1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
20 #include "extent_map.h"
22 #include "transaction.h"
23 #include "print-tree.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
37 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
38 [BTRFS_RAID_RAID10] = {
41 .devs_max = 0, /* 0 == as many as possible */
43 .tolerated_failures = 1,
47 .raid_name = "raid10",
48 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
49 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
51 [BTRFS_RAID_RAID1] = {
56 .tolerated_failures = 1,
61 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
62 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
64 [BTRFS_RAID_RAID1C3] = {
69 .tolerated_failures = 2,
73 .raid_name = "raid1c3",
74 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
75 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
77 [BTRFS_RAID_RAID1C4] = {
82 .tolerated_failures = 3,
86 .raid_name = "raid1c4",
87 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
88 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 .tolerated_failures = 0,
100 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
103 [BTRFS_RAID_RAID0] = {
108 .tolerated_failures = 0,
112 .raid_name = "raid0",
113 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = {
121 .tolerated_failures = 0,
125 .raid_name = "single",
129 [BTRFS_RAID_RAID5] = {
134 .tolerated_failures = 1,
138 .raid_name = "raid5",
139 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
140 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
142 [BTRFS_RAID_RAID6] = {
147 .tolerated_failures = 2,
151 .raid_name = "raid6",
152 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
153 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
158 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
159 * can be used as index to access btrfs_raid_array[].
161 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
163 if (flags & BTRFS_BLOCK_GROUP_RAID10)
164 return BTRFS_RAID_RAID10;
165 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
166 return BTRFS_RAID_RAID1;
167 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
168 return BTRFS_RAID_RAID1C3;
169 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
170 return BTRFS_RAID_RAID1C4;
171 else if (flags & BTRFS_BLOCK_GROUP_DUP)
172 return BTRFS_RAID_DUP;
173 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
174 return BTRFS_RAID_RAID0;
175 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
176 return BTRFS_RAID_RAID5;
177 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
178 return BTRFS_RAID_RAID6;
180 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
183 const char *btrfs_bg_type_to_raid_name(u64 flags)
185 const int index = btrfs_bg_flags_to_raid_index(flags);
187 if (index >= BTRFS_NR_RAID_TYPES)
190 return btrfs_raid_array[index].raid_name;
194 * Fill @buf with textual description of @bg_flags, no more than @size_buf
195 * bytes including terminating null byte.
197 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
202 u64 flags = bg_flags;
203 u32 size_bp = size_buf;
210 #define DESCRIBE_FLAG(flag, desc) \
212 if (flags & (flag)) { \
213 ret = snprintf(bp, size_bp, "%s|", (desc)); \
214 if (ret < 0 || ret >= size_bp) \
222 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
227 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
228 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
229 btrfs_raid_array[i].raid_name);
233 ret = snprintf(bp, size_bp, "0x%llx|", flags);
237 if (size_bp < size_buf)
238 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
241 * The text is trimmed, it's up to the caller to provide sufficiently
247 static int init_first_rw_device(struct btrfs_trans_handle *trans);
248 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
249 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
252 enum btrfs_map_op op,
253 u64 logical, u64 *length,
254 struct btrfs_io_context **bioc_ret,
255 int mirror_num, int need_raid_map);
261 * There are several mutexes that protect manipulation of devices and low-level
262 * structures like chunks but not block groups, extents or files
264 * uuid_mutex (global lock)
265 * ------------------------
266 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
267 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
268 * device) or requested by the device= mount option
270 * the mutex can be very coarse and can cover long-running operations
272 * protects: updates to fs_devices counters like missing devices, rw devices,
273 * seeding, structure cloning, opening/closing devices at mount/umount time
275 * global::fs_devs - add, remove, updates to the global list
277 * does not protect: manipulation of the fs_devices::devices list in general
278 * but in mount context it could be used to exclude list modifications by eg.
281 * btrfs_device::name - renames (write side), read is RCU
283 * fs_devices::device_list_mutex (per-fs, with RCU)
284 * ------------------------------------------------
285 * protects updates to fs_devices::devices, ie. adding and deleting
287 * simple list traversal with read-only actions can be done with RCU protection
289 * may be used to exclude some operations from running concurrently without any
290 * modifications to the list (see write_all_supers)
292 * Is not required at mount and close times, because our device list is
293 * protected by the uuid_mutex at that point.
297 * protects balance structures (status, state) and context accessed from
298 * several places (internally, ioctl)
302 * protects chunks, adding or removing during allocation, trim or when a new
303 * device is added/removed. Additionally it also protects post_commit_list of
304 * individual devices, since they can be added to the transaction's
305 * post_commit_list only with chunk_mutex held.
309 * a big lock that is held by the cleaner thread and prevents running subvolume
310 * cleaning together with relocation or delayed iputs
322 * Exclusive operations
323 * ====================
325 * Maintains the exclusivity of the following operations that apply to the
326 * whole filesystem and cannot run in parallel.
331 * - Device replace (*)
334 * The device operations (as above) can be in one of the following states:
340 * Only device operations marked with (*) can go into the Paused state for the
343 * - ioctl (only Balance can be Paused through ioctl)
344 * - filesystem remounted as read-only
345 * - filesystem unmounted and mounted as read-only
346 * - system power-cycle and filesystem mounted as read-only
347 * - filesystem or device errors leading to forced read-only
349 * The status of exclusive operation is set and cleared atomically.
350 * During the course of Paused state, fs_info::exclusive_operation remains set.
351 * A device operation in Paused or Running state can be canceled or resumed
352 * either by ioctl (Balance only) or when remounted as read-write.
353 * The exclusive status is cleared when the device operation is canceled or
357 DEFINE_MUTEX(uuid_mutex);
358 static LIST_HEAD(fs_uuids);
359 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365 * alloc_fs_devices - allocate struct btrfs_fs_devices
366 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
367 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
369 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
370 * The returned struct is not linked onto any lists and can be destroyed with
371 * kfree() right away.
373 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
374 const u8 *metadata_fsid)
376 struct btrfs_fs_devices *fs_devs;
378 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
380 return ERR_PTR(-ENOMEM);
382 mutex_init(&fs_devs->device_list_mutex);
384 INIT_LIST_HEAD(&fs_devs->devices);
385 INIT_LIST_HEAD(&fs_devs->alloc_list);
386 INIT_LIST_HEAD(&fs_devs->fs_list);
387 INIT_LIST_HEAD(&fs_devs->seed_list);
389 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
392 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
394 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
399 void btrfs_free_device(struct btrfs_device *device)
401 WARN_ON(!list_empty(&device->post_commit_list));
402 rcu_string_free(device->name);
403 extent_io_tree_release(&device->alloc_state);
404 bio_put(device->flush_bio);
405 btrfs_destroy_dev_zone_info(device);
409 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
411 struct btrfs_device *device;
412 WARN_ON(fs_devices->opened);
413 while (!list_empty(&fs_devices->devices)) {
414 device = list_entry(fs_devices->devices.next,
415 struct btrfs_device, dev_list);
416 list_del(&device->dev_list);
417 btrfs_free_device(device);
422 void __exit btrfs_cleanup_fs_uuids(void)
424 struct btrfs_fs_devices *fs_devices;
426 while (!list_empty(&fs_uuids)) {
427 fs_devices = list_entry(fs_uuids.next,
428 struct btrfs_fs_devices, fs_list);
429 list_del(&fs_devices->fs_list);
430 free_fs_devices(fs_devices);
434 static noinline struct btrfs_fs_devices *find_fsid(
435 const u8 *fsid, const u8 *metadata_fsid)
437 struct btrfs_fs_devices *fs_devices;
441 /* Handle non-split brain cases */
442 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
444 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
445 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
446 BTRFS_FSID_SIZE) == 0)
449 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
456 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
457 struct btrfs_super_block *disk_super)
460 struct btrfs_fs_devices *fs_devices;
463 * Handle scanned device having completed its fsid change but
464 * belonging to a fs_devices that was created by first scanning
465 * a device which didn't have its fsid/metadata_uuid changed
466 * at all and the CHANGING_FSID_V2 flag set.
468 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
469 if (fs_devices->fsid_change &&
470 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
471 BTRFS_FSID_SIZE) == 0 &&
472 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
473 BTRFS_FSID_SIZE) == 0) {
478 * Handle scanned device having completed its fsid change but
479 * belonging to a fs_devices that was created by a device that
480 * has an outdated pair of fsid/metadata_uuid and
481 * CHANGING_FSID_V2 flag set.
483 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
484 if (fs_devices->fsid_change &&
485 memcmp(fs_devices->metadata_uuid,
486 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
487 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
488 BTRFS_FSID_SIZE) == 0) {
493 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
498 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
499 int flush, struct block_device **bdev,
500 struct btrfs_super_block **disk_super)
504 *bdev = blkdev_get_by_path(device_path, flags, holder);
507 ret = PTR_ERR(*bdev);
512 sync_blockdev(*bdev);
513 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
515 blkdev_put(*bdev, flags);
518 invalidate_bdev(*bdev);
519 *disk_super = btrfs_read_dev_super(*bdev);
520 if (IS_ERR(*disk_super)) {
521 ret = PTR_ERR(*disk_super);
522 blkdev_put(*bdev, flags);
533 static bool device_path_matched(const char *path, struct btrfs_device *device)
538 found = strcmp(rcu_str_deref(device->name), path);
545 * Search and remove all stale (devices which are not mounted) devices.
546 * When both inputs are NULL, it will search and release all stale devices.
547 * path: Optional. When provided will it release all unmounted devices
548 * matching this path only.
549 * skip_dev: Optional. Will skip this device when searching for the stale
551 * Return: 0 for success or if @path is NULL.
552 * -EBUSY if @path is a mounted device.
553 * -ENOENT if @path does not match any device in the list.
555 static int btrfs_free_stale_devices(const char *path,
556 struct btrfs_device *skip_device)
558 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
559 struct btrfs_device *device, *tmp_device;
562 lockdep_assert_held(&uuid_mutex);
567 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
569 mutex_lock(&fs_devices->device_list_mutex);
570 list_for_each_entry_safe(device, tmp_device,
571 &fs_devices->devices, dev_list) {
572 if (skip_device && skip_device == device)
574 if (path && !device->name)
576 if (path && !device_path_matched(path, device))
578 if (fs_devices->opened) {
579 /* for an already deleted device return 0 */
580 if (path && ret != 0)
585 /* delete the stale device */
586 fs_devices->num_devices--;
587 list_del(&device->dev_list);
588 btrfs_free_device(device);
592 mutex_unlock(&fs_devices->device_list_mutex);
594 if (fs_devices->num_devices == 0) {
595 btrfs_sysfs_remove_fsid(fs_devices);
596 list_del(&fs_devices->fs_list);
597 free_fs_devices(fs_devices);
605 * This is only used on mount, and we are protected from competing things
606 * messing with our fs_devices by the uuid_mutex, thus we do not need the
607 * fs_devices->device_list_mutex here.
609 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
610 struct btrfs_device *device, fmode_t flags,
613 struct request_queue *q;
614 struct block_device *bdev;
615 struct btrfs_super_block *disk_super;
624 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
629 devid = btrfs_stack_device_id(&disk_super->dev_item);
630 if (devid != device->devid)
631 goto error_free_page;
633 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
634 goto error_free_page;
636 device->generation = btrfs_super_generation(disk_super);
638 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
639 if (btrfs_super_incompat_flags(disk_super) &
640 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
642 "BTRFS: Invalid seeding and uuid-changed device detected\n");
643 goto error_free_page;
646 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
647 fs_devices->seeding = true;
649 if (bdev_read_only(bdev))
650 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
652 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
655 q = bdev_get_queue(bdev);
656 if (!blk_queue_nonrot(q))
657 fs_devices->rotating = true;
660 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
661 device->mode = flags;
663 fs_devices->open_devices++;
664 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
665 device->devid != BTRFS_DEV_REPLACE_DEVID) {
666 fs_devices->rw_devices++;
667 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
669 btrfs_release_disk_super(disk_super);
674 btrfs_release_disk_super(disk_super);
675 blkdev_put(bdev, flags);
681 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
682 * being created with a disk that has already completed its fsid change. Such
683 * disk can belong to an fs which has its FSID changed or to one which doesn't.
684 * Handle both cases here.
686 static struct btrfs_fs_devices *find_fsid_inprogress(
687 struct btrfs_super_block *disk_super)
689 struct btrfs_fs_devices *fs_devices;
691 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
692 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
693 BTRFS_FSID_SIZE) != 0 &&
694 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
695 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
700 return find_fsid(disk_super->fsid, NULL);
704 static struct btrfs_fs_devices *find_fsid_changed(
705 struct btrfs_super_block *disk_super)
707 struct btrfs_fs_devices *fs_devices;
710 * Handles the case where scanned device is part of an fs that had
711 * multiple successful changes of FSID but currently device didn't
712 * observe it. Meaning our fsid will be different than theirs. We need
713 * to handle two subcases :
714 * 1 - The fs still continues to have different METADATA/FSID uuids.
715 * 2 - The fs is switched back to its original FSID (METADATA/FSID
718 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
720 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
721 BTRFS_FSID_SIZE) != 0 &&
722 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
723 BTRFS_FSID_SIZE) == 0 &&
724 memcmp(fs_devices->fsid, disk_super->fsid,
725 BTRFS_FSID_SIZE) != 0)
728 /* Unchanged UUIDs */
729 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
730 BTRFS_FSID_SIZE) == 0 &&
731 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
732 BTRFS_FSID_SIZE) == 0)
739 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
740 struct btrfs_super_block *disk_super)
742 struct btrfs_fs_devices *fs_devices;
745 * Handle the case where the scanned device is part of an fs whose last
746 * metadata UUID change reverted it to the original FSID. At the same
747 * time * fs_devices was first created by another constitutent device
748 * which didn't fully observe the operation. This results in an
749 * btrfs_fs_devices created with metadata/fsid different AND
750 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
751 * fs_devices equal to the FSID of the disk.
753 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
754 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
755 BTRFS_FSID_SIZE) != 0 &&
756 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
757 BTRFS_FSID_SIZE) == 0 &&
758 fs_devices->fsid_change)
765 * Add new device to list of registered devices
768 * device pointer which was just added or updated when successful
769 * error pointer when failed
771 static noinline struct btrfs_device *device_list_add(const char *path,
772 struct btrfs_super_block *disk_super,
773 bool *new_device_added)
775 struct btrfs_device *device;
776 struct btrfs_fs_devices *fs_devices = NULL;
777 struct rcu_string *name;
778 u64 found_transid = btrfs_super_generation(disk_super);
779 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
780 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
781 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
782 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
783 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
785 if (fsid_change_in_progress) {
786 if (!has_metadata_uuid)
787 fs_devices = find_fsid_inprogress(disk_super);
789 fs_devices = find_fsid_changed(disk_super);
790 } else if (has_metadata_uuid) {
791 fs_devices = find_fsid_with_metadata_uuid(disk_super);
793 fs_devices = find_fsid_reverted_metadata(disk_super);
795 fs_devices = find_fsid(disk_super->fsid, NULL);
800 if (has_metadata_uuid)
801 fs_devices = alloc_fs_devices(disk_super->fsid,
802 disk_super->metadata_uuid);
804 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
806 if (IS_ERR(fs_devices))
807 return ERR_CAST(fs_devices);
809 fs_devices->fsid_change = fsid_change_in_progress;
811 mutex_lock(&fs_devices->device_list_mutex);
812 list_add(&fs_devices->fs_list, &fs_uuids);
816 struct btrfs_dev_lookup_args args = {
818 .uuid = disk_super->dev_item.uuid,
821 mutex_lock(&fs_devices->device_list_mutex);
822 device = btrfs_find_device(fs_devices, &args);
825 * If this disk has been pulled into an fs devices created by
826 * a device which had the CHANGING_FSID_V2 flag then replace the
827 * metadata_uuid/fsid values of the fs_devices.
829 if (fs_devices->fsid_change &&
830 found_transid > fs_devices->latest_generation) {
831 memcpy(fs_devices->fsid, disk_super->fsid,
834 if (has_metadata_uuid)
835 memcpy(fs_devices->metadata_uuid,
836 disk_super->metadata_uuid,
839 memcpy(fs_devices->metadata_uuid,
840 disk_super->fsid, BTRFS_FSID_SIZE);
842 fs_devices->fsid_change = false;
847 if (fs_devices->opened) {
848 mutex_unlock(&fs_devices->device_list_mutex);
849 return ERR_PTR(-EBUSY);
852 device = btrfs_alloc_device(NULL, &devid,
853 disk_super->dev_item.uuid);
854 if (IS_ERR(device)) {
855 mutex_unlock(&fs_devices->device_list_mutex);
856 /* we can safely leave the fs_devices entry around */
860 name = rcu_string_strdup(path, GFP_NOFS);
862 btrfs_free_device(device);
863 mutex_unlock(&fs_devices->device_list_mutex);
864 return ERR_PTR(-ENOMEM);
866 rcu_assign_pointer(device->name, name);
868 list_add_rcu(&device->dev_list, &fs_devices->devices);
869 fs_devices->num_devices++;
871 device->fs_devices = fs_devices;
872 *new_device_added = true;
874 if (disk_super->label[0])
876 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
877 disk_super->label, devid, found_transid, path,
878 current->comm, task_pid_nr(current));
881 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
882 disk_super->fsid, devid, found_transid, path,
883 current->comm, task_pid_nr(current));
885 } else if (!device->name || strcmp(device->name->str, path)) {
887 * When FS is already mounted.
888 * 1. If you are here and if the device->name is NULL that
889 * means this device was missing at time of FS mount.
890 * 2. If you are here and if the device->name is different
891 * from 'path' that means either
892 * a. The same device disappeared and reappeared with
894 * b. The missing-disk-which-was-replaced, has
897 * We must allow 1 and 2a above. But 2b would be a spurious
900 * Further in case of 1 and 2a above, the disk at 'path'
901 * would have missed some transaction when it was away and
902 * in case of 2a the stale bdev has to be updated as well.
903 * 2b must not be allowed at all time.
907 * For now, we do allow update to btrfs_fs_device through the
908 * btrfs dev scan cli after FS has been mounted. We're still
909 * tracking a problem where systems fail mount by subvolume id
910 * when we reject replacement on a mounted FS.
912 if (!fs_devices->opened && found_transid < device->generation) {
914 * That is if the FS is _not_ mounted and if you
915 * are here, that means there is more than one
916 * disk with same uuid and devid.We keep the one
917 * with larger generation number or the last-in if
918 * generation are equal.
920 mutex_unlock(&fs_devices->device_list_mutex);
921 return ERR_PTR(-EEXIST);
925 * We are going to replace the device path for a given devid,
926 * make sure it's the same device if the device is mounted
932 error = lookup_bdev(path, &path_dev);
934 mutex_unlock(&fs_devices->device_list_mutex);
935 return ERR_PTR(error);
938 if (device->bdev->bd_dev != path_dev) {
939 mutex_unlock(&fs_devices->device_list_mutex);
941 * device->fs_info may not be reliable here, so
942 * pass in a NULL instead. This avoids a
943 * possible use-after-free when the fs_info and
944 * fs_info->sb are already torn down.
946 btrfs_warn_in_rcu(NULL,
947 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
948 path, devid, found_transid,
950 task_pid_nr(current));
951 return ERR_PTR(-EEXIST);
953 btrfs_info_in_rcu(device->fs_info,
954 "devid %llu device path %s changed to %s scanned by %s (%d)",
955 devid, rcu_str_deref(device->name),
957 task_pid_nr(current));
960 name = rcu_string_strdup(path, GFP_NOFS);
962 mutex_unlock(&fs_devices->device_list_mutex);
963 return ERR_PTR(-ENOMEM);
965 rcu_string_free(device->name);
966 rcu_assign_pointer(device->name, name);
967 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
968 fs_devices->missing_devices--;
969 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
974 * Unmount does not free the btrfs_device struct but would zero
975 * generation along with most of the other members. So just update
976 * it back. We need it to pick the disk with largest generation
979 if (!fs_devices->opened) {
980 device->generation = found_transid;
981 fs_devices->latest_generation = max_t(u64, found_transid,
982 fs_devices->latest_generation);
985 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
987 mutex_unlock(&fs_devices->device_list_mutex);
991 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
993 struct btrfs_fs_devices *fs_devices;
994 struct btrfs_device *device;
995 struct btrfs_device *orig_dev;
998 lockdep_assert_held(&uuid_mutex);
1000 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1001 if (IS_ERR(fs_devices))
1004 fs_devices->total_devices = orig->total_devices;
1006 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1007 struct rcu_string *name;
1009 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1011 if (IS_ERR(device)) {
1012 ret = PTR_ERR(device);
1017 * This is ok to do without rcu read locked because we hold the
1018 * uuid mutex so nothing we touch in here is going to disappear.
1020 if (orig_dev->name) {
1021 name = rcu_string_strdup(orig_dev->name->str,
1024 btrfs_free_device(device);
1028 rcu_assign_pointer(device->name, name);
1031 list_add(&device->dev_list, &fs_devices->devices);
1032 device->fs_devices = fs_devices;
1033 fs_devices->num_devices++;
1037 free_fs_devices(fs_devices);
1038 return ERR_PTR(ret);
1041 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1042 struct btrfs_device **latest_dev)
1044 struct btrfs_device *device, *next;
1046 /* This is the initialized path, it is safe to release the devices. */
1047 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1048 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1049 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1050 &device->dev_state) &&
1051 !test_bit(BTRFS_DEV_STATE_MISSING,
1052 &device->dev_state) &&
1054 device->generation > (*latest_dev)->generation)) {
1055 *latest_dev = device;
1061 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1062 * in btrfs_init_dev_replace() so just continue.
1064 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1068 blkdev_put(device->bdev, device->mode);
1069 device->bdev = NULL;
1070 fs_devices->open_devices--;
1072 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1073 list_del_init(&device->dev_alloc_list);
1074 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1075 fs_devices->rw_devices--;
1077 list_del_init(&device->dev_list);
1078 fs_devices->num_devices--;
1079 btrfs_free_device(device);
1085 * After we have read the system tree and know devids belonging to this
1086 * filesystem, remove the device which does not belong there.
