1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
17 #include "extent_map.h"
19 #include "transaction.h"
20 #include "print-tree.h"
23 #include "rcu-string.h"
24 #include "dev-replace.h"
26 #include "tree-checker.h"
27 #include "space-info.h"
28 #include "block-group.h"
32 #include "accessors.h"
33 #include "uuid-tree.h"
35 #include "relocation.h"
39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
40 BTRFS_BLOCK_GROUP_RAID10 | \
41 BTRFS_BLOCK_GROUP_RAID56_MASK)
43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 [BTRFS_RAID_RAID10] = {
47 .devs_max = 0, /* 0 == as many as possible */
49 .tolerated_failures = 1,
53 .raid_name = "raid10",
54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
57 [BTRFS_RAID_RAID1] = {
62 .tolerated_failures = 1,
67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
70 [BTRFS_RAID_RAID1C3] = {
75 .tolerated_failures = 2,
79 .raid_name = "raid1c3",
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
83 [BTRFS_RAID_RAID1C4] = {
88 .tolerated_failures = 3,
92 .raid_name = "raid1c4",
93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
101 .tolerated_failures = 0,
106 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
109 [BTRFS_RAID_RAID0] = {
114 .tolerated_failures = 0,
118 .raid_name = "raid0",
119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
122 [BTRFS_RAID_SINGLE] = {
127 .tolerated_failures = 0,
131 .raid_name = "single",
135 [BTRFS_RAID_RAID5] = {
140 .tolerated_failures = 1,
144 .raid_name = "raid5",
145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
148 [BTRFS_RAID_RAID6] = {
153 .tolerated_failures = 2,
157 .raid_name = "raid6",
158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165 * can be used as index to access btrfs_raid_array[].
167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
172 return BTRFS_RAID_SINGLE;
174 return BTRFS_BG_FLAG_TO_INDEX(profile);
177 const char *btrfs_bg_type_to_raid_name(u64 flags)
179 const int index = btrfs_bg_flags_to_raid_index(flags);
181 if (index >= BTRFS_NR_RAID_TYPES)
184 return btrfs_raid_array[index].raid_name;
187 int btrfs_nr_parity_stripes(u64 type)
189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
191 return btrfs_raid_array[index].nparity;
195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
196 * bytes including terminating null byte.
198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
203 u64 flags = bg_flags;
204 u32 size_bp = size_buf;
211 #define DESCRIBE_FLAG(flag, desc) \
213 if (flags & (flag)) { \
214 ret = snprintf(bp, size_bp, "%s|", (desc)); \
215 if (ret < 0 || ret >= size_bp) \
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 btrfs_raid_array[i].raid_name);
234 ret = snprintf(bp, size_bp, "0x%llx|", flags);
238 if (size_bp < size_buf)
239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
242 * The text is trimmed, it's up to the caller to provide sufficiently
248 static int init_first_rw_device(struct btrfs_trans_handle *trans);
249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
256 * There are several mutexes that protect manipulation of devices and low-level
257 * structures like chunks but not block groups, extents or files
259 * uuid_mutex (global lock)
260 * ------------------------
261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263 * device) or requested by the device= mount option
265 * the mutex can be very coarse and can cover long-running operations
267 * protects: updates to fs_devices counters like missing devices, rw devices,
268 * seeding, structure cloning, opening/closing devices at mount/umount time
270 * global::fs_devs - add, remove, updates to the global list
272 * does not protect: manipulation of the fs_devices::devices list in general
273 * but in mount context it could be used to exclude list modifications by eg.
276 * btrfs_device::name - renames (write side), read is RCU
278 * fs_devices::device_list_mutex (per-fs, with RCU)
279 * ------------------------------------------------
280 * protects updates to fs_devices::devices, ie. adding and deleting
282 * simple list traversal with read-only actions can be done with RCU protection
284 * may be used to exclude some operations from running concurrently without any
285 * modifications to the list (see write_all_supers)
287 * Is not required at mount and close times, because our device list is
288 * protected by the uuid_mutex at that point.
292 * protects balance structures (status, state) and context accessed from
293 * several places (internally, ioctl)
297 * protects chunks, adding or removing during allocation, trim or when a new
298 * device is added/removed. Additionally it also protects post_commit_list of
299 * individual devices, since they can be added to the transaction's
300 * post_commit_list only with chunk_mutex held.
304 * a big lock that is held by the cleaner thread and prevents running subvolume
305 * cleaning together with relocation or delayed iputs
317 * Exclusive operations
318 * ====================
320 * Maintains the exclusivity of the following operations that apply to the
321 * whole filesystem and cannot run in parallel.
326 * - Device replace (*)
329 * The device operations (as above) can be in one of the following states:
335 * Only device operations marked with (*) can go into the Paused state for the
338 * - ioctl (only Balance can be Paused through ioctl)
339 * - filesystem remounted as read-only
340 * - filesystem unmounted and mounted as read-only
341 * - system power-cycle and filesystem mounted as read-only
342 * - filesystem or device errors leading to forced read-only
344 * The status of exclusive operation is set and cleared atomically.
345 * During the course of Paused state, fs_info::exclusive_operation remains set.
346 * A device operation in Paused or Running state can be canceled or resumed
347 * either by ioctl (Balance only) or when remounted as read-write.
348 * The exclusive status is cleared when the device operation is canceled or
352 DEFINE_MUTEX(uuid_mutex);
353 static LIST_HEAD(fs_uuids);
354 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
360 * alloc_fs_devices - allocate struct btrfs_fs_devices
361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365 * The returned struct is not linked onto any lists and can be destroyed with
366 * kfree() right away.
368 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 const u8 *metadata_fsid)
371 struct btrfs_fs_devices *fs_devs;
373 ASSERT(fsid || !metadata_fsid);
375 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
377 return ERR_PTR(-ENOMEM);
379 mutex_init(&fs_devs->device_list_mutex);
381 INIT_LIST_HEAD(&fs_devs->devices);
382 INIT_LIST_HEAD(&fs_devs->alloc_list);
383 INIT_LIST_HEAD(&fs_devs->fs_list);
384 INIT_LIST_HEAD(&fs_devs->seed_list);
387 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
388 memcpy(fs_devs->metadata_uuid,
389 metadata_fsid ?: fsid, BTRFS_FSID_SIZE);
395 static void btrfs_free_device(struct btrfs_device *device)
397 WARN_ON(!list_empty(&device->post_commit_list));
398 rcu_string_free(device->name);
399 extent_io_tree_release(&device->alloc_state);
400 btrfs_destroy_dev_zone_info(device);
404 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
406 struct btrfs_device *device;
408 WARN_ON(fs_devices->opened);
409 while (!list_empty(&fs_devices->devices)) {
410 device = list_entry(fs_devices->devices.next,
411 struct btrfs_device, dev_list);
412 list_del(&device->dev_list);
413 btrfs_free_device(device);
418 void __exit btrfs_cleanup_fs_uuids(void)
420 struct btrfs_fs_devices *fs_devices;
422 while (!list_empty(&fs_uuids)) {
423 fs_devices = list_entry(fs_uuids.next,
424 struct btrfs_fs_devices, fs_list);
425 list_del(&fs_devices->fs_list);
426 free_fs_devices(fs_devices);
430 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
431 const u8 *fsid, const u8 *metadata_fsid)
433 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
439 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
445 static noinline struct btrfs_fs_devices *find_fsid(
446 const u8 *fsid, const u8 *metadata_fsid)
448 struct btrfs_fs_devices *fs_devices;
452 /* Handle non-split brain cases */
453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
461 * First check if the metadata_uuid is different from the fsid in the given
462 * fs_devices. Then check if the given fsid is the same as the metadata_uuid
463 * in the fs_devices. If it is, return true; otherwise, return false.
465 static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices,
468 return memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
469 BTRFS_FSID_SIZE) != 0 &&
470 memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0;
473 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
474 struct btrfs_super_block *disk_super)
477 struct btrfs_fs_devices *fs_devices;
480 * Handle scanned device having completed its fsid change but
481 * belonging to a fs_devices that was created by first scanning
482 * a device which didn't have its fsid/metadata_uuid changed
483 * at all and the CHANGING_FSID_V2 flag set.
485 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
486 if (!fs_devices->fsid_change)
489 if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid,
495 * Handle scanned device having completed its fsid change but
496 * belonging to a fs_devices that was created by a device that
497 * has an outdated pair of fsid/metadata_uuid and
498 * CHANGING_FSID_V2 flag set.
500 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
501 if (!fs_devices->fsid_change)
504 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid))
508 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
513 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
514 int flush, struct block_device **bdev,
515 struct btrfs_super_block **disk_super)
519 *bdev = blkdev_get_by_path(device_path, flags, holder, NULL);
522 ret = PTR_ERR(*bdev);
527 sync_blockdev(*bdev);
528 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
530 blkdev_put(*bdev, holder);
533 invalidate_bdev(*bdev);
534 *disk_super = btrfs_read_dev_super(*bdev);
535 if (IS_ERR(*disk_super)) {
536 ret = PTR_ERR(*disk_super);
537 blkdev_put(*bdev, holder);
549 * Search and remove all stale devices (which are not mounted). When both
550 * inputs are NULL, it will search and release all stale devices.
552 * @devt: Optional. When provided will it release all unmounted devices
553 * matching this devt only.
554 * @skip_device: Optional. Will skip this device when searching for the stale
557 * Return: 0 for success or if @devt is 0.
558 * -EBUSY if @devt is a mounted device.
559 * -ENOENT if @devt does not match any device in the list.
561 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
563 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
564 struct btrfs_device *device, *tmp_device;
567 lockdep_assert_held(&uuid_mutex);
572 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
574 mutex_lock(&fs_devices->device_list_mutex);
575 list_for_each_entry_safe(device, tmp_device,
576 &fs_devices->devices, dev_list) {
577 if (skip_device && skip_device == device)
579 if (devt && devt != device->devt)
581 if (fs_devices->opened) {
582 /* for an already deleted device return 0 */
583 if (devt && ret != 0)
588 /* delete the stale device */
589 fs_devices->num_devices--;
590 list_del(&device->dev_list);
591 btrfs_free_device(device);
595 mutex_unlock(&fs_devices->device_list_mutex);
597 if (fs_devices->num_devices == 0) {
598 btrfs_sysfs_remove_fsid(fs_devices);
599 list_del(&fs_devices->fs_list);
600 free_fs_devices(fs_devices);
608 * This is only used on mount, and we are protected from competing things
609 * messing with our fs_devices by the uuid_mutex, thus we do not need the
610 * fs_devices->device_list_mutex here.
612 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
613 struct btrfs_device *device, blk_mode_t flags,
616 struct block_device *bdev;
617 struct btrfs_super_block *disk_super;
626 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
631 devid = btrfs_stack_device_id(&disk_super->dev_item);
632 if (devid != device->devid)
633 goto error_free_page;
635 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
636 goto error_free_page;
638 device->generation = btrfs_super_generation(disk_super);
640 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
641 if (btrfs_super_incompat_flags(disk_super) &
642 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
644 "BTRFS: Invalid seeding and uuid-changed device detected\n");
645 goto error_free_page;
648 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
649 fs_devices->seeding = true;
651 if (bdev_read_only(bdev))
652 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
657 if (!bdev_nonrot(bdev))
658 fs_devices->rotating = true;
660 if (bdev_max_discard_sectors(bdev))
661 fs_devices->discardable = true;
664 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
665 device->holder = holder;
667 fs_devices->open_devices++;
668 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
669 device->devid != BTRFS_DEV_REPLACE_DEVID) {
670 fs_devices->rw_devices++;
671 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
673 btrfs_release_disk_super(disk_super);
678 btrfs_release_disk_super(disk_super);
679 blkdev_put(bdev, holder);
685 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
686 * being created with a disk that has already completed its fsid change. Such
687 * disk can belong to an fs which has its FSID changed or to one which doesn't.
688 * Handle both cases here.
690 static struct btrfs_fs_devices *find_fsid_inprogress(
691 struct btrfs_super_block *disk_super)
693 struct btrfs_fs_devices *fs_devices;
695 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
696 if (fs_devices->fsid_change)
699 if (check_fsid_changed(fs_devices, disk_super->fsid))
703 return find_fsid(disk_super->fsid, NULL);
706 static struct btrfs_fs_devices *find_fsid_changed(
707 struct btrfs_super_block *disk_super)
709 struct btrfs_fs_devices *fs_devices;
712 * Handles the case where scanned device is part of an fs that had
713 * multiple successful changes of FSID but currently device didn't
714 * observe it. Meaning our fsid will be different than theirs. We need
715 * to handle two subcases :
716 * 1 - The fs still continues to have different METADATA/FSID uuids.
717 * 2 - The fs is switched back to its original FSID (METADATA/FSID
720 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
722 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) &&
723 memcmp(fs_devices->fsid, disk_super->fsid,
724 BTRFS_FSID_SIZE) != 0)
727 /* Unchanged UUIDs */
728 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
729 BTRFS_FSID_SIZE) == 0 &&
730 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
731 BTRFS_FSID_SIZE) == 0)
738 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
739 struct btrfs_super_block *disk_super)
741 struct btrfs_fs_devices *fs_devices;
744 * Handle the case where the scanned device is part of an fs whose last
745 * metadata UUID change reverted it to the original FSID. At the same
746 * time fs_devices was first created by another constituent device
747 * which didn't fully observe the operation. This results in an
748 * btrfs_fs_devices created with metadata/fsid different AND
749 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
750 * fs_devices equal to the FSID of the disk.
752 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
753 if (!fs_devices->fsid_change)
756 if (check_fsid_changed(fs_devices, disk_super->fsid))
763 * Add new device to list of registered devices
766 * device pointer which was just added or updated when successful
767 * error pointer when failed
769 static noinline struct btrfs_device *device_list_add(const char *path,
770 struct btrfs_super_block *disk_super,
771 bool *new_device_added)
773 struct btrfs_device *device;
774 struct btrfs_fs_devices *fs_devices = NULL;
775 struct rcu_string *name;
776 u64 found_transid = btrfs_super_generation(disk_super);
777 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
780 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
781 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
782 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
783 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
785 error = lookup_bdev(path, &path_devt);
787 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
789 return ERR_PTR(error);
792 if (fsid_change_in_progress) {
793 if (!has_metadata_uuid)
794 fs_devices = find_fsid_inprogress(disk_super);
796 fs_devices = find_fsid_changed(disk_super);
797 } else if (has_metadata_uuid) {
798 fs_devices = find_fsid_with_metadata_uuid(disk_super);
800 fs_devices = find_fsid_reverted_metadata(disk_super);
802 fs_devices = find_fsid(disk_super->fsid, NULL);
807 fs_devices = alloc_fs_devices(disk_super->fsid,
808 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
809 if (IS_ERR(fs_devices))
810 return ERR_CAST(fs_devices);
812 fs_devices->fsid_change = fsid_change_in_progress;
814 mutex_lock(&fs_devices->device_list_mutex);
815 list_add(&fs_devices->fs_list, &fs_uuids);
819 struct btrfs_dev_lookup_args args = {
821 .uuid = disk_super->dev_item.uuid,
824 mutex_lock(&fs_devices->device_list_mutex);
825 device = btrfs_find_device(fs_devices, &args);
828 * If this disk has been pulled into an fs devices created by
829 * a device which had the CHANGING_FSID_V2 flag then replace the
830 * metadata_uuid/fsid values of the fs_devices.
832 if (fs_devices->fsid_change &&
833 found_transid > fs_devices->latest_generation) {
834 memcpy(fs_devices->fsid, disk_super->fsid,
837 if (has_metadata_uuid)
838 memcpy(fs_devices->metadata_uuid,
839 disk_super->metadata_uuid,
842 memcpy(fs_devices->metadata_uuid,
843 disk_super->fsid, BTRFS_FSID_SIZE);
845 fs_devices->fsid_change = false;
850 unsigned int nofs_flag;
852 if (fs_devices->opened) {
854 "device %s belongs to fsid %pU, and the fs is already mounted",
855 path, fs_devices->fsid);
856 mutex_unlock(&fs_devices->device_list_mutex);
857 return ERR_PTR(-EBUSY);
860 nofs_flag = memalloc_nofs_save();
861 device = btrfs_alloc_device(NULL, &devid,
862 disk_super->dev_item.uuid, path);
863 memalloc_nofs_restore(nofs_flag);
864 if (IS_ERR(device)) {
865 mutex_unlock(&fs_devices->device_list_mutex);
866 /* we can safely leave the fs_devices entry around */
870 device->devt = path_devt;
872 list_add_rcu(&device->dev_list, &fs_devices->devices);
873 fs_devices->num_devices++;
875 device->fs_devices = fs_devices;
876 *new_device_added = true;
878 if (disk_super->label[0])
880 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
881 disk_super->label, devid, found_transid, path,
882 current->comm, task_pid_nr(current));
885 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
886 disk_super->fsid, devid, found_transid, path,
887 current->comm, task_pid_nr(current));
889 } else if (!device->name || strcmp(device->name->str, path)) {
891 * When FS is already mounted.
892 * 1. If you are here and if the device->name is NULL that
893 * means this device was missing at time of FS mount.
894 * 2. If you are here and if the device->name is different
895 * from 'path' that means either
896 * a. The same device disappeared and reappeared with
898 * b. The missing-disk-which-was-replaced, has
901 * We must allow 1 and 2a above. But 2b would be a spurious
904 * Further in case of 1 and 2a above, the disk at 'path'
905 * would have missed some transaction when it was away and
906 * in case of 2a the stale bdev has to be updated as well.
907 * 2b must not be allowed at all time.
911 * For now, we do allow update to btrfs_fs_device through the
912 * btrfs dev scan cli after FS has been mounted. We're still
913 * tracking a problem where systems fail mount by subvolume id
914 * when we reject replacement on a mounted FS.
916 if (!fs_devices->opened && found_transid < device->generation) {
918 * That is if the FS is _not_ mounted and if you
919 * are here, that means there is more than one
920 * disk with same uuid and devid.We keep the one
921 * with larger generation number or the last-in if
922 * generation are equal.
924 mutex_unlock(&fs_devices->device_list_mutex);
926 "device %s already registered with a higher generation, found %llu expect %llu",
927 path, found_transid, device->generation);
928 return ERR_PTR(-EEXIST);
932 * We are going to replace the device path for a given devid,
933 * make sure it's the same device if the device is mounted
935 * NOTE: the device->fs_info may not be reliable here so pass
936 * in a NULL to message helpers instead. This avoids a possible
937 * use-after-free when the fs_info and fs_info->sb are already
941 if (device->devt != path_devt) {
942 mutex_unlock(&fs_devices->device_list_mutex);
943 btrfs_warn_in_rcu(NULL,
944 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
945 path, devid, found_transid,
947 task_pid_nr(current));
948 return ERR_PTR(-EEXIST);
950 btrfs_info_in_rcu(NULL,
951 "devid %llu device path %s changed to %s scanned by %s (%d)",
952 devid, btrfs_dev_name(device),
954 task_pid_nr(current));
957 name = rcu_string_strdup(path, GFP_NOFS);
959 mutex_unlock(&fs_devices->device_list_mutex);
960 return ERR_PTR(-ENOMEM);
962 rcu_string_free(device->name);
963 rcu_assign_pointer(device->name, name);
964 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
965 fs_devices->missing_devices--;
966 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
968 device->devt = path_devt;
972 * Unmount does not free the btrfs_device struct but would zero
973 * generation along with most of the other members. So just update
974 * it back. We need it to pick the disk with largest generation
977 if (!fs_devices->opened) {
978 device->generation = found_transid;
979 fs_devices->latest_generation = max_t(u64, found_transid,
980 fs_devices->latest_generation);
983 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
985 mutex_unlock(&fs_devices->device_list_mutex);
989 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
991 struct btrfs_fs_devices *fs_devices;
992 struct btrfs_device *device;
993 struct btrfs_device *orig_dev;
996 lockdep_assert_held(&uuid_mutex);
998 fs_devices = alloc_fs_devices(orig->fsid, NULL);
999 if (IS_ERR(fs_devices))
1002 fs_devices->total_devices = orig->total_devices;
1004 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1005 const char *dev_path = NULL;
1008 * This is ok to do without RCU read locked because we hold the
1009 * uuid mutex so nothing we touch in here is going to disappear.
1012 dev_path = orig_dev->name->str;
1014 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1015 orig_dev->uuid, dev_path);
1016 if (IS_ERR(device)) {
1017 ret = PTR_ERR(device);
1021 if (orig_dev->zone_info) {
1022 struct btrfs_zoned_device_info *zone_info;
1024 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1026 btrfs_free_device(device);
1030 device->zone_info = zone_info;
1033 list_add(&device->dev_list, &fs_devices->devices);
1034 device->fs_devices = fs_devices;
1035 fs_devices->num_devices++;
1039 free_fs_devices(fs_devices);
1040 return ERR_PTR(ret);
1043 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1044 struct btrfs_device **latest_dev)
1046 struct btrfs_device *device, *next;
1048 /* This is the initialized path, it is safe to release the devices. */
1049 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1050 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1051 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1052 &device->dev_state) &&
1053 !test_bit(BTRFS_DEV_STATE_MISSING,
1054 &device->dev_state) &&
1056 device->generation > (*latest_dev)->generation)) {
1057 *latest_dev = device;
1063 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1064 * in btrfs_init_dev_replace() so just continue.
1066 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1070 blkdev_put(device->bdev, device->holder);
1071 device->bdev = NULL;
1072 fs_devices->open_devices--;
1074 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1075 list_del_init(&device->dev_alloc_list);
1076 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1077 fs_devices->rw_devices--;
1079 list_del_init(&device->dev_list);
1080 fs_devices->num_devices--;
1081 btrfs_free_device(device);
1087 * After we have read the system tree and know devids belonging to this
1088 * filesystem, remove the device which does not belong there.
