Btrfs: make raid6 rebuild retry more
[platform/kernel/linux-rpi.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46         [BTRFS_RAID_RAID10] = {
47                 .sub_stripes    = 2,
48                 .dev_stripes    = 1,
49                 .devs_max       = 0,    /* 0 == as many as possible */
50                 .devs_min       = 4,
51                 .tolerated_failures = 1,
52                 .devs_increment = 2,
53                 .ncopies        = 2,
54         },
55         [BTRFS_RAID_RAID1] = {
56                 .sub_stripes    = 1,
57                 .dev_stripes    = 1,
58                 .devs_max       = 2,
59                 .devs_min       = 2,
60                 .tolerated_failures = 1,
61                 .devs_increment = 2,
62                 .ncopies        = 2,
63         },
64         [BTRFS_RAID_DUP] = {
65                 .sub_stripes    = 1,
66                 .dev_stripes    = 2,
67                 .devs_max       = 1,
68                 .devs_min       = 1,
69                 .tolerated_failures = 0,
70                 .devs_increment = 1,
71                 .ncopies        = 2,
72         },
73         [BTRFS_RAID_RAID0] = {
74                 .sub_stripes    = 1,
75                 .dev_stripes    = 1,
76                 .devs_max       = 0,
77                 .devs_min       = 2,
78                 .tolerated_failures = 0,
79                 .devs_increment = 1,
80                 .ncopies        = 1,
81         },
82         [BTRFS_RAID_SINGLE] = {
83                 .sub_stripes    = 1,
84                 .dev_stripes    = 1,
85                 .devs_max       = 1,
86                 .devs_min       = 1,
87                 .tolerated_failures = 0,
88                 .devs_increment = 1,
89                 .ncopies        = 1,
90         },
91         [BTRFS_RAID_RAID5] = {
92                 .sub_stripes    = 1,
93                 .dev_stripes    = 1,
94                 .devs_max       = 0,
95                 .devs_min       = 2,
96                 .tolerated_failures = 1,
97                 .devs_increment = 1,
98                 .ncopies        = 2,
99         },
100         [BTRFS_RAID_RAID6] = {
101                 .sub_stripes    = 1,
102                 .dev_stripes    = 1,
103                 .devs_max       = 0,
104                 .devs_min       = 3,
105                 .tolerated_failures = 2,
106                 .devs_increment = 1,
107                 .ncopies        = 3,
108         },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112         [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113         [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114         [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115         [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116         [BTRFS_RAID_SINGLE] = 0,
117         [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118         [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127         [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128         [BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129         [BTRFS_RAID_DUP]    = 0,
130         [BTRFS_RAID_RAID0]  = 0,
131         [BTRFS_RAID_SINGLE] = 0,
132         [BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133         [BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137                                 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143                              enum btrfs_map_op op,
144                              u64 logical, u64 *length,
145                              struct btrfs_bio **bbio_ret,
146                              int mirror_num, int need_raid_map);
147
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
151 {
152         return &fs_uuids;
153 }
154
155 /*
156  * alloc_fs_devices - allocate struct btrfs_fs_devices
157  * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
158  *
159  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160  * The returned struct is not linked onto any lists and can be destroyed with
161  * kfree() right away.
162  */
163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164 {
165         struct btrfs_fs_devices *fs_devs;
166
167         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
168         if (!fs_devs)
169                 return ERR_PTR(-ENOMEM);
170
171         mutex_init(&fs_devs->device_list_mutex);
172
173         INIT_LIST_HEAD(&fs_devs->devices);
174         INIT_LIST_HEAD(&fs_devs->resized_devices);
175         INIT_LIST_HEAD(&fs_devs->alloc_list);
176         INIT_LIST_HEAD(&fs_devs->list);
177         if (fsid)
178                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
179
180         return fs_devs;
181 }
182
183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
184 {
185         struct btrfs_device *device;
186         WARN_ON(fs_devices->opened);
187         while (!list_empty(&fs_devices->devices)) {
188                 device = list_entry(fs_devices->devices.next,
189                                     struct btrfs_device, dev_list);
190                 list_del(&device->dev_list);
191                 rcu_string_free(device->name);
192                 kfree(device);
193         }
194         kfree(fs_devices);
195 }
196
197 static void btrfs_kobject_uevent(struct block_device *bdev,
198                                  enum kobject_action action)
199 {
200         int ret;
201
202         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
203         if (ret)
204                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
205                         action,
206                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
207                         &disk_to_dev(bdev->bd_disk)->kobj);
208 }
209
210 void btrfs_cleanup_fs_uuids(void)
211 {
212         struct btrfs_fs_devices *fs_devices;
213
214         while (!list_empty(&fs_uuids)) {
215                 fs_devices = list_entry(fs_uuids.next,
216                                         struct btrfs_fs_devices, list);
217                 list_del(&fs_devices->list);
218                 free_fs_devices(fs_devices);
219         }
220 }
221
222 static struct btrfs_device *__alloc_device(void)
223 {
224         struct btrfs_device *dev;
225
226         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
227         if (!dev)
228                 return ERR_PTR(-ENOMEM);
229
230         /*
231          * Preallocate a bio that's always going to be used for flushing device
232          * barriers and matches the device lifespan
233          */
234         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
235         if (!dev->flush_bio) {
236                 kfree(dev);
237                 return ERR_PTR(-ENOMEM);
238         }
239
240         INIT_LIST_HEAD(&dev->dev_list);
241         INIT_LIST_HEAD(&dev->dev_alloc_list);
242         INIT_LIST_HEAD(&dev->resized_list);
243
244         spin_lock_init(&dev->io_lock);
245
246         spin_lock_init(&dev->reada_lock);
247         atomic_set(&dev->reada_in_flight, 0);
248         atomic_set(&dev->dev_stats_ccnt, 0);
249         btrfs_device_data_ordered_init(dev);
250         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
251         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252
253         return dev;
254 }
255
256 /*
257  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
258  * return NULL.
259  *
260  * If devid and uuid are both specified, the match must be exact, otherwise
261  * only devid is used.
262  */
263 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
264                 u64 devid, const u8 *uuid)
265 {
266         struct list_head *head = &fs_devices->devices;
267         struct btrfs_device *dev;
268
269         list_for_each_entry(dev, head, dev_list) {
270                 if (dev->devid == devid &&
271                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
272                         return dev;
273                 }
274         }
275         return NULL;
276 }
277
278 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
279 {
280         struct btrfs_fs_devices *fs_devices;
281
282         list_for_each_entry(fs_devices, &fs_uuids, list) {
283                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
284                         return fs_devices;
285         }
286         return NULL;
287 }
288
289 static int
290 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
291                       int flush, struct block_device **bdev,
292                       struct buffer_head **bh)
293 {
294         int ret;
295
296         *bdev = blkdev_get_by_path(device_path, flags, holder);
297
298         if (IS_ERR(*bdev)) {
299                 ret = PTR_ERR(*bdev);
300                 goto error;
301         }
302
303         if (flush)
304                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
305         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
306         if (ret) {
307                 blkdev_put(*bdev, flags);
308                 goto error;
309         }
310         invalidate_bdev(*bdev);
311         *bh = btrfs_read_dev_super(*bdev);
312         if (IS_ERR(*bh)) {
313                 ret = PTR_ERR(*bh);
314                 blkdev_put(*bdev, flags);
315                 goto error;
316         }
317
318         return 0;
319
320 error:
321         *bdev = NULL;
322         *bh = NULL;
323         return ret;
324 }
325
326 static void requeue_list(struct btrfs_pending_bios *pending_bios,
327                         struct bio *head, struct bio *tail)
328 {
329
330         struct bio *old_head;
331
332         old_head = pending_bios->head;
333         pending_bios->head = head;
334         if (pending_bios->tail)
335                 tail->bi_next = old_head;
336         else
337                 pending_bios->tail = tail;
338 }
339
340 /*
341  * we try to collect pending bios for a device so we don't get a large
342  * number of procs sending bios down to the same device.  This greatly
343  * improves the schedulers ability to collect and merge the bios.
344  *
345  * But, it also turns into a long list of bios to process and that is sure
346  * to eventually make the worker thread block.  The solution here is to
347  * make some progress and then put this work struct back at the end of
348  * the list if the block device is congested.  This way, multiple devices
349  * can make progress from a single worker thread.
350  */
351 static noinline void run_scheduled_bios(struct btrfs_device *device)
352 {
353         struct btrfs_fs_info *fs_info = device->fs_info;
354         struct bio *pending;
355         struct backing_dev_info *bdi;
356         struct btrfs_pending_bios *pending_bios;
357         struct bio *tail;
358         struct bio *cur;
359         int again = 0;
360         unsigned long num_run;
361         unsigned long batch_run = 0;
362         unsigned long limit;
363         unsigned long last_waited = 0;
364         int force_reg = 0;
365         int sync_pending = 0;
366         struct blk_plug plug;
367
368         /*
369          * this function runs all the bios we've collected for
370          * a particular device.  We don't want to wander off to
371          * another device without first sending all of these down.
372          * So, setup a plug here and finish it off before we return
373          */
374         blk_start_plug(&plug);
375
376         bdi = device->bdev->bd_bdi;
377         limit = btrfs_async_submit_limit(fs_info);
378         limit = limit * 2 / 3;
379
380 loop:
381         spin_lock(&device->io_lock);
382
383 loop_lock:
384         num_run = 0;
385
386         /* take all the bios off the list at once and process them
387          * later on (without the lock held).  But, remember the
388          * tail and other pointers so the bios can be properly reinserted
389          * into the list if we hit congestion
390          */
391         if (!force_reg && device->pending_sync_bios.head) {
392                 pending_bios = &device->pending_sync_bios;
393                 force_reg = 1;
394         } else {
395                 pending_bios = &device->pending_bios;
396                 force_reg = 0;
397         }
398
399         pending = pending_bios->head;
400         tail = pending_bios->tail;
401         WARN_ON(pending && !tail);
402
403         /*
404          * if pending was null this time around, no bios need processing
405          * at all and we can stop.  Otherwise it'll loop back up again
406          * and do an additional check so no bios are missed.
407          *
408          * device->running_pending is used to synchronize with the
409          * schedule_bio code.
410          */
411         if (device->pending_sync_bios.head == NULL &&
412             device->pending_bios.head == NULL) {
413                 again = 0;
414                 device->running_pending = 0;
415         } else {
416                 again = 1;
417                 device->running_pending = 1;
418         }
419
420         pending_bios->head = NULL;
421         pending_bios->tail = NULL;
422
423         spin_unlock(&device->io_lock);
424
425         while (pending) {
426
427                 rmb();
428                 /* we want to work on both lists, but do more bios on the
429                  * sync list than the regular list
430                  */
431                 if ((num_run > 32 &&
432                     pending_bios != &device->pending_sync_bios &&
433                     device->pending_sync_bios.head) ||
434                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
435                     device->pending_bios.head)) {
436                         spin_lock(&device->io_lock);
437                         requeue_list(pending_bios, pending, tail);
438                         goto loop_lock;
439                 }
440
441                 cur = pending;
442                 pending = pending->bi_next;
443                 cur->bi_next = NULL;
444
445                 /*
446                  * atomic_dec_return implies a barrier for waitqueue_active
447                  */
448                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
449                     waitqueue_active(&fs_info->async_submit_wait))
450                         wake_up(&fs_info->async_submit_wait);
451
452                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
453
454                 /*
455                  * if we're doing the sync list, record that our
456                  * plug has some sync requests on it
457                  *
458                  * If we're doing the regular list and there are
459                  * sync requests sitting around, unplug before
460                  * we add more
461                  */
462                 if (pending_bios == &device->pending_sync_bios) {
463                         sync_pending = 1;
464                 } else if (sync_pending) {
465                         blk_finish_plug(&plug);
466                         blk_start_plug(&plug);
467                         sync_pending = 0;
468                 }
469
470                 btrfsic_submit_bio(cur);
471                 num_run++;
472                 batch_run++;
473
474                 cond_resched();
475
476                 /*
477                  * we made progress, there is more work to do and the bdi
478                  * is now congested.  Back off and let other work structs
479                  * run instead
480                  */
481                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
482                     fs_info->fs_devices->open_devices > 1) {
483                         struct io_context *ioc;
484
485                         ioc = current->io_context;
486
487                         /*
488                          * the main goal here is that we don't want to
489                          * block if we're going to be able to submit
490                          * more requests without blocking.
491                          *
492                          * This code does two great things, it pokes into
493                          * the elevator code from a filesystem _and_
494                          * it makes assumptions about how batching works.
495                          */
496                         if (ioc && ioc->nr_batch_requests > 0 &&
497                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
498                             (last_waited == 0 ||
499                              ioc->last_waited == last_waited)) {
500                                 /*
501                                  * we want to go through our batch of
502                                  * requests and stop.  So, we copy out
503                                  * the ioc->last_waited time and test
504                                  * against it before looping
505                                  */
506                                 last_waited = ioc->last_waited;
507                                 cond_resched();
508                                 continue;
509                         }
510                         spin_lock(&device->io_lock);
511                         requeue_list(pending_bios, pending, tail);
512                         device->running_pending = 1;
513
514                         spin_unlock(&device->io_lock);
515                         btrfs_queue_work(fs_info->submit_workers,
516                                          &device->work);
517                         goto done;
518                 }
519                 /* unplug every 64 requests just for good measure */
520                 if (batch_run % 64 == 0) {
521                         blk_finish_plug(&plug);
522                         blk_start_plug(&plug);
523                         sync_pending = 0;
524                 }
525         }
526
527         cond_resched();
528         if (again)
529                 goto loop;
530
531         spin_lock(&device->io_lock);
532         if (device->pending_bios.head || device->pending_sync_bios.head)
533                 goto loop_lock;
534         spin_unlock(&device->io_lock);
535
536 done:
537         blk_finish_plug(&plug);
538 }
539
540 static void pending_bios_fn(struct btrfs_work *work)
541 {
542         struct btrfs_device *device;
543
544         device = container_of(work, struct btrfs_device, work);
545         run_scheduled_bios(device);
546 }
547
548
549 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
550 {
551         struct btrfs_fs_devices *fs_devs;
552         struct btrfs_device *dev;
553
554         if (!cur_dev->name)
555                 return;
556
557         list_for_each_entry(fs_devs, &fs_uuids, list) {
558                 int del = 1;
559
560                 if (fs_devs->opened)
561                         continue;
562                 if (fs_devs->seeding)
563                         continue;
564
565                 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
566
567                         if (dev == cur_dev)
568                                 continue;
569                         if (!dev->name)
570                                 continue;
571
572                         /*
573                          * Todo: This won't be enough. What if the same device
574                          * comes back (with new uuid and) with its mapper path?
575                          * But for now, this does help as mostly an admin will
576                          * either use mapper or non mapper path throughout.
577                          */
578                         rcu_read_lock();
579                         del = strcmp(rcu_str_deref(dev->name),
580                                                 rcu_str_deref(cur_dev->name));
581                         rcu_read_unlock();
582                         if (!del)
583                                 break;
584                 }
585
586                 if (!del) {
587                         /* delete the stale device */
588                         if (fs_devs->num_devices == 1) {
589                                 btrfs_sysfs_remove_fsid(fs_devs);
590                                 list_del(&fs_devs->list);
591                                 free_fs_devices(fs_devs);
592                                 break;
593                         } else {
594                                 fs_devs->num_devices--;
595                                 list_del(&dev->dev_list);
596                                 rcu_string_free(dev->name);
597                                 kfree(dev);
598                         }
599                         break;
600                 }
601         }
602 }
603
604 /*
605  * Add new device to list of registered devices
606  *
607  * Returns:
608  * 1   - first time device is seen
609  * 0   - device already known
610  * < 0 - error
611  */
612 static noinline int device_list_add(const char *path,
613                            struct btrfs_super_block *disk_super,
614                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
615 {
616         struct btrfs_device *device;
617         struct btrfs_fs_devices *fs_devices;
618         struct rcu_string *name;
619         int ret = 0;
620         u64 found_transid = btrfs_super_generation(disk_super);
621
622         fs_devices = find_fsid(disk_super->fsid);
623         if (!fs_devices) {
624                 fs_devices = alloc_fs_devices(disk_super->fsid);
625                 if (IS_ERR(fs_devices))
626                         return PTR_ERR(fs_devices);
627
628                 list_add(&fs_devices->list, &fs_uuids);
629
630                 device = NULL;
631         } else {
632                 device = find_device(fs_devices, devid,
633                                 disk_super->dev_item.uuid);
634         }
635
636         if (!device) {
637                 if (fs_devices->opened)
638                         return -EBUSY;
639
640                 device = btrfs_alloc_device(NULL, &devid,
641                                             disk_super->dev_item.uuid);
642                 if (IS_ERR(device)) {
643                         /* we can safely leave the fs_devices entry around */
644                         return PTR_ERR(device);
645                 }
646
647                 name = rcu_string_strdup(path, GFP_NOFS);
648                 if (!name) {
649                         kfree(device);
650                         return -ENOMEM;
651                 }
652                 rcu_assign_pointer(device->name, name);
653
654                 mutex_lock(&fs_devices->device_list_mutex);
655                 list_add_rcu(&device->dev_list, &fs_devices->devices);
656                 fs_devices->num_devices++;
657                 mutex_unlock(&fs_devices->device_list_mutex);
658
659                 ret = 1;
660                 device->fs_devices = fs_devices;
661         } else if (!device->name || strcmp(device->name->str, path)) {
662                 /*
663                  * When FS is already mounted.
664                  * 1. If you are here and if the device->name is NULL that
665                  *    means this device was missing at time of FS mount.
666                  * 2. If you are here and if the device->name is different
667                  *    from 'path' that means either
668                  *      a. The same device disappeared and reappeared with
669                  *         different name. or
670                  *      b. The missing-disk-which-was-replaced, has
671                  *         reappeared now.
672                  *
673                  * We must allow 1 and 2a above. But 2b would be a spurious
674                  * and unintentional.
675                  *
676                  * Further in case of 1 and 2a above, the disk at 'path'
677                  * would have missed some transaction when it was away and
678                  * in case of 2a the stale bdev has to be updated as well.
679                  * 2b must not be allowed at all time.
680                  */
681
682                 /*
683                  * For now, we do allow update to btrfs_fs_device through the
684                  * btrfs dev scan cli after FS has been mounted.  We're still
685                  * tracking a problem where systems fail mount by subvolume id
686                  * when we reject replacement on a mounted FS.
687                  */
688                 if (!fs_devices->opened && found_transid < device->generation) {
689                         /*
690                          * That is if the FS is _not_ mounted and if you
691                          * are here, that means there is more than one
692                          * disk with same uuid and devid.We keep the one
693                          * with larger generation number or the last-in if
694                          * generation are equal.
695                          */
696                         return -EEXIST;
697                 }
698
699                 name = rcu_string_strdup(path, GFP_NOFS);
700                 if (!name)
701                         return -ENOMEM;
702                 rcu_string_free(device->name);
703                 rcu_assign_pointer(device->name, name);
704                 if (device->missing) {
705                         fs_devices->missing_devices--;
706                         device->missing = 0;
707                 }
708         }
709
710         /*
711          * Unmount does not free the btrfs_device struct but would zero
712          * generation along with most of the other members. So just update
713          * it back. We need it to pick the disk with largest generation
714          * (as above).
715          */
716         if (!fs_devices->opened)
717                 device->generation = found_transid;
718
719         /*
720          * if there is new btrfs on an already registered device,
721          * then remove the stale device entry.
722          */
723         if (ret > 0)
724                 btrfs_free_stale_device(device);
725
726         *fs_devices_ret = fs_devices;
727
728         return ret;
729 }
730
731 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
732 {
733         struct btrfs_fs_devices *fs_devices;
734         struct btrfs_device *device;
735         struct btrfs_device *orig_dev;
736
737         fs_devices = alloc_fs_devices(orig->fsid);
738         if (IS_ERR(fs_devices))
739                 return fs_devices;
740
741         mutex_lock(&orig->device_list_mutex);
742         fs_devices->total_devices = orig->total_devices;
743
744         /* We have held the volume lock, it is safe to get the devices. */
745         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
746                 struct rcu_string *name;
747
748                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
749                                             orig_dev->uuid);
750                 if (IS_ERR(device))
751                         goto error;
752
753                 /*
754                  * This is ok to do without rcu read locked because we hold the
755                  * uuid mutex so nothing we touch in here is going to disappear.
756                  */
757                 if (orig_dev->name) {
758                         name = rcu_string_strdup(orig_dev->name->str,
759                                         GFP_KERNEL);
760                         if (!name) {
761                                 kfree(device);
762                                 goto error;
763                         }
764                         rcu_assign_pointer(device->name, name);
765                 }
766
767                 list_add(&device->dev_list, &fs_devices->devices);
768                 device->fs_devices = fs_devices;
769                 fs_devices->num_devices++;
770         }
771         mutex_unlock(&orig->device_list_mutex);
772         return fs_devices;
773 error:
774         mutex_unlock(&orig->device_list_mutex);
775         free_fs_devices(fs_devices);
776         return ERR_PTR(-ENOMEM);
777 }
778
779 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
780 {
781         struct btrfs_device *device, *next;
782         struct btrfs_device *latest_dev = NULL;
783
784         mutex_lock(&uuid_mutex);
785 again:
786         /* This is the initialized path, it is safe to release the devices. */
787         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
788                 if (device->in_fs_metadata) {
789                         if (!device->is_tgtdev_for_dev_replace &&
790                             (!latest_dev ||
791                              device->generation > latest_dev->generation)) {
792                                 latest_dev = device;
793                         }
794                         continue;
795                 }
796
797                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
798                         /*
799                          * In the first step, keep the device which has
800                          * the correct fsid and the devid that is used
801                          * for the dev_replace procedure.
802                          * In the second step, the dev_replace state is
803                          * read from the device tree and it is known
804                          * whether the procedure is really active or
805                          * not, which means whether this device is
806                          * used or whether it should be removed.
807                          */
808                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
809                                 continue;
810                         }
811                 }
812                 if (device->bdev) {
813                         blkdev_put(device->bdev, device->mode);
814                         device->bdev = NULL;
815                         fs_devices->open_devices--;
816                 }
817                 if (device->writeable) {
818                         list_del_init(&device->dev_alloc_list);
819                         device->writeable = 0;
820                         if (!device->is_tgtdev_for_dev_replace)
821                                 fs_devices->rw_devices--;
822                 }
823                 list_del_init(&device->dev_list);
824                 fs_devices->num_devices--;
825                 rcu_string_free(device->name);
826                 kfree(device);
827         }
828
829         if (fs_devices->seed) {
830                 fs_devices = fs_devices->seed;
831                 goto again;
832         }
833
834         fs_devices->latest_bdev = latest_dev->bdev;
835
836         mutex_unlock(&uuid_mutex);
837 }
838
839 static void __free_device(struct work_struct *work)
840 {
841         struct btrfs_device *device;
842
843         device = container_of(work, struct btrfs_device, rcu_work);
844         rcu_string_free(device->name);
845         bio_put(device->flush_bio);
846         kfree(device);
847 }
848
849 static void free_device(struct rcu_head *head)
850 {
851         struct btrfs_device *device;
852
853         device = container_of(head, struct btrfs_device, rcu);
854
855         INIT_WORK(&device->rcu_work, __free_device);
856         schedule_work(&device->rcu_work);
857 }
858
859 static void btrfs_close_bdev(struct btrfs_device *device)
860 {
861         if (device->bdev && device->writeable) {
862                 sync_blockdev(device->bdev);
863                 invalidate_bdev(device->bdev);
864         }
865
866         if (device->bdev)
867                 blkdev_put(device->bdev, device->mode);
868 }
869
870 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
871 {
872         struct btrfs_fs_devices *fs_devices = device->fs_devices;
873         struct btrfs_device *new_device;
874         struct rcu_string *name;
875
876         if (device->bdev)
877                 fs_devices->open_devices--;
878
879         if (device->writeable &&
880             device->devid != BTRFS_DEV_REPLACE_DEVID) {
881                 list_del_init(&device->dev_alloc_list);
882                 fs_devices->rw_devices--;
883         }
884
885         if (device->missing)
886                 fs_devices->missing_devices--;
887
888         new_device = btrfs_alloc_device(NULL, &device->devid,
889                                         device->uuid);
890         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
891
892         /* Safe because we are under uuid_mutex */
893         if (device->name) {
894                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
895                 BUG_ON(!name); /* -ENOMEM */
896                 rcu_assign_pointer(new_device->name, name);
897         }
898
899         list_replace_rcu(&device->dev_list, &new_device->dev_list);
900         new_device->fs_devices = device->fs_devices;
901 }
902
903 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
904 {
905         struct btrfs_device *device, *tmp;
906         struct list_head pending_put;
907
908         INIT_LIST_HEAD(&pending_put);
909
910         if (--fs_devices->opened > 0)
911                 return 0;
912
913         mutex_lock(&fs_devices->device_list_mutex);
914         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
915                 btrfs_prepare_close_one_device(device);
916                 list_add(&device->dev_list, &pending_put);
917         }
918         mutex_unlock(&fs_devices->device_list_mutex);
919
920         /*
921          * btrfs_show_devname() is using the device_list_mutex,
922          * sometimes call to blkdev_put() leads vfs calling
923          * into this func. So do put outside of device_list_mutex,
924          * as of now.
925          */
926         while (!list_empty(&pending_put)) {
927                 device = list_first_entry(&pending_put,
928                                 struct btrfs_device, dev_list);
929                 list_del(&device->dev_list);
930                 btrfs_close_bdev(device);
931                 call_rcu(&device->rcu, free_device);
932         }
933
934         WARN_ON(fs_devices->open_devices);
935         WARN_ON(fs_devices->rw_devices);
936         fs_devices->opened = 0;
937         fs_devices->seeding = 0;
938
939         return 0;
940 }
941
942 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
943 {
944         struct btrfs_fs_devices *seed_devices = NULL;
945         int ret;
946
947         mutex_lock(&uuid_mutex);
948         ret = __btrfs_close_devices(fs_devices);
949         if (!fs_devices->opened) {
950                 seed_devices = fs_devices->seed;
951                 fs_devices->seed = NULL;
952         }
953         mutex_unlock(&uuid_mutex);
954
955         while (seed_devices) {
956                 fs_devices = seed_devices;
957                 seed_devices = fs_devices->seed;
958                 __btrfs_close_devices(fs_devices);
959                 free_fs_devices(fs_devices);
960         }
961         /*
962          * Wait for rcu kworkers under __btrfs_close_devices
963          * to finish all blkdev_puts so device is really
964          * free when umount is done.
