
569 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
570 struct btrfs_device *device, *tmp_device;
576 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
578 mutex_lock(&fs_devices->device_list_mutex);
579 list_for_each_entry_safe(device, tmp_device,
580 &fs_devices->devices, dev_list) {
581 if (skip_device && skip_device == device)
583 if (path && !device->name)
585 if (path && !device_path_matched(path, device))
587 if (fs_devices->opened) {
588 /* for an already deleted device return 0 */
589 if (path && ret != 0)
594 /* delete the stale device */
595 fs_devices->num_devices--;
596 list_del(&device->dev_list);
597 btrfs_free_device(device);
601 mutex_unlock(&fs_devices->device_list_mutex);
603 if (fs_devices->num_devices == 0) {
604 btrfs_sysfs_remove_fsid(fs_devices);
605 list_del(&fs_devices->fs_list);
606 free_fs_devices(fs_devices);
614 * This is only used on mount, and we are protected from competing things
615 * messing with our fs_devices by the uuid_mutex, thus we do not need the
616 * fs_devices->device_list_mutex here.
618 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
619 struct btrfs_device *device, fmode_t flags,
622 struct request_queue *q;
623 struct block_device *bdev;
624 struct btrfs_super_block *disk_super;
633 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
638 devid = btrfs_stack_device_id(&disk_super->dev_item);
639 if (devid != device->devid)
640 goto error_free_page;
642 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
643 goto error_free_page;
645 device->generation = btrfs_super_generation(disk_super);
647 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
648 if (btrfs_super_incompat_flags(disk_super) &
649 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
651 "BTRFS: Invalid seeding and uuid-changed device detected\n");
652 goto error_free_page;
655 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
656 fs_devices->seeding = true;
658 if (bdev_read_only(bdev))
659 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
661 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
664 q = bdev_get_queue(bdev);
665 if (!blk_queue_nonrot(q))
666 fs_devices->rotating = true;
669 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
670 device->mode = flags;
672 fs_devices->open_devices++;
673 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
674 device->devid != BTRFS_DEV_REPLACE_DEVID) {
675 fs_devices->rw_devices++;
676 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
678 btrfs_release_disk_super(disk_super);
683 btrfs_release_disk_super(disk_super);
684 blkdev_put(bdev, flags);
690 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
691 * being created with a disk that has already completed its fsid change. Such
692 * disk can belong to an fs which has its FSID changed or to one which doesn't.
693 * Handle both cases here.
695 static struct btrfs_fs_devices *find_fsid_inprogress(
696 struct btrfs_super_block *disk_super)
698 struct btrfs_fs_devices *fs_devices;
700 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
701 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
702 BTRFS_FSID_SIZE) != 0 &&
703 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
704 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
709 return find_fsid(disk_super->fsid, NULL);
713 static struct btrfs_fs_devices *find_fsid_changed(
714 struct btrfs_super_block *disk_super)
716 struct btrfs_fs_devices *fs_devices;
719 * Handles the case where scanned device is part of an fs that had
720 * multiple successful changes of FSID but currently device didn't
721 * observe it. Meaning our fsid will be different than theirs. We need
722 * to handle two subcases :
723 * 1 - The fs still continues to have different METADATA/FSID uuids.
724 * 2 - The fs is switched back to its original FSID (METADATA/FSID
727 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
729 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
730 BTRFS_FSID_SIZE) != 0 &&
731 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
732 BTRFS_FSID_SIZE) == 0 &&
733 memcmp(fs_devices->fsid, disk_super->fsid,
734 BTRFS_FSID_SIZE) != 0)
737 /* Unchanged UUIDs */
738 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
739 BTRFS_FSID_SIZE) == 0 &&
740 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
741 BTRFS_FSID_SIZE) == 0)
748 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
749 struct btrfs_super_block *disk_super)
751 struct btrfs_fs_devices *fs_devices;
754 * Handle the case where the scanned device is part of an fs whose last
755 * metadata UUID change reverted it to the original FSID. At the same
756 * time * fs_devices was first created by another constitutent device
757 * which didn't fully observe the operation. This results in an
758 * btrfs_fs_devices created with metadata/fsid different AND
759 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
760 * fs_devices equal to the FSID of the disk.
762 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
763 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
764 BTRFS_FSID_SIZE) != 0 &&
765 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
766 BTRFS_FSID_SIZE) == 0 &&
767 fs_devices->fsid_change)
774 * Add new device to list of registered devices
777 * device pointer which was just added or updated when successful
778 * error pointer when failed
780 static noinline struct btrfs_device *device_list_add(const char *path,
781 struct btrfs_super_block *disk_super,
782 bool *new_device_added)
784 struct btrfs_device *device;
785 struct btrfs_fs_devices *fs_devices = NULL;
786 struct rcu_string *name;
787 u64 found_transid = btrfs_super_generation(disk_super);
788 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
789 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
790 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
791 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
792 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
794 if (fsid_change_in_progress) {
795 if (!has_metadata_uuid)
796 fs_devices = find_fsid_inprogress(disk_super);
798 fs_devices = find_fsid_changed(disk_super);
799 } else if (has_metadata_uuid) {
800 fs_devices = find_fsid_with_metadata_uuid(disk_super);
802 fs_devices = find_fsid_reverted_metadata(disk_super);
804 fs_devices = find_fsid(disk_super->fsid, NULL);
809 if (has_metadata_uuid)
810 fs_devices = alloc_fs_devices(disk_super->fsid,
811 disk_super->metadata_uuid);
813 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
815 if (IS_ERR(fs_devices))
816 return ERR_CAST(fs_devices);
818 fs_devices->fsid_change = fsid_change_in_progress;
820 mutex_lock(&fs_devices->device_list_mutex);
821 list_add(&fs_devices->fs_list, &fs_uuids);
825 mutex_lock(&fs_devices->device_list_mutex);
826 device = btrfs_find_device(fs_devices, devid,
827 disk_super->dev_item.uuid, NULL);
830 * If this disk has been pulled into an fs devices created by
831 * a device which had the CHANGING_FSID_V2 flag then replace the
832 * metadata_uuid/fsid values of the fs_devices.
834 if (fs_devices->fsid_change &&
835 found_transid > fs_devices->latest_generation) {
836 memcpy(fs_devices->fsid, disk_super->fsid,
839 if (has_metadata_uuid)
840 memcpy(fs_devices->metadata_uuid,
841 disk_super->metadata_uuid,
844 memcpy(fs_devices->metadata_uuid,
845 disk_super->fsid, BTRFS_FSID_SIZE);
847 fs_devices->fsid_change = false;
852 if (fs_devices->opened) {
853 mutex_unlock(&fs_devices->device_list_mutex);
854 return ERR_PTR(-EBUSY);
857 device = btrfs_alloc_device(NULL, &devid,
858 disk_super->dev_item.uuid);
859 if (IS_ERR(device)) {
860 mutex_unlock(&fs_devices->device_list_mutex);
861 /* we can safely leave the fs_devices entry around */
865 name = rcu_string_strdup(path, GFP_NOFS);
867 btrfs_free_device(device);
868 mutex_unlock(&fs_devices->device_list_mutex);
869 return ERR_PTR(-ENOMEM);
871 rcu_assign_pointer(device->name, name);
873 list_add_rcu(&device->dev_list, &fs_devices->devices);
874 fs_devices->num_devices++;
876 device->fs_devices = fs_devices;
877 *new_device_added = true;
879 if (disk_super->label[0])
881 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
882 disk_super->label, devid, found_transid, path,
883 current->comm, task_pid_nr(current));
886 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
887 disk_super->fsid, devid, found_transid, path,
888 current->comm, task_pid_nr(current));
890 } else if (!device->name || strcmp(device->name->str, path)) {
892 * When FS is already mounted.
893 * 1. If you are here and if the device->name is NULL that
894 * means this device was missing at time of FS mount.
895 * 2. If you are here and if the device->name is different
896 * from 'path' that means either
897 * a. The same device disappeared and reappeared with
899 * b. The missing-disk-which-was-replaced, has
902 * We must allow 1 and 2a above. But 2b would be a spurious
905 * Further in case of 1 and 2a above, the disk at 'path'
906 * would have missed some transaction when it was away and
907 * in case of 2a the stale bdev has to be updated as well.
908 * 2b must not be allowed at all time.
912 * For now, we do allow update to btrfs_fs_device through the
913 * btrfs dev scan cli after FS has been mounted. We're still
914 * tracking a problem where systems fail mount by subvolume id
915 * when we reject replacement on a mounted FS.
917 if (!fs_devices->opened && found_transid < device->generation) {
919 * That is if the FS is _not_ mounted and if you
920 * are here, that means there is more than one
921 * disk with same uuid and devid.We keep the one
922 * with larger generation number or the last-in if
923 * generation are equal.
925 mutex_unlock(&fs_devices->device_list_mutex);
926 return ERR_PTR(-EEXIST);
930 * We are going to replace the device path for a given devid,
931 * make sure it's the same device if the device is mounted
937 error = lookup_bdev(path, &path_dev);
939 mutex_unlock(&fs_devices->device_list_mutex);
940 return ERR_PTR(error);
943 if (device->bdev->bd_dev != path_dev) {
944 mutex_unlock(&fs_devices->device_list_mutex);
946 * device->fs_info may not be reliable here, so
947 * pass in a NULL instead. This avoids a
948 * possible use-after-free when the fs_info and
949 * fs_info->sb are already torn down.
951 btrfs_warn_in_rcu(NULL,
952 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
953 path, devid, found_transid,
955 task_pid_nr(current));
956 return ERR_PTR(-EEXIST);
958 btrfs_info_in_rcu(device->fs_info,
959 "devid %llu device path %s changed to %s scanned by %s (%d)",
960 devid, rcu_str_deref(device->name),
962 task_pid_nr(current));
965 name = rcu_string_strdup(path, GFP_NOFS);
967 mutex_unlock(&fs_devices->device_list_mutex);
968 return ERR_PTR(-ENOMEM);
970 rcu_string_free(device->name);
971 rcu_assign_pointer(device->name, name);
972 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
973 fs_devices->missing_devices--;
974 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
979 * Unmount does not free the btrfs_device struct but would zero
980 * generation along with most of the other members. So just update
981 * it back. We need it to pick the disk with largest generation
984 if (!fs_devices->opened) {
985 device->generation = found_transid;
986 fs_devices->latest_generation = max_t(u64, found_transid,
987 fs_devices->latest_generation);
990 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
992 mutex_unlock(&fs_devices->device_list_mutex);
996 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
998 struct btrfs_fs_devices *fs_devices;
999 struct btrfs_device *device;
1000 struct btrfs_device *orig_dev;
1003 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1004 if (IS_ERR(fs_devices))
1007 mutex_lock(&orig->device_list_mutex);
1008 fs_devices->total_devices = orig->total_devices;
1010 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1011 struct rcu_string *name;
1013 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1015 if (IS_ERR(device)) {
1016 ret = PTR_ERR(device);
1021 * This is ok to do without rcu read locked because we hold the
1022 * uuid mutex so nothing we touch in here is going to disappear.
1024 if (orig_dev->name) {
1025 name = rcu_string_strdup(orig_dev->name->str,
1028 btrfs_free_device(device);
1032 rcu_assign_pointer(device->name, name);
1035 list_add(&device->dev_list, &fs_devices->devices);
1036 device->fs_devices = fs_devices;
1037 fs_devices->num_devices++;
1039 mutex_unlock(&orig->device_list_mutex);
1042 mutex_unlock(&orig->device_list_mutex);
1043 free_fs_devices(fs_devices);
1044 return ERR_PTR(ret);
1047 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1048 struct btrfs_device **latest_dev)
1050 struct btrfs_device *device, *next;
1052 /* This is the initialized path, it is safe to release the devices. */
1053 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1054 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1055 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1056 &device->dev_state) &&
1057 !test_bit(BTRFS_DEV_STATE_MISSING,
1058 &device->dev_state) &&
1060 device->generation > (*latest_dev)->generation)) {
1061 *latest_dev = device;
1067 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1068 * in btrfs_init_dev_replace() so just continue.
1070 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1074 blkdev_put(device->bdev, device->mode);
1075 device->bdev = NULL;
1076 fs_devices->open_devices--;
1078 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1079 list_del_init(&device->dev_alloc_list);
1080 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1081 fs_devices->rw_devices--;
1083 list_del_init(&device->dev_list);
1084 fs_devices->num_devices--;
1085 btrfs_free_device(device);
1091 * After we have read the system tree and know devids belonging to this
1092 * filesystem, remove the device which does not belong there.
1094 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1096 struct btrfs_device *latest_dev = NULL;
1097 struct btrfs_fs_devices *seed_dev;
1099 mutex_lock(&uuid_mutex);
1100 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1102 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1103 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1105 fs_devices->latest_bdev = latest_dev->bdev;
1107 mutex_unlock(&uuid_mutex);
1110 static void btrfs_close_bdev(struct btrfs_device *device)
1115 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1116 sync_blockdev(device->bdev);
1117 invalidate_bdev(device->bdev);
1120 blkdev_put(device->bdev, device->mode);
1123 static void btrfs_close_one_device(struct btrfs_device *device)
1125 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1127 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1128 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1129 list_del_init(&device->dev_alloc_list);
1130 fs_devices->rw_devices--;
1133 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1134 fs_devices->missing_devices--;
1136 btrfs_close_bdev(device);
1138 fs_devices->open_devices--;
1139 device->bdev = NULL;
1141 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1142 btrfs_destroy_dev_zone_info(device);
1144 device->fs_info = NULL;
1145 atomic_set(&device->dev_stats_ccnt, 0);
1146 extent_io_tree_release(&device->alloc_state);
1148 /* Verify the device is back in a pristine state */
1149 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1150 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1151 ASSERT(list_empty(&device->dev_alloc_list));
1152 ASSERT(list_empty(&device->post_commit_list));
1153 ASSERT(atomic_read(&device->reada_in_flight) == 0);
1156 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1158 struct btrfs_device *device, *tmp;
1160 lockdep_assert_held(&uuid_mutex);
1162 if (--fs_devices->opened > 0)
1165 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1166 btrfs_close_one_device(device);
1168 WARN_ON(fs_devices->open_devices);
1169 WARN_ON(fs_devices->rw_devices);
1170 fs_devices->opened = 0;
1171 fs_devices->seeding = false;
1172 fs_devices->fs_info = NULL;
1175 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1178 struct btrfs_fs_devices *tmp;
1180 mutex_lock(&uuid_mutex);
1181 close_fs_devices(fs_devices);
1182 if (!fs_devices->opened)
1183 list_splice_init(&fs_devices->seed_list, &list);
1185 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1186 close_fs_devices(fs_devices);
1187 list_del(&fs_devices->seed_list);
1188 free_fs_devices(fs_devices);
1190 mutex_unlock(&uuid_mutex);
1193 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1194 fmode_t flags, void *holder)
1196 struct btrfs_device *device;
1197 struct btrfs_device *latest_dev = NULL;
1198 struct btrfs_device *tmp_device;
1200 flags |= FMODE_EXCL;
1202 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1206 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1208 (!latest_dev || device->generation > latest_dev->generation)) {
1209 latest_dev = device;
1210 } else if (ret == -ENODATA) {
1211 fs_devices->num_devices--;
1212 list_del(&device->dev_list);
1213 btrfs_free_device(device);
1216 if (fs_devices->open_devices == 0)
1219 fs_devices->opened = 1;
1220 fs_devices->latest_bdev = latest_dev->bdev;
1221 fs_devices->total_rw_bytes = 0;
1222 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1223 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1228 static int devid_cmp(void *priv, const struct list_head *a,
1229 const struct list_head *b)
1231 struct btrfs_device *dev1, *dev2;
1233 dev1 = list_entry(a, struct btrfs_device, dev_list);
1234 dev2 = list_entry(b, struct btrfs_device, dev_list);
1236 if (dev1->devid < dev2->devid)
1238 else if (dev1->devid > dev2->devid)
1243 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1244 fmode_t flags, void *holder)
1248 lockdep_assert_held(&uuid_mutex);
1250 * The device_list_mutex cannot be taken here in case opening the
1251 * underlying device takes further locks like open_mutex.
1253 * We also don't need the lock here as this is called during mount and
1254 * exclusion is provided by uuid_mutex
1257 if (fs_devices->opened) {
1258 fs_devices->opened++;
1261 list_sort(NULL, &fs_devices->devices, devid_cmp);
1262 ret = open_fs_devices(fs_devices, flags, holder);
1268 void btrfs_release_disk_super(struct btrfs_super_block *super)
1270 struct page *page = virt_to_page(super);
1275 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1276 u64 bytenr, u64 bytenr_orig)
1278 struct btrfs_super_block *disk_super;
1283 /* make sure our super fits in the device */
1284 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1285 return ERR_PTR(-EINVAL);
1287 /* make sure our super fits in the page */
1288 if (sizeof(*disk_super) > PAGE_SIZE)
1289 return ERR_PTR(-EINVAL);
1291 /* make sure our super doesn't straddle pages on disk */
1292 index = bytenr >> PAGE_SHIFT;
1293 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1294 return ERR_PTR(-EINVAL);
1296 /* pull in the page with our super */
1297 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1300 return ERR_CAST(page);
1302 p = page_address(page);
1304 /* align our pointer to the offset of the super block */
1305 disk_super = p + offset_in_page(bytenr);
1307 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1308 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1309 btrfs_release_disk_super(p);
1310 return ERR_PTR(-EINVAL);
1313 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1314 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1319 int btrfs_forget_devices(const char *path)
1323 mutex_lock(&uuid_mutex);
1324 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1325 mutex_unlock(&uuid_mutex);
1331 * Look for a btrfs signature on a device. This may be called out of the mount path
1332 * and we are not allowed to call set_blocksize during the scan. The superblock
1333 * is read via pagecache
1335 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1338 struct btrfs_super_block *disk_super;
1339 bool new_device_added = false;
1340 struct btrfs_device *device = NULL;
1341 struct block_device *bdev;
1342 u64 bytenr, bytenr_orig;
1345 lockdep_assert_held(&uuid_mutex);
1348 * we would like to check all the supers, but that would make
1349 * a btrfs mount succeed after a mkfs from a different FS.
1350 * So, we need to add a special mount option to scan for
1351 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1353 flags |= FMODE_EXCL;
1355 bdev = blkdev_get_by_path(path, flags, holder);
1357 return ERR_CAST(bdev);
1359 bytenr_orig = btrfs_sb_offset(0);
1360 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1362 return ERR_PTR(ret);
1364 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1365 if (IS_ERR(disk_super)) {
1366 device = ERR_CAST(disk_super);
1367 goto error_bdev_put;
1370 device = device_list_add(path, disk_super, &new_device_added);
1371 if (!IS_ERR(device)) {
1372 if (new_device_added)
1373 btrfs_free_stale_devices(path, device);
1376 btrfs_release_disk_super(disk_super);
1379 blkdev_put(bdev, flags);
1385 * Try to find a chunk that intersects [start, start + len] range and when one
1386 * such is found, record the end of it in *start
1388 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1391 u64 physical_start, physical_end;
1393 lockdep_assert_held(&device->fs_info->chunk_mutex);
1395 if (!find_first_extent_bit(&device->alloc_state, *start,
1396 &physical_start, &physical_end,
1397 CHUNK_ALLOCATED, NULL)) {
1399 if (in_range(physical_start, *start, len) ||
1400 in_range(*start, physical_start,
1401 physical_end - physical_start)) {
1402 *start = physical_end + 1;
1409 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1411 switch (device->fs_devices->chunk_alloc_policy) {
1412 case BTRFS_CHUNK_ALLOC_REGULAR:
1414 * We don't want to overwrite the superblock on the drive nor
1415 * any area used by the boot loader (grub for example), so we
1416 * make sure to start at an offset of at least 1MB.
1418 return max_t(u64, start, SZ_1M);
1419 case BTRFS_CHUNK_ALLOC_ZONED:
1421 * We don't care about the starting region like regular
1422 * allocator, because we anyway use/reserve the first two zones
1423 * for superblock logging.
1425 return ALIGN(start, device->zone_info->zone_size);
1431 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1432 u64 *hole_start, u64 *hole_size,
1435 u64 zone_size = device->zone_info->zone_size;
1438 bool changed = false;
1440 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1442 while (*hole_size > 0) {
1443 pos = btrfs_find_allocatable_zones(device, *hole_start,
1444 *hole_start + *hole_size,
1446 if (pos != *hole_start) {
1447 *hole_size = *hole_start + *hole_size - pos;
1450 if (*hole_size < num_bytes)
1454 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1456 /* Range is ensured to be empty */
1460 /* Given hole range was invalid (outside of device) */
1461 if (ret == -ERANGE) {
1462 *hole_start += *hole_size;
1467 *hole_start += zone_size;
1468 *hole_size -= zone_size;
1476 * dev_extent_hole_check - check if specified hole is suitable for allocation
1477 * @device: the device which we have the hole
1478 * @hole_start: starting position of the hole
1479 * @hole_size: the size of the hole
1480 * @num_bytes: the size of the free space that we need
1482 * This function may modify @hole_start and @hole_size to reflect the suitable
1483 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1485 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1486 u64 *hole_size, u64 num_bytes)
1488 bool changed = false;
1489 u64 hole_end = *hole_start + *hole_size;
1493 * Check before we set max_hole_start, otherwise we could end up
1494 * sending back this offset anyway.