1090 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1092 struct btrfs_device *latest_dev = NULL;
1093 struct btrfs_fs_devices *seed_dev;
1095 mutex_lock(&uuid_mutex);
1096 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1098 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1099 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1101 fs_devices->latest_dev = latest_dev;
1103 mutex_unlock(&uuid_mutex);
1106 static void btrfs_close_bdev(struct btrfs_device *device)
1111 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1112 sync_blockdev(device->bdev);
1113 invalidate_bdev(device->bdev);
1116 blkdev_put(device->bdev, device->holder);
1119 static void btrfs_close_one_device(struct btrfs_device *device)
1121 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1123 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1124 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1125 list_del_init(&device->dev_alloc_list);
1126 fs_devices->rw_devices--;
1129 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1130 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1132 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1133 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1134 fs_devices->missing_devices--;
1137 btrfs_close_bdev(device);
1139 fs_devices->open_devices--;
1140 device->bdev = NULL;
1142 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1143 btrfs_destroy_dev_zone_info(device);
1145 device->fs_info = NULL;
1146 atomic_set(&device->dev_stats_ccnt, 0);
1147 extent_io_tree_release(&device->alloc_state);
1150 * Reset the flush error record. We might have a transient flush error
1151 * in this mount, and if so we aborted the current transaction and set
1152 * the fs to an error state, guaranteeing no super blocks can be further
1153 * committed. However that error might be transient and if we unmount the
1154 * filesystem and mount it again, we should allow the mount to succeed
1155 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1156 * filesystem again we still get flush errors, then we will again abort
1157 * any transaction and set the error state, guaranteeing no commits of
1158 * unsafe super blocks.
1160 device->last_flush_error = 0;
1162 /* Verify the device is back in a pristine state */
1163 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1164 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1165 WARN_ON(!list_empty(&device->dev_alloc_list));
1166 WARN_ON(!list_empty(&device->post_commit_list));
1169 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1171 struct btrfs_device *device, *tmp;
1173 lockdep_assert_held(&uuid_mutex);
1175 if (--fs_devices->opened > 0)
1178 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1179 btrfs_close_one_device(device);
1181 WARN_ON(fs_devices->open_devices);
1182 WARN_ON(fs_devices->rw_devices);
1183 fs_devices->opened = 0;
1184 fs_devices->seeding = false;
1185 fs_devices->fs_info = NULL;
1188 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1191 struct btrfs_fs_devices *tmp;
1193 mutex_lock(&uuid_mutex);
1194 close_fs_devices(fs_devices);
1195 if (!fs_devices->opened) {
1196 list_splice_init(&fs_devices->seed_list, &list);
1199 * If the struct btrfs_fs_devices is not assembled with any
1200 * other device, it can be re-initialized during the next mount
1201 * without the needing device-scan step. Therefore, it can be
1204 if (fs_devices->num_devices == 1) {
1205 list_del(&fs_devices->fs_list);
1206 free_fs_devices(fs_devices);
1211 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1212 close_fs_devices(fs_devices);
1213 list_del(&fs_devices->seed_list);
1214 free_fs_devices(fs_devices);
1216 mutex_unlock(&uuid_mutex);
1219 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1220 blk_mode_t flags, void *holder)
1222 struct btrfs_device *device;
1223 struct btrfs_device *latest_dev = NULL;
1224 struct btrfs_device *tmp_device;
1226 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1230 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1232 (!latest_dev || device->generation > latest_dev->generation)) {
1233 latest_dev = device;
1234 } else if (ret == -ENODATA) {
1235 fs_devices->num_devices--;
1236 list_del(&device->dev_list);
1237 btrfs_free_device(device);
1240 if (fs_devices->open_devices == 0)
1243 fs_devices->opened = 1;
1244 fs_devices->latest_dev = latest_dev;
1245 fs_devices->total_rw_bytes = 0;
1246 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1247 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1252 static int devid_cmp(void *priv, const struct list_head *a,
1253 const struct list_head *b)
1255 const struct btrfs_device *dev1, *dev2;
1257 dev1 = list_entry(a, struct btrfs_device, dev_list);
1258 dev2 = list_entry(b, struct btrfs_device, dev_list);
1260 if (dev1->devid < dev2->devid)
1262 else if (dev1->devid > dev2->devid)
1267 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1268 blk_mode_t flags, void *holder)
1272 lockdep_assert_held(&uuid_mutex);
1274 * The device_list_mutex cannot be taken here in case opening the
1275 * underlying device takes further locks like open_mutex.
1277 * We also don't need the lock here as this is called during mount and
1278 * exclusion is provided by uuid_mutex
1281 if (fs_devices->opened) {
1282 fs_devices->opened++;
1285 list_sort(NULL, &fs_devices->devices, devid_cmp);
1286 ret = open_fs_devices(fs_devices, flags, holder);
1292 void btrfs_release_disk_super(struct btrfs_super_block *super)
1294 struct page *page = virt_to_page(super);
1299 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1300 u64 bytenr, u64 bytenr_orig)
1302 struct btrfs_super_block *disk_super;
1307 /* make sure our super fits in the device */
1308 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1309 return ERR_PTR(-EINVAL);
1311 /* make sure our super fits in the page */
1312 if (sizeof(*disk_super) > PAGE_SIZE)
1313 return ERR_PTR(-EINVAL);
1315 /* make sure our super doesn't straddle pages on disk */
1316 index = bytenr >> PAGE_SHIFT;
1317 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1318 return ERR_PTR(-EINVAL);
1320 /* pull in the page with our super */
1321 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1324 return ERR_CAST(page);
1326 p = page_address(page);
1328 /* align our pointer to the offset of the super block */
1329 disk_super = p + offset_in_page(bytenr);
1331 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1332 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1333 btrfs_release_disk_super(p);
1334 return ERR_PTR(-EINVAL);
1337 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1338 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1343 int btrfs_forget_devices(dev_t devt)
1347 mutex_lock(&uuid_mutex);
1348 ret = btrfs_free_stale_devices(devt, NULL);
1349 mutex_unlock(&uuid_mutex);
1355 * Look for a btrfs signature on a device. This may be called out of the mount path
1356 * and we are not allowed to call set_blocksize during the scan. The superblock
1357 * is read via pagecache
1359 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags)
1361 struct btrfs_super_block *disk_super;
1362 bool new_device_added = false;
1363 struct btrfs_device *device = NULL;
1364 struct block_device *bdev;
1365 u64 bytenr, bytenr_orig;
1368 lockdep_assert_held(&uuid_mutex);
1371 * we would like to check all the supers, but that would make
1372 * a btrfs mount succeed after a mkfs from a different FS.
1373 * So, we need to add a special mount option to scan for
1374 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1378 * Avoid an exclusive open here, as the systemd-udev may initiate the
1379 * device scan which may race with the user's mount or mkfs command,
1380 * resulting in failure.
1381 * Since the device scan is solely for reading purposes, there is no
1382 * need for an exclusive open. Additionally, the devices are read again
1383 * during the mount process. It is ok to get some inconsistent
1384 * values temporarily, as the device paths of the fsid are the only
1385 * required information for assembling the volume.
1387 bdev = blkdev_get_by_path(path, flags, NULL, NULL);
1389 return ERR_CAST(bdev);
1391 bytenr_orig = btrfs_sb_offset(0);
1392 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1394 device = ERR_PTR(ret);
1395 goto error_bdev_put;
1398 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1399 if (IS_ERR(disk_super)) {
1400 device = ERR_CAST(disk_super);
1401 goto error_bdev_put;
1404 device = device_list_add(path, disk_super, &new_device_added);
1405 if (!IS_ERR(device) && new_device_added)
1406 btrfs_free_stale_devices(device->devt, device);
1408 btrfs_release_disk_super(disk_super);
1411 blkdev_put(bdev, NULL);
1417 * Try to find a chunk that intersects [start, start + len] range and when one
1418 * such is found, record the end of it in *start
1420 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1423 u64 physical_start, physical_end;
1425 lockdep_assert_held(&device->fs_info->chunk_mutex);
1427 if (!find_first_extent_bit(&device->alloc_state, *start,
1428 &physical_start, &physical_end,
1429 CHUNK_ALLOCATED, NULL)) {
1431 if (in_range(physical_start, *start, len) ||
1432 in_range(*start, physical_start,
1433 physical_end - physical_start)) {
1434 *start = physical_end + 1;
1441 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1443 switch (device->fs_devices->chunk_alloc_policy) {
1444 case BTRFS_CHUNK_ALLOC_REGULAR:
1445 return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1446 case BTRFS_CHUNK_ALLOC_ZONED:
1448 * We don't care about the starting region like regular
1449 * allocator, because we anyway use/reserve the first two zones
1450 * for superblock logging.
1452 return ALIGN(start, device->zone_info->zone_size);
1458 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1459 u64 *hole_start, u64 *hole_size,
1462 u64 zone_size = device->zone_info->zone_size;
1465 bool changed = false;
1467 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1469 while (*hole_size > 0) {
1470 pos = btrfs_find_allocatable_zones(device, *hole_start,
1471 *hole_start + *hole_size,
1473 if (pos != *hole_start) {
1474 *hole_size = *hole_start + *hole_size - pos;
1477 if (*hole_size < num_bytes)
1481 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1483 /* Range is ensured to be empty */
1487 /* Given hole range was invalid (outside of device) */
1488 if (ret == -ERANGE) {
1489 *hole_start += *hole_size;
1494 *hole_start += zone_size;
1495 *hole_size -= zone_size;
1503 * Check if specified hole is suitable for allocation.
1505 * @device: the device which we have the hole
1506 * @hole_start: starting position of the hole
1507 * @hole_size: the size of the hole
1508 * @num_bytes: the size of the free space that we need
1510 * This function may modify @hole_start and @hole_size to reflect the suitable
1511 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1513 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1514 u64 *hole_size, u64 num_bytes)
1516 bool changed = false;
1517 u64 hole_end = *hole_start + *hole_size;
1521 * Check before we set max_hole_start, otherwise we could end up
1522 * sending back this offset anyway.
1524 if (contains_pending_extent(device, hole_start, *hole_size)) {
1525 if (hole_end >= *hole_start)
1526 *hole_size = hole_end - *hole_start;
1532 switch (device->fs_devices->chunk_alloc_policy) {
1533 case BTRFS_CHUNK_ALLOC_REGULAR:
1534 /* No extra check */
1536 case BTRFS_CHUNK_ALLOC_ZONED:
1537 if (dev_extent_hole_check_zoned(device, hole_start,
1538 hole_size, num_bytes)) {
1541 * The changed hole can contain pending extent.
1542 * Loop again to check that.
1558 * Find free space in the specified device.
1560 * @device: the device which we search the free space in
1561 * @num_bytes: the size of the free space that we need
1562 * @search_start: the position from which to begin the search
1563 * @start: store the start of the free space.
1564 * @len: the size of the free space. that we find, or the size
1565 * of the max free space if we don't find suitable free space
1567 * This does a pretty simple search, the expectation is that it is called very
1568 * infrequently and that a given device has a small number of extents.
1570 * @start is used to store the start of the free space if we find. But if we
1571 * don't find suitable free space, it will be used to store the start position
1572 * of the max free space.
1574 * @len is used to store the size of the free space that we find.
1575 * But if we don't find suitable free space, it is used to store the size of
1576 * the max free space.
1578 * NOTE: This function will search *commit* root of device tree, and does extra
1579 * check to ensure dev extents are not double allocated.
1580 * This makes the function safe to allocate dev extents but may not report
1581 * correct usable device space, as device extent freed in current transaction
1582 * is not reported as available.
1584 static int find_free_dev_extent_start(struct btrfs_device *device,
1585 u64 num_bytes, u64 search_start, u64 *start,
1588 struct btrfs_fs_info *fs_info = device->fs_info;
1589 struct btrfs_root *root = fs_info->dev_root;
1590 struct btrfs_key key;
1591 struct btrfs_dev_extent *dev_extent;
1592 struct btrfs_path *path;
1597 u64 search_end = device->total_bytes;
1600 struct extent_buffer *l;
1602 search_start = dev_extent_search_start(device, search_start);
1604 WARN_ON(device->zone_info &&
1605 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1607 path = btrfs_alloc_path();
1611 max_hole_start = search_start;
1615 if (search_start >= search_end ||
1616 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1621 path->reada = READA_FORWARD;
1622 path->search_commit_root = 1;
1623 path->skip_locking = 1;
1625 key.objectid = device->devid;
1626 key.offset = search_start;
1627 key.type = BTRFS_DEV_EXTENT_KEY;
1629 ret = btrfs_search_backwards(root, &key, path);
1633 while (search_start < search_end) {
1635 slot = path->slots[0];
1636 if (slot >= btrfs_header_nritems(l)) {
1637 ret = btrfs_next_leaf(root, path);
1645 btrfs_item_key_to_cpu(l, &key, slot);
1647 if (key.objectid < device->devid)
1650 if (key.objectid > device->devid)
1653 if (key.type != BTRFS_DEV_EXTENT_KEY)
1656 if (key.offset > search_end)
1659 if (key.offset > search_start) {
1660 hole_size = key.offset - search_start;
1661 dev_extent_hole_check(device, &search_start, &hole_size,
1664 if (hole_size > max_hole_size) {
1665 max_hole_start = search_start;
1666 max_hole_size = hole_size;
1670 * If this free space is greater than which we need,
1671 * it must be the max free space that we have found
1672 * until now, so max_hole_start must point to the start
1673 * of this free space and the length of this free space
1674 * is stored in max_hole_size. Thus, we return
1675 * max_hole_start and max_hole_size and go back to the
1678 if (hole_size >= num_bytes) {
1684 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1685 extent_end = key.offset + btrfs_dev_extent_length(l,
1687 if (extent_end > search_start)
1688 search_start = extent_end;
1695 * At this point, search_start should be the end of
1696 * allocated dev extents, and when shrinking the device,
1697 * search_end may be smaller than search_start.
1699 if (search_end > search_start) {
1700 hole_size = search_end - search_start;
1701 if (dev_extent_hole_check(device, &search_start, &hole_size,
1703 btrfs_release_path(path);
1707 if (hole_size > max_hole_size) {
1708 max_hole_start = search_start;
1709 max_hole_size = hole_size;
1714 if (max_hole_size < num_bytes)
1719 ASSERT(max_hole_start + max_hole_size <= search_end);
1721 btrfs_free_path(path);
1722 *start = max_hole_start;
1724 *len = max_hole_size;
1728 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1729 u64 *start, u64 *len)
1731 /* FIXME use last free of some kind */
1732 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1735 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1736 struct btrfs_device *device,
1737 u64 start, u64 *dev_extent_len)
1739 struct btrfs_fs_info *fs_info = device->fs_info;
1740 struct btrfs_root *root = fs_info->dev_root;
1742 struct btrfs_path *path;
1743 struct btrfs_key key;
1744 struct btrfs_key found_key;
1745 struct extent_buffer *leaf = NULL;
1746 struct btrfs_dev_extent *extent = NULL;
1748 path = btrfs_alloc_path();
1752 key.objectid = device->devid;
1754 key.type = BTRFS_DEV_EXTENT_KEY;
1756 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1758 ret = btrfs_previous_item(root, path, key.objectid,
1759 BTRFS_DEV_EXTENT_KEY);
1762 leaf = path->nodes[0];
1763 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1764 extent = btrfs_item_ptr(leaf, path->slots[0],
1765 struct btrfs_dev_extent);
1766 BUG_ON(found_key.offset > start || found_key.offset +
1767 btrfs_dev_extent_length(leaf, extent) < start);
1769 btrfs_release_path(path);
1771 } else if (ret == 0) {
1772 leaf = path->nodes[0];
1773 extent = btrfs_item_ptr(leaf, path->slots[0],
1774 struct btrfs_dev_extent);
1779 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1781 ret = btrfs_del_item(trans, root, path);
1783 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1785 btrfs_free_path(path);
1789 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1791 struct extent_map_tree *em_tree;
1792 struct extent_map *em;
1796 em_tree = &fs_info->mapping_tree;
1797 read_lock(&em_tree->lock);
1798 n = rb_last(&em_tree->map.rb_root);
1800 em = rb_entry(n, struct extent_map, rb_node);
1801 ret = em->start + em->len;
1803 read_unlock(&em_tree->lock);
1808 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1812 struct btrfs_key key;
1813 struct btrfs_key found_key;
1814 struct btrfs_path *path;
1816 path = btrfs_alloc_path();
1820 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1821 key.type = BTRFS_DEV_ITEM_KEY;
1822 key.offset = (u64)-1;
1824 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1830 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1835 ret = btrfs_previous_item(fs_info->chunk_root, path,
1836 BTRFS_DEV_ITEMS_OBJECTID,
1837 BTRFS_DEV_ITEM_KEY);
1841 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1843 *devid_ret = found_key.offset + 1;
1847 btrfs_free_path(path);
1852 * the device information is stored in the chunk root
1853 * the btrfs_device struct should be fully filled in
1855 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1856 struct btrfs_device *device)
1859 struct btrfs_path *path;
1860 struct btrfs_dev_item *dev_item;
1861 struct extent_buffer *leaf;
1862 struct btrfs_key key;
1865 path = btrfs_alloc_path();
1869 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1870 key.type = BTRFS_DEV_ITEM_KEY;
1871 key.offset = device->devid;
1873 btrfs_reserve_chunk_metadata(trans, true);
1874 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1875 &key, sizeof(*dev_item));
1876 btrfs_trans_release_chunk_metadata(trans);
1880 leaf = path->nodes[0];
1881 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1883 btrfs_set_device_id(leaf, dev_item, device->devid);
1884 btrfs_set_device_generation(leaf, dev_item, 0);
1885 btrfs_set_device_type(leaf, dev_item, device->type);
1886 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1887 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1888 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1889 btrfs_set_device_total_bytes(leaf, dev_item,
1890 btrfs_device_get_disk_total_bytes(device));
1891 btrfs_set_device_bytes_used(leaf, dev_item,
1892 btrfs_device_get_bytes_used(device));
1893 btrfs_set_device_group(leaf, dev_item, 0);
1894 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1895 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1896 btrfs_set_device_start_offset(leaf, dev_item, 0);
1898 ptr = btrfs_device_uuid(dev_item);
1899 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1900 ptr = btrfs_device_fsid(dev_item);
1901 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1902 ptr, BTRFS_FSID_SIZE);
1903 btrfs_mark_buffer_dirty(leaf);
1907 btrfs_free_path(path);
1912 * Function to update ctime/mtime for a given device path.
1913 * Mainly used for ctime/mtime based probe like libblkid.
1915 * We don't care about errors here, this is just to be kind to userspace.
1917 static void update_dev_time(const char *device_path)
1920 struct timespec64 now;
1923 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1927 now = current_time(d_inode(path.dentry));
1928 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME | S_VERSION);
1932 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1933 struct btrfs_device *device)
1935 struct btrfs_root *root = device->fs_info->chunk_root;
1937 struct btrfs_path *path;
1938 struct btrfs_key key;
1940 path = btrfs_alloc_path();
1944 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1945 key.type = BTRFS_DEV_ITEM_KEY;
1946 key.offset = device->devid;
1948 btrfs_reserve_chunk_metadata(trans, false);
1949 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1950 btrfs_trans_release_chunk_metadata(trans);
1957 ret = btrfs_del_item(trans, root, path);
1959 btrfs_free_path(path);
1964 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1965 * filesystem. It's up to the caller to adjust that number regarding eg. device
1968 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1976 seq = read_seqbegin(&fs_info->profiles_lock);
1978 all_avail = fs_info->avail_data_alloc_bits |
1979 fs_info->avail_system_alloc_bits |
1980 fs_info->avail_metadata_alloc_bits;
1981 } while (read_seqretry(&fs_info->profiles_lock, seq));
1983 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1984 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1987 if (num_devices < btrfs_raid_array[i].devs_min)
1988 return btrfs_raid_array[i].mindev_error;
1994 static struct btrfs_device * btrfs_find_next_active_device(
1995 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1997 struct btrfs_device *next_device;
1999 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2000 if (next_device != device &&
2001 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2002 && next_device->bdev)
2010 * Helper function to check if the given device is part of s_bdev / latest_dev
2011 * and replace it with the provided or the next active device, in the context
2012 * where this function called, there should be always be another device (or
2013 * this_dev) which is active.
2015 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2016 struct btrfs_device *next_device)
2018 struct btrfs_fs_info *fs_info = device->fs_info;
2021 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2023 ASSERT(next_device);
2025 if (fs_info->sb->s_bdev &&
2026 (fs_info->sb->s_bdev == device->bdev))
2027 fs_info->sb->s_bdev = next_device->bdev;
2029 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2030 fs_info->fs_devices->latest_dev = next_device;
2034 * Return btrfs_fs_devices::num_devices excluding the device that's being
2035 * currently replaced.
2037 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2039 u64 num_devices = fs_info->fs_devices->num_devices;
2041 down_read(&fs_info->dev_replace.rwsem);
2042 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2043 ASSERT(num_devices > 1);
2046 up_read(&fs_info->dev_replace.rwsem);
2051 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2052 struct block_device *bdev, int copy_num)
2054 struct btrfs_super_block *disk_super;
2055 const size_t len = sizeof(disk_super->magic);
2056 const u64 bytenr = btrfs_sb_offset(copy_num);
2059 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2060 if (IS_ERR(disk_super))
2063 memset(&disk_super->magic, 0, len);
2064 folio_mark_dirty(virt_to_folio(disk_super));
2065 btrfs_release_disk_super(disk_super);
2067 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2069 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2073 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2074 struct block_device *bdev,
2075 const char *device_path)
2082 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2083 if (bdev_is_zoned(bdev))
2084 btrfs_reset_sb_log_zones(bdev, copy_num);
2086 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2089 /* Notify udev that device has changed */
2090 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2092 /* Update ctime/mtime for device path for libblkid */
2093 update_dev_time(device_path);
2096 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2097 struct btrfs_dev_lookup_args *args,
2098 struct block_device **bdev, void **holder)
2100 struct btrfs_trans_handle *trans;
2101 struct btrfs_device *device;
2102 struct btrfs_fs_devices *cur_devices;
2103 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2107 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2108 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2113 * The device list in fs_devices is accessed without locks (neither
2114 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2115 * filesystem and another device rm cannot run.