965          */
966         rcu_barrier();
967         return ret;
968 }
969
970 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
971                                 fmode_t flags, void *holder)
972 {
973         struct request_queue *q;
974         struct block_device *bdev;
975         struct list_head *head = &fs_devices->devices;
976         struct btrfs_device *device;
977         struct btrfs_device *latest_dev = NULL;
978         struct buffer_head *bh;
979         struct btrfs_super_block *disk_super;
980         u64 devid;
981         int seeding = 1;
982         int ret = 0;
983
984         flags |= FMODE_EXCL;
985
986         list_for_each_entry(device, head, dev_list) {
987                 if (device->bdev)
988                         continue;
989                 if (!device->name)
990                         continue;
991
992                 /* Just open everything we can; ignore failures here */
993                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
994                                             &bdev, &bh))
995                         continue;
996
997                 disk_super = (struct btrfs_super_block *)bh->b_data;
998                 devid = btrfs_stack_device_id(&disk_super->dev_item);
999                 if (devid != device->devid)
1000                         goto error_brelse;
1001
1002                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
1003                            BTRFS_UUID_SIZE))
1004                         goto error_brelse;
1005
1006                 device->generation = btrfs_super_generation(disk_super);
1007                 if (!latest_dev ||
1008                     device->generation > latest_dev->generation)
1009                         latest_dev = device;
1010
1011                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1012                         device->writeable = 0;
1013                 } else {
1014                         device->writeable = !bdev_read_only(bdev);
1015                         seeding = 0;
1016                 }
1017
1018                 q = bdev_get_queue(bdev);
1019                 if (blk_queue_discard(q))
1020                         device->can_discard = 1;
1021                 if (!blk_queue_nonrot(q))
1022                         fs_devices->rotating = 1;
1023
1024                 device->bdev = bdev;
1025                 device->in_fs_metadata = 0;
1026                 device->mode = flags;
1027
1028                 fs_devices->open_devices++;
1029                 if (device->writeable &&
1030                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
1031                         fs_devices->rw_devices++;
1032                         list_add(&device->dev_alloc_list,
1033                                  &fs_devices->alloc_list);
1034                 }
1035                 brelse(bh);
1036                 continue;
1037
1038 error_brelse:
1039                 brelse(bh);
1040                 blkdev_put(bdev, flags);
1041                 continue;
1042         }
1043         if (fs_devices->open_devices == 0) {
1044                 ret = -EINVAL;
1045                 goto out;
1046         }
1047         fs_devices->seeding = seeding;
1048         fs_devices->opened = 1;
1049         fs_devices->latest_bdev = latest_dev->bdev;
1050         fs_devices->total_rw_bytes = 0;
1051 out:
1052         return ret;
1053 }
1054
1055 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1056                        fmode_t flags, void *holder)
1057 {
1058         int ret;
1059
1060         mutex_lock(&uuid_mutex);
1061         if (fs_devices->opened) {
1062                 fs_devices->opened++;
1063                 ret = 0;
1064         } else {
1065                 ret = __btrfs_open_devices(fs_devices, flags, holder);
1066         }
1067         mutex_unlock(&uuid_mutex);
1068         return ret;
1069 }
1070
1071 void btrfs_release_disk_super(struct page *page)
1072 {
1073         kunmap(page);
1074         put_page(page);
1075 }
1076
1077 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1078                 struct page **page, struct btrfs_super_block **disk_super)
1079 {
1080         void *p;
1081         pgoff_t index;
1082
1083         /* make sure our super fits in the device */
1084         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1085                 return 1;
1086
1087         /* make sure our super fits in the page */
1088         if (sizeof(**disk_super) > PAGE_SIZE)
1089                 return 1;
1090
1091         /* make sure our super doesn't straddle pages on disk */
1092         index = bytenr >> PAGE_SHIFT;
1093         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1094                 return 1;
1095
1096         /* pull in the page with our super */
1097         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1098                                    index, GFP_KERNEL);
1099
1100         if (IS_ERR_OR_NULL(*page))
1101                 return 1;
1102
1103         p = kmap(*page);
1104
1105         /* align our pointer to the offset of the super block */
1106         *disk_super = p + (bytenr & ~PAGE_MASK);
1107
1108         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1109             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1110                 btrfs_release_disk_super(*page);
1111                 return 1;
1112         }
1113
1114         if ((*disk_super)->label[0] &&
1115                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1116                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1117
1118         return 0;
1119 }
1120
1121 /*
1122  * Look for a btrfs signature on a device. This may be called out of the mount path
1123  * and we are not allowed to call set_blocksize during the scan. The superblock
1124  * is read via pagecache
1125  */
1126 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1127                           struct btrfs_fs_devices **fs_devices_ret)
1128 {
1129         struct btrfs_super_block *disk_super;
1130         struct block_device *bdev;
1131         struct page *page;
1132         int ret = -EINVAL;
1133         u64 devid;
1134         u64 transid;
1135         u64 total_devices;
1136         u64 bytenr;
1137
1138         /*
1139          * we would like to check all the supers, but that would make
1140          * a btrfs mount succeed after a mkfs from a different FS.
1141          * So, we need to add a special mount option to scan for
1142          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1143          */
1144         bytenr = btrfs_sb_offset(0);
1145         flags |= FMODE_EXCL;
1146         mutex_lock(&uuid_mutex);
1147
1148         bdev = blkdev_get_by_path(path, flags, holder);
1149         if (IS_ERR(bdev)) {
1150                 ret = PTR_ERR(bdev);
1151                 goto error;
1152         }
1153
1154         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1155                 goto error_bdev_put;
1156
1157         devid = btrfs_stack_device_id(&disk_super->dev_item);
1158         transid = btrfs_super_generation(disk_super);
1159         total_devices = btrfs_super_num_devices(disk_super);
1160
1161         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1162         if (ret > 0) {
1163                 if (disk_super->label[0]) {
1164                         pr_info("BTRFS: device label %s ", disk_super->label);
1165                 } else {
1166                         pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1167                 }
1168
1169                 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1170                 ret = 0;
1171         }
1172         if (!ret && fs_devices_ret)
1173                 (*fs_devices_ret)->total_devices = total_devices;
1174
1175         btrfs_release_disk_super(page);
1176
1177 error_bdev_put:
1178         blkdev_put(bdev, flags);
1179 error:
1180         mutex_unlock(&uuid_mutex);
1181         return ret;
1182 }
1183
1184 /* helper to account the used device space in the range */
1185 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1186                                    u64 end, u64 *length)
1187 {
1188         struct btrfs_key key;
1189         struct btrfs_root *root = device->fs_info->dev_root;
1190         struct btrfs_dev_extent *dev_extent;
1191         struct btrfs_path *path;
1192         u64 extent_end;
1193         int ret;
1194         int slot;
1195         struct extent_buffer *l;
1196
1197         *length = 0;
1198
1199         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1200                 return 0;
1201
1202         path = btrfs_alloc_path();
1203         if (!path)
1204                 return -ENOMEM;
1205         path->reada = READA_FORWARD;
1206
1207         key.objectid = device->devid;
1208         key.offset = start;
1209         key.type = BTRFS_DEV_EXTENT_KEY;
1210
1211         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1212         if (ret < 0)
1213                 goto out;
1214         if (ret > 0) {
1215                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1216                 if (ret < 0)
1217                         goto out;
1218         }
1219
1220         while (1) {
1221                 l = path->nodes[0];
1222                 slot = path->slots[0];
1223                 if (slot >= btrfs_header_nritems(l)) {
1224                         ret = btrfs_next_leaf(root, path);
1225                         if (ret == 0)
1226                                 continue;
1227                         if (ret < 0)
1228                                 goto out;
1229
1230                         break;
1231                 }
1232                 btrfs_item_key_to_cpu(l, &key, slot);
1233
1234                 if (key.objectid < device->devid)
1235                         goto next;
1236
1237                 if (key.objectid > device->devid)
1238                         break;
1239
1240                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1241                         goto next;
1242
1243                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1244                 extent_end = key.offset + btrfs_dev_extent_length(l,
1245                                                                   dev_extent);
1246                 if (key.offset <= start && extent_end > end) {
1247                         *length = end - start + 1;
1248                         break;
1249                 } else if (key.offset <= start && extent_end > start)
1250                         *length += extent_end - start;
1251                 else if (key.offset > start && extent_end <= end)
1252                         *length += extent_end - key.offset;
1253                 else if (key.offset > start && key.offset <= end) {
1254                         *length += end - key.offset + 1;
1255                         break;
1256                 } else if (key.offset > end)
1257                         break;
1258
1259 next:
1260                 path->slots[0]++;
1261         }
1262         ret = 0;
1263 out:
1264         btrfs_free_path(path);
1265         return ret;
1266 }
1267
1268 static int contains_pending_extent(struct btrfs_transaction *transaction,
1269                                    struct btrfs_device *device,
1270                                    u64 *start, u64 len)
1271 {
1272         struct btrfs_fs_info *fs_info = device->fs_info;
1273         struct extent_map *em;
1274         struct list_head *search_list = &fs_info->pinned_chunks;
1275         int ret = 0;
1276         u64 physical_start = *start;
1277
1278         if (transaction)
1279                 search_list = &transaction->pending_chunks;
1280 again:
1281         list_for_each_entry(em, search_list, list) {
1282                 struct map_lookup *map;
1283                 int i;
1284
1285                 map = em->map_lookup;
1286                 for (i = 0; i < map->num_stripes; i++) {
1287                         u64 end;
1288
1289                         if (map->stripes[i].dev != device)
1290                                 continue;
1291                         if (map->stripes[i].physical >= physical_start + len ||
1292                             map->stripes[i].physical + em->orig_block_len <=
1293                             physical_start)
1294                                 continue;
1295                         /*
1296                          * Make sure that while processing the pinned list we do
1297                          * not override our *start with a lower value, because
1298                          * we can have pinned chunks that fall within this
1299                          * device hole and that have lower physical addresses
1300                          * than the pending chunks we processed before. If we
1301                          * do not take this special care we can end up getting
1302                          * 2 pending chunks that start at the same physical
1303                          * device offsets because the end offset of a pinned
1304                          * chunk can be equal to the start offset of some
1305                          * pending chunk.
1306                          */
1307                         end = map->stripes[i].physical + em->orig_block_len;
1308                         if (end > *start) {
1309                                 *start = end;
1310                                 ret = 1;
1311                         }
1312                 }
1313         }
1314         if (search_list != &fs_info->pinned_chunks) {
1315                 search_list = &fs_info->pinned_chunks;
1316                 goto again;
1317         }
1318
1319         return ret;
1320 }
1321
1322
1323 /*
1324  * find_free_dev_extent_start - find free space in the specified device
1325  * @device:       the device which we search the free space in
1326  * @num_bytes:    the size of the free space that we need
1327  * @search_start: the position from which to begin the search
1328  * @start:        store the start of the free space.
1329  * @len:          the size of the free space. that we find, or the size
1330  *                of the max free space if we don't find suitable free space
1331  *
1332  * this uses a pretty simple search, the expectation is that it is
1333  * called very infrequently and that a given device has a small number
1334  * of extents
1335  *
1336  * @start is used to store the start of the free space if we find. But if we
1337  * don't find suitable free space, it will be used to store the start position
1338  * of the max free space.
1339  *
1340  * @len is used to store the size of the free space that we find.
1341  * But if we don't find suitable free space, it is used to store the size of
1342  * the max free space.
1343  */
1344 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1345                                struct btrfs_device *device, u64 num_bytes,
1346                                u64 search_start, u64 *start, u64 *len)
1347 {
1348         struct btrfs_fs_info *fs_info = device->fs_info;
1349         struct btrfs_root *root = fs_info->dev_root;
1350         struct btrfs_key key;
1351         struct btrfs_dev_extent *dev_extent;
1352         struct btrfs_path *path;
1353         u64 hole_size;
1354         u64 max_hole_start;
1355         u64 max_hole_size;
1356         u64 extent_end;
1357         u64 search_end = device->total_bytes;
1358         int ret;
1359         int slot;
1360         struct extent_buffer *l;
1361
1362         /*
1363          * We don't want to overwrite the superblock on the drive nor any area
1364          * used by the boot loader (grub for example), so we make sure to start
1365          * at an offset of at least 1MB.
1366          */
1367         search_start = max_t(u64, search_start, SZ_1M);
1368
1369         path = btrfs_alloc_path();
1370         if (!path)
1371                 return -ENOMEM;
1372
1373         max_hole_start = search_start;
1374         max_hole_size = 0;
1375
1376 again:
1377         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1378                 ret = -ENOSPC;
1379                 goto out;
1380         }
1381
1382         path->reada = READA_FORWARD;
1383         path->search_commit_root = 1;
1384         path->skip_locking = 1;
1385
1386         key.objectid = device->devid;
1387         key.offset = search_start;
1388         key.type = BTRFS_DEV_EXTENT_KEY;
1389
1390         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1391         if (ret < 0)
1392                 goto out;
1393         if (ret > 0) {
1394                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1395                 if (ret < 0)
1396                         goto out;
1397         }
1398
1399         while (1) {
1400                 l = path->nodes[0];
1401                 slot = path->slots[0];
1402                 if (slot >= btrfs_header_nritems(l)) {
1403                         ret = btrfs_next_leaf(root, path);
1404                         if (ret == 0)
1405                                 continue;
1406                         if (ret < 0)
1407                                 goto out;
1408
1409                         break;
1410                 }
1411                 btrfs_item_key_to_cpu(l, &key, slot);
1412
1413                 if (key.objectid < device->devid)
1414                         goto next;
1415
1416                 if (key.objectid > device->devid)
1417                         break;
1418
1419                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1420                         goto next;
1421
1422                 if (key.offset > search_start) {
1423                         hole_size = key.offset - search_start;
1424
1425                         /*
1426                          * Have to check before we set max_hole_start, otherwise
1427                          * we could end up sending back this offset anyway.
1428                          */
1429                         if (contains_pending_extent(transaction, device,
1430                                                     &search_start,
1431                                                     hole_size)) {
1432                                 if (key.offset >= search_start) {
1433                                         hole_size = key.offset - search_start;
1434                                 } else {
1435                                         WARN_ON_ONCE(1);
1436                                         hole_size = 0;
1437                                 }
1438                         }
1439
1440                         if (hole_size > max_hole_size) {
1441                                 max_hole_start = search_start;
1442                                 max_hole_size = hole_size;
1443                         }
1444
1445                         /*
1446                          * If this free space is greater than which we need,
1447                          * it must be the max free space that we have found
1448                          * until now, so max_hole_start must point to the start
1449                          * of this free space and the length of this free space
1450                          * is stored in max_hole_size. Thus, we return
1451                          * max_hole_start and max_hole_size and go back to the
1452                          * caller.
1453                          */
1454                         if (hole_size >= num_bytes) {
1455                                 ret = 0;
1456                                 goto out;
1457                         }
1458                 }
1459
1460                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1461                 extent_end = key.offset + btrfs_dev_extent_length(l,
1462                                                                   dev_extent);
1463                 if (extent_end > search_start)
1464                         search_start = extent_end;
1465 next:
1466                 path->slots[0]++;
1467                 cond_resched();
1468         }
1469
1470         /*
1471          * At this point, search_start should be the end of
1472          * allocated dev extents, and when shrinking the device,
1473          * search_end may be smaller than search_start.
1474          */
1475         if (search_end > search_start) {
1476                 hole_size = search_end - search_start;
1477
1478                 if (contains_pending_extent(transaction, device, &search_start,
1479                                             hole_size)) {
1480                         btrfs_release_path(path);
1481                         goto again;
1482                 }
1483
1484                 if (hole_size > max_hole_size) {
1485                         max_hole_start = search_start;
1486                         max_hole_size = hole_size;
1487                 }
1488         }
1489
1490         /* See above. */
1491         if (max_hole_size < num_bytes)
1492                 ret = -ENOSPC;
1493         else
1494                 ret = 0;
1495
1496 out:
1497         btrfs_free_path(path);
1498         *start = max_hole_start;
1499         if (len)
1500                 *len = max_hole_size;
1501         return ret;
1502 }
1503
1504 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1505                          struct btrfs_device *device, u64 num_bytes,
1506                          u64 *start, u64 *len)
1507 {
1508         /* FIXME use last free of some kind */
1509         return find_free_dev_extent_start(trans->transaction, device,
1510                                           num_bytes, 0, start, len);
1511 }
1512
1513 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1514                           struct btrfs_device *device,
1515                           u64 start, u64 *dev_extent_len)
1516 {
1517         struct btrfs_fs_info *fs_info = device->fs_info;
1518         struct btrfs_root *root = fs_info->dev_root;
1519         int ret;
1520         struct btrfs_path *path;
1521         struct btrfs_key key;
1522         struct btrfs_key found_key;
1523         struct extent_buffer *leaf = NULL;
1524         struct btrfs_dev_extent *extent = NULL;
1525
1526         path = btrfs_alloc_path();
1527         if (!path)
1528                 return -ENOMEM;
1529
1530         key.objectid = device->devid;
1531         key.offset = start;
1532         key.type = BTRFS_DEV_EXTENT_KEY;
1533 again:
1534         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1535         if (ret > 0) {
1536                 ret = btrfs_previous_item(root, path, key.objectid,
1537                                           BTRFS_DEV_EXTENT_KEY);
1538                 if (ret)
1539                         goto out;
1540                 leaf = path->nodes[0];
1541                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1542                 extent = btrfs_item_ptr(leaf, path->slots[0],
1543                                         struct btrfs_dev_extent);
1544                 BUG_ON(found_key.offset > start || found_key.offset +
1545                        btrfs_dev_extent_length(leaf, extent) < start);
1546                 key = found_key;
1547                 btrfs_release_path(path);
1548                 goto again;
1549         } else if (ret == 0) {
1550                 leaf = path->nodes[0];
1551                 extent = btrfs_item_ptr(leaf, path->slots[0],
1552                                         struct btrfs_dev_extent);
1553         } else {
1554                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1555                 goto out;
1556         }
1557
1558         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1559
1560         ret = btrfs_del_item(trans, root, path);
1561         if (ret) {
1562                 btrfs_handle_fs_error(fs_info, ret,
1563                                       "Failed to remove dev extent item");
1564         } else {
1565                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1566         }
1567 out:
1568         btrfs_free_path(path);
1569         return ret;
1570 }
1571
1572 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1573                                   struct btrfs_device *device,
1574                                   u64 chunk_offset, u64 start, u64 num_bytes)
1575 {
1576         int ret;
1577         struct btrfs_path *path;
1578         struct btrfs_fs_info *fs_info = device->fs_info;
1579         struct btrfs_root *root = fs_info->dev_root;
1580         struct btrfs_dev_extent *extent;
1581         struct extent_buffer *leaf;
1582         struct btrfs_key key;
1583
1584         WARN_ON(!device->in_fs_metadata);
1585         WARN_ON(device->is_tgtdev_for_dev_replace);
1586         path = btrfs_alloc_path();
1587         if (!path)
1588                 return -ENOMEM;
1589
1590         key.objectid = device->devid;
1591         key.offset = start;
1592         key.type = BTRFS_DEV_EXTENT_KEY;
1593         ret = btrfs_insert_empty_item(trans, root, path, &key,
1594                                       sizeof(*extent));
1595         if (ret)
1596                 goto out;
1597
1598         leaf = path->nodes[0];
1599         extent = btrfs_item_ptr(leaf, path->slots[0],
1600                                 struct btrfs_dev_extent);
1601         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1602                                         BTRFS_CHUNK_TREE_OBJECTID);
1603         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1604                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1605         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1606
1607         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1608         btrfs_mark_buffer_dirty(leaf);
1609 out:
1610         btrfs_free_path(path);
1611         return ret;
1612 }
1613
1614 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1615 {
1616         struct extent_map_tree *em_tree;
1617         struct extent_map *em;
1618         struct rb_node *n;
1619         u64 ret = 0;
1620
1621         em_tree = &fs_info->mapping_tree.map_tree;
1622         read_lock(&em_tree->lock);
1623         n = rb_last(&em_tree->map);
1624         if (n) {
1625                 em = rb_entry(n, struct extent_map, rb_node);
1626                 ret = em->start + em->len;
1627         }
1628         read_unlock(&em_tree->lock);
1629
1630         return ret;
1631 }
1632
1633 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1634                                     u64 *devid_ret)
1635 {
1636         int ret;
1637         struct btrfs_key key;
1638         struct btrfs_key found_key;
1639         struct btrfs_path *path;
1640
1641         path = btrfs_alloc_path();
1642         if (!path)
1643                 return -ENOMEM;
1644
1645         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1646         key.type = BTRFS_DEV_ITEM_KEY;
1647         key.offset = (u64)-1;
1648
1649         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1650         if (ret < 0)
1651                 goto error;
1652
1653         BUG_ON(ret == 0); /* Corruption */
1654
1655         ret = btrfs_previous_item(fs_info->chunk_root, path,
1656                                   BTRFS_DEV_ITEMS_OBJECTID,
1657                                   BTRFS_DEV_ITEM_KEY);
1658         if (ret) {
1659                 *devid_ret = 1;
1660         } else {
1661                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1662                                       path->slots[0]);
1663                 *devid_ret = found_key.offset + 1;
1664         }
1665         ret = 0;
1666 error:
1667         btrfs_free_path(path);
1668         return ret;
1669 }
1670
1671 /*
1672  * the device information is stored in the chunk root
1673  * the btrfs_device struct should be fully filled in
1674  */
1675 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1676                             struct btrfs_fs_info *fs_info,
1677                             struct btrfs_device *device)
1678 {
1679         struct btrfs_root *root = fs_info->chunk_root;
1680         int ret;
1681         struct btrfs_path *path;
1682         struct btrfs_dev_item *dev_item;
1683         struct extent_buffer *leaf;
1684         struct btrfs_key key;
1685         unsigned long ptr;
1686
1687         path = btrfs_alloc_path();
1688         if (!path)
1689                 return -ENOMEM;
1690
1691         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1692         key.type = BTRFS_DEV_ITEM_KEY;
1693         key.offset = device->devid;
1694
1695         ret = btrfs_insert_empty_item(trans, root, path, &key,
1696                                       sizeof(*dev_item));
1697         if (ret)
1698                 goto out;
1699
1700         leaf = path->nodes[0];
1701         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1702
1703         btrfs_set_device_id(leaf, dev_item, device->devid);
1704         btrfs_set_device_generation(leaf, dev_item, 0);
1705         btrfs_set_device_type(leaf, dev_item, device->type);
1706         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1707         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1708         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1709         btrfs_set_device_total_bytes(leaf, dev_item,
1710                                      btrfs_device_get_disk_total_bytes(device));
1711         btrfs_set_device_bytes_used(leaf, dev_item,
1712                                     btrfs_device_get_bytes_used(device));
1713         btrfs_set_device_group(leaf, dev_item, 0);
1714         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1715         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1716         btrfs_set_device_start_offset(leaf, dev_item, 0);
1717
1718         ptr = btrfs_device_uuid(dev_item);
1719         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1720         ptr = btrfs_device_fsid(dev_item);
1721         write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1722         btrfs_mark_buffer_dirty(leaf);
1723
1724         ret = 0;
1725 out:
1726         btrfs_free_path(path);
1727         return ret;
1728 }
1729
1730 /*
1731  * Function to update ctime/mtime for a given device path.
1732  * Mainly used for ctime/mtime based probe like libblkid.
1733  */
1734 static void update_dev_time(const char *path_name)
1735 {
1736         struct file *filp;
1737
1738         filp = filp_open(path_name, O_RDWR, 0);
1739         if (IS_ERR(filp))
1740                 return;
1741         file_update_time(filp);
1742         filp_close(filp, NULL);
1743 }
1744
1745 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1746                              struct btrfs_device *device)
1747 {
1748         struct btrfs_root *root = fs_info->chunk_root;
1749         int ret;
1750         struct btrfs_path *path;
1751         struct btrfs_key key;
1752         struct btrfs_trans_handle *trans;
1753
1754         path = btrfs_alloc_path();
1755         if (!path)
1756                 return -ENOMEM;
1757
1758         trans = btrfs_start_transaction(root, 0);
1759         if (IS_ERR(trans)) {
1760                 btrfs_free_path(path);
1761                 return PTR_ERR(trans);
1762         }
1763         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1764         key.type = BTRFS_DEV_ITEM_KEY;
1765         key.offset = device->devid;
1766
1767         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1768         if (ret) {
1769                 if (ret > 0)
1770                         ret = -ENOENT;
1771                 btrfs_abort_transaction(trans, ret);
1772                 btrfs_end_transaction(trans);
1773                 goto out;
1774         }
1775
1776         ret = btrfs_del_item(trans, root, path);
1777         if (ret) {
1778                 btrfs_abort_transaction(trans, ret);
1779                 btrfs_end_transaction(trans);
1780         }
1781
1782 out:
1783         btrfs_free_path(path);
1784         if (!ret)
1785                 ret = btrfs_commit_transaction(trans);
1786         return ret;
1787 }
1788
1789 /*
1790  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1791  * filesystem. It's up to the caller to adjust that number regarding eg. device
1792  * replace.
1793  */
1794 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1795                 u64 num_devices)
1796 {
1797         u64 all_avail;
1798         unsigned seq;
1799         int i;
1800
1801         do {
1802                 seq = read_seqbegin(&fs_info->profiles_lock);
1803
1804                 all_avail = fs_info->avail_data_alloc_bits |
1805                             fs_info->avail_system_alloc_bits |
1806                             fs_info->avail_metadata_alloc_bits;
1807         } while (read_seqretry(&fs_info->profiles_lock, seq));
1808
1809         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1810                 if (!(all_avail & btrfs_raid_group[i]))
1811                         continue;
1812
1813                 if (num_devices < btrfs_raid_array[i].devs_min) {
1814                         int ret = btrfs_raid_mindev_error[i];
1815
1816                         if (ret)
1817                                 return ret;
1818                 }
1819         }
1820
1821         return 0;
1822 }
1823
1824 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1825                                         struct btrfs_device *device)
1826 {
1827         struct btrfs_device *next_device;
1828
1829         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1830                 if (next_device != device &&
1831                         !next_device->missing && next_device->bdev)
1832                         return next_device;
1833         }
1834
1835         return NULL;
1836 }
1837
1838 /*
1839  * Helper function to check if the given device is part of s_bdev / latest_bdev
1840  * and replace it with the provided or the next active device, in the context
1841  * where this function called, there should be always be another device (or
1842  * this_dev) which is active.
1843  */
1844 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1845                 struct btrfs_device *device, struct btrfs_device *this_dev)
1846 {
1847         struct btrfs_device *next_device;
1848
1849         if (this_dev)
1850                 next_device = this_dev;
1851         else
1852                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1853                                                                 device);
1854         ASSERT(next_device);
1855
1856         if (fs_info->sb->s_bdev &&
1857                         (fs_info->sb->s_bdev == device->bdev))
1858                 fs_info->sb->s_bdev = next_device->bdev;
1859
1860         if (fs_info->fs_devices->latest_bdev == device->bdev)
1861                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1862 }
1863
1864 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1865                 u64 devid)
1866 {
1867         struct btrfs_device *device;
1868         struct btrfs_fs_devices *cur_devices;
1869         u64 num_devices;
1870         int ret = 0;
1871
1872         mutex_lock(&uuid_mutex);
1873
1874         num_devices = fs_info->fs_devices->num_devices;
1875         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1876         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1877                 WARN_ON(num_devices < 1);
1878                 num_devices--;
1879         }
1880         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1881
1882         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1883         if (ret)
1884                 goto out;
1885
1886         ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1887                                            &device);
1888         if (ret)
1889                 goto out;
1890
1891         if (device->is_tgtdev_for_dev_replace) {
1892                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1893                 goto out;
1894         }
1895
1896         if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1897                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1898                 goto out;
1899         }
1900
1901         if (device->writeable) {
1902                 mutex_lock(&fs_info->chunk_mutex);
1903                 list_del_init(&device->dev_alloc_list);
1904                 device->fs_devices->rw_devices--;
1905                 mutex_unlock(&fs_info->chunk_mutex);
1906         }
1907
1908         mutex_unlock(&uuid_mutex);
1909         ret = btrfs_shrink_device(device, 0);
1910         mutex_lock(&uuid_mutex);
1911         if (ret)
1912                 goto error_undo;
1913
1914         /*
1915          * TODO: the superblock still includes this device in its num_devices
1916          * counter although write_all_supers() is not locked out. This
1917          * could give a filesystem state which requires a degraded mount.