1088 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1090 struct btrfs_device *latest_dev = NULL;
1091 struct btrfs_fs_devices *seed_dev;
1093 mutex_lock(&uuid_mutex);
1094 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1096 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1097 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1099 fs_devices->latest_dev = latest_dev;
1101 mutex_unlock(&uuid_mutex);
1104 static void btrfs_close_bdev(struct btrfs_device *device)
1109 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1110 sync_blockdev(device->bdev);
1111 invalidate_bdev(device->bdev);
1114 blkdev_put(device->bdev, device->mode);
1117 static void btrfs_close_one_device(struct btrfs_device *device)
1119 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1121 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1122 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1123 list_del_init(&device->dev_alloc_list);
1124 fs_devices->rw_devices--;
1127 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1128 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1130 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1131 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1132 fs_devices->missing_devices--;
1135 btrfs_close_bdev(device);
1137 fs_devices->open_devices--;
1138 device->bdev = NULL;
1140 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1141 btrfs_destroy_dev_zone_info(device);
1143 device->fs_info = NULL;
1144 atomic_set(&device->dev_stats_ccnt, 0);
1145 extent_io_tree_release(&device->alloc_state);
1148 * Reset the flush error record. We might have a transient flush error
1149 * in this mount, and if so we aborted the current transaction and set
1150 * the fs to an error state, guaranteeing no super blocks can be further
1151 * committed. However that error might be transient and if we unmount the
1152 * filesystem and mount it again, we should allow the mount to succeed
1153 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1154 * filesystem again we still get flush errors, then we will again abort
1155 * any transaction and set the error state, guaranteeing no commits of
1156 * unsafe super blocks.
1158 device->last_flush_error = 0;
1160 /* Verify the device is back in a pristine state */
1161 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1162 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1163 ASSERT(list_empty(&device->dev_alloc_list));
1164 ASSERT(list_empty(&device->post_commit_list));
1165 ASSERT(atomic_read(&device->reada_in_flight) == 0);
1168 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1170 struct btrfs_device *device, *tmp;
1172 lockdep_assert_held(&uuid_mutex);
1174 if (--fs_devices->opened > 0)
1177 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1178 btrfs_close_one_device(device);
1180 WARN_ON(fs_devices->open_devices);
1181 WARN_ON(fs_devices->rw_devices);
1182 fs_devices->opened = 0;
1183 fs_devices->seeding = false;
1184 fs_devices->fs_info = NULL;
1187 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1190 struct btrfs_fs_devices *tmp;
1192 mutex_lock(&uuid_mutex);
1193 close_fs_devices(fs_devices);
1194 if (!fs_devices->opened)
1195 list_splice_init(&fs_devices->seed_list, &list);
1197 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1198 close_fs_devices(fs_devices);
1199 list_del(&fs_devices->seed_list);
1200 free_fs_devices(fs_devices);
1202 mutex_unlock(&uuid_mutex);
1205 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1206 fmode_t flags, void *holder)
1208 struct btrfs_device *device;
1209 struct btrfs_device *latest_dev = NULL;
1210 struct btrfs_device *tmp_device;
1212 flags |= FMODE_EXCL;
1214 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1218 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1220 (!latest_dev || device->generation > latest_dev->generation)) {
1221 latest_dev = device;
1222 } else if (ret == -ENODATA) {
1223 fs_devices->num_devices--;
1224 list_del(&device->dev_list);
1225 btrfs_free_device(device);
1228 if (fs_devices->open_devices == 0)
1231 fs_devices->opened = 1;
1232 fs_devices->latest_dev = latest_dev;
1233 fs_devices->total_rw_bytes = 0;
1234 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1235 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1240 static int devid_cmp(void *priv, const struct list_head *a,
1241 const struct list_head *b)
1243 const struct btrfs_device *dev1, *dev2;
1245 dev1 = list_entry(a, struct btrfs_device, dev_list);
1246 dev2 = list_entry(b, struct btrfs_device, dev_list);
1248 if (dev1->devid < dev2->devid)
1250 else if (dev1->devid > dev2->devid)
1255 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1256 fmode_t flags, void *holder)
1260 lockdep_assert_held(&uuid_mutex);
1262 * The device_list_mutex cannot be taken here in case opening the
1263 * underlying device takes further locks like open_mutex.
1265 * We also don't need the lock here as this is called during mount and
1266 * exclusion is provided by uuid_mutex
1269 if (fs_devices->opened) {
1270 fs_devices->opened++;
1273 list_sort(NULL, &fs_devices->devices, devid_cmp);
1274 ret = open_fs_devices(fs_devices, flags, holder);
1280 void btrfs_release_disk_super(struct btrfs_super_block *super)
1282 struct page *page = virt_to_page(super);
1287 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1288 u64 bytenr, u64 bytenr_orig)
1290 struct btrfs_super_block *disk_super;
1295 /* make sure our super fits in the device */
1296 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1297 return ERR_PTR(-EINVAL);
1299 /* make sure our super fits in the page */
1300 if (sizeof(*disk_super) > PAGE_SIZE)
1301 return ERR_PTR(-EINVAL);
1303 /* make sure our super doesn't straddle pages on disk */
1304 index = bytenr >> PAGE_SHIFT;
1305 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1306 return ERR_PTR(-EINVAL);
1308 /* pull in the page with our super */
1309 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1312 return ERR_CAST(page);
1314 p = page_address(page);
1316 /* align our pointer to the offset of the super block */
1317 disk_super = p + offset_in_page(bytenr);
1319 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1320 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1321 btrfs_release_disk_super(p);
1322 return ERR_PTR(-EINVAL);
1325 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1326 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1331 int btrfs_forget_devices(const char *path)
1335 mutex_lock(&uuid_mutex);
1336 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1337 mutex_unlock(&uuid_mutex);
1343 * Look for a btrfs signature on a device. This may be called out of the mount path
1344 * and we are not allowed to call set_blocksize during the scan. The superblock
1345 * is read via pagecache
1347 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1350 struct btrfs_super_block *disk_super;
1351 bool new_device_added = false;
1352 struct btrfs_device *device = NULL;
1353 struct block_device *bdev;
1354 u64 bytenr, bytenr_orig;
1357 lockdep_assert_held(&uuid_mutex);
1360 * we would like to check all the supers, but that would make
1361 * a btrfs mount succeed after a mkfs from a different FS.
1362 * So, we need to add a special mount option to scan for
1363 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1365 flags |= FMODE_EXCL;
1367 bdev = blkdev_get_by_path(path, flags, holder);
1369 return ERR_CAST(bdev);
1371 bytenr_orig = btrfs_sb_offset(0);
1372 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1374 return ERR_PTR(ret);
1376 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1377 if (IS_ERR(disk_super)) {
1378 device = ERR_CAST(disk_super);
1379 goto error_bdev_put;
1382 device = device_list_add(path, disk_super, &new_device_added);
1383 if (!IS_ERR(device)) {
1384 if (new_device_added)
1385 btrfs_free_stale_devices(path, device);
1388 btrfs_release_disk_super(disk_super);
1391 blkdev_put(bdev, flags);
1397 * Try to find a chunk that intersects [start, start + len] range and when one
1398 * such is found, record the end of it in *start
1400 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1403 u64 physical_start, physical_end;
1405 lockdep_assert_held(&device->fs_info->chunk_mutex);
1407 if (!find_first_extent_bit(&device->alloc_state, *start,
1408 &physical_start, &physical_end,
1409 CHUNK_ALLOCATED, NULL)) {
1411 if (in_range(physical_start, *start, len) ||
1412 in_range(*start, physical_start,
1413 physical_end - physical_start)) {
1414 *start = physical_end + 1;
1421 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1423 switch (device->fs_devices->chunk_alloc_policy) {
1424 case BTRFS_CHUNK_ALLOC_REGULAR:
1426 * We don't want to overwrite the superblock on the drive nor
1427 * any area used by the boot loader (grub for example), so we
1428 * make sure to start at an offset of at least 1MB.
1430 return max_t(u64, start, SZ_1M);
1431 case BTRFS_CHUNK_ALLOC_ZONED:
1433 * We don't care about the starting region like regular
1434 * allocator, because we anyway use/reserve the first two zones
1435 * for superblock logging.
1437 return ALIGN(start, device->zone_info->zone_size);
1443 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1444 u64 *hole_start, u64 *hole_size,
1447 u64 zone_size = device->zone_info->zone_size;
1450 bool changed = false;
1452 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1454 while (*hole_size > 0) {
1455 pos = btrfs_find_allocatable_zones(device, *hole_start,
1456 *hole_start + *hole_size,
1458 if (pos != *hole_start) {
1459 *hole_size = *hole_start + *hole_size - pos;
1462 if (*hole_size < num_bytes)
1466 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1468 /* Range is ensured to be empty */
1472 /* Given hole range was invalid (outside of device) */
1473 if (ret == -ERANGE) {
1474 *hole_start += *hole_size;
1479 *hole_start += zone_size;
1480 *hole_size -= zone_size;
1488 * dev_extent_hole_check - check if specified hole is suitable for allocation
1489 * @device: the device which we have the hole
1490 * @hole_start: starting position of the hole
1491 * @hole_size: the size of the hole
1492 * @num_bytes: the size of the free space that we need
1494 * This function may modify @hole_start and @hole_size to reflect the suitable
1495 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1497 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1498 u64 *hole_size, u64 num_bytes)
1500 bool changed = false;
1501 u64 hole_end = *hole_start + *hole_size;
1505 * Check before we set max_hole_start, otherwise we could end up
1506 * sending back this offset anyway.
1508 if (contains_pending_extent(device, hole_start, *hole_size)) {
1509 if (hole_end >= *hole_start)
1510 *hole_size = hole_end - *hole_start;
1516 switch (device->fs_devices->chunk_alloc_policy) {
1517 case BTRFS_CHUNK_ALLOC_REGULAR:
1518 /* No extra check */
1520 case BTRFS_CHUNK_ALLOC_ZONED:
1521 if (dev_extent_hole_check_zoned(device, hole_start,
1522 hole_size, num_bytes)) {
1525 * The changed hole can contain pending extent.
1526 * Loop again to check that.
1542 * find_free_dev_extent_start - find free space in the specified device
1543 * @device: the device which we search the free space in
1544 * @num_bytes: the size of the free space that we need
1545 * @search_start: the position from which to begin the search
1546 * @start: store the start of the free space.
1547 * @len: the size of the free space. that we find, or the size
1548 * of the max free space if we don't find suitable free space
1550 * this uses a pretty simple search, the expectation is that it is
1551 * called very infrequently and that a given device has a small number
1554 * @start is used to store the start of the free space if we find. But if we
1555 * don't find suitable free space, it will be used to store the start position
1556 * of the max free space.
1558 * @len is used to store the size of the free space that we find.
1559 * But if we don't find suitable free space, it is used to store the size of
1560 * the max free space.
1562 * NOTE: This function will search *commit* root of device tree, and does extra
1563 * check to ensure dev extents are not double allocated.
1564 * This makes the function safe to allocate dev extents but may not report
1565 * correct usable device space, as device extent freed in current transaction
1566 * is not reported as available.
1568 static int find_free_dev_extent_start(struct btrfs_device *device,
1569 u64 num_bytes, u64 search_start, u64 *start,
1572 struct btrfs_fs_info *fs_info = device->fs_info;
1573 struct btrfs_root *root = fs_info->dev_root;
1574 struct btrfs_key key;
1575 struct btrfs_dev_extent *dev_extent;
1576 struct btrfs_path *path;
1581 u64 search_end = device->total_bytes;
1584 struct extent_buffer *l;
1586 search_start = dev_extent_search_start(device, search_start);
1588 WARN_ON(device->zone_info &&
1589 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1591 path = btrfs_alloc_path();
1595 max_hole_start = search_start;
1599 if (search_start >= search_end ||
1600 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1605 path->reada = READA_FORWARD;
1606 path->search_commit_root = 1;
1607 path->skip_locking = 1;
1609 key.objectid = device->devid;
1610 key.offset = search_start;
1611 key.type = BTRFS_DEV_EXTENT_KEY;
1613 ret = btrfs_search_backwards(root, &key, path);
1619 slot = path->slots[0];
1620 if (slot >= btrfs_header_nritems(l)) {
1621 ret = btrfs_next_leaf(root, path);
1629 btrfs_item_key_to_cpu(l, &key, slot);
1631 if (key.objectid < device->devid)
1634 if (key.objectid > device->devid)
1637 if (key.type != BTRFS_DEV_EXTENT_KEY)
1640 if (key.offset > search_start) {
1641 hole_size = key.offset - search_start;
1642 dev_extent_hole_check(device, &search_start, &hole_size,
1645 if (hole_size > max_hole_size) {
1646 max_hole_start = search_start;
1647 max_hole_size = hole_size;
1651 * If this free space is greater than which we need,
1652 * it must be the max free space that we have found
1653 * until now, so max_hole_start must point to the start
1654 * of this free space and the length of this free space
1655 * is stored in max_hole_size. Thus, we return
1656 * max_hole_start and max_hole_size and go back to the
1659 if (hole_size >= num_bytes) {
1665 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1666 extent_end = key.offset + btrfs_dev_extent_length(l,
1668 if (extent_end > search_start)
1669 search_start = extent_end;
1676 * At this point, search_start should be the end of
1677 * allocated dev extents, and when shrinking the device,
1678 * search_end may be smaller than search_start.
1680 if (search_end > search_start) {
1681 hole_size = search_end - search_start;
1682 if (dev_extent_hole_check(device, &search_start, &hole_size,
1684 btrfs_release_path(path);
1688 if (hole_size > max_hole_size) {
1689 max_hole_start = search_start;
1690 max_hole_size = hole_size;
1695 if (max_hole_size < num_bytes)
1701 btrfs_free_path(path);
1702 *start = max_hole_start;
1704 *len = max_hole_size;
1708 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1709 u64 *start, u64 *len)
1711 /* FIXME use last free of some kind */
1712 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1715 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1716 struct btrfs_device *device,
1717 u64 start, u64 *dev_extent_len)
1719 struct btrfs_fs_info *fs_info = device->fs_info;
1720 struct btrfs_root *root = fs_info->dev_root;
1722 struct btrfs_path *path;
1723 struct btrfs_key key;
1724 struct btrfs_key found_key;
1725 struct extent_buffer *leaf = NULL;
1726 struct btrfs_dev_extent *extent = NULL;
1728 path = btrfs_alloc_path();
1732 key.objectid = device->devid;
1734 key.type = BTRFS_DEV_EXTENT_KEY;
1736 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1738 ret = btrfs_previous_item(root, path, key.objectid,
1739 BTRFS_DEV_EXTENT_KEY);
1742 leaf = path->nodes[0];
1743 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1744 extent = btrfs_item_ptr(leaf, path->slots[0],
1745 struct btrfs_dev_extent);
1746 BUG_ON(found_key.offset > start || found_key.offset +
1747 btrfs_dev_extent_length(leaf, extent) < start);
1749 btrfs_release_path(path);
1751 } else if (ret == 0) {
1752 leaf = path->nodes[0];
1753 extent = btrfs_item_ptr(leaf, path->slots[0],
1754 struct btrfs_dev_extent);
1759 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1761 ret = btrfs_del_item(trans, root, path);
1763 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1765 btrfs_free_path(path);
1769 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1771 struct extent_map_tree *em_tree;
1772 struct extent_map *em;
1776 em_tree = &fs_info->mapping_tree;
1777 read_lock(&em_tree->lock);
1778 n = rb_last(&em_tree->map.rb_root);
1780 em = rb_entry(n, struct extent_map, rb_node);
1781 ret = em->start + em->len;
1783 read_unlock(&em_tree->lock);
1788 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1792 struct btrfs_key key;
1793 struct btrfs_key found_key;
1794 struct btrfs_path *path;
1796 path = btrfs_alloc_path();
1800 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1801 key.type = BTRFS_DEV_ITEM_KEY;
1802 key.offset = (u64)-1;
1804 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1810 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1815 ret = btrfs_previous_item(fs_info->chunk_root, path,
1816 BTRFS_DEV_ITEMS_OBJECTID,
1817 BTRFS_DEV_ITEM_KEY);
1821 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1823 *devid_ret = found_key.offset + 1;
1827 btrfs_free_path(path);
1832 * the device information is stored in the chunk root
1833 * the btrfs_device struct should be fully filled in
1835 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1836 struct btrfs_device *device)
1839 struct btrfs_path *path;
1840 struct btrfs_dev_item *dev_item;
1841 struct extent_buffer *leaf;
1842 struct btrfs_key key;
1845 path = btrfs_alloc_path();
1849 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1850 key.type = BTRFS_DEV_ITEM_KEY;
1851 key.offset = device->devid;
1853 btrfs_reserve_chunk_metadata(trans, true);
1854 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1855 &key, sizeof(*dev_item));
1856 btrfs_trans_release_chunk_metadata(trans);
1860 leaf = path->nodes[0];
1861 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1863 btrfs_set_device_id(leaf, dev_item, device->devid);
1864 btrfs_set_device_generation(leaf, dev_item, 0);
1865 btrfs_set_device_type(leaf, dev_item, device->type);
1866 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1867 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1868 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1869 btrfs_set_device_total_bytes(leaf, dev_item,
1870 btrfs_device_get_disk_total_bytes(device));
1871 btrfs_set_device_bytes_used(leaf, dev_item,
1872 btrfs_device_get_bytes_used(device));
1873 btrfs_set_device_group(leaf, dev_item, 0);
1874 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1875 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1876 btrfs_set_device_start_offset(leaf, dev_item, 0);
1878 ptr = btrfs_device_uuid(dev_item);
1879 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1880 ptr = btrfs_device_fsid(dev_item);
1881 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1882 ptr, BTRFS_FSID_SIZE);
1883 btrfs_mark_buffer_dirty(leaf);
1887 btrfs_free_path(path);
1892 * Function to update ctime/mtime for a given device path.
1893 * Mainly used for ctime/mtime based probe like libblkid.
1895 * We don't care about errors here, this is just to be kind to userspace.
1897 static void update_dev_time(const char *device_path)
1900 struct timespec64 now;
1903 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1907 now = current_time(d_inode(path.dentry));
1908 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1912 static int btrfs_rm_dev_item(struct btrfs_device *device)
1914 struct btrfs_root *root = device->fs_info->chunk_root;
1916 struct btrfs_path *path;
1917 struct btrfs_key key;
1918 struct btrfs_trans_handle *trans;
1920 path = btrfs_alloc_path();
1924 trans = btrfs_start_transaction(root, 0);
1925 if (IS_ERR(trans)) {
1926 btrfs_free_path(path);
1927 return PTR_ERR(trans);
1929 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1930 key.type = BTRFS_DEV_ITEM_KEY;
1931 key.offset = device->devid;
1933 btrfs_reserve_chunk_metadata(trans, false);
1934 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1935 btrfs_trans_release_chunk_metadata(trans);
1939 btrfs_abort_transaction(trans, ret);
1940 btrfs_end_transaction(trans);
1944 ret = btrfs_del_item(trans, root, path);
1946 btrfs_abort_transaction(trans, ret);
1947 btrfs_end_transaction(trans);
1951 btrfs_free_path(path);
1953 ret = btrfs_commit_transaction(trans);
1958 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1959 * filesystem. It's up to the caller to adjust that number regarding eg. device
1962 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1970 seq = read_seqbegin(&fs_info->profiles_lock);
1972 all_avail = fs_info->avail_data_alloc_bits |
1973 fs_info->avail_system_alloc_bits |
1974 fs_info->avail_metadata_alloc_bits;
1975 } while (read_seqretry(&fs_info->profiles_lock, seq));
1977 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1978 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1981 if (num_devices < btrfs_raid_array[i].devs_min)
1982 return btrfs_raid_array[i].mindev_error;
1988 static struct btrfs_device * btrfs_find_next_active_device(
1989 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1991 struct btrfs_device *next_device;
1993 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1994 if (next_device != device &&
1995 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1996 && next_device->bdev)
2004 * Helper function to check if the given device is part of s_bdev / latest_dev
2005 * and replace it with the provided or the next active device, in the context
2006 * where this function called, there should be always be another device (or
2007 * this_dev) which is active.
2009 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2010 struct btrfs_device *next_device)
2012 struct btrfs_fs_info *fs_info = device->fs_info;
2015 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2017 ASSERT(next_device);
2019 if (fs_info->sb->s_bdev &&
2020 (fs_info->sb->s_bdev == device->bdev))
2021 fs_info->sb->s_bdev = next_device->bdev;
2023 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2024 fs_info->fs_devices->latest_dev = next_device;
2028 * Return btrfs_fs_devices::num_devices excluding the device that's being
2029 * currently replaced.
2031 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2033 u64 num_devices = fs_info->fs_devices->num_devices;
2035 down_read(&fs_info->dev_replace.rwsem);
2036 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2037 ASSERT(num_devices > 1);
2040 up_read(&fs_info->dev_replace.rwsem);
2045 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2046 struct block_device *bdev,
2047 const char *device_path)
2049 struct btrfs_super_block *disk_super;
2055 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2059 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2060 if (IS_ERR(disk_super))
2063 if (bdev_is_zoned(bdev)) {
2064 btrfs_reset_sb_log_zones(bdev, copy_num);
2068 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2070 page = virt_to_page(disk_super);
2071 set_page_dirty(page);
2073 /* write_on_page() unlocks the page */
2074 ret = write_one_page(page);
2077 "error clearing superblock number %d (%d)",
2079 btrfs_release_disk_super(disk_super);
2083 /* Notify udev that device has changed */
2084 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2086 /* Update ctime/mtime for device path for libblkid */
2087 update_dev_time(device_path);
2090 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2091 struct btrfs_dev_lookup_args *args,
2092 struct block_device **bdev, fmode_t *mode)
2094 struct btrfs_device *device;
2095 struct btrfs_fs_devices *cur_devices;
2096 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2101 * The device list in fs_devices is accessed without locks (neither
2102 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2103 * filesystem and another device rm cannot run.
2105 num_devices = btrfs_num_devices(fs_info);
2107 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2111 device = btrfs_find_device(fs_info->fs_devices, args);
2114 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2120 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2121 btrfs_warn_in_rcu(fs_info,
2122 "cannot remove device %s (devid %llu) due to active swapfile",
2123 rcu_str_deref(device->name), device->devid);
2128 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2129 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2133 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2134 fs_info->fs_devices->rw_devices == 1) {
2135 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2139 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2140 mutex_lock(&fs_info->chunk_mutex);
2141 list_del_init(&device->dev_alloc_list);
2142 device->fs_devices->rw_devices--;
2143 mutex_unlock(&fs_info->chunk_mutex);
2146 ret = btrfs_shrink_device(device, 0);
2148 btrfs_reada_remove_dev(device);
2153 * TODO: the superblock still includes this device in its num_devices
2154 * counter although write_all_supers() is not locked out. This
2155 * could give a filesystem state which requires a degraded mount.
2157 ret = btrfs_rm_dev_item(device);
2161 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2162 btrfs_scrub_cancel_dev(device);
2165 * the device list mutex makes sure that we don't change
2166 * the device list while someone else is writing out all
2167 * the device supers. Whoever is writing all supers, should
2168 * lock the device list mutex before getting the number of
2169 * devices in the super block (super_copy). Conversely,
2170 * whoever updates the number of devices in the super block
2171 * (super_copy) should hold the device list mutex.
2175 * In normal cases the cur_devices == fs_devices. But in case
2176 * of deleting a seed device, the cur_devices should point to
2177 * its own fs_devices listed under the fs_devices->seed_list.