2117 num_devices = btrfs_num_devices(fs_info);
2119 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2123 device = btrfs_find_device(fs_info->fs_devices, args);
2126 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2132 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2133 btrfs_warn_in_rcu(fs_info,
2134 "cannot remove device %s (devid %llu) due to active swapfile",
2135 btrfs_dev_name(device), device->devid);
2139 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2140 return BTRFS_ERROR_DEV_TGT_REPLACE;
2142 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2143 fs_info->fs_devices->rw_devices == 1)
2144 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2146 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2147 mutex_lock(&fs_info->chunk_mutex);
2148 list_del_init(&device->dev_alloc_list);
2149 device->fs_devices->rw_devices--;
2150 mutex_unlock(&fs_info->chunk_mutex);
2153 ret = btrfs_shrink_device(device, 0);
2157 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2158 if (IS_ERR(trans)) {
2159 ret = PTR_ERR(trans);
2163 ret = btrfs_rm_dev_item(trans, device);
2165 /* Any error in dev item removal is critical */
2167 "failed to remove device item for devid %llu: %d",
2168 device->devid, ret);
2169 btrfs_abort_transaction(trans, ret);
2170 btrfs_end_transaction(trans);
2174 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2175 btrfs_scrub_cancel_dev(device);
2178 * the device list mutex makes sure that we don't change
2179 * the device list while someone else is writing out all
2180 * the device supers. Whoever is writing all supers, should
2181 * lock the device list mutex before getting the number of
2182 * devices in the super block (super_copy). Conversely,
2183 * whoever updates the number of devices in the super block
2184 * (super_copy) should hold the device list mutex.
2188 * In normal cases the cur_devices == fs_devices. But in case
2189 * of deleting a seed device, the cur_devices should point to
2190 * its own fs_devices listed under the fs_devices->seed_list.
2192 cur_devices = device->fs_devices;
2193 mutex_lock(&fs_devices->device_list_mutex);
2194 list_del_rcu(&device->dev_list);
2196 cur_devices->num_devices--;
2197 cur_devices->total_devices--;
2198 /* Update total_devices of the parent fs_devices if it's seed */
2199 if (cur_devices != fs_devices)
2200 fs_devices->total_devices--;
2202 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2203 cur_devices->missing_devices--;
2205 btrfs_assign_next_active_device(device, NULL);
2208 cur_devices->open_devices--;
2209 /* remove sysfs entry */
2210 btrfs_sysfs_remove_device(device);
2213 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2214 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2215 mutex_unlock(&fs_devices->device_list_mutex);
2218 * At this point, the device is zero sized and detached from the
2219 * devices list. All that's left is to zero out the old supers and
2222 * We cannot call btrfs_close_bdev() here because we're holding the sb
2223 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2224 * block device and it's dependencies. Instead just flush the device
2225 * and let the caller do the final blkdev_put.
2227 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2228 btrfs_scratch_superblocks(fs_info, device->bdev,
2231 sync_blockdev(device->bdev);
2232 invalidate_bdev(device->bdev);
2236 *bdev = device->bdev;
2237 *holder = device->holder;
2239 btrfs_free_device(device);
2242 * This can happen if cur_devices is the private seed devices list. We
2243 * cannot call close_fs_devices() here because it expects the uuid_mutex
2244 * to be held, but in fact we don't need that for the private
2245 * seed_devices, we can simply decrement cur_devices->opened and then
2246 * remove it from our list and free the fs_devices.
2248 if (cur_devices->num_devices == 0) {
2249 list_del_init(&cur_devices->seed_list);
2250 ASSERT(cur_devices->opened == 1);
2251 cur_devices->opened--;
2252 free_fs_devices(cur_devices);
2255 ret = btrfs_commit_transaction(trans);
2260 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2261 mutex_lock(&fs_info->chunk_mutex);
2262 list_add(&device->dev_alloc_list,
2263 &fs_devices->alloc_list);
2264 device->fs_devices->rw_devices++;
2265 mutex_unlock(&fs_info->chunk_mutex);
2270 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2272 struct btrfs_fs_devices *fs_devices;
2274 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2277 * in case of fs with no seed, srcdev->fs_devices will point
2278 * to fs_devices of fs_info. However when the dev being replaced is
2279 * a seed dev it will point to the seed's local fs_devices. In short
2280 * srcdev will have its correct fs_devices in both the cases.
2282 fs_devices = srcdev->fs_devices;
2284 list_del_rcu(&srcdev->dev_list);
2285 list_del(&srcdev->dev_alloc_list);
2286 fs_devices->num_devices--;
2287 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2288 fs_devices->missing_devices--;
2290 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2291 fs_devices->rw_devices--;
2294 fs_devices->open_devices--;
2297 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2299 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2301 mutex_lock(&uuid_mutex);
2303 btrfs_close_bdev(srcdev);
2305 btrfs_free_device(srcdev);
2307 /* if this is no devs we rather delete the fs_devices */
2308 if (!fs_devices->num_devices) {
2310 * On a mounted FS, num_devices can't be zero unless it's a
2311 * seed. In case of a seed device being replaced, the replace
2312 * target added to the sprout FS, so there will be no more
2313 * device left under the seed FS.
2315 ASSERT(fs_devices->seeding);
2317 list_del_init(&fs_devices->seed_list);
2318 close_fs_devices(fs_devices);
2319 free_fs_devices(fs_devices);
2321 mutex_unlock(&uuid_mutex);
2324 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2326 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2328 mutex_lock(&fs_devices->device_list_mutex);
2330 btrfs_sysfs_remove_device(tgtdev);
2333 fs_devices->open_devices--;
2335 fs_devices->num_devices--;
2337 btrfs_assign_next_active_device(tgtdev, NULL);
2339 list_del_rcu(&tgtdev->dev_list);
2341 mutex_unlock(&fs_devices->device_list_mutex);
2343 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2346 btrfs_close_bdev(tgtdev);
2348 btrfs_free_device(tgtdev);
2352 * Populate args from device at path.
2354 * @fs_info: the filesystem
2355 * @args: the args to populate
2356 * @path: the path to the device
2358 * This will read the super block of the device at @path and populate @args with
2359 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2360 * lookup a device to operate on, but need to do it before we take any locks.
2361 * This properly handles the special case of "missing" that a user may pass in,
2362 * and does some basic sanity checks. The caller must make sure that @path is
2363 * properly NUL terminated before calling in, and must call
2364 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2367 * Return: 0 for success, -errno for failure
2369 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2370 struct btrfs_dev_lookup_args *args,
2373 struct btrfs_super_block *disk_super;
2374 struct block_device *bdev;
2377 if (!path || !path[0])
2379 if (!strcmp(path, "missing")) {
2380 args->missing = true;
2384 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2385 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2386 if (!args->uuid || !args->fsid) {
2387 btrfs_put_dev_args_from_path(args);
2391 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2392 &bdev, &disk_super);
2394 btrfs_put_dev_args_from_path(args);
2398 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2399 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2400 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2401 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2403 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2404 btrfs_release_disk_super(disk_super);
2405 blkdev_put(bdev, NULL);
2410 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2411 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2412 * that don't need to be freed.
2414 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2422 struct btrfs_device *btrfs_find_device_by_devspec(
2423 struct btrfs_fs_info *fs_info, u64 devid,
2424 const char *device_path)
2426 BTRFS_DEV_LOOKUP_ARGS(args);
2427 struct btrfs_device *device;
2432 device = btrfs_find_device(fs_info->fs_devices, &args);
2434 return ERR_PTR(-ENOENT);
2438 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2440 return ERR_PTR(ret);
2441 device = btrfs_find_device(fs_info->fs_devices, &args);
2442 btrfs_put_dev_args_from_path(&args);
2444 return ERR_PTR(-ENOENT);
2448 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2450 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2451 struct btrfs_fs_devices *old_devices;
2452 struct btrfs_fs_devices *seed_devices;
2454 lockdep_assert_held(&uuid_mutex);
2455 if (!fs_devices->seeding)
2456 return ERR_PTR(-EINVAL);
2459 * Private copy of the seed devices, anchored at
2460 * fs_info->fs_devices->seed_list
2462 seed_devices = alloc_fs_devices(NULL, NULL);
2463 if (IS_ERR(seed_devices))
2464 return seed_devices;
2467 * It's necessary to retain a copy of the original seed fs_devices in
2468 * fs_uuids so that filesystems which have been seeded can successfully
2469 * reference the seed device from open_seed_devices. This also supports
2472 old_devices = clone_fs_devices(fs_devices);
2473 if (IS_ERR(old_devices)) {
2474 kfree(seed_devices);
2478 list_add(&old_devices->fs_list, &fs_uuids);
2480 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2481 seed_devices->opened = 1;
2482 INIT_LIST_HEAD(&seed_devices->devices);
2483 INIT_LIST_HEAD(&seed_devices->alloc_list);
2484 mutex_init(&seed_devices->device_list_mutex);
2486 return seed_devices;
2490 * Splice seed devices into the sprout fs_devices.
2491 * Generate a new fsid for the sprouted read-write filesystem.
2493 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2494 struct btrfs_fs_devices *seed_devices)
2496 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2497 struct btrfs_super_block *disk_super = fs_info->super_copy;
2498 struct btrfs_device *device;
2502 * We are updating the fsid, the thread leading to device_list_add()
2503 * could race, so uuid_mutex is needed.
2505 lockdep_assert_held(&uuid_mutex);
2508 * The threads listed below may traverse dev_list but can do that without
2509 * device_list_mutex:
2510 * - All device ops and balance - as we are in btrfs_exclop_start.
2511 * - Various dev_list readers - are using RCU.
2512 * - btrfs_ioctl_fitrim() - is using RCU.
2514 * For-read threads as below are using device_list_mutex:
2515 * - Readonly scrub btrfs_scrub_dev()
2516 * - Readonly scrub btrfs_scrub_progress()
2517 * - btrfs_get_dev_stats()
2519 lockdep_assert_held(&fs_devices->device_list_mutex);
2521 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2523 list_for_each_entry(device, &seed_devices->devices, dev_list)
2524 device->fs_devices = seed_devices;
2526 fs_devices->seeding = false;
2527 fs_devices->num_devices = 0;
2528 fs_devices->open_devices = 0;
2529 fs_devices->missing_devices = 0;
2530 fs_devices->rotating = false;
2531 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2533 generate_random_uuid(fs_devices->fsid);
2534 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2535 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2537 super_flags = btrfs_super_flags(disk_super) &
2538 ~BTRFS_SUPER_FLAG_SEEDING;
2539 btrfs_set_super_flags(disk_super, super_flags);
2543 * Store the expected generation for seed devices in device items.
2545 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2547 BTRFS_DEV_LOOKUP_ARGS(args);
2548 struct btrfs_fs_info *fs_info = trans->fs_info;
2549 struct btrfs_root *root = fs_info->chunk_root;
2550 struct btrfs_path *path;
2551 struct extent_buffer *leaf;
2552 struct btrfs_dev_item *dev_item;
2553 struct btrfs_device *device;
2554 struct btrfs_key key;
2555 u8 fs_uuid[BTRFS_FSID_SIZE];
2556 u8 dev_uuid[BTRFS_UUID_SIZE];
2559 path = btrfs_alloc_path();
2563 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2565 key.type = BTRFS_DEV_ITEM_KEY;
2568 btrfs_reserve_chunk_metadata(trans, false);
2569 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2570 btrfs_trans_release_chunk_metadata(trans);
2574 leaf = path->nodes[0];
2576 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2577 ret = btrfs_next_leaf(root, path);
2582 leaf = path->nodes[0];
2583 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2584 btrfs_release_path(path);
2588 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2589 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2590 key.type != BTRFS_DEV_ITEM_KEY)
2593 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2594 struct btrfs_dev_item);
2595 args.devid = btrfs_device_id(leaf, dev_item);
2596 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2598 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2600 args.uuid = dev_uuid;
2601 args.fsid = fs_uuid;
2602 device = btrfs_find_device(fs_info->fs_devices, &args);
2603 BUG_ON(!device); /* Logic error */
2605 if (device->fs_devices->seeding) {
2606 btrfs_set_device_generation(leaf, dev_item,
2607 device->generation);
2608 btrfs_mark_buffer_dirty(leaf);
2616 btrfs_free_path(path);
2620 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2622 struct btrfs_root *root = fs_info->dev_root;
2623 struct btrfs_trans_handle *trans;
2624 struct btrfs_device *device;
2625 struct block_device *bdev;
2626 struct super_block *sb = fs_info->sb;
2627 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2628 struct btrfs_fs_devices *seed_devices = NULL;
2629 u64 orig_super_total_bytes;
2630 u64 orig_super_num_devices;
2632 bool seeding_dev = false;
2633 bool locked = false;
2635 if (sb_rdonly(sb) && !fs_devices->seeding)
2638 bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE,
2639 fs_info->bdev_holder, NULL);
2641 return PTR_ERR(bdev);
2643 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2648 if (fs_devices->seeding) {
2650 down_write(&sb->s_umount);
2651 mutex_lock(&uuid_mutex);
2655 sync_blockdev(bdev);
2658 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2659 if (device->bdev == bdev) {
2667 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2668 if (IS_ERR(device)) {
2669 /* we can safely leave the fs_devices entry around */
2670 ret = PTR_ERR(device);
2674 device->fs_info = fs_info;
2675 device->bdev = bdev;
2676 ret = lookup_bdev(device_path, &device->devt);
2678 goto error_free_device;
2680 ret = btrfs_get_dev_zone_info(device, false);
2682 goto error_free_device;
2684 trans = btrfs_start_transaction(root, 0);
2685 if (IS_ERR(trans)) {
2686 ret = PTR_ERR(trans);
2687 goto error_free_zone;
2690 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2691 device->generation = trans->transid;
2692 device->io_width = fs_info->sectorsize;
2693 device->io_align = fs_info->sectorsize;
2694 device->sector_size = fs_info->sectorsize;
2695 device->total_bytes =
2696 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2697 device->disk_total_bytes = device->total_bytes;
2698 device->commit_total_bytes = device->total_bytes;
2699 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2700 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2701 device->holder = fs_info->bdev_holder;
2702 device->dev_stats_valid = 1;
2703 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2706 btrfs_clear_sb_rdonly(sb);
2708 /* GFP_KERNEL allocation must not be under device_list_mutex */
2709 seed_devices = btrfs_init_sprout(fs_info);
2710 if (IS_ERR(seed_devices)) {
2711 ret = PTR_ERR(seed_devices);
2712 btrfs_abort_transaction(trans, ret);
2717 mutex_lock(&fs_devices->device_list_mutex);
2719 btrfs_setup_sprout(fs_info, seed_devices);
2720 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2724 device->fs_devices = fs_devices;
2726 mutex_lock(&fs_info->chunk_mutex);
2727 list_add_rcu(&device->dev_list, &fs_devices->devices);
2728 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2729 fs_devices->num_devices++;
2730 fs_devices->open_devices++;
2731 fs_devices->rw_devices++;
2732 fs_devices->total_devices++;
2733 fs_devices->total_rw_bytes += device->total_bytes;
2735 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2737 if (!bdev_nonrot(bdev))
2738 fs_devices->rotating = true;
2740 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2741 btrfs_set_super_total_bytes(fs_info->super_copy,
2742 round_down(orig_super_total_bytes + device->total_bytes,
2743 fs_info->sectorsize));
2745 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2746 btrfs_set_super_num_devices(fs_info->super_copy,
2747 orig_super_num_devices + 1);
2750 * we've got more storage, clear any full flags on the space
2753 btrfs_clear_space_info_full(fs_info);
2755 mutex_unlock(&fs_info->chunk_mutex);
2757 /* Add sysfs device entry */
2758 btrfs_sysfs_add_device(device);
2760 mutex_unlock(&fs_devices->device_list_mutex);
2763 mutex_lock(&fs_info->chunk_mutex);
2764 ret = init_first_rw_device(trans);
2765 mutex_unlock(&fs_info->chunk_mutex);
2767 btrfs_abort_transaction(trans, ret);
2772 ret = btrfs_add_dev_item(trans, device);
2774 btrfs_abort_transaction(trans, ret);
2779 ret = btrfs_finish_sprout(trans);
2781 btrfs_abort_transaction(trans, ret);
2786 * fs_devices now represents the newly sprouted filesystem and
2787 * its fsid has been changed by btrfs_sprout_splice().
2789 btrfs_sysfs_update_sprout_fsid(fs_devices);
2792 ret = btrfs_commit_transaction(trans);
2795 mutex_unlock(&uuid_mutex);
2796 up_write(&sb->s_umount);
2799 if (ret) /* transaction commit */
2802 ret = btrfs_relocate_sys_chunks(fs_info);
2804 btrfs_handle_fs_error(fs_info, ret,
2805 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2806 trans = btrfs_attach_transaction(root);
2807 if (IS_ERR(trans)) {
2808 if (PTR_ERR(trans) == -ENOENT)
2810 ret = PTR_ERR(trans);
2814 ret = btrfs_commit_transaction(trans);
2818 * Now that we have written a new super block to this device, check all
2819 * other fs_devices list if device_path alienates any other scanned
2821 * We can ignore the return value as it typically returns -EINVAL and
2822 * only succeeds if the device was an alien.
2824 btrfs_forget_devices(device->devt);
2826 /* Update ctime/mtime for blkid or udev */
2827 update_dev_time(device_path);
2832 btrfs_sysfs_remove_device(device);
2833 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2834 mutex_lock(&fs_info->chunk_mutex);
2835 list_del_rcu(&device->dev_list);
2836 list_del(&device->dev_alloc_list);
2837 fs_info->fs_devices->num_devices--;
2838 fs_info->fs_devices->open_devices--;
2839 fs_info->fs_devices->rw_devices--;
2840 fs_info->fs_devices->total_devices--;
2841 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2842 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2843 btrfs_set_super_total_bytes(fs_info->super_copy,
2844 orig_super_total_bytes);
2845 btrfs_set_super_num_devices(fs_info->super_copy,
2846 orig_super_num_devices);
2847 mutex_unlock(&fs_info->chunk_mutex);
2848 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2851 btrfs_set_sb_rdonly(sb);
2853 btrfs_end_transaction(trans);
2855 btrfs_destroy_dev_zone_info(device);
2857 btrfs_free_device(device);
2859 blkdev_put(bdev, fs_info->bdev_holder);
2861 mutex_unlock(&uuid_mutex);
2862 up_write(&sb->s_umount);
2867 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2868 struct btrfs_device *device)
2871 struct btrfs_path *path;
2872 struct btrfs_root *root = device->fs_info->chunk_root;
2873 struct btrfs_dev_item *dev_item;
2874 struct extent_buffer *leaf;
2875 struct btrfs_key key;
2877 path = btrfs_alloc_path();
2881 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2882 key.type = BTRFS_DEV_ITEM_KEY;
2883 key.offset = device->devid;
2885 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2894 leaf = path->nodes[0];
2895 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2897 btrfs_set_device_id(leaf, dev_item, device->devid);
2898 btrfs_set_device_type(leaf, dev_item, device->type);
2899 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2900 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2901 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2902 btrfs_set_device_total_bytes(leaf, dev_item,
2903 btrfs_device_get_disk_total_bytes(device));
2904 btrfs_set_device_bytes_used(leaf, dev_item,
2905 btrfs_device_get_bytes_used(device));
2906 btrfs_mark_buffer_dirty(leaf);
2909 btrfs_free_path(path);
2913 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2914 struct btrfs_device *device, u64 new_size)
2916 struct btrfs_fs_info *fs_info = device->fs_info;
2917 struct btrfs_super_block *super_copy = fs_info->super_copy;
2922 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2925 new_size = round_down(new_size, fs_info->sectorsize);
2927 mutex_lock(&fs_info->chunk_mutex);
2928 old_total = btrfs_super_total_bytes(super_copy);
2929 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2931 if (new_size <= device->total_bytes ||
2932 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2933 mutex_unlock(&fs_info->chunk_mutex);
2937 btrfs_set_super_total_bytes(super_copy,
2938 round_down(old_total + diff, fs_info->sectorsize));
2939 device->fs_devices->total_rw_bytes += diff;
2941 btrfs_device_set_total_bytes(device, new_size);
2942 btrfs_device_set_disk_total_bytes(device, new_size);
2943 btrfs_clear_space_info_full(device->fs_info);
2944 if (list_empty(&device->post_commit_list))
2945 list_add_tail(&device->post_commit_list,
2946 &trans->transaction->dev_update_list);
2947 mutex_unlock(&fs_info->chunk_mutex);
2949 btrfs_reserve_chunk_metadata(trans, false);
2950 ret = btrfs_update_device(trans, device);
2951 btrfs_trans_release_chunk_metadata(trans);
2956 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2958 struct btrfs_fs_info *fs_info = trans->fs_info;
2959 struct btrfs_root *root = fs_info->chunk_root;
2961 struct btrfs_path *path;
2962 struct btrfs_key key;
2964 path = btrfs_alloc_path();
2968 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2969 key.offset = chunk_offset;
2970 key.type = BTRFS_CHUNK_ITEM_KEY;
2972 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2975 else if (ret > 0) { /* Logic error or corruption */
2976 btrfs_handle_fs_error(fs_info, -ENOENT,
2977 "Failed lookup while freeing chunk.");
2982 ret = btrfs_del_item(trans, root, path);
2984 btrfs_handle_fs_error(fs_info, ret,
2985 "Failed to delete chunk item.");
2987 btrfs_free_path(path);
2991 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2993 struct btrfs_super_block *super_copy = fs_info->super_copy;
2994 struct btrfs_disk_key *disk_key;
2995 struct btrfs_chunk *chunk;
3002 struct btrfs_key key;
3004 lockdep_assert_held(&fs_info->chunk_mutex);
3005 array_size = btrfs_super_sys_array_size(super_copy);
3007 ptr = super_copy->sys_chunk_array;
3010 while (cur < array_size) {
3011 disk_key = (struct btrfs_disk_key *)ptr;
3012 btrfs_disk_key_to_cpu(&key, disk_key);
3014 len = sizeof(*disk_key);
3016 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3017 chunk = (struct btrfs_chunk *)(ptr + len);
3018 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3019 len += btrfs_chunk_item_size(num_stripes);
3024 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3025 key.offset == chunk_offset) {
3026 memmove(ptr, ptr + len, array_size - (cur + len));
3028 btrfs_set_super_sys_array_size(super_copy, array_size);
3038 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3039 * @logical: Logical block offset in bytes.