1918          */
1919         ret = btrfs_rm_dev_item(fs_info, device);
1920         if (ret)
1921                 goto error_undo;
1922
1923         device->in_fs_metadata = 0;
1924         btrfs_scrub_cancel_dev(fs_info, device);
1925
1926         /*
1927          * the device list mutex makes sure that we don't change
1928          * the device list while someone else is writing out all
1929          * the device supers. Whoever is writing all supers, should
1930          * lock the device list mutex before getting the number of
1931          * devices in the super block (super_copy). Conversely,
1932          * whoever updates the number of devices in the super block
1933          * (super_copy) should hold the device list mutex.
1934          */
1935
1936         cur_devices = device->fs_devices;
1937         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1938         list_del_rcu(&device->dev_list);
1939
1940         device->fs_devices->num_devices--;
1941         device->fs_devices->total_devices--;
1942
1943         if (device->missing)
1944                 device->fs_devices->missing_devices--;
1945
1946         btrfs_assign_next_active_device(fs_info, device, NULL);
1947
1948         if (device->bdev) {
1949                 device->fs_devices->open_devices--;
1950                 /* remove sysfs entry */
1951                 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1952         }
1953
1954         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1955         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1956         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1957
1958         /*
1959          * at this point, the device is zero sized and detached from
1960          * the devices list.  All that's left is to zero out the old
1961          * supers and free the device.
1962          */
1963         if (device->writeable)
1964                 btrfs_scratch_superblocks(device->bdev, device->name->str);
1965
1966         btrfs_close_bdev(device);
1967         call_rcu(&device->rcu, free_device);
1968
1969         if (cur_devices->open_devices == 0) {
1970                 struct btrfs_fs_devices *fs_devices;
1971                 fs_devices = fs_info->fs_devices;
1972                 while (fs_devices) {
1973                         if (fs_devices->seed == cur_devices) {
1974                                 fs_devices->seed = cur_devices->seed;
1975                                 break;
1976                         }
1977                         fs_devices = fs_devices->seed;
1978                 }
1979                 cur_devices->seed = NULL;
1980                 __btrfs_close_devices(cur_devices);
1981                 free_fs_devices(cur_devices);
1982         }
1983
1984 out:
1985         mutex_unlock(&uuid_mutex);
1986         return ret;
1987
1988 error_undo:
1989         if (device->writeable) {
1990                 mutex_lock(&fs_info->chunk_mutex);
1991                 list_add(&device->dev_alloc_list,
1992                          &fs_info->fs_devices->alloc_list);
1993                 device->fs_devices->rw_devices++;
1994                 mutex_unlock(&fs_info->chunk_mutex);
1995         }
1996         goto out;
1997 }
1998
1999 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2000                                         struct btrfs_device *srcdev)
2001 {
2002         struct btrfs_fs_devices *fs_devices;
2003
2004         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2005
2006         /*
2007          * in case of fs with no seed, srcdev->fs_devices will point
2008          * to fs_devices of fs_info. However when the dev being replaced is
2009          * a seed dev it will point to the seed's local fs_devices. In short
2010          * srcdev will have its correct fs_devices in both the cases.
2011          */
2012         fs_devices = srcdev->fs_devices;
2013
2014         list_del_rcu(&srcdev->dev_list);
2015         list_del_rcu(&srcdev->dev_alloc_list);
2016         fs_devices->num_devices--;
2017         if (srcdev->missing)
2018                 fs_devices->missing_devices--;
2019
2020         if (srcdev->writeable)
2021                 fs_devices->rw_devices--;
2022
2023         if (srcdev->bdev)
2024                 fs_devices->open_devices--;
2025 }
2026
2027 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2028                                       struct btrfs_device *srcdev)
2029 {
2030         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2031
2032         if (srcdev->writeable) {
2033                 /* zero out the old super if it is writable */
2034                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2035         }
2036
2037         btrfs_close_bdev(srcdev);
2038
2039         call_rcu(&srcdev->rcu, free_device);
2040
2041         /*
2042          * unless fs_devices is seed fs, num_devices shouldn't go
2043          * zero
2044          */
2045         BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2046
2047         /* if this is no devs we rather delete the fs_devices */
2048         if (!fs_devices->num_devices) {
2049                 struct btrfs_fs_devices *tmp_fs_devices;
2050
2051                 tmp_fs_devices = fs_info->fs_devices;
2052                 while (tmp_fs_devices) {
2053                         if (tmp_fs_devices->seed == fs_devices) {
2054                                 tmp_fs_devices->seed = fs_devices->seed;
2055                                 break;
2056                         }
2057                         tmp_fs_devices = tmp_fs_devices->seed;
2058                 }
2059                 fs_devices->seed = NULL;
2060                 __btrfs_close_devices(fs_devices);
2061                 free_fs_devices(fs_devices);
2062         }
2063 }
2064
2065 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2066                                       struct btrfs_device *tgtdev)
2067 {
2068         mutex_lock(&uuid_mutex);
2069         WARN_ON(!tgtdev);
2070         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2071
2072         btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2073
2074         if (tgtdev->bdev)
2075                 fs_info->fs_devices->open_devices--;
2076
2077         fs_info->fs_devices->num_devices--;
2078
2079         btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2080
2081         list_del_rcu(&tgtdev->dev_list);
2082
2083         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2084         mutex_unlock(&uuid_mutex);
2085
2086         /*
2087          * The update_dev_time() with in btrfs_scratch_superblocks()
2088          * may lead to a call to btrfs_show_devname() which will try
2089          * to hold device_list_mutex. And here this device
2090          * is already out of device list, so we don't have to hold
2091          * the device_list_mutex lock.
2092          */
2093         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2094
2095         btrfs_close_bdev(tgtdev);
2096         call_rcu(&tgtdev->rcu, free_device);
2097 }
2098
2099 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2100                                      const char *device_path,
2101                                      struct btrfs_device **device)
2102 {
2103         int ret = 0;
2104         struct btrfs_super_block *disk_super;
2105         u64 devid;
2106         u8 *dev_uuid;
2107         struct block_device *bdev;
2108         struct buffer_head *bh;
2109
2110         *device = NULL;
2111         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2112                                     fs_info->bdev_holder, 0, &bdev, &bh);
2113         if (ret)
2114                 return ret;
2115         disk_super = (struct btrfs_super_block *)bh->b_data;
2116         devid = btrfs_stack_device_id(&disk_super->dev_item);
2117         dev_uuid = disk_super->dev_item.uuid;
2118         *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2119         brelse(bh);
2120         if (!*device)
2121                 ret = -ENOENT;
2122         blkdev_put(bdev, FMODE_READ);
2123         return ret;
2124 }
2125
2126 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2127                                          const char *device_path,
2128                                          struct btrfs_device **device)
2129 {
2130         *device = NULL;
2131         if (strcmp(device_path, "missing") == 0) {
2132                 struct list_head *devices;
2133                 struct btrfs_device *tmp;
2134
2135                 devices = &fs_info->fs_devices->devices;
2136                 /*
2137                  * It is safe to read the devices since the volume_mutex
2138                  * is held by the caller.
2139                  */
2140                 list_for_each_entry(tmp, devices, dev_list) {
2141                         if (tmp->in_fs_metadata && !tmp->bdev) {
2142                                 *device = tmp;
2143                                 break;
2144                         }
2145                 }
2146
2147                 if (!*device)
2148                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2149
2150                 return 0;
2151         } else {
2152                 return btrfs_find_device_by_path(fs_info, device_path, device);
2153         }
2154 }
2155
2156 /*
2157  * Lookup a device given by device id, or the path if the id is 0.
2158  */
2159 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2160                                  const char *devpath,
2161                                  struct btrfs_device **device)
2162 {
2163         int ret;
2164
2165         if (devid) {
2166                 ret = 0;
2167                 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2168                 if (!*device)
2169                         ret = -ENOENT;
2170         } else {
2171                 if (!devpath || !devpath[0])
2172                         return -EINVAL;
2173
2174                 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2175                                                            device);
2176         }
2177         return ret;
2178 }
2179
2180 /*
2181  * does all the dirty work required for changing file system's UUID.
2182  */
2183 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2184 {
2185         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2186         struct btrfs_fs_devices *old_devices;
2187         struct btrfs_fs_devices *seed_devices;
2188         struct btrfs_super_block *disk_super = fs_info->super_copy;
2189         struct btrfs_device *device;
2190         u64 super_flags;
2191
2192         BUG_ON(!mutex_is_locked(&uuid_mutex));
2193         if (!fs_devices->seeding)
2194                 return -EINVAL;
2195
2196         seed_devices = alloc_fs_devices(NULL);
2197         if (IS_ERR(seed_devices))
2198                 return PTR_ERR(seed_devices);
2199
2200         old_devices = clone_fs_devices(fs_devices);
2201         if (IS_ERR(old_devices)) {
2202                 kfree(seed_devices);
2203                 return PTR_ERR(old_devices);
2204         }
2205
2206         list_add(&old_devices->list, &fs_uuids);
2207
2208         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2209         seed_devices->opened = 1;
2210         INIT_LIST_HEAD(&seed_devices->devices);
2211         INIT_LIST_HEAD(&seed_devices->alloc_list);
2212         mutex_init(&seed_devices->device_list_mutex);
2213
2214         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2215         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2216                               synchronize_rcu);
2217         list_for_each_entry(device, &seed_devices->devices, dev_list)
2218                 device->fs_devices = seed_devices;
2219
2220         mutex_lock(&fs_info->chunk_mutex);
2221         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2222         mutex_unlock(&fs_info->chunk_mutex);
2223
2224         fs_devices->seeding = 0;
2225         fs_devices->num_devices = 0;
2226         fs_devices->open_devices = 0;
2227         fs_devices->missing_devices = 0;
2228         fs_devices->rotating = 0;
2229         fs_devices->seed = seed_devices;
2230
2231         generate_random_uuid(fs_devices->fsid);
2232         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2233         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2234         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2235
2236         super_flags = btrfs_super_flags(disk_super) &
2237                       ~BTRFS_SUPER_FLAG_SEEDING;
2238         btrfs_set_super_flags(disk_super, super_flags);
2239
2240         return 0;
2241 }
2242
2243 /*
2244  * Store the expected generation for seed devices in device items.
2245  */
2246 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2247                                struct btrfs_fs_info *fs_info)
2248 {
2249         struct btrfs_root *root = fs_info->chunk_root;
2250         struct btrfs_path *path;
2251         struct extent_buffer *leaf;
2252         struct btrfs_dev_item *dev_item;
2253         struct btrfs_device *device;
2254         struct btrfs_key key;
2255         u8 fs_uuid[BTRFS_FSID_SIZE];
2256         u8 dev_uuid[BTRFS_UUID_SIZE];
2257         u64 devid;
2258         int ret;
2259
2260         path = btrfs_alloc_path();
2261         if (!path)
2262                 return -ENOMEM;
2263
2264         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2265         key.offset = 0;
2266         key.type = BTRFS_DEV_ITEM_KEY;
2267
2268         while (1) {
2269                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2270                 if (ret < 0)
2271                         goto error;
2272
2273                 leaf = path->nodes[0];
2274 next_slot:
2275                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2276                         ret = btrfs_next_leaf(root, path);
2277                         if (ret > 0)
2278                                 break;
2279                         if (ret < 0)
2280                                 goto error;
2281                         leaf = path->nodes[0];
2282                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2283                         btrfs_release_path(path);
2284                         continue;
2285                 }
2286
2287                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2288                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2289                     key.type != BTRFS_DEV_ITEM_KEY)
2290                         break;
2291
2292                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2293                                           struct btrfs_dev_item);
2294                 devid = btrfs_device_id(leaf, dev_item);
2295                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2296                                    BTRFS_UUID_SIZE);
2297                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2298                                    BTRFS_FSID_SIZE);
2299                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2300                 BUG_ON(!device); /* Logic error */
2301
2302                 if (device->fs_devices->seeding) {
2303                         btrfs_set_device_generation(leaf, dev_item,
2304                                                     device->generation);
2305                         btrfs_mark_buffer_dirty(leaf);
2306                 }
2307
2308                 path->slots[0]++;
2309                 goto next_slot;
2310         }
2311         ret = 0;
2312 error:
2313         btrfs_free_path(path);
2314         return ret;
2315 }
2316
2317 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2318 {
2319         struct btrfs_root *root = fs_info->dev_root;
2320         struct request_queue *q;
2321         struct btrfs_trans_handle *trans;
2322         struct btrfs_device *device;
2323         struct block_device *bdev;
2324         struct list_head *devices;
2325         struct super_block *sb = fs_info->sb;
2326         struct rcu_string *name;
2327         u64 tmp;
2328         int seeding_dev = 0;
2329         int ret = 0;
2330
2331         if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2332                 return -EROFS;
2333
2334         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2335                                   fs_info->bdev_holder);
2336         if (IS_ERR(bdev))
2337                 return PTR_ERR(bdev);
2338
2339         if (fs_info->fs_devices->seeding) {
2340                 seeding_dev = 1;
2341                 down_write(&sb->s_umount);
2342                 mutex_lock(&uuid_mutex);
2343         }
2344
2345         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2346
2347         devices = &fs_info->fs_devices->devices;
2348
2349         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2350         list_for_each_entry(device, devices, dev_list) {
2351                 if (device->bdev == bdev) {
2352                         ret = -EEXIST;
2353                         mutex_unlock(
2354                                 &fs_info->fs_devices->device_list_mutex);
2355                         goto error;
2356                 }
2357         }
2358         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2359
2360         device = btrfs_alloc_device(fs_info, NULL, NULL);
2361         if (IS_ERR(device)) {
2362                 /* we can safely leave the fs_devices entry around */
2363                 ret = PTR_ERR(device);
2364                 goto error;
2365         }
2366
2367         name = rcu_string_strdup(device_path, GFP_KERNEL);
2368         if (!name) {
2369                 kfree(device);
2370                 ret = -ENOMEM;
2371                 goto error;
2372         }
2373         rcu_assign_pointer(device->name, name);
2374
2375         trans = btrfs_start_transaction(root, 0);
2376         if (IS_ERR(trans)) {
2377                 rcu_string_free(device->name);
2378                 kfree(device);
2379                 ret = PTR_ERR(trans);
2380                 goto error;
2381         }
2382
2383         q = bdev_get_queue(bdev);
2384         if (blk_queue_discard(q))
2385                 device->can_discard = 1;
2386         device->writeable = 1;
2387         device->generation = trans->transid;
2388         device->io_width = fs_info->sectorsize;
2389         device->io_align = fs_info->sectorsize;
2390         device->sector_size = fs_info->sectorsize;
2391         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2392                                          fs_info->sectorsize);
2393         device->disk_total_bytes = device->total_bytes;
2394         device->commit_total_bytes = device->total_bytes;
2395         device->fs_info = fs_info;
2396         device->bdev = bdev;
2397         device->in_fs_metadata = 1;
2398         device->is_tgtdev_for_dev_replace = 0;
2399         device->mode = FMODE_EXCL;
2400         device->dev_stats_valid = 1;
2401         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2402
2403         if (seeding_dev) {
2404                 sb->s_flags &= ~MS_RDONLY;
2405                 ret = btrfs_prepare_sprout(fs_info);
2406                 BUG_ON(ret); /* -ENOMEM */
2407         }
2408
2409         device->fs_devices = fs_info->fs_devices;
2410
2411         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2412         mutex_lock(&fs_info->chunk_mutex);
2413         list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2414         list_add(&device->dev_alloc_list,
2415                  &fs_info->fs_devices->alloc_list);
2416         fs_info->fs_devices->num_devices++;
2417         fs_info->fs_devices->open_devices++;
2418         fs_info->fs_devices->rw_devices++;
2419         fs_info->fs_devices->total_devices++;
2420         fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2421
2422         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2423
2424         if (!blk_queue_nonrot(q))
2425                 fs_info->fs_devices->rotating = 1;
2426
2427         tmp = btrfs_super_total_bytes(fs_info->super_copy);
2428         btrfs_set_super_total_bytes(fs_info->super_copy,
2429                 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2430
2431         tmp = btrfs_super_num_devices(fs_info->super_copy);
2432         btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2433
2434         /* add sysfs device entry */
2435         btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2436
2437         /*
2438          * we've got more storage, clear any full flags on the space
2439          * infos
2440          */
2441         btrfs_clear_space_info_full(fs_info);
2442
2443         mutex_unlock(&fs_info->chunk_mutex);
2444         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2445
2446         if (seeding_dev) {
2447                 mutex_lock(&fs_info->chunk_mutex);
2448                 ret = init_first_rw_device(trans, fs_info);
2449                 mutex_unlock(&fs_info->chunk_mutex);
2450                 if (ret) {
2451                         btrfs_abort_transaction(trans, ret);
2452                         goto error_trans;
2453                 }
2454         }
2455
2456         ret = btrfs_add_device(trans, fs_info, device);
2457         if (ret) {
2458                 btrfs_abort_transaction(trans, ret);
2459                 goto error_trans;
2460         }
2461
2462         if (seeding_dev) {
2463                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2464
2465                 ret = btrfs_finish_sprout(trans, fs_info);
2466                 if (ret) {
2467                         btrfs_abort_transaction(trans, ret);
2468                         goto error_trans;
2469                 }
2470
2471                 /* Sprouting would change fsid of the mounted root,
2472                  * so rename the fsid on the sysfs
2473                  */
2474                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2475                                                 fs_info->fsid);
2476                 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2477                         btrfs_warn(fs_info,
2478                                    "sysfs: failed to create fsid for sprout");
2479         }
2480
2481         ret = btrfs_commit_transaction(trans);
2482
2483         if (seeding_dev) {
2484                 mutex_unlock(&uuid_mutex);
2485                 up_write(&sb->s_umount);
2486
2487                 if (ret) /* transaction commit */
2488                         return ret;
2489
2490                 ret = btrfs_relocate_sys_chunks(fs_info);
2491                 if (ret < 0)
2492                         btrfs_handle_fs_error(fs_info, ret,
2493                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2494                 trans = btrfs_attach_transaction(root);
2495                 if (IS_ERR(trans)) {
2496                         if (PTR_ERR(trans) == -ENOENT)
2497                                 return 0;
2498                         return PTR_ERR(trans);
2499                 }
2500                 ret = btrfs_commit_transaction(trans);
2501         }
2502
2503         /* Update ctime/mtime for libblkid */
2504         update_dev_time(device_path);
2505         return ret;
2506
2507 error_trans:
2508         if (seeding_dev)
2509                 sb->s_flags |= MS_RDONLY;
2510         btrfs_end_transaction(trans);
2511         rcu_string_free(device->name);
2512         btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2513         kfree(device);
2514 error:
2515         blkdev_put(bdev, FMODE_EXCL);
2516         if (seeding_dev) {
2517                 mutex_unlock(&uuid_mutex);
2518                 up_write(&sb->s_umount);
2519         }
2520         return ret;
2521 }
2522
2523 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2524                                   const char *device_path,
2525                                   struct btrfs_device *srcdev,
2526                                   struct btrfs_device **device_out)
2527 {
2528         struct request_queue *q;
2529         struct btrfs_device *device;
2530         struct block_device *bdev;
2531         struct list_head *devices;
2532         struct rcu_string *name;
2533         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2534         int ret = 0;
2535
2536         *device_out = NULL;
2537         if (fs_info->fs_devices->seeding) {
2538                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2539                 return -EINVAL;
2540         }
2541
2542         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2543                                   fs_info->bdev_holder);
2544         if (IS_ERR(bdev)) {
2545                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2546                 return PTR_ERR(bdev);
2547         }
2548
2549         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2550
2551         devices = &fs_info->fs_devices->devices;
2552         list_for_each_entry(device, devices, dev_list) {
2553                 if (device->bdev == bdev) {
2554                         btrfs_err(fs_info,
2555                                   "target device is in the filesystem!");
2556                         ret = -EEXIST;
2557                         goto error;
2558                 }
2559         }
2560
2561
2562         if (i_size_read(bdev->bd_inode) <
2563             btrfs_device_get_total_bytes(srcdev)) {
2564                 btrfs_err(fs_info,
2565                           "target device is smaller than source device!");
2566                 ret = -EINVAL;
2567                 goto error;
2568         }
2569
2570
2571         device = btrfs_alloc_device(NULL, &devid, NULL);
2572         if (IS_ERR(device)) {
2573                 ret = PTR_ERR(device);
2574                 goto error;
2575         }
2576
2577         name = rcu_string_strdup(device_path, GFP_KERNEL);
2578         if (!name) {
2579                 kfree(device);
2580                 ret = -ENOMEM;
2581                 goto error;
2582         }
2583         rcu_assign_pointer(device->name, name);
2584
2585         q = bdev_get_queue(bdev);
2586         if (blk_queue_discard(q))
2587                 device->can_discard = 1;
2588         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2589         device->writeable = 1;
2590         device->generation = 0;
2591         device->io_width = fs_info->sectorsize;
2592         device->io_align = fs_info->sectorsize;
2593         device->sector_size = fs_info->sectorsize;
2594         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2595         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2596         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2597         ASSERT(list_empty(&srcdev->resized_list));
2598         device->commit_total_bytes = srcdev->commit_total_bytes;
2599         device->commit_bytes_used = device->bytes_used;
2600         device->fs_info = fs_info;
2601         device->bdev = bdev;
2602         device->in_fs_metadata = 1;
2603         device->is_tgtdev_for_dev_replace = 1;
2604         device->mode = FMODE_EXCL;
2605         device->dev_stats_valid = 1;
2606         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2607         device->fs_devices = fs_info->fs_devices;
2608         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2609         fs_info->fs_devices->num_devices++;
2610         fs_info->fs_devices->open_devices++;
2611         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2612
2613         *device_out = device;
2614         return ret;
2615
2616 error:
2617         blkdev_put(bdev, FMODE_EXCL);
2618         return ret;
2619 }
2620
2621 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2622                                               struct btrfs_device *tgtdev)
2623 {
2624         u32 sectorsize = fs_info->sectorsize;
2625
2626         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2627         tgtdev->io_width = sectorsize;
2628         tgtdev->io_align = sectorsize;
2629         tgtdev->sector_size = sectorsize;
2630         tgtdev->fs_info = fs_info;
2631         tgtdev->in_fs_metadata = 1;
2632 }
2633
2634 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2635                                         struct btrfs_device *device)
2636 {
2637         int ret;
2638         struct btrfs_path *path;
2639         struct btrfs_root *root = device->fs_info->chunk_root;
2640         struct btrfs_dev_item *dev_item;
2641         struct extent_buffer *leaf;
2642         struct btrfs_key key;
2643
2644         path = btrfs_alloc_path();
2645         if (!path)
2646                 return -ENOMEM;
2647
2648         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2649         key.type = BTRFS_DEV_ITEM_KEY;
2650         key.offset = device->devid;
2651
2652         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2653         if (ret < 0)
2654                 goto out;
2655
2656         if (ret > 0) {
2657                 ret = -ENOENT;
2658                 goto out;
2659         }
2660
2661         leaf = path->nodes[0];
2662         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2663
2664         btrfs_set_device_id(leaf, dev_item, device->devid);
2665         btrfs_set_device_type(leaf, dev_item, device->type);
2666         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2667         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2668         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2669         btrfs_set_device_total_bytes(leaf, dev_item,
2670                                      btrfs_device_get_disk_total_bytes(device));
2671         btrfs_set_device_bytes_used(leaf, dev_item,
2672                                     btrfs_device_get_bytes_used(device));
2673         btrfs_mark_buffer_dirty(leaf);
2674
2675 out:
2676         btrfs_free_path(path);
2677         return ret;
2678 }
2679
2680 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2681                       struct btrfs_device *device, u64 new_size)
2682 {
2683         struct btrfs_fs_info *fs_info = device->fs_info;
2684         struct btrfs_super_block *super_copy = fs_info->super_copy;
2685         struct btrfs_fs_devices *fs_devices;
2686         u64 old_total;
2687         u64 diff;
2688
2689         if (!device->writeable)
2690                 return -EACCES;
2691
2692         new_size = round_down(new_size, fs_info->sectorsize);
2693
2694         mutex_lock(&fs_info->chunk_mutex);
2695         old_total = btrfs_super_total_bytes(super_copy);
2696         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2697
2698         if (new_size <= device->total_bytes ||
2699             device->is_tgtdev_for_dev_replace) {
2700                 mutex_unlock(&fs_info->chunk_mutex);
2701                 return -EINVAL;
2702         }
2703
2704         fs_devices = fs_info->fs_devices;
2705
2706         btrfs_set_super_total_bytes(super_copy,
2707                         round_down(old_total + diff, fs_info->sectorsize));
2708         device->fs_devices->total_rw_bytes += diff;
2709
2710         btrfs_device_set_total_bytes(device, new_size);
2711         btrfs_device_set_disk_total_bytes(device, new_size);
2712         btrfs_clear_space_info_full(device->fs_info);
2713         if (list_empty(&device->resized_list))
2714                 list_add_tail(&device->resized_list,
2715                               &fs_devices->resized_devices);
2716         mutex_unlock(&fs_info->chunk_mutex);
2717
2718         return btrfs_update_device(trans, device);
2719 }
2720
2721 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2722                             struct btrfs_fs_info *fs_info, u64 chunk_offset)
2723 {
2724         struct btrfs_root *root = fs_info->chunk_root;
2725         int ret;
2726         struct btrfs_path *path;
2727         struct btrfs_key key;
2728
2729         path = btrfs_alloc_path();
2730         if (!path)
2731                 return -ENOMEM;
2732
2733         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2734         key.offset = chunk_offset;
2735         key.type = BTRFS_CHUNK_ITEM_KEY;
2736
2737         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2738         if (ret < 0)
2739                 goto out;
2740         else if (ret > 0) { /* Logic error or corruption */
2741                 btrfs_handle_fs_error(fs_info, -ENOENT,
2742                                       "Failed lookup while freeing chunk.");
2743                 ret = -ENOENT;
2744                 goto out;
2745         }
2746
2747         ret = btrfs_del_item(trans, root, path);
2748         if (ret < 0)
2749                 btrfs_handle_fs_error(fs_info, ret,
2750                                       "Failed to delete chunk item.");
2751 out:
2752         btrfs_free_path(path);
2753         return ret;
2754 }
2755
2756 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2757 {
2758         struct btrfs_super_block *super_copy = fs_info->super_copy;
2759         struct btrfs_disk_key *disk_key;
2760         struct btrfs_chunk *chunk;
2761         u8 *ptr;
2762         int ret = 0;
2763         u32 num_stripes;
2764         u32 array_size;
2765         u32 len = 0;
2766         u32 cur;
2767         struct btrfs_key key;
2768
2769         mutex_lock(&fs_info->chunk_mutex);
2770         array_size = btrfs_super_sys_array_size(super_copy);
2771
2772         ptr = super_copy->sys_chunk_array;
2773         cur = 0;
2774
2775         while (cur < array_size) {
2776                 disk_key = (struct btrfs_disk_key *)ptr;
2777                 btrfs_disk_key_to_cpu(&key, disk_key);
2778
2779                 len = sizeof(*disk_key);
2780
2781                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2782                         chunk = (struct btrfs_chunk *)(ptr + len);
2783                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2784                         len += btrfs_chunk_item_size(num_stripes);
2785                 } else {
2786                         ret = -EIO;
2787                         break;
2788                 }
2789                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2790                     key.offset == chunk_offset) {
2791                         memmove(ptr, ptr + len, array_size - (cur + len));
2792                         array_size -= len;
2793                         btrfs_set_super_sys_array_size(super_copy, array_size);
2794                 } else {
2795                         ptr += len;
2796                         cur += len;
2797                 }
2798         }
2799         mutex_unlock(&fs_info->chunk_mutex);
2800         return ret;
2801 }
2802
2803 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2804                                         u64 logical, u64 length)
2805 {
2806         struct extent_map_tree *em_tree;
2807         struct extent_map *em;
2808
2809         em_tree = &fs_info->mapping_tree.map_tree;
2810         read_lock(&em_tree->lock);
2811         em = lookup_extent_mapping(em_tree, logical, length);
2812         read_unlock(&em_tree->lock);
2813
2814         if (!em) {
2815                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2816                            logical, length);
2817                 return ERR_PTR(-EINVAL);
2818         }
2819
2820         if (em->start > logical || em->start + em->len < logical) {
2821                 btrfs_crit(fs_info,
2822                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2823                            logical, length, em->start, em->start + em->len);
2824                 free_extent_map(em);
2825                 return ERR_PTR(-EINVAL);
2826         }
2827
2828         /* callers are responsible for dropping em's ref. */
2829         return em;
2830 }
2831
2832 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2833                        struct btrfs_fs_info *fs_info, u64 chunk_offset)
2834 {
2835         struct extent_map *em;
2836         struct map_lookup *map;
2837         u64 dev_extent_len = 0;
2838         int i, ret = 0;
2839         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2840
2841         em = get_chunk_map(fs_info, chunk_offset, 1);
2842         if (IS_ERR(em)) {
2843                 /*
2844                  * This is a logic error, but we don't want to just rely on the
2845                  * user having built with ASSERT enabled, so if ASSERT doesn't
2846                  * do anything we still error out.