2179 cur_devices = device->fs_devices;
2180 mutex_lock(&fs_devices->device_list_mutex);
2181 list_del_rcu(&device->dev_list);
2183 cur_devices->num_devices--;
2184 cur_devices->total_devices--;
2185 /* Update total_devices of the parent fs_devices if it's seed */
2186 if (cur_devices != fs_devices)
2187 fs_devices->total_devices--;
2189 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2190 cur_devices->missing_devices--;
2192 btrfs_assign_next_active_device(device, NULL);
2195 cur_devices->open_devices--;
2196 /* remove sysfs entry */
2197 btrfs_sysfs_remove_device(device);
2200 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2201 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2202 mutex_unlock(&fs_devices->device_list_mutex);
2205 * At this point, the device is zero sized and detached from the
2206 * devices list. All that's left is to zero out the old supers and
2209 * We cannot call btrfs_close_bdev() here because we're holding the sb
2210 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2211 * block device and it's dependencies. Instead just flush the device
2212 * and let the caller do the final blkdev_put.
2214 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2215 btrfs_scratch_superblocks(fs_info, device->bdev,
2218 sync_blockdev(device->bdev);
2219 invalidate_bdev(device->bdev);
2223 *bdev = device->bdev;
2224 *mode = device->mode;
2226 btrfs_free_device(device);
2229 * This can happen if cur_devices is the private seed devices list. We
2230 * cannot call close_fs_devices() here because it expects the uuid_mutex
2231 * to be held, but in fact we don't need that for the private
2232 * seed_devices, we can simply decrement cur_devices->opened and then
2233 * remove it from our list and free the fs_devices.
2235 if (cur_devices->num_devices == 0) {
2236 list_del_init(&cur_devices->seed_list);
2237 ASSERT(cur_devices->opened == 1);
2238 cur_devices->opened--;
2239 free_fs_devices(cur_devices);
2246 btrfs_reada_undo_remove_dev(device);
2247 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2248 mutex_lock(&fs_info->chunk_mutex);
2249 list_add(&device->dev_alloc_list,
2250 &fs_devices->alloc_list);
2251 device->fs_devices->rw_devices++;
2252 mutex_unlock(&fs_info->chunk_mutex);
2257 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2259 struct btrfs_fs_devices *fs_devices;
2261 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2264 * in case of fs with no seed, srcdev->fs_devices will point
2265 * to fs_devices of fs_info. However when the dev being replaced is
2266 * a seed dev it will point to the seed's local fs_devices. In short
2267 * srcdev will have its correct fs_devices in both the cases.
2269 fs_devices = srcdev->fs_devices;
2271 list_del_rcu(&srcdev->dev_list);
2272 list_del(&srcdev->dev_alloc_list);
2273 fs_devices->num_devices--;
2274 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2275 fs_devices->missing_devices--;
2277 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2278 fs_devices->rw_devices--;
2281 fs_devices->open_devices--;
2284 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2286 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2288 mutex_lock(&uuid_mutex);
2290 btrfs_close_bdev(srcdev);
2292 btrfs_free_device(srcdev);
2294 /* if this is no devs we rather delete the fs_devices */
2295 if (!fs_devices->num_devices) {
2297 * On a mounted FS, num_devices can't be zero unless it's a
2298 * seed. In case of a seed device being replaced, the replace
2299 * target added to the sprout FS, so there will be no more
2300 * device left under the seed FS.
2302 ASSERT(fs_devices->seeding);
2304 list_del_init(&fs_devices->seed_list);
2305 close_fs_devices(fs_devices);
2306 free_fs_devices(fs_devices);
2308 mutex_unlock(&uuid_mutex);
2311 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2313 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2315 mutex_lock(&fs_devices->device_list_mutex);
2317 btrfs_sysfs_remove_device(tgtdev);
2320 fs_devices->open_devices--;
2322 fs_devices->num_devices--;
2324 btrfs_assign_next_active_device(tgtdev, NULL);
2326 list_del_rcu(&tgtdev->dev_list);
2328 mutex_unlock(&fs_devices->device_list_mutex);
2330 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2333 btrfs_close_bdev(tgtdev);
2335 btrfs_free_device(tgtdev);
2339 * Populate args from device at path
2341 * @fs_info: the filesystem
2342 * @args: the args to populate
2343 * @path: the path to the device
2345 * This will read the super block of the device at @path and populate @args with
2346 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2347 * lookup a device to operate on, but need to do it before we take any locks.
2348 * This properly handles the special case of "missing" that a user may pass in,
2349 * and does some basic sanity checks. The caller must make sure that @path is
2350 * properly NUL terminated before calling in, and must call
2351 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2354 * Return: 0 for success, -errno for failure
2356 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2357 struct btrfs_dev_lookup_args *args,
2360 struct btrfs_super_block *disk_super;
2361 struct block_device *bdev;
2364 if (!path || !path[0])
2366 if (!strcmp(path, "missing")) {
2367 args->missing = true;
2371 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2372 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2373 if (!args->uuid || !args->fsid) {
2374 btrfs_put_dev_args_from_path(args);
2378 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2379 &bdev, &disk_super);
2382 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2383 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2384 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2385 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2387 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2388 btrfs_release_disk_super(disk_super);
2389 blkdev_put(bdev, FMODE_READ);
2394 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2395 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2396 * that don't need to be freed.
2398 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2406 struct btrfs_device *btrfs_find_device_by_devspec(
2407 struct btrfs_fs_info *fs_info, u64 devid,
2408 const char *device_path)
2410 BTRFS_DEV_LOOKUP_ARGS(args);
2411 struct btrfs_device *device;
2416 device = btrfs_find_device(fs_info->fs_devices, &args);
2418 return ERR_PTR(-ENOENT);
2422 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2424 return ERR_PTR(ret);
2425 device = btrfs_find_device(fs_info->fs_devices, &args);
2426 btrfs_put_dev_args_from_path(&args);
2428 return ERR_PTR(-ENOENT);
2433 * does all the dirty work required for changing file system's UUID.
2435 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2437 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2438 struct btrfs_fs_devices *old_devices;
2439 struct btrfs_fs_devices *seed_devices;
2440 struct btrfs_super_block *disk_super = fs_info->super_copy;
2441 struct btrfs_device *device;
2444 lockdep_assert_held(&uuid_mutex);
2445 if (!fs_devices->seeding)
2449 * Private copy of the seed devices, anchored at
2450 * fs_info->fs_devices->seed_list
2452 seed_devices = alloc_fs_devices(NULL, NULL);
2453 if (IS_ERR(seed_devices))
2454 return PTR_ERR(seed_devices);
2457 * It's necessary to retain a copy of the original seed fs_devices in
2458 * fs_uuids so that filesystems which have been seeded can successfully
2459 * reference the seed device from open_seed_devices. This also supports
2462 old_devices = clone_fs_devices(fs_devices);
2463 if (IS_ERR(old_devices)) {
2464 kfree(seed_devices);
2465 return PTR_ERR(old_devices);
2468 list_add(&old_devices->fs_list, &fs_uuids);
2470 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2471 seed_devices->opened = 1;
2472 INIT_LIST_HEAD(&seed_devices->devices);
2473 INIT_LIST_HEAD(&seed_devices->alloc_list);
2474 mutex_init(&seed_devices->device_list_mutex);
2476 mutex_lock(&fs_devices->device_list_mutex);
2477 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2479 list_for_each_entry(device, &seed_devices->devices, dev_list)
2480 device->fs_devices = seed_devices;
2482 fs_devices->seeding = false;
2483 fs_devices->num_devices = 0;
2484 fs_devices->open_devices = 0;
2485 fs_devices->missing_devices = 0;
2486 fs_devices->rotating = false;
2487 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2489 generate_random_uuid(fs_devices->fsid);
2490 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2491 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2492 mutex_unlock(&fs_devices->device_list_mutex);
2494 super_flags = btrfs_super_flags(disk_super) &
2495 ~BTRFS_SUPER_FLAG_SEEDING;
2496 btrfs_set_super_flags(disk_super, super_flags);
2502 * Store the expected generation for seed devices in device items.
2504 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2506 BTRFS_DEV_LOOKUP_ARGS(args);
2507 struct btrfs_fs_info *fs_info = trans->fs_info;
2508 struct btrfs_root *root = fs_info->chunk_root;
2509 struct btrfs_path *path;
2510 struct extent_buffer *leaf;
2511 struct btrfs_dev_item *dev_item;
2512 struct btrfs_device *device;
2513 struct btrfs_key key;
2514 u8 fs_uuid[BTRFS_FSID_SIZE];
2515 u8 dev_uuid[BTRFS_UUID_SIZE];
2518 path = btrfs_alloc_path();
2522 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2524 key.type = BTRFS_DEV_ITEM_KEY;
2527 btrfs_reserve_chunk_metadata(trans, false);
2528 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2529 btrfs_trans_release_chunk_metadata(trans);
2533 leaf = path->nodes[0];
2535 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2536 ret = btrfs_next_leaf(root, path);
2541 leaf = path->nodes[0];
2542 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2543 btrfs_release_path(path);
2547 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2548 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2549 key.type != BTRFS_DEV_ITEM_KEY)
2552 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2553 struct btrfs_dev_item);
2554 args.devid = btrfs_device_id(leaf, dev_item);
2555 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2557 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2559 args.uuid = dev_uuid;
2560 args.fsid = fs_uuid;
2561 device = btrfs_find_device(fs_info->fs_devices, &args);
2562 BUG_ON(!device); /* Logic error */
2564 if (device->fs_devices->seeding) {
2565 btrfs_set_device_generation(leaf, dev_item,
2566 device->generation);
2567 btrfs_mark_buffer_dirty(leaf);
2575 btrfs_free_path(path);
2579 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2581 struct btrfs_root *root = fs_info->dev_root;
2582 struct request_queue *q;
2583 struct btrfs_trans_handle *trans;
2584 struct btrfs_device *device;
2585 struct block_device *bdev;
2586 struct super_block *sb = fs_info->sb;
2587 struct rcu_string *name;
2588 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2589 u64 orig_super_total_bytes;
2590 u64 orig_super_num_devices;
2591 int seeding_dev = 0;
2593 bool locked = false;
2595 if (sb_rdonly(sb) && !fs_devices->seeding)
2598 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2599 fs_info->bdev_holder);
2601 return PTR_ERR(bdev);
2603 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2608 if (fs_devices->seeding) {
2610 down_write(&sb->s_umount);
2611 mutex_lock(&uuid_mutex);
2615 sync_blockdev(bdev);
2618 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2619 if (device->bdev == bdev) {
2627 device = btrfs_alloc_device(fs_info, NULL, NULL);
2628 if (IS_ERR(device)) {
2629 /* we can safely leave the fs_devices entry around */
2630 ret = PTR_ERR(device);
2634 name = rcu_string_strdup(device_path, GFP_KERNEL);
2637 goto error_free_device;
2639 rcu_assign_pointer(device->name, name);
2641 device->fs_info = fs_info;
2642 device->bdev = bdev;
2644 ret = btrfs_get_dev_zone_info(device);
2646 goto error_free_device;
2648 trans = btrfs_start_transaction(root, 0);
2649 if (IS_ERR(trans)) {
2650 ret = PTR_ERR(trans);
2651 goto error_free_zone;
2654 q = bdev_get_queue(bdev);
2655 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2656 device->generation = trans->transid;
2657 device->io_width = fs_info->sectorsize;
2658 device->io_align = fs_info->sectorsize;
2659 device->sector_size = fs_info->sectorsize;
2660 device->total_bytes =
2661 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2662 device->disk_total_bytes = device->total_bytes;
2663 device->commit_total_bytes = device->total_bytes;
2664 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2665 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2666 device->mode = FMODE_EXCL;
2667 device->dev_stats_valid = 1;
2668 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2671 btrfs_clear_sb_rdonly(sb);
2672 ret = btrfs_prepare_sprout(fs_info);
2674 btrfs_abort_transaction(trans, ret);
2677 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2681 device->fs_devices = fs_devices;
2683 mutex_lock(&fs_devices->device_list_mutex);
2684 mutex_lock(&fs_info->chunk_mutex);
2685 list_add_rcu(&device->dev_list, &fs_devices->devices);
2686 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2687 fs_devices->num_devices++;
2688 fs_devices->open_devices++;
2689 fs_devices->rw_devices++;
2690 fs_devices->total_devices++;
2691 fs_devices->total_rw_bytes += device->total_bytes;
2693 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2695 if (!blk_queue_nonrot(q))
2696 fs_devices->rotating = true;
2698 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2699 btrfs_set_super_total_bytes(fs_info->super_copy,
2700 round_down(orig_super_total_bytes + device->total_bytes,
2701 fs_info->sectorsize));
2703 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2704 btrfs_set_super_num_devices(fs_info->super_copy,
2705 orig_super_num_devices + 1);
2708 * we've got more storage, clear any full flags on the space
2711 btrfs_clear_space_info_full(fs_info);
2713 mutex_unlock(&fs_info->chunk_mutex);
2715 /* Add sysfs device entry */
2716 btrfs_sysfs_add_device(device);
2718 mutex_unlock(&fs_devices->device_list_mutex);
2721 mutex_lock(&fs_info->chunk_mutex);
2722 ret = init_first_rw_device(trans);
2723 mutex_unlock(&fs_info->chunk_mutex);
2725 btrfs_abort_transaction(trans, ret);
2730 ret = btrfs_add_dev_item(trans, device);
2732 btrfs_abort_transaction(trans, ret);
2737 ret = btrfs_finish_sprout(trans);
2739 btrfs_abort_transaction(trans, ret);
2744 * fs_devices now represents the newly sprouted filesystem and
2745 * its fsid has been changed by btrfs_prepare_sprout
2747 btrfs_sysfs_update_sprout_fsid(fs_devices);
2750 ret = btrfs_commit_transaction(trans);
2753 mutex_unlock(&uuid_mutex);
2754 up_write(&sb->s_umount);
2757 if (ret) /* transaction commit */
2760 ret = btrfs_relocate_sys_chunks(fs_info);
2762 btrfs_handle_fs_error(fs_info, ret,
2763 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2764 trans = btrfs_attach_transaction(root);
2765 if (IS_ERR(trans)) {
2766 if (PTR_ERR(trans) == -ENOENT)
2768 ret = PTR_ERR(trans);
2772 ret = btrfs_commit_transaction(trans);
2776 * Now that we have written a new super block to this device, check all
2777 * other fs_devices list if device_path alienates any other scanned
2779 * We can ignore the return value as it typically returns -EINVAL and
2780 * only succeeds if the device was an alien.
2782 btrfs_forget_devices(device_path);
2784 /* Update ctime/mtime for blkid or udev */
2785 update_dev_time(device_path);
2790 btrfs_sysfs_remove_device(device);
2791 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2792 mutex_lock(&fs_info->chunk_mutex);
2793 list_del_rcu(&device->dev_list);
2794 list_del(&device->dev_alloc_list);
2795 fs_info->fs_devices->num_devices--;
2796 fs_info->fs_devices->open_devices--;
2797 fs_info->fs_devices->rw_devices--;
2798 fs_info->fs_devices->total_devices--;
2799 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2800 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2801 btrfs_set_super_total_bytes(fs_info->super_copy,
2802 orig_super_total_bytes);
2803 btrfs_set_super_num_devices(fs_info->super_copy,
2804 orig_super_num_devices);
2805 mutex_unlock(&fs_info->chunk_mutex);
2806 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2809 btrfs_set_sb_rdonly(sb);
2811 btrfs_end_transaction(trans);
2813 btrfs_destroy_dev_zone_info(device);
2815 btrfs_free_device(device);
2817 blkdev_put(bdev, FMODE_EXCL);
2819 mutex_unlock(&uuid_mutex);
2820 up_write(&sb->s_umount);
2825 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2826 struct btrfs_device *device)
2829 struct btrfs_path *path;
2830 struct btrfs_root *root = device->fs_info->chunk_root;
2831 struct btrfs_dev_item *dev_item;
2832 struct extent_buffer *leaf;
2833 struct btrfs_key key;
2835 path = btrfs_alloc_path();
2839 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2840 key.type = BTRFS_DEV_ITEM_KEY;
2841 key.offset = device->devid;
2843 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2852 leaf = path->nodes[0];
2853 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2855 btrfs_set_device_id(leaf, dev_item, device->devid);
2856 btrfs_set_device_type(leaf, dev_item, device->type);
2857 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2858 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2859 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2860 btrfs_set_device_total_bytes(leaf, dev_item,
2861 btrfs_device_get_disk_total_bytes(device));
2862 btrfs_set_device_bytes_used(leaf, dev_item,
2863 btrfs_device_get_bytes_used(device));
2864 btrfs_mark_buffer_dirty(leaf);
2867 btrfs_free_path(path);
2871 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2872 struct btrfs_device *device, u64 new_size)
2874 struct btrfs_fs_info *fs_info = device->fs_info;
2875 struct btrfs_super_block *super_copy = fs_info->super_copy;
2880 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2883 new_size = round_down(new_size, fs_info->sectorsize);
2885 mutex_lock(&fs_info->chunk_mutex);
2886 old_total = btrfs_super_total_bytes(super_copy);
2887 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2889 if (new_size <= device->total_bytes ||
2890 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2891 mutex_unlock(&fs_info->chunk_mutex);
2895 btrfs_set_super_total_bytes(super_copy,
2896 round_down(old_total + diff, fs_info->sectorsize));
2897 device->fs_devices->total_rw_bytes += diff;
2899 btrfs_device_set_total_bytes(device, new_size);
2900 btrfs_device_set_disk_total_bytes(device, new_size);
2901 btrfs_clear_space_info_full(device->fs_info);
2902 if (list_empty(&device->post_commit_list))
2903 list_add_tail(&device->post_commit_list,
2904 &trans->transaction->dev_update_list);
2905 mutex_unlock(&fs_info->chunk_mutex);
2907 btrfs_reserve_chunk_metadata(trans, false);
2908 ret = btrfs_update_device(trans, device);
2909 btrfs_trans_release_chunk_metadata(trans);
2914 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2916 struct btrfs_fs_info *fs_info = trans->fs_info;
2917 struct btrfs_root *root = fs_info->chunk_root;
2919 struct btrfs_path *path;
2920 struct btrfs_key key;
2922 path = btrfs_alloc_path();
2926 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2927 key.offset = chunk_offset;
2928 key.type = BTRFS_CHUNK_ITEM_KEY;
2930 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2933 else if (ret > 0) { /* Logic error or corruption */
2934 btrfs_handle_fs_error(fs_info, -ENOENT,
2935 "Failed lookup while freeing chunk.");
2940 ret = btrfs_del_item(trans, root, path);
2942 btrfs_handle_fs_error(fs_info, ret,
2943 "Failed to delete chunk item.");
2945 btrfs_free_path(path);
2949 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2951 struct btrfs_super_block *super_copy = fs_info->super_copy;
2952 struct btrfs_disk_key *disk_key;
2953 struct btrfs_chunk *chunk;
2960 struct btrfs_key key;
2962 lockdep_assert_held(&fs_info->chunk_mutex);
2963 array_size = btrfs_super_sys_array_size(super_copy);
2965 ptr = super_copy->sys_chunk_array;
2968 while (cur < array_size) {
2969 disk_key = (struct btrfs_disk_key *)ptr;
2970 btrfs_disk_key_to_cpu(&key, disk_key);
2972 len = sizeof(*disk_key);
2974 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2975 chunk = (struct btrfs_chunk *)(ptr + len);
2976 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2977 len += btrfs_chunk_item_size(num_stripes);
2982 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2983 key.offset == chunk_offset) {
2984 memmove(ptr, ptr + len, array_size - (cur + len));
2986 btrfs_set_super_sys_array_size(super_copy, array_size);
2996 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2997 * @logical: Logical block offset in bytes.
2998 * @length: Length of extent in bytes.
3000 * Return: Chunk mapping or ERR_PTR.
3002 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3003 u64 logical, u64 length)
3005 struct extent_map_tree *em_tree;
3006 struct extent_map *em;
3008 em_tree = &fs_info->mapping_tree;
3009 read_lock(&em_tree->lock);
3010 em = lookup_extent_mapping(em_tree, logical, length);
3011 read_unlock(&em_tree->lock);
3014 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3016 return ERR_PTR(-EINVAL);
3019 if (em->start > logical || em->start + em->len < logical) {
3021 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3022 logical, length, em->start, em->start + em->len);
3023 free_extent_map(em);
3024 return ERR_PTR(-EINVAL);
3027 /* callers are responsible for dropping em's ref. */
3031 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3032 struct map_lookup *map, u64 chunk_offset)
3037 * Removing chunk items and updating the device items in the chunks btree
3038 * requires holding the chunk_mutex.
3039 * See the comment at btrfs_chunk_alloc() for the details.
3041 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3043 for (i = 0; i < map->num_stripes; i++) {
3046 ret = btrfs_update_device(trans, map->stripes[i].dev);
3051 return btrfs_free_chunk(trans, chunk_offset);
3054 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3056 struct btrfs_fs_info *fs_info = trans->fs_info;
3057 struct extent_map *em;
3058 struct map_lookup *map;
3059 u64 dev_extent_len = 0;
3061 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3063 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3066 * This is a logic error, but we don't want to just rely on the
3067 * user having built with ASSERT enabled, so if ASSERT doesn't
3068 * do anything we still error out.
3073 map = em->map_lookup;
3076 * First delete the device extent items from the devices btree.
3077 * We take the device_list_mutex to avoid racing with the finishing phase
3078 * of a device replace operation. See the comment below before acquiring
3079 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3080 * because that can result in a deadlock when deleting the device extent
3081 * items from the devices btree - COWing an extent buffer from the btree
3082 * may result in allocating a new metadata chunk, which would attempt to
3083 * lock again fs_info->chunk_mutex.
3085 mutex_lock(&fs_devices->device_list_mutex);
3086 for (i = 0; i < map->num_stripes; i++) {
3087 struct btrfs_device *device = map->stripes[i].dev;
3088 ret = btrfs_free_dev_extent(trans, device,
3089 map->stripes[i].physical,
3092 mutex_unlock(&fs_devices->device_list_mutex);
3093 btrfs_abort_transaction(trans, ret);
3097 if (device->bytes_used > 0) {
3098 mutex_lock(&fs_info->chunk_mutex);
3099 btrfs_device_set_bytes_used(device,
3100 device->bytes_used - dev_extent_len);
3101 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3102 btrfs_clear_space_info_full(fs_info);
3103 mutex_unlock(&fs_info->chunk_mutex);
3106 mutex_unlock(&fs_devices->device_list_mutex);
3109 * We acquire fs_info->chunk_mutex for 2 reasons:
3111 * 1) Just like with the first phase of the chunk allocation, we must
3112 * reserve system space, do all chunk btree updates and deletions, and
3113 * update the system chunk array in the superblock while holding this
3114 * mutex. This is for similar reasons as explained on the comment at
3115 * the top of btrfs_chunk_alloc();
3117 * 2) Prevent races with the final phase of a device replace operation
3118 * that replaces the device object associated with the map's stripes,
3119 * because the device object's id can change at any time during that
3120 * final phase of the device replace operation
3121 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3122 * replaced device and then see it with an ID of
3123 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3124 * the device item, which does not exists on the chunk btree.