3040 * @length: Length of extent in bytes.
3042 * Return: Chunk mapping or ERR_PTR.
3044 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3045 u64 logical, u64 length)
3047 struct extent_map_tree *em_tree;
3048 struct extent_map *em;
3050 em_tree = &fs_info->mapping_tree;
3051 read_lock(&em_tree->lock);
3052 em = lookup_extent_mapping(em_tree, logical, length);
3053 read_unlock(&em_tree->lock);
3056 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3058 return ERR_PTR(-EINVAL);
3061 if (em->start > logical || em->start + em->len < logical) {
3063 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3064 logical, length, em->start, em->start + em->len);
3065 free_extent_map(em);
3066 return ERR_PTR(-EINVAL);
3069 /* callers are responsible for dropping em's ref. */
3073 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3074 struct map_lookup *map, u64 chunk_offset)
3079 * Removing chunk items and updating the device items in the chunks btree
3080 * requires holding the chunk_mutex.
3081 * See the comment at btrfs_chunk_alloc() for the details.
3083 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3085 for (i = 0; i < map->num_stripes; i++) {
3088 ret = btrfs_update_device(trans, map->stripes[i].dev);
3093 return btrfs_free_chunk(trans, chunk_offset);
3096 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3098 struct btrfs_fs_info *fs_info = trans->fs_info;
3099 struct extent_map *em;
3100 struct map_lookup *map;
3101 u64 dev_extent_len = 0;
3103 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3105 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3108 * This is a logic error, but we don't want to just rely on the
3109 * user having built with ASSERT enabled, so if ASSERT doesn't
3110 * do anything we still error out.
3115 map = em->map_lookup;
3118 * First delete the device extent items from the devices btree.
3119 * We take the device_list_mutex to avoid racing with the finishing phase
3120 * of a device replace operation. See the comment below before acquiring
3121 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3122 * because that can result in a deadlock when deleting the device extent
3123 * items from the devices btree - COWing an extent buffer from the btree
3124 * may result in allocating a new metadata chunk, which would attempt to
3125 * lock again fs_info->chunk_mutex.
3127 mutex_lock(&fs_devices->device_list_mutex);
3128 for (i = 0; i < map->num_stripes; i++) {
3129 struct btrfs_device *device = map->stripes[i].dev;
3130 ret = btrfs_free_dev_extent(trans, device,
3131 map->stripes[i].physical,
3134 mutex_unlock(&fs_devices->device_list_mutex);
3135 btrfs_abort_transaction(trans, ret);
3139 if (device->bytes_used > 0) {
3140 mutex_lock(&fs_info->chunk_mutex);
3141 btrfs_device_set_bytes_used(device,
3142 device->bytes_used - dev_extent_len);
3143 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3144 btrfs_clear_space_info_full(fs_info);
3145 mutex_unlock(&fs_info->chunk_mutex);
3148 mutex_unlock(&fs_devices->device_list_mutex);
3151 * We acquire fs_info->chunk_mutex for 2 reasons:
3153 * 1) Just like with the first phase of the chunk allocation, we must
3154 * reserve system space, do all chunk btree updates and deletions, and
3155 * update the system chunk array in the superblock while holding this
3156 * mutex. This is for similar reasons as explained on the comment at
3157 * the top of btrfs_chunk_alloc();
3159 * 2) Prevent races with the final phase of a device replace operation
3160 * that replaces the device object associated with the map's stripes,
3161 * because the device object's id can change at any time during that
3162 * final phase of the device replace operation
3163 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3164 * replaced device and then see it with an ID of
3165 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3166 * the device item, which does not exists on the chunk btree.
3167 * The finishing phase of device replace acquires both the
3168 * device_list_mutex and the chunk_mutex, in that order, so we are
3169 * safe by just acquiring the chunk_mutex.
3171 trans->removing_chunk = true;
3172 mutex_lock(&fs_info->chunk_mutex);
3174 check_system_chunk(trans, map->type);
3176 ret = remove_chunk_item(trans, map, chunk_offset);
3178 * Normally we should not get -ENOSPC since we reserved space before
3179 * through the call to check_system_chunk().
3181 * Despite our system space_info having enough free space, we may not
3182 * be able to allocate extents from its block groups, because all have
3183 * an incompatible profile, which will force us to allocate a new system
3184 * block group with the right profile, or right after we called
3185 * check_system_space() above, a scrub turned the only system block group
3186 * with enough free space into RO mode.
3187 * This is explained with more detail at do_chunk_alloc().
3189 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3191 if (ret == -ENOSPC) {
3192 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3193 struct btrfs_block_group *sys_bg;
3195 sys_bg = btrfs_create_chunk(trans, sys_flags);
3196 if (IS_ERR(sys_bg)) {
3197 ret = PTR_ERR(sys_bg);
3198 btrfs_abort_transaction(trans, ret);
3202 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3204 btrfs_abort_transaction(trans, ret);
3208 ret = remove_chunk_item(trans, map, chunk_offset);
3210 btrfs_abort_transaction(trans, ret);
3214 btrfs_abort_transaction(trans, ret);
3218 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3220 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3221 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3223 btrfs_abort_transaction(trans, ret);
3228 mutex_unlock(&fs_info->chunk_mutex);
3229 trans->removing_chunk = false;
3232 * We are done with chunk btree updates and deletions, so release the
3233 * system space we previously reserved (with check_system_chunk()).
3235 btrfs_trans_release_chunk_metadata(trans);
3237 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3239 btrfs_abort_transaction(trans, ret);
3244 if (trans->removing_chunk) {
3245 mutex_unlock(&fs_info->chunk_mutex);
3246 trans->removing_chunk = false;
3249 free_extent_map(em);
3253 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3255 struct btrfs_root *root = fs_info->chunk_root;
3256 struct btrfs_trans_handle *trans;
3257 struct btrfs_block_group *block_group;
3261 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3263 "relocate: not supported on extent tree v2 yet");
3268 * Prevent races with automatic removal of unused block groups.
3269 * After we relocate and before we remove the chunk with offset
3270 * chunk_offset, automatic removal of the block group can kick in,
3271 * resulting in a failure when calling btrfs_remove_chunk() below.
3273 * Make sure to acquire this mutex before doing a tree search (dev
3274 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3275 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3276 * we release the path used to search the chunk/dev tree and before
3277 * the current task acquires this mutex and calls us.
3279 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3281 /* step one, relocate all the extents inside this chunk */
3282 btrfs_scrub_pause(fs_info);
3283 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3284 btrfs_scrub_continue(fs_info);
3287 * If we had a transaction abort, stop all running scrubs.
3288 * See transaction.c:cleanup_transaction() why we do it here.
3290 if (BTRFS_FS_ERROR(fs_info))
3291 btrfs_scrub_cancel(fs_info);
3295 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3298 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3299 length = block_group->length;
3300 btrfs_put_block_group(block_group);
3303 * On a zoned file system, discard the whole block group, this will
3304 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3305 * resetting the zone fails, don't treat it as a fatal problem from the
3306 * filesystem's point of view.
3308 if (btrfs_is_zoned(fs_info)) {
3309 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3312 "failed to reset zone %llu after relocation",
3316 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3318 if (IS_ERR(trans)) {
3319 ret = PTR_ERR(trans);
3320 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3325 * step two, delete the device extents and the
3326 * chunk tree entries
3328 ret = btrfs_remove_chunk(trans, chunk_offset);
3329 btrfs_end_transaction(trans);
3333 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3335 struct btrfs_root *chunk_root = fs_info->chunk_root;
3336 struct btrfs_path *path;
3337 struct extent_buffer *leaf;
3338 struct btrfs_chunk *chunk;
3339 struct btrfs_key key;
3340 struct btrfs_key found_key;
3342 bool retried = false;
3346 path = btrfs_alloc_path();
3351 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3352 key.offset = (u64)-1;
3353 key.type = BTRFS_CHUNK_ITEM_KEY;
3356 mutex_lock(&fs_info->reclaim_bgs_lock);
3357 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3359 mutex_unlock(&fs_info->reclaim_bgs_lock);
3362 BUG_ON(ret == 0); /* Corruption */
3364 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3367 mutex_unlock(&fs_info->reclaim_bgs_lock);
3373 leaf = path->nodes[0];
3374 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3376 chunk = btrfs_item_ptr(leaf, path->slots[0],
3377 struct btrfs_chunk);
3378 chunk_type = btrfs_chunk_type(leaf, chunk);
3379 btrfs_release_path(path);
3381 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3382 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3388 mutex_unlock(&fs_info->reclaim_bgs_lock);
3390 if (found_key.offset == 0)
3392 key.offset = found_key.offset - 1;
3395 if (failed && !retried) {
3399 } else if (WARN_ON(failed && retried)) {
3403 btrfs_free_path(path);
3408 * return 1 : allocate a data chunk successfully,
3409 * return <0: errors during allocating a data chunk,
3410 * return 0 : no need to allocate a data chunk.
3412 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3415 struct btrfs_block_group *cache;
3419 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3421 chunk_type = cache->flags;
3422 btrfs_put_block_group(cache);
3424 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3427 spin_lock(&fs_info->data_sinfo->lock);
3428 bytes_used = fs_info->data_sinfo->bytes_used;
3429 spin_unlock(&fs_info->data_sinfo->lock);
3432 struct btrfs_trans_handle *trans;
3435 trans = btrfs_join_transaction(fs_info->tree_root);
3437 return PTR_ERR(trans);
3439 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3440 btrfs_end_transaction(trans);
3449 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3450 struct btrfs_balance_control *bctl)
3452 struct btrfs_root *root = fs_info->tree_root;
3453 struct btrfs_trans_handle *trans;
3454 struct btrfs_balance_item *item;
3455 struct btrfs_disk_balance_args disk_bargs;
3456 struct btrfs_path *path;
3457 struct extent_buffer *leaf;
3458 struct btrfs_key key;
3461 path = btrfs_alloc_path();
3465 trans = btrfs_start_transaction(root, 0);
3466 if (IS_ERR(trans)) {
3467 btrfs_free_path(path);
3468 return PTR_ERR(trans);
3471 key.objectid = BTRFS_BALANCE_OBJECTID;
3472 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3475 ret = btrfs_insert_empty_item(trans, root, path, &key,
3480 leaf = path->nodes[0];
3481 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3483 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3485 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3486 btrfs_set_balance_data(leaf, item, &disk_bargs);
3487 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3488 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3489 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3490 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3492 btrfs_set_balance_flags(leaf, item, bctl->flags);
3494 btrfs_mark_buffer_dirty(leaf);
3496 btrfs_free_path(path);
3497 err = btrfs_commit_transaction(trans);
3503 static int del_balance_item(struct btrfs_fs_info *fs_info)
3505 struct btrfs_root *root = fs_info->tree_root;
3506 struct btrfs_trans_handle *trans;
3507 struct btrfs_path *path;
3508 struct btrfs_key key;
3511 path = btrfs_alloc_path();
3515 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3516 if (IS_ERR(trans)) {
3517 btrfs_free_path(path);
3518 return PTR_ERR(trans);
3521 key.objectid = BTRFS_BALANCE_OBJECTID;
3522 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3525 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3533 ret = btrfs_del_item(trans, root, path);
3535 btrfs_free_path(path);
3536 err = btrfs_commit_transaction(trans);
3543 * This is a heuristic used to reduce the number of chunks balanced on
3544 * resume after balance was interrupted.
3546 static void update_balance_args(struct btrfs_balance_control *bctl)
3549 * Turn on soft mode for chunk types that were being converted.
3551 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3552 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3553 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3554 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3555 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3556 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3559 * Turn on usage filter if is not already used. The idea is
3560 * that chunks that we have already balanced should be
3561 * reasonably full. Don't do it for chunks that are being
3562 * converted - that will keep us from relocating unconverted
3563 * (albeit full) chunks.
3565 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3566 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3567 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3568 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3569 bctl->data.usage = 90;
3571 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3572 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3573 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3574 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3575 bctl->sys.usage = 90;
3577 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3578 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3579 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3580 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3581 bctl->meta.usage = 90;
3586 * Clear the balance status in fs_info and delete the balance item from disk.
3588 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3590 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3593 BUG_ON(!fs_info->balance_ctl);
3595 spin_lock(&fs_info->balance_lock);
3596 fs_info->balance_ctl = NULL;
3597 spin_unlock(&fs_info->balance_lock);
3600 ret = del_balance_item(fs_info);
3602 btrfs_handle_fs_error(fs_info, ret, NULL);
3606 * Balance filters. Return 1 if chunk should be filtered out
3607 * (should not be balanced).
3609 static int chunk_profiles_filter(u64 chunk_type,
3610 struct btrfs_balance_args *bargs)
3612 chunk_type = chunk_to_extended(chunk_type) &
3613 BTRFS_EXTENDED_PROFILE_MASK;
3615 if (bargs->profiles & chunk_type)
3621 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3622 struct btrfs_balance_args *bargs)
3624 struct btrfs_block_group *cache;
3626 u64 user_thresh_min;
3627 u64 user_thresh_max;
3630 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3631 chunk_used = cache->used;
3633 if (bargs->usage_min == 0)
3634 user_thresh_min = 0;
3636 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3638 if (bargs->usage_max == 0)
3639 user_thresh_max = 1;
3640 else if (bargs->usage_max > 100)
3641 user_thresh_max = cache->length;
3643 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3645 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3648 btrfs_put_block_group(cache);
3652 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3653 u64 chunk_offset, struct btrfs_balance_args *bargs)
3655 struct btrfs_block_group *cache;
3656 u64 chunk_used, user_thresh;
3659 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3660 chunk_used = cache->used;
3662 if (bargs->usage_min == 0)
3664 else if (bargs->usage > 100)
3665 user_thresh = cache->length;
3667 user_thresh = mult_perc(cache->length, bargs->usage);
3669 if (chunk_used < user_thresh)
3672 btrfs_put_block_group(cache);
3676 static int chunk_devid_filter(struct extent_buffer *leaf,
3677 struct btrfs_chunk *chunk,
3678 struct btrfs_balance_args *bargs)
3680 struct btrfs_stripe *stripe;
3681 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3684 for (i = 0; i < num_stripes; i++) {
3685 stripe = btrfs_stripe_nr(chunk, i);
3686 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3693 static u64 calc_data_stripes(u64 type, int num_stripes)
3695 const int index = btrfs_bg_flags_to_raid_index(type);
3696 const int ncopies = btrfs_raid_array[index].ncopies;
3697 const int nparity = btrfs_raid_array[index].nparity;
3699 return (num_stripes - nparity) / ncopies;
3702 /* [pstart, pend) */
3703 static int chunk_drange_filter(struct extent_buffer *leaf,
3704 struct btrfs_chunk *chunk,
3705 struct btrfs_balance_args *bargs)
3707 struct btrfs_stripe *stripe;
3708 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3715 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3718 type = btrfs_chunk_type(leaf, chunk);
3719 factor = calc_data_stripes(type, num_stripes);
3721 for (i = 0; i < num_stripes; i++) {
3722 stripe = btrfs_stripe_nr(chunk, i);
3723 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3726 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3727 stripe_length = btrfs_chunk_length(leaf, chunk);
3728 stripe_length = div_u64(stripe_length, factor);
3730 if (stripe_offset < bargs->pend &&
3731 stripe_offset + stripe_length > bargs->pstart)
3738 /* [vstart, vend) */
3739 static int chunk_vrange_filter(struct extent_buffer *leaf,
3740 struct btrfs_chunk *chunk,
3742 struct btrfs_balance_args *bargs)
3744 if (chunk_offset < bargs->vend &&
3745 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3746 /* at least part of the chunk is inside this vrange */
3752 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3753 struct btrfs_chunk *chunk,
3754 struct btrfs_balance_args *bargs)
3756 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3758 if (bargs->stripes_min <= num_stripes
3759 && num_stripes <= bargs->stripes_max)
3765 static int chunk_soft_convert_filter(u64 chunk_type,
3766 struct btrfs_balance_args *bargs)
3768 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3771 chunk_type = chunk_to_extended(chunk_type) &
3772 BTRFS_EXTENDED_PROFILE_MASK;
3774 if (bargs->target == chunk_type)
3780 static int should_balance_chunk(struct extent_buffer *leaf,
3781 struct btrfs_chunk *chunk, u64 chunk_offset)
3783 struct btrfs_fs_info *fs_info = leaf->fs_info;
3784 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3785 struct btrfs_balance_args *bargs = NULL;
3786 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3789 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3790 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3794 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3795 bargs = &bctl->data;
3796 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3798 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3799 bargs = &bctl->meta;
3801 /* profiles filter */
3802 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3803 chunk_profiles_filter(chunk_type, bargs)) {
3808 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3809 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3811 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3812 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3817 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3818 chunk_devid_filter(leaf, chunk, bargs)) {
3822 /* drange filter, makes sense only with devid filter */
3823 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3824 chunk_drange_filter(leaf, chunk, bargs)) {
3829 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3830 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3834 /* stripes filter */
3835 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3836 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3840 /* soft profile changing mode */
3841 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3842 chunk_soft_convert_filter(chunk_type, bargs)) {
3847 * limited by count, must be the last filter
3849 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3850 if (bargs->limit == 0)
3854 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3856 * Same logic as the 'limit' filter; the minimum cannot be
3857 * determined here because we do not have the global information
3858 * about the count of all chunks that satisfy the filters.
3860 if (bargs->limit_max == 0)
3869 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3871 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3872 struct btrfs_root *chunk_root = fs_info->chunk_root;
3874 struct btrfs_chunk *chunk;
3875 struct btrfs_path *path = NULL;
3876 struct btrfs_key key;
3877 struct btrfs_key found_key;
3878 struct extent_buffer *leaf;
3881 int enospc_errors = 0;
3882 bool counting = true;
3883 /* The single value limit and min/max limits use the same bytes in the */
3884 u64 limit_data = bctl->data.limit;
3885 u64 limit_meta = bctl->meta.limit;
3886 u64 limit_sys = bctl->sys.limit;
3890 int chunk_reserved = 0;
3892 path = btrfs_alloc_path();
3898 /* zero out stat counters */
3899 spin_lock(&fs_info->balance_lock);
3900 memset(&bctl->stat, 0, sizeof(bctl->stat));
3901 spin_unlock(&fs_info->balance_lock);
3905 * The single value limit and min/max limits use the same bytes
3908 bctl->data.limit = limit_data;
3909 bctl->meta.limit = limit_meta;
3910 bctl->sys.limit = limit_sys;
3912 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3913 key.offset = (u64)-1;
3914 key.type = BTRFS_CHUNK_ITEM_KEY;
3917 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3918 atomic_read(&fs_info->balance_cancel_req)) {
3923 mutex_lock(&fs_info->reclaim_bgs_lock);
3924 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3926 mutex_unlock(&fs_info->reclaim_bgs_lock);
3931 * this shouldn't happen, it means the last relocate
3935 BUG(); /* FIXME break ? */
3937 ret = btrfs_previous_item(chunk_root, path, 0,
3938 BTRFS_CHUNK_ITEM_KEY);
3940 mutex_unlock(&fs_info->reclaim_bgs_lock);
3945 leaf = path->nodes[0];
3946 slot = path->slots[0];
3947 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3949 if (found_key.objectid != key.objectid) {
3950 mutex_unlock(&fs_info->reclaim_bgs_lock);
3954 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3955 chunk_type = btrfs_chunk_type(leaf, chunk);
3958 spin_lock(&fs_info->balance_lock);
3959 bctl->stat.considered++;
3960 spin_unlock(&fs_info->balance_lock);
3963 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3965 btrfs_release_path(path);
3967 mutex_unlock(&fs_info->reclaim_bgs_lock);
3972 mutex_unlock(&fs_info->reclaim_bgs_lock);
3973 spin_lock(&fs_info->balance_lock);
3974 bctl->stat.expected++;
3975 spin_unlock(&fs_info->balance_lock);
3977 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3979 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3981 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3988 * Apply limit_min filter, no need to check if the LIMITS
3989 * filter is used, limit_min is 0 by default
3991 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3992 count_data < bctl->data.limit_min)
3993 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3994 count_meta < bctl->meta.limit_min)
3995 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3996 count_sys < bctl->sys.limit_min)) {
3997 mutex_unlock(&fs_info->reclaim_bgs_lock);
4001 if (!chunk_reserved) {
4003 * We may be relocating the only data chunk we have,
4004 * which could potentially end up with losing data's
4005 * raid profile, so lets allocate an empty one in
4008 ret = btrfs_may_alloc_data_chunk(fs_info,
4011 mutex_unlock(&fs_info->reclaim_bgs_lock);
4013 } else if (ret == 1) {
4018 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4019 mutex_unlock(&fs_info->reclaim_bgs_lock);
4020 if (ret == -ENOSPC) {
4022 } else if (ret == -ETXTBSY) {
4024 "skipping relocation of block group %llu due to active swapfile",
4030 spin_lock(&fs_info->balance_lock);
4031 bctl->stat.completed++;
4032 spin_unlock(&fs_info->balance_lock);
4035 if (found_key.offset == 0)
4037 key.offset = found_key.offset - 1;
4041 btrfs_release_path(path);
4046 btrfs_free_path(path);
4047 if (enospc_errors) {
4048 btrfs_info(fs_info, "%d enospc errors during balance",
4058 * See if a given profile is valid and reduced.