2847                  */
2848                 ASSERT(0);
2849                 return PTR_ERR(em);
2850         }
2851         map = em->map_lookup;
2852         mutex_lock(&fs_info->chunk_mutex);
2853         check_system_chunk(trans, fs_info, map->type);
2854         mutex_unlock(&fs_info->chunk_mutex);
2855
2856         /*
2857          * Take the device list mutex to prevent races with the final phase of
2858          * a device replace operation that replaces the device object associated
2859          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2860          */
2861         mutex_lock(&fs_devices->device_list_mutex);
2862         for (i = 0; i < map->num_stripes; i++) {
2863                 struct btrfs_device *device = map->stripes[i].dev;
2864                 ret = btrfs_free_dev_extent(trans, device,
2865                                             map->stripes[i].physical,
2866                                             &dev_extent_len);
2867                 if (ret) {
2868                         mutex_unlock(&fs_devices->device_list_mutex);
2869                         btrfs_abort_transaction(trans, ret);
2870                         goto out;
2871                 }
2872
2873                 if (device->bytes_used > 0) {
2874                         mutex_lock(&fs_info->chunk_mutex);
2875                         btrfs_device_set_bytes_used(device,
2876                                         device->bytes_used - dev_extent_len);
2877                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2878                         btrfs_clear_space_info_full(fs_info);
2879                         mutex_unlock(&fs_info->chunk_mutex);
2880                 }
2881
2882                 if (map->stripes[i].dev) {
2883                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2884                         if (ret) {
2885                                 mutex_unlock(&fs_devices->device_list_mutex);
2886                                 btrfs_abort_transaction(trans, ret);
2887                                 goto out;
2888                         }
2889                 }
2890         }
2891         mutex_unlock(&fs_devices->device_list_mutex);
2892
2893         ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2894         if (ret) {
2895                 btrfs_abort_transaction(trans, ret);
2896                 goto out;
2897         }
2898
2899         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2900
2901         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2902                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2903                 if (ret) {
2904                         btrfs_abort_transaction(trans, ret);
2905                         goto out;
2906                 }
2907         }
2908
2909         ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2910         if (ret) {
2911                 btrfs_abort_transaction(trans, ret);
2912                 goto out;
2913         }
2914
2915 out:
2916         /* once for us */
2917         free_extent_map(em);
2918         return ret;
2919 }
2920
2921 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2922 {
2923         struct btrfs_root *root = fs_info->chunk_root;
2924         struct btrfs_trans_handle *trans;
2925         int ret;
2926
2927         /*
2928          * Prevent races with automatic removal of unused block groups.
2929          * After we relocate and before we remove the chunk with offset
2930          * chunk_offset, automatic removal of the block group can kick in,
2931          * resulting in a failure when calling btrfs_remove_chunk() below.
2932          *
2933          * Make sure to acquire this mutex before doing a tree search (dev
2934          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2935          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2936          * we release the path used to search the chunk/dev tree and before
2937          * the current task acquires this mutex and calls us.
2938          */
2939         ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2940
2941         ret = btrfs_can_relocate(fs_info, chunk_offset);
2942         if (ret)
2943                 return -ENOSPC;
2944
2945         /* step one, relocate all the extents inside this chunk */
2946         btrfs_scrub_pause(fs_info);
2947         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2948         btrfs_scrub_continue(fs_info);
2949         if (ret)
2950                 return ret;
2951
2952         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2953                                                      chunk_offset);
2954         if (IS_ERR(trans)) {
2955                 ret = PTR_ERR(trans);
2956                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2957                 return ret;
2958         }
2959
2960         /*
2961          * step two, delete the device extents and the
2962          * chunk tree entries
2963          */
2964         ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2965         btrfs_end_transaction(trans);
2966         return ret;
2967 }
2968
2969 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2970 {
2971         struct btrfs_root *chunk_root = fs_info->chunk_root;
2972         struct btrfs_path *path;
2973         struct extent_buffer *leaf;
2974         struct btrfs_chunk *chunk;
2975         struct btrfs_key key;
2976         struct btrfs_key found_key;
2977         u64 chunk_type;
2978         bool retried = false;
2979         int failed = 0;
2980         int ret;
2981
2982         path = btrfs_alloc_path();
2983         if (!path)
2984                 return -ENOMEM;
2985
2986 again:
2987         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2988         key.offset = (u64)-1;
2989         key.type = BTRFS_CHUNK_ITEM_KEY;
2990
2991         while (1) {
2992                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2993                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2994                 if (ret < 0) {
2995                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2996                         goto error;
2997                 }
2998                 BUG_ON(ret == 0); /* Corruption */
2999
3000                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3001                                           key.type);
3002                 if (ret)
3003                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3004                 if (ret < 0)
3005                         goto error;
3006                 if (ret > 0)
3007                         break;
3008
3009                 leaf = path->nodes[0];
3010                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3011
3012                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3013                                        struct btrfs_chunk);
3014                 chunk_type = btrfs_chunk_type(leaf, chunk);
3015                 btrfs_release_path(path);
3016
3017                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3018                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3019                         if (ret == -ENOSPC)
3020                                 failed++;
3021                         else
3022                                 BUG_ON(ret);
3023                 }
3024                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3025
3026                 if (found_key.offset == 0)
3027                         break;
3028                 key.offset = found_key.offset - 1;
3029         }
3030         ret = 0;
3031         if (failed && !retried) {
3032                 failed = 0;
3033                 retried = true;
3034                 goto again;
3035         } else if (WARN_ON(failed && retried)) {
3036                 ret = -ENOSPC;
3037         }
3038 error:
3039         btrfs_free_path(path);
3040         return ret;
3041 }
3042
3043 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3044                                struct btrfs_balance_control *bctl)
3045 {
3046         struct btrfs_root *root = fs_info->tree_root;
3047         struct btrfs_trans_handle *trans;
3048         struct btrfs_balance_item *item;
3049         struct btrfs_disk_balance_args disk_bargs;
3050         struct btrfs_path *path;
3051         struct extent_buffer *leaf;
3052         struct btrfs_key key;
3053         int ret, err;
3054
3055         path = btrfs_alloc_path();
3056         if (!path)
3057                 return -ENOMEM;
3058
3059         trans = btrfs_start_transaction(root, 0);
3060         if (IS_ERR(trans)) {
3061                 btrfs_free_path(path);
3062                 return PTR_ERR(trans);
3063         }
3064
3065         key.objectid = BTRFS_BALANCE_OBJECTID;
3066         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3067         key.offset = 0;
3068
3069         ret = btrfs_insert_empty_item(trans, root, path, &key,
3070                                       sizeof(*item));
3071         if (ret)
3072                 goto out;
3073
3074         leaf = path->nodes[0];
3075         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3076
3077         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3078
3079         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3080         btrfs_set_balance_data(leaf, item, &disk_bargs);
3081         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3082         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3083         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3084         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3085
3086         btrfs_set_balance_flags(leaf, item, bctl->flags);
3087
3088         btrfs_mark_buffer_dirty(leaf);
3089 out:
3090         btrfs_free_path(path);
3091         err = btrfs_commit_transaction(trans);
3092         if (err && !ret)
3093                 ret = err;
3094         return ret;
3095 }
3096
3097 static int del_balance_item(struct btrfs_fs_info *fs_info)
3098 {
3099         struct btrfs_root *root = fs_info->tree_root;
3100         struct btrfs_trans_handle *trans;
3101         struct btrfs_path *path;
3102         struct btrfs_key key;
3103         int ret, err;
3104
3105         path = btrfs_alloc_path();
3106         if (!path)
3107                 return -ENOMEM;
3108
3109         trans = btrfs_start_transaction(root, 0);
3110         if (IS_ERR(trans)) {
3111                 btrfs_free_path(path);
3112                 return PTR_ERR(trans);
3113         }
3114
3115         key.objectid = BTRFS_BALANCE_OBJECTID;
3116         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3117         key.offset = 0;
3118
3119         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3120         if (ret < 0)
3121                 goto out;
3122         if (ret > 0) {
3123                 ret = -ENOENT;
3124                 goto out;
3125         }
3126
3127         ret = btrfs_del_item(trans, root, path);
3128 out:
3129         btrfs_free_path(path);
3130         err = btrfs_commit_transaction(trans);
3131         if (err && !ret)
3132                 ret = err;
3133         return ret;
3134 }
3135
3136 /*
3137  * This is a heuristic used to reduce the number of chunks balanced on
3138  * resume after balance was interrupted.
3139  */
3140 static void update_balance_args(struct btrfs_balance_control *bctl)
3141 {
3142         /*
3143          * Turn on soft mode for chunk types that were being converted.
3144          */
3145         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3146                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3147         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3148                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3149         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3150                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3151
3152         /*
3153          * Turn on usage filter if is not already used.  The idea is
3154          * that chunks that we have already balanced should be
3155          * reasonably full.  Don't do it for chunks that are being
3156          * converted - that will keep us from relocating unconverted
3157          * (albeit full) chunks.
3158          */
3159         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3160             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3161             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3162                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3163                 bctl->data.usage = 90;
3164         }
3165         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3166             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3167             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3168                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3169                 bctl->sys.usage = 90;
3170         }
3171         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3172             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3173             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3174                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3175                 bctl->meta.usage = 90;
3176         }
3177 }
3178
3179 /*
3180  * Should be called with both balance and volume mutexes held to
3181  * serialize other volume operations (add_dev/rm_dev/resize) with
3182  * restriper.  Same goes for unset_balance_control.
3183  */
3184 static void set_balance_control(struct btrfs_balance_control *bctl)
3185 {
3186         struct btrfs_fs_info *fs_info = bctl->fs_info;
3187
3188         BUG_ON(fs_info->balance_ctl);
3189
3190         spin_lock(&fs_info->balance_lock);
3191         fs_info->balance_ctl = bctl;
3192         spin_unlock(&fs_info->balance_lock);
3193 }
3194
3195 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3196 {
3197         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3198
3199         BUG_ON(!fs_info->balance_ctl);
3200
3201         spin_lock(&fs_info->balance_lock);
3202         fs_info->balance_ctl = NULL;
3203         spin_unlock(&fs_info->balance_lock);
3204
3205         kfree(bctl);
3206 }
3207
3208 /*
3209  * Balance filters.  Return 1 if chunk should be filtered out
3210  * (should not be balanced).
3211  */
3212 static int chunk_profiles_filter(u64 chunk_type,
3213                                  struct btrfs_balance_args *bargs)
3214 {
3215         chunk_type = chunk_to_extended(chunk_type) &
3216                                 BTRFS_EXTENDED_PROFILE_MASK;
3217
3218         if (bargs->profiles & chunk_type)
3219                 return 0;
3220
3221         return 1;
3222 }
3223
3224 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3225                               struct btrfs_balance_args *bargs)
3226 {
3227         struct btrfs_block_group_cache *cache;
3228         u64 chunk_used;
3229         u64 user_thresh_min;
3230         u64 user_thresh_max;
3231         int ret = 1;
3232
3233         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3234         chunk_used = btrfs_block_group_used(&cache->item);
3235
3236         if (bargs->usage_min == 0)
3237                 user_thresh_min = 0;
3238         else
3239                 user_thresh_min = div_factor_fine(cache->key.offset,
3240                                         bargs->usage_min);
3241
3242         if (bargs->usage_max == 0)
3243                 user_thresh_max = 1;
3244         else if (bargs->usage_max > 100)
3245                 user_thresh_max = cache->key.offset;
3246         else
3247                 user_thresh_max = div_factor_fine(cache->key.offset,
3248                                         bargs->usage_max);
3249
3250         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3251                 ret = 0;
3252
3253         btrfs_put_block_group(cache);
3254         return ret;
3255 }
3256
3257 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3258                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3259 {
3260         struct btrfs_block_group_cache *cache;
3261         u64 chunk_used, user_thresh;
3262         int ret = 1;
3263
3264         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3265         chunk_used = btrfs_block_group_used(&cache->item);
3266
3267         if (bargs->usage_min == 0)
3268                 user_thresh = 1;
3269         else if (bargs->usage > 100)
3270                 user_thresh = cache->key.offset;
3271         else
3272                 user_thresh = div_factor_fine(cache->key.offset,
3273                                               bargs->usage);
3274
3275         if (chunk_used < user_thresh)
3276                 ret = 0;
3277
3278         btrfs_put_block_group(cache);
3279         return ret;
3280 }
3281
3282 static int chunk_devid_filter(struct extent_buffer *leaf,
3283                               struct btrfs_chunk *chunk,
3284                               struct btrfs_balance_args *bargs)
3285 {
3286         struct btrfs_stripe *stripe;
3287         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3288         int i;
3289
3290         for (i = 0; i < num_stripes; i++) {
3291                 stripe = btrfs_stripe_nr(chunk, i);
3292                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3293                         return 0;
3294         }
3295
3296         return 1;
3297 }
3298
3299 /* [pstart, pend) */
3300 static int chunk_drange_filter(struct extent_buffer *leaf,
3301                                struct btrfs_chunk *chunk,
3302                                struct btrfs_balance_args *bargs)
3303 {
3304         struct btrfs_stripe *stripe;
3305         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3306         u64 stripe_offset;
3307         u64 stripe_length;
3308         int factor;
3309         int i;
3310
3311         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3312                 return 0;
3313
3314         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3315              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3316                 factor = num_stripes / 2;
3317         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3318                 factor = num_stripes - 1;
3319         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3320                 factor = num_stripes - 2;
3321         } else {
3322                 factor = num_stripes;
3323         }
3324
3325         for (i = 0; i < num_stripes; i++) {
3326                 stripe = btrfs_stripe_nr(chunk, i);
3327                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3328                         continue;
3329
3330                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3331                 stripe_length = btrfs_chunk_length(leaf, chunk);
3332                 stripe_length = div_u64(stripe_length, factor);
3333
3334                 if (stripe_offset < bargs->pend &&
3335                     stripe_offset + stripe_length > bargs->pstart)
3336                         return 0;
3337         }
3338
3339         return 1;
3340 }
3341
3342 /* [vstart, vend) */
3343 static int chunk_vrange_filter(struct extent_buffer *leaf,
3344                                struct btrfs_chunk *chunk,
3345                                u64 chunk_offset,
3346                                struct btrfs_balance_args *bargs)
3347 {
3348         if (chunk_offset < bargs->vend &&
3349             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3350                 /* at least part of the chunk is inside this vrange */
3351                 return 0;
3352
3353         return 1;
3354 }
3355
3356 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3357                                struct btrfs_chunk *chunk,
3358                                struct btrfs_balance_args *bargs)
3359 {
3360         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3361
3362         if (bargs->stripes_min <= num_stripes
3363                         && num_stripes <= bargs->stripes_max)
3364                 return 0;
3365
3366         return 1;
3367 }
3368
3369 static int chunk_soft_convert_filter(u64 chunk_type,
3370                                      struct btrfs_balance_args *bargs)
3371 {
3372         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3373                 return 0;
3374
3375         chunk_type = chunk_to_extended(chunk_type) &
3376                                 BTRFS_EXTENDED_PROFILE_MASK;
3377
3378         if (bargs->target == chunk_type)
3379                 return 1;
3380
3381         return 0;
3382 }
3383
3384 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3385                                 struct extent_buffer *leaf,
3386                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3387 {
3388         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3389         struct btrfs_balance_args *bargs = NULL;
3390         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3391
3392         /* type filter */
3393         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3394               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3395                 return 0;
3396         }
3397
3398         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3399                 bargs = &bctl->data;
3400         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3401                 bargs = &bctl->sys;
3402         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3403                 bargs = &bctl->meta;
3404
3405         /* profiles filter */
3406         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3407             chunk_profiles_filter(chunk_type, bargs)) {
3408                 return 0;
3409         }
3410
3411         /* usage filter */
3412         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3413             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3414                 return 0;
3415         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3416             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3417                 return 0;
3418         }
3419
3420         /* devid filter */
3421         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3422             chunk_devid_filter(leaf, chunk, bargs)) {
3423                 return 0;
3424         }
3425
3426         /* drange filter, makes sense only with devid filter */
3427         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3428             chunk_drange_filter(leaf, chunk, bargs)) {
3429                 return 0;
3430         }
3431
3432         /* vrange filter */
3433         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3434             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3435                 return 0;
3436         }
3437
3438         /* stripes filter */
3439         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3440             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3441                 return 0;
3442         }
3443
3444         /* soft profile changing mode */
3445         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3446             chunk_soft_convert_filter(chunk_type, bargs)) {
3447                 return 0;
3448         }
3449
3450         /*
3451          * limited by count, must be the last filter
3452          */
3453         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3454                 if (bargs->limit == 0)
3455                         return 0;
3456                 else
3457                         bargs->limit--;
3458         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3459                 /*
3460                  * Same logic as the 'limit' filter; the minimum cannot be
3461                  * determined here because we do not have the global information
3462                  * about the count of all chunks that satisfy the filters.
3463                  */
3464                 if (bargs->limit_max == 0)
3465                         return 0;
3466                 else
3467                         bargs->limit_max--;
3468         }
3469
3470         return 1;
3471 }
3472
3473 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3474 {
3475         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3476         struct btrfs_root *chunk_root = fs_info->chunk_root;
3477         struct btrfs_root *dev_root = fs_info->dev_root;
3478         struct list_head *devices;
3479         struct btrfs_device *device;
3480         u64 old_size;
3481         u64 size_to_free;
3482         u64 chunk_type;
3483         struct btrfs_chunk *chunk;
3484         struct btrfs_path *path = NULL;
3485         struct btrfs_key key;
3486         struct btrfs_key found_key;
3487         struct btrfs_trans_handle *trans;
3488         struct extent_buffer *leaf;
3489         int slot;
3490         int ret;
3491         int enospc_errors = 0;
3492         bool counting = true;
3493         /* The single value limit and min/max limits use the same bytes in the */
3494         u64 limit_data = bctl->data.limit;
3495         u64 limit_meta = bctl->meta.limit;
3496         u64 limit_sys = bctl->sys.limit;
3497         u32 count_data = 0;
3498         u32 count_meta = 0;
3499         u32 count_sys = 0;
3500         int chunk_reserved = 0;
3501         u64 bytes_used = 0;
3502
3503         /* step one make some room on all the devices */
3504         devices = &fs_info->fs_devices->devices;
3505         list_for_each_entry(device, devices, dev_list) {
3506                 old_size = btrfs_device_get_total_bytes(device);
3507                 size_to_free = div_factor(old_size, 1);
3508                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3509                 if (!device->writeable ||
3510                     btrfs_device_get_total_bytes(device) -
3511                     btrfs_device_get_bytes_used(device) > size_to_free ||
3512                     device->is_tgtdev_for_dev_replace)
3513                         continue;
3514
3515                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3516                 if (ret == -ENOSPC)
3517                         break;
3518                 if (ret) {
3519                         /* btrfs_shrink_device never returns ret > 0 */
3520                         WARN_ON(ret > 0);
3521                         goto error;
3522                 }
3523
3524                 trans = btrfs_start_transaction(dev_root, 0);
3525                 if (IS_ERR(trans)) {
3526                         ret = PTR_ERR(trans);
3527                         btrfs_info_in_rcu(fs_info,
3528                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3529                                           rcu_str_deref(device->name), ret,
3530                                           old_size, old_size - size_to_free);
3531                         goto error;
3532                 }
3533
3534                 ret = btrfs_grow_device(trans, device, old_size);
3535                 if (ret) {
3536                         btrfs_end_transaction(trans);
3537                         /* btrfs_grow_device never returns ret > 0 */
3538                         WARN_ON(ret > 0);
3539                         btrfs_info_in_rcu(fs_info,
3540                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3541                                           rcu_str_deref(device->name), ret,
3542                                           old_size, old_size - size_to_free);
3543                         goto error;
3544                 }
3545
3546                 btrfs_end_transaction(trans);
3547         }
3548
3549         /* step two, relocate all the chunks */
3550         path = btrfs_alloc_path();
3551         if (!path) {
3552                 ret = -ENOMEM;
3553                 goto error;
3554         }
3555
3556         /* zero out stat counters */
3557         spin_lock(&fs_info->balance_lock);
3558         memset(&bctl->stat, 0, sizeof(bctl->stat));
3559         spin_unlock(&fs_info->balance_lock);
3560 again:
3561         if (!counting) {
3562                 /*
3563                  * The single value limit and min/max limits use the same bytes
3564                  * in the
3565                  */
3566                 bctl->data.limit = limit_data;
3567                 bctl->meta.limit = limit_meta;
3568                 bctl->sys.limit = limit_sys;
3569         }
3570         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3571         key.offset = (u64)-1;
3572         key.type = BTRFS_CHUNK_ITEM_KEY;
3573
3574         while (1) {
3575                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3576                     atomic_read(&fs_info->balance_cancel_req)) {
3577                         ret = -ECANCELED;
3578                         goto error;
3579                 }
3580
3581                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3582                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3583                 if (ret < 0) {
3584                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3585                         goto error;
3586                 }
3587
3588                 /*
3589                  * this shouldn't happen, it means the last relocate
3590                  * failed
3591                  */
3592                 if (ret == 0)
3593                         BUG(); /* FIXME break ? */
3594
3595                 ret = btrfs_previous_item(chunk_root, path, 0,
3596                                           BTRFS_CHUNK_ITEM_KEY);
3597                 if (ret) {
3598                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3599                         ret = 0;
3600                         break;
3601                 }
3602
3603                 leaf = path->nodes[0];
3604                 slot = path->slots[0];
3605                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3606
3607                 if (found_key.objectid != key.objectid) {
3608                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3609                         break;
3610                 }
3611
3612                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3613                 chunk_type = btrfs_chunk_type(leaf, chunk);
3614
3615                 if (!counting) {
3616                         spin_lock(&fs_info->balance_lock);
3617                         bctl->stat.considered++;
3618                         spin_unlock(&fs_info->balance_lock);
3619                 }
3620
3621                 ret = should_balance_chunk(fs_info, leaf, chunk,
3622                                            found_key.offset);
3623
3624                 btrfs_release_path(path);
3625                 if (!ret) {
3626                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3627                         goto loop;
3628                 }
3629
3630                 if (counting) {
3631                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3632                         spin_lock(&fs_info->balance_lock);
3633                         bctl->stat.expected++;
3634                         spin_unlock(&fs_info->balance_lock);
3635
3636                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3637                                 count_data++;
3638                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3639                                 count_sys++;
3640                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3641                                 count_meta++;
3642
3643                         goto loop;
3644                 }
3645
3646                 /*
3647                  * Apply limit_min filter, no need to check if the LIMITS
3648                  * filter is used, limit_min is 0 by default
3649                  */
3650                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3651                                         count_data < bctl->data.limit_min)
3652                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3653                                         count_meta < bctl->meta.limit_min)
3654                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3655                                         count_sys < bctl->sys.limit_min)) {
3656                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3657                         goto loop;
3658                 }
3659
3660                 ASSERT(fs_info->data_sinfo);
3661                 spin_lock(&fs_info->data_sinfo->lock);
3662                 bytes_used = fs_info->data_sinfo->bytes_used;
3663                 spin_unlock(&fs_info->data_sinfo->lock);
3664
3665                 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3666                     !chunk_reserved && !bytes_used) {
3667                         trans = btrfs_start_transaction(chunk_root, 0);
3668                         if (IS_ERR(trans)) {
3669                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3670                                 ret = PTR_ERR(trans);
3671                                 goto error;
3672                         }
3673
3674                         ret = btrfs_force_chunk_alloc(trans, fs_info,
3675                                                       BTRFS_BLOCK_GROUP_DATA);
3676                         btrfs_end_transaction(trans);
3677                         if (ret < 0) {
3678                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3679                                 goto error;
3680                         }
3681                         chunk_reserved = 1;
3682                 }
3683
3684                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3685                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3686                 if (ret && ret != -ENOSPC)
3687                         goto error;
3688                 if (ret == -ENOSPC) {
3689                         enospc_errors++;
3690                 } else {
3691                         spin_lock(&fs_info->balance_lock);
3692                         bctl->stat.completed++;
3693                         spin_unlock(&fs_info->balance_lock);
3694                 }
3695 loop:
3696                 if (found_key.offset == 0)
3697                         break;
3698                 key.offset = found_key.offset - 1;
3699         }
3700
3701         if (counting) {
3702                 btrfs_release_path(path);
3703                 counting = false;
3704                 goto again;
3705         }
3706 error:
3707         btrfs_free_path(path);
3708         if (enospc_errors) {
3709                 btrfs_info(fs_info, "%d enospc errors during balance",
3710                            enospc_errors);
3711                 if (!ret)
3712                         ret = -ENOSPC;
3713         }
3714
3715         return ret;
3716 }
3717
3718 /**
3719  * alloc_profile_is_valid - see if a given profile is valid and reduced
3720  * @flags: profile to validate
3721  * @extended: if true @flags is treated as an extended profile
3722  */
3723 static int alloc_profile_is_valid(u64 flags, int extended)
3724 {
3725         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3726                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3727
3728         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3729
3730         /* 1) check that all other bits are zeroed */
3731         if (flags & ~mask)
3732                 return 0;
3733
3734         /* 2) see if profile is reduced */
3735         if (flags == 0)
3736                 return !extended; /* "0" is valid for usual profiles */
3737
3738         /* true if exactly one bit set */
3739         return (flags & (flags - 1)) == 0;
3740 }
3741
3742 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3743 {
3744         /* cancel requested || normal exit path */
3745         return atomic_read(&fs_info->balance_cancel_req) ||
3746                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3747                  atomic_read(&fs_info->balance_cancel_req) == 0);
3748 }
3749
3750 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3751 {
3752         int ret;
3753
3754         unset_balance_control(fs_info);
3755         ret = del_balance_item(fs_info);
3756         if (ret)
3757                 btrfs_handle_fs_error(fs_info, ret, NULL);
3758
3759         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3760 }
3761
3762 /* Non-zero return value signifies invalidity */
3763 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3764                 u64 allowed)
3765 {
3766         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3767                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3768                  (bctl_arg->target & ~allowed)));
3769 }
3770
3771 /*
3772  * Should be called with both balance and volume mutexes held
3773  */
3774 int btrfs_balance(struct btrfs_balance_control *bctl,
3775                   struct btrfs_ioctl_balance_args *bargs)
3776 {
3777         struct btrfs_fs_info *fs_info = bctl->fs_info;
3778         u64 meta_target, data_target;
3779         u64 allowed;
3780         int mixed = 0;
3781         int ret;
3782         u64 num_devices;
3783         unsigned seq;
3784
3785         if (btrfs_fs_closing(fs_info) ||
3786             atomic_read(&fs_info->balance_pause_req) ||
3787             atomic_read(&fs_info->balance_cancel_req)) {
3788                 ret = -EINVAL;
3789                 goto out;
3790         }
3791
3792         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3793         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3794                 mixed = 1;
3795
3796         /*
3797          * In case of mixed groups both data and meta should be picked,
3798          * and identical options should be given for both of them.