1496 if (contains_pending_extent(device, hole_start, *hole_size)) {
1497 if (hole_end >= *hole_start)
1498 *hole_size = hole_end - *hole_start;
1504 switch (device->fs_devices->chunk_alloc_policy) {
1505 case BTRFS_CHUNK_ALLOC_REGULAR:
1506 /* No extra check */
1508 case BTRFS_CHUNK_ALLOC_ZONED:
1509 if (dev_extent_hole_check_zoned(device, hole_start,
1510 hole_size, num_bytes)) {
1513 * The changed hole can contain pending extent.
1514 * Loop again to check that.
1530 * find_free_dev_extent_start - find free space in the specified device
1531 * @device: the device which we search the free space in
1532 * @num_bytes: the size of the free space that we need
1533 * @search_start: the position from which to begin the search
1534 * @start: store the start of the free space.
1535 * @len: the size of the free space. that we find, or the size
1536 * of the max free space if we don't find suitable free space
1538 * this uses a pretty simple search, the expectation is that it is
1539 * called very infrequently and that a given device has a small number
1542 * @start is used to store the start of the free space if we find. But if we
1543 * don't find suitable free space, it will be used to store the start position
1544 * of the max free space.
1546 * @len is used to store the size of the free space that we find.
1547 * But if we don't find suitable free space, it is used to store the size of
1548 * the max free space.
1550 * NOTE: This function will search *commit* root of device tree, and does extra
1551 * check to ensure dev extents are not double allocated.
1552 * This makes the function safe to allocate dev extents but may not report
1553 * correct usable device space, as device extent freed in current transaction
1554 * is not reported as available.
1556 static int find_free_dev_extent_start(struct btrfs_device *device,
1557 u64 num_bytes, u64 search_start, u64 *start,
1560 struct btrfs_fs_info *fs_info = device->fs_info;
1561 struct btrfs_root *root = fs_info->dev_root;
1562 struct btrfs_key key;
1563 struct btrfs_dev_extent *dev_extent;
1564 struct btrfs_path *path;
1569 u64 search_end = device->total_bytes;
1572 struct extent_buffer *l;
1574 search_start = dev_extent_search_start(device, search_start);
1576 WARN_ON(device->zone_info &&
1577 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1579 path = btrfs_alloc_path();
1583 max_hole_start = search_start;
1587 if (search_start >= search_end ||
1588 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1593 path->reada = READA_FORWARD;
1594 path->search_commit_root = 1;
1595 path->skip_locking = 1;
1597 key.objectid = device->devid;
1598 key.offset = search_start;
1599 key.type = BTRFS_DEV_EXTENT_KEY;
1601 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1605 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1612 slot = path->slots[0];
1613 if (slot >= btrfs_header_nritems(l)) {
1614 ret = btrfs_next_leaf(root, path);
1622 btrfs_item_key_to_cpu(l, &key, slot);
1624 if (key.objectid < device->devid)
1627 if (key.objectid > device->devid)
1630 if (key.type != BTRFS_DEV_EXTENT_KEY)
1633 if (key.offset > search_start) {
1634 hole_size = key.offset - search_start;
1635 dev_extent_hole_check(device, &search_start, &hole_size,
1638 if (hole_size > max_hole_size) {
1639 max_hole_start = search_start;
1640 max_hole_size = hole_size;
1644 * If this free space is greater than which we need,
1645 * it must be the max free space that we have found
1646 * until now, so max_hole_start must point to the start
1647 * of this free space and the length of this free space
1648 * is stored in max_hole_size. Thus, we return
1649 * max_hole_start and max_hole_size and go back to the
1652 if (hole_size >= num_bytes) {
1658 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1659 extent_end = key.offset + btrfs_dev_extent_length(l,
1661 if (extent_end > search_start)
1662 search_start = extent_end;
1669 * At this point, search_start should be the end of
1670 * allocated dev extents, and when shrinking the device,
1671 * search_end may be smaller than search_start.
1673 if (search_end > search_start) {
1674 hole_size = search_end - search_start;
1675 if (dev_extent_hole_check(device, &search_start, &hole_size,
1677 btrfs_release_path(path);
1681 if (hole_size > max_hole_size) {
1682 max_hole_start = search_start;
1683 max_hole_size = hole_size;
1688 if (max_hole_size < num_bytes)
1694 btrfs_free_path(path);
1695 *start = max_hole_start;
1697 *len = max_hole_size;
1701 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1702 u64 *start, u64 *len)
1704 /* FIXME use last free of some kind */
1705 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1708 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1709 struct btrfs_device *device,
1710 u64 start, u64 *dev_extent_len)
1712 struct btrfs_fs_info *fs_info = device->fs_info;
1713 struct btrfs_root *root = fs_info->dev_root;
1715 struct btrfs_path *path;
1716 struct btrfs_key key;
1717 struct btrfs_key found_key;
1718 struct extent_buffer *leaf = NULL;
1719 struct btrfs_dev_extent *extent = NULL;
1721 path = btrfs_alloc_path();
1725 key.objectid = device->devid;
1727 key.type = BTRFS_DEV_EXTENT_KEY;
1729 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1731 ret = btrfs_previous_item(root, path, key.objectid,
1732 BTRFS_DEV_EXTENT_KEY);
1735 leaf = path->nodes[0];
1736 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1737 extent = btrfs_item_ptr(leaf, path->slots[0],
1738 struct btrfs_dev_extent);
1739 BUG_ON(found_key.offset > start || found_key.offset +
1740 btrfs_dev_extent_length(leaf, extent) < start);
1742 btrfs_release_path(path);
1744 } else if (ret == 0) {
1745 leaf = path->nodes[0];
1746 extent = btrfs_item_ptr(leaf, path->slots[0],
1747 struct btrfs_dev_extent);
1752 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1754 ret = btrfs_del_item(trans, root, path);
1756 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1758 btrfs_free_path(path);
1762 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1763 struct btrfs_device *device,
1764 u64 chunk_offset, u64 start, u64 num_bytes)
1767 struct btrfs_path *path;
1768 struct btrfs_fs_info *fs_info = device->fs_info;
1769 struct btrfs_root *root = fs_info->dev_root;
1770 struct btrfs_dev_extent *extent;
1771 struct extent_buffer *leaf;
1772 struct btrfs_key key;
1774 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1775 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1776 path = btrfs_alloc_path();
1780 key.objectid = device->devid;
1782 key.type = BTRFS_DEV_EXTENT_KEY;
1783 ret = btrfs_insert_empty_item(trans, root, path, &key,
1788 leaf = path->nodes[0];
1789 extent = btrfs_item_ptr(leaf, path->slots[0],
1790 struct btrfs_dev_extent);
1791 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1792 BTRFS_CHUNK_TREE_OBJECTID);
1793 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1794 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1795 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1797 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1798 btrfs_mark_buffer_dirty(leaf);
1800 btrfs_free_path(path);
1804 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1806 struct extent_map_tree *em_tree;
1807 struct extent_map *em;
1811 em_tree = &fs_info->mapping_tree;
1812 read_lock(&em_tree->lock);
1813 n = rb_last(&em_tree->map.rb_root);
1815 em = rb_entry(n, struct extent_map, rb_node);
1816 ret = em->start + em->len;
1818 read_unlock(&em_tree->lock);
1823 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1827 struct btrfs_key key;
1828 struct btrfs_key found_key;
1829 struct btrfs_path *path;
1831 path = btrfs_alloc_path();
1835 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1836 key.type = BTRFS_DEV_ITEM_KEY;
1837 key.offset = (u64)-1;
1839 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1845 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1850 ret = btrfs_previous_item(fs_info->chunk_root, path,
1851 BTRFS_DEV_ITEMS_OBJECTID,
1852 BTRFS_DEV_ITEM_KEY);
1856 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1858 *devid_ret = found_key.offset + 1;
1862 btrfs_free_path(path);
1867 * the device information is stored in the chunk root
1868 * the btrfs_device struct should be fully filled in
1870 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1871 struct btrfs_device *device)
1874 struct btrfs_path *path;
1875 struct btrfs_dev_item *dev_item;
1876 struct extent_buffer *leaf;
1877 struct btrfs_key key;
1880 path = btrfs_alloc_path();
1884 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1885 key.type = BTRFS_DEV_ITEM_KEY;
1886 key.offset = device->devid;
1888 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1889 &key, sizeof(*dev_item));
1893 leaf = path->nodes[0];
1894 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1896 btrfs_set_device_id(leaf, dev_item, device->devid);
1897 btrfs_set_device_generation(leaf, dev_item, 0);
1898 btrfs_set_device_type(leaf, dev_item, device->type);
1899 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1900 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1901 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1902 btrfs_set_device_total_bytes(leaf, dev_item,
1903 btrfs_device_get_disk_total_bytes(device));
1904 btrfs_set_device_bytes_used(leaf, dev_item,
1905 btrfs_device_get_bytes_used(device));
1906 btrfs_set_device_group(leaf, dev_item, 0);
1907 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1908 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1909 btrfs_set_device_start_offset(leaf, dev_item, 0);
1911 ptr = btrfs_device_uuid(dev_item);
1912 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1913 ptr = btrfs_device_fsid(dev_item);
1914 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1915 ptr, BTRFS_FSID_SIZE);
1916 btrfs_mark_buffer_dirty(leaf);
1920 btrfs_free_path(path);
1925 * Function to update ctime/mtime for a given device path.
1926 * Mainly used for ctime/mtime based probe like libblkid.
1928 static void update_dev_time(const char *path_name)
1932 filp = filp_open(path_name, O_RDWR, 0);
1935 file_update_time(filp);
1936 filp_close(filp, NULL);
1939 static int btrfs_rm_dev_item(struct btrfs_device *device)
1941 struct btrfs_root *root = device->fs_info->chunk_root;
1943 struct btrfs_path *path;
1944 struct btrfs_key key;
1945 struct btrfs_trans_handle *trans;
1947 path = btrfs_alloc_path();
1951 trans = btrfs_start_transaction(root, 0);
1952 if (IS_ERR(trans)) {
1953 btrfs_free_path(path);
1954 return PTR_ERR(trans);
1956 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1957 key.type = BTRFS_DEV_ITEM_KEY;
1958 key.offset = device->devid;
1960 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1964 btrfs_abort_transaction(trans, ret);
1965 btrfs_end_transaction(trans);
1969 ret = btrfs_del_item(trans, root, path);
1971 btrfs_abort_transaction(trans, ret);
1972 btrfs_end_transaction(trans);
1976 btrfs_free_path(path);
1978 ret = btrfs_commit_transaction(trans);
1983 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1984 * filesystem. It's up to the caller to adjust that number regarding eg. device
1987 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1995 seq = read_seqbegin(&fs_info->profiles_lock);
1997 all_avail = fs_info->avail_data_alloc_bits |
1998 fs_info->avail_system_alloc_bits |
1999 fs_info->avail_metadata_alloc_bits;
2000 } while (read_seqretry(&fs_info->profiles_lock, seq));
2002 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2003 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2006 if (num_devices < btrfs_raid_array[i].devs_min) {
2007 int ret = btrfs_raid_array[i].mindev_error;
2017 static struct btrfs_device * btrfs_find_next_active_device(
2018 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2020 struct btrfs_device *next_device;
2022 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2023 if (next_device != device &&
2024 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2025 && next_device->bdev)
2033 * Helper function to check if the given device is part of s_bdev / latest_bdev
2034 * and replace it with the provided or the next active device, in the context
2035 * where this function called, there should be always be another device (or
2036 * this_dev) which is active.
2038 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2039 struct btrfs_device *next_device)
2041 struct btrfs_fs_info *fs_info = device->fs_info;
2044 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2046 ASSERT(next_device);
2048 if (fs_info->sb->s_bdev &&
2049 (fs_info->sb->s_bdev == device->bdev))
2050 fs_info->sb->s_bdev = next_device->bdev;
2052 if (fs_info->fs_devices->latest_bdev == device->bdev)
2053 fs_info->fs_devices->latest_bdev = next_device->bdev;
2057 * Return btrfs_fs_devices::num_devices excluding the device that's being
2058 * currently replaced.
2060 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2062 u64 num_devices = fs_info->fs_devices->num_devices;
2064 down_read(&fs_info->dev_replace.rwsem);
2065 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2066 ASSERT(num_devices > 1);
2069 up_read(&fs_info->dev_replace.rwsem);
2074 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2075 struct block_device *bdev,
2076 const char *device_path)
2078 struct btrfs_super_block *disk_super;
2084 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2088 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2089 if (IS_ERR(disk_super))
2092 if (bdev_is_zoned(bdev)) {
2093 btrfs_reset_sb_log_zones(bdev, copy_num);
2097 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2099 page = virt_to_page(disk_super);
2100 set_page_dirty(page);
2102 /* write_on_page() unlocks the page */
2103 ret = write_one_page(page);
2106 "error clearing superblock number %d (%d)",
2108 btrfs_release_disk_super(disk_super);
2112 /* Notify udev that device has changed */
2113 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2115 /* Update ctime/mtime for device path for libblkid */
2116 update_dev_time(device_path);
2119 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2122 struct btrfs_device *device;
2123 struct btrfs_fs_devices *cur_devices;
2124 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2128 mutex_lock(&uuid_mutex);
2130 num_devices = btrfs_num_devices(fs_info);
2132 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2136 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2138 if (IS_ERR(device)) {
2139 if (PTR_ERR(device) == -ENOENT &&
2140 strcmp(device_path, "missing") == 0)
2141 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2143 ret = PTR_ERR(device);
2147 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2148 btrfs_warn_in_rcu(fs_info,
2149 "cannot remove device %s (devid %llu) due to active swapfile",
2150 rcu_str_deref(device->name), device->devid);
2155 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2156 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2160 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2161 fs_info->fs_devices->rw_devices == 1) {
2162 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2166 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2167 mutex_lock(&fs_info->chunk_mutex);
2168 list_del_init(&device->dev_alloc_list);
2169 device->fs_devices->rw_devices--;
2170 mutex_unlock(&fs_info->chunk_mutex);
2173 mutex_unlock(&uuid_mutex);
2174 ret = btrfs_shrink_device(device, 0);
2176 btrfs_reada_remove_dev(device);
2177 mutex_lock(&uuid_mutex);
2182 * TODO: the superblock still includes this device in its num_devices
2183 * counter although write_all_supers() is not locked out. This
2184 * could give a filesystem state which requires a degraded mount.
2186 ret = btrfs_rm_dev_item(device);
2190 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2191 btrfs_scrub_cancel_dev(device);
2194 * the device list mutex makes sure that we don't change
2195 * the device list while someone else is writing out all
2196 * the device supers. Whoever is writing all supers, should
2197 * lock the device list mutex before getting the number of
2198 * devices in the super block (super_copy). Conversely,
2199 * whoever updates the number of devices in the super block
2200 * (super_copy) should hold the device list mutex.
2204 * In normal cases the cur_devices == fs_devices. But in case
2205 * of deleting a seed device, the cur_devices should point to
2206 * its own fs_devices listed under the fs_devices->seed.
2208 cur_devices = device->fs_devices;
2209 mutex_lock(&fs_devices->device_list_mutex);
2210 list_del_rcu(&device->dev_list);
2212 cur_devices->num_devices--;
2213 cur_devices->total_devices--;
2214 /* Update total_devices of the parent fs_devices if it's seed */
2215 if (cur_devices != fs_devices)
2216 fs_devices->total_devices--;
2218 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2219 cur_devices->missing_devices--;
2221 btrfs_assign_next_active_device(device, NULL);
2224 cur_devices->open_devices--;
2225 /* remove sysfs entry */
2226 btrfs_sysfs_remove_device(device);
2229 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2230 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2231 mutex_unlock(&fs_devices->device_list_mutex);
2234 * at this point, the device is zero sized and detached from
2235 * the devices list. All that's left is to zero out the old
2236 * supers and free the device.
2238 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2239 btrfs_scratch_superblocks(fs_info, device->bdev,
2242 btrfs_close_bdev(device);
2244 btrfs_free_device(device);
2246 if (cur_devices->open_devices == 0) {
2247 list_del_init(&cur_devices->seed_list);
2248 close_fs_devices(cur_devices);
2249 free_fs_devices(cur_devices);
2253 mutex_unlock(&uuid_mutex);
2257 btrfs_reada_undo_remove_dev(device);
2258 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2259 mutex_lock(&fs_info->chunk_mutex);
2260 list_add(&device->dev_alloc_list,
2261 &fs_devices->alloc_list);
2262 device->fs_devices->rw_devices++;
2263 mutex_unlock(&fs_info->chunk_mutex);
2268 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2270 struct btrfs_fs_devices *fs_devices;
2272 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2275 * in case of fs with no seed, srcdev->fs_devices will point
2276 * to fs_devices of fs_info. However when the dev being replaced is
2277 * a seed dev it will point to the seed's local fs_devices. In short
2278 * srcdev will have its correct fs_devices in both the cases.
2280 fs_devices = srcdev->fs_devices;
2282 list_del_rcu(&srcdev->dev_list);
2283 list_del(&srcdev->dev_alloc_list);
2284 fs_devices->num_devices--;
2285 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2286 fs_devices->missing_devices--;
2288 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2289 fs_devices->rw_devices--;
2292 fs_devices->open_devices--;
2295 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2297 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2299 mutex_lock(&uuid_mutex);
2301 btrfs_close_bdev(srcdev);
2303 btrfs_free_device(srcdev);
2305 /* if this is no devs we rather delete the fs_devices */
2306 if (!fs_devices->num_devices) {
2308 * On a mounted FS, num_devices can't be zero unless it's a
2309 * seed. In case of a seed device being replaced, the replace
2310 * target added to the sprout FS, so there will be no more
2311 * device left under the seed FS.
2313 ASSERT(fs_devices->seeding);
2315 list_del_init(&fs_devices->seed_list);
2316 close_fs_devices(fs_devices);
2317 free_fs_devices(fs_devices);
2319 mutex_unlock(&uuid_mutex);
2322 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2324 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2326 mutex_lock(&fs_devices->device_list_mutex);
2328 btrfs_sysfs_remove_device(tgtdev);
2331 fs_devices->open_devices--;
2333 fs_devices->num_devices--;
2335 btrfs_assign_next_active_device(tgtdev, NULL);
2337 list_del_rcu(&tgtdev->dev_list);
2339 mutex_unlock(&fs_devices->device_list_mutex);
2342 * The update_dev_time() with in btrfs_scratch_superblocks()
2343 * may lead to a call to btrfs_show_devname() which will try
2344 * to hold device_list_mutex. And here this device
2345 * is already out of device list, so we don't have to hold
2346 * the device_list_mutex lock.
2348 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2351 btrfs_close_bdev(tgtdev);
2353 btrfs_free_device(tgtdev);
2356 static struct btrfs_device *btrfs_find_device_by_path(
2357 struct btrfs_fs_info *fs_info, const char *device_path)
2360 struct btrfs_super_block *disk_super;
2363 struct block_device *bdev;
2364 struct btrfs_device *device;
2366 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2367 fs_info->bdev_holder, 0, &bdev, &disk_super);
2369 return ERR_PTR(ret);
2371 devid = btrfs_stack_device_id(&disk_super->dev_item);
2372 dev_uuid = disk_super->dev_item.uuid;
2373 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2374 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2375 disk_super->metadata_uuid);
2377 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2380 btrfs_release_disk_super(disk_super);
2382 device = ERR_PTR(-ENOENT);
2383 blkdev_put(bdev, FMODE_READ);
2388 * Lookup a device given by device id, or the path if the id is 0.
2390 struct btrfs_device *btrfs_find_device_by_devspec(
2391 struct btrfs_fs_info *fs_info, u64 devid,
2392 const char *device_path)
2394 struct btrfs_device *device;
2397 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2400 return ERR_PTR(-ENOENT);
2404 if (!device_path || !device_path[0])
2405 return ERR_PTR(-EINVAL);
2407 if (strcmp(device_path, "missing") == 0) {
2408 /* Find first missing device */
2409 list_for_each_entry(device, &fs_info->fs_devices->devices,
2411 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2412 &device->dev_state) && !device->bdev)
2415 return ERR_PTR(-ENOENT);
2418 return btrfs_find_device_by_path(fs_info, device_path);
2422 * does all the dirty work required for changing file system's UUID.
2424 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2426 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2427 struct btrfs_fs_devices *old_devices;
2428 struct btrfs_fs_devices *seed_devices;
2429 struct btrfs_super_block *disk_super = fs_info->super_copy;
2430 struct btrfs_device *device;
2433 lockdep_assert_held(&uuid_mutex);
2434 if (!fs_devices->seeding)
2438 * Private copy of the seed devices, anchored at
2439 * fs_info->fs_devices->seed_list
2441 seed_devices = alloc_fs_devices(NULL, NULL);
2442 if (IS_ERR(seed_devices))
2443 return PTR_ERR(seed_devices);
2446 * It's necessary to retain a copy of the original seed fs_devices in
2447 * fs_uuids so that filesystems which have been seeded can successfully
2448 * reference the seed device from open_seed_devices. This also supports
2451 old_devices = clone_fs_devices(fs_devices);
2452 if (IS_ERR(old_devices)) {
2453 kfree(seed_devices);
2454 return PTR_ERR(old_devices);
2457 list_add(&old_devices->fs_list, &fs_uuids);
2459 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2460 seed_devices->opened = 1;
2461 INIT_LIST_HEAD(&seed_devices->devices);
2462 INIT_LIST_HEAD(&seed_devices->alloc_list);
2463 mutex_init(&seed_devices->device_list_mutex);
2465 mutex_lock(&fs_devices->device_list_mutex);
2466 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2468 list_for_each_entry(device, &seed_devices->devices, dev_list)
2469 device->fs_devices = seed_devices;
2471 fs_devices->seeding = false;
2472 fs_devices->num_devices = 0;
2473 fs_devices->open_devices = 0;
2474 fs_devices->missing_devices = 0;
2475 fs_devices->rotating = false;
2476 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2478 generate_random_uuid(fs_devices->fsid);
2479 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2480 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2481 mutex_unlock(&fs_devices->device_list_mutex);
2483 super_flags = btrfs_super_flags(disk_super) &
2484 ~BTRFS_SUPER_FLAG_SEEDING;
2485 btrfs_set_super_flags(disk_super, super_flags);
2491 * Store the expected generation for seed devices in device items.