4060 * @flags: profile to validate
4061 * @extended: if true @flags is treated as an extended profile
4063 static int alloc_profile_is_valid(u64 flags, int extended)
4065 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4066 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4068 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4070 /* 1) check that all other bits are zeroed */
4074 /* 2) see if profile is reduced */
4076 return !extended; /* "0" is valid for usual profiles */
4078 return has_single_bit_set(flags);
4082 * Validate target profile against allowed profiles and return true if it's OK.
4083 * Otherwise print the error message and return false.
4085 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4086 const struct btrfs_balance_args *bargs,
4087 u64 allowed, const char *type)
4089 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4092 /* Profile is valid and does not have bits outside of the allowed set */
4093 if (alloc_profile_is_valid(bargs->target, 1) &&
4094 (bargs->target & ~allowed) == 0)
4097 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4098 type, btrfs_bg_type_to_raid_name(bargs->target));
4103 * Fill @buf with textual description of balance filter flags @bargs, up to
4104 * @size_buf including the terminating null. The output may be trimmed if it
4105 * does not fit into the provided buffer.
4107 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4111 u32 size_bp = size_buf;
4113 u64 flags = bargs->flags;
4114 char tmp_buf[128] = {'\0'};
4119 #define CHECK_APPEND_NOARG(a) \
4121 ret = snprintf(bp, size_bp, (a)); \
4122 if (ret < 0 || ret >= size_bp) \
4123 goto out_overflow; \
4128 #define CHECK_APPEND_1ARG(a, v1) \
4130 ret = snprintf(bp, size_bp, (a), (v1)); \
4131 if (ret < 0 || ret >= size_bp) \
4132 goto out_overflow; \
4137 #define CHECK_APPEND_2ARG(a, v1, v2) \
4139 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4140 if (ret < 0 || ret >= size_bp) \
4141 goto out_overflow; \
4146 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4147 CHECK_APPEND_1ARG("convert=%s,",
4148 btrfs_bg_type_to_raid_name(bargs->target));
4150 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4151 CHECK_APPEND_NOARG("soft,");
4153 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4154 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4156 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4159 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4160 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4162 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4163 CHECK_APPEND_2ARG("usage=%u..%u,",
4164 bargs->usage_min, bargs->usage_max);
4166 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4167 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4169 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4170 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4171 bargs->pstart, bargs->pend);
4173 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4174 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4175 bargs->vstart, bargs->vend);
4177 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4178 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4180 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4181 CHECK_APPEND_2ARG("limit=%u..%u,",
4182 bargs->limit_min, bargs->limit_max);
4184 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4185 CHECK_APPEND_2ARG("stripes=%u..%u,",
4186 bargs->stripes_min, bargs->stripes_max);
4188 #undef CHECK_APPEND_2ARG
4189 #undef CHECK_APPEND_1ARG
4190 #undef CHECK_APPEND_NOARG
4194 if (size_bp < size_buf)
4195 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4200 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4202 u32 size_buf = 1024;
4203 char tmp_buf[192] = {'\0'};
4206 u32 size_bp = size_buf;
4208 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4210 buf = kzalloc(size_buf, GFP_KERNEL);
4216 #define CHECK_APPEND_1ARG(a, v1) \
4218 ret = snprintf(bp, size_bp, (a), (v1)); \
4219 if (ret < 0 || ret >= size_bp) \
4220 goto out_overflow; \
4225 if (bctl->flags & BTRFS_BALANCE_FORCE)
4226 CHECK_APPEND_1ARG("%s", "-f ");
4228 if (bctl->flags & BTRFS_BALANCE_DATA) {
4229 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4230 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4233 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4234 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4235 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4238 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4239 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4240 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4243 #undef CHECK_APPEND_1ARG
4247 if (size_bp < size_buf)
4248 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4249 btrfs_info(fs_info, "balance: %s %s",
4250 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4251 "resume" : "start", buf);
4257 * Should be called with balance mutexe held
4259 int btrfs_balance(struct btrfs_fs_info *fs_info,
4260 struct btrfs_balance_control *bctl,
4261 struct btrfs_ioctl_balance_args *bargs)
4263 u64 meta_target, data_target;
4269 bool reducing_redundancy;
4270 bool paused = false;
4273 if (btrfs_fs_closing(fs_info) ||
4274 atomic_read(&fs_info->balance_pause_req) ||
4275 btrfs_should_cancel_balance(fs_info)) {
4280 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4281 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4285 * In case of mixed groups both data and meta should be picked,
4286 * and identical options should be given for both of them.
4288 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4289 if (mixed && (bctl->flags & allowed)) {
4290 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4291 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4292 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4294 "balance: mixed groups data and metadata options must be the same");
4301 * rw_devices will not change at the moment, device add/delete/replace
4304 num_devices = fs_info->fs_devices->rw_devices;
4307 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4308 * special bit for it, to make it easier to distinguish. Thus we need
4309 * to set it manually, or balance would refuse the profile.
4311 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4312 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4313 if (num_devices >= btrfs_raid_array[i].devs_min)
4314 allowed |= btrfs_raid_array[i].bg_flag;
4316 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4317 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4318 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4324 * Allow to reduce metadata or system integrity only if force set for
4325 * profiles with redundancy (copies, parity)
4328 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4329 if (btrfs_raid_array[i].ncopies >= 2 ||
4330 btrfs_raid_array[i].tolerated_failures >= 1)
4331 allowed |= btrfs_raid_array[i].bg_flag;
4334 seq = read_seqbegin(&fs_info->profiles_lock);
4336 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4337 (fs_info->avail_system_alloc_bits & allowed) &&
4338 !(bctl->sys.target & allowed)) ||
4339 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4340 (fs_info->avail_metadata_alloc_bits & allowed) &&
4341 !(bctl->meta.target & allowed)))
4342 reducing_redundancy = true;
4344 reducing_redundancy = false;
4346 /* if we're not converting, the target field is uninitialized */
4347 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4348 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4349 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4350 bctl->data.target : fs_info->avail_data_alloc_bits;
4351 } while (read_seqretry(&fs_info->profiles_lock, seq));
4353 if (reducing_redundancy) {
4354 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4356 "balance: force reducing metadata redundancy");
4359 "balance: reduces metadata redundancy, use --force if you want this");
4365 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4366 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4368 "balance: metadata profile %s has lower redundancy than data profile %s",
4369 btrfs_bg_type_to_raid_name(meta_target),
4370 btrfs_bg_type_to_raid_name(data_target));
4373 ret = insert_balance_item(fs_info, bctl);
4374 if (ret && ret != -EEXIST)
4377 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4378 BUG_ON(ret == -EEXIST);
4379 BUG_ON(fs_info->balance_ctl);
4380 spin_lock(&fs_info->balance_lock);
4381 fs_info->balance_ctl = bctl;
4382 spin_unlock(&fs_info->balance_lock);
4384 BUG_ON(ret != -EEXIST);
4385 spin_lock(&fs_info->balance_lock);
4386 update_balance_args(bctl);
4387 spin_unlock(&fs_info->balance_lock);
4390 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4391 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4392 describe_balance_start_or_resume(fs_info);
4393 mutex_unlock(&fs_info->balance_mutex);
4395 ret = __btrfs_balance(fs_info);
4397 mutex_lock(&fs_info->balance_mutex);
4398 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4399 btrfs_info(fs_info, "balance: paused");
4400 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4404 * Balance can be canceled by:
4406 * - Regular cancel request
4407 * Then ret == -ECANCELED and balance_cancel_req > 0
4409 * - Fatal signal to "btrfs" process
4410 * Either the signal caught by wait_reserve_ticket() and callers
4411 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4413 * Either way, in this case balance_cancel_req = 0, and
4414 * ret == -EINTR or ret == -ECANCELED.
4416 * So here we only check the return value to catch canceled balance.
4418 else if (ret == -ECANCELED || ret == -EINTR)
4419 btrfs_info(fs_info, "balance: canceled");
4421 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4423 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4426 memset(bargs, 0, sizeof(*bargs));
4427 btrfs_update_ioctl_balance_args(fs_info, bargs);
4430 /* We didn't pause, we can clean everything up. */
4432 reset_balance_state(fs_info);
4433 btrfs_exclop_finish(fs_info);
4436 wake_up(&fs_info->balance_wait_q);
4440 if (bctl->flags & BTRFS_BALANCE_RESUME)
4441 reset_balance_state(fs_info);
4444 btrfs_exclop_finish(fs_info);
4449 static int balance_kthread(void *data)
4451 struct btrfs_fs_info *fs_info = data;
4454 sb_start_write(fs_info->sb);
4455 mutex_lock(&fs_info->balance_mutex);
4456 if (fs_info->balance_ctl)
4457 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4458 mutex_unlock(&fs_info->balance_mutex);
4459 sb_end_write(fs_info->sb);
4464 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4466 struct task_struct *tsk;
4468 mutex_lock(&fs_info->balance_mutex);
4469 if (!fs_info->balance_ctl) {
4470 mutex_unlock(&fs_info->balance_mutex);
4473 mutex_unlock(&fs_info->balance_mutex);
4475 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4476 btrfs_info(fs_info, "balance: resume skipped");
4480 spin_lock(&fs_info->super_lock);
4481 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4482 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4483 spin_unlock(&fs_info->super_lock);
4485 * A ro->rw remount sequence should continue with the paused balance
4486 * regardless of who pauses it, system or the user as of now, so set
4489 spin_lock(&fs_info->balance_lock);
4490 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4491 spin_unlock(&fs_info->balance_lock);
4493 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4494 return PTR_ERR_OR_ZERO(tsk);
4497 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4499 struct btrfs_balance_control *bctl;
4500 struct btrfs_balance_item *item;
4501 struct btrfs_disk_balance_args disk_bargs;
4502 struct btrfs_path *path;
4503 struct extent_buffer *leaf;
4504 struct btrfs_key key;
4507 path = btrfs_alloc_path();
4511 key.objectid = BTRFS_BALANCE_OBJECTID;
4512 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4515 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4518 if (ret > 0) { /* ret = -ENOENT; */
4523 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4529 leaf = path->nodes[0];
4530 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4532 bctl->flags = btrfs_balance_flags(leaf, item);
4533 bctl->flags |= BTRFS_BALANCE_RESUME;
4535 btrfs_balance_data(leaf, item, &disk_bargs);
4536 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4537 btrfs_balance_meta(leaf, item, &disk_bargs);
4538 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4539 btrfs_balance_sys(leaf, item, &disk_bargs);
4540 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4543 * This should never happen, as the paused balance state is recovered
4544 * during mount without any chance of other exclusive ops to collide.
4546 * This gives the exclusive op status to balance and keeps in paused
4547 * state until user intervention (cancel or umount). If the ownership
4548 * cannot be assigned, show a message but do not fail. The balance
4549 * is in a paused state and must have fs_info::balance_ctl properly
4552 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4554 "balance: cannot set exclusive op status, resume manually");
4556 btrfs_release_path(path);
4558 mutex_lock(&fs_info->balance_mutex);
4559 BUG_ON(fs_info->balance_ctl);
4560 spin_lock(&fs_info->balance_lock);
4561 fs_info->balance_ctl = bctl;
4562 spin_unlock(&fs_info->balance_lock);
4563 mutex_unlock(&fs_info->balance_mutex);
4565 btrfs_free_path(path);
4569 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4573 mutex_lock(&fs_info->balance_mutex);
4574 if (!fs_info->balance_ctl) {
4575 mutex_unlock(&fs_info->balance_mutex);
4579 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4580 atomic_inc(&fs_info->balance_pause_req);
4581 mutex_unlock(&fs_info->balance_mutex);
4583 wait_event(fs_info->balance_wait_q,
4584 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4586 mutex_lock(&fs_info->balance_mutex);
4587 /* we are good with balance_ctl ripped off from under us */
4588 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4589 atomic_dec(&fs_info->balance_pause_req);
4594 mutex_unlock(&fs_info->balance_mutex);
4598 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4600 mutex_lock(&fs_info->balance_mutex);
4601 if (!fs_info->balance_ctl) {
4602 mutex_unlock(&fs_info->balance_mutex);
4607 * A paused balance with the item stored on disk can be resumed at
4608 * mount time if the mount is read-write. Otherwise it's still paused
4609 * and we must not allow cancelling as it deletes the item.
4611 if (sb_rdonly(fs_info->sb)) {
4612 mutex_unlock(&fs_info->balance_mutex);
4616 atomic_inc(&fs_info->balance_cancel_req);
4618 * if we are running just wait and return, balance item is
4619 * deleted in btrfs_balance in this case
4621 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4622 mutex_unlock(&fs_info->balance_mutex);
4623 wait_event(fs_info->balance_wait_q,
4624 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4625 mutex_lock(&fs_info->balance_mutex);
4627 mutex_unlock(&fs_info->balance_mutex);
4629 * Lock released to allow other waiters to continue, we'll
4630 * reexamine the status again.
4632 mutex_lock(&fs_info->balance_mutex);
4634 if (fs_info->balance_ctl) {
4635 reset_balance_state(fs_info);
4636 btrfs_exclop_finish(fs_info);
4637 btrfs_info(fs_info, "balance: canceled");
4641 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4642 atomic_dec(&fs_info->balance_cancel_req);
4643 mutex_unlock(&fs_info->balance_mutex);
4647 int btrfs_uuid_scan_kthread(void *data)
4649 struct btrfs_fs_info *fs_info = data;
4650 struct btrfs_root *root = fs_info->tree_root;
4651 struct btrfs_key key;
4652 struct btrfs_path *path = NULL;
4654 struct extent_buffer *eb;
4656 struct btrfs_root_item root_item;
4658 struct btrfs_trans_handle *trans = NULL;
4659 bool closing = false;
4661 path = btrfs_alloc_path();
4668 key.type = BTRFS_ROOT_ITEM_KEY;
4672 if (btrfs_fs_closing(fs_info)) {
4676 ret = btrfs_search_forward(root, &key, path,
4677 BTRFS_OLDEST_GENERATION);
4684 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4685 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4686 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4687 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4690 eb = path->nodes[0];
4691 slot = path->slots[0];
4692 item_size = btrfs_item_size(eb, slot);
4693 if (item_size < sizeof(root_item))
4696 read_extent_buffer(eb, &root_item,
4697 btrfs_item_ptr_offset(eb, slot),
4698 (int)sizeof(root_item));
4699 if (btrfs_root_refs(&root_item) == 0)
4702 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4703 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4707 btrfs_release_path(path);
4709 * 1 - subvol uuid item
4710 * 1 - received_subvol uuid item
4712 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4713 if (IS_ERR(trans)) {
4714 ret = PTR_ERR(trans);
4722 btrfs_release_path(path);
4723 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4724 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4725 BTRFS_UUID_KEY_SUBVOL,
4728 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4734 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4735 ret = btrfs_uuid_tree_add(trans,
4736 root_item.received_uuid,
4737 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4740 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4747 btrfs_release_path(path);
4749 ret = btrfs_end_transaction(trans);
4755 if (key.offset < (u64)-1) {
4757 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4759 key.type = BTRFS_ROOT_ITEM_KEY;
4760 } else if (key.objectid < (u64)-1) {
4762 key.type = BTRFS_ROOT_ITEM_KEY;
4771 btrfs_free_path(path);
4772 if (trans && !IS_ERR(trans))
4773 btrfs_end_transaction(trans);
4775 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4777 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4778 up(&fs_info->uuid_tree_rescan_sem);
4782 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4784 struct btrfs_trans_handle *trans;
4785 struct btrfs_root *tree_root = fs_info->tree_root;
4786 struct btrfs_root *uuid_root;
4787 struct task_struct *task;
4794 trans = btrfs_start_transaction(tree_root, 2);
4796 return PTR_ERR(trans);
4798 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4799 if (IS_ERR(uuid_root)) {
4800 ret = PTR_ERR(uuid_root);
4801 btrfs_abort_transaction(trans, ret);
4802 btrfs_end_transaction(trans);
4806 fs_info->uuid_root = uuid_root;
4808 ret = btrfs_commit_transaction(trans);
4812 down(&fs_info->uuid_tree_rescan_sem);
4813 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4815 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4816 btrfs_warn(fs_info, "failed to start uuid_scan task");
4817 up(&fs_info->uuid_tree_rescan_sem);
4818 return PTR_ERR(task);
4825 * shrinking a device means finding all of the device extents past
4826 * the new size, and then following the back refs to the chunks.
4827 * The chunk relocation code actually frees the device extent
4829 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4831 struct btrfs_fs_info *fs_info = device->fs_info;
4832 struct btrfs_root *root = fs_info->dev_root;
4833 struct btrfs_trans_handle *trans;
4834 struct btrfs_dev_extent *dev_extent = NULL;
4835 struct btrfs_path *path;
4841 bool retried = false;
4842 struct extent_buffer *l;
4843 struct btrfs_key key;
4844 struct btrfs_super_block *super_copy = fs_info->super_copy;
4845 u64 old_total = btrfs_super_total_bytes(super_copy);
4846 u64 old_size = btrfs_device_get_total_bytes(device);
4850 new_size = round_down(new_size, fs_info->sectorsize);
4852 diff = round_down(old_size - new_size, fs_info->sectorsize);
4854 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4857 path = btrfs_alloc_path();
4861 path->reada = READA_BACK;
4863 trans = btrfs_start_transaction(root, 0);
4864 if (IS_ERR(trans)) {
4865 btrfs_free_path(path);
4866 return PTR_ERR(trans);
4869 mutex_lock(&fs_info->chunk_mutex);
4871 btrfs_device_set_total_bytes(device, new_size);
4872 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4873 device->fs_devices->total_rw_bytes -= diff;
4874 atomic64_sub(diff, &fs_info->free_chunk_space);
4878 * Once the device's size has been set to the new size, ensure all
4879 * in-memory chunks are synced to disk so that the loop below sees them
4880 * and relocates them accordingly.
4882 if (contains_pending_extent(device, &start, diff)) {
4883 mutex_unlock(&fs_info->chunk_mutex);
4884 ret = btrfs_commit_transaction(trans);
4888 mutex_unlock(&fs_info->chunk_mutex);
4889 btrfs_end_transaction(trans);
4893 key.objectid = device->devid;
4894 key.offset = (u64)-1;
4895 key.type = BTRFS_DEV_EXTENT_KEY;
4898 mutex_lock(&fs_info->reclaim_bgs_lock);
4899 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4901 mutex_unlock(&fs_info->reclaim_bgs_lock);
4905 ret = btrfs_previous_item(root, path, 0, key.type);
4907 mutex_unlock(&fs_info->reclaim_bgs_lock);
4911 btrfs_release_path(path);
4916 slot = path->slots[0];
4917 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4919 if (key.objectid != device->devid) {
4920 mutex_unlock(&fs_info->reclaim_bgs_lock);
4921 btrfs_release_path(path);
4925 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4926 length = btrfs_dev_extent_length(l, dev_extent);
4928 if (key.offset + length <= new_size) {
4929 mutex_unlock(&fs_info->reclaim_bgs_lock);
4930 btrfs_release_path(path);
4934 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4935 btrfs_release_path(path);
4938 * We may be relocating the only data chunk we have,
4939 * which could potentially end up with losing data's
4940 * raid profile, so lets allocate an empty one in
4943 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4945 mutex_unlock(&fs_info->reclaim_bgs_lock);
4949 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4950 mutex_unlock(&fs_info->reclaim_bgs_lock);
4951 if (ret == -ENOSPC) {
4954 if (ret == -ETXTBSY) {
4956 "could not shrink block group %llu due to active swapfile",
4961 } while (key.offset-- > 0);
4963 if (failed && !retried) {
4967 } else if (failed && retried) {
4972 /* Shrinking succeeded, else we would be at "done". */
4973 trans = btrfs_start_transaction(root, 0);
4974 if (IS_ERR(trans)) {
4975 ret = PTR_ERR(trans);
4979 mutex_lock(&fs_info->chunk_mutex);
4980 /* Clear all state bits beyond the shrunk device size */
4981 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4984 btrfs_device_set_disk_total_bytes(device, new_size);
4985 if (list_empty(&device->post_commit_list))
4986 list_add_tail(&device->post_commit_list,
4987 &trans->transaction->dev_update_list);
4989 WARN_ON(diff > old_total);
4990 btrfs_set_super_total_bytes(super_copy,
4991 round_down(old_total - diff, fs_info->sectorsize));
4992 mutex_unlock(&fs_info->chunk_mutex);
4994 btrfs_reserve_chunk_metadata(trans, false);
4995 /* Now btrfs_update_device() will change the on-disk size. */
4996 ret = btrfs_update_device(trans, device);
4997 btrfs_trans_release_chunk_metadata(trans);
4999 btrfs_abort_transaction(trans, ret);
5000 btrfs_end_transaction(trans);
5002 ret = btrfs_commit_transaction(trans);
5005 btrfs_free_path(path);
5007 mutex_lock(&fs_info->chunk_mutex);
5008 btrfs_device_set_total_bytes(device, old_size);
5009 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5010 device->fs_devices->total_rw_bytes += diff;
5011 atomic64_add(diff, &fs_info->free_chunk_space);
5012 mutex_unlock(&fs_info->chunk_mutex);
5017 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5018 struct btrfs_key *key,
5019 struct btrfs_chunk *chunk, int item_size)
5021 struct btrfs_super_block *super_copy = fs_info->super_copy;
5022 struct btrfs_disk_key disk_key;
5026 lockdep_assert_held(&fs_info->chunk_mutex);
5028 array_size = btrfs_super_sys_array_size(super_copy);
5029 if (array_size + item_size + sizeof(disk_key)
5030 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5033 ptr = super_copy->sys_chunk_array + array_size;
5034 btrfs_cpu_key_to_disk(&disk_key, key);
5035 memcpy(ptr, &disk_key, sizeof(disk_key));
5036 ptr += sizeof(disk_key);
5037 memcpy(ptr, chunk, item_size);
5038 item_size += sizeof(disk_key);
5039 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5045 * sort the devices in descending order by max_avail, total_avail
5047 static int btrfs_cmp_device_info(const void *a, const void *b)
5049 const struct btrfs_device_info *di_a = a;
5050 const struct btrfs_device_info *di_b = b;
5052 if (di_a->max_avail > di_b->max_avail)
5054 if (di_a->max_avail < di_b->max_avail)
5056 if (di_a->total_avail > di_b->total_avail)
5058 if (di_a->total_avail < di_b->total_avail)
5063 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5065 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5068 btrfs_set_fs_incompat(info, RAID56);
5071 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5073 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5076 btrfs_set_fs_incompat(info, RAID1C34);
5080 * Structure used internally for btrfs_create_chunk() function.