3799          */
3800         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3801         if (mixed && (bctl->flags & allowed)) {
3802                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3803                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3804                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3805                         btrfs_err(fs_info,
3806                                   "with mixed groups data and metadata balance options must be the same");
3807                         ret = -EINVAL;
3808                         goto out;
3809                 }
3810         }
3811
3812         num_devices = fs_info->fs_devices->num_devices;
3813         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3814         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3815                 BUG_ON(num_devices < 1);
3816                 num_devices--;
3817         }
3818         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3819         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3820         if (num_devices > 1)
3821                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3822         if (num_devices > 2)
3823                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3824         if (num_devices > 3)
3825                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3826                             BTRFS_BLOCK_GROUP_RAID6);
3827         if (validate_convert_profile(&bctl->data, allowed)) {
3828                 btrfs_err(fs_info,
3829                           "unable to start balance with target data profile %llu",
3830                           bctl->data.target);
3831                 ret = -EINVAL;
3832                 goto out;
3833         }
3834         if (validate_convert_profile(&bctl->meta, allowed)) {
3835                 btrfs_err(fs_info,
3836                           "unable to start balance with target metadata profile %llu",
3837                           bctl->meta.target);
3838                 ret = -EINVAL;
3839                 goto out;
3840         }
3841         if (validate_convert_profile(&bctl->sys, allowed)) {
3842                 btrfs_err(fs_info,
3843                           "unable to start balance with target system profile %llu",
3844                           bctl->sys.target);
3845                 ret = -EINVAL;
3846                 goto out;
3847         }
3848
3849         /* allow to reduce meta or sys integrity only if force set */
3850         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3851                         BTRFS_BLOCK_GROUP_RAID10 |
3852                         BTRFS_BLOCK_GROUP_RAID5 |
3853                         BTRFS_BLOCK_GROUP_RAID6;
3854         do {
3855                 seq = read_seqbegin(&fs_info->profiles_lock);
3856
3857                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3858                      (fs_info->avail_system_alloc_bits & allowed) &&
3859                      !(bctl->sys.target & allowed)) ||
3860                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3861                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3862                      !(bctl->meta.target & allowed))) {
3863                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3864                                 btrfs_info(fs_info,
3865                                            "force reducing metadata integrity");
3866                         } else {
3867                                 btrfs_err(fs_info,
3868                                           "balance will reduce metadata integrity, use force if you want this");
3869                                 ret = -EINVAL;
3870                                 goto out;
3871                         }
3872                 }
3873         } while (read_seqretry(&fs_info->profiles_lock, seq));
3874
3875         /* if we're not converting, the target field is uninitialized */
3876         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3877                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3878         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3879                 bctl->data.target : fs_info->avail_data_alloc_bits;
3880         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3881                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3882                 btrfs_warn(fs_info,
3883                            "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3884                            meta_target, data_target);
3885         }
3886
3887         ret = insert_balance_item(fs_info, bctl);
3888         if (ret && ret != -EEXIST)
3889                 goto out;
3890
3891         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3892                 BUG_ON(ret == -EEXIST);
3893                 set_balance_control(bctl);
3894         } else {
3895                 BUG_ON(ret != -EEXIST);
3896                 spin_lock(&fs_info->balance_lock);
3897                 update_balance_args(bctl);
3898                 spin_unlock(&fs_info->balance_lock);
3899         }
3900
3901         atomic_inc(&fs_info->balance_running);
3902         mutex_unlock(&fs_info->balance_mutex);
3903
3904         ret = __btrfs_balance(fs_info);
3905
3906         mutex_lock(&fs_info->balance_mutex);
3907         atomic_dec(&fs_info->balance_running);
3908
3909         if (bargs) {
3910                 memset(bargs, 0, sizeof(*bargs));
3911                 update_ioctl_balance_args(fs_info, 0, bargs);
3912         }
3913
3914         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3915             balance_need_close(fs_info)) {
3916                 __cancel_balance(fs_info);
3917         }
3918
3919         wake_up(&fs_info->balance_wait_q);
3920
3921         return ret;
3922 out:
3923         if (bctl->flags & BTRFS_BALANCE_RESUME)
3924                 __cancel_balance(fs_info);
3925         else {
3926                 kfree(bctl);
3927                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3928         }
3929         return ret;
3930 }
3931
3932 static int balance_kthread(void *data)
3933 {
3934         struct btrfs_fs_info *fs_info = data;
3935         int ret = 0;
3936
3937         mutex_lock(&fs_info->volume_mutex);
3938         mutex_lock(&fs_info->balance_mutex);
3939
3940         if (fs_info->balance_ctl) {
3941                 btrfs_info(fs_info, "continuing balance");
3942                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3943         }
3944
3945         mutex_unlock(&fs_info->balance_mutex);
3946         mutex_unlock(&fs_info->volume_mutex);
3947
3948         return ret;
3949 }
3950
3951 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3952 {
3953         struct task_struct *tsk;
3954
3955         spin_lock(&fs_info->balance_lock);
3956         if (!fs_info->balance_ctl) {
3957                 spin_unlock(&fs_info->balance_lock);
3958                 return 0;
3959         }
3960         spin_unlock(&fs_info->balance_lock);
3961
3962         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3963                 btrfs_info(fs_info, "force skipping balance");
3964                 return 0;
3965         }
3966
3967         /*
3968          * A ro->rw remount sequence should continue with the paused balance
3969          * regardless of who pauses it, system or the user as of now, so set
3970          * the resume flag.
3971          */
3972         spin_lock(&fs_info->balance_lock);
3973         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3974         spin_unlock(&fs_info->balance_lock);
3975
3976         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3977         return PTR_ERR_OR_ZERO(tsk);
3978 }
3979
3980 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3981 {
3982         struct btrfs_balance_control *bctl;
3983         struct btrfs_balance_item *item;
3984         struct btrfs_disk_balance_args disk_bargs;
3985         struct btrfs_path *path;
3986         struct extent_buffer *leaf;
3987         struct btrfs_key key;
3988         int ret;
3989
3990         path = btrfs_alloc_path();
3991         if (!path)
3992                 return -ENOMEM;
3993
3994         key.objectid = BTRFS_BALANCE_OBJECTID;
3995         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3996         key.offset = 0;
3997
3998         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3999         if (ret < 0)
4000                 goto out;
4001         if (ret > 0) { /* ret = -ENOENT; */
4002                 ret = 0;
4003                 goto out;
4004         }
4005
4006         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4007         if (!bctl) {
4008                 ret = -ENOMEM;
4009                 goto out;
4010         }
4011
4012         leaf = path->nodes[0];
4013         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4014
4015         bctl->fs_info = fs_info;
4016         bctl->flags = btrfs_balance_flags(leaf, item);
4017         bctl->flags |= BTRFS_BALANCE_RESUME;
4018
4019         btrfs_balance_data(leaf, item, &disk_bargs);
4020         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4021         btrfs_balance_meta(leaf, item, &disk_bargs);
4022         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4023         btrfs_balance_sys(leaf, item, &disk_bargs);
4024         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4025
4026         WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4027
4028         mutex_lock(&fs_info->volume_mutex);
4029         mutex_lock(&fs_info->balance_mutex);
4030
4031         set_balance_control(bctl);
4032
4033         mutex_unlock(&fs_info->balance_mutex);
4034         mutex_unlock(&fs_info->volume_mutex);
4035 out:
4036         btrfs_free_path(path);
4037         return ret;
4038 }
4039
4040 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4041 {
4042         int ret = 0;
4043
4044         mutex_lock(&fs_info->balance_mutex);
4045         if (!fs_info->balance_ctl) {
4046                 mutex_unlock(&fs_info->balance_mutex);
4047                 return -ENOTCONN;
4048         }
4049
4050         if (atomic_read(&fs_info->balance_running)) {
4051                 atomic_inc(&fs_info->balance_pause_req);
4052                 mutex_unlock(&fs_info->balance_mutex);
4053
4054                 wait_event(fs_info->balance_wait_q,
4055                            atomic_read(&fs_info->balance_running) == 0);
4056
4057                 mutex_lock(&fs_info->balance_mutex);
4058                 /* we are good with balance_ctl ripped off from under us */
4059                 BUG_ON(atomic_read(&fs_info->balance_running));
4060                 atomic_dec(&fs_info->balance_pause_req);
4061         } else {
4062                 ret = -ENOTCONN;
4063         }
4064
4065         mutex_unlock(&fs_info->balance_mutex);
4066         return ret;
4067 }
4068
4069 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4070 {
4071         if (sb_rdonly(fs_info->sb))
4072                 return -EROFS;
4073
4074         mutex_lock(&fs_info->balance_mutex);
4075         if (!fs_info->balance_ctl) {
4076                 mutex_unlock(&fs_info->balance_mutex);
4077                 return -ENOTCONN;
4078         }
4079
4080         atomic_inc(&fs_info->balance_cancel_req);
4081         /*
4082          * if we are running just wait and return, balance item is
4083          * deleted in btrfs_balance in this case
4084          */
4085         if (atomic_read(&fs_info->balance_running)) {
4086                 mutex_unlock(&fs_info->balance_mutex);
4087                 wait_event(fs_info->balance_wait_q,
4088                            atomic_read(&fs_info->balance_running) == 0);
4089                 mutex_lock(&fs_info->balance_mutex);
4090         } else {
4091                 /* __cancel_balance needs volume_mutex */
4092                 mutex_unlock(&fs_info->balance_mutex);
4093                 mutex_lock(&fs_info->volume_mutex);
4094                 mutex_lock(&fs_info->balance_mutex);
4095
4096                 if (fs_info->balance_ctl)
4097                         __cancel_balance(fs_info);
4098
4099                 mutex_unlock(&fs_info->volume_mutex);
4100         }
4101
4102         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4103         atomic_dec(&fs_info->balance_cancel_req);
4104         mutex_unlock(&fs_info->balance_mutex);
4105         return 0;
4106 }
4107
4108 static int btrfs_uuid_scan_kthread(void *data)
4109 {
4110         struct btrfs_fs_info *fs_info = data;
4111         struct btrfs_root *root = fs_info->tree_root;
4112         struct btrfs_key key;
4113         struct btrfs_path *path = NULL;
4114         int ret = 0;
4115         struct extent_buffer *eb;
4116         int slot;
4117         struct btrfs_root_item root_item;
4118         u32 item_size;
4119         struct btrfs_trans_handle *trans = NULL;
4120
4121         path = btrfs_alloc_path();
4122         if (!path) {
4123                 ret = -ENOMEM;
4124                 goto out;
4125         }
4126
4127         key.objectid = 0;
4128         key.type = BTRFS_ROOT_ITEM_KEY;
4129         key.offset = 0;
4130
4131         while (1) {
4132                 ret = btrfs_search_forward(root, &key, path, 0);
4133                 if (ret) {
4134                         if (ret > 0)
4135                                 ret = 0;
4136                         break;
4137                 }
4138
4139                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4140                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4141                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4142                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4143                         goto skip;
4144
4145                 eb = path->nodes[0];
4146                 slot = path->slots[0];
4147                 item_size = btrfs_item_size_nr(eb, slot);
4148                 if (item_size < sizeof(root_item))
4149                         goto skip;
4150
4151                 read_extent_buffer(eb, &root_item,
4152                                    btrfs_item_ptr_offset(eb, slot),
4153                                    (int)sizeof(root_item));
4154                 if (btrfs_root_refs(&root_item) == 0)
4155                         goto skip;
4156
4157                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4158                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4159                         if (trans)
4160                                 goto update_tree;
4161
4162                         btrfs_release_path(path);
4163                         /*
4164                          * 1 - subvol uuid item
4165                          * 1 - received_subvol uuid item
4166                          */
4167                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4168                         if (IS_ERR(trans)) {
4169                                 ret = PTR_ERR(trans);
4170                                 break;
4171                         }
4172                         continue;
4173                 } else {
4174                         goto skip;
4175                 }
4176 update_tree:
4177                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4178                         ret = btrfs_uuid_tree_add(trans, fs_info,
4179                                                   root_item.uuid,
4180                                                   BTRFS_UUID_KEY_SUBVOL,
4181                                                   key.objectid);
4182                         if (ret < 0) {
4183                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4184                                         ret);
4185                                 break;
4186                         }
4187                 }
4188
4189                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4190                         ret = btrfs_uuid_tree_add(trans, fs_info,
4191                                                   root_item.received_uuid,
4192                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4193                                                   key.objectid);
4194                         if (ret < 0) {
4195                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4196                                         ret);
4197                                 break;
4198                         }
4199                 }
4200
4201 skip:
4202                 if (trans) {
4203                         ret = btrfs_end_transaction(trans);
4204                         trans = NULL;
4205                         if (ret)
4206                                 break;
4207                 }
4208
4209                 btrfs_release_path(path);
4210                 if (key.offset < (u64)-1) {
4211                         key.offset++;
4212                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4213                         key.offset = 0;
4214                         key.type = BTRFS_ROOT_ITEM_KEY;
4215                 } else if (key.objectid < (u64)-1) {
4216                         key.offset = 0;
4217                         key.type = BTRFS_ROOT_ITEM_KEY;
4218                         key.objectid++;
4219                 } else {
4220                         break;
4221                 }
4222                 cond_resched();
4223         }
4224
4225 out:
4226         btrfs_free_path(path);
4227         if (trans && !IS_ERR(trans))
4228                 btrfs_end_transaction(trans);
4229         if (ret)
4230                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4231         else
4232                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4233         up(&fs_info->uuid_tree_rescan_sem);
4234         return 0;
4235 }
4236
4237 /*
4238  * Callback for btrfs_uuid_tree_iterate().
4239  * returns:
4240  * 0    check succeeded, the entry is not outdated.
4241  * < 0  if an error occurred.
4242  * > 0  if the check failed, which means the caller shall remove the entry.
4243  */
4244 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4245                                        u8 *uuid, u8 type, u64 subid)
4246 {
4247         struct btrfs_key key;
4248         int ret = 0;
4249         struct btrfs_root *subvol_root;
4250
4251         if (type != BTRFS_UUID_KEY_SUBVOL &&
4252             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4253                 goto out;
4254
4255         key.objectid = subid;
4256         key.type = BTRFS_ROOT_ITEM_KEY;
4257         key.offset = (u64)-1;
4258         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4259         if (IS_ERR(subvol_root)) {
4260                 ret = PTR_ERR(subvol_root);
4261                 if (ret == -ENOENT)
4262                         ret = 1;
4263                 goto out;
4264         }
4265
4266         switch (type) {
4267         case BTRFS_UUID_KEY_SUBVOL:
4268                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4269                         ret = 1;
4270                 break;
4271         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4272                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4273                            BTRFS_UUID_SIZE))
4274                         ret = 1;
4275                 break;
4276         }
4277
4278 out:
4279         return ret;
4280 }
4281
4282 static int btrfs_uuid_rescan_kthread(void *data)
4283 {
4284         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4285         int ret;
4286
4287         /*
4288          * 1st step is to iterate through the existing UUID tree and
4289          * to delete all entries that contain outdated data.
4290          * 2nd step is to add all missing entries to the UUID tree.
4291          */
4292         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4293         if (ret < 0) {
4294                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4295                 up(&fs_info->uuid_tree_rescan_sem);
4296                 return ret;
4297         }
4298         return btrfs_uuid_scan_kthread(data);
4299 }
4300
4301 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4302 {
4303         struct btrfs_trans_handle *trans;
4304         struct btrfs_root *tree_root = fs_info->tree_root;
4305         struct btrfs_root *uuid_root;
4306         struct task_struct *task;
4307         int ret;
4308
4309         /*
4310          * 1 - root node
4311          * 1 - root item
4312          */
4313         trans = btrfs_start_transaction(tree_root, 2);
4314         if (IS_ERR(trans))
4315                 return PTR_ERR(trans);
4316
4317         uuid_root = btrfs_create_tree(trans, fs_info,
4318                                       BTRFS_UUID_TREE_OBJECTID);
4319         if (IS_ERR(uuid_root)) {
4320                 ret = PTR_ERR(uuid_root);
4321                 btrfs_abort_transaction(trans, ret);
4322                 btrfs_end_transaction(trans);
4323                 return ret;
4324         }
4325
4326         fs_info->uuid_root = uuid_root;
4327
4328         ret = btrfs_commit_transaction(trans);
4329         if (ret)
4330                 return ret;
4331
4332         down(&fs_info->uuid_tree_rescan_sem);
4333         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4334         if (IS_ERR(task)) {
4335                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4336                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4337                 up(&fs_info->uuid_tree_rescan_sem);
4338                 return PTR_ERR(task);
4339         }
4340
4341         return 0;
4342 }
4343
4344 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4345 {
4346         struct task_struct *task;
4347
4348         down(&fs_info->uuid_tree_rescan_sem);
4349         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4350         if (IS_ERR(task)) {
4351                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4352                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4353                 up(&fs_info->uuid_tree_rescan_sem);
4354                 return PTR_ERR(task);
4355         }
4356
4357         return 0;
4358 }
4359
4360 /*
4361  * shrinking a device means finding all of the device extents past
4362  * the new size, and then following the back refs to the chunks.
4363  * The chunk relocation code actually frees the device extent
4364  */
4365 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4366 {
4367         struct btrfs_fs_info *fs_info = device->fs_info;
4368         struct btrfs_root *root = fs_info->dev_root;
4369         struct btrfs_trans_handle *trans;
4370         struct btrfs_dev_extent *dev_extent = NULL;
4371         struct btrfs_path *path;
4372         u64 length;
4373         u64 chunk_offset;
4374         int ret;
4375         int slot;
4376         int failed = 0;
4377         bool retried = false;
4378         bool checked_pending_chunks = false;
4379         struct extent_buffer *l;
4380         struct btrfs_key key;
4381         struct btrfs_super_block *super_copy = fs_info->super_copy;
4382         u64 old_total = btrfs_super_total_bytes(super_copy);
4383         u64 old_size = btrfs_device_get_total_bytes(device);
4384         u64 diff;
4385
4386         new_size = round_down(new_size, fs_info->sectorsize);
4387         diff = round_down(old_size - new_size, fs_info->sectorsize);
4388
4389         if (device->is_tgtdev_for_dev_replace)
4390                 return -EINVAL;
4391
4392         path = btrfs_alloc_path();
4393         if (!path)
4394                 return -ENOMEM;
4395
4396         path->reada = READA_FORWARD;
4397
4398         mutex_lock(&fs_info->chunk_mutex);
4399
4400         btrfs_device_set_total_bytes(device, new_size);
4401         if (device->writeable) {
4402                 device->fs_devices->total_rw_bytes -= diff;
4403                 atomic64_sub(diff, &fs_info->free_chunk_space);
4404         }
4405         mutex_unlock(&fs_info->chunk_mutex);
4406
4407 again:
4408         key.objectid = device->devid;
4409         key.offset = (u64)-1;
4410         key.type = BTRFS_DEV_EXTENT_KEY;
4411
4412         do {
4413                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4414                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4415                 if (ret < 0) {
4416                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4417                         goto done;
4418                 }
4419
4420                 ret = btrfs_previous_item(root, path, 0, key.type);
4421                 if (ret)
4422                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4423                 if (ret < 0)
4424                         goto done;
4425                 if (ret) {
4426                         ret = 0;
4427                         btrfs_release_path(path);
4428                         break;
4429                 }
4430
4431                 l = path->nodes[0];
4432                 slot = path->slots[0];
4433                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4434
4435                 if (key.objectid != device->devid) {
4436                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4437                         btrfs_release_path(path);
4438                         break;
4439                 }
4440
4441                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4442                 length = btrfs_dev_extent_length(l, dev_extent);
4443
4444                 if (key.offset + length <= new_size) {
4445                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4446                         btrfs_release_path(path);
4447                         break;
4448                 }
4449
4450                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4451                 btrfs_release_path(path);
4452
4453                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4454                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4455                 if (ret && ret != -ENOSPC)
4456                         goto done;
4457                 if (ret == -ENOSPC)
4458                         failed++;
4459         } while (key.offset-- > 0);
4460
4461         if (failed && !retried) {
4462                 failed = 0;
4463                 retried = true;
4464                 goto again;
4465         } else if (failed && retried) {
4466                 ret = -ENOSPC;
4467                 goto done;
4468         }
4469
4470         /* Shrinking succeeded, else we would be at "done". */
4471         trans = btrfs_start_transaction(root, 0);
4472         if (IS_ERR(trans)) {
4473                 ret = PTR_ERR(trans);
4474                 goto done;
4475         }
4476
4477         mutex_lock(&fs_info->chunk_mutex);
4478
4479         /*
4480          * We checked in the above loop all device extents that were already in
4481          * the device tree. However before we have updated the device's
4482          * total_bytes to the new size, we might have had chunk allocations that
4483          * have not complete yet (new block groups attached to transaction
4484          * handles), and therefore their device extents were not yet in the
4485          * device tree and we missed them in the loop above. So if we have any
4486          * pending chunk using a device extent that overlaps the device range
4487          * that we can not use anymore, commit the current transaction and
4488          * repeat the search on the device tree - this way we guarantee we will
4489          * not have chunks using device extents that end beyond 'new_size'.
4490          */
4491         if (!checked_pending_chunks) {
4492                 u64 start = new_size;
4493                 u64 len = old_size - new_size;
4494
4495                 if (contains_pending_extent(trans->transaction, device,
4496                                             &start, len)) {
4497                         mutex_unlock(&fs_info->chunk_mutex);
4498                         checked_pending_chunks = true;
4499                         failed = 0;
4500                         retried = false;
4501                         ret = btrfs_commit_transaction(trans);
4502                         if (ret)
4503                                 goto done;
4504                         goto again;
4505                 }
4506         }
4507
4508         btrfs_device_set_disk_total_bytes(device, new_size);
4509         if (list_empty(&device->resized_list))
4510                 list_add_tail(&device->resized_list,
4511                               &fs_info->fs_devices->resized_devices);
4512
4513         WARN_ON(diff > old_total);
4514         btrfs_set_super_total_bytes(super_copy,
4515                         round_down(old_total - diff, fs_info->sectorsize));
4516         mutex_unlock(&fs_info->chunk_mutex);
4517
4518         /* Now btrfs_update_device() will change the on-disk size. */
4519         ret = btrfs_update_device(trans, device);
4520         btrfs_end_transaction(trans);
4521 done:
4522         btrfs_free_path(path);
4523         if (ret) {
4524                 mutex_lock(&fs_info->chunk_mutex);
4525                 btrfs_device_set_total_bytes(device, old_size);
4526                 if (device->writeable)
4527                         device->fs_devices->total_rw_bytes += diff;
4528                 atomic64_add(diff, &fs_info->free_chunk_space);
4529                 mutex_unlock(&fs_info->chunk_mutex);
4530         }
4531         return ret;
4532 }
4533
4534 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4535                            struct btrfs_key *key,
4536                            struct btrfs_chunk *chunk, int item_size)
4537 {
4538         struct btrfs_super_block *super_copy = fs_info->super_copy;
4539         struct btrfs_disk_key disk_key;
4540         u32 array_size;
4541         u8 *ptr;
4542
4543         mutex_lock(&fs_info->chunk_mutex);
4544         array_size = btrfs_super_sys_array_size(super_copy);
4545         if (array_size + item_size + sizeof(disk_key)
4546                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4547                 mutex_unlock(&fs_info->chunk_mutex);
4548                 return -EFBIG;
4549         }
4550
4551         ptr = super_copy->sys_chunk_array + array_size;
4552         btrfs_cpu_key_to_disk(&disk_key, key);
4553         memcpy(ptr, &disk_key, sizeof(disk_key));
4554         ptr += sizeof(disk_key);
4555         memcpy(ptr, chunk, item_size);
4556         item_size += sizeof(disk_key);
4557         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4558         mutex_unlock(&fs_info->chunk_mutex);
4559
4560         return 0;
4561 }
4562
4563 /*
4564  * sort the devices in descending order by max_avail, total_avail
4565  */
4566 static int btrfs_cmp_device_info(const void *a, const void *b)
4567 {
4568         const struct btrfs_device_info *di_a = a;
4569         const struct btrfs_device_info *di_b = b;
4570
4571         if (di_a->max_avail > di_b->max_avail)
4572                 return -1;
4573         if (di_a->max_avail < di_b->max_avail)
4574                 return 1;
4575         if (di_a->total_avail > di_b->total_avail)
4576                 return -1;
4577         if (di_a->total_avail < di_b->total_avail)
4578                 return 1;
4579         return 0;
4580 }
4581
4582 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4583 {
4584         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4585                 return;
4586
4587         btrfs_set_fs_incompat(info, RAID56);
4588 }
4589
4590 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info)             \
4591                         - sizeof(struct btrfs_chunk))           \
4592                         / sizeof(struct btrfs_stripe) + 1)
4593
4594 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4595                                 - 2 * sizeof(struct btrfs_disk_key)     \
4596                                 - 2 * sizeof(struct btrfs_chunk))       \
4597                                 / sizeof(struct btrfs_stripe) + 1)
4598
4599 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4600                                u64 start, u64 type)
4601 {
4602         struct btrfs_fs_info *info = trans->fs_info;
4603         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4604         struct btrfs_device *device;
4605         struct map_lookup *map = NULL;
4606         struct extent_map_tree *em_tree;
4607         struct extent_map *em;
4608         struct btrfs_device_info *devices_info = NULL;
4609         u64 total_avail;
4610         int num_stripes;        /* total number of stripes to allocate */
4611         int data_stripes;       /* number of stripes that count for
4612                                    block group size */
4613         int sub_stripes;        /* sub_stripes info for map */
4614         int dev_stripes;        /* stripes per dev */
4615         int devs_max;           /* max devs to use */
4616         int devs_min;           /* min devs needed */
4617         int devs_increment;     /* ndevs has to be a multiple of this */
4618         int ncopies;            /* how many copies to data has */
4619         int ret;
4620         u64 max_stripe_size;
4621         u64 max_chunk_size;
4622         u64 stripe_size;
4623         u64 num_bytes;
4624         int ndevs;
4625         int i;
4626         int j;
4627         int index;
4628
4629         BUG_ON(!alloc_profile_is_valid(type, 0));
4630
4631         if (list_empty(&fs_devices->alloc_list))
4632                 return -ENOSPC;
4633
4634         index = __get_raid_index(type);
4635
4636         sub_stripes = btrfs_raid_array[index].sub_stripes;
4637         dev_stripes = btrfs_raid_array[index].dev_stripes;
4638         devs_max = btrfs_raid_array[index].devs_max;
4639         devs_min = btrfs_raid_array[index].devs_min;
4640         devs_increment = btrfs_raid_array[index].devs_increment;
4641         ncopies = btrfs_raid_array[index].ncopies;
4642
4643         if (type & BTRFS_BLOCK_GROUP_DATA) {
4644                 max_stripe_size = SZ_1G;
4645                 max_chunk_size = 10 * max_stripe_size;
4646                 if (!devs_max)
4647                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4648         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4649                 /* for larger filesystems, use larger metadata chunks */
4650                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4651                         max_stripe_size = SZ_1G;
4652                 else
4653                         max_stripe_size = SZ_256M;
4654                 max_chunk_size = max_stripe_size;
4655                 if (!devs_max)
4656                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4657         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4658                 max_stripe_size = SZ_32M;
4659                 max_chunk_size = 2 * max_stripe_size;
4660                 if (!devs_max)
4661                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4662         } else {
4663                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4664                        type);
4665                 BUG_ON(1);
4666         }
4667
4668         /* we don't want a chunk larger than 10% of writeable space */
4669         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4670                              max_chunk_size);
4671
4672         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4673                                GFP_NOFS);
4674         if (!devices_info)
4675                 return -ENOMEM;
4676
4677         /*
4678          * in the first pass through the devices list, we gather information
4679          * about the available holes on each device.