3125 * The finishing phase of device replace acquires both the
3126 * device_list_mutex and the chunk_mutex, in that order, so we are
3127 * safe by just acquiring the chunk_mutex.
3129 trans->removing_chunk = true;
3130 mutex_lock(&fs_info->chunk_mutex);
3132 check_system_chunk(trans, map->type);
3134 ret = remove_chunk_item(trans, map, chunk_offset);
3136 * Normally we should not get -ENOSPC since we reserved space before
3137 * through the call to check_system_chunk().
3139 * Despite our system space_info having enough free space, we may not
3140 * be able to allocate extents from its block groups, because all have
3141 * an incompatible profile, which will force us to allocate a new system
3142 * block group with the right profile, or right after we called
3143 * check_system_space() above, a scrub turned the only system block group
3144 * with enough free space into RO mode.
3145 * This is explained with more detail at do_chunk_alloc().
3147 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3149 if (ret == -ENOSPC) {
3150 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3151 struct btrfs_block_group *sys_bg;
3153 sys_bg = btrfs_create_chunk(trans, sys_flags);
3154 if (IS_ERR(sys_bg)) {
3155 ret = PTR_ERR(sys_bg);
3156 btrfs_abort_transaction(trans, ret);
3160 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3162 btrfs_abort_transaction(trans, ret);
3166 ret = remove_chunk_item(trans, map, chunk_offset);
3168 btrfs_abort_transaction(trans, ret);
3172 btrfs_abort_transaction(trans, ret);
3176 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3178 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3179 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3181 btrfs_abort_transaction(trans, ret);
3186 mutex_unlock(&fs_info->chunk_mutex);
3187 trans->removing_chunk = false;
3190 * We are done with chunk btree updates and deletions, so release the
3191 * system space we previously reserved (with check_system_chunk()).
3193 btrfs_trans_release_chunk_metadata(trans);
3195 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3197 btrfs_abort_transaction(trans, ret);
3202 if (trans->removing_chunk) {
3203 mutex_unlock(&fs_info->chunk_mutex);
3204 trans->removing_chunk = false;
3207 free_extent_map(em);
3211 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3213 struct btrfs_root *root = fs_info->chunk_root;
3214 struct btrfs_trans_handle *trans;
3215 struct btrfs_block_group *block_group;
3220 * Prevent races with automatic removal of unused block groups.
3221 * After we relocate and before we remove the chunk with offset
3222 * chunk_offset, automatic removal of the block group can kick in,
3223 * resulting in a failure when calling btrfs_remove_chunk() below.
3225 * Make sure to acquire this mutex before doing a tree search (dev
3226 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3227 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3228 * we release the path used to search the chunk/dev tree and before
3229 * the current task acquires this mutex and calls us.
3231 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3233 /* step one, relocate all the extents inside this chunk */
3234 btrfs_scrub_pause(fs_info);
3235 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3236 btrfs_scrub_continue(fs_info);
3240 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3243 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3244 length = block_group->length;
3245 btrfs_put_block_group(block_group);
3248 * On a zoned file system, discard the whole block group, this will
3249 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3250 * resetting the zone fails, don't treat it as a fatal problem from the
3251 * filesystem's point of view.
3253 if (btrfs_is_zoned(fs_info)) {
3254 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3257 "failed to reset zone %llu after relocation",
3261 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3263 if (IS_ERR(trans)) {
3264 ret = PTR_ERR(trans);
3265 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3270 * step two, delete the device extents and the
3271 * chunk tree entries
3273 ret = btrfs_remove_chunk(trans, chunk_offset);
3274 btrfs_end_transaction(trans);
3278 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3280 struct btrfs_root *chunk_root = fs_info->chunk_root;
3281 struct btrfs_path *path;
3282 struct extent_buffer *leaf;
3283 struct btrfs_chunk *chunk;
3284 struct btrfs_key key;
3285 struct btrfs_key found_key;
3287 bool retried = false;
3291 path = btrfs_alloc_path();
3296 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3297 key.offset = (u64)-1;
3298 key.type = BTRFS_CHUNK_ITEM_KEY;
3301 mutex_lock(&fs_info->reclaim_bgs_lock);
3302 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3304 mutex_unlock(&fs_info->reclaim_bgs_lock);
3307 BUG_ON(ret == 0); /* Corruption */
3309 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3312 mutex_unlock(&fs_info->reclaim_bgs_lock);
3318 leaf = path->nodes[0];
3319 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3321 chunk = btrfs_item_ptr(leaf, path->slots[0],
3322 struct btrfs_chunk);
3323 chunk_type = btrfs_chunk_type(leaf, chunk);
3324 btrfs_release_path(path);
3326 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3327 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3333 mutex_unlock(&fs_info->reclaim_bgs_lock);
3335 if (found_key.offset == 0)
3337 key.offset = found_key.offset - 1;
3340 if (failed && !retried) {
3344 } else if (WARN_ON(failed && retried)) {
3348 btrfs_free_path(path);
3353 * return 1 : allocate a data chunk successfully,
3354 * return <0: errors during allocating a data chunk,
3355 * return 0 : no need to allocate a data chunk.
3357 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3360 struct btrfs_block_group *cache;
3364 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3366 chunk_type = cache->flags;
3367 btrfs_put_block_group(cache);
3369 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3372 spin_lock(&fs_info->data_sinfo->lock);
3373 bytes_used = fs_info->data_sinfo->bytes_used;
3374 spin_unlock(&fs_info->data_sinfo->lock);
3377 struct btrfs_trans_handle *trans;
3380 trans = btrfs_join_transaction(fs_info->tree_root);
3382 return PTR_ERR(trans);
3384 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3385 btrfs_end_transaction(trans);
3394 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3395 struct btrfs_balance_control *bctl)
3397 struct btrfs_root *root = fs_info->tree_root;
3398 struct btrfs_trans_handle *trans;
3399 struct btrfs_balance_item *item;
3400 struct btrfs_disk_balance_args disk_bargs;
3401 struct btrfs_path *path;
3402 struct extent_buffer *leaf;
3403 struct btrfs_key key;
3406 path = btrfs_alloc_path();
3410 trans = btrfs_start_transaction(root, 0);
3411 if (IS_ERR(trans)) {
3412 btrfs_free_path(path);
3413 return PTR_ERR(trans);
3416 key.objectid = BTRFS_BALANCE_OBJECTID;
3417 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3420 ret = btrfs_insert_empty_item(trans, root, path, &key,
3425 leaf = path->nodes[0];
3426 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3428 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3430 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3431 btrfs_set_balance_data(leaf, item, &disk_bargs);
3432 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3433 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3434 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3435 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3437 btrfs_set_balance_flags(leaf, item, bctl->flags);
3439 btrfs_mark_buffer_dirty(leaf);
3441 btrfs_free_path(path);
3442 err = btrfs_commit_transaction(trans);
3448 static int del_balance_item(struct btrfs_fs_info *fs_info)
3450 struct btrfs_root *root = fs_info->tree_root;
3451 struct btrfs_trans_handle *trans;
3452 struct btrfs_path *path;
3453 struct btrfs_key key;
3456 path = btrfs_alloc_path();
3460 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3461 if (IS_ERR(trans)) {
3462 btrfs_free_path(path);
3463 return PTR_ERR(trans);
3466 key.objectid = BTRFS_BALANCE_OBJECTID;
3467 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3470 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3478 ret = btrfs_del_item(trans, root, path);
3480 btrfs_free_path(path);
3481 err = btrfs_commit_transaction(trans);
3488 * This is a heuristic used to reduce the number of chunks balanced on
3489 * resume after balance was interrupted.
3491 static void update_balance_args(struct btrfs_balance_control *bctl)
3494 * Turn on soft mode for chunk types that were being converted.
3496 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3497 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3498 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3499 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3500 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3501 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3504 * Turn on usage filter if is not already used. The idea is
3505 * that chunks that we have already balanced should be
3506 * reasonably full. Don't do it for chunks that are being
3507 * converted - that will keep us from relocating unconverted
3508 * (albeit full) chunks.
3510 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3511 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3512 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3513 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3514 bctl->data.usage = 90;
3516 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3517 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3518 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3519 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3520 bctl->sys.usage = 90;
3522 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3523 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3524 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3525 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3526 bctl->meta.usage = 90;
3531 * Clear the balance status in fs_info and delete the balance item from disk.
3533 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3535 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3538 BUG_ON(!fs_info->balance_ctl);
3540 spin_lock(&fs_info->balance_lock);
3541 fs_info->balance_ctl = NULL;
3542 spin_unlock(&fs_info->balance_lock);
3545 ret = del_balance_item(fs_info);
3547 btrfs_handle_fs_error(fs_info, ret, NULL);
3551 * Balance filters. Return 1 if chunk should be filtered out
3552 * (should not be balanced).
3554 static int chunk_profiles_filter(u64 chunk_type,
3555 struct btrfs_balance_args *bargs)
3557 chunk_type = chunk_to_extended(chunk_type) &
3558 BTRFS_EXTENDED_PROFILE_MASK;
3560 if (bargs->profiles & chunk_type)
3566 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3567 struct btrfs_balance_args *bargs)
3569 struct btrfs_block_group *cache;
3571 u64 user_thresh_min;
3572 u64 user_thresh_max;
3575 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3576 chunk_used = cache->used;
3578 if (bargs->usage_min == 0)
3579 user_thresh_min = 0;
3581 user_thresh_min = div_factor_fine(cache->length,
3584 if (bargs->usage_max == 0)
3585 user_thresh_max = 1;
3586 else if (bargs->usage_max > 100)
3587 user_thresh_max = cache->length;
3589 user_thresh_max = div_factor_fine(cache->length,
3592 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3595 btrfs_put_block_group(cache);
3599 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3600 u64 chunk_offset, struct btrfs_balance_args *bargs)
3602 struct btrfs_block_group *cache;
3603 u64 chunk_used, user_thresh;
3606 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3607 chunk_used = cache->used;
3609 if (bargs->usage_min == 0)
3611 else if (bargs->usage > 100)
3612 user_thresh = cache->length;
3614 user_thresh = div_factor_fine(cache->length, bargs->usage);
3616 if (chunk_used < user_thresh)
3619 btrfs_put_block_group(cache);
3623 static int chunk_devid_filter(struct extent_buffer *leaf,
3624 struct btrfs_chunk *chunk,
3625 struct btrfs_balance_args *bargs)
3627 struct btrfs_stripe *stripe;
3628 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3631 for (i = 0; i < num_stripes; i++) {
3632 stripe = btrfs_stripe_nr(chunk, i);
3633 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3640 static u64 calc_data_stripes(u64 type, int num_stripes)
3642 const int index = btrfs_bg_flags_to_raid_index(type);
3643 const int ncopies = btrfs_raid_array[index].ncopies;
3644 const int nparity = btrfs_raid_array[index].nparity;
3646 return (num_stripes - nparity) / ncopies;
3649 /* [pstart, pend) */
3650 static int chunk_drange_filter(struct extent_buffer *leaf,
3651 struct btrfs_chunk *chunk,
3652 struct btrfs_balance_args *bargs)
3654 struct btrfs_stripe *stripe;
3655 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3662 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3665 type = btrfs_chunk_type(leaf, chunk);
3666 factor = calc_data_stripes(type, num_stripes);
3668 for (i = 0; i < num_stripes; i++) {
3669 stripe = btrfs_stripe_nr(chunk, i);
3670 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3673 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3674 stripe_length = btrfs_chunk_length(leaf, chunk);
3675 stripe_length = div_u64(stripe_length, factor);
3677 if (stripe_offset < bargs->pend &&
3678 stripe_offset + stripe_length > bargs->pstart)
3685 /* [vstart, vend) */
3686 static int chunk_vrange_filter(struct extent_buffer *leaf,
3687 struct btrfs_chunk *chunk,
3689 struct btrfs_balance_args *bargs)
3691 if (chunk_offset < bargs->vend &&
3692 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3693 /* at least part of the chunk is inside this vrange */
3699 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3700 struct btrfs_chunk *chunk,
3701 struct btrfs_balance_args *bargs)
3703 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3705 if (bargs->stripes_min <= num_stripes
3706 && num_stripes <= bargs->stripes_max)
3712 static int chunk_soft_convert_filter(u64 chunk_type,
3713 struct btrfs_balance_args *bargs)
3715 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3718 chunk_type = chunk_to_extended(chunk_type) &
3719 BTRFS_EXTENDED_PROFILE_MASK;
3721 if (bargs->target == chunk_type)
3727 static int should_balance_chunk(struct extent_buffer *leaf,
3728 struct btrfs_chunk *chunk, u64 chunk_offset)
3730 struct btrfs_fs_info *fs_info = leaf->fs_info;
3731 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3732 struct btrfs_balance_args *bargs = NULL;
3733 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3736 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3737 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3741 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3742 bargs = &bctl->data;
3743 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3745 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3746 bargs = &bctl->meta;
3748 /* profiles filter */
3749 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3750 chunk_profiles_filter(chunk_type, bargs)) {
3755 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3756 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3758 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3759 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3764 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3765 chunk_devid_filter(leaf, chunk, bargs)) {
3769 /* drange filter, makes sense only with devid filter */
3770 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3771 chunk_drange_filter(leaf, chunk, bargs)) {
3776 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3777 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3781 /* stripes filter */
3782 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3783 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3787 /* soft profile changing mode */
3788 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3789 chunk_soft_convert_filter(chunk_type, bargs)) {
3794 * limited by count, must be the last filter
3796 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3797 if (bargs->limit == 0)
3801 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3803 * Same logic as the 'limit' filter; the minimum cannot be
3804 * determined here because we do not have the global information
3805 * about the count of all chunks that satisfy the filters.
3807 if (bargs->limit_max == 0)
3816 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3818 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3819 struct btrfs_root *chunk_root = fs_info->chunk_root;
3821 struct btrfs_chunk *chunk;
3822 struct btrfs_path *path = NULL;
3823 struct btrfs_key key;
3824 struct btrfs_key found_key;
3825 struct extent_buffer *leaf;
3828 int enospc_errors = 0;
3829 bool counting = true;
3830 /* The single value limit and min/max limits use the same bytes in the */
3831 u64 limit_data = bctl->data.limit;
3832 u64 limit_meta = bctl->meta.limit;
3833 u64 limit_sys = bctl->sys.limit;
3837 int chunk_reserved = 0;
3839 path = btrfs_alloc_path();
3845 /* zero out stat counters */
3846 spin_lock(&fs_info->balance_lock);
3847 memset(&bctl->stat, 0, sizeof(bctl->stat));
3848 spin_unlock(&fs_info->balance_lock);
3852 * The single value limit and min/max limits use the same bytes
3855 bctl->data.limit = limit_data;
3856 bctl->meta.limit = limit_meta;
3857 bctl->sys.limit = limit_sys;
3859 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3860 key.offset = (u64)-1;
3861 key.type = BTRFS_CHUNK_ITEM_KEY;
3864 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3865 atomic_read(&fs_info->balance_cancel_req)) {
3870 mutex_lock(&fs_info->reclaim_bgs_lock);
3871 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3873 mutex_unlock(&fs_info->reclaim_bgs_lock);
3878 * this shouldn't happen, it means the last relocate
3882 BUG(); /* FIXME break ? */
3884 ret = btrfs_previous_item(chunk_root, path, 0,
3885 BTRFS_CHUNK_ITEM_KEY);
3887 mutex_unlock(&fs_info->reclaim_bgs_lock);
3892 leaf = path->nodes[0];
3893 slot = path->slots[0];
3894 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3896 if (found_key.objectid != key.objectid) {
3897 mutex_unlock(&fs_info->reclaim_bgs_lock);
3901 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3902 chunk_type = btrfs_chunk_type(leaf, chunk);
3905 spin_lock(&fs_info->balance_lock);
3906 bctl->stat.considered++;
3907 spin_unlock(&fs_info->balance_lock);
3910 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3912 btrfs_release_path(path);
3914 mutex_unlock(&fs_info->reclaim_bgs_lock);
3919 mutex_unlock(&fs_info->reclaim_bgs_lock);
3920 spin_lock(&fs_info->balance_lock);
3921 bctl->stat.expected++;
3922 spin_unlock(&fs_info->balance_lock);
3924 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3926 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3928 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3935 * Apply limit_min filter, no need to check if the LIMITS
3936 * filter is used, limit_min is 0 by default
3938 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3939 count_data < bctl->data.limit_min)
3940 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3941 count_meta < bctl->meta.limit_min)
3942 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3943 count_sys < bctl->sys.limit_min)) {
3944 mutex_unlock(&fs_info->reclaim_bgs_lock);
3948 if (!chunk_reserved) {
3950 * We may be relocating the only data chunk we have,
3951 * which could potentially end up with losing data's
3952 * raid profile, so lets allocate an empty one in
3955 ret = btrfs_may_alloc_data_chunk(fs_info,
3958 mutex_unlock(&fs_info->reclaim_bgs_lock);
3960 } else if (ret == 1) {
3965 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3966 mutex_unlock(&fs_info->reclaim_bgs_lock);
3967 if (ret == -ENOSPC) {
3969 } else if (ret == -ETXTBSY) {
3971 "skipping relocation of block group %llu due to active swapfile",
3977 spin_lock(&fs_info->balance_lock);
3978 bctl->stat.completed++;
3979 spin_unlock(&fs_info->balance_lock);
3982 if (found_key.offset == 0)
3984 key.offset = found_key.offset - 1;
3988 btrfs_release_path(path);
3993 btrfs_free_path(path);
3994 if (enospc_errors) {
3995 btrfs_info(fs_info, "%d enospc errors during balance",
4005 * alloc_profile_is_valid - see if a given profile is valid and reduced
4006 * @flags: profile to validate
4007 * @extended: if true @flags is treated as an extended profile
4009 static int alloc_profile_is_valid(u64 flags, int extended)
4011 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4012 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4014 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4016 /* 1) check that all other bits are zeroed */
4020 /* 2) see if profile is reduced */
4022 return !extended; /* "0" is valid for usual profiles */
4024 return has_single_bit_set(flags);
4027 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4029 /* cancel requested || normal exit path */
4030 return atomic_read(&fs_info->balance_cancel_req) ||
4031 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4032 atomic_read(&fs_info->balance_cancel_req) == 0);
4036 * Validate target profile against allowed profiles and return true if it's OK.
4037 * Otherwise print the error message and return false.
4039 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4040 const struct btrfs_balance_args *bargs,
4041 u64 allowed, const char *type)
4043 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4046 if (fs_info->sectorsize < PAGE_SIZE &&
4047 bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
4049 "RAID56 is not yet supported for sectorsize %u with page size %lu",
4050 fs_info->sectorsize, PAGE_SIZE);
4053 /* Profile is valid and does not have bits outside of the allowed set */
4054 if (alloc_profile_is_valid(bargs->target, 1) &&
4055 (bargs->target & ~allowed) == 0)
4058 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4059 type, btrfs_bg_type_to_raid_name(bargs->target));
4064 * Fill @buf with textual description of balance filter flags @bargs, up to
4065 * @size_buf including the terminating null. The output may be trimmed if it
4066 * does not fit into the provided buffer.
4068 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4072 u32 size_bp = size_buf;
4074 u64 flags = bargs->flags;
4075 char tmp_buf[128] = {'\0'};
4080 #define CHECK_APPEND_NOARG(a) \
4082 ret = snprintf(bp, size_bp, (a)); \
4083 if (ret < 0 || ret >= size_bp) \
4084 goto out_overflow; \
4089 #define CHECK_APPEND_1ARG(a, v1) \
4091 ret = snprintf(bp, size_bp, (a), (v1)); \
4092 if (ret < 0 || ret >= size_bp) \
4093 goto out_overflow; \
4098 #define CHECK_APPEND_2ARG(a, v1, v2) \
4100 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4101 if (ret < 0 || ret >= size_bp) \
4102 goto out_overflow; \
4107 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4108 CHECK_APPEND_1ARG("convert=%s,",
4109 btrfs_bg_type_to_raid_name(bargs->target));
4111 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4112 CHECK_APPEND_NOARG("soft,");
4114 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4115 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4117 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4120 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4121 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4123 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4124 CHECK_APPEND_2ARG("usage=%u..%u,",
4125 bargs->usage_min, bargs->usage_max);
4127 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4128 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4130 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4131 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4132 bargs->pstart, bargs->pend);
4134 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4135 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4136 bargs->vstart, bargs->vend);
4138 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4139 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4141 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4142 CHECK_APPEND_2ARG("limit=%u..%u,",
4143 bargs->limit_min, bargs->limit_max);
4145 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4146 CHECK_APPEND_2ARG("stripes=%u..%u,",
4147 bargs->stripes_min, bargs->stripes_max);
4149 #undef CHECK_APPEND_2ARG
4150 #undef CHECK_APPEND_1ARG
4151 #undef CHECK_APPEND_NOARG
4155 if (size_bp < size_buf)
4156 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4161 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4163 u32 size_buf = 1024;
4164 char tmp_buf[192] = {'\0'};
4167 u32 size_bp = size_buf;
4169 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4171 buf = kzalloc(size_buf, GFP_KERNEL);
4177 #define CHECK_APPEND_1ARG(a, v1) \
4179 ret = snprintf(bp, size_bp, (a), (v1)); \
4180 if (ret < 0 || ret >= size_bp) \
4181 goto out_overflow; \
4186 if (bctl->flags & BTRFS_BALANCE_FORCE)
4187 CHECK_APPEND_1ARG("%s", "-f ");
4189 if (bctl->flags & BTRFS_BALANCE_DATA) {
4190 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4191 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4194 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4195 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4196 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4199 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4200 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4201 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4204 #undef CHECK_APPEND_1ARG
4208 if (size_bp < size_buf)
4209 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4210 btrfs_info(fs_info, "balance: %s %s",
4211 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4212 "resume" : "start", buf);
4218 * Should be called with balance mutexe held
4220 int btrfs_balance(struct btrfs_fs_info *fs_info,
4221 struct btrfs_balance_control *bctl,
4222 struct btrfs_ioctl_balance_args *bargs)
4224 u64 meta_target, data_target;
4230 bool reducing_redundancy;
4233 if (btrfs_fs_closing(fs_info) ||
4234 atomic_read(&fs_info->balance_pause_req) ||
4235 btrfs_should_cancel_balance(fs_info)) {
4240 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4241 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4245 * In case of mixed groups both data and meta should be picked,
4246 * and identical options should be given for both of them.