5081 * Wraps needed parameters.
5083 struct alloc_chunk_ctl {
5086 /* Total number of stripes to allocate */
5088 /* sub_stripes info for map */
5090 /* Stripes per device */
5092 /* Maximum number of devices to use */
5094 /* Minimum number of devices to use */
5096 /* ndevs has to be a multiple of this */
5098 /* Number of copies */
5100 /* Number of stripes worth of bytes to store parity information */
5102 u64 max_stripe_size;
5110 static void init_alloc_chunk_ctl_policy_regular(
5111 struct btrfs_fs_devices *fs_devices,
5112 struct alloc_chunk_ctl *ctl)
5114 struct btrfs_space_info *space_info;
5116 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5119 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5120 ctl->max_stripe_size = ctl->max_chunk_size;
5122 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5123 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5125 /* We don't want a chunk larger than 10% of writable space */
5126 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5127 ctl->max_chunk_size);
5128 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5131 static void init_alloc_chunk_ctl_policy_zoned(
5132 struct btrfs_fs_devices *fs_devices,
5133 struct alloc_chunk_ctl *ctl)
5135 u64 zone_size = fs_devices->fs_info->zone_size;
5137 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5138 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5139 u64 min_chunk_size = min_data_stripes * zone_size;
5140 u64 type = ctl->type;
5142 ctl->max_stripe_size = zone_size;
5143 if (type & BTRFS_BLOCK_GROUP_DATA) {
5144 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5146 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5147 ctl->max_chunk_size = ctl->max_stripe_size;
5148 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5149 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5150 ctl->devs_max = min_t(int, ctl->devs_max,
5151 BTRFS_MAX_DEVS_SYS_CHUNK);
5156 /* We don't want a chunk larger than 10% of writable space */
5157 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5160 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5161 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5164 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5165 struct alloc_chunk_ctl *ctl)
5167 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5169 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5170 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5171 ctl->devs_max = btrfs_raid_array[index].devs_max;
5173 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5174 ctl->devs_min = btrfs_raid_array[index].devs_min;
5175 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5176 ctl->ncopies = btrfs_raid_array[index].ncopies;
5177 ctl->nparity = btrfs_raid_array[index].nparity;
5180 switch (fs_devices->chunk_alloc_policy) {
5181 case BTRFS_CHUNK_ALLOC_REGULAR:
5182 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5184 case BTRFS_CHUNK_ALLOC_ZONED:
5185 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5192 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5193 struct alloc_chunk_ctl *ctl,
5194 struct btrfs_device_info *devices_info)
5196 struct btrfs_fs_info *info = fs_devices->fs_info;
5197 struct btrfs_device *device;
5199 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5206 * in the first pass through the devices list, we gather information
5207 * about the available holes on each device.
5209 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5210 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5212 "BTRFS: read-only device in alloc_list\n");
5216 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5217 &device->dev_state) ||
5218 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5221 if (device->total_bytes > device->bytes_used)
5222 total_avail = device->total_bytes - device->bytes_used;
5226 /* If there is no space on this device, skip it. */
5227 if (total_avail < ctl->dev_extent_min)
5230 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5232 if (ret && ret != -ENOSPC)
5236 max_avail = dev_extent_want;
5238 if (max_avail < ctl->dev_extent_min) {
5239 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5241 "%s: devid %llu has no free space, have=%llu want=%llu",
5242 __func__, device->devid, max_avail,
5243 ctl->dev_extent_min);
5247 if (ndevs == fs_devices->rw_devices) {
5248 WARN(1, "%s: found more than %llu devices\n",
5249 __func__, fs_devices->rw_devices);
5252 devices_info[ndevs].dev_offset = dev_offset;
5253 devices_info[ndevs].max_avail = max_avail;
5254 devices_info[ndevs].total_avail = total_avail;
5255 devices_info[ndevs].dev = device;
5261 * now sort the devices by hole size / available space
5263 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5264 btrfs_cmp_device_info, NULL);
5269 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5270 struct btrfs_device_info *devices_info)
5272 /* Number of stripes that count for block group size */
5276 * The primary goal is to maximize the number of stripes, so use as
5277 * many devices as possible, even if the stripes are not maximum sized.
5279 * The DUP profile stores more than one stripe per device, the
5280 * max_avail is the total size so we have to adjust.
5282 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5284 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5286 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5287 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5290 * Use the number of data stripes to figure out how big this chunk is
5291 * really going to be in terms of logical address space, and compare
5292 * that answer with the max chunk size. If it's higher, we try to
5293 * reduce stripe_size.
5295 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5297 * Reduce stripe_size, round it up to a 16MB boundary again and
5298 * then use it, unless it ends up being even bigger than the
5299 * previous value we had already.
5301 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5302 data_stripes), SZ_16M),
5306 /* Stripe size should not go beyond 1G. */
5307 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5309 /* Align to BTRFS_STRIPE_LEN */
5310 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5311 ctl->chunk_size = ctl->stripe_size * data_stripes;
5316 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5317 struct btrfs_device_info *devices_info)
5319 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5320 /* Number of stripes that count for block group size */
5324 * It should hold because:
5325 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5327 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5329 ctl->stripe_size = zone_size;
5330 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5331 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5333 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5334 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5335 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5336 ctl->stripe_size) + ctl->nparity,
5338 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5339 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5340 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5343 ctl->chunk_size = ctl->stripe_size * data_stripes;
5348 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5349 struct alloc_chunk_ctl *ctl,
5350 struct btrfs_device_info *devices_info)
5352 struct btrfs_fs_info *info = fs_devices->fs_info;
5355 * Round down to number of usable stripes, devs_increment can be any
5356 * number so we can't use round_down() that requires power of 2, while
5357 * rounddown is safe.
5359 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5361 if (ctl->ndevs < ctl->devs_min) {
5362 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5364 "%s: not enough devices with free space: have=%d minimum required=%d",
5365 __func__, ctl->ndevs, ctl->devs_min);
5370 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5372 switch (fs_devices->chunk_alloc_policy) {
5373 case BTRFS_CHUNK_ALLOC_REGULAR:
5374 return decide_stripe_size_regular(ctl, devices_info);
5375 case BTRFS_CHUNK_ALLOC_ZONED:
5376 return decide_stripe_size_zoned(ctl, devices_info);
5382 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5383 struct alloc_chunk_ctl *ctl,
5384 struct btrfs_device_info *devices_info)
5386 struct btrfs_fs_info *info = trans->fs_info;
5387 struct map_lookup *map = NULL;
5388 struct extent_map_tree *em_tree;
5389 struct btrfs_block_group *block_group;
5390 struct extent_map *em;
5391 u64 start = ctl->start;
5392 u64 type = ctl->type;
5397 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5399 return ERR_PTR(-ENOMEM);
5400 map->num_stripes = ctl->num_stripes;
5402 for (i = 0; i < ctl->ndevs; ++i) {
5403 for (j = 0; j < ctl->dev_stripes; ++j) {
5404 int s = i * ctl->dev_stripes + j;
5405 map->stripes[s].dev = devices_info[i].dev;
5406 map->stripes[s].physical = devices_info[i].dev_offset +
5407 j * ctl->stripe_size;
5410 map->io_align = BTRFS_STRIPE_LEN;
5411 map->io_width = BTRFS_STRIPE_LEN;
5413 map->sub_stripes = ctl->sub_stripes;
5415 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5417 em = alloc_extent_map();
5420 return ERR_PTR(-ENOMEM);
5422 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5423 em->map_lookup = map;
5425 em->len = ctl->chunk_size;
5426 em->block_start = 0;
5427 em->block_len = em->len;
5428 em->orig_block_len = ctl->stripe_size;
5430 em_tree = &info->mapping_tree;
5431 write_lock(&em_tree->lock);
5432 ret = add_extent_mapping(em_tree, em, 0);
5434 write_unlock(&em_tree->lock);
5435 free_extent_map(em);
5436 return ERR_PTR(ret);
5438 write_unlock(&em_tree->lock);
5440 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5441 if (IS_ERR(block_group))
5442 goto error_del_extent;
5444 for (i = 0; i < map->num_stripes; i++) {
5445 struct btrfs_device *dev = map->stripes[i].dev;
5447 btrfs_device_set_bytes_used(dev,
5448 dev->bytes_used + ctl->stripe_size);
5449 if (list_empty(&dev->post_commit_list))
5450 list_add_tail(&dev->post_commit_list,
5451 &trans->transaction->dev_update_list);
5454 atomic64_sub(ctl->stripe_size * map->num_stripes,
5455 &info->free_chunk_space);
5457 free_extent_map(em);
5458 check_raid56_incompat_flag(info, type);
5459 check_raid1c34_incompat_flag(info, type);
5464 write_lock(&em_tree->lock);
5465 remove_extent_mapping(em_tree, em);
5466 write_unlock(&em_tree->lock);
5468 /* One for our allocation */
5469 free_extent_map(em);
5470 /* One for the tree reference */
5471 free_extent_map(em);
5476 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5479 struct btrfs_fs_info *info = trans->fs_info;
5480 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5481 struct btrfs_device_info *devices_info = NULL;
5482 struct alloc_chunk_ctl ctl;
5483 struct btrfs_block_group *block_group;
5486 lockdep_assert_held(&info->chunk_mutex);
5488 if (!alloc_profile_is_valid(type, 0)) {
5490 return ERR_PTR(-EINVAL);
5493 if (list_empty(&fs_devices->alloc_list)) {
5494 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5495 btrfs_debug(info, "%s: no writable device", __func__);
5496 return ERR_PTR(-ENOSPC);
5499 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5500 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5502 return ERR_PTR(-EINVAL);
5505 ctl.start = find_next_chunk(info);
5507 init_alloc_chunk_ctl(fs_devices, &ctl);
5509 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5512 return ERR_PTR(-ENOMEM);
5514 ret = gather_device_info(fs_devices, &ctl, devices_info);
5516 block_group = ERR_PTR(ret);
5520 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5522 block_group = ERR_PTR(ret);
5526 block_group = create_chunk(trans, &ctl, devices_info);
5529 kfree(devices_info);
5534 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5535 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5538 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5541 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5542 struct btrfs_block_group *bg)
5544 struct btrfs_fs_info *fs_info = trans->fs_info;
5545 struct btrfs_root *chunk_root = fs_info->chunk_root;
5546 struct btrfs_key key;
5547 struct btrfs_chunk *chunk;
5548 struct btrfs_stripe *stripe;
5549 struct extent_map *em;
5550 struct map_lookup *map;
5556 * We take the chunk_mutex for 2 reasons:
5558 * 1) Updates and insertions in the chunk btree must be done while holding
5559 * the chunk_mutex, as well as updating the system chunk array in the
5560 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5563 * 2) To prevent races with the final phase of a device replace operation
5564 * that replaces the device object associated with the map's stripes,
5565 * because the device object's id can change at any time during that
5566 * final phase of the device replace operation
5567 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5568 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5569 * which would cause a failure when updating the device item, which does
5570 * not exists, or persisting a stripe of the chunk item with such ID.
5571 * Here we can't use the device_list_mutex because our caller already
5572 * has locked the chunk_mutex, and the final phase of device replace
5573 * acquires both mutexes - first the device_list_mutex and then the
5574 * chunk_mutex. Using any of those two mutexes protects us from a
5575 * concurrent device replace.
5577 lockdep_assert_held(&fs_info->chunk_mutex);
5579 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5582 btrfs_abort_transaction(trans, ret);
5586 map = em->map_lookup;
5587 item_size = btrfs_chunk_item_size(map->num_stripes);
5589 chunk = kzalloc(item_size, GFP_NOFS);
5592 btrfs_abort_transaction(trans, ret);
5596 for (i = 0; i < map->num_stripes; i++) {
5597 struct btrfs_device *device = map->stripes[i].dev;
5599 ret = btrfs_update_device(trans, device);
5604 stripe = &chunk->stripe;
5605 for (i = 0; i < map->num_stripes; i++) {
5606 struct btrfs_device *device = map->stripes[i].dev;
5607 const u64 dev_offset = map->stripes[i].physical;
5609 btrfs_set_stack_stripe_devid(stripe, device->devid);
5610 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5611 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5615 btrfs_set_stack_chunk_length(chunk, bg->length);
5616 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5617 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5618 btrfs_set_stack_chunk_type(chunk, map->type);
5619 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5620 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5621 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5622 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5623 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5625 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5626 key.type = BTRFS_CHUNK_ITEM_KEY;
5627 key.offset = bg->start;
5629 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5633 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5635 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5636 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5643 free_extent_map(em);
5647 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5649 struct btrfs_fs_info *fs_info = trans->fs_info;
5651 struct btrfs_block_group *meta_bg;
5652 struct btrfs_block_group *sys_bg;
5655 * When adding a new device for sprouting, the seed device is read-only
5656 * so we must first allocate a metadata and a system chunk. But before
5657 * adding the block group items to the extent, device and chunk btrees,
5660 * 1) Create both chunks without doing any changes to the btrees, as
5661 * otherwise we would get -ENOSPC since the block groups from the
5662 * seed device are read-only;
5664 * 2) Add the device item for the new sprout device - finishing the setup
5665 * of a new block group requires updating the device item in the chunk
5666 * btree, so it must exist when we attempt to do it. The previous step
5667 * ensures this does not fail with -ENOSPC.
5669 * After that we can add the block group items to their btrees:
5670 * update existing device item in the chunk btree, add a new block group
5671 * item to the extent btree, add a new chunk item to the chunk btree and
5672 * finally add the new device extent items to the devices btree.
5675 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5676 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5677 if (IS_ERR(meta_bg))
5678 return PTR_ERR(meta_bg);
5680 alloc_profile = btrfs_system_alloc_profile(fs_info);
5681 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5683 return PTR_ERR(sys_bg);
5688 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5690 const int index = btrfs_bg_flags_to_raid_index(map->type);
5692 return btrfs_raid_array[index].tolerated_failures;
5695 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5697 struct extent_map *em;
5698 struct map_lookup *map;
5703 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5707 map = em->map_lookup;
5708 for (i = 0; i < map->num_stripes; i++) {
5709 if (test_bit(BTRFS_DEV_STATE_MISSING,
5710 &map->stripes[i].dev->dev_state)) {
5714 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5715 &map->stripes[i].dev->dev_state)) {
5722 * If the number of missing devices is larger than max errors, we can
5723 * not write the data into that chunk successfully.
5725 if (miss_ndevs > btrfs_chunk_max_errors(map))
5728 free_extent_map(em);
5732 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5734 struct extent_map *em;
5737 write_lock(&tree->lock);
5738 em = lookup_extent_mapping(tree, 0, (u64)-1);
5740 remove_extent_mapping(tree, em);
5741 write_unlock(&tree->lock);
5745 free_extent_map(em);
5746 /* once for the tree */
5747 free_extent_map(em);
5751 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5753 struct extent_map *em;
5754 struct map_lookup *map;
5755 enum btrfs_raid_types index;
5758 em = btrfs_get_chunk_map(fs_info, logical, len);
5761 * We could return errors for these cases, but that could get
5762 * ugly and we'd probably do the same thing which is just not do
5763 * anything else and exit, so return 1 so the callers don't try
5764 * to use other copies.
5768 map = em->map_lookup;
5769 index = btrfs_bg_flags_to_raid_index(map->type);
5771 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5772 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5773 ret = btrfs_raid_array[index].ncopies;
5774 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5776 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5778 * There could be two corrupted data stripes, we need
5779 * to loop retry in order to rebuild the correct data.
5781 * Fail a stripe at a time on every retry except the
5782 * stripe under reconstruction.
5784 ret = map->num_stripes;
5785 free_extent_map(em);
5789 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5792 struct extent_map *em;
5793 struct map_lookup *map;
5794 unsigned long len = fs_info->sectorsize;
5796 if (!btrfs_fs_incompat(fs_info, RAID56))
5799 em = btrfs_get_chunk_map(fs_info, logical, len);
5801 if (!WARN_ON(IS_ERR(em))) {
5802 map = em->map_lookup;
5803 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5804 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5805 free_extent_map(em);
5810 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5812 struct extent_map *em;
5813 struct map_lookup *map;
5816 if (!btrfs_fs_incompat(fs_info, RAID56))
5819 em = btrfs_get_chunk_map(fs_info, logical, len);
5821 if(!WARN_ON(IS_ERR(em))) {
5822 map = em->map_lookup;
5823 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5825 free_extent_map(em);
5830 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5831 struct map_lookup *map, int first,
5832 int dev_replace_is_ongoing)
5836 int preferred_mirror;
5838 struct btrfs_device *srcdev;
5841 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5843 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5844 num_stripes = map->sub_stripes;
5846 num_stripes = map->num_stripes;
5848 switch (fs_info->fs_devices->read_policy) {
5850 /* Shouldn't happen, just warn and use pid instead of failing */
5851 btrfs_warn_rl(fs_info,
5852 "unknown read_policy type %u, reset to pid",
5853 fs_info->fs_devices->read_policy);
5854 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5856 case BTRFS_READ_POLICY_PID:
5857 preferred_mirror = first + (current->pid % num_stripes);
5861 if (dev_replace_is_ongoing &&
5862 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5863 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5864 srcdev = fs_info->dev_replace.srcdev;
5869 * try to avoid the drive that is the source drive for a
5870 * dev-replace procedure, only choose it if no other non-missing
5871 * mirror is available
5873 for (tolerance = 0; tolerance < 2; tolerance++) {
5874 if (map->stripes[preferred_mirror].dev->bdev &&
5875 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5876 return preferred_mirror;
5877 for (i = first; i < first + num_stripes; i++) {
5878 if (map->stripes[i].dev->bdev &&
5879 (tolerance || map->stripes[i].dev != srcdev))
5884 /* we couldn't find one that doesn't fail. Just return something
5885 * and the io error handling code will clean up eventually
5887 return preferred_mirror;
5890 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5893 struct btrfs_io_context *bioc;
5896 /* The size of btrfs_io_context */
5897 sizeof(struct btrfs_io_context) +
5898 /* Plus the variable array for the stripes */
5899 sizeof(struct btrfs_io_stripe) * (total_stripes),
5905 refcount_set(&bioc->refs, 1);
5907 bioc->fs_info = fs_info;
5908 bioc->replace_stripe_src = -1;
5909 bioc->full_stripe_logical = (u64)-1;
5914 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5916 WARN_ON(!refcount_read(&bioc->refs));
5917 refcount_inc(&bioc->refs);
5920 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5924 if (refcount_dec_and_test(&bioc->refs))
5929 * Please note that, discard won't be sent to target device of device
5932 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5933 u64 logical, u64 *length_ret,
5936 struct extent_map *em;
5937 struct map_lookup *map;
5938 struct btrfs_discard_stripe *stripes;
5939 u64 length = *length_ret;
5944 u64 stripe_end_offset;
5948 u32 sub_stripes = 0;
5949 u32 stripes_per_dev = 0;
5950 u32 remaining_stripes = 0;
5951 u32 last_stripe = 0;
5955 em = btrfs_get_chunk_map(fs_info, logical, length);
5957 return ERR_CAST(em);
5959 map = em->map_lookup;
5961 /* we don't discard raid56 yet */
5962 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5967 offset = logical - em->start;
5968 length = min_t(u64, em->start + em->len - logical, length);
5969 *length_ret = length;
5972 * stripe_nr counts the total number of stripes we have to stride
5973 * to get to this block
5975 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
5977 /* stripe_offset is the offset of this block in its stripe */
5978 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
5980 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
5981 BTRFS_STRIPE_LEN_SHIFT;
5982 stripe_cnt = stripe_nr_end - stripe_nr;
5983 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
5986 * after this, stripe_nr is the number of stripes on this
5987 * device we have to walk to find the data, and stripe_index is
5988 * the number of our device in the stripe array
5992 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5993 BTRFS_BLOCK_GROUP_RAID10)) {
5994 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5997 sub_stripes = map->sub_stripes;
5999 factor = map->num_stripes / sub_stripes;
6000 *num_stripes = min_t(u64, map->num_stripes,
6001 sub_stripes * stripe_cnt);
6002 stripe_index = stripe_nr % factor;
6003 stripe_nr /= factor;
6004 stripe_index *= sub_stripes;
6006 remaining_stripes = stripe_cnt % factor;
6007 stripes_per_dev = stripe_cnt / factor;
6008 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6009 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6010 BTRFS_BLOCK_GROUP_DUP)) {
6011 *num_stripes = map->num_stripes;
6013 stripe_index = stripe_nr % map->num_stripes;
6014 stripe_nr /= map->num_stripes;
6017 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6023 for (i = 0; i < *num_stripes; i++) {
6024 stripes[i].physical =
6025 map->stripes[stripe_index].physical +
6026 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6027 stripes[i].dev = map->stripes[stripe_index].dev;
6029 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6030 BTRFS_BLOCK_GROUP_RAID10)) {
6031 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6033 if (i / sub_stripes < remaining_stripes)
6034 stripes[i].length += BTRFS_STRIPE_LEN;
6037 * Special for the first stripe and
6040 * |-------|...|-------|
6044 if (i < sub_stripes)
6045 stripes[i].length -= stripe_offset;
6047 if (stripe_index >= last_stripe &&
6048 stripe_index <= (last_stripe +
6050 stripes[i].length -= stripe_end_offset;
6052 if (i == sub_stripes - 1)
6055 stripes[i].length = length;
6059 if (stripe_index == map->num_stripes) {
6065 free_extent_map(em);
6068 free_extent_map(em);
6069 return ERR_PTR(ret);
6072 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6074 struct btrfs_block_group *cache;
6077 /* Non zoned filesystem does not use "to_copy" flag */
6078 if (!btrfs_is_zoned(fs_info))
6081 cache = btrfs_lookup_block_group(fs_info, logical);
6083 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6085 btrfs_put_block_group(cache);
6089 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6090 struct btrfs_io_context *bioc,
6091 struct btrfs_dev_replace *dev_replace,
6093 int *num_stripes_ret, int *max_errors_ret)
6095 u64 srcdev_devid = dev_replace->srcdev->devid;
6097 * At this stage, num_stripes is still the real number of stripes,
6098 * excluding the duplicated stripes.