4680          */
4681         ndevs = 0;
4682         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4683                 u64 max_avail;
4684                 u64 dev_offset;
4685
4686                 if (!device->writeable) {
4687                         WARN(1, KERN_ERR
4688                                "BTRFS: read-only device in alloc_list\n");
4689                         continue;
4690                 }
4691
4692                 if (!device->in_fs_metadata ||
4693                     device->is_tgtdev_for_dev_replace)
4694                         continue;
4695
4696                 if (device->total_bytes > device->bytes_used)
4697                         total_avail = device->total_bytes - device->bytes_used;
4698                 else
4699                         total_avail = 0;
4700
4701                 /* If there is no space on this device, skip it. */
4702                 if (total_avail == 0)
4703                         continue;
4704
4705                 ret = find_free_dev_extent(trans, device,
4706                                            max_stripe_size * dev_stripes,
4707                                            &dev_offset, &max_avail);
4708                 if (ret && ret != -ENOSPC)
4709                         goto error;
4710
4711                 if (ret == 0)
4712                         max_avail = max_stripe_size * dev_stripes;
4713
4714                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4715                         continue;
4716
4717                 if (ndevs == fs_devices->rw_devices) {
4718                         WARN(1, "%s: found more than %llu devices\n",
4719                              __func__, fs_devices->rw_devices);
4720                         break;
4721                 }
4722                 devices_info[ndevs].dev_offset = dev_offset;
4723                 devices_info[ndevs].max_avail = max_avail;
4724                 devices_info[ndevs].total_avail = total_avail;
4725                 devices_info[ndevs].dev = device;
4726                 ++ndevs;
4727         }
4728
4729         /*
4730          * now sort the devices by hole size / available space
4731          */
4732         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4733              btrfs_cmp_device_info, NULL);
4734
4735         /* round down to number of usable stripes */
4736         ndevs = round_down(ndevs, devs_increment);
4737
4738         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4739                 ret = -ENOSPC;
4740                 goto error;
4741         }
4742
4743         ndevs = min(ndevs, devs_max);
4744
4745         /*
4746          * The primary goal is to maximize the number of stripes, so use as
4747          * many devices as possible, even if the stripes are not maximum sized.
4748          *
4749          * The DUP profile stores more than one stripe per device, the
4750          * max_avail is the total size so we have to adjust.
4751          */
4752         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4753         num_stripes = ndevs * dev_stripes;
4754
4755         /*
4756          * this will have to be fixed for RAID1 and RAID10 over
4757          * more drives
4758          */
4759         data_stripes = num_stripes / ncopies;
4760
4761         if (type & BTRFS_BLOCK_GROUP_RAID5)
4762                 data_stripes = num_stripes - 1;
4763
4764         if (type & BTRFS_BLOCK_GROUP_RAID6)
4765                 data_stripes = num_stripes - 2;
4766
4767         /*
4768          * Use the number of data stripes to figure out how big this chunk
4769          * is really going to be in terms of logical address space,
4770          * and compare that answer with the max chunk size
4771          */
4772         if (stripe_size * data_stripes > max_chunk_size) {
4773                 u64 mask = (1ULL << 24) - 1;
4774
4775                 stripe_size = div_u64(max_chunk_size, data_stripes);
4776
4777                 /* bump the answer up to a 16MB boundary */
4778                 stripe_size = (stripe_size + mask) & ~mask;
4779
4780                 /* but don't go higher than the limits we found
4781                  * while searching for free extents
4782                  */
4783                 if (stripe_size > devices_info[ndevs-1].max_avail)
4784                         stripe_size = devices_info[ndevs-1].max_avail;
4785         }
4786
4787         /* align to BTRFS_STRIPE_LEN */
4788         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4789
4790         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4791         if (!map) {
4792                 ret = -ENOMEM;
4793                 goto error;
4794         }
4795         map->num_stripes = num_stripes;
4796
4797         for (i = 0; i < ndevs; ++i) {
4798                 for (j = 0; j < dev_stripes; ++j) {
4799                         int s = i * dev_stripes + j;
4800                         map->stripes[s].dev = devices_info[i].dev;
4801                         map->stripes[s].physical = devices_info[i].dev_offset +
4802                                                    j * stripe_size;
4803                 }
4804         }
4805         map->stripe_len = BTRFS_STRIPE_LEN;
4806         map->io_align = BTRFS_STRIPE_LEN;
4807         map->io_width = BTRFS_STRIPE_LEN;
4808         map->type = type;
4809         map->sub_stripes = sub_stripes;
4810
4811         num_bytes = stripe_size * data_stripes;
4812
4813         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4814
4815         em = alloc_extent_map();
4816         if (!em) {
4817                 kfree(map);
4818                 ret = -ENOMEM;
4819                 goto error;
4820         }
4821         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4822         em->map_lookup = map;
4823         em->start = start;
4824         em->len = num_bytes;
4825         em->block_start = 0;
4826         em->block_len = em->len;
4827         em->orig_block_len = stripe_size;
4828
4829         em_tree = &info->mapping_tree.map_tree;
4830         write_lock(&em_tree->lock);
4831         ret = add_extent_mapping(em_tree, em, 0);
4832         if (!ret) {
4833                 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4834                 refcount_inc(&em->refs);
4835         }
4836         write_unlock(&em_tree->lock);
4837         if (ret) {
4838                 free_extent_map(em);
4839                 goto error;
4840         }
4841
4842         ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4843         if (ret)
4844                 goto error_del_extent;
4845
4846         for (i = 0; i < map->num_stripes; i++) {
4847                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4848                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4849         }
4850
4851         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4852
4853         free_extent_map(em);
4854         check_raid56_incompat_flag(info, type);
4855
4856         kfree(devices_info);
4857         return 0;
4858
4859 error_del_extent:
4860         write_lock(&em_tree->lock);
4861         remove_extent_mapping(em_tree, em);
4862         write_unlock(&em_tree->lock);
4863
4864         /* One for our allocation */
4865         free_extent_map(em);
4866         /* One for the tree reference */
4867         free_extent_map(em);
4868         /* One for the pending_chunks list reference */
4869         free_extent_map(em);
4870 error:
4871         kfree(devices_info);
4872         return ret;
4873 }
4874
4875 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4876                                 struct btrfs_fs_info *fs_info,
4877                                 u64 chunk_offset, u64 chunk_size)
4878 {
4879         struct btrfs_root *extent_root = fs_info->extent_root;
4880         struct btrfs_root *chunk_root = fs_info->chunk_root;
4881         struct btrfs_key key;
4882         struct btrfs_device *device;
4883         struct btrfs_chunk *chunk;
4884         struct btrfs_stripe *stripe;
4885         struct extent_map *em;
4886         struct map_lookup *map;
4887         size_t item_size;
4888         u64 dev_offset;
4889         u64 stripe_size;
4890         int i = 0;
4891         int ret = 0;
4892
4893         em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4894         if (IS_ERR(em))
4895                 return PTR_ERR(em);
4896
4897         map = em->map_lookup;
4898         item_size = btrfs_chunk_item_size(map->num_stripes);
4899         stripe_size = em->orig_block_len;
4900
4901         chunk = kzalloc(item_size, GFP_NOFS);
4902         if (!chunk) {
4903                 ret = -ENOMEM;
4904                 goto out;
4905         }
4906
4907         /*
4908          * Take the device list mutex to prevent races with the final phase of
4909          * a device replace operation that replaces the device object associated
4910          * with the map's stripes, because the device object's id can change
4911          * at any time during that final phase of the device replace operation
4912          * (dev-replace.c:btrfs_dev_replace_finishing()).
4913          */
4914         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4915         for (i = 0; i < map->num_stripes; i++) {
4916                 device = map->stripes[i].dev;
4917                 dev_offset = map->stripes[i].physical;
4918
4919                 ret = btrfs_update_device(trans, device);
4920                 if (ret)
4921                         break;
4922                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4923                                              dev_offset, stripe_size);
4924                 if (ret)
4925                         break;
4926         }
4927         if (ret) {
4928                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4929                 goto out;
4930         }
4931
4932         stripe = &chunk->stripe;
4933         for (i = 0; i < map->num_stripes; i++) {
4934                 device = map->stripes[i].dev;
4935                 dev_offset = map->stripes[i].physical;
4936
4937                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4938                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4939                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4940                 stripe++;
4941         }
4942         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4943
4944         btrfs_set_stack_chunk_length(chunk, chunk_size);
4945         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4946         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4947         btrfs_set_stack_chunk_type(chunk, map->type);
4948         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4949         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4950         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4951         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4952         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4953
4954         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4955         key.type = BTRFS_CHUNK_ITEM_KEY;
4956         key.offset = chunk_offset;
4957
4958         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4959         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4960                 /*
4961                  * TODO: Cleanup of inserted chunk root in case of
4962                  * failure.
4963                  */
4964                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4965         }
4966
4967 out:
4968         kfree(chunk);
4969         free_extent_map(em);
4970         return ret;
4971 }
4972
4973 /*
4974  * Chunk allocation falls into two parts. The first part does works
4975  * that make the new allocated chunk useable, but not do any operation
4976  * that modifies the chunk tree. The second part does the works that
4977  * require modifying the chunk tree. This division is important for the
4978  * bootstrap process of adding storage to a seed btrfs.
4979  */
4980 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4981                       struct btrfs_fs_info *fs_info, u64 type)
4982 {
4983         u64 chunk_offset;
4984
4985         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4986         chunk_offset = find_next_chunk(fs_info);
4987         return __btrfs_alloc_chunk(trans, chunk_offset, type);
4988 }
4989
4990 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4991                                          struct btrfs_fs_info *fs_info)
4992 {
4993         u64 chunk_offset;
4994         u64 sys_chunk_offset;
4995         u64 alloc_profile;
4996         int ret;
4997
4998         chunk_offset = find_next_chunk(fs_info);
4999         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5000         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5001         if (ret)
5002                 return ret;
5003
5004         sys_chunk_offset = find_next_chunk(fs_info);
5005         alloc_profile = btrfs_system_alloc_profile(fs_info);
5006         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5007         return ret;
5008 }
5009
5010 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5011 {
5012         int max_errors;
5013
5014         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5015                          BTRFS_BLOCK_GROUP_RAID10 |
5016                          BTRFS_BLOCK_GROUP_RAID5 |
5017                          BTRFS_BLOCK_GROUP_DUP)) {
5018                 max_errors = 1;
5019         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5020                 max_errors = 2;
5021         } else {
5022                 max_errors = 0;
5023         }
5024
5025         return max_errors;
5026 }
5027
5028 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5029 {
5030         struct extent_map *em;
5031         struct map_lookup *map;
5032         int readonly = 0;
5033         int miss_ndevs = 0;
5034         int i;
5035
5036         em = get_chunk_map(fs_info, chunk_offset, 1);
5037         if (IS_ERR(em))
5038                 return 1;
5039
5040         map = em->map_lookup;
5041         for (i = 0; i < map->num_stripes; i++) {
5042                 if (map->stripes[i].dev->missing) {
5043                         miss_ndevs++;
5044                         continue;
5045                 }
5046
5047                 if (!map->stripes[i].dev->writeable) {
5048                         readonly = 1;
5049                         goto end;
5050                 }
5051         }
5052
5053         /*
5054          * If the number of missing devices is larger than max errors,
5055          * we can not write the data into that chunk successfully, so
5056          * set it readonly.
5057          */
5058         if (miss_ndevs > btrfs_chunk_max_errors(map))
5059                 readonly = 1;
5060 end:
5061         free_extent_map(em);
5062         return readonly;
5063 }
5064
5065 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5066 {
5067         extent_map_tree_init(&tree->map_tree);
5068 }
5069
5070 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5071 {
5072         struct extent_map *em;
5073
5074         while (1) {
5075                 write_lock(&tree->map_tree.lock);
5076                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5077                 if (em)
5078                         remove_extent_mapping(&tree->map_tree, em);
5079                 write_unlock(&tree->map_tree.lock);
5080                 if (!em)
5081                         break;
5082                 /* once for us */
5083                 free_extent_map(em);
5084                 /* once for the tree */
5085                 free_extent_map(em);
5086         }
5087 }
5088
5089 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5090 {
5091         struct extent_map *em;
5092         struct map_lookup *map;
5093         int ret;
5094
5095         em = get_chunk_map(fs_info, logical, len);
5096         if (IS_ERR(em))
5097                 /*
5098                  * We could return errors for these cases, but that could get
5099                  * ugly and we'd probably do the same thing which is just not do
5100                  * anything else and exit, so return 1 so the callers don't try
5101                  * to use other copies.
5102                  */
5103                 return 1;
5104
5105         map = em->map_lookup;
5106         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5107                 ret = map->num_stripes;
5108         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5109                 ret = map->sub_stripes;
5110         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5111                 ret = 2;
5112         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5113                 /*
5114                  * There could be two corrupted data stripes, we need
5115                  * to loop retry in order to rebuild the correct data.
5116                  *
5117                  * Fail a stripe at a time on every retry except the
5118                  * stripe under reconstruction.
5119                  */
5120                 ret = map->num_stripes;
5121         else
5122                 ret = 1;
5123         free_extent_map(em);
5124
5125         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5126         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5127             fs_info->dev_replace.tgtdev)
5128                 ret++;
5129         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5130
5131         return ret;
5132 }
5133
5134 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5135                                     u64 logical)
5136 {
5137         struct extent_map *em;
5138         struct map_lookup *map;
5139         unsigned long len = fs_info->sectorsize;
5140
5141         em = get_chunk_map(fs_info, logical, len);
5142
5143         if (!WARN_ON(IS_ERR(em))) {
5144                 map = em->map_lookup;
5145                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5146                         len = map->stripe_len * nr_data_stripes(map);
5147                 free_extent_map(em);
5148         }
5149         return len;
5150 }
5151
5152 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5153 {
5154         struct extent_map *em;
5155         struct map_lookup *map;
5156         int ret = 0;
5157
5158         em = get_chunk_map(fs_info, logical, len);
5159
5160         if(!WARN_ON(IS_ERR(em))) {
5161                 map = em->map_lookup;
5162                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5163                         ret = 1;
5164                 free_extent_map(em);
5165         }
5166         return ret;
5167 }
5168
5169 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5170                             struct map_lookup *map, int first, int num,
5171                             int optimal, int dev_replace_is_ongoing)
5172 {
5173         int i;
5174         int tolerance;
5175         struct btrfs_device *srcdev;
5176
5177         if (dev_replace_is_ongoing &&
5178             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5179              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5180                 srcdev = fs_info->dev_replace.srcdev;
5181         else
5182                 srcdev = NULL;
5183
5184         /*
5185          * try to avoid the drive that is the source drive for a
5186          * dev-replace procedure, only choose it if no other non-missing
5187          * mirror is available
5188          */
5189         for (tolerance = 0; tolerance < 2; tolerance++) {
5190                 if (map->stripes[optimal].dev->bdev &&
5191                     (tolerance || map->stripes[optimal].dev != srcdev))
5192                         return optimal;
5193                 for (i = first; i < first + num; i++) {
5194                         if (map->stripes[i].dev->bdev &&
5195                             (tolerance || map->stripes[i].dev != srcdev))
5196                                 return i;
5197                 }
5198         }
5199
5200         /* we couldn't find one that doesn't fail.  Just return something
5201          * and the io error handling code will clean up eventually
5202          */
5203         return optimal;
5204 }
5205
5206 static inline int parity_smaller(u64 a, u64 b)
5207 {
5208         return a > b;
5209 }
5210
5211 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5212 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5213 {
5214         struct btrfs_bio_stripe s;
5215         int i;
5216         u64 l;
5217         int again = 1;
5218
5219         while (again) {
5220                 again = 0;
5221                 for (i = 0; i < num_stripes - 1; i++) {
5222                         if (parity_smaller(bbio->raid_map[i],
5223                                            bbio->raid_map[i+1])) {
5224                                 s = bbio->stripes[i];
5225                                 l = bbio->raid_map[i];
5226                                 bbio->stripes[i] = bbio->stripes[i+1];
5227                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5228                                 bbio->stripes[i+1] = s;
5229                                 bbio->raid_map[i+1] = l;
5230
5231                                 again = 1;
5232                         }
5233                 }
5234         }
5235 }
5236
5237 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5238 {
5239         struct btrfs_bio *bbio = kzalloc(
5240                  /* the size of the btrfs_bio */
5241                 sizeof(struct btrfs_bio) +
5242                 /* plus the variable array for the stripes */
5243                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5244                 /* plus the variable array for the tgt dev */
5245                 sizeof(int) * (real_stripes) +
5246                 /*
5247                  * plus the raid_map, which includes both the tgt dev
5248                  * and the stripes
5249                  */
5250                 sizeof(u64) * (total_stripes),
5251                 GFP_NOFS|__GFP_NOFAIL);
5252
5253         atomic_set(&bbio->error, 0);
5254         refcount_set(&bbio->refs, 1);
5255
5256         return bbio;
5257 }
5258
5259 void btrfs_get_bbio(struct btrfs_bio *bbio)
5260 {
5261         WARN_ON(!refcount_read(&bbio->refs));
5262         refcount_inc(&bbio->refs);
5263 }
5264
5265 void btrfs_put_bbio(struct btrfs_bio *bbio)
5266 {
5267         if (!bbio)
5268                 return;
5269         if (refcount_dec_and_test(&bbio->refs))
5270                 kfree(bbio);
5271 }
5272
5273 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5274 /*
5275  * Please note that, discard won't be sent to target device of device
5276  * replace.
5277  */
5278 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5279                                          u64 logical, u64 length,
5280                                          struct btrfs_bio **bbio_ret)
5281 {
5282         struct extent_map *em;
5283         struct map_lookup *map;
5284         struct btrfs_bio *bbio;
5285         u64 offset;
5286         u64 stripe_nr;
5287         u64 stripe_nr_end;
5288         u64 stripe_end_offset;
5289         u64 stripe_cnt;
5290         u64 stripe_len;
5291         u64 stripe_offset;
5292         u64 num_stripes;
5293         u32 stripe_index;
5294         u32 factor = 0;
5295         u32 sub_stripes = 0;
5296         u64 stripes_per_dev = 0;
5297         u32 remaining_stripes = 0;
5298         u32 last_stripe = 0;
5299         int ret = 0;
5300         int i;
5301
5302         /* discard always return a bbio */
5303         ASSERT(bbio_ret);
5304
5305         em = get_chunk_map(fs_info, logical, length);
5306         if (IS_ERR(em))
5307                 return PTR_ERR(em);
5308
5309         map = em->map_lookup;
5310         /* we don't discard raid56 yet */
5311         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5312                 ret = -EOPNOTSUPP;
5313                 goto out;
5314         }
5315
5316         offset = logical - em->start;
5317         length = min_t(u64, em->len - offset, length);
5318
5319         stripe_len = map->stripe_len;
5320         /*
5321          * stripe_nr counts the total number of stripes we have to stride
5322          * to get to this block
5323          */
5324         stripe_nr = div64_u64(offset, stripe_len);
5325
5326         /* stripe_offset is the offset of this block in its stripe */
5327         stripe_offset = offset - stripe_nr * stripe_len;
5328
5329         stripe_nr_end = round_up(offset + length, map->stripe_len);
5330         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5331         stripe_cnt = stripe_nr_end - stripe_nr;
5332         stripe_end_offset = stripe_nr_end * map->stripe_len -
5333                             (offset + length);
5334         /*
5335          * after this, stripe_nr is the number of stripes on this
5336          * device we have to walk to find the data, and stripe_index is
5337          * the number of our device in the stripe array
5338          */
5339         num_stripes = 1;
5340         stripe_index = 0;
5341         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5342                          BTRFS_BLOCK_GROUP_RAID10)) {
5343                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5344                         sub_stripes = 1;
5345                 else
5346                         sub_stripes = map->sub_stripes;
5347
5348                 factor = map->num_stripes / sub_stripes;
5349                 num_stripes = min_t(u64, map->num_stripes,
5350                                     sub_stripes * stripe_cnt);
5351                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5352                 stripe_index *= sub_stripes;
5353                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5354                                               &remaining_stripes);
5355                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5356                 last_stripe *= sub_stripes;
5357         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5358                                 BTRFS_BLOCK_GROUP_DUP)) {
5359                 num_stripes = map->num_stripes;
5360         } else {
5361                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5362                                         &stripe_index);
5363         }
5364
5365         bbio = alloc_btrfs_bio(num_stripes, 0);
5366         if (!bbio) {
5367                 ret = -ENOMEM;
5368                 goto out;
5369         }
5370
5371         for (i = 0; i < num_stripes; i++) {
5372                 bbio->stripes[i].physical =
5373                         map->stripes[stripe_index].physical +
5374                         stripe_offset + stripe_nr * map->stripe_len;
5375                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5376
5377                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5378                                  BTRFS_BLOCK_GROUP_RAID10)) {
5379                         bbio->stripes[i].length = stripes_per_dev *
5380                                 map->stripe_len;
5381
5382                         if (i / sub_stripes < remaining_stripes)
5383                                 bbio->stripes[i].length +=
5384                                         map->stripe_len;
5385
5386                         /*
5387                          * Special for the first stripe and
5388                          * the last stripe:
5389                          *
5390                          * |-------|...|-------|
5391                          *     |----------|
5392                          *    off     end_off
5393                          */
5394                         if (i < sub_stripes)
5395                                 bbio->stripes[i].length -=
5396                                         stripe_offset;
5397
5398                         if (stripe_index >= last_stripe &&
5399                             stripe_index <= (last_stripe +
5400                                              sub_stripes - 1))
5401                                 bbio->stripes[i].length -=
5402                                         stripe_end_offset;
5403
5404                         if (i == sub_stripes - 1)
5405                                 stripe_offset = 0;
5406                 } else {
5407                         bbio->stripes[i].length = length;
5408                 }
5409
5410                 stripe_index++;
5411                 if (stripe_index == map->num_stripes) {
5412                         stripe_index = 0;
5413                         stripe_nr++;
5414                 }
5415         }
5416
5417         *bbio_ret = bbio;
5418         bbio->map_type = map->type;
5419         bbio->num_stripes = num_stripes;
5420 out:
5421         free_extent_map(em);
5422         return ret;
5423 }
5424
5425 /*
5426  * In dev-replace case, for repair case (that's the only case where the mirror
5427  * is selected explicitly when calling btrfs_map_block), blocks left of the
5428  * left cursor can also be read from the target drive.
5429  *
5430  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5431  * array of stripes.
5432  * For READ, it also needs to be supported using the same mirror number.
5433  *
5434  * If the requested block is not left of the left cursor, EIO is returned. This
5435  * can happen because btrfs_num_copies() returns one more in the dev-replace
5436  * case.
5437  */
5438 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5439                                          u64 logical, u64 length,
5440                                          u64 srcdev_devid, int *mirror_num,
5441                                          u64 *physical)
5442 {
5443         struct btrfs_bio *bbio = NULL;
5444         int num_stripes;
5445         int index_srcdev = 0;
5446         int found = 0;
5447         u64 physical_of_found = 0;
5448         int i;
5449         int ret = 0;
5450
5451         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5452                                 logical, &length, &bbio, 0, 0);
5453         if (ret) {
5454                 ASSERT(bbio == NULL);
5455                 return ret;
5456         }
5457
5458         num_stripes = bbio->num_stripes;
5459         if (*mirror_num > num_stripes) {
5460                 /*
5461                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5462                  * that means that the requested area is not left of the left
5463                  * cursor
5464                  */
5465                 btrfs_put_bbio(bbio);
5466                 return -EIO;
5467         }
5468
5469         /*
5470          * process the rest of the function using the mirror_num of the source
5471          * drive. Therefore look it up first.  At the end, patch the device
5472          * pointer to the one of the target drive.
5473          */
5474         for (i = 0; i < num_stripes; i++) {
5475                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5476                         continue;
5477
5478                 /*
5479                  * In case of DUP, in order to keep it simple, only add the
5480                  * mirror with the lowest physical address
5481                  */
5482                 if (found &&
5483                     physical_of_found <= bbio->stripes[i].physical)
5484                         continue;
5485
5486                 index_srcdev = i;
5487                 found = 1;
5488                 physical_of_found = bbio->stripes[i].physical;
5489         }
5490
5491         btrfs_put_bbio(bbio);
5492
5493         ASSERT(found);
5494         if (!found)
5495                 return -EIO;
5496
5497         *mirror_num = index_srcdev + 1;
5498         *physical = physical_of_found;
5499         return ret;
5500 }
5501
5502 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5503                                       struct btrfs_bio **bbio_ret,
5504                                       struct btrfs_dev_replace *dev_replace,
5505                                       int *num_stripes_ret, int *max_errors_ret)
5506 {
5507         struct btrfs_bio *bbio = *bbio_ret;
5508         u64 srcdev_devid = dev_replace->srcdev->devid;
5509         int tgtdev_indexes = 0;
5510         int num_stripes = *num_stripes_ret;
5511         int max_errors = *max_errors_ret;
5512         int i;
5513
5514         if (op == BTRFS_MAP_WRITE) {
5515                 int index_where_to_add;
5516
5517                 /*
5518                  * duplicate the write operations while the dev replace
5519                  * procedure is running. Since the copying of the old disk to
5520                  * the new disk takes place at run time while the filesystem is
5521                  * mounted writable, the regular write operations to the old
5522                  * disk have to be duplicated to go to the new disk as well.