4248 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4249 if (mixed && (bctl->flags & allowed)) {
4250 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4251 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4252 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4254 "balance: mixed groups data and metadata options must be the same");
4261 * rw_devices will not change at the moment, device add/delete/replace
4264 num_devices = fs_info->fs_devices->rw_devices;
4267 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4268 * special bit for it, to make it easier to distinguish. Thus we need
4269 * to set it manually, or balance would refuse the profile.
4271 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4272 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4273 if (num_devices >= btrfs_raid_array[i].devs_min)
4274 allowed |= btrfs_raid_array[i].bg_flag;
4276 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4277 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4278 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4284 * Allow to reduce metadata or system integrity only if force set for
4285 * profiles with redundancy (copies, parity)
4288 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4289 if (btrfs_raid_array[i].ncopies >= 2 ||
4290 btrfs_raid_array[i].tolerated_failures >= 1)
4291 allowed |= btrfs_raid_array[i].bg_flag;
4294 seq = read_seqbegin(&fs_info->profiles_lock);
4296 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4297 (fs_info->avail_system_alloc_bits & allowed) &&
4298 !(bctl->sys.target & allowed)) ||
4299 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4300 (fs_info->avail_metadata_alloc_bits & allowed) &&
4301 !(bctl->meta.target & allowed)))
4302 reducing_redundancy = true;
4304 reducing_redundancy = false;
4306 /* if we're not converting, the target field is uninitialized */
4307 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4308 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4309 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4310 bctl->data.target : fs_info->avail_data_alloc_bits;
4311 } while (read_seqretry(&fs_info->profiles_lock, seq));
4313 if (reducing_redundancy) {
4314 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4316 "balance: force reducing metadata redundancy");
4319 "balance: reduces metadata redundancy, use --force if you want this");
4325 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4326 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4328 "balance: metadata profile %s has lower redundancy than data profile %s",
4329 btrfs_bg_type_to_raid_name(meta_target),
4330 btrfs_bg_type_to_raid_name(data_target));
4333 ret = insert_balance_item(fs_info, bctl);
4334 if (ret && ret != -EEXIST)
4337 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4338 BUG_ON(ret == -EEXIST);
4339 BUG_ON(fs_info->balance_ctl);
4340 spin_lock(&fs_info->balance_lock);
4341 fs_info->balance_ctl = bctl;
4342 spin_unlock(&fs_info->balance_lock);
4344 BUG_ON(ret != -EEXIST);
4345 spin_lock(&fs_info->balance_lock);
4346 update_balance_args(bctl);
4347 spin_unlock(&fs_info->balance_lock);
4350 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4351 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4352 describe_balance_start_or_resume(fs_info);
4353 mutex_unlock(&fs_info->balance_mutex);
4355 ret = __btrfs_balance(fs_info);
4357 mutex_lock(&fs_info->balance_mutex);
4358 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4359 btrfs_info(fs_info, "balance: paused");
4361 * Balance can be canceled by:
4363 * - Regular cancel request
4364 * Then ret == -ECANCELED and balance_cancel_req > 0
4366 * - Fatal signal to "btrfs" process
4367 * Either the signal caught by wait_reserve_ticket() and callers
4368 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4370 * Either way, in this case balance_cancel_req = 0, and
4371 * ret == -EINTR or ret == -ECANCELED.
4373 * So here we only check the return value to catch canceled balance.
4375 else if (ret == -ECANCELED || ret == -EINTR)
4376 btrfs_info(fs_info, "balance: canceled");
4378 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4380 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4383 memset(bargs, 0, sizeof(*bargs));
4384 btrfs_update_ioctl_balance_args(fs_info, bargs);
4387 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4388 balance_need_close(fs_info)) {
4389 reset_balance_state(fs_info);
4390 btrfs_exclop_finish(fs_info);
4393 wake_up(&fs_info->balance_wait_q);
4397 if (bctl->flags & BTRFS_BALANCE_RESUME)
4398 reset_balance_state(fs_info);
4401 btrfs_exclop_finish(fs_info);
4406 static int balance_kthread(void *data)
4408 struct btrfs_fs_info *fs_info = data;
4411 mutex_lock(&fs_info->balance_mutex);
4412 if (fs_info->balance_ctl)
4413 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4414 mutex_unlock(&fs_info->balance_mutex);
4419 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4421 struct task_struct *tsk;
4423 mutex_lock(&fs_info->balance_mutex);
4424 if (!fs_info->balance_ctl) {
4425 mutex_unlock(&fs_info->balance_mutex);
4428 mutex_unlock(&fs_info->balance_mutex);
4430 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4431 btrfs_info(fs_info, "balance: resume skipped");
4436 * A ro->rw remount sequence should continue with the paused balance
4437 * regardless of who pauses it, system or the user as of now, so set
4440 spin_lock(&fs_info->balance_lock);
4441 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4442 spin_unlock(&fs_info->balance_lock);
4444 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4445 return PTR_ERR_OR_ZERO(tsk);
4448 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4450 struct btrfs_balance_control *bctl;
4451 struct btrfs_balance_item *item;
4452 struct btrfs_disk_balance_args disk_bargs;
4453 struct btrfs_path *path;
4454 struct extent_buffer *leaf;
4455 struct btrfs_key key;
4458 path = btrfs_alloc_path();
4462 key.objectid = BTRFS_BALANCE_OBJECTID;
4463 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4466 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4469 if (ret > 0) { /* ret = -ENOENT; */
4474 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4480 leaf = path->nodes[0];
4481 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4483 bctl->flags = btrfs_balance_flags(leaf, item);
4484 bctl->flags |= BTRFS_BALANCE_RESUME;
4486 btrfs_balance_data(leaf, item, &disk_bargs);
4487 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4488 btrfs_balance_meta(leaf, item, &disk_bargs);
4489 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4490 btrfs_balance_sys(leaf, item, &disk_bargs);
4491 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4494 * This should never happen, as the paused balance state is recovered
4495 * during mount without any chance of other exclusive ops to collide.
4497 * This gives the exclusive op status to balance and keeps in paused
4498 * state until user intervention (cancel or umount). If the ownership
4499 * cannot be assigned, show a message but do not fail. The balance
4500 * is in a paused state and must have fs_info::balance_ctl properly
4503 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4505 "balance: cannot set exclusive op status, resume manually");
4507 btrfs_release_path(path);
4509 mutex_lock(&fs_info->balance_mutex);
4510 BUG_ON(fs_info->balance_ctl);
4511 spin_lock(&fs_info->balance_lock);
4512 fs_info->balance_ctl = bctl;
4513 spin_unlock(&fs_info->balance_lock);
4514 mutex_unlock(&fs_info->balance_mutex);
4516 btrfs_free_path(path);
4520 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4524 mutex_lock(&fs_info->balance_mutex);
4525 if (!fs_info->balance_ctl) {
4526 mutex_unlock(&fs_info->balance_mutex);
4530 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4531 atomic_inc(&fs_info->balance_pause_req);
4532 mutex_unlock(&fs_info->balance_mutex);
4534 wait_event(fs_info->balance_wait_q,
4535 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4537 mutex_lock(&fs_info->balance_mutex);
4538 /* we are good with balance_ctl ripped off from under us */
4539 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4540 atomic_dec(&fs_info->balance_pause_req);
4545 mutex_unlock(&fs_info->balance_mutex);
4549 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4551 mutex_lock(&fs_info->balance_mutex);
4552 if (!fs_info->balance_ctl) {
4553 mutex_unlock(&fs_info->balance_mutex);
4558 * A paused balance with the item stored on disk can be resumed at
4559 * mount time if the mount is read-write. Otherwise it's still paused
4560 * and we must not allow cancelling as it deletes the item.
4562 if (sb_rdonly(fs_info->sb)) {
4563 mutex_unlock(&fs_info->balance_mutex);
4567 atomic_inc(&fs_info->balance_cancel_req);
4569 * if we are running just wait and return, balance item is
4570 * deleted in btrfs_balance in this case
4572 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4573 mutex_unlock(&fs_info->balance_mutex);
4574 wait_event(fs_info->balance_wait_q,
4575 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4576 mutex_lock(&fs_info->balance_mutex);
4578 mutex_unlock(&fs_info->balance_mutex);
4580 * Lock released to allow other waiters to continue, we'll
4581 * reexamine the status again.
4583 mutex_lock(&fs_info->balance_mutex);
4585 if (fs_info->balance_ctl) {
4586 reset_balance_state(fs_info);
4587 btrfs_exclop_finish(fs_info);
4588 btrfs_info(fs_info, "balance: canceled");
4592 BUG_ON(fs_info->balance_ctl ||
4593 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4594 atomic_dec(&fs_info->balance_cancel_req);
4595 mutex_unlock(&fs_info->balance_mutex);
4599 int btrfs_uuid_scan_kthread(void *data)
4601 struct btrfs_fs_info *fs_info = data;
4602 struct btrfs_root *root = fs_info->tree_root;
4603 struct btrfs_key key;
4604 struct btrfs_path *path = NULL;
4606 struct extent_buffer *eb;
4608 struct btrfs_root_item root_item;
4610 struct btrfs_trans_handle *trans = NULL;
4611 bool closing = false;
4613 path = btrfs_alloc_path();
4620 key.type = BTRFS_ROOT_ITEM_KEY;
4624 if (btrfs_fs_closing(fs_info)) {
4628 ret = btrfs_search_forward(root, &key, path,
4629 BTRFS_OLDEST_GENERATION);
4636 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4637 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4638 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4639 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4642 eb = path->nodes[0];
4643 slot = path->slots[0];
4644 item_size = btrfs_item_size_nr(eb, slot);
4645 if (item_size < sizeof(root_item))
4648 read_extent_buffer(eb, &root_item,
4649 btrfs_item_ptr_offset(eb, slot),
4650 (int)sizeof(root_item));
4651 if (btrfs_root_refs(&root_item) == 0)
4654 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4655 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4659 btrfs_release_path(path);
4661 * 1 - subvol uuid item
4662 * 1 - received_subvol uuid item
4664 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4665 if (IS_ERR(trans)) {
4666 ret = PTR_ERR(trans);
4674 btrfs_release_path(path);
4675 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4676 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4677 BTRFS_UUID_KEY_SUBVOL,
4680 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4686 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4687 ret = btrfs_uuid_tree_add(trans,
4688 root_item.received_uuid,
4689 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4692 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4699 btrfs_release_path(path);
4701 ret = btrfs_end_transaction(trans);
4707 if (key.offset < (u64)-1) {
4709 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4711 key.type = BTRFS_ROOT_ITEM_KEY;
4712 } else if (key.objectid < (u64)-1) {
4714 key.type = BTRFS_ROOT_ITEM_KEY;
4723 btrfs_free_path(path);
4724 if (trans && !IS_ERR(trans))
4725 btrfs_end_transaction(trans);
4727 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4729 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4730 up(&fs_info->uuid_tree_rescan_sem);
4734 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4736 struct btrfs_trans_handle *trans;
4737 struct btrfs_root *tree_root = fs_info->tree_root;
4738 struct btrfs_root *uuid_root;
4739 struct task_struct *task;
4746 trans = btrfs_start_transaction(tree_root, 2);
4748 return PTR_ERR(trans);
4750 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4751 if (IS_ERR(uuid_root)) {
4752 ret = PTR_ERR(uuid_root);
4753 btrfs_abort_transaction(trans, ret);
4754 btrfs_end_transaction(trans);
4758 fs_info->uuid_root = uuid_root;
4760 ret = btrfs_commit_transaction(trans);
4764 down(&fs_info->uuid_tree_rescan_sem);
4765 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4767 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4768 btrfs_warn(fs_info, "failed to start uuid_scan task");
4769 up(&fs_info->uuid_tree_rescan_sem);
4770 return PTR_ERR(task);
4777 * shrinking a device means finding all of the device extents past
4778 * the new size, and then following the back refs to the chunks.
4779 * The chunk relocation code actually frees the device extent
4781 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4783 struct btrfs_fs_info *fs_info = device->fs_info;
4784 struct btrfs_root *root = fs_info->dev_root;
4785 struct btrfs_trans_handle *trans;
4786 struct btrfs_dev_extent *dev_extent = NULL;
4787 struct btrfs_path *path;
4793 bool retried = false;
4794 struct extent_buffer *l;
4795 struct btrfs_key key;
4796 struct btrfs_super_block *super_copy = fs_info->super_copy;
4797 u64 old_total = btrfs_super_total_bytes(super_copy);
4798 u64 old_size = btrfs_device_get_total_bytes(device);
4802 new_size = round_down(new_size, fs_info->sectorsize);
4804 diff = round_down(old_size - new_size, fs_info->sectorsize);
4806 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4809 path = btrfs_alloc_path();
4813 path->reada = READA_BACK;
4815 trans = btrfs_start_transaction(root, 0);
4816 if (IS_ERR(trans)) {
4817 btrfs_free_path(path);
4818 return PTR_ERR(trans);
4821 mutex_lock(&fs_info->chunk_mutex);
4823 btrfs_device_set_total_bytes(device, new_size);
4824 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4825 device->fs_devices->total_rw_bytes -= diff;
4826 atomic64_sub(diff, &fs_info->free_chunk_space);
4830 * Once the device's size has been set to the new size, ensure all
4831 * in-memory chunks are synced to disk so that the loop below sees them
4832 * and relocates them accordingly.
4834 if (contains_pending_extent(device, &start, diff)) {
4835 mutex_unlock(&fs_info->chunk_mutex);
4836 ret = btrfs_commit_transaction(trans);
4840 mutex_unlock(&fs_info->chunk_mutex);
4841 btrfs_end_transaction(trans);
4845 key.objectid = device->devid;
4846 key.offset = (u64)-1;
4847 key.type = BTRFS_DEV_EXTENT_KEY;
4850 mutex_lock(&fs_info->reclaim_bgs_lock);
4851 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4853 mutex_unlock(&fs_info->reclaim_bgs_lock);
4857 ret = btrfs_previous_item(root, path, 0, key.type);
4859 mutex_unlock(&fs_info->reclaim_bgs_lock);
4863 btrfs_release_path(path);
4868 slot = path->slots[0];
4869 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4871 if (key.objectid != device->devid) {
4872 mutex_unlock(&fs_info->reclaim_bgs_lock);
4873 btrfs_release_path(path);
4877 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4878 length = btrfs_dev_extent_length(l, dev_extent);
4880 if (key.offset + length <= new_size) {
4881 mutex_unlock(&fs_info->reclaim_bgs_lock);
4882 btrfs_release_path(path);
4886 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4887 btrfs_release_path(path);
4890 * We may be relocating the only data chunk we have,
4891 * which could potentially end up with losing data's
4892 * raid profile, so lets allocate an empty one in
4895 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4897 mutex_unlock(&fs_info->reclaim_bgs_lock);
4901 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4902 mutex_unlock(&fs_info->reclaim_bgs_lock);
4903 if (ret == -ENOSPC) {
4906 if (ret == -ETXTBSY) {
4908 "could not shrink block group %llu due to active swapfile",
4913 } while (key.offset-- > 0);
4915 if (failed && !retried) {
4919 } else if (failed && retried) {
4924 /* Shrinking succeeded, else we would be at "done". */
4925 trans = btrfs_start_transaction(root, 0);
4926 if (IS_ERR(trans)) {
4927 ret = PTR_ERR(trans);
4931 mutex_lock(&fs_info->chunk_mutex);
4932 /* Clear all state bits beyond the shrunk device size */
4933 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4936 btrfs_device_set_disk_total_bytes(device, new_size);
4937 if (list_empty(&device->post_commit_list))
4938 list_add_tail(&device->post_commit_list,
4939 &trans->transaction->dev_update_list);
4941 WARN_ON(diff > old_total);
4942 btrfs_set_super_total_bytes(super_copy,
4943 round_down(old_total - diff, fs_info->sectorsize));
4944 mutex_unlock(&fs_info->chunk_mutex);
4946 btrfs_reserve_chunk_metadata(trans, false);
4947 /* Now btrfs_update_device() will change the on-disk size. */
4948 ret = btrfs_update_device(trans, device);
4949 btrfs_trans_release_chunk_metadata(trans);
4951 btrfs_abort_transaction(trans, ret);
4952 btrfs_end_transaction(trans);
4954 ret = btrfs_commit_transaction(trans);
4957 btrfs_free_path(path);
4959 mutex_lock(&fs_info->chunk_mutex);
4960 btrfs_device_set_total_bytes(device, old_size);
4961 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4962 device->fs_devices->total_rw_bytes += diff;
4963 atomic64_add(diff, &fs_info->free_chunk_space);
4964 mutex_unlock(&fs_info->chunk_mutex);
4969 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4970 struct btrfs_key *key,
4971 struct btrfs_chunk *chunk, int item_size)
4973 struct btrfs_super_block *super_copy = fs_info->super_copy;
4974 struct btrfs_disk_key disk_key;
4978 lockdep_assert_held(&fs_info->chunk_mutex);
4980 array_size = btrfs_super_sys_array_size(super_copy);
4981 if (array_size + item_size + sizeof(disk_key)
4982 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4985 ptr = super_copy->sys_chunk_array + array_size;
4986 btrfs_cpu_key_to_disk(&disk_key, key);
4987 memcpy(ptr, &disk_key, sizeof(disk_key));
4988 ptr += sizeof(disk_key);
4989 memcpy(ptr, chunk, item_size);
4990 item_size += sizeof(disk_key);
4991 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4997 * sort the devices in descending order by max_avail, total_avail
4999 static int btrfs_cmp_device_info(const void *a, const void *b)
5001 const struct btrfs_device_info *di_a = a;
5002 const struct btrfs_device_info *di_b = b;
5004 if (di_a->max_avail > di_b->max_avail)
5006 if (di_a->max_avail < di_b->max_avail)
5008 if (di_a->total_avail > di_b->total_avail)
5010 if (di_a->total_avail < di_b->total_avail)
5015 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5017 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5020 btrfs_set_fs_incompat(info, RAID56);
5023 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5025 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5028 btrfs_set_fs_incompat(info, RAID1C34);
5032 * Structure used internally for btrfs_create_chunk() function.
5033 * Wraps needed parameters.
5035 struct alloc_chunk_ctl {
5038 /* Total number of stripes to allocate */
5040 /* sub_stripes info for map */
5042 /* Stripes per device */
5044 /* Maximum number of devices to use */
5046 /* Minimum number of devices to use */
5048 /* ndevs has to be a multiple of this */
5050 /* Number of copies */
5052 /* Number of stripes worth of bytes to store parity information */
5054 u64 max_stripe_size;
5062 static void init_alloc_chunk_ctl_policy_regular(
5063 struct btrfs_fs_devices *fs_devices,
5064 struct alloc_chunk_ctl *ctl)
5066 u64 type = ctl->type;
5068 if (type & BTRFS_BLOCK_GROUP_DATA) {
5069 ctl->max_stripe_size = SZ_1G;
5070 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5071 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5072 /* For larger filesystems, use larger metadata chunks */
5073 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5074 ctl->max_stripe_size = SZ_1G;
5076 ctl->max_stripe_size = SZ_256M;
5077 ctl->max_chunk_size = ctl->max_stripe_size;
5078 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5079 ctl->max_stripe_size = SZ_32M;
5080 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5081 ctl->devs_max = min_t(int, ctl->devs_max,
5082 BTRFS_MAX_DEVS_SYS_CHUNK);
5087 /* We don't want a chunk larger than 10% of writable space */
5088 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5089 ctl->max_chunk_size);
5090 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5093 static void init_alloc_chunk_ctl_policy_zoned(
5094 struct btrfs_fs_devices *fs_devices,
5095 struct alloc_chunk_ctl *ctl)
5097 u64 zone_size = fs_devices->fs_info->zone_size;
5099 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5100 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5101 u64 min_chunk_size = min_data_stripes * zone_size;
5102 u64 type = ctl->type;
5104 ctl->max_stripe_size = zone_size;
5105 if (type & BTRFS_BLOCK_GROUP_DATA) {
5106 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5108 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5109 ctl->max_chunk_size = ctl->max_stripe_size;
5110 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5111 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5112 ctl->devs_max = min_t(int, ctl->devs_max,
5113 BTRFS_MAX_DEVS_SYS_CHUNK);
5118 /* We don't want a chunk larger than 10% of writable space */
5119 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5122 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5123 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5126 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5127 struct alloc_chunk_ctl *ctl)
5129 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5131 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5132 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5133 ctl->devs_max = btrfs_raid_array[index].devs_max;
5135 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5136 ctl->devs_min = btrfs_raid_array[index].devs_min;
5137 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5138 ctl->ncopies = btrfs_raid_array[index].ncopies;
5139 ctl->nparity = btrfs_raid_array[index].nparity;
5142 switch (fs_devices->chunk_alloc_policy) {
5143 case BTRFS_CHUNK_ALLOC_REGULAR:
5144 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5146 case BTRFS_CHUNK_ALLOC_ZONED:
5147 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5154 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5155 struct alloc_chunk_ctl *ctl,
5156 struct btrfs_device_info *devices_info)
5158 struct btrfs_fs_info *info = fs_devices->fs_info;
5159 struct btrfs_device *device;
5161 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5168 * in the first pass through the devices list, we gather information
5169 * about the available holes on each device.
5171 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5172 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5174 "BTRFS: read-only device in alloc_list\n");
5178 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5179 &device->dev_state) ||
5180 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5183 if (device->total_bytes > device->bytes_used)
5184 total_avail = device->total_bytes - device->bytes_used;
5188 /* If there is no space on this device, skip it. */
5189 if (total_avail < ctl->dev_extent_min)
5192 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5194 if (ret && ret != -ENOSPC)
5198 max_avail = dev_extent_want;
5200 if (max_avail < ctl->dev_extent_min) {
5201 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5203 "%s: devid %llu has no free space, have=%llu want=%llu",
5204 __func__, device->devid, max_avail,
5205 ctl->dev_extent_min);
5209 if (ndevs == fs_devices->rw_devices) {
5210 WARN(1, "%s: found more than %llu devices\n",
5211 __func__, fs_devices->rw_devices);
5214 devices_info[ndevs].dev_offset = dev_offset;
5215 devices_info[ndevs].max_avail = max_avail;
5216 devices_info[ndevs].total_avail = total_avail;
5217 devices_info[ndevs].dev = device;
5223 * now sort the devices by hole size / available space
5225 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5226 btrfs_cmp_device_info, NULL);
5231 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5232 struct btrfs_device_info *devices_info)
5234 /* Number of stripes that count for block group size */
5238 * The primary goal is to maximize the number of stripes, so use as
5239 * many devices as possible, even if the stripes are not maximum sized.
5241 * The DUP profile stores more than one stripe per device, the
5242 * max_avail is the total size so we have to adjust.
5244 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5246 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5248 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5249 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5252 * Use the number of data stripes to figure out how big this chunk is
5253 * really going to be in terms of logical address space, and compare
5254 * that answer with the max chunk size. If it's higher, we try to
5255 * reduce stripe_size.