6100 int num_stripes = *num_stripes_ret;
6101 int nr_extra_stripes = 0;
6102 int max_errors = *max_errors_ret;
6106 * A block group which has "to_copy" set will eventually be copied by
6107 * the dev-replace process. We can avoid cloning IO here.
6109 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6113 * Duplicate the write operations while the dev-replace procedure is
6114 * running. Since the copying of the old disk to the new disk takes
6115 * place at run time while the filesystem is mounted writable, the
6116 * regular write operations to the old disk have to be duplicated to go
6117 * to the new disk as well.
6119 * Note that device->missing is handled by the caller, and that the
6120 * write to the old disk is already set up in the stripes array.
6122 for (i = 0; i < num_stripes; i++) {
6123 struct btrfs_io_stripe *old = &bioc->stripes[i];
6124 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6126 if (old->dev->devid != srcdev_devid)
6129 new->physical = old->physical;
6130 new->dev = dev_replace->tgtdev;
6131 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6132 bioc->replace_stripe_src = i;
6136 /* We can only have at most 2 extra nr_stripes (for DUP). */
6137 ASSERT(nr_extra_stripes <= 2);
6139 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6141 * If we have 2 extra stripes, only choose the one with smaller physical.
6143 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6144 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6145 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6147 /* Only DUP can have two extra stripes. */
6148 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6151 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6152 * The extra stripe would still be there, but won't be accessed.
6154 if (first->physical > second->physical) {
6155 swap(second->physical, first->physical);
6156 swap(second->dev, first->dev);
6161 *num_stripes_ret = num_stripes + nr_extra_stripes;
6162 *max_errors_ret = max_errors + nr_extra_stripes;
6163 bioc->replace_nr_stripes = nr_extra_stripes;
6166 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
6167 u64 offset, u32 *stripe_nr, u64 *stripe_offset,
6168 u64 *full_stripe_start)
6171 * Stripe_nr is the stripe where this block falls. stripe_offset is
6172 * the offset of this block in its stripe.
6174 *stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6175 *stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6176 ASSERT(*stripe_offset < U32_MAX);
6178 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6179 unsigned long full_stripe_len =
6180 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6183 * For full stripe start, we use previously calculated
6184 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6187 * By this we can avoid u64 division completely. And we have
6188 * to go rounddown(), not round_down(), as nr_data_stripes is
6189 * not ensured to be power of 2.
6191 *full_stripe_start =
6192 btrfs_stripe_nr_to_offset(
6193 rounddown(*stripe_nr, nr_data_stripes(map)));
6195 ASSERT(*full_stripe_start + full_stripe_len > offset);
6196 ASSERT(*full_stripe_start <= offset);
6198 * For writes to RAID56, allow to write a full stripe set, but
6199 * no straddling of stripe sets.
6201 if (op == BTRFS_MAP_WRITE)
6202 return full_stripe_len - (offset - *full_stripe_start);
6206 * For other RAID types and for RAID56 reads, allow a single stripe (on
6209 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6210 return BTRFS_STRIPE_LEN - *stripe_offset;
6214 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6215 u32 stripe_index, u64 stripe_offset, u32 stripe_nr)
6217 dst->dev = map->stripes[stripe_index].dev;
6218 dst->physical = map->stripes[stripe_index].physical +
6219 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6222 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6223 u64 logical, u64 *length,
6224 struct btrfs_io_context **bioc_ret,
6225 struct btrfs_io_stripe *smap, int *mirror_num_ret,
6228 struct extent_map *em;
6229 struct map_lookup *map;
6237 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6241 struct btrfs_io_context *bioc = NULL;
6242 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6243 int dev_replace_is_ongoing = 0;
6244 u16 num_alloc_stripes;
6245 u64 raid56_full_stripe_start = (u64)-1;
6250 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6251 if (mirror_num > num_copies)
6254 em = btrfs_get_chunk_map(fs_info, logical, *length);
6258 map = em->map_lookup;
6259 data_stripes = nr_data_stripes(map);
6261 map_offset = logical - em->start;
6262 max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
6263 &stripe_offset, &raid56_full_stripe_start);
6264 *length = min_t(u64, em->len - map_offset, max_len);
6266 down_read(&dev_replace->rwsem);
6267 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6269 * Hold the semaphore for read during the whole operation, write is
6270 * requested at commit time but must wait.
6272 if (!dev_replace_is_ongoing)
6273 up_read(&dev_replace->rwsem);
6277 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6278 stripe_index = stripe_nr % map->num_stripes;
6279 stripe_nr /= map->num_stripes;
6280 if (op == BTRFS_MAP_READ)
6282 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6283 if (op != BTRFS_MAP_READ) {
6284 num_stripes = map->num_stripes;
6285 } else if (mirror_num) {
6286 stripe_index = mirror_num - 1;
6288 stripe_index = find_live_mirror(fs_info, map, 0,
6289 dev_replace_is_ongoing);
6290 mirror_num = stripe_index + 1;
6293 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6294 if (op != BTRFS_MAP_READ) {
6295 num_stripes = map->num_stripes;
6296 } else if (mirror_num) {
6297 stripe_index = mirror_num - 1;
6302 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6303 u32 factor = map->num_stripes / map->sub_stripes;
6305 stripe_index = (stripe_nr % factor) * map->sub_stripes;
6306 stripe_nr /= factor;
6308 if (op != BTRFS_MAP_READ)
6309 num_stripes = map->sub_stripes;
6310 else if (mirror_num)
6311 stripe_index += mirror_num - 1;
6313 int old_stripe_index = stripe_index;
6314 stripe_index = find_live_mirror(fs_info, map,
6316 dev_replace_is_ongoing);
6317 mirror_num = stripe_index - old_stripe_index + 1;
6320 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6321 if (need_raid_map && (op != BTRFS_MAP_READ || mirror_num > 1)) {
6323 * Push stripe_nr back to the start of the full stripe
6324 * For those cases needing a full stripe, @stripe_nr
6325 * is the full stripe number.
6327 * Originally we go raid56_full_stripe_start / full_stripe_len,
6328 * but that can be expensive. Here we just divide
6329 * @stripe_nr with @data_stripes.
6331 stripe_nr /= data_stripes;
6333 /* RAID[56] write or recovery. Return all stripes */
6334 num_stripes = map->num_stripes;
6335 max_errors = btrfs_chunk_max_errors(map);
6337 /* Return the length to the full stripe end */
6338 *length = min(logical + *length,
6339 raid56_full_stripe_start + em->start +
6340 btrfs_stripe_nr_to_offset(data_stripes)) -
6346 * Mirror #0 or #1 means the original data block.
6347 * Mirror #2 is RAID5 parity block.
6348 * Mirror #3 is RAID6 Q block.
6350 stripe_index = stripe_nr % data_stripes;
6351 stripe_nr /= data_stripes;
6353 stripe_index = data_stripes + mirror_num - 2;
6355 /* We distribute the parity blocks across stripes */
6356 stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
6357 if (op == BTRFS_MAP_READ && mirror_num <= 1)
6362 * After this, stripe_nr is the number of stripes on this
6363 * device we have to walk to find the data, and stripe_index is
6364 * the number of our device in the stripe array
6366 stripe_index = stripe_nr % map->num_stripes;
6367 stripe_nr /= map->num_stripes;
6368 mirror_num = stripe_index + 1;
6370 if (stripe_index >= map->num_stripes) {
6372 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6373 stripe_index, map->num_stripes);
6378 num_alloc_stripes = num_stripes;
6379 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6380 op != BTRFS_MAP_READ)
6382 * For replace case, we need to add extra stripes for extra
6383 * duplicated stripes.
6385 * For both WRITE and GET_READ_MIRRORS, we may have at most
6386 * 2 more stripes (DUP types, otherwise 1).
6388 num_alloc_stripes += 2;
6391 * If this I/O maps to a single device, try to return the device and
6392 * physical block information on the stack instead of allocating an
6393 * I/O context structure.
6395 if (smap && num_alloc_stripes == 1 &&
6396 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6397 (op == BTRFS_MAP_READ || !dev_replace_is_ongoing ||
6398 !dev_replace->tgtdev)) {
6399 set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr);
6401 *mirror_num_ret = mirror_num;
6407 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes);
6412 bioc->map_type = map->type;
6415 * For RAID56 full map, we need to make sure the stripes[] follows the
6416 * rule that data stripes are all ordered, then followed with P and Q
6419 * It's still mostly the same as other profiles, just with extra rotation.
6421 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6422 (op != BTRFS_MAP_READ || mirror_num > 1)) {
6424 * For RAID56 @stripe_nr is already the number of full stripes
6425 * before us, which is also the rotation value (needs to modulo
6426 * with num_stripes).
6428 * In this case, we just add @stripe_nr with @i, then do the
6429 * modulo, to reduce one modulo call.
6431 bioc->full_stripe_logical = em->start +
6432 btrfs_stripe_nr_to_offset(stripe_nr * data_stripes);
6433 for (i = 0; i < num_stripes; i++)
6434 set_io_stripe(&bioc->stripes[i], map,
6435 (i + stripe_nr) % num_stripes,
6436 stripe_offset, stripe_nr);
6439 * For all other non-RAID56 profiles, just copy the target
6440 * stripe into the bioc.
6442 for (i = 0; i < num_stripes; i++) {
6443 set_io_stripe(&bioc->stripes[i], map, stripe_index,
6444 stripe_offset, stripe_nr);
6449 if (op != BTRFS_MAP_READ)
6450 max_errors = btrfs_chunk_max_errors(map);
6452 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6453 op != BTRFS_MAP_READ) {
6454 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6455 &num_stripes, &max_errors);
6459 bioc->num_stripes = num_stripes;
6460 bioc->max_errors = max_errors;
6461 bioc->mirror_num = mirror_num;
6464 if (dev_replace_is_ongoing) {
6465 lockdep_assert_held(&dev_replace->rwsem);
6466 /* Unlock and let waiting writers proceed */
6467 up_read(&dev_replace->rwsem);
6469 free_extent_map(em);
6473 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6474 const struct btrfs_fs_devices *fs_devices)
6476 if (args->fsid == NULL)
6478 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6483 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6484 const struct btrfs_device *device)
6486 if (args->missing) {
6487 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6493 if (device->devid != args->devid)
6495 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6501 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6504 * If devid and uuid are both specified, the match must be exact, otherwise
6505 * only devid is used.
6507 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6508 const struct btrfs_dev_lookup_args *args)
6510 struct btrfs_device *device;
6511 struct btrfs_fs_devices *seed_devs;
6513 if (dev_args_match_fs_devices(args, fs_devices)) {
6514 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6515 if (dev_args_match_device(args, device))
6520 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6521 if (!dev_args_match_fs_devices(args, seed_devs))
6523 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6524 if (dev_args_match_device(args, device))
6532 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6533 u64 devid, u8 *dev_uuid)
6535 struct btrfs_device *device;
6536 unsigned int nofs_flag;
6539 * We call this under the chunk_mutex, so we want to use NOFS for this
6540 * allocation, however we don't want to change btrfs_alloc_device() to
6541 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6545 nofs_flag = memalloc_nofs_save();
6546 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6547 memalloc_nofs_restore(nofs_flag);
6551 list_add(&device->dev_list, &fs_devices->devices);
6552 device->fs_devices = fs_devices;
6553 fs_devices->num_devices++;
6555 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6556 fs_devices->missing_devices++;
6562 * Allocate new device struct, set up devid and UUID.
6564 * @fs_info: used only for generating a new devid, can be NULL if
6565 * devid is provided (i.e. @devid != NULL).
6566 * @devid: a pointer to devid for this device. If NULL a new devid
6568 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6570 * @path: a pointer to device path if available, NULL otherwise.
6572 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6573 * on error. Returned struct is not linked onto any lists and must be
6574 * destroyed with btrfs_free_device.
6576 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6577 const u64 *devid, const u8 *uuid,
6580 struct btrfs_device *dev;
6583 if (WARN_ON(!devid && !fs_info))
6584 return ERR_PTR(-EINVAL);
6586 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6588 return ERR_PTR(-ENOMEM);
6590 INIT_LIST_HEAD(&dev->dev_list);
6591 INIT_LIST_HEAD(&dev->dev_alloc_list);
6592 INIT_LIST_HEAD(&dev->post_commit_list);
6594 atomic_set(&dev->dev_stats_ccnt, 0);
6595 btrfs_device_data_ordered_init(dev);
6596 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6603 ret = find_next_devid(fs_info, &tmp);
6605 btrfs_free_device(dev);
6606 return ERR_PTR(ret);
6612 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6614 generate_random_uuid(dev->uuid);
6617 struct rcu_string *name;
6619 name = rcu_string_strdup(path, GFP_KERNEL);
6621 btrfs_free_device(dev);
6622 return ERR_PTR(-ENOMEM);
6624 rcu_assign_pointer(dev->name, name);
6630 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6631 u64 devid, u8 *uuid, bool error)
6634 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6637 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6641 u64 btrfs_calc_stripe_length(const struct extent_map *em)
6643 const struct map_lookup *map = em->map_lookup;
6644 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6646 return div_u64(em->len, data_stripes);
6649 #if BITS_PER_LONG == 32
6651 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6652 * can't be accessed on 32bit systems.
6654 * This function do mount time check to reject the fs if it already has
6655 * metadata chunk beyond that limit.
6657 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6658 u64 logical, u64 length, u64 type)
6660 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6663 if (logical + length < MAX_LFS_FILESIZE)
6666 btrfs_err_32bit_limit(fs_info);
6671 * This is to give early warning for any metadata chunk reaching
6672 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6673 * Although we can still access the metadata, it's not going to be possible
6674 * once the limit is reached.
6676 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6677 u64 logical, u64 length, u64 type)
6679 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6682 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6685 btrfs_warn_32bit_limit(fs_info);
6689 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6690 u64 devid, u8 *uuid)
6692 struct btrfs_device *dev;
6694 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6695 btrfs_report_missing_device(fs_info, devid, uuid, true);
6696 return ERR_PTR(-ENOENT);
6699 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6701 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6702 devid, PTR_ERR(dev));
6705 btrfs_report_missing_device(fs_info, devid, uuid, false);
6710 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6711 struct btrfs_chunk *chunk)
6713 BTRFS_DEV_LOOKUP_ARGS(args);
6714 struct btrfs_fs_info *fs_info = leaf->fs_info;
6715 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6716 struct map_lookup *map;
6717 struct extent_map *em;
6722 u8 uuid[BTRFS_UUID_SIZE];
6728 logical = key->offset;
6729 length = btrfs_chunk_length(leaf, chunk);
6730 type = btrfs_chunk_type(leaf, chunk);
6731 index = btrfs_bg_flags_to_raid_index(type);
6732 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6734 #if BITS_PER_LONG == 32
6735 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6738 warn_32bit_meta_chunk(fs_info, logical, length, type);
6742 * Only need to verify chunk item if we're reading from sys chunk array,
6743 * as chunk item in tree block is already verified by tree-checker.
6745 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6746 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6751 read_lock(&map_tree->lock);
6752 em = lookup_extent_mapping(map_tree, logical, 1);
6753 read_unlock(&map_tree->lock);
6755 /* already mapped? */
6756 if (em && em->start <= logical && em->start + em->len > logical) {
6757 free_extent_map(em);
6760 free_extent_map(em);
6763 em = alloc_extent_map();
6766 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6768 free_extent_map(em);
6772 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6773 em->map_lookup = map;
6774 em->start = logical;
6777 em->block_start = 0;
6778 em->block_len = em->len;
6780 map->num_stripes = num_stripes;
6781 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6782 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6785 * We can't use the sub_stripes value, as for profiles other than
6786 * RAID10, they may have 0 as sub_stripes for filesystems created by
6787 * older mkfs (<v5.4).
6788 * In that case, it can cause divide-by-zero errors later.
6789 * Since currently sub_stripes is fixed for each profile, let's
6790 * use the trusted value instead.
6792 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6793 map->verified_stripes = 0;
6794 em->orig_block_len = btrfs_calc_stripe_length(em);
6795 for (i = 0; i < num_stripes; i++) {
6796 map->stripes[i].physical =
6797 btrfs_stripe_offset_nr(leaf, chunk, i);
6798 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6800 read_extent_buffer(leaf, uuid, (unsigned long)
6801 btrfs_stripe_dev_uuid_nr(chunk, i),
6804 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6805 if (!map->stripes[i].dev) {
6806 map->stripes[i].dev = handle_missing_device(fs_info,
6808 if (IS_ERR(map->stripes[i].dev)) {
6809 ret = PTR_ERR(map->stripes[i].dev);
6810 free_extent_map(em);
6815 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6816 &(map->stripes[i].dev->dev_state));
6819 write_lock(&map_tree->lock);
6820 ret = add_extent_mapping(map_tree, em, 0);
6821 write_unlock(&map_tree->lock);
6824 "failed to add chunk map, start=%llu len=%llu: %d",
6825 em->start, em->len, ret);
6827 free_extent_map(em);
6832 static void fill_device_from_item(struct extent_buffer *leaf,
6833 struct btrfs_dev_item *dev_item,
6834 struct btrfs_device *device)
6838 device->devid = btrfs_device_id(leaf, dev_item);
6839 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6840 device->total_bytes = device->disk_total_bytes;
6841 device->commit_total_bytes = device->disk_total_bytes;
6842 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6843 device->commit_bytes_used = device->bytes_used;
6844 device->type = btrfs_device_type(leaf, dev_item);
6845 device->io_align = btrfs_device_io_align(leaf, dev_item);
6846 device->io_width = btrfs_device_io_width(leaf, dev_item);
6847 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6848 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6849 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6851 ptr = btrfs_device_uuid(dev_item);
6852 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6855 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6858 struct btrfs_fs_devices *fs_devices;
6861 lockdep_assert_held(&uuid_mutex);
6864 /* This will match only for multi-device seed fs */
6865 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6866 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6870 fs_devices = find_fsid(fsid, NULL);
6872 if (!btrfs_test_opt(fs_info, DEGRADED))
6873 return ERR_PTR(-ENOENT);
6875 fs_devices = alloc_fs_devices(fsid, NULL);
6876 if (IS_ERR(fs_devices))
6879 fs_devices->seeding = true;
6880 fs_devices->opened = 1;
6885 * Upon first call for a seed fs fsid, just create a private copy of the
6886 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6888 fs_devices = clone_fs_devices(fs_devices);
6889 if (IS_ERR(fs_devices))
6892 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
6894 free_fs_devices(fs_devices);
6895 return ERR_PTR(ret);
6898 if (!fs_devices->seeding) {
6899 close_fs_devices(fs_devices);
6900 free_fs_devices(fs_devices);
6901 return ERR_PTR(-EINVAL);
6904 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6909 static int read_one_dev(struct extent_buffer *leaf,
6910 struct btrfs_dev_item *dev_item)
6912 BTRFS_DEV_LOOKUP_ARGS(args);
6913 struct btrfs_fs_info *fs_info = leaf->fs_info;
6914 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6915 struct btrfs_device *device;
6918 u8 fs_uuid[BTRFS_FSID_SIZE];
6919 u8 dev_uuid[BTRFS_UUID_SIZE];
6921 devid = btrfs_device_id(leaf, dev_item);
6923 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6925 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6927 args.uuid = dev_uuid;
6928 args.fsid = fs_uuid;
6930 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6931 fs_devices = open_seed_devices(fs_info, fs_uuid);
6932 if (IS_ERR(fs_devices))
6933 return PTR_ERR(fs_devices);
6936 device = btrfs_find_device(fs_info->fs_devices, &args);
6938 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6939 btrfs_report_missing_device(fs_info, devid,
6944 device = add_missing_dev(fs_devices, devid, dev_uuid);
6945 if (IS_ERR(device)) {
6947 "failed to add missing dev %llu: %ld",
6948 devid, PTR_ERR(device));
6949 return PTR_ERR(device);
6951 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6953 if (!device->bdev) {
6954 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6955 btrfs_report_missing_device(fs_info,
6956 devid, dev_uuid, true);
6959 btrfs_report_missing_device(fs_info, devid,
6963 if (!device->bdev &&
6964 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6966 * this happens when a device that was properly setup
6967 * in the device info lists suddenly goes bad.
6968 * device->bdev is NULL, and so we have to set
6969 * device->missing to one here
6971 device->fs_devices->missing_devices++;
6972 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6975 /* Move the device to its own fs_devices */
6976 if (device->fs_devices != fs_devices) {
6977 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6978 &device->dev_state));
6980 list_move(&device->dev_list, &fs_devices->devices);
6981 device->fs_devices->num_devices--;
6982 fs_devices->num_devices++;
6984 device->fs_devices->missing_devices--;
6985 fs_devices->missing_devices++;
6987 device->fs_devices = fs_devices;
6991 if (device->fs_devices != fs_info->fs_devices) {
6992 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6993 if (device->generation !=
6994 btrfs_device_generation(leaf, dev_item))
6998 fill_device_from_item(leaf, dev_item, device);
7000 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7002 if (device->total_bytes > max_total_bytes) {
7004 "device total_bytes should be at most %llu but found %llu",
7005 max_total_bytes, device->total_bytes);
7009 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7010 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7011 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7012 device->fs_devices->total_rw_bytes += device->total_bytes;
7013 atomic64_add(device->total_bytes - device->bytes_used,
7014 &fs_info->free_chunk_space);
7020 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7022 struct btrfs_super_block *super_copy = fs_info->super_copy;
7023 struct extent_buffer *sb;
7024 struct btrfs_disk_key *disk_key;
7025 struct btrfs_chunk *chunk;
7027 unsigned long sb_array_offset;
7034 struct btrfs_key key;
7036 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7039 * We allocated a dummy extent, just to use extent buffer accessors.