5523                  *
5524                  * Note that device->missing is handled by the caller, and that
5525                  * the write to the old disk is already set up in the stripes
5526                  * array.
5527                  */
5528                 index_where_to_add = num_stripes;
5529                 for (i = 0; i < num_stripes; i++) {
5530                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5531                                 /* write to new disk, too */
5532                                 struct btrfs_bio_stripe *new =
5533                                         bbio->stripes + index_where_to_add;
5534                                 struct btrfs_bio_stripe *old =
5535                                         bbio->stripes + i;
5536
5537                                 new->physical = old->physical;
5538                                 new->length = old->length;
5539                                 new->dev = dev_replace->tgtdev;
5540                                 bbio->tgtdev_map[i] = index_where_to_add;
5541                                 index_where_to_add++;
5542                                 max_errors++;
5543                                 tgtdev_indexes++;
5544                         }
5545                 }
5546                 num_stripes = index_where_to_add;
5547         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5548                 int index_srcdev = 0;
5549                 int found = 0;
5550                 u64 physical_of_found = 0;
5551
5552                 /*
5553                  * During the dev-replace procedure, the target drive can also
5554                  * be used to read data in case it is needed to repair a corrupt
5555                  * block elsewhere. This is possible if the requested area is
5556                  * left of the left cursor. In this area, the target drive is a
5557                  * full copy of the source drive.
5558                  */
5559                 for (i = 0; i < num_stripes; i++) {
5560                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5561                                 /*
5562                                  * In case of DUP, in order to keep it simple,
5563                                  * only add the mirror with the lowest physical
5564                                  * address
5565                                  */
5566                                 if (found &&
5567                                     physical_of_found <=
5568                                      bbio->stripes[i].physical)
5569                                         continue;
5570                                 index_srcdev = i;
5571                                 found = 1;
5572                                 physical_of_found = bbio->stripes[i].physical;
5573                         }
5574                 }
5575                 if (found) {
5576                         struct btrfs_bio_stripe *tgtdev_stripe =
5577                                 bbio->stripes + num_stripes;
5578
5579                         tgtdev_stripe->physical = physical_of_found;
5580                         tgtdev_stripe->length =
5581                                 bbio->stripes[index_srcdev].length;
5582                         tgtdev_stripe->dev = dev_replace->tgtdev;
5583                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5584
5585                         tgtdev_indexes++;
5586                         num_stripes++;
5587                 }
5588         }
5589
5590         *num_stripes_ret = num_stripes;
5591         *max_errors_ret = max_errors;
5592         bbio->num_tgtdevs = tgtdev_indexes;
5593         *bbio_ret = bbio;
5594 }
5595
5596 static bool need_full_stripe(enum btrfs_map_op op)
5597 {
5598         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5599 }
5600
5601 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5602                              enum btrfs_map_op op,
5603                              u64 logical, u64 *length,
5604                              struct btrfs_bio **bbio_ret,
5605                              int mirror_num, int need_raid_map)
5606 {
5607         struct extent_map *em;
5608         struct map_lookup *map;
5609         u64 offset;
5610         u64 stripe_offset;
5611         u64 stripe_nr;
5612         u64 stripe_len;
5613         u32 stripe_index;
5614         int i;
5615         int ret = 0;
5616         int num_stripes;
5617         int max_errors = 0;
5618         int tgtdev_indexes = 0;
5619         struct btrfs_bio *bbio = NULL;
5620         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5621         int dev_replace_is_ongoing = 0;
5622         int num_alloc_stripes;
5623         int patch_the_first_stripe_for_dev_replace = 0;
5624         u64 physical_to_patch_in_first_stripe = 0;
5625         u64 raid56_full_stripe_start = (u64)-1;
5626
5627         if (op == BTRFS_MAP_DISCARD)
5628                 return __btrfs_map_block_for_discard(fs_info, logical,
5629                                                      *length, bbio_ret);
5630
5631         em = get_chunk_map(fs_info, logical, *length);
5632         if (IS_ERR(em))
5633                 return PTR_ERR(em);
5634
5635         map = em->map_lookup;
5636         offset = logical - em->start;
5637
5638         stripe_len = map->stripe_len;
5639         stripe_nr = offset;
5640         /*
5641          * stripe_nr counts the total number of stripes we have to stride
5642          * to get to this block
5643          */
5644         stripe_nr = div64_u64(stripe_nr, stripe_len);
5645
5646         stripe_offset = stripe_nr * stripe_len;
5647         if (offset < stripe_offset) {
5648                 btrfs_crit(fs_info,
5649                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5650                            stripe_offset, offset, em->start, logical,
5651                            stripe_len);
5652                 free_extent_map(em);
5653                 return -EINVAL;
5654         }
5655
5656         /* stripe_offset is the offset of this block in its stripe*/
5657         stripe_offset = offset - stripe_offset;
5658
5659         /* if we're here for raid56, we need to know the stripe aligned start */
5660         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5661                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5662                 raid56_full_stripe_start = offset;
5663
5664                 /* allow a write of a full stripe, but make sure we don't
5665                  * allow straddling of stripes
5666                  */
5667                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5668                                 full_stripe_len);
5669                 raid56_full_stripe_start *= full_stripe_len;
5670         }
5671
5672         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5673                 u64 max_len;
5674                 /* For writes to RAID[56], allow a full stripeset across all disks.
5675                    For other RAID types and for RAID[56] reads, just allow a single
5676                    stripe (on a single disk). */
5677                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5678                     (op == BTRFS_MAP_WRITE)) {
5679                         max_len = stripe_len * nr_data_stripes(map) -
5680                                 (offset - raid56_full_stripe_start);
5681                 } else {
5682                         /* we limit the length of each bio to what fits in a stripe */
5683                         max_len = stripe_len - stripe_offset;
5684                 }
5685                 *length = min_t(u64, em->len - offset, max_len);
5686         } else {
5687                 *length = em->len - offset;
5688         }
5689
5690         /* This is for when we're called from btrfs_merge_bio_hook() and all
5691            it cares about is the length */
5692         if (!bbio_ret)
5693                 goto out;
5694
5695         btrfs_dev_replace_lock(dev_replace, 0);
5696         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5697         if (!dev_replace_is_ongoing)
5698                 btrfs_dev_replace_unlock(dev_replace, 0);
5699         else
5700                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5701
5702         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5703             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5704                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5705                                                     dev_replace->srcdev->devid,
5706                                                     &mirror_num,
5707                                             &physical_to_patch_in_first_stripe);
5708                 if (ret)
5709                         goto out;
5710                 else
5711                         patch_the_first_stripe_for_dev_replace = 1;
5712         } else if (mirror_num > map->num_stripes) {
5713                 mirror_num = 0;
5714         }
5715
5716         num_stripes = 1;
5717         stripe_index = 0;
5718         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5719                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5720                                 &stripe_index);
5721                 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_GET_READ_MIRRORS)
5722                         mirror_num = 1;
5723         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5724                 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5725                         num_stripes = map->num_stripes;
5726                 else if (mirror_num)
5727                         stripe_index = mirror_num - 1;
5728                 else {
5729                         stripe_index = find_live_mirror(fs_info, map, 0,
5730                                             map->num_stripes,
5731                                             current->pid % map->num_stripes,
5732                                             dev_replace_is_ongoing);
5733                         mirror_num = stripe_index + 1;
5734                 }
5735
5736         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5737                 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) {
5738                         num_stripes = map->num_stripes;
5739                 } else if (mirror_num) {
5740                         stripe_index = mirror_num - 1;
5741                 } else {
5742                         mirror_num = 1;
5743                 }
5744
5745         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5746                 u32 factor = map->num_stripes / map->sub_stripes;
5747
5748                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5749                 stripe_index *= map->sub_stripes;
5750
5751                 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5752                         num_stripes = map->sub_stripes;
5753                 else if (mirror_num)
5754                         stripe_index += mirror_num - 1;
5755                 else {
5756                         int old_stripe_index = stripe_index;
5757                         stripe_index = find_live_mirror(fs_info, map,
5758                                               stripe_index,
5759                                               map->sub_stripes, stripe_index +
5760                                               current->pid % map->sub_stripes,
5761                                               dev_replace_is_ongoing);
5762                         mirror_num = stripe_index - old_stripe_index + 1;
5763                 }
5764
5765         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5766                 if (need_raid_map &&
5767                     (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5768                      mirror_num > 1)) {
5769                         /* push stripe_nr back to the start of the full stripe */
5770                         stripe_nr = div64_u64(raid56_full_stripe_start,
5771                                         stripe_len * nr_data_stripes(map));
5772
5773                         /* RAID[56] write or recovery. Return all stripes */
5774                         num_stripes = map->num_stripes;
5775                         max_errors = nr_parity_stripes(map);
5776
5777                         *length = map->stripe_len;
5778                         stripe_index = 0;
5779                         stripe_offset = 0;
5780                 } else {
5781                         /*
5782                          * Mirror #0 or #1 means the original data block.
5783                          * Mirror #2 is RAID5 parity block.
5784                          * Mirror #3 is RAID6 Q block.
5785                          */
5786                         stripe_nr = div_u64_rem(stripe_nr,
5787                                         nr_data_stripes(map), &stripe_index);
5788                         if (mirror_num > 1)
5789                                 stripe_index = nr_data_stripes(map) +
5790                                                 mirror_num - 2;
5791
5792                         /* We distribute the parity blocks across stripes */
5793                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5794                                         &stripe_index);
5795                         if ((op != BTRFS_MAP_WRITE &&
5796                              op != BTRFS_MAP_GET_READ_MIRRORS) &&
5797                             mirror_num <= 1)
5798                                 mirror_num = 1;
5799                 }
5800         } else {
5801                 /*
5802                  * after this, stripe_nr is the number of stripes on this
5803                  * device we have to walk to find the data, and stripe_index is
5804                  * the number of our device in the stripe array
5805                  */
5806                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5807                                 &stripe_index);
5808                 mirror_num = stripe_index + 1;
5809         }
5810         if (stripe_index >= map->num_stripes) {
5811                 btrfs_crit(fs_info,
5812                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5813                            stripe_index, map->num_stripes);
5814                 ret = -EINVAL;
5815                 goto out;
5816         }
5817
5818         num_alloc_stripes = num_stripes;
5819         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5820                 if (op == BTRFS_MAP_WRITE)
5821                         num_alloc_stripes <<= 1;
5822                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5823                         num_alloc_stripes++;
5824                 tgtdev_indexes = num_stripes;
5825         }
5826
5827         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5828         if (!bbio) {
5829                 ret = -ENOMEM;
5830                 goto out;
5831         }
5832         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5833                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5834
5835         /* build raid_map */
5836         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5837             (need_full_stripe(op) || mirror_num > 1)) {
5838                 u64 tmp;
5839                 unsigned rot;
5840
5841                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5842                                  sizeof(struct btrfs_bio_stripe) *
5843                                  num_alloc_stripes +
5844                                  sizeof(int) * tgtdev_indexes);
5845
5846                 /* Work out the disk rotation on this stripe-set */
5847                 div_u64_rem(stripe_nr, num_stripes, &rot);
5848
5849                 /* Fill in the logical address of each stripe */
5850                 tmp = stripe_nr * nr_data_stripes(map);
5851                 for (i = 0; i < nr_data_stripes(map); i++)
5852                         bbio->raid_map[(i+rot) % num_stripes] =
5853                                 em->start + (tmp + i) * map->stripe_len;
5854
5855                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5856                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5857                         bbio->raid_map[(i+rot+1) % num_stripes] =
5858                                 RAID6_Q_STRIPE;
5859         }
5860
5861
5862         for (i = 0; i < num_stripes; i++) {
5863                 bbio->stripes[i].physical =
5864                         map->stripes[stripe_index].physical +
5865                         stripe_offset +
5866                         stripe_nr * map->stripe_len;
5867                 bbio->stripes[i].dev =
5868                         map->stripes[stripe_index].dev;
5869                 stripe_index++;
5870         }
5871
5872         if (need_full_stripe(op))
5873                 max_errors = btrfs_chunk_max_errors(map);
5874
5875         if (bbio->raid_map)
5876                 sort_parity_stripes(bbio, num_stripes);
5877
5878         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5879             need_full_stripe(op)) {
5880                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5881                                           &max_errors);
5882         }
5883
5884         *bbio_ret = bbio;
5885         bbio->map_type = map->type;
5886         bbio->num_stripes = num_stripes;
5887         bbio->max_errors = max_errors;
5888         bbio->mirror_num = mirror_num;
5889
5890         /*
5891          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5892          * mirror_num == num_stripes + 1 && dev_replace target drive is
5893          * available as a mirror
5894          */
5895         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5896                 WARN_ON(num_stripes > 1);
5897                 bbio->stripes[0].dev = dev_replace->tgtdev;
5898                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5899                 bbio->mirror_num = map->num_stripes + 1;
5900         }
5901 out:
5902         if (dev_replace_is_ongoing) {
5903                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5904                 btrfs_dev_replace_unlock(dev_replace, 0);
5905         }
5906         free_extent_map(em);
5907         return ret;
5908 }
5909
5910 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5911                       u64 logical, u64 *length,
5912                       struct btrfs_bio **bbio_ret, int mirror_num)
5913 {
5914         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5915                                  mirror_num, 0);
5916 }
5917
5918 /* For Scrub/replace */
5919 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5920                      u64 logical, u64 *length,
5921                      struct btrfs_bio **bbio_ret)
5922 {
5923         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5924 }
5925
5926 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5927                      u64 chunk_start, u64 physical, u64 devid,
5928                      u64 **logical, int *naddrs, int *stripe_len)
5929 {
5930         struct extent_map *em;
5931         struct map_lookup *map;
5932         u64 *buf;
5933         u64 bytenr;
5934         u64 length;
5935         u64 stripe_nr;
5936         u64 rmap_len;
5937         int i, j, nr = 0;
5938
5939         em = get_chunk_map(fs_info, chunk_start, 1);
5940         if (IS_ERR(em))
5941                 return -EIO;
5942
5943         map = em->map_lookup;
5944         length = em->len;
5945         rmap_len = map->stripe_len;
5946
5947         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5948                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5949         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5950                 length = div_u64(length, map->num_stripes);
5951         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5952                 length = div_u64(length, nr_data_stripes(map));
5953                 rmap_len = map->stripe_len * nr_data_stripes(map);
5954         }
5955
5956         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5957         BUG_ON(!buf); /* -ENOMEM */
5958
5959         for (i = 0; i < map->num_stripes; i++) {
5960                 if (devid && map->stripes[i].dev->devid != devid)
5961                         continue;
5962                 if (map->stripes[i].physical > physical ||
5963                     map->stripes[i].physical + length <= physical)
5964                         continue;
5965
5966                 stripe_nr = physical - map->stripes[i].physical;
5967                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5968
5969                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5970                         stripe_nr = stripe_nr * map->num_stripes + i;
5971                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5972                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5973                         stripe_nr = stripe_nr * map->num_stripes + i;
5974                 } /* else if RAID[56], multiply by nr_data_stripes().
5975                    * Alternatively, just use rmap_len below instead of
5976                    * map->stripe_len */
5977
5978                 bytenr = chunk_start + stripe_nr * rmap_len;
5979                 WARN_ON(nr >= map->num_stripes);
5980                 for (j = 0; j < nr; j++) {
5981                         if (buf[j] == bytenr)
5982                                 break;
5983                 }
5984                 if (j == nr) {
5985                         WARN_ON(nr >= map->num_stripes);
5986                         buf[nr++] = bytenr;
5987                 }
5988         }
5989
5990         *logical = buf;
5991         *naddrs = nr;
5992         *stripe_len = rmap_len;
5993
5994         free_extent_map(em);
5995         return 0;
5996 }
5997
5998 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5999 {
6000         bio->bi_private = bbio->private;
6001         bio->bi_end_io = bbio->end_io;
6002         bio_endio(bio);
6003
6004         btrfs_put_bbio(bbio);
6005 }
6006
6007 static void btrfs_end_bio(struct bio *bio)
6008 {
6009         struct btrfs_bio *bbio = bio->bi_private;
6010         int is_orig_bio = 0;
6011
6012         if (bio->bi_status) {
6013                 atomic_inc(&bbio->error);
6014                 if (bio->bi_status == BLK_STS_IOERR ||
6015                     bio->bi_status == BLK_STS_TARGET) {
6016                         unsigned int stripe_index =
6017                                 btrfs_io_bio(bio)->stripe_index;
6018                         struct btrfs_device *dev;
6019
6020                         BUG_ON(stripe_index >= bbio->num_stripes);
6021                         dev = bbio->stripes[stripe_index].dev;
6022                         if (dev->bdev) {
6023                                 if (bio_op(bio) == REQ_OP_WRITE)
6024                                         btrfs_dev_stat_inc(dev,
6025                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6026                                 else
6027                                         btrfs_dev_stat_inc(dev,
6028                                                 BTRFS_DEV_STAT_READ_ERRS);
6029                                 if (bio->bi_opf & REQ_PREFLUSH)
6030                                         btrfs_dev_stat_inc(dev,
6031                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6032                                 btrfs_dev_stat_print_on_error(dev);
6033                         }
6034                 }
6035         }
6036
6037         if (bio == bbio->orig_bio)
6038                 is_orig_bio = 1;
6039
6040         btrfs_bio_counter_dec(bbio->fs_info);
6041
6042         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6043                 if (!is_orig_bio) {
6044                         bio_put(bio);
6045                         bio = bbio->orig_bio;
6046                 }
6047
6048                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6049                 /* only send an error to the higher layers if it is
6050                  * beyond the tolerance of the btrfs bio
6051                  */
6052                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6053                         bio->bi_status = BLK_STS_IOERR;
6054                 } else {
6055                         /*
6056                          * this bio is actually up to date, we didn't
6057                          * go over the max number of errors
6058                          */
6059                         bio->bi_status = 0;
6060                 }
6061
6062                 btrfs_end_bbio(bbio, bio);
6063         } else if (!is_orig_bio) {
6064                 bio_put(bio);
6065         }
6066 }
6067
6068 /*
6069  * see run_scheduled_bios for a description of why bios are collected for
6070  * async submit.
6071  *
6072  * This will add one bio to the pending list for a device and make sure
6073  * the work struct is scheduled.
6074  */
6075 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6076                                         struct bio *bio)
6077 {
6078         struct btrfs_fs_info *fs_info = device->fs_info;
6079         int should_queue = 1;
6080         struct btrfs_pending_bios *pending_bios;
6081
6082         if (device->missing || !device->bdev) {
6083                 bio_io_error(bio);
6084                 return;
6085         }
6086
6087         /* don't bother with additional async steps for reads, right now */
6088         if (bio_op(bio) == REQ_OP_READ) {
6089                 bio_get(bio);
6090                 btrfsic_submit_bio(bio);
6091                 bio_put(bio);
6092                 return;
6093         }
6094
6095         /*
6096          * nr_async_bios allows us to reliably return congestion to the
6097          * higher layers.  Otherwise, the async bio makes it appear we have
6098          * made progress against dirty pages when we've really just put it
6099          * on a queue for later
6100          */
6101         atomic_inc(&fs_info->nr_async_bios);
6102         WARN_ON(bio->bi_next);
6103         bio->bi_next = NULL;
6104
6105         spin_lock(&device->io_lock);
6106         if (op_is_sync(bio->bi_opf))
6107                 pending_bios = &device->pending_sync_bios;
6108         else
6109                 pending_bios = &device->pending_bios;
6110
6111         if (pending_bios->tail)
6112                 pending_bios->tail->bi_next = bio;
6113
6114         pending_bios->tail = bio;
6115         if (!pending_bios->head)
6116                 pending_bios->head = bio;
6117         if (device->running_pending)
6118                 should_queue = 0;
6119
6120         spin_unlock(&device->io_lock);
6121
6122         if (should_queue)
6123                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6124 }
6125
6126 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6127                               u64 physical, int dev_nr, int async)
6128 {
6129         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6130         struct btrfs_fs_info *fs_info = bbio->fs_info;
6131
6132         bio->bi_private = bbio;
6133         btrfs_io_bio(bio)->stripe_index = dev_nr;
6134         bio->bi_end_io = btrfs_end_bio;
6135         bio->bi_iter.bi_sector = physical >> 9;
6136 #ifdef DEBUG
6137         {
6138                 struct rcu_string *name;
6139
6140                 rcu_read_lock();
6141                 name = rcu_dereference(dev->name);
6142                 btrfs_debug(fs_info,
6143                         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6144                         bio_op(bio), bio->bi_opf,
6145                         (u64)bio->bi_iter.bi_sector,
6146                         (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6147                         bio->bi_iter.bi_size);
6148                 rcu_read_unlock();
6149         }
6150 #endif
6151         bio_set_dev(bio, dev->bdev);
6152
6153         btrfs_bio_counter_inc_noblocked(fs_info);
6154
6155         if (async)
6156                 btrfs_schedule_bio(dev, bio);
6157         else
6158                 btrfsic_submit_bio(bio);
6159 }
6160
6161 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6162 {
6163         atomic_inc(&bbio->error);
6164         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6165                 /* Should be the original bio. */
6166                 WARN_ON(bio != bbio->orig_bio);
6167
6168                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6169                 bio->bi_iter.bi_sector = logical >> 9;
6170                 if (atomic_read(&bbio->error) > bbio->max_errors)
6171                         bio->bi_status = BLK_STS_IOERR;
6172                 else
6173                         bio->bi_status = BLK_STS_OK;
6174                 btrfs_end_bbio(bbio, bio);
6175         }
6176 }
6177
6178 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6179                            int mirror_num, int async_submit)
6180 {
6181         struct btrfs_device *dev;
6182         struct bio *first_bio = bio;
6183         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6184         u64 length = 0;
6185         u64 map_length;
6186         int ret;
6187         int dev_nr;
6188         int total_devs;
6189         struct btrfs_bio *bbio = NULL;
6190
6191         length = bio->bi_iter.bi_size;
6192         map_length = length;
6193
6194         btrfs_bio_counter_inc_blocked(fs_info);
6195         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6196                                 &map_length, &bbio, mirror_num, 1);
6197         if (ret) {
6198                 btrfs_bio_counter_dec(fs_info);
6199                 return errno_to_blk_status(ret);
6200         }
6201
6202         total_devs = bbio->num_stripes;
6203         bbio->orig_bio = first_bio;
6204         bbio->private = first_bio->bi_private;
6205         bbio->end_io = first_bio->bi_end_io;
6206         bbio->fs_info = fs_info;
6207         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6208
6209         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6210             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6211                 /* In this case, map_length has been set to the length of
6212                    a single stripe; not the whole write */
6213                 if (bio_op(bio) == REQ_OP_WRITE) {
6214                         ret = raid56_parity_write(fs_info, bio, bbio,
6215                                                   map_length);
6216                 } else {
6217                         ret = raid56_parity_recover(fs_info, bio, bbio,
6218                                                     map_length, mirror_num, 1);
6219                 }
6220
6221                 btrfs_bio_counter_dec(fs_info);
6222                 return errno_to_blk_status(ret);
6223         }
6224
6225         if (map_length < length) {
6226                 btrfs_crit(fs_info,
6227                            "mapping failed logical %llu bio len %llu len %llu",
6228                            logical, length, map_length);
6229                 BUG();
6230         }
6231
6232         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6233                 dev = bbio->stripes[dev_nr].dev;
6234                 if (!dev || !dev->bdev ||
6235                     (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6236                         bbio_error(bbio, first_bio, logical);
6237                         continue;
6238                 }
6239
6240                 if (dev_nr < total_devs - 1)
6241                         bio = btrfs_bio_clone(first_bio);
6242                 else
6243                         bio = first_bio;
6244
6245                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6246                                   dev_nr, async_submit);
6247         }
6248         btrfs_bio_counter_dec(fs_info);
6249         return BLK_STS_OK;
6250 }
6251
6252 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6253                                        u8 *uuid, u8 *fsid)
6254 {
6255         struct btrfs_device *device;
6256         struct btrfs_fs_devices *cur_devices;
6257
6258         cur_devices = fs_info->fs_devices;
6259         while (cur_devices) {
6260                 if (!fsid ||
6261                     !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6262                         device = find_device(cur_devices, devid, uuid);
6263                         if (device)
6264                                 return device;
6265                 }
6266                 cur_devices = cur_devices->seed;
6267         }
6268         return NULL;
6269 }
6270
6271 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6272                                             u64 devid, u8 *dev_uuid)
6273 {
6274         struct btrfs_device *device;
6275
6276         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6277         if (IS_ERR(device))
6278                 return NULL;
6279
6280         list_add(&device->dev_list, &fs_devices->devices);
6281         device->fs_devices = fs_devices;
6282         fs_devices->num_devices++;
6283
6284         device->missing = 1;
6285         fs_devices->missing_devices++;
6286
6287         return device;
6288 }
6289
6290 /**
6291  * btrfs_alloc_device - allocate struct btrfs_device
6292  * @fs_info:    used only for generating a new devid, can be NULL if
6293  *              devid is provided (i.e. @devid != NULL).
6294  * @devid:      a pointer to devid for this device.  If NULL a new devid
6295  *              is generated.
6296  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6297  *              is generated.
6298  *
6299  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6300  * on error.  Returned struct is not linked onto any lists and can be
6301  * destroyed with kfree() right away.