2493 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2495 struct btrfs_fs_info *fs_info = trans->fs_info;
2496 struct btrfs_root *root = fs_info->chunk_root;
2497 struct btrfs_path *path;
2498 struct extent_buffer *leaf;
2499 struct btrfs_dev_item *dev_item;
2500 struct btrfs_device *device;
2501 struct btrfs_key key;
2502 u8 fs_uuid[BTRFS_FSID_SIZE];
2503 u8 dev_uuid[BTRFS_UUID_SIZE];
2507 path = btrfs_alloc_path();
2511 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2513 key.type = BTRFS_DEV_ITEM_KEY;
2516 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2520 leaf = path->nodes[0];
2522 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2523 ret = btrfs_next_leaf(root, path);
2528 leaf = path->nodes[0];
2529 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2530 btrfs_release_path(path);
2534 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2535 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2536 key.type != BTRFS_DEV_ITEM_KEY)
2539 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2540 struct btrfs_dev_item);
2541 devid = btrfs_device_id(leaf, dev_item);
2542 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2544 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2546 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2548 BUG_ON(!device); /* Logic error */
2550 if (device->fs_devices->seeding) {
2551 btrfs_set_device_generation(leaf, dev_item,
2552 device->generation);
2553 btrfs_mark_buffer_dirty(leaf);
2561 btrfs_free_path(path);
2565 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2567 struct btrfs_root *root = fs_info->dev_root;
2568 struct request_queue *q;
2569 struct btrfs_trans_handle *trans;
2570 struct btrfs_device *device;
2571 struct block_device *bdev;
2572 struct super_block *sb = fs_info->sb;
2573 struct rcu_string *name;
2574 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2575 u64 orig_super_total_bytes;
2576 u64 orig_super_num_devices;
2577 int seeding_dev = 0;
2579 bool locked = false;
2581 if (sb_rdonly(sb) && !fs_devices->seeding)
2584 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2585 fs_info->bdev_holder);
2587 return PTR_ERR(bdev);
2589 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2594 if (fs_devices->seeding) {
2596 down_write(&sb->s_umount);
2597 mutex_lock(&uuid_mutex);
2601 sync_blockdev(bdev);
2604 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2605 if (device->bdev == bdev) {
2613 device = btrfs_alloc_device(fs_info, NULL, NULL);
2614 if (IS_ERR(device)) {
2615 /* we can safely leave the fs_devices entry around */
2616 ret = PTR_ERR(device);
2620 name = rcu_string_strdup(device_path, GFP_KERNEL);
2623 goto error_free_device;
2625 rcu_assign_pointer(device->name, name);
2627 device->fs_info = fs_info;
2628 device->bdev = bdev;
2630 ret = btrfs_get_dev_zone_info(device);
2632 goto error_free_device;
2634 trans = btrfs_start_transaction(root, 0);
2635 if (IS_ERR(trans)) {
2636 ret = PTR_ERR(trans);
2637 goto error_free_zone;
2640 q = bdev_get_queue(bdev);
2641 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2642 device->generation = trans->transid;
2643 device->io_width = fs_info->sectorsize;
2644 device->io_align = fs_info->sectorsize;
2645 device->sector_size = fs_info->sectorsize;
2646 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2647 fs_info->sectorsize);
2648 device->disk_total_bytes = device->total_bytes;
2649 device->commit_total_bytes = device->total_bytes;
2650 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2651 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2652 device->mode = FMODE_EXCL;
2653 device->dev_stats_valid = 1;
2654 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2657 btrfs_clear_sb_rdonly(sb);
2658 ret = btrfs_prepare_sprout(fs_info);
2660 btrfs_abort_transaction(trans, ret);
2665 device->fs_devices = fs_devices;
2667 mutex_lock(&fs_devices->device_list_mutex);
2668 mutex_lock(&fs_info->chunk_mutex);
2669 list_add_rcu(&device->dev_list, &fs_devices->devices);
2670 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2671 fs_devices->num_devices++;
2672 fs_devices->open_devices++;
2673 fs_devices->rw_devices++;
2674 fs_devices->total_devices++;
2675 fs_devices->total_rw_bytes += device->total_bytes;
2677 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2679 if (!blk_queue_nonrot(q))
2680 fs_devices->rotating = true;
2682 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2683 btrfs_set_super_total_bytes(fs_info->super_copy,
2684 round_down(orig_super_total_bytes + device->total_bytes,
2685 fs_info->sectorsize));
2687 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2688 btrfs_set_super_num_devices(fs_info->super_copy,
2689 orig_super_num_devices + 1);
2692 * we've got more storage, clear any full flags on the space
2695 btrfs_clear_space_info_full(fs_info);
2697 mutex_unlock(&fs_info->chunk_mutex);
2699 /* Add sysfs device entry */
2700 btrfs_sysfs_add_device(device);
2702 mutex_unlock(&fs_devices->device_list_mutex);
2705 mutex_lock(&fs_info->chunk_mutex);
2706 ret = init_first_rw_device(trans);
2707 mutex_unlock(&fs_info->chunk_mutex);
2709 btrfs_abort_transaction(trans, ret);
2714 ret = btrfs_add_dev_item(trans, device);
2716 btrfs_abort_transaction(trans, ret);
2721 ret = btrfs_finish_sprout(trans);
2723 btrfs_abort_transaction(trans, ret);
2728 * fs_devices now represents the newly sprouted filesystem and
2729 * its fsid has been changed by btrfs_prepare_sprout
2731 btrfs_sysfs_update_sprout_fsid(fs_devices);
2734 ret = btrfs_commit_transaction(trans);
2737 mutex_unlock(&uuid_mutex);
2738 up_write(&sb->s_umount);
2741 if (ret) /* transaction commit */
2744 ret = btrfs_relocate_sys_chunks(fs_info);
2746 btrfs_handle_fs_error(fs_info, ret,
2747 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2748 trans = btrfs_attach_transaction(root);
2749 if (IS_ERR(trans)) {
2750 if (PTR_ERR(trans) == -ENOENT)
2752 ret = PTR_ERR(trans);
2756 ret = btrfs_commit_transaction(trans);
2760 * Now that we have written a new super block to this device, check all
2761 * other fs_devices list if device_path alienates any other scanned
2763 * We can ignore the return value as it typically returns -EINVAL and
2764 * only succeeds if the device was an alien.
2766 btrfs_forget_devices(device_path);
2768 /* Update ctime/mtime for blkid or udev */
2769 update_dev_time(device_path);
2774 btrfs_sysfs_remove_device(device);
2775 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2776 mutex_lock(&fs_info->chunk_mutex);
2777 list_del_rcu(&device->dev_list);
2778 list_del(&device->dev_alloc_list);
2779 fs_info->fs_devices->num_devices--;
2780 fs_info->fs_devices->open_devices--;
2781 fs_info->fs_devices->rw_devices--;
2782 fs_info->fs_devices->total_devices--;
2783 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2784 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2785 btrfs_set_super_total_bytes(fs_info->super_copy,
2786 orig_super_total_bytes);
2787 btrfs_set_super_num_devices(fs_info->super_copy,
2788 orig_super_num_devices);
2789 mutex_unlock(&fs_info->chunk_mutex);
2790 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2793 btrfs_set_sb_rdonly(sb);
2795 btrfs_end_transaction(trans);
2797 btrfs_destroy_dev_zone_info(device);
2799 btrfs_free_device(device);
2801 blkdev_put(bdev, FMODE_EXCL);
2803 mutex_unlock(&uuid_mutex);
2804 up_write(&sb->s_umount);
2809 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2810 struct btrfs_device *device)
2813 struct btrfs_path *path;
2814 struct btrfs_root *root = device->fs_info->chunk_root;
2815 struct btrfs_dev_item *dev_item;
2816 struct extent_buffer *leaf;
2817 struct btrfs_key key;
2819 path = btrfs_alloc_path();
2823 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2824 key.type = BTRFS_DEV_ITEM_KEY;
2825 key.offset = device->devid;
2827 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2836 leaf = path->nodes[0];
2837 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2839 btrfs_set_device_id(leaf, dev_item, device->devid);
2840 btrfs_set_device_type(leaf, dev_item, device->type);
2841 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2842 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2843 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2844 btrfs_set_device_total_bytes(leaf, dev_item,
2845 btrfs_device_get_disk_total_bytes(device));
2846 btrfs_set_device_bytes_used(leaf, dev_item,
2847 btrfs_device_get_bytes_used(device));
2848 btrfs_mark_buffer_dirty(leaf);
2851 btrfs_free_path(path);
2855 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2856 struct btrfs_device *device, u64 new_size)
2858 struct btrfs_fs_info *fs_info = device->fs_info;
2859 struct btrfs_super_block *super_copy = fs_info->super_copy;
2863 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2866 new_size = round_down(new_size, fs_info->sectorsize);
2868 mutex_lock(&fs_info->chunk_mutex);
2869 old_total = btrfs_super_total_bytes(super_copy);
2870 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2872 if (new_size <= device->total_bytes ||
2873 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2874 mutex_unlock(&fs_info->chunk_mutex);
2878 btrfs_set_super_total_bytes(super_copy,
2879 round_down(old_total + diff, fs_info->sectorsize));
2880 device->fs_devices->total_rw_bytes += diff;
2882 btrfs_device_set_total_bytes(device, new_size);
2883 btrfs_device_set_disk_total_bytes(device, new_size);
2884 btrfs_clear_space_info_full(device->fs_info);
2885 if (list_empty(&device->post_commit_list))
2886 list_add_tail(&device->post_commit_list,
2887 &trans->transaction->dev_update_list);
2888 mutex_unlock(&fs_info->chunk_mutex);
2890 return btrfs_update_device(trans, device);
2893 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2895 struct btrfs_fs_info *fs_info = trans->fs_info;
2896 struct btrfs_root *root = fs_info->chunk_root;
2898 struct btrfs_path *path;
2899 struct btrfs_key key;
2901 path = btrfs_alloc_path();
2905 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2906 key.offset = chunk_offset;
2907 key.type = BTRFS_CHUNK_ITEM_KEY;
2909 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2912 else if (ret > 0) { /* Logic error or corruption */
2913 btrfs_handle_fs_error(fs_info, -ENOENT,
2914 "Failed lookup while freeing chunk.");
2919 ret = btrfs_del_item(trans, root, path);
2921 btrfs_handle_fs_error(fs_info, ret,
2922 "Failed to delete chunk item.");
2924 btrfs_free_path(path);
2928 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2930 struct btrfs_super_block *super_copy = fs_info->super_copy;
2931 struct btrfs_disk_key *disk_key;
2932 struct btrfs_chunk *chunk;
2939 struct btrfs_key key;
2941 lockdep_assert_held(&fs_info->chunk_mutex);
2942 array_size = btrfs_super_sys_array_size(super_copy);
2944 ptr = super_copy->sys_chunk_array;
2947 while (cur < array_size) {
2948 disk_key = (struct btrfs_disk_key *)ptr;
2949 btrfs_disk_key_to_cpu(&key, disk_key);
2951 len = sizeof(*disk_key);
2953 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2954 chunk = (struct btrfs_chunk *)(ptr + len);
2955 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2956 len += btrfs_chunk_item_size(num_stripes);
2961 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2962 key.offset == chunk_offset) {
2963 memmove(ptr, ptr + len, array_size - (cur + len));
2965 btrfs_set_super_sys_array_size(super_copy, array_size);
2975 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2976 * @logical: Logical block offset in bytes.
2977 * @length: Length of extent in bytes.
2979 * Return: Chunk mapping or ERR_PTR.
2981 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2982 u64 logical, u64 length)
2984 struct extent_map_tree *em_tree;
2985 struct extent_map *em;
2987 em_tree = &fs_info->mapping_tree;
2988 read_lock(&em_tree->lock);
2989 em = lookup_extent_mapping(em_tree, logical, length);
2990 read_unlock(&em_tree->lock);
2993 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2995 return ERR_PTR(-EINVAL);
2998 if (em->start > logical || em->start + em->len < logical) {
3000 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3001 logical, length, em->start, em->start + em->len);
3002 free_extent_map(em);
3003 return ERR_PTR(-EINVAL);
3006 /* callers are responsible for dropping em's ref. */
3010 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3011 struct map_lookup *map, u64 chunk_offset)
3016 * Removing chunk items and updating the device items in the chunks btree
3017 * requires holding the chunk_mutex.
3018 * See the comment at btrfs_chunk_alloc() for the details.
3020 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3022 for (i = 0; i < map->num_stripes; i++) {
3025 ret = btrfs_update_device(trans, map->stripes[i].dev);
3030 return btrfs_free_chunk(trans, chunk_offset);
3033 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3035 struct btrfs_fs_info *fs_info = trans->fs_info;
3036 struct extent_map *em;
3037 struct map_lookup *map;
3038 u64 dev_extent_len = 0;
3040 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3042 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3045 * This is a logic error, but we don't want to just rely on the
3046 * user having built with ASSERT enabled, so if ASSERT doesn't
3047 * do anything we still error out.
3052 map = em->map_lookup;
3055 * First delete the device extent items from the devices btree.
3056 * We take the device_list_mutex to avoid racing with the finishing phase
3057 * of a device replace operation. See the comment below before acquiring
3058 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3059 * because that can result in a deadlock when deleting the device extent
3060 * items from the devices btree - COWing an extent buffer from the btree
3061 * may result in allocating a new metadata chunk, which would attempt to
3062 * lock again fs_info->chunk_mutex.
3064 mutex_lock(&fs_devices->device_list_mutex);
3065 for (i = 0; i < map->num_stripes; i++) {
3066 struct btrfs_device *device = map->stripes[i].dev;
3067 ret = btrfs_free_dev_extent(trans, device,
3068 map->stripes[i].physical,
3071 mutex_unlock(&fs_devices->device_list_mutex);
3072 btrfs_abort_transaction(trans, ret);
3076 if (device->bytes_used > 0) {
3077 mutex_lock(&fs_info->chunk_mutex);
3078 btrfs_device_set_bytes_used(device,
3079 device->bytes_used - dev_extent_len);
3080 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3081 btrfs_clear_space_info_full(fs_info);
3082 mutex_unlock(&fs_info->chunk_mutex);
3085 mutex_unlock(&fs_devices->device_list_mutex);
3088 * We acquire fs_info->chunk_mutex for 2 reasons:
3090 * 1) Just like with the first phase of the chunk allocation, we must
3091 * reserve system space, do all chunk btree updates and deletions, and
3092 * update the system chunk array in the superblock while holding this
3093 * mutex. This is for similar reasons as explained on the comment at
3094 * the top of btrfs_chunk_alloc();
3096 * 2) Prevent races with the final phase of a device replace operation
3097 * that replaces the device object associated with the map's stripes,
3098 * because the device object's id can change at any time during that
3099 * final phase of the device replace operation
3100 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3101 * replaced device and then see it with an ID of
3102 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3103 * the device item, which does not exists on the chunk btree.
3104 * The finishing phase of device replace acquires both the
3105 * device_list_mutex and the chunk_mutex, in that order, so we are
3106 * safe by just acquiring the chunk_mutex.
3108 trans->removing_chunk = true;
3109 mutex_lock(&fs_info->chunk_mutex);
3111 check_system_chunk(trans, map->type);
3113 ret = remove_chunk_item(trans, map, chunk_offset);
3115 * Normally we should not get -ENOSPC since we reserved space before
3116 * through the call to check_system_chunk().
3118 * Despite our system space_info having enough free space, we may not
3119 * be able to allocate extents from its block groups, because all have
3120 * an incompatible profile, which will force us to allocate a new system
3121 * block group with the right profile, or right after we called
3122 * check_system_space() above, a scrub turned the only system block group
3123 * with enough free space into RO mode.
3124 * This is explained with more detail at do_chunk_alloc().
3126 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3128 if (ret == -ENOSPC) {
3129 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3130 struct btrfs_block_group *sys_bg;
3132 sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3133 if (IS_ERR(sys_bg)) {
3134 ret = PTR_ERR(sys_bg);
3135 btrfs_abort_transaction(trans, ret);
3139 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3141 btrfs_abort_transaction(trans, ret);
3145 ret = remove_chunk_item(trans, map, chunk_offset);
3147 btrfs_abort_transaction(trans, ret);
3151 btrfs_abort_transaction(trans, ret);
3155 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3157 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3158 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3160 btrfs_abort_transaction(trans, ret);
3165 mutex_unlock(&fs_info->chunk_mutex);
3166 trans->removing_chunk = false;
3169 * We are done with chunk btree updates and deletions, so release the
3170 * system space we previously reserved (with check_system_chunk()).
3172 btrfs_trans_release_chunk_metadata(trans);
3174 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3176 btrfs_abort_transaction(trans, ret);
3181 if (trans->removing_chunk) {
3182 mutex_unlock(&fs_info->chunk_mutex);
3183 trans->removing_chunk = false;
3186 free_extent_map(em);
3190 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3192 struct btrfs_root *root = fs_info->chunk_root;
3193 struct btrfs_trans_handle *trans;
3194 struct btrfs_block_group *block_group;
3199 * Prevent races with automatic removal of unused block groups.
3200 * After we relocate and before we remove the chunk with offset
3201 * chunk_offset, automatic removal of the block group can kick in,
3202 * resulting in a failure when calling btrfs_remove_chunk() below.
3204 * Make sure to acquire this mutex before doing a tree search (dev
3205 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3206 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3207 * we release the path used to search the chunk/dev tree and before
3208 * the current task acquires this mutex and calls us.
3210 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3212 /* step one, relocate all the extents inside this chunk */
3213 btrfs_scrub_pause(fs_info);
3214 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3215 btrfs_scrub_continue(fs_info);
3219 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3222 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3223 length = block_group->length;
3224 btrfs_put_block_group(block_group);
3227 * On a zoned file system, discard the whole block group, this will
3228 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3229 * resetting the zone fails, don't treat it as a fatal problem from the
3230 * filesystem's point of view.
3232 if (btrfs_is_zoned(fs_info)) {
3233 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3236 "failed to reset zone %llu after relocation",
3240 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3242 if (IS_ERR(trans)) {
3243 ret = PTR_ERR(trans);
3244 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3249 * step two, delete the device extents and the
3250 * chunk tree entries
3252 ret = btrfs_remove_chunk(trans, chunk_offset);
3253 btrfs_end_transaction(trans);
3257 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3259 struct btrfs_root *chunk_root = fs_info->chunk_root;
3260 struct btrfs_path *path;
3261 struct extent_buffer *leaf;
3262 struct btrfs_chunk *chunk;
3263 struct btrfs_key key;
3264 struct btrfs_key found_key;
3266 bool retried = false;
3270 path = btrfs_alloc_path();
3275 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3276 key.offset = (u64)-1;
3277 key.type = BTRFS_CHUNK_ITEM_KEY;
3280 mutex_lock(&fs_info->reclaim_bgs_lock);
3281 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3283 mutex_unlock(&fs_info->reclaim_bgs_lock);
3286 BUG_ON(ret == 0); /* Corruption */
3288 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3291 mutex_unlock(&fs_info->reclaim_bgs_lock);
3297 leaf = path->nodes[0];
3298 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3300 chunk = btrfs_item_ptr(leaf, path->slots[0],
3301 struct btrfs_chunk);
3302 chunk_type = btrfs_chunk_type(leaf, chunk);
3303 btrfs_release_path(path);
3305 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3306 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3312 mutex_unlock(&fs_info->reclaim_bgs_lock);
3314 if (found_key.offset == 0)
3316 key.offset = found_key.offset - 1;
3319 if (failed && !retried) {
3323 } else if (WARN_ON(failed && retried)) {
3327 btrfs_free_path(path);
3332 * return 1 : allocate a data chunk successfully,
3333 * return <0: errors during allocating a data chunk,
3334 * return 0 : no need to allocate a data chunk.