5257 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5259 * Reduce stripe_size, round it up to a 16MB boundary again and
5260 * then use it, unless it ends up being even bigger than the
5261 * previous value we had already.
5263 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5264 data_stripes), SZ_16M),
5268 /* Align to BTRFS_STRIPE_LEN */
5269 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5270 ctl->chunk_size = ctl->stripe_size * data_stripes;
5275 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5276 struct btrfs_device_info *devices_info)
5278 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5279 /* Number of stripes that count for block group size */
5283 * It should hold because:
5284 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5286 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5288 ctl->stripe_size = zone_size;
5289 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5290 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5292 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5293 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5294 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5295 ctl->stripe_size) + ctl->nparity,
5297 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5298 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5299 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5302 ctl->chunk_size = ctl->stripe_size * data_stripes;
5307 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5308 struct alloc_chunk_ctl *ctl,
5309 struct btrfs_device_info *devices_info)
5311 struct btrfs_fs_info *info = fs_devices->fs_info;
5314 * Round down to number of usable stripes, devs_increment can be any
5315 * number so we can't use round_down() that requires power of 2, while
5316 * rounddown is safe.
5318 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5320 if (ctl->ndevs < ctl->devs_min) {
5321 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5323 "%s: not enough devices with free space: have=%d minimum required=%d",
5324 __func__, ctl->ndevs, ctl->devs_min);
5329 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5331 switch (fs_devices->chunk_alloc_policy) {
5332 case BTRFS_CHUNK_ALLOC_REGULAR:
5333 return decide_stripe_size_regular(ctl, devices_info);
5334 case BTRFS_CHUNK_ALLOC_ZONED:
5335 return decide_stripe_size_zoned(ctl, devices_info);
5341 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5342 struct alloc_chunk_ctl *ctl,
5343 struct btrfs_device_info *devices_info)
5345 struct btrfs_fs_info *info = trans->fs_info;
5346 struct map_lookup *map = NULL;
5347 struct extent_map_tree *em_tree;
5348 struct btrfs_block_group *block_group;
5349 struct extent_map *em;
5350 u64 start = ctl->start;
5351 u64 type = ctl->type;
5356 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5358 return ERR_PTR(-ENOMEM);
5359 map->num_stripes = ctl->num_stripes;
5361 for (i = 0; i < ctl->ndevs; ++i) {
5362 for (j = 0; j < ctl->dev_stripes; ++j) {
5363 int s = i * ctl->dev_stripes + j;
5364 map->stripes[s].dev = devices_info[i].dev;
5365 map->stripes[s].physical = devices_info[i].dev_offset +
5366 j * ctl->stripe_size;
5369 map->stripe_len = BTRFS_STRIPE_LEN;
5370 map->io_align = BTRFS_STRIPE_LEN;
5371 map->io_width = BTRFS_STRIPE_LEN;
5373 map->sub_stripes = ctl->sub_stripes;
5375 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5377 em = alloc_extent_map();
5380 return ERR_PTR(-ENOMEM);
5382 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5383 em->map_lookup = map;
5385 em->len = ctl->chunk_size;
5386 em->block_start = 0;
5387 em->block_len = em->len;
5388 em->orig_block_len = ctl->stripe_size;
5390 em_tree = &info->mapping_tree;
5391 write_lock(&em_tree->lock);
5392 ret = add_extent_mapping(em_tree, em, 0);
5394 write_unlock(&em_tree->lock);
5395 free_extent_map(em);
5396 return ERR_PTR(ret);
5398 write_unlock(&em_tree->lock);
5400 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5401 if (IS_ERR(block_group))
5402 goto error_del_extent;
5404 for (i = 0; i < map->num_stripes; i++) {
5405 struct btrfs_device *dev = map->stripes[i].dev;
5407 btrfs_device_set_bytes_used(dev,
5408 dev->bytes_used + ctl->stripe_size);
5409 if (list_empty(&dev->post_commit_list))
5410 list_add_tail(&dev->post_commit_list,
5411 &trans->transaction->dev_update_list);
5414 atomic64_sub(ctl->stripe_size * map->num_stripes,
5415 &info->free_chunk_space);
5417 free_extent_map(em);
5418 check_raid56_incompat_flag(info, type);
5419 check_raid1c34_incompat_flag(info, type);
5424 write_lock(&em_tree->lock);
5425 remove_extent_mapping(em_tree, em);
5426 write_unlock(&em_tree->lock);
5428 /* One for our allocation */
5429 free_extent_map(em);
5430 /* One for the tree reference */
5431 free_extent_map(em);
5436 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5439 struct btrfs_fs_info *info = trans->fs_info;
5440 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5441 struct btrfs_device_info *devices_info = NULL;
5442 struct alloc_chunk_ctl ctl;
5443 struct btrfs_block_group *block_group;
5446 lockdep_assert_held(&info->chunk_mutex);
5448 if (!alloc_profile_is_valid(type, 0)) {
5450 return ERR_PTR(-EINVAL);
5453 if (list_empty(&fs_devices->alloc_list)) {
5454 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5455 btrfs_debug(info, "%s: no writable device", __func__);
5456 return ERR_PTR(-ENOSPC);
5459 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5460 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5462 return ERR_PTR(-EINVAL);
5465 ctl.start = find_next_chunk(info);
5467 init_alloc_chunk_ctl(fs_devices, &ctl);
5469 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5472 return ERR_PTR(-ENOMEM);
5474 ret = gather_device_info(fs_devices, &ctl, devices_info);
5476 block_group = ERR_PTR(ret);
5480 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5482 block_group = ERR_PTR(ret);
5486 block_group = create_chunk(trans, &ctl, devices_info);
5489 kfree(devices_info);
5494 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5495 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5498 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5501 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5502 struct btrfs_block_group *bg)
5504 struct btrfs_fs_info *fs_info = trans->fs_info;
5505 struct btrfs_root *extent_root = fs_info->extent_root;
5506 struct btrfs_root *chunk_root = fs_info->chunk_root;
5507 struct btrfs_key key;
5508 struct btrfs_chunk *chunk;
5509 struct btrfs_stripe *stripe;
5510 struct extent_map *em;
5511 struct map_lookup *map;
5517 * We take the chunk_mutex for 2 reasons:
5519 * 1) Updates and insertions in the chunk btree must be done while holding
5520 * the chunk_mutex, as well as updating the system chunk array in the
5521 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5524 * 2) To prevent races with the final phase of a device replace operation
5525 * that replaces the device object associated with the map's stripes,
5526 * because the device object's id can change at any time during that
5527 * final phase of the device replace operation
5528 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5529 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5530 * which would cause a failure when updating the device item, which does
5531 * not exists, or persisting a stripe of the chunk item with such ID.
5532 * Here we can't use the device_list_mutex because our caller already
5533 * has locked the chunk_mutex, and the final phase of device replace
5534 * acquires both mutexes - first the device_list_mutex and then the
5535 * chunk_mutex. Using any of those two mutexes protects us from a
5536 * concurrent device replace.
5538 lockdep_assert_held(&fs_info->chunk_mutex);
5540 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5543 btrfs_abort_transaction(trans, ret);
5547 map = em->map_lookup;
5548 item_size = btrfs_chunk_item_size(map->num_stripes);
5550 chunk = kzalloc(item_size, GFP_NOFS);
5553 btrfs_abort_transaction(trans, ret);
5557 for (i = 0; i < map->num_stripes; i++) {
5558 struct btrfs_device *device = map->stripes[i].dev;
5560 ret = btrfs_update_device(trans, device);
5565 stripe = &chunk->stripe;
5566 for (i = 0; i < map->num_stripes; i++) {
5567 struct btrfs_device *device = map->stripes[i].dev;
5568 const u64 dev_offset = map->stripes[i].physical;
5570 btrfs_set_stack_stripe_devid(stripe, device->devid);
5571 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5572 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5576 btrfs_set_stack_chunk_length(chunk, bg->length);
5577 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5578 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5579 btrfs_set_stack_chunk_type(chunk, map->type);
5580 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5581 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5582 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5583 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5584 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5586 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5587 key.type = BTRFS_CHUNK_ITEM_KEY;
5588 key.offset = bg->start;
5590 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5594 bg->chunk_item_inserted = 1;
5596 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5597 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5604 free_extent_map(em);
5608 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5610 struct btrfs_fs_info *fs_info = trans->fs_info;
5612 struct btrfs_block_group *meta_bg;
5613 struct btrfs_block_group *sys_bg;
5616 * When adding a new device for sprouting, the seed device is read-only
5617 * so we must first allocate a metadata and a system chunk. But before
5618 * adding the block group items to the extent, device and chunk btrees,
5621 * 1) Create both chunks without doing any changes to the btrees, as
5622 * otherwise we would get -ENOSPC since the block groups from the
5623 * seed device are read-only;
5625 * 2) Add the device item for the new sprout device - finishing the setup
5626 * of a new block group requires updating the device item in the chunk
5627 * btree, so it must exist when we attempt to do it. The previous step
5628 * ensures this does not fail with -ENOSPC.
5630 * After that we can add the block group items to their btrees:
5631 * update existing device item in the chunk btree, add a new block group
5632 * item to the extent btree, add a new chunk item to the chunk btree and
5633 * finally add the new device extent items to the devices btree.
5636 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5637 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5638 if (IS_ERR(meta_bg))
5639 return PTR_ERR(meta_bg);
5641 alloc_profile = btrfs_system_alloc_profile(fs_info);
5642 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5644 return PTR_ERR(sys_bg);
5649 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5651 const int index = btrfs_bg_flags_to_raid_index(map->type);
5653 return btrfs_raid_array[index].tolerated_failures;
5656 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5658 struct extent_map *em;
5659 struct map_lookup *map;
5664 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5668 map = em->map_lookup;
5669 for (i = 0; i < map->num_stripes; i++) {
5670 if (test_bit(BTRFS_DEV_STATE_MISSING,
5671 &map->stripes[i].dev->dev_state)) {
5675 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5676 &map->stripes[i].dev->dev_state)) {
5683 * If the number of missing devices is larger than max errors, we can
5684 * not write the data into that chunk successfully.
5686 if (miss_ndevs > btrfs_chunk_max_errors(map))
5689 free_extent_map(em);
5693 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5695 struct extent_map *em;
5698 write_lock(&tree->lock);
5699 em = lookup_extent_mapping(tree, 0, (u64)-1);
5701 remove_extent_mapping(tree, em);
5702 write_unlock(&tree->lock);
5706 free_extent_map(em);
5707 /* once for the tree */
5708 free_extent_map(em);
5712 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5714 struct extent_map *em;
5715 struct map_lookup *map;
5718 em = btrfs_get_chunk_map(fs_info, logical, len);
5721 * We could return errors for these cases, but that could get
5722 * ugly and we'd probably do the same thing which is just not do
5723 * anything else and exit, so return 1 so the callers don't try
5724 * to use other copies.
5728 map = em->map_lookup;
5729 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5730 ret = map->num_stripes;
5731 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5732 ret = map->sub_stripes;
5733 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5735 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5737 * There could be two corrupted data stripes, we need
5738 * to loop retry in order to rebuild the correct data.
5740 * Fail a stripe at a time on every retry except the
5741 * stripe under reconstruction.
5743 ret = map->num_stripes;
5746 free_extent_map(em);
5748 down_read(&fs_info->dev_replace.rwsem);
5749 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5750 fs_info->dev_replace.tgtdev)
5752 up_read(&fs_info->dev_replace.rwsem);
5757 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5760 struct extent_map *em;
5761 struct map_lookup *map;
5762 unsigned long len = fs_info->sectorsize;
5764 em = btrfs_get_chunk_map(fs_info, logical, len);
5766 if (!WARN_ON(IS_ERR(em))) {
5767 map = em->map_lookup;
5768 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5769 len = map->stripe_len * nr_data_stripes(map);
5770 free_extent_map(em);
5775 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5777 struct extent_map *em;
5778 struct map_lookup *map;
5781 em = btrfs_get_chunk_map(fs_info, logical, len);
5783 if(!WARN_ON(IS_ERR(em))) {
5784 map = em->map_lookup;
5785 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5787 free_extent_map(em);
5792 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5793 struct map_lookup *map, int first,
5794 int dev_replace_is_ongoing)
5798 int preferred_mirror;
5800 struct btrfs_device *srcdev;
5803 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5805 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5806 num_stripes = map->sub_stripes;
5808 num_stripes = map->num_stripes;
5810 switch (fs_info->fs_devices->read_policy) {
5812 /* Shouldn't happen, just warn and use pid instead of failing */
5813 btrfs_warn_rl(fs_info,
5814 "unknown read_policy type %u, reset to pid",
5815 fs_info->fs_devices->read_policy);
5816 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5818 case BTRFS_READ_POLICY_PID:
5819 preferred_mirror = first + (current->pid % num_stripes);
5823 if (dev_replace_is_ongoing &&
5824 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5825 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5826 srcdev = fs_info->dev_replace.srcdev;
5831 * try to avoid the drive that is the source drive for a
5832 * dev-replace procedure, only choose it if no other non-missing
5833 * mirror is available
5835 for (tolerance = 0; tolerance < 2; tolerance++) {
5836 if (map->stripes[preferred_mirror].dev->bdev &&
5837 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5838 return preferred_mirror;
5839 for (i = first; i < first + num_stripes; i++) {
5840 if (map->stripes[i].dev->bdev &&
5841 (tolerance || map->stripes[i].dev != srcdev))
5846 /* we couldn't find one that doesn't fail. Just return something
5847 * and the io error handling code will clean up eventually
5849 return preferred_mirror;
5852 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5853 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5860 for (i = 0; i < num_stripes - 1; i++) {
5861 /* Swap if parity is on a smaller index */
5862 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5863 swap(bioc->stripes[i], bioc->stripes[i + 1]);
5864 swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5871 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5875 struct btrfs_io_context *bioc = kzalloc(
5876 /* The size of btrfs_io_context */
5877 sizeof(struct btrfs_io_context) +
5878 /* Plus the variable array for the stripes */
5879 sizeof(struct btrfs_io_stripe) * (total_stripes) +
5880 /* Plus the variable array for the tgt dev */
5881 sizeof(int) * (real_stripes) +
5883 * Plus the raid_map, which includes both the tgt dev
5886 sizeof(u64) * (total_stripes),
5887 GFP_NOFS|__GFP_NOFAIL);
5889 atomic_set(&bioc->error, 0);
5890 refcount_set(&bioc->refs, 1);
5892 bioc->fs_info = fs_info;
5893 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5894 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5899 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5901 WARN_ON(!refcount_read(&bioc->refs));
5902 refcount_inc(&bioc->refs);
5905 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5909 if (refcount_dec_and_test(&bioc->refs))
5913 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5915 * Please note that, discard won't be sent to target device of device
5918 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5919 u64 logical, u64 *length_ret,
5920 struct btrfs_io_context **bioc_ret)
5922 struct extent_map *em;
5923 struct map_lookup *map;
5924 struct btrfs_io_context *bioc;
5925 u64 length = *length_ret;
5929 u64 stripe_end_offset;
5936 u32 sub_stripes = 0;
5937 u64 stripes_per_dev = 0;
5938 u32 remaining_stripes = 0;
5939 u32 last_stripe = 0;
5943 /* Discard always returns a bioc. */
5946 em = btrfs_get_chunk_map(fs_info, logical, length);
5950 map = em->map_lookup;
5951 /* we don't discard raid56 yet */
5952 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5957 offset = logical - em->start;
5958 length = min_t(u64, em->start + em->len - logical, length);
5959 *length_ret = length;
5961 stripe_len = map->stripe_len;
5963 * stripe_nr counts the total number of stripes we have to stride
5964 * to get to this block
5966 stripe_nr = div64_u64(offset, stripe_len);
5968 /* stripe_offset is the offset of this block in its stripe */
5969 stripe_offset = offset - stripe_nr * stripe_len;
5971 stripe_nr_end = round_up(offset + length, map->stripe_len);
5972 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5973 stripe_cnt = stripe_nr_end - stripe_nr;
5974 stripe_end_offset = stripe_nr_end * map->stripe_len -
5977 * after this, stripe_nr is the number of stripes on this
5978 * device we have to walk to find the data, and stripe_index is
5979 * the number of our device in the stripe array
5983 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5984 BTRFS_BLOCK_GROUP_RAID10)) {
5985 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5988 sub_stripes = map->sub_stripes;
5990 factor = map->num_stripes / sub_stripes;
5991 num_stripes = min_t(u64, map->num_stripes,
5992 sub_stripes * stripe_cnt);
5993 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5994 stripe_index *= sub_stripes;
5995 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5996 &remaining_stripes);
5997 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5998 last_stripe *= sub_stripes;
5999 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6000 BTRFS_BLOCK_GROUP_DUP)) {
6001 num_stripes = map->num_stripes;
6003 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6007 bioc = alloc_btrfs_io_context(fs_info, num_stripes, 0);
6013 for (i = 0; i < num_stripes; i++) {
6014 bioc->stripes[i].physical =
6015 map->stripes[stripe_index].physical +
6016 stripe_offset + stripe_nr * map->stripe_len;
6017 bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6019 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6020 BTRFS_BLOCK_GROUP_RAID10)) {
6021 bioc->stripes[i].length = stripes_per_dev *
6024 if (i / sub_stripes < remaining_stripes)
6025 bioc->stripes[i].length += map->stripe_len;
6028 * Special for the first stripe and
6031 * |-------|...|-------|
6035 if (i < sub_stripes)
6036 bioc->stripes[i].length -= stripe_offset;
6038 if (stripe_index >= last_stripe &&
6039 stripe_index <= (last_stripe +
6041 bioc->stripes[i].length -= stripe_end_offset;
6043 if (i == sub_stripes - 1)
6046 bioc->stripes[i].length = length;
6050 if (stripe_index == map->num_stripes) {
6057 bioc->map_type = map->type;
6058 bioc->num_stripes = num_stripes;
6060 free_extent_map(em);
6065 * In dev-replace case, for repair case (that's the only case where the mirror
6066 * is selected explicitly when calling btrfs_map_block), blocks left of the
6067 * left cursor can also be read from the target drive.
6069 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6071 * For READ, it also needs to be supported using the same mirror number.
6073 * If the requested block is not left of the left cursor, EIO is returned. This
6074 * can happen because btrfs_num_copies() returns one more in the dev-replace
6077 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6078 u64 logical, u64 length,
6079 u64 srcdev_devid, int *mirror_num,
6082 struct btrfs_io_context *bioc = NULL;
6084 int index_srcdev = 0;
6086 u64 physical_of_found = 0;
6090 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6091 logical, &length, &bioc, 0, 0);
6093 ASSERT(bioc == NULL);
6097 num_stripes = bioc->num_stripes;
6098 if (*mirror_num > num_stripes) {
6100 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6101 * that means that the requested area is not left of the left
6104 btrfs_put_bioc(bioc);
6109 * process the rest of the function using the mirror_num of the source
6110 * drive. Therefore look it up first. At the end, patch the device
6111 * pointer to the one of the target drive.
6113 for (i = 0; i < num_stripes; i++) {
6114 if (bioc->stripes[i].dev->devid != srcdev_devid)
6118 * In case of DUP, in order to keep it simple, only add the
6119 * mirror with the lowest physical address
6122 physical_of_found <= bioc->stripes[i].physical)
6127 physical_of_found = bioc->stripes[i].physical;
6130 btrfs_put_bioc(bioc);
6136 *mirror_num = index_srcdev + 1;
6137 *physical = physical_of_found;
6141 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6143 struct btrfs_block_group *cache;
6146 /* Non zoned filesystem does not use "to_copy" flag */
6147 if (!btrfs_is_zoned(fs_info))
6150 cache = btrfs_lookup_block_group(fs_info, logical);
6152 spin_lock(&cache->lock);
6153 ret = cache->to_copy;
6154 spin_unlock(&cache->lock);
6156 btrfs_put_block_group(cache);
6160 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6161 struct btrfs_io_context **bioc_ret,
6162 struct btrfs_dev_replace *dev_replace,
6164 int *num_stripes_ret, int *max_errors_ret)
6166 struct btrfs_io_context *bioc = *bioc_ret;
6167 u64 srcdev_devid = dev_replace->srcdev->devid;
6168 int tgtdev_indexes = 0;
6169 int num_stripes = *num_stripes_ret;
6170 int max_errors = *max_errors_ret;
6173 if (op == BTRFS_MAP_WRITE) {
6174 int index_where_to_add;
6177 * A block group which have "to_copy" set will eventually
6178 * copied by dev-replace process. We can avoid cloning IO here.
6180 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6184 * duplicate the write operations while the dev replace
6185 * procedure is running. Since the copying of the old disk to
6186 * the new disk takes place at run time while the filesystem is
6187 * mounted writable, the regular write operations to the old
6188 * disk have to be duplicated to go to the new disk as well.
6190 * Note that device->missing is handled by the caller, and that
6191 * the write to the old disk is already set up in the stripes
6194 index_where_to_add = num_stripes;
6195 for (i = 0; i < num_stripes; i++) {
6196 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6197 /* write to new disk, too */
6198 struct btrfs_io_stripe *new =
6199 bioc->stripes + index_where_to_add;
6200 struct btrfs_io_stripe *old =
6203 new->physical = old->physical;
6204 new->length = old->length;
6205 new->dev = dev_replace->tgtdev;
6206 bioc->tgtdev_map[i] = index_where_to_add;
6207 index_where_to_add++;
6212 num_stripes = index_where_to_add;
6213 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6214 int index_srcdev = 0;
6216 u64 physical_of_found = 0;
6219 * During the dev-replace procedure, the target drive can also
6220 * be used to read data in case it is needed to repair a corrupt
6221 * block elsewhere. This is possible if the requested area is
6222 * left of the left cursor. In this area, the target drive is a
6223 * full copy of the source drive.
6225 for (i = 0; i < num_stripes; i++) {
6226 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6228 * In case of DUP, in order to keep it simple,
6229 * only add the mirror with the lowest physical
6233 physical_of_found <= bioc->stripes[i].physical)
6237 physical_of_found = bioc->stripes[i].physical;
6241 struct btrfs_io_stripe *tgtdev_stripe =
6242 bioc->stripes + num_stripes;
6244 tgtdev_stripe->physical = physical_of_found;
6245 tgtdev_stripe->length =
6246 bioc->stripes[index_srcdev].length;
6247 tgtdev_stripe->dev = dev_replace->tgtdev;
6248 bioc->tgtdev_map[index_srcdev] = num_stripes;
6255 *num_stripes_ret = num_stripes;
6256 *max_errors_ret = max_errors;
6257 bioc->num_tgtdevs = tgtdev_indexes;
6261 static bool need_full_stripe(enum btrfs_map_op op)
6263 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6267 * Calculate the geometry of a particular (address, len) tuple. This
6268 * information is used to calculate how big a particular bio can get before it
6269 * straddles a stripe.