7040 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7041 * that's fine, we will not go beyond system chunk array anyway.
7043 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7046 set_extent_buffer_uptodate(sb);
7048 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7049 array_size = btrfs_super_sys_array_size(super_copy);
7051 array_ptr = super_copy->sys_chunk_array;
7052 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7055 while (cur_offset < array_size) {
7056 disk_key = (struct btrfs_disk_key *)array_ptr;
7057 len = sizeof(*disk_key);
7058 if (cur_offset + len > array_size)
7059 goto out_short_read;
7061 btrfs_disk_key_to_cpu(&key, disk_key);
7064 sb_array_offset += len;
7067 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7069 "unexpected item type %u in sys_array at offset %u",
7070 (u32)key.type, cur_offset);
7075 chunk = (struct btrfs_chunk *)sb_array_offset;
7077 * At least one btrfs_chunk with one stripe must be present,
7078 * exact stripe count check comes afterwards
7080 len = btrfs_chunk_item_size(1);
7081 if (cur_offset + len > array_size)
7082 goto out_short_read;
7084 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7087 "invalid number of stripes %u in sys_array at offset %u",
7088 num_stripes, cur_offset);
7093 type = btrfs_chunk_type(sb, chunk);
7094 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7096 "invalid chunk type %llu in sys_array at offset %u",
7102 len = btrfs_chunk_item_size(num_stripes);
7103 if (cur_offset + len > array_size)
7104 goto out_short_read;
7106 ret = read_one_chunk(&key, sb, chunk);
7111 sb_array_offset += len;
7114 clear_extent_buffer_uptodate(sb);
7115 free_extent_buffer_stale(sb);
7119 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7121 clear_extent_buffer_uptodate(sb);
7122 free_extent_buffer_stale(sb);
7127 * Check if all chunks in the fs are OK for read-write degraded mount
7129 * If the @failing_dev is specified, it's accounted as missing.
7131 * Return true if all chunks meet the minimal RW mount requirements.
7132 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7134 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7135 struct btrfs_device *failing_dev)
7137 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7138 struct extent_map *em;
7142 read_lock(&map_tree->lock);
7143 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7144 read_unlock(&map_tree->lock);
7145 /* No chunk at all? Return false anyway */
7151 struct map_lookup *map;
7156 map = em->map_lookup;
7158 btrfs_get_num_tolerated_disk_barrier_failures(
7160 for (i = 0; i < map->num_stripes; i++) {
7161 struct btrfs_device *dev = map->stripes[i].dev;
7163 if (!dev || !dev->bdev ||
7164 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7165 dev->last_flush_error)
7167 else if (failing_dev && failing_dev == dev)
7170 if (missing > max_tolerated) {
7173 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7174 em->start, missing, max_tolerated);
7175 free_extent_map(em);
7179 next_start = extent_map_end(em);
7180 free_extent_map(em);
7182 read_lock(&map_tree->lock);
7183 em = lookup_extent_mapping(map_tree, next_start,
7184 (u64)(-1) - next_start);
7185 read_unlock(&map_tree->lock);
7191 static void readahead_tree_node_children(struct extent_buffer *node)
7194 const int nr_items = btrfs_header_nritems(node);
7196 for (i = 0; i < nr_items; i++)
7197 btrfs_readahead_node_child(node, i);
7200 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7202 struct btrfs_root *root = fs_info->chunk_root;
7203 struct btrfs_path *path;
7204 struct extent_buffer *leaf;
7205 struct btrfs_key key;
7206 struct btrfs_key found_key;
7211 u64 last_ra_node = 0;
7213 path = btrfs_alloc_path();
7218 * uuid_mutex is needed only if we are mounting a sprout FS
7219 * otherwise we don't need it.
7221 mutex_lock(&uuid_mutex);
7224 * It is possible for mount and umount to race in such a way that
7225 * we execute this code path, but open_fs_devices failed to clear
7226 * total_rw_bytes. We certainly want it cleared before reading the
7227 * device items, so clear it here.
7229 fs_info->fs_devices->total_rw_bytes = 0;
7232 * Lockdep complains about possible circular locking dependency between
7233 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7234 * used for freeze procection of a fs (struct super_block.s_writers),
7235 * which we take when starting a transaction, and extent buffers of the
7236 * chunk tree if we call read_one_dev() while holding a lock on an
7237 * extent buffer of the chunk tree. Since we are mounting the filesystem
7238 * and at this point there can't be any concurrent task modifying the
7239 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7241 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7242 path->skip_locking = 1;
7245 * Read all device items, and then all the chunk items. All
7246 * device items are found before any chunk item (their object id
7247 * is smaller than the lowest possible object id for a chunk
7248 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7250 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7253 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7254 struct extent_buffer *node = path->nodes[1];
7256 leaf = path->nodes[0];
7257 slot = path->slots[0];
7260 if (last_ra_node != node->start) {
7261 readahead_tree_node_children(node);
7262 last_ra_node = node->start;
7265 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7266 struct btrfs_dev_item *dev_item;
7267 dev_item = btrfs_item_ptr(leaf, slot,
7268 struct btrfs_dev_item);
7269 ret = read_one_dev(leaf, dev_item);
7273 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7274 struct btrfs_chunk *chunk;
7277 * We are only called at mount time, so no need to take
7278 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7279 * we always lock first fs_info->chunk_mutex before
7280 * acquiring any locks on the chunk tree. This is a
7281 * requirement for chunk allocation, see the comment on
7282 * top of btrfs_chunk_alloc() for details.
7284 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7285 ret = read_one_chunk(&found_key, leaf, chunk);
7290 /* Catch error found during iteration */
7297 * After loading chunk tree, we've got all device information,
7298 * do another round of validation checks.
7300 if (total_dev != fs_info->fs_devices->total_devices) {
7302 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7303 btrfs_super_num_devices(fs_info->super_copy),
7305 fs_info->fs_devices->total_devices = total_dev;
7306 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7308 if (btrfs_super_total_bytes(fs_info->super_copy) <
7309 fs_info->fs_devices->total_rw_bytes) {
7311 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7312 btrfs_super_total_bytes(fs_info->super_copy),
7313 fs_info->fs_devices->total_rw_bytes);
7319 mutex_unlock(&uuid_mutex);
7321 btrfs_free_path(path);
7325 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7327 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7328 struct btrfs_device *device;
7331 fs_devices->fs_info = fs_info;
7333 mutex_lock(&fs_devices->device_list_mutex);
7334 list_for_each_entry(device, &fs_devices->devices, dev_list)
7335 device->fs_info = fs_info;
7337 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7338 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7339 device->fs_info = fs_info;
7340 ret = btrfs_get_dev_zone_info(device, false);
7345 seed_devs->fs_info = fs_info;
7347 mutex_unlock(&fs_devices->device_list_mutex);
7352 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7353 const struct btrfs_dev_stats_item *ptr,
7358 read_extent_buffer(eb, &val,
7359 offsetof(struct btrfs_dev_stats_item, values) +
7360 ((unsigned long)ptr) + (index * sizeof(u64)),
7365 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7366 struct btrfs_dev_stats_item *ptr,
7369 write_extent_buffer(eb, &val,
7370 offsetof(struct btrfs_dev_stats_item, values) +
7371 ((unsigned long)ptr) + (index * sizeof(u64)),
7375 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7376 struct btrfs_path *path)
7378 struct btrfs_dev_stats_item *ptr;
7379 struct extent_buffer *eb;
7380 struct btrfs_key key;
7384 if (!device->fs_info->dev_root)
7387 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7388 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7389 key.offset = device->devid;
7390 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7392 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7393 btrfs_dev_stat_set(device, i, 0);
7394 device->dev_stats_valid = 1;
7395 btrfs_release_path(path);
7396 return ret < 0 ? ret : 0;
7398 slot = path->slots[0];
7399 eb = path->nodes[0];
7400 item_size = btrfs_item_size(eb, slot);
7402 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7404 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7405 if (item_size >= (1 + i) * sizeof(__le64))
7406 btrfs_dev_stat_set(device, i,
7407 btrfs_dev_stats_value(eb, ptr, i));
7409 btrfs_dev_stat_set(device, i, 0);
7412 device->dev_stats_valid = 1;
7413 btrfs_dev_stat_print_on_load(device);
7414 btrfs_release_path(path);
7419 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7421 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7422 struct btrfs_device *device;
7423 struct btrfs_path *path = NULL;
7426 path = btrfs_alloc_path();
7430 mutex_lock(&fs_devices->device_list_mutex);
7431 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7432 ret = btrfs_device_init_dev_stats(device, path);
7436 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7437 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7438 ret = btrfs_device_init_dev_stats(device, path);
7444 mutex_unlock(&fs_devices->device_list_mutex);
7446 btrfs_free_path(path);
7450 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7451 struct btrfs_device *device)
7453 struct btrfs_fs_info *fs_info = trans->fs_info;
7454 struct btrfs_root *dev_root = fs_info->dev_root;
7455 struct btrfs_path *path;
7456 struct btrfs_key key;
7457 struct extent_buffer *eb;
7458 struct btrfs_dev_stats_item *ptr;
7462 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7463 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7464 key.offset = device->devid;
7466 path = btrfs_alloc_path();
7469 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7471 btrfs_warn_in_rcu(fs_info,
7472 "error %d while searching for dev_stats item for device %s",
7473 ret, btrfs_dev_name(device));
7478 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7479 /* need to delete old one and insert a new one */
7480 ret = btrfs_del_item(trans, dev_root, path);
7482 btrfs_warn_in_rcu(fs_info,
7483 "delete too small dev_stats item for device %s failed %d",
7484 btrfs_dev_name(device), ret);
7491 /* need to insert a new item */
7492 btrfs_release_path(path);
7493 ret = btrfs_insert_empty_item(trans, dev_root, path,
7494 &key, sizeof(*ptr));
7496 btrfs_warn_in_rcu(fs_info,
7497 "insert dev_stats item for device %s failed %d",
7498 btrfs_dev_name(device), ret);
7503 eb = path->nodes[0];
7504 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7505 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7506 btrfs_set_dev_stats_value(eb, ptr, i,
7507 btrfs_dev_stat_read(device, i));
7508 btrfs_mark_buffer_dirty(eb);
7511 btrfs_free_path(path);
7516 * called from commit_transaction. Writes all changed device stats to disk.
7518 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7520 struct btrfs_fs_info *fs_info = trans->fs_info;
7521 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7522 struct btrfs_device *device;
7526 mutex_lock(&fs_devices->device_list_mutex);
7527 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7528 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7529 if (!device->dev_stats_valid || stats_cnt == 0)
7534 * There is a LOAD-LOAD control dependency between the value of
7535 * dev_stats_ccnt and updating the on-disk values which requires
7536 * reading the in-memory counters. Such control dependencies
7537 * require explicit read memory barriers.
7539 * This memory barriers pairs with smp_mb__before_atomic in
7540 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7541 * barrier implied by atomic_xchg in
7542 * btrfs_dev_stats_read_and_reset
7546 ret = update_dev_stat_item(trans, device);
7548 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7550 mutex_unlock(&fs_devices->device_list_mutex);
7555 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7557 btrfs_dev_stat_inc(dev, index);
7559 if (!dev->dev_stats_valid)
7561 btrfs_err_rl_in_rcu(dev->fs_info,
7562 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7563 btrfs_dev_name(dev),
7564 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7565 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7566 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7567 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7568 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7571 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7575 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7576 if (btrfs_dev_stat_read(dev, i) != 0)
7578 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7579 return; /* all values == 0, suppress message */
7581 btrfs_info_in_rcu(dev->fs_info,
7582 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7583 btrfs_dev_name(dev),
7584 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7585 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7586 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7587 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7588 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7591 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7592 struct btrfs_ioctl_get_dev_stats *stats)
7594 BTRFS_DEV_LOOKUP_ARGS(args);
7595 struct btrfs_device *dev;
7596 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7599 mutex_lock(&fs_devices->device_list_mutex);
7600 args.devid = stats->devid;
7601 dev = btrfs_find_device(fs_info->fs_devices, &args);
7602 mutex_unlock(&fs_devices->device_list_mutex);
7605 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7607 } else if (!dev->dev_stats_valid) {
7608 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7610 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7611 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7612 if (stats->nr_items > i)
7614 btrfs_dev_stat_read_and_reset(dev, i);
7616 btrfs_dev_stat_set(dev, i, 0);
7618 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7619 current->comm, task_pid_nr(current));
7621 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7622 if (stats->nr_items > i)
7623 stats->values[i] = btrfs_dev_stat_read(dev, i);
7625 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7626 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7631 * Update the size and bytes used for each device where it changed. This is
7632 * delayed since we would otherwise get errors while writing out the
7635 * Must be invoked during transaction commit.
7637 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7639 struct btrfs_device *curr, *next;
7641 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7643 if (list_empty(&trans->dev_update_list))
7647 * We don't need the device_list_mutex here. This list is owned by the
7648 * transaction and the transaction must complete before the device is
7651 mutex_lock(&trans->fs_info->chunk_mutex);
7652 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7654 list_del_init(&curr->post_commit_list);
7655 curr->commit_total_bytes = curr->disk_total_bytes;
7656 curr->commit_bytes_used = curr->bytes_used;
7658 mutex_unlock(&trans->fs_info->chunk_mutex);
7662 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7664 int btrfs_bg_type_to_factor(u64 flags)
7666 const int index = btrfs_bg_flags_to_raid_index(flags);
7668 return btrfs_raid_array[index].ncopies;
7673 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7674 u64 chunk_offset, u64 devid,
7675 u64 physical_offset, u64 physical_len)
7677 struct btrfs_dev_lookup_args args = { .devid = devid };
7678 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7679 struct extent_map *em;
7680 struct map_lookup *map;
7681 struct btrfs_device *dev;
7687 read_lock(&em_tree->lock);
7688 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7689 read_unlock(&em_tree->lock);
7693 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7694 physical_offset, devid);
7699 map = em->map_lookup;
7700 stripe_len = btrfs_calc_stripe_length(em);
7701 if (physical_len != stripe_len) {
7703 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7704 physical_offset, devid, em->start, physical_len,
7711 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7712 * space. Although kernel can handle it without problem, better to warn
7715 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7717 "devid %llu physical %llu len %llu inside the reserved space",
7718 devid, physical_offset, physical_len);
7720 for (i = 0; i < map->num_stripes; i++) {
7721 if (map->stripes[i].dev->devid == devid &&
7722 map->stripes[i].physical == physical_offset) {
7724 if (map->verified_stripes >= map->num_stripes) {
7726 "too many dev extents for chunk %llu found",
7731 map->verified_stripes++;
7737 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7738 physical_offset, devid);
7742 /* Make sure no dev extent is beyond device boundary */
7743 dev = btrfs_find_device(fs_info->fs_devices, &args);
7745 btrfs_err(fs_info, "failed to find devid %llu", devid);
7750 if (physical_offset + physical_len > dev->disk_total_bytes) {
7752 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7753 devid, physical_offset, physical_len,
7754 dev->disk_total_bytes);
7759 if (dev->zone_info) {
7760 u64 zone_size = dev->zone_info->zone_size;
7762 if (!IS_ALIGNED(physical_offset, zone_size) ||
7763 !IS_ALIGNED(physical_len, zone_size)) {
7765 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7766 devid, physical_offset, physical_len);
7773 free_extent_map(em);
7777 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7779 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7780 struct extent_map *em;
7781 struct rb_node *node;
7784 read_lock(&em_tree->lock);
7785 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7786 em = rb_entry(node, struct extent_map, rb_node);
7787 if (em->map_lookup->num_stripes !=
7788 em->map_lookup->verified_stripes) {
7790 "chunk %llu has missing dev extent, have %d expect %d",
7791 em->start, em->map_lookup->verified_stripes,
7792 em->map_lookup->num_stripes);
7798 read_unlock(&em_tree->lock);
7803 * Ensure that all dev extents are mapped to correct chunk, otherwise
7804 * later chunk allocation/free would cause unexpected behavior.
7806 * NOTE: This will iterate through the whole device tree, which should be of
7807 * the same size level as the chunk tree. This slightly increases mount time.
7809 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7811 struct btrfs_path *path;
7812 struct btrfs_root *root = fs_info->dev_root;
7813 struct btrfs_key key;
7815 u64 prev_dev_ext_end = 0;
7819 * We don't have a dev_root because we mounted with ignorebadroots and
7820 * failed to load the root, so we want to skip the verification in this
7823 * However if the dev root is fine, but the tree itself is corrupted
7824 * we'd still fail to mount. This verification is only to make sure
7825 * writes can happen safely, so instead just bypass this check
7826 * completely in the case of IGNOREBADROOTS.
7828 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7832 key.type = BTRFS_DEV_EXTENT_KEY;
7835 path = btrfs_alloc_path();
7839 path->reada = READA_FORWARD;
7840 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7844 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7845 ret = btrfs_next_leaf(root, path);
7848 /* No dev extents at all? Not good */
7855 struct extent_buffer *leaf = path->nodes[0];
7856 struct btrfs_dev_extent *dext;
7857 int slot = path->slots[0];
7859 u64 physical_offset;
7863 btrfs_item_key_to_cpu(leaf, &key, slot);
7864 if (key.type != BTRFS_DEV_EXTENT_KEY)
7866 devid = key.objectid;
7867 physical_offset = key.offset;
7869 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7870 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7871 physical_len = btrfs_dev_extent_length(leaf, dext);
7873 /* Check if this dev extent overlaps with the previous one */
7874 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7876 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7877 devid, physical_offset, prev_dev_ext_end);
7882 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7883 physical_offset, physical_len);
7887 prev_dev_ext_end = physical_offset + physical_len;
7889 ret = btrfs_next_item(root, path);
7898 /* Ensure all chunks have corresponding dev extents */
7899 ret = verify_chunk_dev_extent_mapping(fs_info);
7901 btrfs_free_path(path);
7906 * Check whether the given block group or device is pinned by any inode being
7907 * used as a swapfile.
7909 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7911 struct btrfs_swapfile_pin *sp;
7912 struct rb_node *node;
7914 spin_lock(&fs_info->swapfile_pins_lock);
7915 node = fs_info->swapfile_pins.rb_node;
7917 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7919 node = node->rb_left;
7920 else if (ptr > sp->ptr)
7921 node = node->rb_right;
7925 spin_unlock(&fs_info->swapfile_pins_lock);
7926 return node != NULL;
7929 static int relocating_repair_kthread(void *data)
7931 struct btrfs_block_group *cache = data;
7932 struct btrfs_fs_info *fs_info = cache->fs_info;
7936 target = cache->start;
7937 btrfs_put_block_group(cache);
7939 sb_start_write(fs_info->sb);
7940 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
7942 "zoned: skip relocating block group %llu to repair: EBUSY",
7944 sb_end_write(fs_info->sb);
7948 mutex_lock(&fs_info->reclaim_bgs_lock);
7950 /* Ensure block group still exists */
7951 cache = btrfs_lookup_block_group(fs_info, target);
7955 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
7958 ret = btrfs_may_alloc_data_chunk(fs_info, target);
7963 "zoned: relocating block group %llu to repair IO failure",
7965 ret = btrfs_relocate_chunk(fs_info, target);
7969 btrfs_put_block_group(cache);
7970 mutex_unlock(&fs_info->reclaim_bgs_lock);
7971 btrfs_exclop_finish(fs_info);
7972 sb_end_write(fs_info->sb);
7977 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
7979 struct btrfs_block_group *cache;
7981 if (!btrfs_is_zoned(fs_info))
7984 /* Do not attempt to repair in degraded state */
7985 if (btrfs_test_opt(fs_info, DEGRADED))
7988 cache = btrfs_lookup_block_group(fs_info, logical);
7992 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
7993 btrfs_put_block_group(cache);
7997 kthread_run(relocating_repair_kthread, cache,
7998 "btrfs-relocating-repair");
8003 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8004 struct btrfs_io_stripe *smap,
8007 int data_stripes = nr_bioc_data_stripes(bioc);
8010 for (i = 0; i < data_stripes; i++) {
8011 u64 stripe_start = bioc->full_stripe_logical +
8012 btrfs_stripe_nr_to_offset(i);
8014 if (logical >= stripe_start &&
8015 logical < stripe_start + BTRFS_STRIPE_LEN)
8018 ASSERT(i < data_stripes);
8019 smap->dev = bioc->stripes[i].dev;
8020 smap->physical = bioc->stripes[i].physical +
8021 ((logical - bioc->full_stripe_logical) &
8022 BTRFS_STRIPE_LEN_MASK);
8026 * Map a repair write into a single device.
8028 * A repair write is triggered by read time repair or scrub, which would only
8029 * update the contents of a single device.
8030 * Not update any other mirrors nor go through RMW path.
8032 * Callers should ensure:
8034 * - Call btrfs_bio_counter_inc_blocked() first
8035 * - The range does not cross stripe boundary
8036 * - Has a valid @mirror_num passed in.
8038 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8039 struct btrfs_io_stripe *smap, u64 logical,
8040 u32 length, int mirror_num)
8042 struct btrfs_io_context *bioc = NULL;
8043 u64 map_length = length;
8044 int mirror_ret = mirror_num;
8047 ASSERT(mirror_num > 0);
8049 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8050 &bioc, smap, &mirror_ret, true);
8054 /* The map range should not cross stripe boundary. */
8055 ASSERT(map_length >= length);
8057 /* Already mapped to single stripe. */
8061 /* Map the RAID56 multi-stripe writes to a single one. */
8062 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8063 map_raid56_repair_block(bioc, smap, logical);
8067 ASSERT(mirror_num <= bioc->num_stripes);
8068 smap->dev = bioc->stripes[mirror_num - 1].dev;
8069 smap->physical = bioc->stripes[mirror_num - 1].physical;
8071 btrfs_put_bioc(bioc);