3336 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3339 struct btrfs_block_group *cache;
3343 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3345 chunk_type = cache->flags;
3346 btrfs_put_block_group(cache);
3348 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3351 spin_lock(&fs_info->data_sinfo->lock);
3352 bytes_used = fs_info->data_sinfo->bytes_used;
3353 spin_unlock(&fs_info->data_sinfo->lock);
3356 struct btrfs_trans_handle *trans;
3359 trans = btrfs_join_transaction(fs_info->tree_root);
3361 return PTR_ERR(trans);
3363 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3364 btrfs_end_transaction(trans);
3373 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3374 struct btrfs_balance_control *bctl)
3376 struct btrfs_root *root = fs_info->tree_root;
3377 struct btrfs_trans_handle *trans;
3378 struct btrfs_balance_item *item;
3379 struct btrfs_disk_balance_args disk_bargs;
3380 struct btrfs_path *path;
3381 struct extent_buffer *leaf;
3382 struct btrfs_key key;
3385 path = btrfs_alloc_path();
3389 trans = btrfs_start_transaction(root, 0);
3390 if (IS_ERR(trans)) {
3391 btrfs_free_path(path);
3392 return PTR_ERR(trans);
3395 key.objectid = BTRFS_BALANCE_OBJECTID;
3396 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3399 ret = btrfs_insert_empty_item(trans, root, path, &key,
3404 leaf = path->nodes[0];
3405 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3407 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3409 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3410 btrfs_set_balance_data(leaf, item, &disk_bargs);
3411 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3412 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3413 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3414 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3416 btrfs_set_balance_flags(leaf, item, bctl->flags);
3418 btrfs_mark_buffer_dirty(leaf);
3420 btrfs_free_path(path);
3421 err = btrfs_commit_transaction(trans);
3427 static int del_balance_item(struct btrfs_fs_info *fs_info)
3429 struct btrfs_root *root = fs_info->tree_root;
3430 struct btrfs_trans_handle *trans;
3431 struct btrfs_path *path;
3432 struct btrfs_key key;
3435 path = btrfs_alloc_path();
3439 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3440 if (IS_ERR(trans)) {
3441 btrfs_free_path(path);
3442 return PTR_ERR(trans);
3445 key.objectid = BTRFS_BALANCE_OBJECTID;
3446 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3449 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3457 ret = btrfs_del_item(trans, root, path);
3459 btrfs_free_path(path);
3460 err = btrfs_commit_transaction(trans);
3467 * This is a heuristic used to reduce the number of chunks balanced on
3468 * resume after balance was interrupted.
3470 static void update_balance_args(struct btrfs_balance_control *bctl)
3473 * Turn on soft mode for chunk types that were being converted.
3475 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3476 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3477 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3478 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3479 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3480 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3483 * Turn on usage filter if is not already used. The idea is
3484 * that chunks that we have already balanced should be
3485 * reasonably full. Don't do it for chunks that are being
3486 * converted - that will keep us from relocating unconverted
3487 * (albeit full) chunks.
3489 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3490 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3491 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3492 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3493 bctl->data.usage = 90;
3495 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3496 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3497 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3498 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3499 bctl->sys.usage = 90;
3501 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3502 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3503 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3504 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3505 bctl->meta.usage = 90;
3510 * Clear the balance status in fs_info and delete the balance item from disk.
3512 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3514 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3517 BUG_ON(!fs_info->balance_ctl);
3519 spin_lock(&fs_info->balance_lock);
3520 fs_info->balance_ctl = NULL;
3521 spin_unlock(&fs_info->balance_lock);
3524 ret = del_balance_item(fs_info);
3526 btrfs_handle_fs_error(fs_info, ret, NULL);
3530 * Balance filters. Return 1 if chunk should be filtered out
3531 * (should not be balanced).
3533 static int chunk_profiles_filter(u64 chunk_type,
3534 struct btrfs_balance_args *bargs)
3536 chunk_type = chunk_to_extended(chunk_type) &
3537 BTRFS_EXTENDED_PROFILE_MASK;
3539 if (bargs->profiles & chunk_type)
3545 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3546 struct btrfs_balance_args *bargs)
3548 struct btrfs_block_group *cache;
3550 u64 user_thresh_min;
3551 u64 user_thresh_max;
3554 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3555 chunk_used = cache->used;
3557 if (bargs->usage_min == 0)
3558 user_thresh_min = 0;
3560 user_thresh_min = div_factor_fine(cache->length,
3563 if (bargs->usage_max == 0)
3564 user_thresh_max = 1;
3565 else if (bargs->usage_max > 100)
3566 user_thresh_max = cache->length;
3568 user_thresh_max = div_factor_fine(cache->length,
3571 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3574 btrfs_put_block_group(cache);
3578 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3579 u64 chunk_offset, struct btrfs_balance_args *bargs)
3581 struct btrfs_block_group *cache;
3582 u64 chunk_used, user_thresh;
3585 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3586 chunk_used = cache->used;
3588 if (bargs->usage_min == 0)
3590 else if (bargs->usage > 100)
3591 user_thresh = cache->length;
3593 user_thresh = div_factor_fine(cache->length, bargs->usage);
3595 if (chunk_used < user_thresh)
3598 btrfs_put_block_group(cache);
3602 static int chunk_devid_filter(struct extent_buffer *leaf,
3603 struct btrfs_chunk *chunk,
3604 struct btrfs_balance_args *bargs)
3606 struct btrfs_stripe *stripe;
3607 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3610 for (i = 0; i < num_stripes; i++) {
3611 stripe = btrfs_stripe_nr(chunk, i);
3612 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3619 static u64 calc_data_stripes(u64 type, int num_stripes)
3621 const int index = btrfs_bg_flags_to_raid_index(type);
3622 const int ncopies = btrfs_raid_array[index].ncopies;
3623 const int nparity = btrfs_raid_array[index].nparity;
3626 return num_stripes - nparity;
3628 return num_stripes / ncopies;
3631 /* [pstart, pend) */
3632 static int chunk_drange_filter(struct extent_buffer *leaf,
3633 struct btrfs_chunk *chunk,
3634 struct btrfs_balance_args *bargs)
3636 struct btrfs_stripe *stripe;
3637 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3644 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3647 type = btrfs_chunk_type(leaf, chunk);
3648 factor = calc_data_stripes(type, num_stripes);
3650 for (i = 0; i < num_stripes; i++) {
3651 stripe = btrfs_stripe_nr(chunk, i);
3652 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3655 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3656 stripe_length = btrfs_chunk_length(leaf, chunk);
3657 stripe_length = div_u64(stripe_length, factor);
3659 if (stripe_offset < bargs->pend &&
3660 stripe_offset + stripe_length > bargs->pstart)
3667 /* [vstart, vend) */
3668 static int chunk_vrange_filter(struct extent_buffer *leaf,
3669 struct btrfs_chunk *chunk,
3671 struct btrfs_balance_args *bargs)
3673 if (chunk_offset < bargs->vend &&
3674 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3675 /* at least part of the chunk is inside this vrange */
3681 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3682 struct btrfs_chunk *chunk,
3683 struct btrfs_balance_args *bargs)
3685 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3687 if (bargs->stripes_min <= num_stripes
3688 && num_stripes <= bargs->stripes_max)
3694 static int chunk_soft_convert_filter(u64 chunk_type,
3695 struct btrfs_balance_args *bargs)
3697 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3700 chunk_type = chunk_to_extended(chunk_type) &
3701 BTRFS_EXTENDED_PROFILE_MASK;
3703 if (bargs->target == chunk_type)
3709 static int should_balance_chunk(struct extent_buffer *leaf,
3710 struct btrfs_chunk *chunk, u64 chunk_offset)
3712 struct btrfs_fs_info *fs_info = leaf->fs_info;
3713 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3714 struct btrfs_balance_args *bargs = NULL;
3715 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3718 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3719 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3723 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3724 bargs = &bctl->data;
3725 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3727 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3728 bargs = &bctl->meta;
3730 /* profiles filter */
3731 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3732 chunk_profiles_filter(chunk_type, bargs)) {
3737 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3738 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3740 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3741 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3746 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3747 chunk_devid_filter(leaf, chunk, bargs)) {
3751 /* drange filter, makes sense only with devid filter */
3752 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3753 chunk_drange_filter(leaf, chunk, bargs)) {
3758 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3759 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3763 /* stripes filter */
3764 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3765 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3769 /* soft profile changing mode */
3770 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3771 chunk_soft_convert_filter(chunk_type, bargs)) {
3776 * limited by count, must be the last filter
3778 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3779 if (bargs->limit == 0)
3783 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3785 * Same logic as the 'limit' filter; the minimum cannot be
3786 * determined here because we do not have the global information
3787 * about the count of all chunks that satisfy the filters.
3789 if (bargs->limit_max == 0)
3798 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3800 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3801 struct btrfs_root *chunk_root = fs_info->chunk_root;
3803 struct btrfs_chunk *chunk;
3804 struct btrfs_path *path = NULL;
3805 struct btrfs_key key;
3806 struct btrfs_key found_key;
3807 struct extent_buffer *leaf;
3810 int enospc_errors = 0;
3811 bool counting = true;
3812 /* The single value limit and min/max limits use the same bytes in the */
3813 u64 limit_data = bctl->data.limit;
3814 u64 limit_meta = bctl->meta.limit;
3815 u64 limit_sys = bctl->sys.limit;
3819 int chunk_reserved = 0;
3821 path = btrfs_alloc_path();
3827 /* zero out stat counters */
3828 spin_lock(&fs_info->balance_lock);
3829 memset(&bctl->stat, 0, sizeof(bctl->stat));
3830 spin_unlock(&fs_info->balance_lock);
3834 * The single value limit and min/max limits use the same bytes
3837 bctl->data.limit = limit_data;
3838 bctl->meta.limit = limit_meta;
3839 bctl->sys.limit = limit_sys;
3841 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3842 key.offset = (u64)-1;
3843 key.type = BTRFS_CHUNK_ITEM_KEY;
3846 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3847 atomic_read(&fs_info->balance_cancel_req)) {
3852 mutex_lock(&fs_info->reclaim_bgs_lock);
3853 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3855 mutex_unlock(&fs_info->reclaim_bgs_lock);
3860 * this shouldn't happen, it means the last relocate
3864 BUG(); /* FIXME break ? */
3866 ret = btrfs_previous_item(chunk_root, path, 0,
3867 BTRFS_CHUNK_ITEM_KEY);
3869 mutex_unlock(&fs_info->reclaim_bgs_lock);
3874 leaf = path->nodes[0];
3875 slot = path->slots[0];
3876 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3878 if (found_key.objectid != key.objectid) {
3879 mutex_unlock(&fs_info->reclaim_bgs_lock);
3883 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3884 chunk_type = btrfs_chunk_type(leaf, chunk);
3887 spin_lock(&fs_info->balance_lock);
3888 bctl->stat.considered++;
3889 spin_unlock(&fs_info->balance_lock);
3892 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3894 btrfs_release_path(path);
3896 mutex_unlock(&fs_info->reclaim_bgs_lock);
3901 mutex_unlock(&fs_info->reclaim_bgs_lock);
3902 spin_lock(&fs_info->balance_lock);
3903 bctl->stat.expected++;
3904 spin_unlock(&fs_info->balance_lock);
3906 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3908 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3910 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3917 * Apply limit_min filter, no need to check if the LIMITS
3918 * filter is used, limit_min is 0 by default
3920 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3921 count_data < bctl->data.limit_min)
3922 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3923 count_meta < bctl->meta.limit_min)
3924 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3925 count_sys < bctl->sys.limit_min)) {
3926 mutex_unlock(&fs_info->reclaim_bgs_lock);
3930 if (!chunk_reserved) {
3932 * We may be relocating the only data chunk we have,
3933 * which could potentially end up with losing data's
3934 * raid profile, so lets allocate an empty one in
3937 ret = btrfs_may_alloc_data_chunk(fs_info,
3940 mutex_unlock(&fs_info->reclaim_bgs_lock);
3942 } else if (ret == 1) {
3947 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3948 mutex_unlock(&fs_info->reclaim_bgs_lock);
3949 if (ret == -ENOSPC) {
3951 } else if (ret == -ETXTBSY) {
3953 "skipping relocation of block group %llu due to active swapfile",
3959 spin_lock(&fs_info->balance_lock);
3960 bctl->stat.completed++;
3961 spin_unlock(&fs_info->balance_lock);
3964 if (found_key.offset == 0)
3966 key.offset = found_key.offset - 1;
3970 btrfs_release_path(path);
3975 btrfs_free_path(path);
3976 if (enospc_errors) {
3977 btrfs_info(fs_info, "%d enospc errors during balance",
3987 * alloc_profile_is_valid - see if a given profile is valid and reduced
3988 * @flags: profile to validate
3989 * @extended: if true @flags is treated as an extended profile
3991 static int alloc_profile_is_valid(u64 flags, int extended)
3993 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3994 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3996 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3998 /* 1) check that all other bits are zeroed */
4002 /* 2) see if profile is reduced */
4004 return !extended; /* "0" is valid for usual profiles */
4006 return has_single_bit_set(flags);
4009 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4011 /* cancel requested || normal exit path */
4012 return atomic_read(&fs_info->balance_cancel_req) ||
4013 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4014 atomic_read(&fs_info->balance_cancel_req) == 0);
4018 * Validate target profile against allowed profiles and return true if it's OK.
4019 * Otherwise print the error message and return false.
4021 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4022 const struct btrfs_balance_args *bargs,
4023 u64 allowed, const char *type)
4025 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4028 /* Profile is valid and does not have bits outside of the allowed set */
4029 if (alloc_profile_is_valid(bargs->target, 1) &&
4030 (bargs->target & ~allowed) == 0)
4033 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4034 type, btrfs_bg_type_to_raid_name(bargs->target));
4039 * Fill @buf with textual description of balance filter flags @bargs, up to
4040 * @size_buf including the terminating null. The output may be trimmed if it
4041 * does not fit into the provided buffer.
4043 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4047 u32 size_bp = size_buf;
4049 u64 flags = bargs->flags;
4050 char tmp_buf[128] = {'\0'};
4055 #define CHECK_APPEND_NOARG(a) \
4057 ret = snprintf(bp, size_bp, (a)); \
4058 if (ret < 0 || ret >= size_bp) \
4059 goto out_overflow; \
4064 #define CHECK_APPEND_1ARG(a, v1) \
4066 ret = snprintf(bp, size_bp, (a), (v1)); \
4067 if (ret < 0 || ret >= size_bp) \
4068 goto out_overflow; \
4073 #define CHECK_APPEND_2ARG(a, v1, v2) \
4075 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4076 if (ret < 0 || ret >= size_bp) \
4077 goto out_overflow; \
4082 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4083 CHECK_APPEND_1ARG("convert=%s,",
4084 btrfs_bg_type_to_raid_name(bargs->target));
4086 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4087 CHECK_APPEND_NOARG("soft,");
4089 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4090 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4092 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4095 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4096 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4098 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4099 CHECK_APPEND_2ARG("usage=%u..%u,",
4100 bargs->usage_min, bargs->usage_max);
4102 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4103 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4105 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4106 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4107 bargs->pstart, bargs->pend);
4109 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4110 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4111 bargs->vstart, bargs->vend);
4113 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4114 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4116 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4117 CHECK_APPEND_2ARG("limit=%u..%u,",
4118 bargs->limit_min, bargs->limit_max);
4120 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4121 CHECK_APPEND_2ARG("stripes=%u..%u,",
4122 bargs->stripes_min, bargs->stripes_max);
4124 #undef CHECK_APPEND_2ARG
4125 #undef CHECK_APPEND_1ARG
4126 #undef CHECK_APPEND_NOARG
4130 if (size_bp < size_buf)
4131 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4136 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4138 u32 size_buf = 1024;
4139 char tmp_buf[192] = {'\0'};
4142 u32 size_bp = size_buf;
4144 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4146 buf = kzalloc(size_buf, GFP_KERNEL);
4152 #define CHECK_APPEND_1ARG(a, v1) \
4154 ret = snprintf(bp, size_bp, (a), (v1)); \
4155 if (ret < 0 || ret >= size_bp) \
4156 goto out_overflow; \
4161 if (bctl->flags & BTRFS_BALANCE_FORCE)
4162 CHECK_APPEND_1ARG("%s", "-f ");
4164 if (bctl->flags & BTRFS_BALANCE_DATA) {
4165 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4166 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4169 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4170 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4171 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4174 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4175 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4176 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4179 #undef CHECK_APPEND_1ARG
4183 if (size_bp < size_buf)
4184 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4185 btrfs_info(fs_info, "balance: %s %s",
4186 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4187 "resume" : "start", buf);
4193 * Should be called with balance mutexe held
4195 int btrfs_balance(struct btrfs_fs_info *fs_info,
4196 struct btrfs_balance_control *bctl,
4197 struct btrfs_ioctl_balance_args *bargs)
4199 u64 meta_target, data_target;
4205 bool reducing_redundancy;
4208 if (btrfs_fs_closing(fs_info) ||
4209 atomic_read(&fs_info->balance_pause_req) ||
4210 btrfs_should_cancel_balance(fs_info)) {
4215 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4216 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4220 * In case of mixed groups both data and meta should be picked,
4221 * and identical options should be given for both of them.
4223 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4224 if (mixed && (bctl->flags & allowed)) {
4225 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4226 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4227 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4229 "balance: mixed groups data and metadata options must be the same");
4236 * rw_devices will not change at the moment, device add/delete/replace
4239 num_devices = fs_info->fs_devices->rw_devices;
4242 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4243 * special bit for it, to make it easier to distinguish. Thus we need
4244 * to set it manually, or balance would refuse the profile.
4246 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4247 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4248 if (num_devices >= btrfs_raid_array[i].devs_min)
4249 allowed |= btrfs_raid_array[i].bg_flag;
4251 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4252 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4253 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4259 * Allow to reduce metadata or system integrity only if force set for
4260 * profiles with redundancy (copies, parity)
4263 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4264 if (btrfs_raid_array[i].ncopies >= 2 ||
4265 btrfs_raid_array[i].tolerated_failures >= 1)
4266 allowed |= btrfs_raid_array[i].bg_flag;
4269 seq = read_seqbegin(&fs_info->profiles_lock);
4271 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4272 (fs_info->avail_system_alloc_bits & allowed) &&
4273 !(bctl->sys.target & allowed)) ||
4274 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4275 (fs_info->avail_metadata_alloc_bits & allowed) &&
4276 !(bctl->meta.target & allowed)))
4277 reducing_redundancy = true;
4279 reducing_redundancy = false;
4281 /* if we're not converting, the target field is uninitialized */
4282 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4283 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4284 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4285 bctl->data.target : fs_info->avail_data_alloc_bits;
4286 } while (read_seqretry(&fs_info->profiles_lock, seq));
4288 if (reducing_redundancy) {
4289 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4291 "balance: force reducing metadata redundancy");
4294 "balance: reduces metadata redundancy, use --force if you want this");
4300 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4301 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4303 "balance: metadata profile %s has lower redundancy than data profile %s",
4304 btrfs_bg_type_to_raid_name(meta_target),
4305 btrfs_bg_type_to_raid_name(data_target));
4308 ret = insert_balance_item(fs_info, bctl);
4309 if (ret && ret != -EEXIST)
4312 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4313 BUG_ON(ret == -EEXIST);
4314 BUG_ON(fs_info->balance_ctl);
4315 spin_lock(&fs_info->balance_lock);
4316 fs_info->balance_ctl = bctl;
4317 spin_unlock(&fs_info->balance_lock);
4319 BUG_ON(ret != -EEXIST);
4320 spin_lock(&fs_info->balance_lock);
4321 update_balance_args(bctl);
4322 spin_unlock(&fs_info->balance_lock);
4325 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4326 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4327 describe_balance_start_or_resume(fs_info);
4328 mutex_unlock(&fs_info->balance_mutex);
4330 ret = __btrfs_balance(fs_info);
4332 mutex_lock(&fs_info->balance_mutex);
4333 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4334 btrfs_info(fs_info, "balance: paused");
4336 * Balance can be canceled by:
4338 * - Regular cancel request
4339 * Then ret == -ECANCELED and balance_cancel_req > 0
4341 * - Fatal signal to "btrfs" process
4342 * Either the signal caught by wait_reserve_ticket() and callers
4343 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4345 * Either way, in this case balance_cancel_req = 0, and
4346 * ret == -EINTR or ret == -ECANCELED.
4348 * So here we only check the return value to catch canceled balance.
4350 else if (ret == -ECANCELED || ret == -EINTR)
4351 btrfs_info(fs_info, "balance: canceled");
4353 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4355 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4358 memset(bargs, 0, sizeof(*bargs));
4359 btrfs_update_ioctl_balance_args(fs_info, bargs);
4362 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4363 balance_need_close(fs_info)) {
4364 reset_balance_state(fs_info);
4365 btrfs_exclop_finish(fs_info);
4368 wake_up(&fs_info->balance_wait_q);
4372 if (bctl->flags & BTRFS_BALANCE_RESUME)
4373 reset_balance_state(fs_info);
4376 btrfs_exclop_finish(fs_info);
4381 static int balance_kthread(void *data)
4383 struct btrfs_fs_info *fs_info = data;
4386 mutex_lock(&fs_info->balance_mutex);
4387 if (fs_info->balance_ctl)
4388 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4389 mutex_unlock(&fs_info->balance_mutex);
4394 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4396 struct task_struct *tsk;
4398 mutex_lock(&fs_info->balance_mutex);
4399 if (!fs_info->balance_ctl) {
4400 mutex_unlock(&fs_info->balance_mutex);
4403 mutex_unlock(&fs_info->balance_mutex);
4405 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4406 btrfs_info(fs_info, "balance: resume skipped");
4411 * A ro->rw remount sequence should continue with the paused balance
4412 * regardless of who pauses it, system or the user as of now, so set
4415 spin_lock(&fs_info->balance_lock);
4416 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4417 spin_unlock(&fs_info->balance_lock);
4419 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4420 return PTR_ERR_OR_ZERO(tsk);
4423 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4425 struct btrfs_balance_control *bctl;
4426 struct btrfs_balance_item *item;
4427 struct btrfs_disk_balance_args disk_bargs;
4428 struct btrfs_path *path;
4429 struct extent_buffer *leaf;
4430 struct btrfs_key key;
4433 path = btrfs_alloc_path();
4437 key.objectid = BTRFS_BALANCE_OBJECTID;
4438 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4441 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4444 if (ret > 0) { /* ret = -ENOENT; */
4449 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4455 leaf = path->nodes[0];
4456 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4458 bctl->flags = btrfs_balance_flags(leaf, item);
4459 bctl->flags |= BTRFS_BALANCE_RESUME;
4461 btrfs_balance_data(leaf, item, &disk_bargs);
4462 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4463 btrfs_balance_meta(leaf, item, &disk_bargs);
4464 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4465 btrfs_balance_sys(leaf, item, &disk_bargs);
4466 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4469 * This should never happen, as the paused balance state is recovered
4470 * during mount without any chance of other exclusive ops to collide.