6271 * @fs_info: the filesystem
6272 * @em: mapping containing the logical extent
6273 * @op: type of operation - write or read
6274 * @logical: address that we want to figure out the geometry of
6275 * @io_geom: pointer used to return values
6277 * Returns < 0 in case a chunk for the given logical address cannot be found,
6278 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6280 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6281 enum btrfs_map_op op, u64 logical,
6282 struct btrfs_io_geometry *io_geom)
6284 struct map_lookup *map;
6290 u64 raid56_full_stripe_start = (u64)-1;
6293 ASSERT(op != BTRFS_MAP_DISCARD);
6295 map = em->map_lookup;
6296 /* Offset of this logical address in the chunk */
6297 offset = logical - em->start;
6298 /* Len of a stripe in a chunk */
6299 stripe_len = map->stripe_len;
6300 /* Stripe where this block falls in */
6301 stripe_nr = div64_u64(offset, stripe_len);
6302 /* Offset of stripe in the chunk */
6303 stripe_offset = stripe_nr * stripe_len;
6304 if (offset < stripe_offset) {
6306 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6307 stripe_offset, offset, em->start, logical, stripe_len);
6311 /* stripe_offset is the offset of this block in its stripe */
6312 stripe_offset = offset - stripe_offset;
6313 data_stripes = nr_data_stripes(map);
6315 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6316 u64 max_len = stripe_len - stripe_offset;
6319 * In case of raid56, we need to know the stripe aligned start
6321 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6322 unsigned long full_stripe_len = stripe_len * data_stripes;
6323 raid56_full_stripe_start = offset;
6326 * Allow a write of a full stripe, but make sure we
6327 * don't allow straddling of stripes
6329 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6331 raid56_full_stripe_start *= full_stripe_len;
6334 * For writes to RAID[56], allow a full stripeset across
6335 * all disks. For other RAID types and for RAID[56]
6336 * reads, just allow a single stripe (on a single disk).
6338 if (op == BTRFS_MAP_WRITE) {
6339 max_len = stripe_len * data_stripes -
6340 (offset - raid56_full_stripe_start);
6343 len = min_t(u64, em->len - offset, max_len);
6345 len = em->len - offset;
6349 io_geom->offset = offset;
6350 io_geom->stripe_len = stripe_len;
6351 io_geom->stripe_nr = stripe_nr;
6352 io_geom->stripe_offset = stripe_offset;
6353 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6358 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6359 enum btrfs_map_op op,
6360 u64 logical, u64 *length,
6361 struct btrfs_io_context **bioc_ret,
6362 int mirror_num, int need_raid_map)
6364 struct extent_map *em;
6365 struct map_lookup *map;
6375 int tgtdev_indexes = 0;
6376 struct btrfs_io_context *bioc = NULL;
6377 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6378 int dev_replace_is_ongoing = 0;
6379 int num_alloc_stripes;
6380 int patch_the_first_stripe_for_dev_replace = 0;
6381 u64 physical_to_patch_in_first_stripe = 0;
6382 u64 raid56_full_stripe_start = (u64)-1;
6383 struct btrfs_io_geometry geom;
6386 ASSERT(op != BTRFS_MAP_DISCARD);
6388 em = btrfs_get_chunk_map(fs_info, logical, *length);
6389 ASSERT(!IS_ERR(em));
6391 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6395 map = em->map_lookup;
6398 stripe_len = geom.stripe_len;
6399 stripe_nr = geom.stripe_nr;
6400 stripe_offset = geom.stripe_offset;
6401 raid56_full_stripe_start = geom.raid56_stripe_offset;
6402 data_stripes = nr_data_stripes(map);
6404 down_read(&dev_replace->rwsem);
6405 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6407 * Hold the semaphore for read during the whole operation, write is
6408 * requested at commit time but must wait.
6410 if (!dev_replace_is_ongoing)
6411 up_read(&dev_replace->rwsem);
6413 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6414 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6415 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6416 dev_replace->srcdev->devid,
6418 &physical_to_patch_in_first_stripe);
6422 patch_the_first_stripe_for_dev_replace = 1;
6423 } else if (mirror_num > map->num_stripes) {
6429 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6430 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6432 if (!need_full_stripe(op))
6434 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6435 if (need_full_stripe(op))
6436 num_stripes = map->num_stripes;
6437 else if (mirror_num)
6438 stripe_index = mirror_num - 1;
6440 stripe_index = find_live_mirror(fs_info, map, 0,
6441 dev_replace_is_ongoing);
6442 mirror_num = stripe_index + 1;
6445 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6446 if (need_full_stripe(op)) {
6447 num_stripes = map->num_stripes;
6448 } else if (mirror_num) {
6449 stripe_index = mirror_num - 1;
6454 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6455 u32 factor = map->num_stripes / map->sub_stripes;
6457 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6458 stripe_index *= map->sub_stripes;
6460 if (need_full_stripe(op))
6461 num_stripes = map->sub_stripes;
6462 else if (mirror_num)
6463 stripe_index += mirror_num - 1;
6465 int old_stripe_index = stripe_index;
6466 stripe_index = find_live_mirror(fs_info, map,
6468 dev_replace_is_ongoing);
6469 mirror_num = stripe_index - old_stripe_index + 1;
6472 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6473 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6474 /* push stripe_nr back to the start of the full stripe */
6475 stripe_nr = div64_u64(raid56_full_stripe_start,
6476 stripe_len * data_stripes);
6478 /* RAID[56] write or recovery. Return all stripes */
6479 num_stripes = map->num_stripes;
6480 max_errors = nr_parity_stripes(map);
6482 *length = map->stripe_len;
6487 * Mirror #0 or #1 means the original data block.
6488 * Mirror #2 is RAID5 parity block.
6489 * Mirror #3 is RAID6 Q block.
6491 stripe_nr = div_u64_rem(stripe_nr,
6492 data_stripes, &stripe_index);
6494 stripe_index = data_stripes + mirror_num - 2;
6496 /* We distribute the parity blocks across stripes */
6497 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6499 if (!need_full_stripe(op) && mirror_num <= 1)
6504 * after this, stripe_nr is the number of stripes on this
6505 * device we have to walk to find the data, and stripe_index is
6506 * the number of our device in the stripe array
6508 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6510 mirror_num = stripe_index + 1;
6512 if (stripe_index >= map->num_stripes) {
6514 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6515 stripe_index, map->num_stripes);
6520 num_alloc_stripes = num_stripes;
6521 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6522 if (op == BTRFS_MAP_WRITE)
6523 num_alloc_stripes <<= 1;
6524 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6525 num_alloc_stripes++;
6526 tgtdev_indexes = num_stripes;
6529 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6535 for (i = 0; i < num_stripes; i++) {
6536 bioc->stripes[i].physical = map->stripes[stripe_index].physical +
6537 stripe_offset + stripe_nr * map->stripe_len;
6538 bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6542 /* Build raid_map */
6543 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6544 (need_full_stripe(op) || mirror_num > 1)) {
6548 /* Work out the disk rotation on this stripe-set */
6549 div_u64_rem(stripe_nr, num_stripes, &rot);
6551 /* Fill in the logical address of each stripe */
6552 tmp = stripe_nr * data_stripes;
6553 for (i = 0; i < data_stripes; i++)
6554 bioc->raid_map[(i + rot) % num_stripes] =
6555 em->start + (tmp + i) * map->stripe_len;
6557 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6558 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6559 bioc->raid_map[(i + rot + 1) % num_stripes] =
6562 sort_parity_stripes(bioc, num_stripes);
6565 if (need_full_stripe(op))
6566 max_errors = btrfs_chunk_max_errors(map);
6568 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6569 need_full_stripe(op)) {
6570 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6571 &num_stripes, &max_errors);
6575 bioc->map_type = map->type;
6576 bioc->num_stripes = num_stripes;
6577 bioc->max_errors = max_errors;
6578 bioc->mirror_num = mirror_num;
6581 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6582 * mirror_num == num_stripes + 1 && dev_replace target drive is
6583 * available as a mirror
6585 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6586 WARN_ON(num_stripes > 1);
6587 bioc->stripes[0].dev = dev_replace->tgtdev;
6588 bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6589 bioc->mirror_num = map->num_stripes + 1;
6592 if (dev_replace_is_ongoing) {
6593 lockdep_assert_held(&dev_replace->rwsem);
6594 /* Unlock and let waiting writers proceed */
6595 up_read(&dev_replace->rwsem);
6597 free_extent_map(em);
6601 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6602 u64 logical, u64 *length,
6603 struct btrfs_io_context **bioc_ret, int mirror_num)
6605 if (op == BTRFS_MAP_DISCARD)
6606 return __btrfs_map_block_for_discard(fs_info, logical,
6609 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6613 /* For Scrub/replace */
6614 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6615 u64 logical, u64 *length,
6616 struct btrfs_io_context **bioc_ret)
6618 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1);
6621 static inline void btrfs_end_bioc(struct btrfs_io_context *bioc, struct bio *bio)
6623 bio->bi_private = bioc->private;
6624 bio->bi_end_io = bioc->end_io;
6627 btrfs_put_bioc(bioc);
6630 static void btrfs_end_bio(struct bio *bio)
6632 struct btrfs_io_context *bioc = bio->bi_private;
6633 int is_orig_bio = 0;
6635 if (bio->bi_status) {
6636 atomic_inc(&bioc->error);
6637 if (bio->bi_status == BLK_STS_IOERR ||
6638 bio->bi_status == BLK_STS_TARGET) {
6639 struct btrfs_device *dev = btrfs_bio(bio)->device;
6642 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6643 btrfs_dev_stat_inc_and_print(dev,
6644 BTRFS_DEV_STAT_WRITE_ERRS);
6645 else if (!(bio->bi_opf & REQ_RAHEAD))
6646 btrfs_dev_stat_inc_and_print(dev,
6647 BTRFS_DEV_STAT_READ_ERRS);
6648 if (bio->bi_opf & REQ_PREFLUSH)
6649 btrfs_dev_stat_inc_and_print(dev,
6650 BTRFS_DEV_STAT_FLUSH_ERRS);
6654 if (bio == bioc->orig_bio)
6657 btrfs_bio_counter_dec(bioc->fs_info);
6659 if (atomic_dec_and_test(&bioc->stripes_pending)) {
6662 bio = bioc->orig_bio;
6665 btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6666 /* only send an error to the higher layers if it is
6667 * beyond the tolerance of the btrfs bio
6669 if (atomic_read(&bioc->error) > bioc->max_errors) {
6670 bio->bi_status = BLK_STS_IOERR;
6673 * this bio is actually up to date, we didn't
6674 * go over the max number of errors
6676 bio->bi_status = BLK_STS_OK;
6679 btrfs_end_bioc(bioc, bio);
6680 } else if (!is_orig_bio) {
6685 static void submit_stripe_bio(struct btrfs_io_context *bioc, struct bio *bio,
6686 u64 physical, struct btrfs_device *dev)
6688 struct btrfs_fs_info *fs_info = bioc->fs_info;
6690 bio->bi_private = bioc;
6691 btrfs_bio(bio)->device = dev;
6692 bio->bi_end_io = btrfs_end_bio;
6693 bio->bi_iter.bi_sector = physical >> 9;
6695 * For zone append writing, bi_sector must point the beginning of the
6698 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6699 if (btrfs_dev_is_sequential(dev, physical)) {
6700 u64 zone_start = round_down(physical, fs_info->zone_size);
6702 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6704 bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6705 bio->bi_opf |= REQ_OP_WRITE;
6708 btrfs_debug_in_rcu(fs_info,
6709 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6710 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6711 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6712 dev->devid, bio->bi_iter.bi_size);
6713 bio_set_dev(bio, dev->bdev);
6715 btrfs_bio_counter_inc_noblocked(fs_info);
6717 btrfsic_submit_bio(bio);
6720 static void bioc_error(struct btrfs_io_context *bioc, struct bio *bio, u64 logical)
6722 atomic_inc(&bioc->error);
6723 if (atomic_dec_and_test(&bioc->stripes_pending)) {
6724 /* Should be the original bio. */
6725 WARN_ON(bio != bioc->orig_bio);
6727 btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6728 bio->bi_iter.bi_sector = logical >> 9;
6729 if (atomic_read(&bioc->error) > bioc->max_errors)
6730 bio->bi_status = BLK_STS_IOERR;
6732 bio->bi_status = BLK_STS_OK;
6733 btrfs_end_bioc(bioc, bio);
6737 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6740 struct btrfs_device *dev;
6741 struct bio *first_bio = bio;
6742 u64 logical = bio->bi_iter.bi_sector << 9;
6748 struct btrfs_io_context *bioc = NULL;
6750 length = bio->bi_iter.bi_size;
6751 map_length = length;
6753 btrfs_bio_counter_inc_blocked(fs_info);
6754 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6755 &map_length, &bioc, mirror_num, 1);
6757 btrfs_bio_counter_dec(fs_info);
6758 return errno_to_blk_status(ret);
6761 total_devs = bioc->num_stripes;
6762 bioc->orig_bio = first_bio;
6763 bioc->private = first_bio->bi_private;
6764 bioc->end_io = first_bio->bi_end_io;
6765 atomic_set(&bioc->stripes_pending, bioc->num_stripes);
6767 if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6768 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6769 /* In this case, map_length has been set to the length of
6770 a single stripe; not the whole write */
6771 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6772 ret = raid56_parity_write(bio, bioc, map_length);
6774 ret = raid56_parity_recover(bio, bioc, map_length,
6778 btrfs_bio_counter_dec(fs_info);
6779 return errno_to_blk_status(ret);
6782 if (map_length < length) {
6784 "mapping failed logical %llu bio len %llu len %llu",
6785 logical, length, map_length);
6789 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6790 dev = bioc->stripes[dev_nr].dev;
6791 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6793 (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6794 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6795 bioc_error(bioc, first_bio, logical);
6799 if (dev_nr < total_devs - 1)
6800 bio = btrfs_bio_clone(first_bio);
6804 submit_stripe_bio(bioc, bio, bioc->stripes[dev_nr].physical, dev);
6806 btrfs_bio_counter_dec(fs_info);
6810 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6811 const struct btrfs_fs_devices *fs_devices)
6813 if (args->fsid == NULL)
6815 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6820 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6821 const struct btrfs_device *device)
6823 ASSERT((args->devid != (u64)-1) || args->missing);
6825 if ((args->devid != (u64)-1) && device->devid != args->devid)
6827 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6831 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6838 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6841 * If devid and uuid are both specified, the match must be exact, otherwise
6842 * only devid is used.
6844 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6845 const struct btrfs_dev_lookup_args *args)
6847 struct btrfs_device *device;
6848 struct btrfs_fs_devices *seed_devs;
6850 if (dev_args_match_fs_devices(args, fs_devices)) {
6851 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6852 if (dev_args_match_device(args, device))
6857 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6858 if (!dev_args_match_fs_devices(args, seed_devs))
6860 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6861 if (dev_args_match_device(args, device))
6869 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6870 u64 devid, u8 *dev_uuid)
6872 struct btrfs_device *device;
6873 unsigned int nofs_flag;
6876 * We call this under the chunk_mutex, so we want to use NOFS for this
6877 * allocation, however we don't want to change btrfs_alloc_device() to
6878 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6881 nofs_flag = memalloc_nofs_save();
6882 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6883 memalloc_nofs_restore(nofs_flag);
6887 list_add(&device->dev_list, &fs_devices->devices);
6888 device->fs_devices = fs_devices;
6889 fs_devices->num_devices++;
6891 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6892 fs_devices->missing_devices++;
6898 * btrfs_alloc_device - allocate struct btrfs_device
6899 * @fs_info: used only for generating a new devid, can be NULL if
6900 * devid is provided (i.e. @devid != NULL).
6901 * @devid: a pointer to devid for this device. If NULL a new devid
6903 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6906 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6907 * on error. Returned struct is not linked onto any lists and must be
6908 * destroyed with btrfs_free_device.
6910 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6914 struct btrfs_device *dev;
6917 if (WARN_ON(!devid && !fs_info))
6918 return ERR_PTR(-EINVAL);
6920 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6922 return ERR_PTR(-ENOMEM);
6925 * Preallocate a bio that's always going to be used for flushing device
6926 * barriers and matches the device lifespan
6928 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6929 if (!dev->flush_bio) {
6931 return ERR_PTR(-ENOMEM);
6934 INIT_LIST_HEAD(&dev->dev_list);
6935 INIT_LIST_HEAD(&dev->dev_alloc_list);
6936 INIT_LIST_HEAD(&dev->post_commit_list);
6938 atomic_set(&dev->reada_in_flight, 0);
6939 atomic_set(&dev->dev_stats_ccnt, 0);
6940 btrfs_device_data_ordered_init(dev);
6941 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6942 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6943 extent_io_tree_init(fs_info, &dev->alloc_state,
6944 IO_TREE_DEVICE_ALLOC_STATE, NULL);
6951 ret = find_next_devid(fs_info, &tmp);
6953 btrfs_free_device(dev);
6954 return ERR_PTR(ret);
6960 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6962 generate_random_uuid(dev->uuid);
6967 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6968 u64 devid, u8 *uuid, bool error)
6971 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6974 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6978 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6980 const int data_stripes = calc_data_stripes(type, num_stripes);
6982 return div_u64(chunk_len, data_stripes);
6985 #if BITS_PER_LONG == 32
6987 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6988 * can't be accessed on 32bit systems.
6990 * This function do mount time check to reject the fs if it already has
6991 * metadata chunk beyond that limit.
6993 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6994 u64 logical, u64 length, u64 type)
6996 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6999 if (logical + length < MAX_LFS_FILESIZE)
7002 btrfs_err_32bit_limit(fs_info);
7007 * This is to give early warning for any metadata chunk reaching
7008 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7009 * Although we can still access the metadata, it's not going to be possible
7010 * once the limit is reached.
7012 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7013 u64 logical, u64 length, u64 type)
7015 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7018 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7021 btrfs_warn_32bit_limit(fs_info);
7025 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7026 struct btrfs_chunk *chunk)
7028 BTRFS_DEV_LOOKUP_ARGS(args);
7029 struct btrfs_fs_info *fs_info = leaf->fs_info;
7030 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7031 struct map_lookup *map;
7032 struct extent_map *em;
7037 u8 uuid[BTRFS_UUID_SIZE];
7042 logical = key->offset;
7043 length = btrfs_chunk_length(leaf, chunk);
7044 type = btrfs_chunk_type(leaf, chunk);
7045 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7047 #if BITS_PER_LONG == 32
7048 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7051 warn_32bit_meta_chunk(fs_info, logical, length, type);
7055 * Only need to verify chunk item if we're reading from sys chunk array,
7056 * as chunk item in tree block is already verified by tree-checker.
7058 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7059 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7064 read_lock(&map_tree->lock);
7065 em = lookup_extent_mapping(map_tree, logical, 1);
7066 read_unlock(&map_tree->lock);
7068 /* already mapped? */
7069 if (em && em->start <= logical && em->start + em->len > logical) {
7070 free_extent_map(em);
7073 free_extent_map(em);
7076 em = alloc_extent_map();
7079 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7081 free_extent_map(em);
7085 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7086 em->map_lookup = map;
7087 em->start = logical;
7090 em->block_start = 0;
7091 em->block_len = em->len;
7093 map->num_stripes = num_stripes;
7094 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7095 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7096 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7098 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7099 map->verified_stripes = 0;
7100 em->orig_block_len = calc_stripe_length(type, em->len,
7102 for (i = 0; i < num_stripes; i++) {
7103 map->stripes[i].physical =
7104 btrfs_stripe_offset_nr(leaf, chunk, i);
7105 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7107 read_extent_buffer(leaf, uuid, (unsigned long)
7108 btrfs_stripe_dev_uuid_nr(chunk, i),
7111 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7112 if (!map->stripes[i].dev &&
7113 !btrfs_test_opt(fs_info, DEGRADED)) {
7114 free_extent_map(em);
7115 btrfs_report_missing_device(fs_info, devid, uuid, true);
7118 if (!map->stripes[i].dev) {
7119 map->stripes[i].dev =
7120 add_missing_dev(fs_info->fs_devices, devid,
7122 if (IS_ERR(map->stripes[i].dev)) {
7123 free_extent_map(em);
7125 "failed to init missing dev %llu: %ld",
7126 devid, PTR_ERR(map->stripes[i].dev));
7127 return PTR_ERR(map->stripes[i].dev);
7129 btrfs_report_missing_device(fs_info, devid, uuid, false);
7131 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7132 &(map->stripes[i].dev->dev_state));
7136 write_lock(&map_tree->lock);
7137 ret = add_extent_mapping(map_tree, em, 0);
7138 write_unlock(&map_tree->lock);
7141 "failed to add chunk map, start=%llu len=%llu: %d",
7142 em->start, em->len, ret);
7144 free_extent_map(em);
7149 static void fill_device_from_item(struct extent_buffer *leaf,
7150 struct btrfs_dev_item *dev_item,
7151 struct btrfs_device *device)
7155 device->devid = btrfs_device_id(leaf, dev_item);
7156 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7157 device->total_bytes = device->disk_total_bytes;
7158 device->commit_total_bytes = device->disk_total_bytes;
7159 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7160 device->commit_bytes_used = device->bytes_used;
7161 device->type = btrfs_device_type(leaf, dev_item);
7162 device->io_align = btrfs_device_io_align(leaf, dev_item);
7163 device->io_width = btrfs_device_io_width(leaf, dev_item);
7164 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7165 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7166 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7168 ptr = btrfs_device_uuid(dev_item);
7169 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7172 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7175 struct btrfs_fs_devices *fs_devices;
7178 lockdep_assert_held(&uuid_mutex);
7181 /* This will match only for multi-device seed fs */
7182 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7183 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7187 fs_devices = find_fsid(fsid, NULL);
7189 if (!btrfs_test_opt(fs_info, DEGRADED))
7190 return ERR_PTR(-ENOENT);
7192 fs_devices = alloc_fs_devices(fsid, NULL);
7193 if (IS_ERR(fs_devices))
7196 fs_devices->seeding = true;
7197 fs_devices->opened = 1;
7202 * Upon first call for a seed fs fsid, just create a private copy of the
7203 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7205 fs_devices = clone_fs_devices(fs_devices);
7206 if (IS_ERR(fs_devices))
7209 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7211 free_fs_devices(fs_devices);
7212 return ERR_PTR(ret);
7215 if (!fs_devices->seeding) {
7216 close_fs_devices(fs_devices);
7217 free_fs_devices(fs_devices);
7218 return ERR_PTR(-EINVAL);
7221 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7226 static int read_one_dev(struct extent_buffer *leaf,
7227 struct btrfs_dev_item *dev_item)
7229 BTRFS_DEV_LOOKUP_ARGS(args);
7230 struct btrfs_fs_info *fs_info = leaf->fs_info;
7231 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7232 struct btrfs_device *device;
7235 u8 fs_uuid[BTRFS_FSID_SIZE];
7236 u8 dev_uuid[BTRFS_UUID_SIZE];
7238 devid = args.devid = btrfs_device_id(leaf, dev_item);
7239 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7241 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7243 args.uuid = dev_uuid;
7244 args.fsid = fs_uuid;
7246 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7247 fs_devices = open_seed_devices(fs_info, fs_uuid);
7248 if (IS_ERR(fs_devices))
7249 return PTR_ERR(fs_devices);
7252 device = btrfs_find_device(fs_info->fs_devices, &args);
7254 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7255 btrfs_report_missing_device(fs_info, devid,
7260 device = add_missing_dev(fs_devices, devid, dev_uuid);
7261 if (IS_ERR(device)) {
7263 "failed to add missing dev %llu: %ld",
7264 devid, PTR_ERR(device));
7265 return PTR_ERR(device);
7267 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7269 if (!device->bdev) {
7270 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7271 btrfs_report_missing_device(fs_info,
7272 devid, dev_uuid, true);
7275 btrfs_report_missing_device(fs_info, devid,
7279 if (!device->bdev &&
7280 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7282 * this happens when a device that was properly setup
7283 * in the device info lists suddenly goes bad.