6302  */
6303 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6304                                         const u64 *devid,
6305                                         const u8 *uuid)
6306 {
6307         struct btrfs_device *dev;
6308         u64 tmp;
6309
6310         if (WARN_ON(!devid && !fs_info))
6311                 return ERR_PTR(-EINVAL);
6312
6313         dev = __alloc_device();
6314         if (IS_ERR(dev))
6315                 return dev;
6316
6317         if (devid)
6318                 tmp = *devid;
6319         else {
6320                 int ret;
6321
6322                 ret = find_next_devid(fs_info, &tmp);
6323                 if (ret) {
6324                         kfree(dev);
6325                         return ERR_PTR(ret);
6326                 }
6327         }
6328         dev->devid = tmp;
6329
6330         if (uuid)
6331                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6332         else
6333                 generate_random_uuid(dev->uuid);
6334
6335         btrfs_init_work(&dev->work, btrfs_submit_helper,
6336                         pending_bios_fn, NULL, NULL);
6337
6338         return dev;
6339 }
6340
6341 /* Return -EIO if any error, otherwise return 0. */
6342 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6343                                    struct extent_buffer *leaf,
6344                                    struct btrfs_chunk *chunk, u64 logical)
6345 {
6346         u64 length;
6347         u64 stripe_len;
6348         u16 num_stripes;
6349         u16 sub_stripes;
6350         u64 type;
6351
6352         length = btrfs_chunk_length(leaf, chunk);
6353         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6354         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6355         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6356         type = btrfs_chunk_type(leaf, chunk);
6357
6358         if (!num_stripes) {
6359                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6360                           num_stripes);
6361                 return -EIO;
6362         }
6363         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6364                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6365                 return -EIO;
6366         }
6367         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6368                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6369                           btrfs_chunk_sector_size(leaf, chunk));
6370                 return -EIO;
6371         }
6372         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6373                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6374                 return -EIO;
6375         }
6376         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6377                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6378                           stripe_len);
6379                 return -EIO;
6380         }
6381         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6382             type) {
6383                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6384                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6385                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6386                           btrfs_chunk_type(leaf, chunk));
6387                 return -EIO;
6388         }
6389         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6390             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6391             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6392             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6393             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6394             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6395              num_stripes != 1)) {
6396                 btrfs_err(fs_info,
6397                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6398                         num_stripes, sub_stripes,
6399                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6400                 return -EIO;
6401         }
6402
6403         return 0;
6404 }
6405
6406 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6407                           struct extent_buffer *leaf,
6408                           struct btrfs_chunk *chunk)
6409 {
6410         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6411         struct map_lookup *map;
6412         struct extent_map *em;
6413         u64 logical;
6414         u64 length;
6415         u64 devid;
6416         u8 uuid[BTRFS_UUID_SIZE];
6417         int num_stripes;
6418         int ret;
6419         int i;
6420
6421         logical = key->offset;
6422         length = btrfs_chunk_length(leaf, chunk);
6423         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6424
6425         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6426         if (ret)
6427                 return ret;
6428
6429         read_lock(&map_tree->map_tree.lock);
6430         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6431         read_unlock(&map_tree->map_tree.lock);
6432
6433         /* already mapped? */
6434         if (em && em->start <= logical && em->start + em->len > logical) {
6435                 free_extent_map(em);
6436                 return 0;
6437         } else if (em) {
6438                 free_extent_map(em);
6439         }
6440
6441         em = alloc_extent_map();
6442         if (!em)
6443                 return -ENOMEM;
6444         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6445         if (!map) {
6446                 free_extent_map(em);
6447                 return -ENOMEM;
6448         }
6449
6450         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6451         em->map_lookup = map;
6452         em->start = logical;
6453         em->len = length;
6454         em->orig_start = 0;
6455         em->block_start = 0;
6456         em->block_len = em->len;
6457
6458         map->num_stripes = num_stripes;
6459         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6460         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6461         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6462         map->type = btrfs_chunk_type(leaf, chunk);
6463         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6464         for (i = 0; i < num_stripes; i++) {
6465                 map->stripes[i].physical =
6466                         btrfs_stripe_offset_nr(leaf, chunk, i);
6467                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6468                 read_extent_buffer(leaf, uuid, (unsigned long)
6469                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6470                                    BTRFS_UUID_SIZE);
6471                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6472                                                         uuid, NULL);
6473                 if (!map->stripes[i].dev &&
6474                     !btrfs_test_opt(fs_info, DEGRADED)) {
6475                         free_extent_map(em);
6476                         btrfs_report_missing_device(fs_info, devid, uuid);
6477                         return -EIO;
6478                 }
6479                 if (!map->stripes[i].dev) {
6480                         map->stripes[i].dev =
6481                                 add_missing_dev(fs_info->fs_devices, devid,
6482                                                 uuid);
6483                         if (!map->stripes[i].dev) {
6484                                 free_extent_map(em);
6485                                 return -EIO;
6486                         }
6487                         btrfs_report_missing_device(fs_info, devid, uuid);
6488                 }
6489                 map->stripes[i].dev->in_fs_metadata = 1;
6490         }
6491
6492         write_lock(&map_tree->map_tree.lock);
6493         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6494         write_unlock(&map_tree->map_tree.lock);
6495         BUG_ON(ret); /* Tree corruption */
6496         free_extent_map(em);
6497
6498         return 0;
6499 }
6500
6501 static void fill_device_from_item(struct extent_buffer *leaf,
6502                                  struct btrfs_dev_item *dev_item,
6503                                  struct btrfs_device *device)
6504 {
6505         unsigned long ptr;
6506
6507         device->devid = btrfs_device_id(leaf, dev_item);
6508         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6509         device->total_bytes = device->disk_total_bytes;
6510         device->commit_total_bytes = device->disk_total_bytes;
6511         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6512         device->commit_bytes_used = device->bytes_used;
6513         device->type = btrfs_device_type(leaf, dev_item);
6514         device->io_align = btrfs_device_io_align(leaf, dev_item);
6515         device->io_width = btrfs_device_io_width(leaf, dev_item);
6516         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6517         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6518         device->is_tgtdev_for_dev_replace = 0;
6519
6520         ptr = btrfs_device_uuid(dev_item);
6521         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6522 }
6523
6524 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6525                                                   u8 *fsid)
6526 {
6527         struct btrfs_fs_devices *fs_devices;
6528         int ret;
6529
6530         BUG_ON(!mutex_is_locked(&uuid_mutex));
6531         ASSERT(fsid);
6532
6533         fs_devices = fs_info->fs_devices->seed;
6534         while (fs_devices) {
6535                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6536                         return fs_devices;
6537
6538                 fs_devices = fs_devices->seed;
6539         }
6540
6541         fs_devices = find_fsid(fsid);
6542         if (!fs_devices) {
6543                 if (!btrfs_test_opt(fs_info, DEGRADED))
6544                         return ERR_PTR(-ENOENT);
6545
6546                 fs_devices = alloc_fs_devices(fsid);
6547                 if (IS_ERR(fs_devices))
6548                         return fs_devices;
6549
6550                 fs_devices->seeding = 1;
6551                 fs_devices->opened = 1;
6552                 return fs_devices;
6553         }
6554
6555         fs_devices = clone_fs_devices(fs_devices);
6556         if (IS_ERR(fs_devices))
6557                 return fs_devices;
6558
6559         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6560                                    fs_info->bdev_holder);
6561         if (ret) {
6562                 free_fs_devices(fs_devices);
6563                 fs_devices = ERR_PTR(ret);
6564                 goto out;
6565         }
6566
6567         if (!fs_devices->seeding) {
6568                 __btrfs_close_devices(fs_devices);
6569                 free_fs_devices(fs_devices);
6570                 fs_devices = ERR_PTR(-EINVAL);
6571                 goto out;
6572         }
6573
6574         fs_devices->seed = fs_info->fs_devices->seed;
6575         fs_info->fs_devices->seed = fs_devices;
6576 out:
6577         return fs_devices;
6578 }
6579
6580 static int read_one_dev(struct btrfs_fs_info *fs_info,
6581                         struct extent_buffer *leaf,
6582                         struct btrfs_dev_item *dev_item)
6583 {
6584         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6585         struct btrfs_device *device;
6586         u64 devid;
6587         int ret;
6588         u8 fs_uuid[BTRFS_FSID_SIZE];
6589         u8 dev_uuid[BTRFS_UUID_SIZE];
6590
6591         devid = btrfs_device_id(leaf, dev_item);
6592         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6593                            BTRFS_UUID_SIZE);
6594         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6595                            BTRFS_FSID_SIZE);
6596
6597         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6598                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6599                 if (IS_ERR(fs_devices))
6600                         return PTR_ERR(fs_devices);
6601         }
6602
6603         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6604         if (!device) {
6605                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6606                         btrfs_report_missing_device(fs_info, devid, dev_uuid);
6607                         return -EIO;
6608                 }
6609
6610                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6611                 if (!device)
6612                         return -ENOMEM;
6613                 btrfs_report_missing_device(fs_info, devid, dev_uuid);
6614         } else {
6615                 if (!device->bdev) {
6616                         btrfs_report_missing_device(fs_info, devid, dev_uuid);
6617                         if (!btrfs_test_opt(fs_info, DEGRADED))
6618                                 return -EIO;
6619                 }
6620
6621                 if(!device->bdev && !device->missing) {
6622                         /*
6623                          * this happens when a device that was properly setup
6624                          * in the device info lists suddenly goes bad.
6625                          * device->bdev is NULL, and so we have to set
6626                          * device->missing to one here
6627                          */
6628                         device->fs_devices->missing_devices++;
6629                         device->missing = 1;
6630                 }
6631
6632                 /* Move the device to its own fs_devices */
6633                 if (device->fs_devices != fs_devices) {
6634                         ASSERT(device->missing);
6635
6636                         list_move(&device->dev_list, &fs_devices->devices);
6637                         device->fs_devices->num_devices--;
6638                         fs_devices->num_devices++;
6639
6640                         device->fs_devices->missing_devices--;
6641                         fs_devices->missing_devices++;
6642
6643                         device->fs_devices = fs_devices;
6644                 }
6645         }
6646
6647         if (device->fs_devices != fs_info->fs_devices) {
6648                 BUG_ON(device->writeable);
6649                 if (device->generation !=
6650                     btrfs_device_generation(leaf, dev_item))
6651                         return -EINVAL;
6652         }
6653
6654         fill_device_from_item(leaf, dev_item, device);
6655         device->in_fs_metadata = 1;
6656         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6657                 device->fs_devices->total_rw_bytes += device->total_bytes;
6658                 atomic64_add(device->total_bytes - device->bytes_used,
6659                                 &fs_info->free_chunk_space);
6660         }
6661         ret = 0;
6662         return ret;
6663 }
6664
6665 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6666 {
6667         struct btrfs_root *root = fs_info->tree_root;
6668         struct btrfs_super_block *super_copy = fs_info->super_copy;
6669         struct extent_buffer *sb;
6670         struct btrfs_disk_key *disk_key;
6671         struct btrfs_chunk *chunk;
6672         u8 *array_ptr;
6673         unsigned long sb_array_offset;
6674         int ret = 0;
6675         u32 num_stripes;
6676         u32 array_size;
6677         u32 len = 0;
6678         u32 cur_offset;
6679         u64 type;
6680         struct btrfs_key key;
6681
6682         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6683         /*
6684          * This will create extent buffer of nodesize, superblock size is
6685          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6686          * overallocate but we can keep it as-is, only the first page is used.
6687          */
6688         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6689         if (IS_ERR(sb))
6690                 return PTR_ERR(sb);
6691         set_extent_buffer_uptodate(sb);
6692         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6693         /*
6694          * The sb extent buffer is artificial and just used to read the system array.
6695          * set_extent_buffer_uptodate() call does not properly mark all it's
6696          * pages up-to-date when the page is larger: extent does not cover the
6697          * whole page and consequently check_page_uptodate does not find all
6698          * the page's extents up-to-date (the hole beyond sb),
6699          * write_extent_buffer then triggers a WARN_ON.
6700          *
6701          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6702          * but sb spans only this function. Add an explicit SetPageUptodate call
6703          * to silence the warning eg. on PowerPC 64.
6704          */
6705         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6706                 SetPageUptodate(sb->pages[0]);
6707
6708         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6709         array_size = btrfs_super_sys_array_size(super_copy);
6710
6711         array_ptr = super_copy->sys_chunk_array;
6712         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6713         cur_offset = 0;
6714
6715         while (cur_offset < array_size) {
6716                 disk_key = (struct btrfs_disk_key *)array_ptr;
6717                 len = sizeof(*disk_key);
6718                 if (cur_offset + len > array_size)
6719                         goto out_short_read;
6720
6721                 btrfs_disk_key_to_cpu(&key, disk_key);
6722
6723                 array_ptr += len;
6724                 sb_array_offset += len;
6725                 cur_offset += len;
6726
6727                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6728                         chunk = (struct btrfs_chunk *)sb_array_offset;
6729                         /*
6730                          * At least one btrfs_chunk with one stripe must be
6731                          * present, exact stripe count check comes afterwards
6732                          */
6733                         len = btrfs_chunk_item_size(1);
6734                         if (cur_offset + len > array_size)
6735                                 goto out_short_read;
6736
6737                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6738                         if (!num_stripes) {
6739                                 btrfs_err(fs_info,
6740                                         "invalid number of stripes %u in sys_array at offset %u",
6741                                         num_stripes, cur_offset);
6742                                 ret = -EIO;
6743                                 break;
6744                         }
6745
6746                         type = btrfs_chunk_type(sb, chunk);
6747                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6748                                 btrfs_err(fs_info,
6749                             "invalid chunk type %llu in sys_array at offset %u",
6750                                         type, cur_offset);
6751                                 ret = -EIO;
6752                                 break;
6753                         }
6754
6755                         len = btrfs_chunk_item_size(num_stripes);
6756                         if (cur_offset + len > array_size)
6757                                 goto out_short_read;
6758
6759                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6760                         if (ret)
6761                                 break;
6762                 } else {
6763                         btrfs_err(fs_info,
6764                             "unexpected item type %u in sys_array at offset %u",
6765                                   (u32)key.type, cur_offset);
6766                         ret = -EIO;
6767                         break;
6768                 }
6769                 array_ptr += len;
6770                 sb_array_offset += len;
6771                 cur_offset += len;
6772         }
6773         clear_extent_buffer_uptodate(sb);
6774         free_extent_buffer_stale(sb);
6775         return ret;
6776
6777 out_short_read:
6778         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6779                         len, cur_offset);
6780         clear_extent_buffer_uptodate(sb);
6781         free_extent_buffer_stale(sb);
6782         return -EIO;
6783 }
6784
6785 void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, u64 devid,
6786                                  u8 *uuid)
6787 {
6788         btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", devid, uuid);
6789 }
6790
6791 /*
6792  * Check if all chunks in the fs are OK for read-write degraded mount
6793  *
6794  * Return true if all chunks meet the minimal RW mount requirements.
6795  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6796  */
6797 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6798 {
6799         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6800         struct extent_map *em;
6801         u64 next_start = 0;
6802         bool ret = true;
6803
6804         read_lock(&map_tree->map_tree.lock);
6805         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6806         read_unlock(&map_tree->map_tree.lock);
6807         /* No chunk at all? Return false anyway */
6808         if (!em) {
6809                 ret = false;
6810                 goto out;
6811         }
6812         while (em) {
6813                 struct map_lookup *map;
6814                 int missing = 0;
6815                 int max_tolerated;
6816                 int i;
6817
6818                 map = em->map_lookup;
6819                 max_tolerated =
6820                         btrfs_get_num_tolerated_disk_barrier_failures(
6821                                         map->type);
6822                 for (i = 0; i < map->num_stripes; i++) {
6823                         struct btrfs_device *dev = map->stripes[i].dev;
6824
6825                         if (!dev || !dev->bdev || dev->missing ||
6826                             dev->last_flush_error)
6827                                 missing++;
6828                 }
6829                 if (missing > max_tolerated) {
6830                         btrfs_warn(fs_info,
6831         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6832                                    em->start, missing, max_tolerated);
6833                         free_extent_map(em);
6834                         ret = false;
6835                         goto out;
6836                 }
6837                 next_start = extent_map_end(em);
6838                 free_extent_map(em);
6839
6840                 read_lock(&map_tree->map_tree.lock);
6841                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6842                                            (u64)(-1) - next_start);
6843                 read_unlock(&map_tree->map_tree.lock);
6844         }
6845 out:
6846         return ret;
6847 }
6848
6849 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6850 {
6851         struct btrfs_root *root = fs_info->chunk_root;
6852         struct btrfs_path *path;
6853         struct extent_buffer *leaf;
6854         struct btrfs_key key;
6855         struct btrfs_key found_key;
6856         int ret;
6857         int slot;
6858         u64 total_dev = 0;
6859
6860         path = btrfs_alloc_path();
6861         if (!path)
6862                 return -ENOMEM;
6863
6864         mutex_lock(&uuid_mutex);
6865         mutex_lock(&fs_info->chunk_mutex);
6866
6867         /*
6868          * Read all device items, and then all the chunk items. All
6869          * device items are found before any chunk item (their object id
6870          * is smaller than the lowest possible object id for a chunk
6871          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6872          */
6873         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6874         key.offset = 0;
6875         key.type = 0;
6876         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6877         if (ret < 0)
6878                 goto error;
6879         while (1) {
6880                 leaf = path->nodes[0];
6881                 slot = path->slots[0];
6882                 if (slot >= btrfs_header_nritems(leaf)) {
6883                         ret = btrfs_next_leaf(root, path);
6884                         if (ret == 0)
6885                                 continue;
6886                         if (ret < 0)
6887                                 goto error;
6888                         break;
6889                 }
6890                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6891                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6892                         struct btrfs_dev_item *dev_item;
6893                         dev_item = btrfs_item_ptr(leaf, slot,
6894                                                   struct btrfs_dev_item);
6895                         ret = read_one_dev(fs_info, leaf, dev_item);
6896                         if (ret)
6897                                 goto error;
6898                         total_dev++;
6899                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6900                         struct btrfs_chunk *chunk;
6901                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6902                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6903                         if (ret)
6904                                 goto error;
6905                 }
6906                 path->slots[0]++;
6907         }
6908
6909         /*
6910          * After loading chunk tree, we've got all device information,
6911          * do another round of validation checks.
6912          */
6913         if (total_dev != fs_info->fs_devices->total_devices) {
6914                 btrfs_err(fs_info,
6915            "super_num_devices %llu mismatch with num_devices %llu found here",
6916                           btrfs_super_num_devices(fs_info->super_copy),
6917                           total_dev);
6918                 ret = -EINVAL;
6919                 goto error;
6920         }
6921         if (btrfs_super_total_bytes(fs_info->super_copy) <
6922             fs_info->fs_devices->total_rw_bytes) {
6923                 btrfs_err(fs_info,
6924         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6925                           btrfs_super_total_bytes(fs_info->super_copy),
6926                           fs_info->fs_devices->total_rw_bytes);
6927                 ret = -EINVAL;
6928                 goto error;
6929         }
6930         ret = 0;
6931 error:
6932         mutex_unlock(&fs_info->chunk_mutex);
6933         mutex_unlock(&uuid_mutex);
6934
6935         btrfs_free_path(path);
6936         return ret;
6937 }
6938
6939 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6940 {
6941         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6942         struct btrfs_device *device;
6943
6944         while (fs_devices) {
6945                 mutex_lock(&fs_devices->device_list_mutex);
6946                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6947                         device->fs_info = fs_info;
6948                 mutex_unlock(&fs_devices->device_list_mutex);
6949
6950                 fs_devices = fs_devices->seed;
6951         }
6952 }
6953
6954 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6955 {
6956         int i;
6957
6958         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6959                 btrfs_dev_stat_reset(dev, i);
6960 }
6961
6962 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6963 {
6964         struct btrfs_key key;
6965         struct btrfs_key found_key;
6966         struct btrfs_root *dev_root = fs_info->dev_root;
6967         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6968         struct extent_buffer *eb;
6969         int slot;
6970         int ret = 0;
6971         struct btrfs_device *device;
6972         struct btrfs_path *path = NULL;
6973         int i;
6974
6975         path = btrfs_alloc_path();
6976         if (!path) {
6977                 ret = -ENOMEM;
6978                 goto out;
6979         }
6980
6981         mutex_lock(&fs_devices->device_list_mutex);
6982         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6983                 int item_size;
6984                 struct btrfs_dev_stats_item *ptr;
6985
6986                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6987                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6988                 key.offset = device->devid;
6989                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6990                 if (ret) {
6991                         __btrfs_reset_dev_stats(device);
6992                         device->dev_stats_valid = 1;
6993                         btrfs_release_path(path);
6994                         continue;
6995                 }
6996                 slot = path->slots[0];
6997                 eb = path->nodes[0];
6998                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6999                 item_size = btrfs_item_size_nr(eb, slot);
7000
7001                 ptr = btrfs_item_ptr(eb, slot,
7002                                      struct btrfs_dev_stats_item);
7003
7004                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7005                         if (item_size >= (1 + i) * sizeof(__le64))
7006                                 btrfs_dev_stat_set(device, i,
7007                                         btrfs_dev_stats_value(eb, ptr, i));
7008                         else
7009                                 btrfs_dev_stat_reset(device, i);
7010                 }
7011
7012                 device->dev_stats_valid = 1;
7013                 btrfs_dev_stat_print_on_load(device);
7014                 btrfs_release_path(path);
7015         }
7016         mutex_unlock(&fs_devices->device_list_mutex);
7017
7018 out:
7019         btrfs_free_path(path);
7020         return ret < 0 ? ret : 0;
7021 }
7022
7023 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7024                                 struct btrfs_fs_info *fs_info,
7025                                 struct btrfs_device *device)
7026 {
7027         struct btrfs_root *dev_root = fs_info->dev_root;
7028         struct btrfs_path *path;
7029         struct btrfs_key key;
7030         struct extent_buffer *eb;
7031         struct btrfs_dev_stats_item *ptr;
7032         int ret;
7033         int i;
7034
7035         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7036         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7037         key.offset = device->devid;
7038
7039         path = btrfs_alloc_path();
7040         if (!path)
7041                 return -ENOMEM;
7042         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7043         if (ret < 0) {
7044                 btrfs_warn_in_rcu(fs_info,
7045                         "error %d while searching for dev_stats item for device %s",
7046                               ret, rcu_str_deref(device->name));
7047                 goto out;
7048         }
7049
7050         if (ret == 0 &&
7051             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7052                 /* need to delete old one and insert a new one */
7053                 ret = btrfs_del_item(trans, dev_root, path);
7054                 if (ret != 0) {
7055                         btrfs_warn_in_rcu(fs_info,
7056                                 "delete too small dev_stats item for device %s failed %d",
7057                                       rcu_str_deref(device->name), ret);
7058                         goto out;
7059                 }
7060                 ret = 1;
7061         }
7062
7063         if (ret == 1) {
7064                 /* need to insert a new item */
7065                 btrfs_release_path(path);
7066                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7067                                               &key, sizeof(*ptr));
7068                 if (ret < 0) {
7069                         btrfs_warn_in_rcu(fs_info,
7070                                 "insert dev_stats item for device %s failed %d",
7071                                 rcu_str_deref(device->name), ret);
7072                         goto out;
7073                 }
7074         }
7075
7076         eb = path->nodes[0];
7077         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7078         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7079                 btrfs_set_dev_stats_value(eb, ptr, i,
7080                                           btrfs_dev_stat_read(device, i));
7081         btrfs_mark_buffer_dirty(eb);
7082
7083 out:
7084         btrfs_free_path(path);
7085         return ret;
7086 }
7087
7088 /*
7089  * called from commit_transaction. Writes all changed device stats to disk.
7090  */
7091 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7092                         struct btrfs_fs_info *fs_info)
7093 {
7094         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7095         struct btrfs_device *device;
7096         int stats_cnt;
7097         int ret = 0;
7098
7099         mutex_lock(&fs_devices->device_list_mutex);
7100         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7101                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7102                 if (!device->dev_stats_valid || stats_cnt == 0)
7103                         continue;
7104
7105
7106                 /*
7107                  * There is a LOAD-LOAD control dependency between the value of
7108                  * dev_stats_ccnt and updating the on-disk values which requires
7109                  * reading the in-memory counters. Such control dependencies
7110                  * require explicit read memory barriers.
7111                  *
7112                  * This memory barriers pairs with smp_mb__before_atomic in
7113                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7114                  * barrier implied by atomic_xchg in
7115                  * btrfs_dev_stats_read_and_reset
7116                  */
7117                 smp_rmb();
7118
7119                 ret = update_dev_stat_item(trans, fs_info, device);
7120                 if (!ret)
7121                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7122         }
7123         mutex_unlock(&fs_devices->device_list_mutex);
7124
7125         return ret;
7126 }
7127
7128 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7129 {
7130         btrfs_dev_stat_inc(dev, index);
7131         btrfs_dev_stat_print_on_error(dev);
7132 }
7133
7134 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7135 {
7136         if (!dev->dev_stats_valid)
7137                 return;
7138         btrfs_err_rl_in_rcu(dev->fs_info,
7139                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7140                            rcu_str_deref(dev->name),
7141                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7142                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7143                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7144                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7145                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7146 }
7147
7148 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7149 {
7150         int i;
7151
7152         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7153                 if (btrfs_dev_stat_read(dev, i) != 0)
7154                         break;
7155         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7156                 return; /* all values == 0, suppress message */
7157
7158         btrfs_info_in_rcu(dev->fs_info,
7159                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7160                rcu_str_deref(dev->name),
7161                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7162                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7163                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7164                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7165                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7166 }
7167
7168 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7169                         struct btrfs_ioctl_get_dev_stats *stats)
7170 {
7171         struct btrfs_device *dev;
7172         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7173         int i;
7174
7175         mutex_lock(&fs_devices->device_list_mutex);
7176         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7177         mutex_unlock(&fs_devices->device_list_mutex);
7178
7179         if (!dev) {
7180                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7181                 return -ENODEV;
7182         } else if (!dev->dev_stats_valid) {
7183                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7184                 return -ENODEV;
7185         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7186                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7187                         if (stats->nr_items > i)
7188                                 stats->values[i] =
7189                                         btrfs_dev_stat_read_and_reset(dev, i);
7190                         else
7191                                 btrfs_dev_stat_reset(dev, i);
7192                 }
7193         } else {
7194                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7195                         if (stats->nr_items > i)
7196                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7197         }
7198         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7199                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7200         return 0;
7201 }
7202
7203 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7204 {
7205         struct buffer_head *bh;
7206         struct btrfs_super_block *disk_super;
7207         int copy_num;
7208
7209         if (!bdev)
7210                 return;
7211
7212         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7213                 copy_num++) {
7214
7215                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7216                         continue;
7217
7218                 disk_super = (struct btrfs_super_block *)bh->b_data;
7219
7220                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7221                 set_buffer_dirty(bh);
7222                 sync_dirty_buffer(bh);
7223                 brelse(bh);
7224         }
7225
7226         /* Notify udev that device has changed */
7227         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7228
7229         /* Update ctime/mtime for device path for libblkid */
7230         update_dev_time(device_path);
7231 }
7232
7233 /*
7234  * Update the size of all devices, which is used for writing out the
7235  * super blocks.
7236  */
7237 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7238 {
7239         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7240         struct btrfs_device *curr, *next;
7241
7242         if (list_empty(&fs_devices->resized_devices))
7243                 return;
7244
7245         mutex_lock(&fs_devices->device_list_mutex);
7246         mutex_lock(&fs_info->chunk_mutex);
7247         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7248                                  resized_list) {
7249                 list_del_init(&curr->resized_list);
7250                 curr->commit_total_bytes = curr->disk_total_bytes;
7251         }
7252         mutex_unlock(&fs_info->chunk_mutex);
7253         mutex_unlock(&fs_devices->device_list_mutex);
7254 }
7255
7256 /* Must be invoked during the transaction commit */
7257 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7258                                         struct btrfs_transaction *transaction)
7259 {
7260         struct extent_map *em;
7261         struct map_lookup *map;
7262         struct btrfs_device *dev;
7263         int i;
7264
7265         if (list_empty(&transaction->pending_chunks))
7266                 return;
7267
7268         /* In order to kick the device replace finish process */
7269         mutex_lock(&fs_info->chunk_mutex);
7270         list_for_each_entry(em, &transaction->pending_chunks, list) {
7271                 map = em->map_lookup;
7272
7273                 for (i = 0; i < map->num_stripes; i++) {
7274                         dev = map->stripes[i].dev;
7275                         dev->commit_bytes_used = dev->bytes_used;
7276                 }
7277         }
7278         mutex_unlock(&fs_info->chunk_mutex);
7279 }
7280
7281 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7282 {
7283         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7284         while (fs_devices) {
7285                 fs_devices->fs_info = fs_info;
7286                 fs_devices = fs_devices->seed;
7287         }
7288 }
7289
7290 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7291 {
7292         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7293         while (fs_devices) {
7294                 fs_devices->fs_info = NULL;
7295                 fs_devices = fs_devices->seed;
7296         }
7297 }