4472 * This gives the exclusive op status to balance and keeps in paused
4473 * state until user intervention (cancel or umount). If the ownership
4474 * cannot be assigned, show a message but do not fail. The balance
4475 * is in a paused state and must have fs_info::balance_ctl properly
4478 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4480 "balance: cannot set exclusive op status, resume manually");
4482 btrfs_release_path(path);
4484 mutex_lock(&fs_info->balance_mutex);
4485 BUG_ON(fs_info->balance_ctl);
4486 spin_lock(&fs_info->balance_lock);
4487 fs_info->balance_ctl = bctl;
4488 spin_unlock(&fs_info->balance_lock);
4489 mutex_unlock(&fs_info->balance_mutex);
4491 btrfs_free_path(path);
4495 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4499 mutex_lock(&fs_info->balance_mutex);
4500 if (!fs_info->balance_ctl) {
4501 mutex_unlock(&fs_info->balance_mutex);
4505 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4506 atomic_inc(&fs_info->balance_pause_req);
4507 mutex_unlock(&fs_info->balance_mutex);
4509 wait_event(fs_info->balance_wait_q,
4510 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4512 mutex_lock(&fs_info->balance_mutex);
4513 /* we are good with balance_ctl ripped off from under us */
4514 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4515 atomic_dec(&fs_info->balance_pause_req);
4520 mutex_unlock(&fs_info->balance_mutex);
4524 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4526 mutex_lock(&fs_info->balance_mutex);
4527 if (!fs_info->balance_ctl) {
4528 mutex_unlock(&fs_info->balance_mutex);
4533 * A paused balance with the item stored on disk can be resumed at
4534 * mount time if the mount is read-write. Otherwise it's still paused
4535 * and we must not allow cancelling as it deletes the item.
4537 if (sb_rdonly(fs_info->sb)) {
4538 mutex_unlock(&fs_info->balance_mutex);
4542 atomic_inc(&fs_info->balance_cancel_req);
4544 * if we are running just wait and return, balance item is
4545 * deleted in btrfs_balance in this case
4547 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4548 mutex_unlock(&fs_info->balance_mutex);
4549 wait_event(fs_info->balance_wait_q,
4550 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4551 mutex_lock(&fs_info->balance_mutex);
4553 mutex_unlock(&fs_info->balance_mutex);
4555 * Lock released to allow other waiters to continue, we'll
4556 * reexamine the status again.
4558 mutex_lock(&fs_info->balance_mutex);
4560 if (fs_info->balance_ctl) {
4561 reset_balance_state(fs_info);
4562 btrfs_exclop_finish(fs_info);
4563 btrfs_info(fs_info, "balance: canceled");
4567 BUG_ON(fs_info->balance_ctl ||
4568 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4569 atomic_dec(&fs_info->balance_cancel_req);
4570 mutex_unlock(&fs_info->balance_mutex);
4574 int btrfs_uuid_scan_kthread(void *data)
4576 struct btrfs_fs_info *fs_info = data;
4577 struct btrfs_root *root = fs_info->tree_root;
4578 struct btrfs_key key;
4579 struct btrfs_path *path = NULL;
4581 struct extent_buffer *eb;
4583 struct btrfs_root_item root_item;
4585 struct btrfs_trans_handle *trans = NULL;
4586 bool closing = false;
4588 path = btrfs_alloc_path();
4595 key.type = BTRFS_ROOT_ITEM_KEY;
4599 if (btrfs_fs_closing(fs_info)) {
4603 ret = btrfs_search_forward(root, &key, path,
4604 BTRFS_OLDEST_GENERATION);
4611 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4612 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4613 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4614 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4617 eb = path->nodes[0];
4618 slot = path->slots[0];
4619 item_size = btrfs_item_size_nr(eb, slot);
4620 if (item_size < sizeof(root_item))
4623 read_extent_buffer(eb, &root_item,
4624 btrfs_item_ptr_offset(eb, slot),
4625 (int)sizeof(root_item));
4626 if (btrfs_root_refs(&root_item) == 0)
4629 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4630 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4634 btrfs_release_path(path);
4636 * 1 - subvol uuid item
4637 * 1 - received_subvol uuid item
4639 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4640 if (IS_ERR(trans)) {
4641 ret = PTR_ERR(trans);
4649 btrfs_release_path(path);
4650 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4651 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4652 BTRFS_UUID_KEY_SUBVOL,
4655 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4661 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4662 ret = btrfs_uuid_tree_add(trans,
4663 root_item.received_uuid,
4664 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4667 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4674 btrfs_release_path(path);
4676 ret = btrfs_end_transaction(trans);
4682 if (key.offset < (u64)-1) {
4684 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4686 key.type = BTRFS_ROOT_ITEM_KEY;
4687 } else if (key.objectid < (u64)-1) {
4689 key.type = BTRFS_ROOT_ITEM_KEY;
4698 btrfs_free_path(path);
4699 if (trans && !IS_ERR(trans))
4700 btrfs_end_transaction(trans);
4702 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4704 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4705 up(&fs_info->uuid_tree_rescan_sem);
4709 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4711 struct btrfs_trans_handle *trans;
4712 struct btrfs_root *tree_root = fs_info->tree_root;
4713 struct btrfs_root *uuid_root;
4714 struct task_struct *task;
4721 trans = btrfs_start_transaction(tree_root, 2);
4723 return PTR_ERR(trans);
4725 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4726 if (IS_ERR(uuid_root)) {
4727 ret = PTR_ERR(uuid_root);
4728 btrfs_abort_transaction(trans, ret);
4729 btrfs_end_transaction(trans);
4733 fs_info->uuid_root = uuid_root;
4735 ret = btrfs_commit_transaction(trans);
4739 down(&fs_info->uuid_tree_rescan_sem);
4740 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4742 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4743 btrfs_warn(fs_info, "failed to start uuid_scan task");
4744 up(&fs_info->uuid_tree_rescan_sem);
4745 return PTR_ERR(task);
4752 * shrinking a device means finding all of the device extents past
4753 * the new size, and then following the back refs to the chunks.
4754 * The chunk relocation code actually frees the device extent
4756 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4758 struct btrfs_fs_info *fs_info = device->fs_info;
4759 struct btrfs_root *root = fs_info->dev_root;
4760 struct btrfs_trans_handle *trans;
4761 struct btrfs_dev_extent *dev_extent = NULL;
4762 struct btrfs_path *path;
4768 bool retried = false;
4769 struct extent_buffer *l;
4770 struct btrfs_key key;
4771 struct btrfs_super_block *super_copy = fs_info->super_copy;
4772 u64 old_total = btrfs_super_total_bytes(super_copy);
4773 u64 old_size = btrfs_device_get_total_bytes(device);
4777 new_size = round_down(new_size, fs_info->sectorsize);
4779 diff = round_down(old_size - new_size, fs_info->sectorsize);
4781 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4784 path = btrfs_alloc_path();
4788 path->reada = READA_BACK;
4790 trans = btrfs_start_transaction(root, 0);
4791 if (IS_ERR(trans)) {
4792 btrfs_free_path(path);
4793 return PTR_ERR(trans);
4796 mutex_lock(&fs_info->chunk_mutex);
4798 btrfs_device_set_total_bytes(device, new_size);
4799 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4800 device->fs_devices->total_rw_bytes -= diff;
4801 atomic64_sub(diff, &fs_info->free_chunk_space);
4805 * Once the device's size has been set to the new size, ensure all
4806 * in-memory chunks are synced to disk so that the loop below sees them
4807 * and relocates them accordingly.
4809 if (contains_pending_extent(device, &start, diff)) {
4810 mutex_unlock(&fs_info->chunk_mutex);
4811 ret = btrfs_commit_transaction(trans);
4815 mutex_unlock(&fs_info->chunk_mutex);
4816 btrfs_end_transaction(trans);
4820 key.objectid = device->devid;
4821 key.offset = (u64)-1;
4822 key.type = BTRFS_DEV_EXTENT_KEY;
4825 mutex_lock(&fs_info->reclaim_bgs_lock);
4826 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4828 mutex_unlock(&fs_info->reclaim_bgs_lock);
4832 ret = btrfs_previous_item(root, path, 0, key.type);
4834 mutex_unlock(&fs_info->reclaim_bgs_lock);
4838 btrfs_release_path(path);
4843 slot = path->slots[0];
4844 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4846 if (key.objectid != device->devid) {
4847 mutex_unlock(&fs_info->reclaim_bgs_lock);
4848 btrfs_release_path(path);
4852 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4853 length = btrfs_dev_extent_length(l, dev_extent);
4855 if (key.offset + length <= new_size) {
4856 mutex_unlock(&fs_info->reclaim_bgs_lock);
4857 btrfs_release_path(path);
4861 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4862 btrfs_release_path(path);
4865 * We may be relocating the only data chunk we have,
4866 * which could potentially end up with losing data's
4867 * raid profile, so lets allocate an empty one in
4870 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4872 mutex_unlock(&fs_info->reclaim_bgs_lock);
4876 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4877 mutex_unlock(&fs_info->reclaim_bgs_lock);
4878 if (ret == -ENOSPC) {
4881 if (ret == -ETXTBSY) {
4883 "could not shrink block group %llu due to active swapfile",
4888 } while (key.offset-- > 0);
4890 if (failed && !retried) {
4894 } else if (failed && retried) {
4899 /* Shrinking succeeded, else we would be at "done". */
4900 trans = btrfs_start_transaction(root, 0);
4901 if (IS_ERR(trans)) {
4902 ret = PTR_ERR(trans);
4906 mutex_lock(&fs_info->chunk_mutex);
4907 /* Clear all state bits beyond the shrunk device size */
4908 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4911 btrfs_device_set_disk_total_bytes(device, new_size);
4912 if (list_empty(&device->post_commit_list))
4913 list_add_tail(&device->post_commit_list,
4914 &trans->transaction->dev_update_list);
4916 WARN_ON(diff > old_total);
4917 btrfs_set_super_total_bytes(super_copy,
4918 round_down(old_total - diff, fs_info->sectorsize));
4919 mutex_unlock(&fs_info->chunk_mutex);
4921 /* Now btrfs_update_device() will change the on-disk size. */
4922 ret = btrfs_update_device(trans, device);
4924 btrfs_abort_transaction(trans, ret);
4925 btrfs_end_transaction(trans);
4927 ret = btrfs_commit_transaction(trans);
4930 btrfs_free_path(path);
4932 mutex_lock(&fs_info->chunk_mutex);
4933 btrfs_device_set_total_bytes(device, old_size);
4934 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4935 device->fs_devices->total_rw_bytes += diff;
4936 atomic64_add(diff, &fs_info->free_chunk_space);
4937 mutex_unlock(&fs_info->chunk_mutex);
4942 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4943 struct btrfs_key *key,
4944 struct btrfs_chunk *chunk, int item_size)
4946 struct btrfs_super_block *super_copy = fs_info->super_copy;
4947 struct btrfs_disk_key disk_key;
4951 lockdep_assert_held(&fs_info->chunk_mutex);
4953 array_size = btrfs_super_sys_array_size(super_copy);
4954 if (array_size + item_size + sizeof(disk_key)
4955 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4958 ptr = super_copy->sys_chunk_array + array_size;
4959 btrfs_cpu_key_to_disk(&disk_key, key);
4960 memcpy(ptr, &disk_key, sizeof(disk_key));
4961 ptr += sizeof(disk_key);
4962 memcpy(ptr, chunk, item_size);
4963 item_size += sizeof(disk_key);
4964 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4970 * sort the devices in descending order by max_avail, total_avail
4972 static int btrfs_cmp_device_info(const void *a, const void *b)
4974 const struct btrfs_device_info *di_a = a;
4975 const struct btrfs_device_info *di_b = b;
4977 if (di_a->max_avail > di_b->max_avail)
4979 if (di_a->max_avail < di_b->max_avail)
4981 if (di_a->total_avail > di_b->total_avail)
4983 if (di_a->total_avail < di_b->total_avail)
4988 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4990 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4993 btrfs_set_fs_incompat(info, RAID56);
4996 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4998 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5001 btrfs_set_fs_incompat(info, RAID1C34);
5005 * Structure used internally for __btrfs_alloc_chunk() function.
5006 * Wraps needed parameters.
5008 struct alloc_chunk_ctl {
5011 /* Total number of stripes to allocate */
5013 /* sub_stripes info for map */
5015 /* Stripes per device */
5017 /* Maximum number of devices to use */
5019 /* Minimum number of devices to use */
5021 /* ndevs has to be a multiple of this */
5023 /* Number of copies */
5025 /* Number of stripes worth of bytes to store parity information */
5027 u64 max_stripe_size;
5035 static void init_alloc_chunk_ctl_policy_regular(
5036 struct btrfs_fs_devices *fs_devices,
5037 struct alloc_chunk_ctl *ctl)
5039 u64 type = ctl->type;
5041 if (type & BTRFS_BLOCK_GROUP_DATA) {
5042 ctl->max_stripe_size = SZ_1G;
5043 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5044 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5045 /* For larger filesystems, use larger metadata chunks */
5046 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5047 ctl->max_stripe_size = SZ_1G;
5049 ctl->max_stripe_size = SZ_256M;
5050 ctl->max_chunk_size = ctl->max_stripe_size;
5051 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5052 ctl->max_stripe_size = SZ_32M;
5053 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5054 ctl->devs_max = min_t(int, ctl->devs_max,
5055 BTRFS_MAX_DEVS_SYS_CHUNK);
5060 /* We don't want a chunk larger than 10% of writable space */
5061 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5062 ctl->max_chunk_size);
5063 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5066 static void init_alloc_chunk_ctl_policy_zoned(
5067 struct btrfs_fs_devices *fs_devices,
5068 struct alloc_chunk_ctl *ctl)
5070 u64 zone_size = fs_devices->fs_info->zone_size;
5072 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5073 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5074 u64 min_chunk_size = min_data_stripes * zone_size;
5075 u64 type = ctl->type;
5077 ctl->max_stripe_size = zone_size;
5078 if (type & BTRFS_BLOCK_GROUP_DATA) {
5079 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5081 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5082 ctl->max_chunk_size = ctl->max_stripe_size;
5083 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5084 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5085 ctl->devs_max = min_t(int, ctl->devs_max,
5086 BTRFS_MAX_DEVS_SYS_CHUNK);
5091 /* We don't want a chunk larger than 10% of writable space */
5092 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5095 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5096 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5099 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5100 struct alloc_chunk_ctl *ctl)
5102 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5104 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5105 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5106 ctl->devs_max = btrfs_raid_array[index].devs_max;
5108 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5109 ctl->devs_min = btrfs_raid_array[index].devs_min;
5110 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5111 ctl->ncopies = btrfs_raid_array[index].ncopies;
5112 ctl->nparity = btrfs_raid_array[index].nparity;
5115 switch (fs_devices->chunk_alloc_policy) {
5116 case BTRFS_CHUNK_ALLOC_REGULAR:
5117 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5119 case BTRFS_CHUNK_ALLOC_ZONED:
5120 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5127 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5128 struct alloc_chunk_ctl *ctl,
5129 struct btrfs_device_info *devices_info)
5131 struct btrfs_fs_info *info = fs_devices->fs_info;
5132 struct btrfs_device *device;
5134 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5141 * in the first pass through the devices list, we gather information
5142 * about the available holes on each device.
5144 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5145 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5147 "BTRFS: read-only device in alloc_list\n");
5151 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5152 &device->dev_state) ||
5153 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5156 if (device->total_bytes > device->bytes_used)
5157 total_avail = device->total_bytes - device->bytes_used;
5161 /* If there is no space on this device, skip it. */
5162 if (total_avail < ctl->dev_extent_min)
5165 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5167 if (ret && ret != -ENOSPC)
5171 max_avail = dev_extent_want;
5173 if (max_avail < ctl->dev_extent_min) {
5174 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5176 "%s: devid %llu has no free space, have=%llu want=%llu",
5177 __func__, device->devid, max_avail,
5178 ctl->dev_extent_min);
5182 if (ndevs == fs_devices->rw_devices) {
5183 WARN(1, "%s: found more than %llu devices\n",
5184 __func__, fs_devices->rw_devices);
5187 devices_info[ndevs].dev_offset = dev_offset;
5188 devices_info[ndevs].max_avail = max_avail;
5189 devices_info[ndevs].total_avail = total_avail;
5190 devices_info[ndevs].dev = device;
5196 * now sort the devices by hole size / available space
5198 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5199 btrfs_cmp_device_info, NULL);
5204 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5205 struct btrfs_device_info *devices_info)
5207 /* Number of stripes that count for block group size */
5211 * The primary goal is to maximize the number of stripes, so use as
5212 * many devices as possible, even if the stripes are not maximum sized.
5214 * The DUP profile stores more than one stripe per device, the
5215 * max_avail is the total size so we have to adjust.
5217 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5219 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5221 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5222 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5225 * Use the number of data stripes to figure out how big this chunk is
5226 * really going to be in terms of logical address space, and compare
5227 * that answer with the max chunk size. If it's higher, we try to
5228 * reduce stripe_size.
5230 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5232 * Reduce stripe_size, round it up to a 16MB boundary again and
5233 * then use it, unless it ends up being even bigger than the
5234 * previous value we had already.
5236 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5237 data_stripes), SZ_16M),
5241 /* Align to BTRFS_STRIPE_LEN */
5242 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5243 ctl->chunk_size = ctl->stripe_size * data_stripes;
5248 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5249 struct btrfs_device_info *devices_info)
5251 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5252 /* Number of stripes that count for block group size */
5256 * It should hold because:
5257 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5259 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5261 ctl->stripe_size = zone_size;
5262 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5263 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5265 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5266 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5267 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5268 ctl->stripe_size) + ctl->nparity,
5270 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5271 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5272 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5275 ctl->chunk_size = ctl->stripe_size * data_stripes;
5280 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5281 struct alloc_chunk_ctl *ctl,
5282 struct btrfs_device_info *devices_info)
5284 struct btrfs_fs_info *info = fs_devices->fs_info;
5287 * Round down to number of usable stripes, devs_increment can be any
5288 * number so we can't use round_down() that requires power of 2, while
5289 * rounddown is safe.