7284 * device->bdev is NULL, and so we have to set
7285 * device->missing to one here
7287 device->fs_devices->missing_devices++;
7288 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7291 /* Move the device to its own fs_devices */
7292 if (device->fs_devices != fs_devices) {
7293 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7294 &device->dev_state));
7296 list_move(&device->dev_list, &fs_devices->devices);
7297 device->fs_devices->num_devices--;
7298 fs_devices->num_devices++;
7300 device->fs_devices->missing_devices--;
7301 fs_devices->missing_devices++;
7303 device->fs_devices = fs_devices;
7307 if (device->fs_devices != fs_info->fs_devices) {
7308 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7309 if (device->generation !=
7310 btrfs_device_generation(leaf, dev_item))
7314 fill_device_from_item(leaf, dev_item, device);
7316 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7318 if (device->total_bytes > max_total_bytes) {
7320 "device total_bytes should be at most %llu but found %llu",
7321 max_total_bytes, device->total_bytes);
7325 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7326 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7327 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7328 device->fs_devices->total_rw_bytes += device->total_bytes;
7329 atomic64_add(device->total_bytes - device->bytes_used,
7330 &fs_info->free_chunk_space);
7336 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7338 struct btrfs_root *root = fs_info->tree_root;
7339 struct btrfs_super_block *super_copy = fs_info->super_copy;
7340 struct extent_buffer *sb;
7341 struct btrfs_disk_key *disk_key;
7342 struct btrfs_chunk *chunk;
7344 unsigned long sb_array_offset;
7351 struct btrfs_key key;
7353 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7355 * This will create extent buffer of nodesize, superblock size is
7356 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7357 * overallocate but we can keep it as-is, only the first page is used.
7359 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7360 root->root_key.objectid, 0);
7363 set_extent_buffer_uptodate(sb);
7365 * The sb extent buffer is artificial and just used to read the system array.
7366 * set_extent_buffer_uptodate() call does not properly mark all it's
7367 * pages up-to-date when the page is larger: extent does not cover the
7368 * whole page and consequently check_page_uptodate does not find all
7369 * the page's extents up-to-date (the hole beyond sb),
7370 * write_extent_buffer then triggers a WARN_ON.
7372 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7373 * but sb spans only this function. Add an explicit SetPageUptodate call
7374 * to silence the warning eg. on PowerPC 64.
7376 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7377 SetPageUptodate(sb->pages[0]);
7379 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7380 array_size = btrfs_super_sys_array_size(super_copy);
7382 array_ptr = super_copy->sys_chunk_array;
7383 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7386 while (cur_offset < array_size) {
7387 disk_key = (struct btrfs_disk_key *)array_ptr;
7388 len = sizeof(*disk_key);
7389 if (cur_offset + len > array_size)
7390 goto out_short_read;
7392 btrfs_disk_key_to_cpu(&key, disk_key);
7395 sb_array_offset += len;
7398 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7400 "unexpected item type %u in sys_array at offset %u",
7401 (u32)key.type, cur_offset);
7406 chunk = (struct btrfs_chunk *)sb_array_offset;
7408 * At least one btrfs_chunk with one stripe must be present,
7409 * exact stripe count check comes afterwards
7411 len = btrfs_chunk_item_size(1);
7412 if (cur_offset + len > array_size)
7413 goto out_short_read;
7415 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7418 "invalid number of stripes %u in sys_array at offset %u",
7419 num_stripes, cur_offset);
7424 type = btrfs_chunk_type(sb, chunk);
7425 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7427 "invalid chunk type %llu in sys_array at offset %u",
7433 len = btrfs_chunk_item_size(num_stripes);
7434 if (cur_offset + len > array_size)
7435 goto out_short_read;
7437 ret = read_one_chunk(&key, sb, chunk);
7442 sb_array_offset += len;
7445 clear_extent_buffer_uptodate(sb);
7446 free_extent_buffer_stale(sb);
7450 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7452 clear_extent_buffer_uptodate(sb);
7453 free_extent_buffer_stale(sb);
7458 * Check if all chunks in the fs are OK for read-write degraded mount
7460 * If the @failing_dev is specified, it's accounted as missing.
7462 * Return true if all chunks meet the minimal RW mount requirements.
7463 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7465 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7466 struct btrfs_device *failing_dev)
7468 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7469 struct extent_map *em;
7473 read_lock(&map_tree->lock);
7474 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7475 read_unlock(&map_tree->lock);
7476 /* No chunk at all? Return false anyway */
7482 struct map_lookup *map;
7487 map = em->map_lookup;
7489 btrfs_get_num_tolerated_disk_barrier_failures(
7491 for (i = 0; i < map->num_stripes; i++) {
7492 struct btrfs_device *dev = map->stripes[i].dev;
7494 if (!dev || !dev->bdev ||
7495 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7496 dev->last_flush_error)
7498 else if (failing_dev && failing_dev == dev)
7501 if (missing > max_tolerated) {
7504 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7505 em->start, missing, max_tolerated);
7506 free_extent_map(em);
7510 next_start = extent_map_end(em);
7511 free_extent_map(em);
7513 read_lock(&map_tree->lock);
7514 em = lookup_extent_mapping(map_tree, next_start,
7515 (u64)(-1) - next_start);
7516 read_unlock(&map_tree->lock);
7522 static void readahead_tree_node_children(struct extent_buffer *node)
7525 const int nr_items = btrfs_header_nritems(node);
7527 for (i = 0; i < nr_items; i++)
7528 btrfs_readahead_node_child(node, i);
7531 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7533 struct btrfs_root *root = fs_info->chunk_root;
7534 struct btrfs_path *path;
7535 struct extent_buffer *leaf;
7536 struct btrfs_key key;
7537 struct btrfs_key found_key;
7541 u64 last_ra_node = 0;
7543 path = btrfs_alloc_path();
7548 * uuid_mutex is needed only if we are mounting a sprout FS
7549 * otherwise we don't need it.
7551 mutex_lock(&uuid_mutex);
7554 * It is possible for mount and umount to race in such a way that
7555 * we execute this code path, but open_fs_devices failed to clear
7556 * total_rw_bytes. We certainly want it cleared before reading the
7557 * device items, so clear it here.
7559 fs_info->fs_devices->total_rw_bytes = 0;
7562 * Read all device items, and then all the chunk items. All
7563 * device items are found before any chunk item (their object id
7564 * is smaller than the lowest possible object id for a chunk
7565 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7567 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7570 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7574 struct extent_buffer *node;
7576 leaf = path->nodes[0];
7577 slot = path->slots[0];
7578 if (slot >= btrfs_header_nritems(leaf)) {
7579 ret = btrfs_next_leaf(root, path);
7587 * The nodes on level 1 are not locked but we don't need to do
7588 * that during mount time as nothing else can access the tree
7590 node = path->nodes[1];
7592 if (last_ra_node != node->start) {
7593 readahead_tree_node_children(node);
7594 last_ra_node = node->start;
7597 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7598 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7599 struct btrfs_dev_item *dev_item;
7600 dev_item = btrfs_item_ptr(leaf, slot,
7601 struct btrfs_dev_item);
7602 ret = read_one_dev(leaf, dev_item);
7606 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7607 struct btrfs_chunk *chunk;
7610 * We are only called at mount time, so no need to take
7611 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7612 * we always lock first fs_info->chunk_mutex before
7613 * acquiring any locks on the chunk tree. This is a
7614 * requirement for chunk allocation, see the comment on
7615 * top of btrfs_chunk_alloc() for details.
7617 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7618 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7619 ret = read_one_chunk(&found_key, leaf, chunk);
7627 * After loading chunk tree, we've got all device information,
7628 * do another round of validation checks.
7630 if (total_dev != fs_info->fs_devices->total_devices) {
7632 "super_num_devices %llu mismatch with num_devices %llu found here",
7633 btrfs_super_num_devices(fs_info->super_copy),
7638 if (btrfs_super_total_bytes(fs_info->super_copy) <
7639 fs_info->fs_devices->total_rw_bytes) {
7641 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7642 btrfs_super_total_bytes(fs_info->super_copy),
7643 fs_info->fs_devices->total_rw_bytes);
7649 mutex_unlock(&uuid_mutex);
7651 btrfs_free_path(path);
7655 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7657 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7658 struct btrfs_device *device;
7660 fs_devices->fs_info = fs_info;
7662 mutex_lock(&fs_devices->device_list_mutex);
7663 list_for_each_entry(device, &fs_devices->devices, dev_list)
7664 device->fs_info = fs_info;
7666 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7667 list_for_each_entry(device, &seed_devs->devices, dev_list)
7668 device->fs_info = fs_info;
7670 seed_devs->fs_info = fs_info;
7672 mutex_unlock(&fs_devices->device_list_mutex);
7675 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7676 const struct btrfs_dev_stats_item *ptr,
7681 read_extent_buffer(eb, &val,
7682 offsetof(struct btrfs_dev_stats_item, values) +
7683 ((unsigned long)ptr) + (index * sizeof(u64)),
7688 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7689 struct btrfs_dev_stats_item *ptr,
7692 write_extent_buffer(eb, &val,
7693 offsetof(struct btrfs_dev_stats_item, values) +
7694 ((unsigned long)ptr) + (index * sizeof(u64)),
7698 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7699 struct btrfs_path *path)
7701 struct btrfs_dev_stats_item *ptr;
7702 struct extent_buffer *eb;
7703 struct btrfs_key key;
7707 if (!device->fs_info->dev_root)
7710 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7711 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7712 key.offset = device->devid;
7713 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7715 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7716 btrfs_dev_stat_set(device, i, 0);
7717 device->dev_stats_valid = 1;
7718 btrfs_release_path(path);
7719 return ret < 0 ? ret : 0;
7721 slot = path->slots[0];
7722 eb = path->nodes[0];
7723 item_size = btrfs_item_size_nr(eb, slot);
7725 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7727 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7728 if (item_size >= (1 + i) * sizeof(__le64))
7729 btrfs_dev_stat_set(device, i,
7730 btrfs_dev_stats_value(eb, ptr, i));
7732 btrfs_dev_stat_set(device, i, 0);
7735 device->dev_stats_valid = 1;
7736 btrfs_dev_stat_print_on_load(device);
7737 btrfs_release_path(path);
7742 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7744 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7745 struct btrfs_device *device;
7746 struct btrfs_path *path = NULL;
7749 path = btrfs_alloc_path();
7753 mutex_lock(&fs_devices->device_list_mutex);
7754 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7755 ret = btrfs_device_init_dev_stats(device, path);
7759 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7760 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7761 ret = btrfs_device_init_dev_stats(device, path);
7767 mutex_unlock(&fs_devices->device_list_mutex);
7769 btrfs_free_path(path);
7773 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7774 struct btrfs_device *device)
7776 struct btrfs_fs_info *fs_info = trans->fs_info;
7777 struct btrfs_root *dev_root = fs_info->dev_root;
7778 struct btrfs_path *path;
7779 struct btrfs_key key;
7780 struct extent_buffer *eb;
7781 struct btrfs_dev_stats_item *ptr;
7785 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7786 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7787 key.offset = device->devid;
7789 path = btrfs_alloc_path();
7792 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7794 btrfs_warn_in_rcu(fs_info,
7795 "error %d while searching for dev_stats item for device %s",
7796 ret, rcu_str_deref(device->name));
7801 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7802 /* need to delete old one and insert a new one */
7803 ret = btrfs_del_item(trans, dev_root, path);
7805 btrfs_warn_in_rcu(fs_info,
7806 "delete too small dev_stats item for device %s failed %d",
7807 rcu_str_deref(device->name), ret);
7814 /* need to insert a new item */
7815 btrfs_release_path(path);
7816 ret = btrfs_insert_empty_item(trans, dev_root, path,
7817 &key, sizeof(*ptr));
7819 btrfs_warn_in_rcu(fs_info,
7820 "insert dev_stats item for device %s failed %d",
7821 rcu_str_deref(device->name), ret);
7826 eb = path->nodes[0];
7827 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7828 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7829 btrfs_set_dev_stats_value(eb, ptr, i,
7830 btrfs_dev_stat_read(device, i));
7831 btrfs_mark_buffer_dirty(eb);
7834 btrfs_free_path(path);
7839 * called from commit_transaction. Writes all changed device stats to disk.
7841 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7843 struct btrfs_fs_info *fs_info = trans->fs_info;
7844 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7845 struct btrfs_device *device;
7849 mutex_lock(&fs_devices->device_list_mutex);
7850 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7851 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7852 if (!device->dev_stats_valid || stats_cnt == 0)
7857 * There is a LOAD-LOAD control dependency between the value of
7858 * dev_stats_ccnt and updating the on-disk values which requires
7859 * reading the in-memory counters. Such control dependencies
7860 * require explicit read memory barriers.
7862 * This memory barriers pairs with smp_mb__before_atomic in
7863 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7864 * barrier implied by atomic_xchg in
7865 * btrfs_dev_stats_read_and_reset
7869 ret = update_dev_stat_item(trans, device);
7871 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7873 mutex_unlock(&fs_devices->device_list_mutex);
7878 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7880 btrfs_dev_stat_inc(dev, index);
7881 btrfs_dev_stat_print_on_error(dev);
7884 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7886 if (!dev->dev_stats_valid)
7888 btrfs_err_rl_in_rcu(dev->fs_info,
7889 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7890 rcu_str_deref(dev->name),
7891 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7892 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7893 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7894 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7895 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7898 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7902 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7903 if (btrfs_dev_stat_read(dev, i) != 0)
7905 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7906 return; /* all values == 0, suppress message */
7908 btrfs_info_in_rcu(dev->fs_info,
7909 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7910 rcu_str_deref(dev->name),
7911 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7912 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7913 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7914 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7915 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7918 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7919 struct btrfs_ioctl_get_dev_stats *stats)
7921 BTRFS_DEV_LOOKUP_ARGS(args);
7922 struct btrfs_device *dev;
7923 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7926 mutex_lock(&fs_devices->device_list_mutex);
7927 args.devid = stats->devid;
7928 dev = btrfs_find_device(fs_info->fs_devices, &args);
7929 mutex_unlock(&fs_devices->device_list_mutex);
7932 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7934 } else if (!dev->dev_stats_valid) {
7935 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7937 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7938 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7939 if (stats->nr_items > i)
7941 btrfs_dev_stat_read_and_reset(dev, i);
7943 btrfs_dev_stat_set(dev, i, 0);
7945 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7946 current->comm, task_pid_nr(current));
7948 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7949 if (stats->nr_items > i)
7950 stats->values[i] = btrfs_dev_stat_read(dev, i);
7952 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7953 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7958 * Update the size and bytes used for each device where it changed. This is
7959 * delayed since we would otherwise get errors while writing out the
7962 * Must be invoked during transaction commit.
7964 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7966 struct btrfs_device *curr, *next;
7968 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7970 if (list_empty(&trans->dev_update_list))
7974 * We don't need the device_list_mutex here. This list is owned by the
7975 * transaction and the transaction must complete before the device is
7978 mutex_lock(&trans->fs_info->chunk_mutex);
7979 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7981 list_del_init(&curr->post_commit_list);
7982 curr->commit_total_bytes = curr->disk_total_bytes;
7983 curr->commit_bytes_used = curr->bytes_used;
7985 mutex_unlock(&trans->fs_info->chunk_mutex);
7989 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7991 int btrfs_bg_type_to_factor(u64 flags)
7993 const int index = btrfs_bg_flags_to_raid_index(flags);
7995 return btrfs_raid_array[index].ncopies;
8000 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
8001 u64 chunk_offset, u64 devid,
8002 u64 physical_offset, u64 physical_len)
8004 struct btrfs_dev_lookup_args args = { .devid = devid };
8005 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8006 struct extent_map *em;
8007 struct map_lookup *map;
8008 struct btrfs_device *dev;
8014 read_lock(&em_tree->lock);
8015 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8016 read_unlock(&em_tree->lock);
8020 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8021 physical_offset, devid);
8026 map = em->map_lookup;
8027 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
8028 if (physical_len != stripe_len) {
8030 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8031 physical_offset, devid, em->start, physical_len,
8037 for (i = 0; i < map->num_stripes; i++) {
8038 if (map->stripes[i].dev->devid == devid &&
8039 map->stripes[i].physical == physical_offset) {
8041 if (map->verified_stripes >= map->num_stripes) {
8043 "too many dev extents for chunk %llu found",
8048 map->verified_stripes++;
8054 "dev extent physical offset %llu devid %llu has no corresponding chunk",
8055 physical_offset, devid);
8059 /* Make sure no dev extent is beyond device boundary */
8060 dev = btrfs_find_device(fs_info->fs_devices, &args);
8062 btrfs_err(fs_info, "failed to find devid %llu", devid);
8067 if (physical_offset + physical_len > dev->disk_total_bytes) {
8069 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8070 devid, physical_offset, physical_len,
8071 dev->disk_total_bytes);
8076 if (dev->zone_info) {
8077 u64 zone_size = dev->zone_info->zone_size;
8079 if (!IS_ALIGNED(physical_offset, zone_size) ||
8080 !IS_ALIGNED(physical_len, zone_size)) {
8082 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8083 devid, physical_offset, physical_len);
8090 free_extent_map(em);
8094 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8096 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8097 struct extent_map *em;
8098 struct rb_node *node;
8101 read_lock(&em_tree->lock);
8102 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8103 em = rb_entry(node, struct extent_map, rb_node);
8104 if (em->map_lookup->num_stripes !=
8105 em->map_lookup->verified_stripes) {
8107 "chunk %llu has missing dev extent, have %d expect %d",
8108 em->start, em->map_lookup->verified_stripes,
8109 em->map_lookup->num_stripes);
8115 read_unlock(&em_tree->lock);
8120 * Ensure that all dev extents are mapped to correct chunk, otherwise
8121 * later chunk allocation/free would cause unexpected behavior.
8123 * NOTE: This will iterate through the whole device tree, which should be of
8124 * the same size level as the chunk tree. This slightly increases mount time.
8126 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8128 struct btrfs_path *path;
8129 struct btrfs_root *root = fs_info->dev_root;
8130 struct btrfs_key key;
8132 u64 prev_dev_ext_end = 0;
8136 * We don't have a dev_root because we mounted with ignorebadroots and
8137 * failed to load the root, so we want to skip the verification in this
8140 * However if the dev root is fine, but the tree itself is corrupted
8141 * we'd still fail to mount. This verification is only to make sure
8142 * writes can happen safely, so instead just bypass this check
8143 * completely in the case of IGNOREBADROOTS.
8145 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8149 key.type = BTRFS_DEV_EXTENT_KEY;
8152 path = btrfs_alloc_path();
8156 path->reada = READA_FORWARD;
8157 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8161 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8162 ret = btrfs_next_leaf(root, path);
8165 /* No dev extents at all? Not good */
8172 struct extent_buffer *leaf = path->nodes[0];
8173 struct btrfs_dev_extent *dext;
8174 int slot = path->slots[0];
8176 u64 physical_offset;
8180 btrfs_item_key_to_cpu(leaf, &key, slot);
8181 if (key.type != BTRFS_DEV_EXTENT_KEY)
8183 devid = key.objectid;
8184 physical_offset = key.offset;
8186 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8187 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8188 physical_len = btrfs_dev_extent_length(leaf, dext);
8190 /* Check if this dev extent overlaps with the previous one */
8191 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8193 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8194 devid, physical_offset, prev_dev_ext_end);
8199 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8200 physical_offset, physical_len);
8204 prev_dev_ext_end = physical_offset + physical_len;
8206 ret = btrfs_next_item(root, path);
8215 /* Ensure all chunks have corresponding dev extents */
8216 ret = verify_chunk_dev_extent_mapping(fs_info);
8218 btrfs_free_path(path);
8223 * Check whether the given block group or device is pinned by any inode being
8224 * used as a swapfile.
8226 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8228 struct btrfs_swapfile_pin *sp;
8229 struct rb_node *node;
8231 spin_lock(&fs_info->swapfile_pins_lock);
8232 node = fs_info->swapfile_pins.rb_node;
8234 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8236 node = node->rb_left;
8237 else if (ptr > sp->ptr)
8238 node = node->rb_right;
8242 spin_unlock(&fs_info->swapfile_pins_lock);
8243 return node != NULL;
8246 static int relocating_repair_kthread(void *data)
8248 struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8249 struct btrfs_fs_info *fs_info = cache->fs_info;
8253 target = cache->start;
8254 btrfs_put_block_group(cache);
8256 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8258 "zoned: skip relocating block group %llu to repair: EBUSY",
8263 mutex_lock(&fs_info->reclaim_bgs_lock);
8265 /* Ensure block group still exists */
8266 cache = btrfs_lookup_block_group(fs_info, target);
8270 if (!cache->relocating_repair)
8273 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8278 "zoned: relocating block group %llu to repair IO failure",
8280 ret = btrfs_relocate_chunk(fs_info, target);
8284 btrfs_put_block_group(cache);
8285 mutex_unlock(&fs_info->reclaim_bgs_lock);
8286 btrfs_exclop_finish(fs_info);
8291 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8293 struct btrfs_block_group *cache;
8295 /* Do not attempt to repair in degraded state */
8296 if (btrfs_test_opt(fs_info, DEGRADED))
8299 cache = btrfs_lookup_block_group(fs_info, logical);
8303 spin_lock(&cache->lock);
8304 if (cache->relocating_repair) {
8305 spin_unlock(&cache->lock);
8306 btrfs_put_block_group(cache);
8309 cache->relocating_repair = 1;
8310 spin_unlock(&cache->lock);
8312 kthread_run(relocating_repair_kthread, cache,
8313 "btrfs-relocating-repair");