5291 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5293 if (ctl->ndevs < ctl->devs_min) {
5294 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5296 "%s: not enough devices with free space: have=%d minimum required=%d",
5297 __func__, ctl->ndevs, ctl->devs_min);
5302 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5304 switch (fs_devices->chunk_alloc_policy) {
5305 case BTRFS_CHUNK_ALLOC_REGULAR:
5306 return decide_stripe_size_regular(ctl, devices_info);
5307 case BTRFS_CHUNK_ALLOC_ZONED:
5308 return decide_stripe_size_zoned(ctl, devices_info);
5314 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5315 struct alloc_chunk_ctl *ctl,
5316 struct btrfs_device_info *devices_info)
5318 struct btrfs_fs_info *info = trans->fs_info;
5319 struct map_lookup *map = NULL;
5320 struct extent_map_tree *em_tree;
5321 struct btrfs_block_group *block_group;
5322 struct extent_map *em;
5323 u64 start = ctl->start;
5324 u64 type = ctl->type;
5329 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5331 return ERR_PTR(-ENOMEM);
5332 map->num_stripes = ctl->num_stripes;
5334 for (i = 0; i < ctl->ndevs; ++i) {
5335 for (j = 0; j < ctl->dev_stripes; ++j) {
5336 int s = i * ctl->dev_stripes + j;
5337 map->stripes[s].dev = devices_info[i].dev;
5338 map->stripes[s].physical = devices_info[i].dev_offset +
5339 j * ctl->stripe_size;
5342 map->stripe_len = BTRFS_STRIPE_LEN;
5343 map->io_align = BTRFS_STRIPE_LEN;
5344 map->io_width = BTRFS_STRIPE_LEN;
5346 map->sub_stripes = ctl->sub_stripes;
5348 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5350 em = alloc_extent_map();
5353 return ERR_PTR(-ENOMEM);
5355 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5356 em->map_lookup = map;
5358 em->len = ctl->chunk_size;
5359 em->block_start = 0;
5360 em->block_len = em->len;
5361 em->orig_block_len = ctl->stripe_size;
5363 em_tree = &info->mapping_tree;
5364 write_lock(&em_tree->lock);
5365 ret = add_extent_mapping(em_tree, em, 0);
5367 write_unlock(&em_tree->lock);
5368 free_extent_map(em);
5369 return ERR_PTR(ret);
5371 write_unlock(&em_tree->lock);
5373 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5374 if (IS_ERR(block_group))
5375 goto error_del_extent;
5377 for (i = 0; i < map->num_stripes; i++) {
5378 struct btrfs_device *dev = map->stripes[i].dev;
5380 btrfs_device_set_bytes_used(dev,
5381 dev->bytes_used + ctl->stripe_size);
5382 if (list_empty(&dev->post_commit_list))
5383 list_add_tail(&dev->post_commit_list,
5384 &trans->transaction->dev_update_list);
5387 atomic64_sub(ctl->stripe_size * map->num_stripes,
5388 &info->free_chunk_space);
5390 free_extent_map(em);
5391 check_raid56_incompat_flag(info, type);
5392 check_raid1c34_incompat_flag(info, type);
5397 write_lock(&em_tree->lock);
5398 remove_extent_mapping(em_tree, em);
5399 write_unlock(&em_tree->lock);
5401 /* One for our allocation */
5402 free_extent_map(em);
5403 /* One for the tree reference */
5404 free_extent_map(em);
5409 struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5412 struct btrfs_fs_info *info = trans->fs_info;
5413 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5414 struct btrfs_device_info *devices_info = NULL;
5415 struct alloc_chunk_ctl ctl;
5416 struct btrfs_block_group *block_group;
5419 lockdep_assert_held(&info->chunk_mutex);
5421 if (!alloc_profile_is_valid(type, 0)) {
5423 return ERR_PTR(-EINVAL);
5426 if (list_empty(&fs_devices->alloc_list)) {
5427 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5428 btrfs_debug(info, "%s: no writable device", __func__);
5429 return ERR_PTR(-ENOSPC);
5432 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5433 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5435 return ERR_PTR(-EINVAL);
5438 ctl.start = find_next_chunk(info);
5440 init_alloc_chunk_ctl(fs_devices, &ctl);
5442 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5445 return ERR_PTR(-ENOMEM);
5447 ret = gather_device_info(fs_devices, &ctl, devices_info);
5449 block_group = ERR_PTR(ret);
5453 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5455 block_group = ERR_PTR(ret);
5459 block_group = create_chunk(trans, &ctl, devices_info);
5462 kfree(devices_info);
5467 * This function, btrfs_finish_chunk_alloc(), belongs to phase 2.
5469 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5472 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5473 u64 chunk_offset, u64 chunk_size)
5475 struct btrfs_fs_info *fs_info = trans->fs_info;
5476 struct btrfs_device *device;
5477 struct extent_map *em;
5478 struct map_lookup *map;
5484 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5488 map = em->map_lookup;
5489 stripe_size = em->orig_block_len;
5492 * Take the device list mutex to prevent races with the final phase of
5493 * a device replace operation that replaces the device object associated
5494 * with the map's stripes, because the device object's id can change
5495 * at any time during that final phase of the device replace operation
5496 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5497 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5498 * resulting in persisting a device extent item with such ID.
5500 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5501 for (i = 0; i < map->num_stripes; i++) {
5502 device = map->stripes[i].dev;
5503 dev_offset = map->stripes[i].physical;
5505 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5506 dev_offset, stripe_size);
5510 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5512 free_extent_map(em);
5517 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5518 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5521 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5524 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5525 struct btrfs_block_group *bg)
5527 struct btrfs_fs_info *fs_info = trans->fs_info;
5528 struct btrfs_root *extent_root = fs_info->extent_root;
5529 struct btrfs_root *chunk_root = fs_info->chunk_root;
5530 struct btrfs_key key;
5531 struct btrfs_chunk *chunk;
5532 struct btrfs_stripe *stripe;
5533 struct extent_map *em;
5534 struct map_lookup *map;
5540 * We take the chunk_mutex for 2 reasons:
5542 * 1) Updates and insertions in the chunk btree must be done while holding
5543 * the chunk_mutex, as well as updating the system chunk array in the
5544 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5547 * 2) To prevent races with the final phase of a device replace operation
5548 * that replaces the device object associated with the map's stripes,
5549 * because the device object's id can change at any time during that
5550 * final phase of the device replace operation
5551 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5552 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5553 * which would cause a failure when updating the device item, which does
5554 * not exists, or persisting a stripe of the chunk item with such ID.
5555 * Here we can't use the device_list_mutex because our caller already
5556 * has locked the chunk_mutex, and the final phase of device replace
5557 * acquires both mutexes - first the device_list_mutex and then the
5558 * chunk_mutex. Using any of those two mutexes protects us from a
5559 * concurrent device replace.
5561 lockdep_assert_held(&fs_info->chunk_mutex);
5563 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5566 btrfs_abort_transaction(trans, ret);
5570 map = em->map_lookup;
5571 item_size = btrfs_chunk_item_size(map->num_stripes);
5573 chunk = kzalloc(item_size, GFP_NOFS);
5576 btrfs_abort_transaction(trans, ret);
5580 for (i = 0; i < map->num_stripes; i++) {
5581 struct btrfs_device *device = map->stripes[i].dev;
5583 ret = btrfs_update_device(trans, device);
5588 stripe = &chunk->stripe;
5589 for (i = 0; i < map->num_stripes; i++) {
5590 struct btrfs_device *device = map->stripes[i].dev;
5591 const u64 dev_offset = map->stripes[i].physical;
5593 btrfs_set_stack_stripe_devid(stripe, device->devid);
5594 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5595 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5599 btrfs_set_stack_chunk_length(chunk, bg->length);
5600 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5601 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5602 btrfs_set_stack_chunk_type(chunk, map->type);
5603 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5604 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5605 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5606 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5607 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5609 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5610 key.type = BTRFS_CHUNK_ITEM_KEY;
5611 key.offset = bg->start;
5613 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5617 bg->chunk_item_inserted = 1;
5619 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5620 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5627 free_extent_map(em);
5631 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5633 struct btrfs_fs_info *fs_info = trans->fs_info;
5635 struct btrfs_block_group *meta_bg;
5636 struct btrfs_block_group *sys_bg;
5639 * When adding a new device for sprouting, the seed device is read-only
5640 * so we must first allocate a metadata and a system chunk. But before
5641 * adding the block group items to the extent, device and chunk btrees,
5644 * 1) Create both chunks without doing any changes to the btrees, as
5645 * otherwise we would get -ENOSPC since the block groups from the
5646 * seed device are read-only;
5648 * 2) Add the device item for the new sprout device - finishing the setup
5649 * of a new block group requires updating the device item in the chunk
5650 * btree, so it must exist when we attempt to do it. The previous step
5651 * ensures this does not fail with -ENOSPC.
5653 * After that we can add the block group items to their btrees:
5654 * update existing device item in the chunk btree, add a new block group
5655 * item to the extent btree, add a new chunk item to the chunk btree and
5656 * finally add the new device extent items to the devices btree.
5659 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5660 meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5661 if (IS_ERR(meta_bg))
5662 return PTR_ERR(meta_bg);
5664 alloc_profile = btrfs_system_alloc_profile(fs_info);
5665 sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5667 return PTR_ERR(sys_bg);
5672 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5674 const int index = btrfs_bg_flags_to_raid_index(map->type);
5676 return btrfs_raid_array[index].tolerated_failures;
5679 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5681 struct extent_map *em;
5682 struct map_lookup *map;
5687 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5691 map = em->map_lookup;
5692 for (i = 0; i < map->num_stripes; i++) {
5693 if (test_bit(BTRFS_DEV_STATE_MISSING,
5694 &map->stripes[i].dev->dev_state)) {
5698 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5699 &map->stripes[i].dev->dev_state)) {
5706 * If the number of missing devices is larger than max errors,
5707 * we can not write the data into that chunk successfully, so
5710 if (miss_ndevs > btrfs_chunk_max_errors(map))
5713 free_extent_map(em);
5717 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5719 struct extent_map *em;
5722 write_lock(&tree->lock);
5723 em = lookup_extent_mapping(tree, 0, (u64)-1);
5725 remove_extent_mapping(tree, em);
5726 write_unlock(&tree->lock);
5730 free_extent_map(em);
5731 /* once for the tree */
5732 free_extent_map(em);
5736 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5738 struct extent_map *em;
5739 struct map_lookup *map;
5742 em = btrfs_get_chunk_map(fs_info, logical, len);
5745 * We could return errors for these cases, but that could get
5746 * ugly and we'd probably do the same thing which is just not do
5747 * anything else and exit, so return 1 so the callers don't try
5748 * to use other copies.
5752 map = em->map_lookup;
5753 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5754 ret = map->num_stripes;
5755 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5756 ret = map->sub_stripes;
5757 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5759 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5761 * There could be two corrupted data stripes, we need
5762 * to loop retry in order to rebuild the correct data.
5764 * Fail a stripe at a time on every retry except the
5765 * stripe under reconstruction.
5767 ret = map->num_stripes;
5770 free_extent_map(em);
5772 down_read(&fs_info->dev_replace.rwsem);
5773 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5774 fs_info->dev_replace.tgtdev)
5776 up_read(&fs_info->dev_replace.rwsem);
5781 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5784 struct extent_map *em;
5785 struct map_lookup *map;
5786 unsigned long len = fs_info->sectorsize;
5788 em = btrfs_get_chunk_map(fs_info, logical, len);
5790 if (!WARN_ON(IS_ERR(em))) {
5791 map = em->map_lookup;
5792 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5793 len = map->stripe_len * nr_data_stripes(map);
5794 free_extent_map(em);
5799 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5801 struct extent_map *em;
5802 struct map_lookup *map;
5805 em = btrfs_get_chunk_map(fs_info, logical, len);
5807 if(!WARN_ON(IS_ERR(em))) {
5808 map = em->map_lookup;
5809 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5811 free_extent_map(em);
5816 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5817 struct map_lookup *map, int first,
5818 int dev_replace_is_ongoing)
5822 int preferred_mirror;
5824 struct btrfs_device *srcdev;
5827 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5829 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5830 num_stripes = map->sub_stripes;
5832 num_stripes = map->num_stripes;
5834 switch (fs_info->fs_devices->read_policy) {
5836 /* Shouldn't happen, just warn and use pid instead of failing */
5837 btrfs_warn_rl(fs_info,
5838 "unknown read_policy type %u, reset to pid",
5839 fs_info->fs_devices->read_policy);
5840 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5842 case BTRFS_READ_POLICY_PID:
5843 preferred_mirror = first + (current->pid % num_stripes);
5847 if (dev_replace_is_ongoing &&
5848 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5849 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5850 srcdev = fs_info->dev_replace.srcdev;
5855 * try to avoid the drive that is the source drive for a
5856 * dev-replace procedure, only choose it if no other non-missing
5857 * mirror is available
5859 for (tolerance = 0; tolerance < 2; tolerance++) {
5860 if (map->stripes[preferred_mirror].dev->bdev &&
5861 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5862 return preferred_mirror;
5863 for (i = first; i < first + num_stripes; i++) {
5864 if (map->stripes[i].dev->bdev &&
5865 (tolerance || map->stripes[i].dev != srcdev))
5870 /* we couldn't find one that doesn't fail. Just return something
5871 * and the io error handling code will clean up eventually
5873 return preferred_mirror;
5876 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5877 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5884 for (i = 0; i < num_stripes - 1; i++) {
5885 /* Swap if parity is on a smaller index */
5886 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5887 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5888 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5895 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5897 struct btrfs_bio *bbio = kzalloc(
5898 /* the size of the btrfs_bio */
5899 sizeof(struct btrfs_bio) +
5900 /* plus the variable array for the stripes */
5901 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5902 /* plus the variable array for the tgt dev */
5903 sizeof(int) * (real_stripes) +
5905 * plus the raid_map, which includes both the tgt dev
5908 sizeof(u64) * (total_stripes),
5909 GFP_NOFS|__GFP_NOFAIL);
5911 atomic_set(&bbio->error, 0);
5912 refcount_set(&bbio->refs, 1);
5914 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5915 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5920 void btrfs_get_bbio(struct btrfs_bio *bbio)
5922 WARN_ON(!refcount_read(&bbio->refs));
5923 refcount_inc(&bbio->refs);
5926 void btrfs_put_bbio(struct btrfs_bio *bbio)
5930 if (refcount_dec_and_test(&bbio->refs))
5934 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5936 * Please note that, discard won't be sent to target device of device
5939 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5940 u64 logical, u64 *length_ret,
5941 struct btrfs_bio **bbio_ret)
5943 struct extent_map *em;
5944 struct map_lookup *map;
5945 struct btrfs_bio *bbio;
5946 u64 length = *length_ret;
5950 u64 stripe_end_offset;
5957 u32 sub_stripes = 0;
5958 u64 stripes_per_dev = 0;
5959 u32 remaining_stripes = 0;
5960 u32 last_stripe = 0;
5964 /* discard always return a bbio */
5967 em = btrfs_get_chunk_map(fs_info, logical, length);
5971 map = em->map_lookup;
5972 /* we don't discard raid56 yet */
5973 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5978 offset = logical - em->start;
5979 length = min_t(u64, em->start + em->len - logical, length);
5980 *length_ret = length;
5982 stripe_len = map->stripe_len;
5984 * stripe_nr counts the total number of stripes we have to stride
5985 * to get to this block
5987 stripe_nr = div64_u64(offset, stripe_len);
5989 /* stripe_offset is the offset of this block in its stripe */
5990 stripe_offset = offset - stripe_nr * stripe_len;
5992 stripe_nr_end = round_up(offset + length, map->stripe_len);
5993 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5994 stripe_cnt = stripe_nr_end - stripe_nr;
5995 stripe_end_offset = stripe_nr_end * map->stripe_len -
5998 * after this, stripe_nr is the number of stripes on this
5999 * device we have to walk to find the data, and stripe_index is
6000 * the number of our device in the stripe array
6004 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6005 BTRFS_BLOCK_GROUP_RAID10)) {
6006 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6009 sub_stripes = map->sub_stripes;
6011 factor = map->num_stripes / sub_stripes;
6012 num_stripes = min_t(u64, map->num_stripes,
6013 sub_stripes * stripe_cnt);
6014 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6015 stripe_index *= sub_stripes;
6016 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6017 &remaining_stripes);
6018 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6019 last_stripe *= sub_stripes;
6020 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6021 BTRFS_BLOCK_GROUP_DUP)) {
6022 num_stripes = map->num_stripes;
6024 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6028 bbio = alloc_btrfs_bio(num_stripes, 0);
6034 for (i = 0; i < num_stripes; i++) {
6035 bbio->stripes[i].physical =
6036 map->stripes[stripe_index].physical +
6037 stripe_offset + stripe_nr * map->stripe_len;
6038 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6040 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6041 BTRFS_BLOCK_GROUP_RAID10)) {
6042 bbio->stripes[i].length = stripes_per_dev *
6045 if (i / sub_stripes < remaining_stripes)
6046 bbio->stripes[i].length +=
6050 * Special for the first stripe and
6053 * |-------|...|-------|
6057 if (i < sub_stripes)
6058 bbio->stripes[i].length -=
6061 if (stripe_index >= last_stripe &&
6062 stripe_index <= (last_stripe +
6064 bbio->stripes[i].length -=
6067 if (i == sub_stripes - 1)
6070 bbio->stripes[i].length = length;
6074 if (stripe_index == map->num_stripes) {
6081 bbio->map_type = map->type;
6082 bbio->num_stripes = num_stripes;
6084 free_extent_map(em);
6089 * In dev-replace case, for repair case (that's the only case where the mirror
6090 * is selected explicitly when calling btrfs_map_block), blocks left of the
6091 * left cursor can also be read from the target drive.
6093 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6095 * For READ, it also needs to be supported using the same mirror number.
6097 * If the requested block is not left of the left cursor, EIO is returned. This
6098 * can happen because btrfs_num_copies() returns one more in the dev-replace
6101 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6102 u64 logical, u64 length,
6103 u64 srcdev_devid, int *mirror_num,
6106 struct btrfs_bio *bbio = NULL;
6108 int index_srcdev = 0;
6110 u64 physical_of_found = 0;
6114 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6115 logical, &length, &bbio, 0, 0);
6117 ASSERT(bbio == NULL);
6121 num_stripes = bbio->num_stripes;
6122 if (*mirror_num > num_stripes) {
6124 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6125 * that means that the requested area is not left of the left
6128 btrfs_put_bbio(bbio);
6133 * process the rest of the function using the mirror_num of the source
6134 * drive. Therefore look it up first. At the end, patch the device
6135 * pointer to the one of the target drive.
6137 for (i = 0; i < num_stripes; i++) {
6138 if (bbio->stripes[i].dev->devid != srcdev_devid)
6142 * In case of DUP, in order to keep it simple, only add the
6143 * mirror with the lowest physical address
6146 physical_of_found <= bbio->stripes[i].physical)
6151 physical_of_found = bbio->stripes[i].physical;
6154 btrfs_put_bbio(bbio);
6160 *mirror_num = index_srcdev + 1;
6161 *physical = physical_of_found;
6165 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6167 struct btrfs_block_group *cache;
6170 /* Non zoned filesystem does not use "to_copy" flag */
6171 if (!btrfs_is_zoned(fs_info))
6174 cache = btrfs_lookup_block_group(fs_info, logical);
6176 spin_lock(&cache->lock);
6177 ret = cache->to_copy;
6178 spin_unlock(&cache->lock);
6180 btrfs_put_block_group(cache);
6184 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6185 struct btrfs_bio **bbio_ret,
6186 struct btrfs_dev_replace *dev_replace,
6188 int *num_stripes_ret, int *max_errors_ret)
6190 struct btrfs_bio *bbio = *bbio_ret;
6191 u64 srcdev_devid = dev_replace->srcdev->devid;
6192 int tgtdev_indexes = 0;
6193 int num_stripes = *num_stripes_ret;
6194 int max_errors = *max_errors_ret;
6197 if (op == BTRFS_MAP_WRITE) {
6198 int index_where_to_add;
6201 * A block group which have "to_copy" set will eventually
6202 * copied by dev-replace process. We can avoid cloning IO here.
6204 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6208 * duplicate the write operations while the dev replace
6209 * procedure is running. Since the copying of the old disk to
6210 * the new disk takes place at run time while the filesystem is
6211 * mounted writable, the regular write operations to the old
6212 * disk have to be duplicated to go to the new disk as well.
6214 * Note that device->missing is handled by the caller, and that
6215 * the write to the old disk is already set up in the stripes
6218 index_where_to_add = num_stripes;
6219 for (i = 0; i < num_stripes; i++) {
6220 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6221 /* write to new disk, too */
6222 struct btrfs_bio_stripe *new =
6223 bbio->stripes + index_where_to_add;
6224 struct btrfs_bio_stripe *old =
6227 new->physical = old->physical;
6228 new->length = old->length;
6229 new->dev = dev_replace->tgtdev;
6230 bbio->tgtdev_map[i] = index_where_to_add;
6231 index_where_to_add++;
6236 num_stripes = index_where_to_add;
6237 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6238 int index_srcdev = 0;
6240 u64 physical_of_found = 0;
6243 * During the dev-replace procedure, the target drive can also
6244 * be used to read data in case it is needed to repair a corrupt
6245 * block elsewhere. This is possible if the requested area is
6246 * left of the left cursor. In this area, the target drive is a
6247 * full copy of the source drive.
6249 for (i = 0; i < num_stripes; i++) {
6250 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6252 * In case of DUP, in order to keep it simple,
6253 * only add the mirror with the lowest physical
6257 physical_of_found <=
6258 bbio->stripes[i].physical)
6262 physical_of_found = bbio->stripes[i].physical;
6266 struct btrfs_bio_stripe *tgtdev_stripe =
6267 bbio->stripes + num_stripes;
6269 tgtdev_stripe->physical = physical_of_found;
6270 tgtdev_stripe->length =
6271 bbio->stripes[index_srcdev].length;
6272 tgtdev_stripe->dev = dev_replace->tgtdev;
6273 bbio->tgtdev_map[index_srcdev] = num_stripes;
6280 *num_stripes_ret = num_stripes;
6281 *max_errors_ret = max_errors;
6282 bbio->num_tgtdevs = tgtdev_indexes;
6286 static bool need_full_stripe(enum btrfs_map_op op)
6288 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6292 * Calculate the geometry of a particular (address, len) tuple. This
6293 * information is used to calculate how big a particular bio can get before it
6294 * straddles a stripe.
6296 * @fs_info: the filesystem
6297 * @em: mapping containing the logical extent
6298 * @op: type of operation - write or read
6299 * @logical: address that we want to figure out the geometry of
6300 * @io_geom: pointer used to return values
6302 * Returns < 0 in case a chunk for the given logical address cannot be found,
6303 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6305 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6306 enum btrfs_map_op op, u64 logical,
6307 struct btrfs_io_geometry *io_geom)
6309 struct map_lookup *map;
6315 u64 raid56_full_stripe_start = (u64)-1;
6318 ASSERT(op != BTRFS_MAP_DISCARD);
6320 map = em->map_lookup;
6321 /* Offset of this logical address in the chunk */
6322 offset = logical - em->start;
6323 /* Len of a stripe in a chunk */
6324 stripe_len = map->stripe_len;
6325 /* Stripe where this block falls in */
6326 stripe_nr = div64_u64(offset, stripe_len);
6327 /* Offset of stripe in the chunk */
6328 stripe_offset = stripe_nr * stripe_len;
6329 if (offset < stripe_offset) {
6331 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6332 stripe_offset, offset, em->start, logical, stripe_len);
6336 /* stripe_offset is the offset of this block in its stripe */
6337 stripe_offset = offset - stripe_offset;
6338 data_stripes = nr_data_stripes(map);
6340 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6341 u64 max_len = stripe_len - stripe_offset;
6344 * In case of raid56, we need to know the stripe aligned start
6346 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6347 unsigned long full_stripe_len = stripe_len * data_stripes;
6348 raid56_full_stripe_start = offset;
6351 * Allow a write of a full stripe, but make sure we
6352 * don't allow straddling of stripes
6354 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6356 raid56_full_stripe_start *= full_stripe_len;
6359 * For writes to RAID[56], allow a full stripeset across
6360 * all disks. For other RAID types and for RAID[56]
6361 * reads, just allow a single stripe (on a single disk).
6363 if (op == BTRFS_MAP_WRITE) {
6364 max_len = stripe_len * data_stripes -
6365 (offset - raid56_full_stripe_start);
6368 len = min_t(u64, em->len - offset, max_len);
6370 len = em->len - offset;
6374 io_geom->offset = offset;
6375 io_geom->stripe_len = stripe_len;
6376 io_geom->stripe_nr = stripe_nr;
6377 io_geom->stripe_offset = stripe_offset;
6378 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6383 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6384 enum btrfs_map_op op,
6385 u64 logical, u64 *length,
6386 struct btrfs_bio **bbio_ret,
6387 int mirror_num, int need_raid_map)
6389 struct extent_map *em;
6390 struct map_lookup *map;
6400 int tgtdev_indexes = 0;
6401 struct btrfs_bio *bbio = NULL;
6402 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6403 int dev_replace_is_ongoing = 0;
6404 int num_alloc_stripes;
6405 int patch_the_first_stripe_for_dev_replace = 0;
6406 u64 physical_to_patch_in_first_stripe = 0;
6407 u64 raid56_full_stripe_start = (u64)-1;
6408 struct btrfs_io_geometry geom;
6411 ASSERT(op != BTRFS_MAP_DISCARD);
6413 em = btrfs_get_chunk_map(fs_info, logical, *length);
6414 ASSERT(!IS_ERR(em));
6416 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6420 map = em->map_lookup;
6423 stripe_len = geom.stripe_len;
6424 stripe_nr = geom.stripe_nr;
6425 stripe_offset = geom.stripe_offset;
6426 raid56_full_stripe_start = geom.raid56_stripe_offset;
6427 data_stripes = nr_data_stripes(map);
6429 down_read(&dev_replace->rwsem);
6430 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6432 * Hold the semaphore for read during the whole operation, write is
6433 * requested at commit time but must wait.
6435 if (!dev_replace_is_ongoing)
6436 up_read(&dev_replace->rwsem);
6438 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6439 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6440 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6441 dev_replace->srcdev->devid,
6443 &physical_to_patch_in_first_stripe);
6447 patch_the_first_stripe_for_dev_replace = 1;
6448 } else if (mirror_num > map->num_stripes) {
6454 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6455 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6457 if (!need_full_stripe(op))
6459 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6460 if (need_full_stripe(op))
6461 num_stripes = map->num_stripes;
6462 else if (mirror_num)
6463 stripe_index = mirror_num - 1;
6465 stripe_index = find_live_mirror(fs_info, map, 0,
6466 dev_replace_is_ongoing);
6467 mirror_num = stripe_index + 1;
6470 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6471 if (need_full_stripe(op)) {
6472 num_stripes = map->num_stripes;
6473 } else if (mirror_num) {
6474 stripe_index = mirror_num - 1;
6479 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6480 u32 factor = map->num_stripes / map->sub_stripes;
6482 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6483 stripe_index *= map->sub_stripes;
6485 if (need_full_stripe(op))
6486 num_stripes = map->sub_stripes;
6487 else if (mirror_num)
6488 stripe_index += mirror_num - 1;
6490 int old_stripe_index = stripe_index;
6491 stripe_index = find_live_mirror(fs_info, map,
6493 dev_replace_is_ongoing);
6494 mirror_num = stripe_index - old_stripe_index + 1;
6497 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6498 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6499 /* push stripe_nr back to the start of the full stripe */
6500 stripe_nr = div64_u64(raid56_full_stripe_start,
6501 stripe_len * data_stripes);
6503 /* RAID[56] write or recovery. Return all stripes */
6504 num_stripes = map->num_stripes;
6505 max_errors = nr_parity_stripes(map);
6507 *length = map->stripe_len;
6512 * Mirror #0 or #1 means the original data block.
6513 * Mirror #2 is RAID5 parity block.
6514 * Mirror #3 is RAID6 Q block.
6516 stripe_nr = div_u64_rem(stripe_nr,
6517 data_stripes, &stripe_index);
6519 stripe_index = data_stripes + mirror_num - 2;
6521 /* We distribute the parity blocks across stripes */
6522 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6524 if (!need_full_stripe(op) && mirror_num <= 1)
6529 * after this, stripe_nr is the number of stripes on this
6530 * device we have to walk to find the data, and stripe_index is
6531 * the number of our device in the stripe array
6533 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6535 mirror_num = stripe_index + 1;
6537 if (stripe_index >= map->num_stripes) {
6539 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6540 stripe_index, map->num_stripes);
6545 num_alloc_stripes = num_stripes;
6546 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6547 if (op == BTRFS_MAP_WRITE)
6548 num_alloc_stripes <<= 1;
6549 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6550 num_alloc_stripes++;
6551 tgtdev_indexes = num_stripes;
6554 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6560 for (i = 0; i < num_stripes; i++) {
6561 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6562 stripe_offset + stripe_nr * map->stripe_len;
6563 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6567 /* build raid_map */
6568 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6569 (need_full_stripe(op) || mirror_num > 1)) {
6573 /* Work out the disk rotation on this stripe-set */
6574 div_u64_rem(stripe_nr, num_stripes, &rot);
6576 /* Fill in the logical address of each stripe */
6577 tmp = stripe_nr * data_stripes;
6578 for (i = 0; i < data_stripes; i++)
6579 bbio->raid_map[(i+rot) % num_stripes] =
6580 em->start + (tmp + i) * map->stripe_len;
6582 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6583 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6584 bbio->raid_map[(i+rot+1) % num_stripes] =
6587 sort_parity_stripes(bbio, num_stripes);
6590 if (need_full_stripe(op))
6591 max_errors = btrfs_chunk_max_errors(map);
6593 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6594 need_full_stripe(op)) {
6595 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6596 &num_stripes, &max_errors);
6600 bbio->map_type = map->type;
6601 bbio->num_stripes = num_stripes;
6602 bbio->max_errors = max_errors;
6603 bbio->mirror_num = mirror_num;
6606 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6607 * mirror_num == num_stripes + 1 && dev_replace target drive is
6608 * available as a mirror
6610 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6611 WARN_ON(num_stripes > 1);
6612 bbio->stripes[0].dev = dev_replace->tgtdev;
6613 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6614 bbio->mirror_num = map->num_stripes + 1;
6617 if (dev_replace_is_ongoing) {
6618 lockdep_assert_held(&dev_replace->rwsem);
6619 /* Unlock and let waiting writers proceed */
6620 up_read(&dev_replace->rwsem);
6622 free_extent_map(em);
6626 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6627 u64 logical, u64 *length,
6628 struct btrfs_bio **bbio_ret, int mirror_num)
6630 if (op == BTRFS_MAP_DISCARD)
6631 return __btrfs_map_block_for_discard(fs_info, logical,
6634 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6638 /* For Scrub/replace */
6639 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6640 u64 logical, u64 *length,
6641 struct btrfs_bio **bbio_ret)
6643 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6646 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6648 bio->bi_private = bbio->private;
6649 bio->bi_end_io = bbio->end_io;
6652 btrfs_put_bbio(bbio);
6655 static void btrfs_end_bio(struct bio *bio)
6657 struct btrfs_bio *bbio = bio->bi_private;
6658 int is_orig_bio = 0;
6660 if (bio->bi_status) {
6661 atomic_inc(&bbio->error);
6662 if (bio->bi_status == BLK_STS_IOERR ||
6663 bio->bi_status == BLK_STS_TARGET) {
6664 struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6667 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6668 btrfs_dev_stat_inc_and_print(dev,
6669 BTRFS_DEV_STAT_WRITE_ERRS);
6670 else if (!(bio->bi_opf & REQ_RAHEAD))
6671 btrfs_dev_stat_inc_and_print(dev,
6672 BTRFS_DEV_STAT_READ_ERRS);
6673 if (bio->bi_opf & REQ_PREFLUSH)
6674 btrfs_dev_stat_inc_and_print(dev,
6675 BTRFS_DEV_STAT_FLUSH_ERRS);
6679 if (bio == bbio->orig_bio)
6682 btrfs_bio_counter_dec(bbio->fs_info);
6684 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6687 bio = bbio->orig_bio;
6690 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6691 /* only send an error to the higher layers if it is
6692 * beyond the tolerance of the btrfs bio
6694 if (atomic_read(&bbio->error) > bbio->max_errors) {
6695 bio->bi_status = BLK_STS_IOERR;
6698 * this bio is actually up to date, we didn't
6699 * go over the max number of errors
6701 bio->bi_status = BLK_STS_OK;
6704 btrfs_end_bbio(bbio, bio);
6705 } else if (!is_orig_bio) {
6710 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6711 u64 physical, struct btrfs_device *dev)
6713 struct btrfs_fs_info *fs_info = bbio->fs_info;
6715 bio->bi_private = bbio;
6716 btrfs_io_bio(bio)->device = dev;
6717 bio->bi_end_io = btrfs_end_bio;
6718 bio->bi_iter.bi_sector = physical >> 9;
6720 * For zone append writing, bi_sector must point the beginning of the
6723 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6724 if (btrfs_dev_is_sequential(dev, physical)) {
6725 u64 zone_start = round_down(physical, fs_info->zone_size);
6727 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6729 bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6730 bio->bi_opf |= REQ_OP_WRITE;
6733 btrfs_debug_in_rcu(fs_info,
6734 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6735 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6736 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6737 dev->devid, bio->bi_iter.bi_size);
6738 bio_set_dev(bio, dev->bdev);
6740 btrfs_bio_counter_inc_noblocked(fs_info);
6742 btrfsic_submit_bio(bio);
6745 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6747 atomic_inc(&bbio->error);
6748 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6749 /* Should be the original bio. */
6750 WARN_ON(bio != bbio->orig_bio);
6752 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6753 bio->bi_iter.bi_sector = logical >> 9;
6754 if (atomic_read(&bbio->error) > bbio->max_errors)
6755 bio->bi_status = BLK_STS_IOERR;
6757 bio->bi_status = BLK_STS_OK;
6758 btrfs_end_bbio(bbio, bio);
6762 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6765 struct btrfs_device *dev;
6766 struct bio *first_bio = bio;
6767 u64 logical = bio->bi_iter.bi_sector << 9;
6773 struct btrfs_bio *bbio = NULL;
6775 length = bio->bi_iter.bi_size;
6776 map_length = length;
6778 btrfs_bio_counter_inc_blocked(fs_info);
6779 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6780 &map_length, &bbio, mirror_num, 1);
6782 btrfs_bio_counter_dec(fs_info);
6783 return errno_to_blk_status(ret);
6786 total_devs = bbio->num_stripes;
6787 bbio->orig_bio = first_bio;
6788 bbio->private = first_bio->bi_private;
6789 bbio->end_io = first_bio->bi_end_io;
6790 bbio->fs_info = fs_info;
6791 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6793 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6794 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6795 /* In this case, map_length has been set to the length of
6796 a single stripe; not the whole write */
6797 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6798 ret = raid56_parity_write(fs_info, bio, bbio,
6801 ret = raid56_parity_recover(fs_info, bio, bbio,
6802 map_length, mirror_num, 1);
6805 btrfs_bio_counter_dec(fs_info);
6806 return errno_to_blk_status(ret);
6809 if (map_length < length) {
6811 "mapping failed logical %llu bio len %llu len %llu",
6812 logical, length, map_length);
6816 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6817 dev = bbio->stripes[dev_nr].dev;
6818 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6820 (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6821 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6822 bbio_error(bbio, first_bio, logical);
6826 if (dev_nr < total_devs - 1)
6827 bio = btrfs_bio_clone(first_bio);
6831 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6833 btrfs_bio_counter_dec(fs_info);
6838 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6841 * If devid and uuid are both specified, the match must be exact, otherwise
6842 * only devid is used.
6844 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6845 u64 devid, u8 *uuid, u8 *fsid)
6847 struct btrfs_device *device;
6848 struct btrfs_fs_devices *seed_devs;
6850 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6851 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6852 if (device->devid == devid &&
6853 (!uuid || memcmp(device->uuid, uuid,
6854 BTRFS_UUID_SIZE) == 0))
6859 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6861 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6862 list_for_each_entry(device, &seed_devs->devices,
6864 if (device->devid == devid &&
6865 (!uuid || memcmp(device->uuid, uuid,
6866 BTRFS_UUID_SIZE) == 0))
6875 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6876 u64 devid, u8 *dev_uuid)
6878 struct btrfs_device *device;
6879 unsigned int nofs_flag;
6882 * We call this under the chunk_mutex, so we want to use NOFS for this
6883 * allocation, however we don't want to change btrfs_alloc_device() to
6884 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6887 nofs_flag = memalloc_nofs_save();
6888 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6889 memalloc_nofs_restore(nofs_flag);
6893 list_add(&device->dev_list, &fs_devices->devices);
6894 device->fs_devices = fs_devices;
6895 fs_devices->num_devices++;
6897 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6898 fs_devices->missing_devices++;
6904 * btrfs_alloc_device - allocate struct btrfs_device
6905 * @fs_info: used only for generating a new devid, can be NULL if
6906 * devid is provided (i.e. @devid != NULL).
6907 * @devid: a pointer to devid for this device. If NULL a new devid
6909 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6912 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6913 * on error. Returned struct is not linked onto any lists and must be
6914 * destroyed with btrfs_free_device.
6916 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6920 struct btrfs_device *dev;
6923 if (WARN_ON(!devid && !fs_info))
6924 return ERR_PTR(-EINVAL);
6926 dev = __alloc_device(fs_info);
6935 ret = find_next_devid(fs_info, &tmp);
6937 btrfs_free_device(dev);
6938 return ERR_PTR(ret);
6944 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6946 generate_random_uuid(dev->uuid);
6951 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6952 u64 devid, u8 *uuid, bool error)
6955 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6958 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6962 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6964 int index = btrfs_bg_flags_to_raid_index(type);
6965 int ncopies = btrfs_raid_array[index].ncopies;
6966 const int nparity = btrfs_raid_array[index].nparity;
6970 data_stripes = num_stripes - nparity;
6972 data_stripes = num_stripes / ncopies;
6974 return div_u64(chunk_len, data_stripes);
6977 #if BITS_PER_LONG == 32
6979 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6980 * can't be accessed on 32bit systems.
6982 * This function do mount time check to reject the fs if it already has
6983 * metadata chunk beyond that limit.
6985 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6986 u64 logical, u64 length, u64 type)
6988 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6991 if (logical + length < MAX_LFS_FILESIZE)
6994 btrfs_err_32bit_limit(fs_info);
6999 * This is to give early warning for any metadata chunk reaching
7000 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7001 * Although we can still access the metadata, it's not going to be possible
7002 * once the limit is reached.
7004 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7005 u64 logical, u64 length, u64 type)
7007 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7010 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7013 btrfs_warn_32bit_limit(fs_info);
7017 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7018 struct btrfs_chunk *chunk)
7020 struct btrfs_fs_info *fs_info = leaf->fs_info;
7021 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7022 struct map_lookup *map;
7023 struct extent_map *em;
7028 u8 uuid[BTRFS_UUID_SIZE];
7033 logical = key->offset;
7034 length = btrfs_chunk_length(leaf, chunk);
7035 type = btrfs_chunk_type(leaf, chunk);
7036 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7038 #if BITS_PER_LONG == 32
7039 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7042 warn_32bit_meta_chunk(fs_info, logical, length, type);
7046 * Only need to verify chunk item if we're reading from sys chunk array,
7047 * as chunk item in tree block is already verified by tree-checker.
7049 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7050 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7055 read_lock(&map_tree->lock);
7056 em = lookup_extent_mapping(map_tree, logical, 1);
7057 read_unlock(&map_tree->lock);
7059 /* already mapped? */
7060 if (em && em->start <= logical && em->start + em->len > logical) {
7061 free_extent_map(em);
7064 free_extent_map(em);
7067 em = alloc_extent_map();
7070 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7072 free_extent_map(em);
7076 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7077 em->map_lookup = map;
7078 em->start = logical;
7081 em->block_start = 0;
7082 em->block_len = em->len;
7084 map->num_stripes = num_stripes;
7085 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7086 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7087 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7089 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7090 map->verified_stripes = 0;
7091 em->orig_block_len = calc_stripe_length(type, em->len,
7093 for (i = 0; i < num_stripes; i++) {
7094 map->stripes[i].physical =
7095 btrfs_stripe_offset_nr(leaf, chunk, i);
7096 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7097 read_extent_buffer(leaf, uuid, (unsigned long)
7098 btrfs_stripe_dev_uuid_nr(chunk, i),
7100 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
7102 if (!map->stripes[i].dev &&
7103 !btrfs_test_opt(fs_info, DEGRADED)) {
7104 free_extent_map(em);
7105 btrfs_report_missing_device(fs_info, devid, uuid, true);
7108 if (!map->stripes[i].dev) {
7109 map->stripes[i].dev =
7110 add_missing_dev(fs_info->fs_devices, devid,
7112 if (IS_ERR(map->stripes[i].dev)) {
7113 free_extent_map(em);
7115 "failed to init missing dev %llu: %ld",
7116 devid, PTR_ERR(map->stripes[i].dev));
7117 return PTR_ERR(map->stripes[i].dev);
7119 btrfs_report_missing_device(fs_info, devid, uuid, false);
7121 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7122 &(map->stripes[i].dev->dev_state));
7126 write_lock(&map_tree->lock);
7127 ret = add_extent_mapping(map_tree, em, 0);
7128 write_unlock(&map_tree->lock);
7131 "failed to add chunk map, start=%llu len=%llu: %d",
7132 em->start, em->len, ret);
7134 free_extent_map(em);
7139 static void fill_device_from_item(struct extent_buffer *leaf,
7140 struct btrfs_dev_item *dev_item,
7141 struct btrfs_device *device)
7145 device->devid = btrfs_device_id(leaf, dev_item);
7146 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7147 device->total_bytes = device->disk_total_bytes;
7148 device->commit_total_bytes = device->disk_total_bytes;
7149 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7150 device->commit_bytes_used = device->bytes_used;
7151 device->type = btrfs_device_type(leaf, dev_item);
7152 device->io_align = btrfs_device_io_align(leaf, dev_item);
7153 device->io_width = btrfs_device_io_width(leaf, dev_item);
7154 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7155 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7156 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7158 ptr = btrfs_device_uuid(dev_item);
7159 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7162 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7165 struct btrfs_fs_devices *fs_devices;
7168 lockdep_assert_held(&uuid_mutex);
7171 /* This will match only for multi-device seed fs */
7172 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7173 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7177 fs_devices = find_fsid(fsid, NULL);
7179 if (!btrfs_test_opt(fs_info, DEGRADED))
7180 return ERR_PTR(-ENOENT);
7182 fs_devices = alloc_fs_devices(fsid, NULL);
7183 if (IS_ERR(fs_devices))
7186 fs_devices->seeding = true;
7187 fs_devices->opened = 1;
7192 * Upon first call for a seed fs fsid, just create a private copy of the
7193 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7195 fs_devices = clone_fs_devices(fs_devices);
7196 if (IS_ERR(fs_devices))
7199 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7201 free_fs_devices(fs_devices);
7202 return ERR_PTR(ret);
7205 if (!fs_devices->seeding) {
7206 close_fs_devices(fs_devices);
7207 free_fs_devices(fs_devices);
7208 return ERR_PTR(-EINVAL);
7211 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7216 static int read_one_dev(struct extent_buffer *leaf,
7217 struct btrfs_dev_item *dev_item)
7219 struct btrfs_fs_info *fs_info = leaf->fs_info;
7220 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7221 struct btrfs_device *device;
7224 u8 fs_uuid[BTRFS_FSID_SIZE];
7225 u8 dev_uuid[BTRFS_UUID_SIZE];
7227 devid = btrfs_device_id(leaf, dev_item);
7228 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7230 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7233 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7234 fs_devices = open_seed_devices(fs_info, fs_uuid);
7235 if (IS_ERR(fs_devices))
7236 return PTR_ERR(fs_devices);
7239 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7242 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7243 btrfs_report_missing_device(fs_info, devid,
7248 device = add_missing_dev(fs_devices, devid, dev_uuid);
7249 if (IS_ERR(device)) {
7251 "failed to add missing dev %llu: %ld",
7252 devid, PTR_ERR(device));
7253 return PTR_ERR(device);
7255 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7257 if (!device->bdev) {
7258 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7259 btrfs_report_missing_device(fs_info,
7260 devid, dev_uuid, true);
7263 btrfs_report_missing_device(fs_info, devid,
7267 if (!device->bdev &&
7268 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7270 * this happens when a device that was properly setup
7271 * in the device info lists suddenly goes bad.
7272 * device->bdev is NULL, and so we have to set
7273 * device->missing to one here
7275 device->fs_devices->missing_devices++;
7276 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7279 /* Move the device to its own fs_devices */
7280 if (device->fs_devices != fs_devices) {
7281 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7282 &device->dev_state));
7284 list_move(&device->dev_list, &fs_devices->devices);
7285 device->fs_devices->num_devices--;
7286 fs_devices->num_devices++;
7288 device->fs_devices->missing_devices--;
7289 fs_devices->missing_devices++;
7291 device->fs_devices = fs_devices;
7295 if (device->fs_devices != fs_info->fs_devices) {
7296 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7297 if (device->generation !=
7298 btrfs_device_generation(leaf, dev_item))
7302 fill_device_from_item(leaf, dev_item, device);
7304 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7306 if (device->total_bytes > max_total_bytes) {
7308 "device total_bytes should be at most %llu but found %llu",
7309 max_total_bytes, device->total_bytes);
7313 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7314 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7315 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7316 device->fs_devices->total_rw_bytes += device->total_bytes;
7317 atomic64_add(device->total_bytes - device->bytes_used,
7318 &fs_info->free_chunk_space);
7324 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7326 struct btrfs_root *root = fs_info->tree_root;
7327 struct btrfs_super_block *super_copy = fs_info->super_copy;
7328 struct extent_buffer *sb;
7329 struct btrfs_disk_key *disk_key;
7330 struct btrfs_chunk *chunk;
7332 unsigned long sb_array_offset;
7339 struct btrfs_key key;
7341 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7343 * This will create extent buffer of nodesize, superblock size is
7344 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7345 * overallocate but we can keep it as-is, only the first page is used.
7347 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7348 root->root_key.objectid, 0);
7351 set_extent_buffer_uptodate(sb);
7353 * The sb extent buffer is artificial and just used to read the system array.
7354 * set_extent_buffer_uptodate() call does not properly mark all it's
7355 * pages up-to-date when the page is larger: extent does not cover the
7356 * whole page and consequently check_page_uptodate does not find all
7357 * the page's extents up-to-date (the hole beyond sb),
7358 * write_extent_buffer then triggers a WARN_ON.
7360 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7361 * but sb spans only this function. Add an explicit SetPageUptodate call
7362 * to silence the warning eg. on PowerPC 64.
7364 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7365 SetPageUptodate(sb->pages[0]);
7367 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7368 array_size = btrfs_super_sys_array_size(super_copy);
7370 array_ptr = super_copy->sys_chunk_array;
7371 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7374 while (cur_offset < array_size) {
7375 disk_key = (struct btrfs_disk_key *)array_ptr;
7376 len = sizeof(*disk_key);
7377 if (cur_offset + len > array_size)
7378 goto out_short_read;
7380 btrfs_disk_key_to_cpu(&key, disk_key);
7383 sb_array_offset += len;
7386 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7388 "unexpected item type %u in sys_array at offset %u",
7389 (u32)key.type, cur_offset);
7394 chunk = (struct btrfs_chunk *)sb_array_offset;
7396 * At least one btrfs_chunk with one stripe must be present,
7397 * exact stripe count check comes afterwards
7399 len = btrfs_chunk_item_size(1);
7400 if (cur_offset + len > array_size)
7401 goto out_short_read;
7403 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7406 "invalid number of stripes %u in sys_array at offset %u",
7407 num_stripes, cur_offset);
7412 type = btrfs_chunk_type(sb, chunk);
7413 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7415 "invalid chunk type %llu in sys_array at offset %u",
7421 len = btrfs_chunk_item_size(num_stripes);
7422 if (cur_offset + len > array_size)
7423 goto out_short_read;
7425 ret = read_one_chunk(&key, sb, chunk);
7430 sb_array_offset += len;
7433 clear_extent_buffer_uptodate(sb);
7434 free_extent_buffer_stale(sb);
7438 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7440 clear_extent_buffer_uptodate(sb);
7441 free_extent_buffer_stale(sb);
7446 * Check if all chunks in the fs are OK for read-write degraded mount
7448 * If the @failing_dev is specified, it's accounted as missing.
7450 * Return true if all chunks meet the minimal RW mount requirements.
7451 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7453 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7454 struct btrfs_device *failing_dev)
7456 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7457 struct extent_map *em;
7461 read_lock(&map_tree->lock);
7462 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7463 read_unlock(&map_tree->lock);
7464 /* No chunk at all? Return false anyway */
7470 struct map_lookup *map;
7475 map = em->map_lookup;
7477 btrfs_get_num_tolerated_disk_barrier_failures(
7479 for (i = 0; i < map->num_stripes; i++) {
7480 struct btrfs_device *dev = map->stripes[i].dev;
7482 if (!dev || !dev->bdev ||
7483 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7484 dev->last_flush_error)
7486 else if (failing_dev && failing_dev == dev)
7489 if (missing > max_tolerated) {
7492 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7493 em->start, missing, max_tolerated);
7494 free_extent_map(em);
7498 next_start = extent_map_end(em);
7499 free_extent_map(em);
7501 read_lock(&map_tree->lock);
7502 em = lookup_extent_mapping(map_tree, next_start,
7503 (u64)(-1) - next_start);
7504 read_unlock(&map_tree->lock);
7510 static void readahead_tree_node_children(struct extent_buffer *node)
7513 const int nr_items = btrfs_header_nritems(node);
7515 for (i = 0; i < nr_items; i++)
7516 btrfs_readahead_node_child(node, i);
7519 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7521 struct btrfs_root *root = fs_info->chunk_root;
7522 struct btrfs_path *path;
7523 struct extent_buffer *leaf;
7524 struct btrfs_key key;
7525 struct btrfs_key found_key;
7529 u64 last_ra_node = 0;
7531 path = btrfs_alloc_path();
7536 * uuid_mutex is needed only if we are mounting a sprout FS
7537 * otherwise we don't need it.
7539 mutex_lock(&uuid_mutex);
7542 * It is possible for mount and umount to race in such a way that
7543 * we execute this code path, but open_fs_devices failed to clear
7544 * total_rw_bytes. We certainly want it cleared before reading the
7545 * device items, so clear it here.
7547 fs_info->fs_devices->total_rw_bytes = 0;
7550 * Read all device items, and then all the chunk items. All
7551 * device items are found before any chunk item (their object id
7552 * is smaller than the lowest possible object id for a chunk
7553 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7555 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7558 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7562 struct extent_buffer *node;
7564 leaf = path->nodes[0];
7565 slot = path->slots[0];
7566 if (slot >= btrfs_header_nritems(leaf)) {
7567 ret = btrfs_next_leaf(root, path);
7575 * The nodes on level 1 are not locked but we don't need to do
7576 * that during mount time as nothing else can access the tree
7578 node = path->nodes[1];
7580 if (last_ra_node != node->start) {
7581 readahead_tree_node_children(node);
7582 last_ra_node = node->start;
7585 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7586 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7587 struct btrfs_dev_item *dev_item;
7588 dev_item = btrfs_item_ptr(leaf, slot,
7589 struct btrfs_dev_item);
7590 ret = read_one_dev(leaf, dev_item);
7594 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7595 struct btrfs_chunk *chunk;
7598 * We are only called at mount time, so no need to take
7599 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7600 * we always lock first fs_info->chunk_mutex before
7601 * acquiring any locks on the chunk tree. This is a
7602 * requirement for chunk allocation, see the comment on
7603 * top of btrfs_chunk_alloc() for details.
7605 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7606 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7607 ret = read_one_chunk(&found_key, leaf, chunk);
7615 * After loading chunk tree, we've got all device information,
7616 * do another round of validation checks.
7618 if (total_dev != fs_info->fs_devices->total_devices) {
7620 "super_num_devices %llu mismatch with num_devices %llu found here",
7621 btrfs_super_num_devices(fs_info->super_copy),
7626 if (btrfs_super_total_bytes(fs_info->super_copy) <
7627 fs_info->fs_devices->total_rw_bytes) {
7629 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7630 btrfs_super_total_bytes(fs_info->super_copy),
7631 fs_info->fs_devices->total_rw_bytes);
7637 mutex_unlock(&uuid_mutex);
7639 btrfs_free_path(path);
7643 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7645 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7646 struct btrfs_device *device;
7648 fs_devices->fs_info = fs_info;
7650 mutex_lock(&fs_devices->device_list_mutex);
7651 list_for_each_entry(device, &fs_devices->devices, dev_list)
7652 device->fs_info = fs_info;
7654 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7655 list_for_each_entry(device, &seed_devs->devices, dev_list)
7656 device->fs_info = fs_info;
7658 seed_devs->fs_info = fs_info;
7660 mutex_unlock(&fs_devices->device_list_mutex);
7663 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7664 const struct btrfs_dev_stats_item *ptr,
7669 read_extent_buffer(eb, &val,
7670 offsetof(struct btrfs_dev_stats_item, values) +
7671 ((unsigned long)ptr) + (index * sizeof(u64)),
7676 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7677 struct btrfs_dev_stats_item *ptr,
7680 write_extent_buffer(eb, &val,
7681 offsetof(struct btrfs_dev_stats_item, values) +
7682 ((unsigned long)ptr) + (index * sizeof(u64)),
7686 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7687 struct btrfs_path *path)
7689 struct btrfs_dev_stats_item *ptr;
7690 struct extent_buffer *eb;
7691 struct btrfs_key key;
7695 if (!device->fs_info->dev_root)
7698 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7699 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7700 key.offset = device->devid;
7701 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7703 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7704 btrfs_dev_stat_set(device, i, 0);
7705 device->dev_stats_valid = 1;
7706 btrfs_release_path(path);
7707 return ret < 0 ? ret : 0;
7709 slot = path->slots[0];
7710 eb = path->nodes[0];
7711 item_size = btrfs_item_size_nr(eb, slot);
7713 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7715 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7716 if (item_size >= (1 + i) * sizeof(__le64))
7717 btrfs_dev_stat_set(device, i,
7718 btrfs_dev_stats_value(eb, ptr, i));
7720 btrfs_dev_stat_set(device, i, 0);
7723 device->dev_stats_valid = 1;
7724 btrfs_dev_stat_print_on_load(device);
7725 btrfs_release_path(path);
7730 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7732 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7733 struct btrfs_device *device;
7734 struct btrfs_path *path = NULL;
7737 path = btrfs_alloc_path();
7741 mutex_lock(&fs_devices->device_list_mutex);
7742 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7743 ret = btrfs_device_init_dev_stats(device, path);
7747 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7748 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7749 ret = btrfs_device_init_dev_stats(device, path);
7755 mutex_unlock(&fs_devices->device_list_mutex);
7757 btrfs_free_path(path);
7761 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7762 struct btrfs_device *device)
7764 struct btrfs_fs_info *fs_info = trans->fs_info;
7765 struct btrfs_root *dev_root = fs_info->dev_root;
7766 struct btrfs_path *path;
7767 struct btrfs_key key;
7768 struct extent_buffer *eb;
7769 struct btrfs_dev_stats_item *ptr;
7773 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7774 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7775 key.offset = device->devid;
7777 path = btrfs_alloc_path();
7780 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7782 btrfs_warn_in_rcu(fs_info,
7783 "error %d while searching for dev_stats item for device %s",
7784 ret, rcu_str_deref(device->name));
7789 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7790 /* need to delete old one and insert a new one */
7791 ret = btrfs_del_item(trans, dev_root, path);
7793 btrfs_warn_in_rcu(fs_info,
7794 "delete too small dev_stats item for device %s failed %d",
7795 rcu_str_deref(device->name), ret);
7802 /* need to insert a new item */
7803 btrfs_release_path(path);
7804 ret = btrfs_insert_empty_item(trans, dev_root, path,
7805 &key, sizeof(*ptr));
7807 btrfs_warn_in_rcu(fs_info,
7808 "insert dev_stats item for device %s failed %d",
7809 rcu_str_deref(device->name), ret);
7814 eb = path->nodes[0];
7815 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7816 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7817 btrfs_set_dev_stats_value(eb, ptr, i,
7818 btrfs_dev_stat_read(device, i));
7819 btrfs_mark_buffer_dirty(eb);
7822 btrfs_free_path(path);
7827 * called from commit_transaction. Writes all changed device stats to disk.
7829 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7831 struct btrfs_fs_info *fs_info = trans->fs_info;
7832 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7833 struct btrfs_device *device;
7837 mutex_lock(&fs_devices->device_list_mutex);
7838 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7839 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7840 if (!device->dev_stats_valid || stats_cnt == 0)
7845 * There is a LOAD-LOAD control dependency between the value of
7846 * dev_stats_ccnt and updating the on-disk values which requires
7847 * reading the in-memory counters. Such control dependencies
7848 * require explicit read memory barriers.
7850 * This memory barriers pairs with smp_mb__before_atomic in
7851 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7852 * barrier implied by atomic_xchg in
7853 * btrfs_dev_stats_read_and_reset
7857 ret = update_dev_stat_item(trans, device);
7859 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7861 mutex_unlock(&fs_devices->device_list_mutex);
7866 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7868 btrfs_dev_stat_inc(dev, index);
7869 btrfs_dev_stat_print_on_error(dev);
7872 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7874 if (!dev->dev_stats_valid)
7876 btrfs_err_rl_in_rcu(dev->fs_info,
7877 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7878 rcu_str_deref(dev->name),
7879 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7880 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7881 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7882 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7883 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7886 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7890 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7891 if (btrfs_dev_stat_read(dev, i) != 0)
7893 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7894 return; /* all values == 0, suppress message */
7896 btrfs_info_in_rcu(dev->fs_info,
7897 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7898 rcu_str_deref(dev->name),
7899 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7900 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7901 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7902 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7903 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7906 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7907 struct btrfs_ioctl_get_dev_stats *stats)
7909 struct btrfs_device *dev;
7910 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7913 mutex_lock(&fs_devices->device_list_mutex);
7914 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7915 mutex_unlock(&fs_devices->device_list_mutex);
7918 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7920 } else if (!dev->dev_stats_valid) {
7921 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7923 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7924 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7925 if (stats->nr_items > i)
7927 btrfs_dev_stat_read_and_reset(dev, i);
7929 btrfs_dev_stat_set(dev, i, 0);
7931 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7932 current->comm, task_pid_nr(current));
7934 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7935 if (stats->nr_items > i)
7936 stats->values[i] = btrfs_dev_stat_read(dev, i);
7938 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7939 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7944 * Update the size and bytes used for each device where it changed. This is
7945 * delayed since we would otherwise get errors while writing out the
7948 * Must be invoked during transaction commit.
7950 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7952 struct btrfs_device *curr, *next;
7954 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7956 if (list_empty(&trans->dev_update_list))
7960 * We don't need the device_list_mutex here. This list is owned by the
7961 * transaction and the transaction must complete before the device is
7964 mutex_lock(&trans->fs_info->chunk_mutex);
7965 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7967 list_del_init(&curr->post_commit_list);
7968 curr->commit_total_bytes = curr->disk_total_bytes;
7969 curr->commit_bytes_used = curr->bytes_used;
7971 mutex_unlock(&trans->fs_info->chunk_mutex);
7975 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7977 int btrfs_bg_type_to_factor(u64 flags)
7979 const int index = btrfs_bg_flags_to_raid_index(flags);
7981 return btrfs_raid_array[index].ncopies;
7986 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7987 u64 chunk_offset, u64 devid,
7988 u64 physical_offset, u64 physical_len)
7990 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7991 struct extent_map *em;
7992 struct map_lookup *map;
7993 struct btrfs_device *dev;
7999 read_lock(&em_tree->lock);
8000 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8001 read_unlock(&em_tree->lock);
8005 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8006 physical_offset, devid);
8011 map = em->map_lookup;
8012 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
8013 if (physical_len != stripe_len) {
8015 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8016 physical_offset, devid, em->start, physical_len,
8022 for (i = 0; i < map->num_stripes; i++) {
8023 if (map->stripes[i].dev->devid == devid &&
8024 map->stripes[i].physical == physical_offset) {
8026 if (map->verified_stripes >= map->num_stripes) {
8028 "too many dev extents for chunk %llu found",
8033 map->verified_stripes++;
8039 "dev extent physical offset %llu devid %llu has no corresponding chunk",
8040 physical_offset, devid);
8044 /* Make sure no dev extent is beyond device boundary */
8045 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
8047 btrfs_err(fs_info, "failed to find devid %llu", devid);
8052 if (physical_offset + physical_len > dev->disk_total_bytes) {
8054 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8055 devid, physical_offset, physical_len,
8056 dev->disk_total_bytes);
8061 if (dev->zone_info) {
8062 u64 zone_size = dev->zone_info->zone_size;
8064 if (!IS_ALIGNED(physical_offset, zone_size) ||
8065 !IS_ALIGNED(physical_len, zone_size)) {
8067 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8068 devid, physical_offset, physical_len);
8075 free_extent_map(em);
8079 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8081 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8082 struct extent_map *em;
8083 struct rb_node *node;
8086 read_lock(&em_tree->lock);
8087 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8088 em = rb_entry(node, struct extent_map, rb_node);
8089 if (em->map_lookup->num_stripes !=
8090 em->map_lookup->verified_stripes) {
8092 "chunk %llu has missing dev extent, have %d expect %d",
8093 em->start, em->map_lookup->verified_stripes,
8094 em->map_lookup->num_stripes);
8100 read_unlock(&em_tree->lock);
8105 * Ensure that all dev extents are mapped to correct chunk, otherwise
8106 * later chunk allocation/free would cause unexpected behavior.
8108 * NOTE: This will iterate through the whole device tree, which should be of
8109 * the same size level as the chunk tree. This slightly increases mount time.
8111 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8113 struct btrfs_path *path;
8114 struct btrfs_root *root = fs_info->dev_root;
8115 struct btrfs_key key;
8117 u64 prev_dev_ext_end = 0;
8121 * We don't have a dev_root because we mounted with ignorebadroots and
8122 * failed to load the root, so we want to skip the verification in this
8125 * However if the dev root is fine, but the tree itself is corrupted
8126 * we'd still fail to mount. This verification is only to make sure
8127 * writes can happen safely, so instead just bypass this check
8128 * completely in the case of IGNOREBADROOTS.
8130 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8134 key.type = BTRFS_DEV_EXTENT_KEY;
8137 path = btrfs_alloc_path();
8141 path->reada = READA_FORWARD;
8142 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8146 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8147 ret = btrfs_next_item(root, path);
8150 /* No dev extents at all? Not good */
8157 struct extent_buffer *leaf = path->nodes[0];
8158 struct btrfs_dev_extent *dext;
8159 int slot = path->slots[0];
8161 u64 physical_offset;
8165 btrfs_item_key_to_cpu(leaf, &key, slot);
8166 if (key.type != BTRFS_DEV_EXTENT_KEY)
8168 devid = key.objectid;
8169 physical_offset = key.offset;
8171 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8172 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8173 physical_len = btrfs_dev_extent_length(leaf, dext);
8175 /* Check if this dev extent overlaps with the previous one */
8176 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8178 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8179 devid, physical_offset, prev_dev_ext_end);
8184 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8185 physical_offset, physical_len);
8189 prev_dev_ext_end = physical_offset + physical_len;
8191 ret = btrfs_next_item(root, path);
8200 /* Ensure all chunks have corresponding dev extents */
8201 ret = verify_chunk_dev_extent_mapping(fs_info);
8203 btrfs_free_path(path);
8208 * Check whether the given block group or device is pinned by any inode being
8209 * used as a swapfile.
8211 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8213 struct btrfs_swapfile_pin *sp;
8214 struct rb_node *node;
8216 spin_lock(&fs_info->swapfile_pins_lock);
8217 node = fs_info->swapfile_pins.rb_node;
8219 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8221 node = node->rb_left;
8222 else if (ptr > sp->ptr)
8223 node = node->rb_right;
8227 spin_unlock(&fs_info->swapfile_pins_lock);
8228 return node != NULL;
8231 static int relocating_repair_kthread(void *data)
8233 struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8234 struct btrfs_fs_info *fs_info = cache->fs_info;
8238 target = cache->start;
8239 btrfs_put_block_group(cache);
8241 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8243 "zoned: skip relocating block group %llu to repair: EBUSY",
8248 mutex_lock(&fs_info->reclaim_bgs_lock);
8250 /* Ensure block group still exists */
8251 cache = btrfs_lookup_block_group(fs_info, target);
8255 if (!cache->relocating_repair)
8258 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8263 "zoned: relocating block group %llu to repair IO failure",
8265 ret = btrfs_relocate_chunk(fs_info, target);
8269 btrfs_put_block_group(cache);
8270 mutex_unlock(&fs_info->reclaim_bgs_lock);
8271 btrfs_exclop_finish(fs_info);
8276 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8278 struct btrfs_block_group *cache;
8280 /* Do not attempt to repair in degraded state */
8281 if (btrfs_test_opt(fs_info, DEGRADED))
8284 cache = btrfs_lookup_block_group(fs_info, logical);
8288 spin_lock(&cache->lock);
8289 if (cache->relocating_repair) {
8290 spin_unlock(&cache->lock);
8291 btrfs_put_block_group(cache);
8294 cache->relocating_repair = 1;
8295 spin_unlock(&cache->lock);
8297 kthread_run(relocating_repair_kthread, cache,
8298 "btrfs-relocating-repair");